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ABSTRACT

ft determine the conditions under which an error masking $choe

based on strict redundancy can be used to increase out confidence in the

results of parallel computations. This study shows that the issues of

speed and reliability of parallel processors are interdependent and must

' be considered Jointly at the design stage.
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1. DI UCTIG4

In this paper, we continue the investigation, begun in [NEY83],

into the use of strict hardware redundancy for increasing confidence in

the results of parallel computations. As before, suppose a given prob-

lem oan be solved in a given time using a cluster of A computing cle-

-sents, and suppose the following hypothesis holds:

(i) the input to the cluster is correct,

(ii) each computing element in the cluster has the same probability p of

remaining non-faulty during some given "mission timew,

(iii) the computing elements fail independently.

If PC is the probability that the output of the cluster is correct,

then lypothesis 1 implies

-PC po CS

Note that a computing element may be faulty without affecting the clus-

ter output. If PC is not high enough for our purposes, one way to try

to increase our confidence in the cluster output is to accept it only

when we think it is correct. This approach is analyzed in [NYS3].

Another approach involves the use of an error masking scheme to directly

increase the probability of getting correct results. Such a scheme may

be implemented by replicating the original cluster a-1 times, sending
.4

*the original input to all the clusters, and then sending all the cluster
oc

~outputs to am error masker which, by comparing them, chooses as its out-.5

.i
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put the one most likely to be correct. The masker makes its choice by

first partitioning the set of cluster outputs into blocks such that all

the outputs in a given block are identical, and then by choosing any of

the outputs in the block of maximal cardinality. If more than one block

has maximal cardinality, the masker chooses an output at random from

among these blocks. The quantity of interest to us is P C(a,p). the

probability that the error masker output is correct.

In this paper, we shall not assume that the error masker is always

non-faulty; instead, we shall assume that the error masker always pro-

duos the desired output whenever a strict majority of its inputs are

identical. In other words, we shall adopt the following hypothesis:

Imptksis 2,: Whenever a strict majority of the cluster outputs are

identical, the output of the error masker is equal to one of those clus-

* - ter outputs.

This type of error masking scheme goes back to von Neumann's work

in the Fifties [NEU631 on constructing logic devices. His work was

extended and applied to relay circuits by Moore and Shannon [N00$6].

*See [BAR651 for further work along these lines, and [AV178] for a sur-

vey. Most authors restrict attention to the case a - 3 (triple modular

redundancy) - see, for example, [LY0621 and [DOU71]. In the context of

parallel processing, no complete analysis of the usefulness of error

masking, under any reasonable set of assumptions, has been carried out.

The analysis presented in the next section is based on three prin-

ciples: (I) one should distinguish between hardware faults in a

'p w



computing network and incorrect results produced by the network; (ii)

one should assume as little as possible about the fault mechanism; (iii)

one should use only those quantities that have some chance of being

experimentally measured. These considerations rule out, in particular,

the use of a failure probability distribution. They also lead us to a

worst case analysis.
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2. ANALYSIS OF THE U OR MASKING SCIMNI

In this section, a worst case analysis of the error masking scheme

is presented. Given a 1 1 clusters, each containing 0 computing ele-

meats, let i(u,P) be the event that exactly j clusters are faulty. A

cluster is faulty if and only if at least one of its elements is faulty,

and therefore the probability that a cluster is faulty is I-pp . As a

result,

PC' (ej)-ji(.- ji , j - 0,1,.,.. (2)
%JV.-

Lot Bi(a.0) be the event that exactly j cluster outputs are

incorrect. It is clear that if no more than k clusters are faulty, then

at most k cluster outputs can be incorrect, and thus

k kZ _P(BjI z F())(3

J-0 J-0o

A lower bound for P cK(sF) will now be derived.

Lgina I: Under Hypotheses 1 and 2, P (a.0) 2 P m(a,F), where

(.M ME

P.:,,(S") - l) 1 a odd. (4)

and

(a-2)/2 a ( (I) JPl-J a even.
aJ0 ti(G-J)e

V * , , . t ... ,. , . ... - . ... .. . . . -. . ... .. " .. , . . .. . . .. ., .. . .. .
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Proof: By definition

Po(a.0) " ZP(masker output correct I nj(a.))P(Dj(a.B))oimo

and it is clear from Hypothesis 2 that for j u 6/2

P(sasker output correct I B (ap)) - 1.

