fiD-A136 372  ANALYSIS OF AN ERROR HHSKING SCHEHE FOR PRRHLLEL
COMPUTATIONS(U> JOHNS HOPKINS UNIY BALTIMORE MD DEPT OF
ELECTRICAL ENGINEERIN.. G G MEYER ET AL. DEC 83

UNCLASSIFIED JHUZEECS-83/19 NB8814-81-K-8813 F/G 12/1




s I e e aaie . ok ol b sl on o8 25 < Bl

B2
m
j22
m%
1.6

H S EEE 4.__

2l =l

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

=y

LN A S

A e 4

:

i T TYTYTT R T,
. -\l\l-....-a.u._s-r. ‘--.«n & s ..\UA
‘ 2o O A, S )

3

z v Pl AL S g > -~

WONNER VOHAAE| HINONEZ KORARAKI RNENERAL e
.I




L mean ae o o

BT A

\{:'f

A

-
-

I FEr o

et a s B Kol

Pt P VSR S W Y PN Y )

ANALYSIS OF AN ERROR MASKING SCHEME

FOR PARALLEL COMPUTATIONS

< W S Y PN

Gerwrd G, L Mover and Howard L. Weinert

Report JHU/EECS-83/19

oo Ll
MO:CZF‘
nO-—%‘.
E%E'—i
2 =~

] 2|
ere

=

ey N

AR
)
»
Q)
3
(&1
3

(W DR W SR D ULIPULY WP G Uy W -l P . - . - [ 1




\‘4
.
W
o
x
¥

ANALYSIS OF AN ERROR MASKING SCHEME

S

o

FOR PARALLEL COMPUTATIONS

Zi

e

Gerard G. L. Meyer and Howard L. Weinert

<20 Report JHU/EECS-83/19

Electrical Engineering and Computer Science Department

hadatoa

The Johns Hopkins University

Ll

Baltimore, Maryland 21218

5 .
- ah

e
7 ¥
)

X This work was supported by the Office of Naval Research under Coatract

- N00014-81-K-0813.

.
XS

NN N AR

.

—

s -Veva
K =
n.~ -

o
]

............................................



ERRAY. A
LARAK

Iy
."-‘ PR

5
AAA

XA

!

et N

A5

A

'J"..‘i*
.

~W6 determine the conditions under which an error masking scheme

based on strict redundancy can be used to increase our confidence in the
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results of parallel computations.

This study shows that the issues of

speed and reliability of parallel processors are interdependent and must

- be considered jointly at the design stage.
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1. INTRODUCTION

In this paper, we continue the investigation, begun in [MEYS83],
into the use of strict hardware redundancy for increasing confidence inm
the results of parallel computations. As before, suppose a given prod-
lem can be solved in a given time using a cluster of B computing ele-

ments, and suppose the following hypothesis holds:

Kvpothesis 1:

(i) the input to the cluster is correct,

(ii) each computing element in the cluster has the same probability p of
remaining non-faulty during some given "mission time”,

(iii) the computing elements fail independently.

It Pc is the probability that the output of the cluster is correct,

then Hypothesis 1 implies
P,2pf =P (1)
C C,n’

Note that a computing element may be faulty without affecting the clus-
ter output. If Pb is not high enough for our purposes, ome way to try
to increase our confidence in the cluster output is to accept it only
whea we think it is correct. This approach is analyzed in [MEY83].
Another approach involves the use of an error masking scheme to directly
increase the probability of getting correct results. Such a scheme may
be implemeanted by replicating the original cluster a-1 times, sending
the original imput to all the clusters, and then sending all the cluster

outputs to am error masker which, by comparing them, chooses as its out-
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w;' put the one most likely to be correct. The masker makes its choice by
eid
i,f first partitioning the set of cluster outputs into blocks such that all
& the outputs in a given blook are identical, and them by choosing any of
1
g the outputs in the block of maximal cardinality. If more tham ome block
~ N
bE> has maximal cardinality, the masker chooses an output at random from
Ay among these blocks. The quantity of interest to us is Pcu(a.p). the
i% . probability that the error masker output is correct.
=
In this paper, we shall not assume that the error masker is always ‘
t‘? !
ol non-faulty; instead, we shall assume that the error masker always pro- 1
N |
>:§ duces the desired output whenever a strict majority of its inputs are ;
2 !
: identical. In other words, we shall adopt the following hypothesis: |
N ‘
gg Hypothesis 2: Whenever a strict majority of the cluster outputs are
-}‘
i*i identical, the output of the error masker is equal to one of those clus-

- ter oitputs.

This type of error masking scheme goes back to von Neumann's work

in the Fifties [NEU63) on comstructing logic devices. His work was

};S extended and applied to relay circuits by Moore and Shannon [MOO56].

2i§ See [BARG6S5] for further work along these lines, and [AVI78] for a sur-

é:: vey. MNost authors restrict attention to the case a = 3 (triple modular

is zedundancy) - see, for example, [LYO62] and [BOU71]. Ia the context of |
.5: parallel processing, no complete analysis of the usefulness of error

P, |

- masking, under any reasomable set of assumptions, has been carried out.

oA - The analysis presented in the next section is based on three prin-

ciples: (i) ome should distinguish between hardware faults in a

RO

Ve




s ..'
Il

-«
s, 'n

computing network and incorrect results produced by the network; (ii)
one should assume as little as possible sbout the fault mechanism; (iii)
one should use oaly those quantities that have some chamce of being
experimentally measured. These considerations rule out, im particular,
the use of a failure probability distribution. They also lead us to a

worst case analysis.
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2. ANALYSIS OF THE ERROR NASKING SCHEME

In this section, a worst case analysis of the error masking scheme
is presented. Given a 2 1 clusters, each containing B computing ele-
ments, lot Bj(c.p) be the event that exactly j clusters are faulty. A
cluster is faulty if and only if at least onme of its elements is faulty,
and therefore the probability that a cluster is faulty is l-pp. As a

result,

o8l By Bla=j) . _
P(Ej(clp)) jl(ﬂ'j)’(]’p ) p » j o.llooo.ao (2)

Let Bj(a.B) be the event that exactly j cluster outputs are

incorrect. It is clear that if no more tham k clusters are faulty, them

at most k cluster outputs cam be incorrect, and thus

k k
z P(Bj (a,8)) 2 X P(E_j (a,p)). (3)
i=0 i=0

A lower bound for Pc'(coﬁ) will now be derived.

Lemms 1: Under Hypotheses 1 and 2, Phl(c.B) 2 PCI,-(“’B)‘ where

(a-1)/2
PCI,n(c”) = jEL ET?gfijT(l-pp)jpp(“-j). a odd, (4)
and
(a-2)/2 _
Pc'.-(c.ﬂ) j!L ]TftfjfT(l"p)j’B(c j). c even. (5)
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{:_' Proof: By definition
§.~:
-
P a
N Pc'(a.B) = 3 P(masker output correct | B, (a,B))P(B, (a,B)).,
§=0 . 3
e
o and it is clear from Hypothesis 2 that for j < a/2
. P(masker output correot | Bj(c.B)) =1,
-
; Thus, for every k < a/2
:.'“1
k k
b Poy(a.B) 2 xP(Bj(c.B)) 2 zP(Ej(a.B))
\ j=0 i=0
': and the result of the lemma follows from (2).
—"J'
‘-.:? The behavior of the lower bound PCI m(a.ﬂ) as a function of a is
f charaoterized in the next four lemmas. First, define q and w via
w4 -
- q =9
i
:::2 w = (1-q)/q
'u:?: .
.4 Lomms 2: Suppose that Hypotheses 1 and 2 are satisfied. If a is odd,
a0
N then
b
. Pou,n(9*2:8) = Poy o(a.8) = ‘o)1 (a7 1 1™ -
Proof: The definition of w implies that q = 1/(w+l) and we may rewrite
: (4) as
2
)
“ (a-1)/2
N Po (a,p) = 2 L od(ge1)70
Ci,m j=0 j1(a—j)
'::
"‘
"o
5
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1% J1a-3)1 w(w+l)®,

It follows that

(a+1)/2

. - -{a+2) +2) (a+
Poy, u(242:8) = (w+1) a! felad v .
j=0
Thus,
- (a+3)/2
Pou,a(®2:8) — Py y(a.8) = (1) Har T3y, (6)
» j'O
where
_ {a+2)(a+l) _
Yo (a+2)! al ’
- L8* +1) _ 2 _ _1 _
7 (a+1)! a!  (a-1)1°
(a+2)(a+1) 1 2 1

T3 % J1(av2-3)1 ~ (G-2)1(a=j+2)1 ~ (3-D1(a=j+1)! ~ ji(a-j)1’
for § =2, 3,..., (a-1)/2,