Thus, for every k ( a/2

k k
";PCM(aJ) I. Z P(Bji(a.0)) I ( a )

and the result of the lema follows from (2).

The behavior of the lower bound PcM.n(a,p) as a function of a is

characterized in the next four lemas. First, define q and w via

w - (1-q)/q

Lemma : Suppose that Hypotheses 1 and 2 are satisfied. If a is odd,

then

W(Q+1)2 12v1-1+2)a!

PO ,1(a+2.A) - P (a P) (a+2)(-)

Proof: The definition of w implies that q - l/(w+l) and we may rewrite

(4) as

(a-i)I 2 -aPDi 0 a(CO) = Z I wj (w+l)-,J toj!(a-j)!

* %Po.o %.o o2J..Zo.. .-.o- ..
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It follows that

- P m~(a+2,A) -(w+i) -(&+2)cL zm1/ a+2)(a+l) W

Thus,

a2)(a+3)/2P N,(a+2,) -P M~(am) -(w+1) al Z Y w~ (6)

where

0 (+2)m I at.

(a+2 2)a ml

7J Jl(a+2-j)l QJ-2) 1(a--J+2) I (J-1) I(m-J+i) j(;;-j) I

for J- 2, 3, .... (a-i)12,

- (a+2)(a+l) 1 2
* (a+i)I2 ((6+i)12)1((G+3)12)! ((a-3)/2)t((a+3!)1 ((a-i)/2)1C(a+l)/2)l'

and

Y(mL+3)/2 -((a-1)12) !((a+i)/2) !*

it is not difficult to verify that

- 0, J- 0. 1. 2..... (%-l)/2,

and



Substituting into (6) yields the desired result.

1Lg j.: Suppose that Hypotheses 1 and 2 are satisfied. If a is even,

N-2) 2) +2.(c 2) 2)

Proof: Rewrite (5) as

(a-2) /2
P K'(aA) = Z wj(~l 1

J-0 j I (vs-i) I

-(a+2u-) a-2/2 1
= (w+l)(u ! M z' wj w+1) 2 .

It follows that

P M~(a+2,0) -(w+1) - ( ra+2) a 1 2) al

.4 -j (+2)+1

Thus,

(2)(az+2)/2
-C~~a20 P 3,(vsp) -(w+)(GIs a Z r w V (7)

where

To.

(a+2) I a)

Yl (4+151 6u (a-1)1'
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I w+2) (a+l) -1 2-
j j(a+2-J) 1 (J-2)t(a -J+2) (J-1)I(a-j+1)I tizjI

for J- 2. 3,..., (a -2)12,

(a+2)(a+l) 12
-a/ (u/ 2)I1(s+4) 2)l1 ((a-4)12)1((gz+4)12)l ((az-2)/2)I((a+2)/2)!'

and

Y~a=2)- ((a-2)/2) I((a+2)/2) 1*

It is not difficult to verify that

-J 0, J 0, 1, 2...., (a -2)/2,

and

- .. (('z+2)Ia)
a/ ((a-Z)12)1((a+2)12)l

Substituting into (7) yields the desired result.

Lemm _4: Suppose that Hypotheses 1 and 2 are satisfied. If a is odd,

then

PC'mal.)- P (CL. )=-(s12

CM'z ((a-1)/2)t((a+1)/2)!

Proof: Since a is odd, we may rewrite (4) and (5) as

P ,R(QA~) -(w+1) (a l~ (e11 wjw+i),

and

P~(a1,~)- (w1) -a+1) (a-1)/2V

(W~l) a -0 jI(a+1-J)I

. . .. O
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Thus,

(a+1)12
PCmla+IL ) - P (aLa) = (w+II-la+l)a w8)

j =0

where
.4.

= (a+1l _..Y'0 (a+l) I al

" = (a+1) -1 1_

j j(a+l-j) (j-1) 1(a-j+1) - jI(a-j)I'

for j = 1, 2, 3,..., (a-l)/2, and

1
('1a+1)/2 - ((a-1)/2)1((a+1)/2)1*

It is not difficult to verify that

0, j = 0, 1, 2,..., (a-1)/2,Tj

and thus (8) reduces to the desired result.