- —iat2)(atl) ____ _ 1 - 2
Y(a+1)/2 = ((a+1)/2)1((a+3)72)1 ~ ((a-3)72)1((a+3)/2)1 ~ ((a-1)72)1((a+1)/2)1"

and

1
YT(a+3)/2 =~ ((a-1)/2)1((a+1)/2) 1"

It is not difficult to verify that
Yj = o. j = o' 1' 2'00-0 (G"l)/z.

and
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X - 1
N Y(at1)/2 = ((a-1)/2)1((a+1)/2)1 °*
" Substituting into (6) yields the desired result.
? Lomms 3: Suppose that Hypotheses 1 and 2 are satisfied. If a is even,
<
" then
= al/2 -(a+2)
A _ e ¥ (w+l) al
¢ Pou,a(®*2:8) = Py, o(9-B) = T(a72)/2) 1 ((as2y72) 1 (2*2) /o)
a Proof: Rewrite (5) as
o (a-2)/2
% = —al -a
% Py (a8 Z by Yo
j=0
¢ (a-2)/2
W = (m) (82 g L ()2,
28 =0 jtla~j)1!
L I |
1 It follows that
B (a2.8) = (wen) (@20 P lasD asD) )
4 ou,m' ¥4 jmodtla@s2=p1 ™
.: Thus,
> _ (a+2)/2
Pa..(a'i-z.ﬂ) - Pa’-(a.ﬂ) = (w+l) (”2)0! 2 ‘rj",. 1
. where
o
_fg¥)(atl) _ 1
Yo (a+2)1 al *
- g, lw(et) 2 1
. 1 (at+1)! a! (a-1)1’
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R . la+2)(atl) _ 1 ) 2 1

=2 T3 T 1(e+2-3)1 T (=22 1(a-3+2)1 T (G- 1(a—3+1) 1~ ji(a-j)1°
.. for j = 2! 300..! (a-z)lzl

2 o —fa¥2)(a+]) 1 _ 2

0y Ta’2 = (a/2)1((a+4)/2)1 ~ ((a-4)/2) 1 ((a+4)/2)! ~ ((a-2)/2) 1 ((a+2)/2) 1’
{: and

+ o 1

- Y(a+2)/2 ((a=2)/2)1((e+2)/2)1"

It is not difficult to verify that

NS

e 7 =0, §=0,1,2,..., (a2)/2,

T%A and
o
s - — (at2)/a)

e Ta/2 © ((a=2)/2)1((a+2)/2)1 °

| Substituting into (7) yields the desired result.
.;; Lemma 4: Suppose that Hypotheses 1 and 2 are satisfied. If a is odd,
o then

| (a+1)/2,_ 4 ~(at1)

_ . A (w+l) al
Pou,n(0*1:B) = Poy (a.p) ((e-1)/2)1((a*1)/2)1 *

2 Proof: Since a is odd, we may rewrite (4) and (5) as
o (a-1)/2
S - -(a+1) 1
b Pey,u(a-8) = (w41) al jfo T wiw1),
[

and

(a+1) (a-1)/2

- - t J
Poy,n(0%1:8) = (w41) al j§0 TTati-1 "




Radini™ et i it Sauk 4
............. .

. A

It is not difficult to verify that

g v
ﬂj Thus, :
o (a+1)/2 .
2 =(a+l -
4 Poy a(@*1:8) = Py _(a.B) = (w1) (Vg AR (8) ]
5 where i
< d

yn = Sfatl) _ 1 )
- 0 (a+l)! a!’ -
- o (atl) 1 1 :
- Ti T J1tar1-1 T G-D1(a-3+D1 _ ji(a-§)1° '_!
s for j =1, 2, 3,..., (a-1)/2, and :
:: - 1 -E
4 T(a+1)/2 =~ ((a-1)/2)1((a+1)/2) 1" a

X
Y = 0. j = o. 1: 2’0'03 (a-l)/2. 1’
j L
'
. and thus (8) reduces to the desired result. -
f Lommas 3: Suppose that Hypotheses 1 and 2 are satisfied., If pB > 0.5, ;
L
) then pCl -(a.B) converges to one as a goes to infimity; if pB = 0.5, ‘
then Phl -(G.B) converges to 0.5 as a goes to infinity; amnd if pB ¢ 0.5,
»
then PCI -(G.B) converges to zero as a goes to infinity.
»

i Proof: Using the well known Gaussian approximation to the binomial dis- f
- tribution, we have N
o t,(a) 2 %
B -0.5 -0.5t -
* lim P, _(a,p) = lim (27) [ e at ,
- il ' e t,(a) :
1 )
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where

tl(c) = -c(l-q)((aq(l-q))_o's ’

ty(a) = (alq-0.5)-0.5)((aq(1-9)) **5 , & o4,

tz(c) - u(q—O.S)-l)((cq(l-q))-o's , @ even .

It is clear that

lin t,(a)
a—e

lhntz(a) =
a—)e

lhntz(a)
a—)»

lhltz(a) =
a—e

and thus

lim (2n)—o°s
a—e

1im (2m) 793

a—)®

lim (2")-0.5
a—)®

4 , q > 0.5 ,

0, q=0.5,

- , q <0.5,

tz(a)

I
tl(c)

(a)

/
tl(a)

tz(a)

ty

t1(a)

-0.5
e

-OOSt
[

-

t2
dt.lpq)o'sl

2
dt = 0.5 , q=0.5,

2

[ e 9%t at =0, q<o.5.

Lexma 2 implies that if a is odd, Pcl .(a.ﬁ) is a strictly increas-
»

ing function of a when pB > 0.5, PCI

and PCI -(a.ﬁ) is a strictly decreasing function of a when pB < 0.5.
»

-(a.ﬂ) is constant when pB = 0.5,

Lomma 3 implies that if a is even, Pcl -(¢+2.B) >P .(a.p) when

cu,
’D > a/(2(a+l)), PCI.n(a+2’B) = PCl.n(a'B) when pp = g/(2(a+1)), and
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PCI.-(°+203) < Pcu.-(a.ﬁ) when pB < a/(2(a+l)). It follows that if a is
even, Fhl,-(“'p) is a strictly increasing function of a when pB 20.5;
Pc'.-(a.B) first increases, reaches a maximum value that depends on pﬂ.
and then decreases when pB is in the interval (1/3,1/2); PCI -(4.3) =
Pc,..(z.p) and PCI’-(G.B) is a strictly decreasing function of a for a 2

4 when pp = 1/3; and finally, .(a.p) is & strictly decreasing func-

Pou
tion of a when pB < 1/3.

Lemma 4 implies that if a is odd, Pcu.-(c+1,ﬂ) < PCI.I(“’B) for all
values of pp. In other words, it is never advantageous to choose an

even a.

Under what conditions, fhen. can this error masking scheme be used
to iancrease our confidence in the results of parallel computations? In
light of Lemmas 2, 4, and § and the fact that PCI.-(I'ﬂ) = pc.., error
masking (with an odd number of clusters) can be used to guarantee that
Pc.(a.ﬁ) > Po o if and only if pp > 0.5, in which case we can ensure

that Py (a,B) is as close to one as we wish by choosing a sufficiently

laxge.

We have just seen that even when pa > 0.5, there is no way to
ensure that Pc'(a.p) = 1 using a finite number of computing elements.
However, if one does not adhere to the principles discussed in the
introduction, and is willing to make stromger, more optimistic, assump-
tions, them it is possible to obtain Py (a,p) = 1 with a finite a. For
example, if, in addition to Hypotheses 1 and 2, we assume that the

aumber of faulty computing elements is at most !, then the choice of any

™
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. @ 3 2t + 1 guarantees that the number of correct cluster outputs is
strictly greater than the number of incorrect cluster outputs, In this
case, the masker always chooses a correct output, and therefore Pcu(a.ﬁ)
’ = 1. Alternatively, if in addition to Hypothesis 1, we assume that (i)
' whenever there is at most ome block of cardinality greater tham ome, the

masker chooses an output from that block, (ii) the number of faulty com—
3 . puting elements is at most {, and (iii) any two incorrect cluster out-

puts must be distinct, then any choice of a > ¢ + 2 ensures that

Pa(ﬂa’) = 1.
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o
:_':,:;‘ 3. EFFICIENT CONPUTING NEIWORK DESIGN
‘o'_'\
x Suppose that that it is possible to solve a given problem in a
::.::: given time using a cluster of P computing elemeats of a given type, snd
T
:.3 assume that the basic reliability p of this type of computing element is
SR
‘. ‘

. known. Furthermore, suppose that wve want to design a computing network
-
jﬁs consisting of a such clusters and an error masker, so that the masker
"\. output is correct with probability at least @ (0 < @ < 1). To meet this
]

requirement, it is sufficient, in view of the results of the previous
)‘ section, to ensure that the following inequality is satisfied for some
N
o odd imteger a ) 1:
4 )
- (e-1)/2
it B)ipB(ai) '
:..\:j jfo jl(c-j)’(l-’ )p 20, (9)
A )
I .
AW
Given p, B and O, it may or may mot be possible to satisfy (9). If