Lma 3: Suppose that Hypotheses 1 and 2 are satisfied. If p7 > 0.5,

then PC *(a,O) converges to one as a goes to infinity; if pp - 0.5,

then Pcf(a,p) converges to 0.5 as a goes to infinity; and if p < 0.5,

then PCM, (a,A) converges to zero as a goes to infinity.

Proof: Using the well known Gaussian approximation to the binomial dis-

tribution, we have

t2 (a)

lim P (a,P) li (2w)-0.5 " ef Ot dt
CM-- a--m t I (a)

°.I

°.I
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* where

t2(a) - (a(q-O.5)-O.$)((aq(1-q))- 0 " , a odd,

-2(a) - a(q-O.5)-l)((aq(l-q))- 0  , a even

It is olear that

II
li t2(a) - q

lit 2(a) - +m , q >0.5 ,

list (a) = 0 , q < 0.5

. lint 2 (a) = - , q (0.5,

and thus

-0.5t 2 la e-0. S t 2

li (2) f a- dt -1 q >0.5
t (a)

;.. - t(a)

li- (2) - "  f a • dt - 0.5 , q - 0.5
•.a-- t (a)

li ( ( .(2t 2 dt 0 q<0.5
t (a)

Lema 2 implies that if a is odd, Pc 0,m(a,) is a strictly increas-
ing function of a when po., P,(a,p) is constant when p 0.5,

and P (aA) is a strictly decreasing function of a when po ( 0.5.
oci,.

Lema 3 implies that if a is even, P (a+2"0) > P (a.0) when

p >a/(2(a+l)), P (CH a+2,) P (a.0) when p a2(a+l)), andP(, c,.~,)we J

o4.e

4,.'
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cK ,P PCNm(auP) when pO <a/(2(a+l)). It follows that if a is

even, P CHI(a,p) is a strictly increasing function of a when P > 0.5;

P CK'(9,P) first increases, reaches a mazimum value that depends on pP,

and then decreases when pP is in the interval (1/3,1/2); P/,(4,p) =

P 3 (2.0) and Po(u,P) is a strictly decreasing function of a for a >

4 when pP - 1/3; and finally, P (aJ) is a strictly decreasing func-
CK's

tion of a when pP < 1/3.

Lema 4 implies that if a is odd, P(O's +I,) P CM ,(,.) for all

values of pP. In other words, it is never advantageous to choose an

even a.

Under what conditions, then, can this error masking scheme be used

to increase our confidence in the results of parallel computations? In

light of Lomas 2, 4, and S and the fact that P C,1(1,0) - PC,m" error

masking (with an odd number of clusters) can be used to guarantee that

NJ ) > PC,3 if and only if PP > 0.5, in which case we can ensure

that PCK(a,P) is as close to one as we wish by choosing a sufficiently

large.

We have just seen that even when PP > 0.5, there is no way to

ensure that PCN(&,P) - 1 using a finite number of computing elements.

However, if one does not adhere to the principles discussed in the

introduction, and is willing to make stronger, more optimistic, assump-

tions, then it is possible to obtain P /(a,P) - 1 with a finite a. For

example, if, in addition to Hypotheses 1 and 2, we assume that the

number of faulty computing elements is at most , then the choice of any

0i
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£ ') 24 + 1 guarantees that the number of correct cluster outputs is

. strictly greater than the number of incorrect cluster outputs. In this

case. the masker always chooses a correct output, and therefore P (o.K )

= 1. Alternatively, if in addition to Hypothesis 1, we assume that Ci)

whenever there is at most one block of cardinality greater than one, the

masker chooses an output from that block, (ii) the number of faulty con-

puting elements is at most 4, and (iii) any two incorrect cluster out-

puts must be distinct, then any choice of a 1 4 + 2 ensures that

PA2s.~) = 1.

4 . -

: "o-
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3. EFICINIT COM)PUTING NETWORK DESIGN

Suppose that that it is possible to solve a given problem in a

given time using a cluster of A computing elements of a given type, and

assume that the basic reliability p of this type of computing element is

known. Furthermore, suppose that we want to design a computing network

consisting of a such clusters and an error masker, so that the masker

output is correct with probability at least 0 (0 ( 0 (1). To mest this

requirement, it is sufficient, in view of the results of the previous

section, to ensure that the following inequality is satisfied for some

odd integer a 1 1:

(s-1) /2 Jp(l-J)

Given p. P and 0, it may or may not be possible to satisfy (9). If

(9) can be satisfied, the most efficient design is obtained when a is

chosen to be the smallest odd integer a* that satisfies (9). In order

to analyze the feasibility and efficiency issues, we partition the set

of all pairs (epP) into disjoint subsets V0 , V1 and VY as follows (see

Figure 1):

V0 = ((Opp) po < .1 0.5 ) U ((Opp)I po S 0.5 0 )}

V1 - ((o.pA)I p1 0 ,

VM - ((Opp)I 0.5 ( pP <0 ).

',

, I .'.; . . . ... , .",-.".-.- . ,: . .".' . . . .. ..- -.. . . . . -. ,. . . - _ . . .•..,. . ., . . . - .

4. r = . ;T e . ' . : . , . ' ' . . * . . '+ ' . ,' . ' .+,, ' ' ' , " . * . '" . " ' ' ' ' "



The following lema is a direct consequence of the results of the

preceding section.

a j: If (O,pP) is in VO , thean (9) cannot be satisfied. If (O.pP ) is

in Vl, then (9) can be satisfied and a 1. If (GBpO) is in V1 , then

(9) can be satisfied and a 1 3.

To know that when the pair (Op P ) is in Vii, the error masking

scheme may be used to increase our confidence in the output. The amount

of necessary replication, given by the value of s, depends on the pre-

cise location of the point (O,pP ) in the region V1 . Figure 2 shows the

decomposition of V N into subregions for which as equals 3. 5. 7,....

etc. These regions are relatively narrow, and become smaller as as*

increases. It follows that small changes in p nay lead to large

changes in as. We now present ai example that illustrates this situa-

tion.

haMpUa: Suppose that we want to ensure that the probability that the

output of the masking scheme is correct is at least 0.95. This con-

straint will automatically be not if (9) is satisfied with 0 - 0.95.

Thus:

if 0.950 . pO, then so 1, and no replication and error masking is

needed,

if 0.865 £ pP ( 0.950, we need as 3,

if 0.811 £ pp ( 0.65, we need s = 5,

if 0.775 . ( 0.811, we need as = 7,

if 0.749 £ pO ( 0.775, we need a* - 9,

Z.

I,
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if 0.729 j, pA <0.749. we used as 11,

and so forth. It is clear that the necessary amount of replication

inoreases quite rapidly with decreasing po. Suppose now that We JL

ulior fix a to be equal to 3 (the triple modular redundancy case).

Then, in order to guarantee that Pf(3, ) ) 0.95, we must have po >

0.865. For a given p (that is, for a given type of computing element),

this translates into an upper bound on the number A of computing ole-

meats that can be used in each cluster; in particular,

log p

where z is defined as the largest integer less than or equal to x.

Thus, if p - 0.99, . = 14; if p - 0.95, Do - 2; and if p - 0.90. As -

1. A limit on 0 is clearly a limit on the computational speed of the

network, thus emphasizing the fact that the speed and reliability of

parallel processors are interdependent. Finally, it is interesting to

ask what minimum computing element reliability p is required in order to

use" a large number of elements in each cluster, while ensuring that

POf(3,) > 0.95. Since we need po 1 0.865,

P > pe - (0.865)1/

Thus, if - 256, Po - 0.9994; if -1024, po = 0.9998; and if A =

2048. Po - 0.9999.

.5e
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4. CONCLUSION

The results of this paper show that, when reasonable assumptions

are made, strict hardware redundancy is of limited value in meeting

parallel processing reliability constraints. If the reliability of the

basic oomputing element is not high enough, it is impossible to achieve

the desired network reliability using strict redundancy (Figure 1.

Region V0 ). If the reliability of the basic computing element is suffi-

ciently high, no redundancy is needed to achieve the desired network

reliability (Figure 1. Region V1). The remaining case (Figure 1. Region

V3) is the only one in which strict redundancy is of use. However, the

mount of replication needed to satisfy the reliability constraint may

be quite large, as illustrated in Figure 2.

In view of the preceding diicussion, it is clear that an alterna-

tive approach to meeting reliability constraints, without massive

mounts of hardware, is desirable. The authors are presently working on

such an approach in the context of signal processing. The basic idea

consists in taking into account the structure of the problem to be

solved and in oxploiting any inherent redundancy in the input data

[1=82] .

-.
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