N )
(9) can be satisfied, the most efficient design is obtained when a is
A
.::7_; chosen to be the smallest odd integer a, that satisfies (9). Im order
- to analyze the feasibility and efficiency issues, we partition the set
.'J
§1 of all pairs (O.p’) into disjoint subsets Vo, V1 and Vn as follows (ses
f.,_: Figure 1):

Vo = 10.0%)1 5P co 0.5 1V PP (o5 ¢0,

v, = (ePris? 20,

V= (e.pPr 1 0.5 <o <o),
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e The following lemma is a direct conmsequence of the results of the

?
uf precediag section.

Lemma 6: If (O.p’) is in V_, then (9) cannot be satisfied. If (O.pp) is

0
in Vl. then (9) can be satisfied and ay = 1, If (O.ps) is in Vl. then

. (9) can be satisfied and aq ) 3.

Ve know that whea the pair (0.9’) is in V., the error masking

iy YXNX

scheme may be used to increase our confidence in the output. The amount
of necessary replication, given by the value of a,, depends on the pre-

cise location of the point (O.p’) in the region Vl. Figure 2 shows the

LAY

decomposition of Vi into subregions for which aq equals 3, 5, 7,...,
etc. These regions are relatively narrow, and become smaller as a,

increases. It follows that small changes ia p’ mey lead to large

Wttty s %

changes in a,. Ve now present an example that illustrates this situa-

tion.

2 ..‘"

o
.

Example: Suppose that we want to emsure that the probability that the

output of the masking scheme is correct is at least 0.95. This con-

23 straiat will automatically be met if (9) is satisfied with 0 = 0.95.

; Thus:

! if 0.950 ¢ p’. then ag = 1, and no replication and error masking is

?: needed,

y if 0.865 < pP ¢ 0.950, we need aq = 3, _
N . if 0.811 ¢ pP < 0.865, we need a, = s, X
% 12 0.775 ¢ pP < 0.811, we need a, = 7, R

. if 0.749 < pP < 0.775, we need aq = 9,
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if 0.729 < pP < 0.749, vo need a, = 11,

and so forth. It is clear that the necessary amount of replication
inoreases quite rapidly with decreasing p’. Suppose now that we 3
pziozxi fixz a to be equal to 3 (the triple modular redundancy case).
Then, in order to guarantes that Pc'(3.B) > 0.95, we must have pp >
0.865. For a given p (that is, for a given type of computing element),
this translates into an upper bound on the number B of computing ele-

monts that can be used im each cluster; in particular,

p‘p.. IO.P

where x is defined ss the largest integer less than or equal to x.

Thus, if p = 0.99, Be = 14; if p = 0,95, Be = 2; and if p = 0.90, B =
1. A limit on B is clearly a limit on the computational speed of the
network, thus emphasizing the fact that the speed and reliability of
psrallel processors are interdependent. Finally, it is interestimg to
ask what minimum computing element reliability p is required im order to

use s large number of elements in each cluster, while ensuring that

Pc'(S.D) > 0.95. Since we need pp 2 0,865,
P 2 pe = (0.865)1/8.

Thus, if B = 256, pe = 0.9994; if p = 1024, pe = 0.9998; and if p =

zo‘s’ ’. = 0099,9‘
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4. CONCLUSION

The results of this paper show that, when reasonable assumptions
are made, strict hardware redundancy is of limited value in meeting
parallel processing reliability constraints. If the reliability of the
basic computing element is not high enough, it is impossible to achieve
the desired network reliability using strict redundancy (Figure 1,
Rogion V,). If the reliability of the basic computing element is suffi-
ciently high, no redundancy is needed to achieve the desired metwork
reliability (Figure 1, Region Vl). The remaining case (Figure 1, Region
Vi) is the only one in which strict redundancy is of use. However, the
amount of replication needed to satisfy the reliability constraint may

be quite large, as illustrated in Figure 2.

In view of the preceding discussion, it is clear that an alterna-
tive approach to meeting reliability constraints, without massive
amounts of hardware, is desirable. The authors are presently working on
such an approach in the context of signal processing. The basic idea
consists in taking into account the structure of the problem to de
solved and in exploiting any imherent redundancy in the input data

[MEYS2].
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