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ABSTRACT

In this paper we survey recent results concerning global existence and

decay of smooth solutions of certain quasilinear hyperbolic Volterra equations

which provide models for the motion of one-dimensional viscoelastic solid of

the Boltznn tyve. go also sketch the derivation of these equations from

physical principles, discuss the physically appropriate assumptions, and prove

a special case of a new existence theorem for the Cauchy problem.
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GOBAL DXI STICN AND ASYNTOTXCI IN

Os-DIONaNIONAL NONZIAR VISCOZLASTICITY

W. J. Hrusa 1 ' 2 and J. A. Nohel 1

1. Introduction

For nonlinear elastic bodies, the balance laws of continuum mechanics

lead to equations of motion (of hyperbolic type) which have the property that

smooth solutions may break down in finite time due to the formation of shock

waves. Some material models of physical interest incorporate a nonlinear

"elastic-type" response in conjunction with a natural dissipative mechanism.

For such materials it is important to understand the effects of dissipation on

solutions of the equations of motion.

Some dissipative mechanisms (e.g., viscosity of the rate type in one

space dimension) are so powerful that globally defined smooth solutions exist,

even for very large initial data. A much more subtle type of dissipation, due

to memory effects, arises in viscoelasticity of the Boltmann type.

In this paper we discuss global existence and decay of smooth solutions

of certain quasilinear hyperbolic Volterra equations which provide models for

the motion of nonlinear viscoelastic solids of the Doltxmann type. In Section

2 we formulate the dynamic problems to be considered and discuss the relevant

assumptions. In Section 3 we give a survey of known results. Theorem 3.1 is

newt the complete proof will appear elsewhere (171. Finally, in Section 4, we

prove a special case of Theorem 3.1.
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we restrict our attention throughout to one-dimensional motions.

Although the details have not been carried out completely, analogous results

can be obtained for multidimensional viscoelastic solids of the Solt mann

type. This is discussed briefly in (7]. Local existence results which are

applicable to multidimensional bodies occupying all of space have been given

by Grimmer and Zeman 1121.

We close the introduction with some remarks on notation. Let D be a

~subset of it x R. For a function w x D + a we use subscripts x and t

(or 1) to indicate partial differentiation with respect to the first and

second argument, respectively. Moreover, we use the same symbol w to denote

the mapping t * w(e,t) when there is no danger of confusion. A prime is

used to denote the derivative of a function of a single variable, and the

symbol :- indicates an equality in which the left hand side is defined by

the right hand side. All derivatives should be interpreted in the sense of

distributions.

2. Formulation of Dynamic Problems

Consider the longitudinal motion of a homogeneous one-dimensional body

that occupies the interval B in a reference configuration (which we assume

to be a natural state) and has unit reference density. We denote by u(x,t)

the displacement at time t of the particle with reference position x

(i.e., x + u(xt) is the position at time t of the particle with reference

position x), in which case the strain is given by

e(x't) :- ux (X,t) . (2.1)

Fr smooth displacements, the equation of balance of linear momentum here

takes the form

utt(x,t) a ax(xt) + f(x,t), x e be t ) 0 , (2.2)
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where a is the stress and f is the (known) body force. Equation (2.2)

must be supplemented with a constitutive assumption (stress-strain relation)

which characterizes the type of material composing the body.

If the body is elastic, then the stress depends on the strain through a

constitutive equation of the form
4

O(X,t) - *(6(Xt)) , (2.3)

where + is an assigned smooth function with #(0) - 0, and the resulting

equation of motion is

utt - #(ux) x + f • (2.4)

Experience indicates that stress increases with strain, at least near

equilibrium, so it is natural to assume that +'(0) > 0. Lax (18] and MacCamy

and izel (23] have shown that (2.4) (with f 0 0) does not generally have

globally defined smooth solutions no matter how smooth (and small) the initial

data are.

For viscoelastic materials of the rate type, the stress depends on the

strain rate as well as the strain. A simple model corresponds to the

constitutive relation

O(x,t) - #(e(x,t)) + kct(x,t) , (2.5)

where # is as above and X is a positive constant, which leads to the

equation

utt = *(ux)x + luxtx + f " (2.6)

Greenberg, MacCamy, and Mizel [11] have shown that the Dirichlet initial-

boundary value problem for (2.6) has a unique globally defined smooth solution

provided that the initial data are sufficiently smooth. Viscosity of the rate

type is so powerful that global smooth solutions exist even if the initial

data are very large. Similar results for more general viscoelastic materials

of the rate type have been obtained by Dafermos (31 and MacCemy J191.

-3-
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bperience indicates that in certain materials, the stress at a material

point x depends on the entire temporal history of the strain at x. In

1876, Boltzmann [1] proposed the constitut ... .%n

U(xt) - cS(xot) - Jo m(s)C(x.t-s)ds 0 (2.7)

where c is a positive constant and m is positive, decreasing, integrable,

and satisfies

c- j n(s)d > 0 . (2.8)

The history of the strain up to time t - 0 is assumed to be known.

The constant c measures the instantaneous response of stress to strain,

and the first two conditions on m say that the stress "relaxes" as time

increases and that deformations which occurred in the distant past have less

influence on the present stress than those which occurred in the recent

past. Equation (2.8) also has an important mechanistic interpretation. In

statics, i.e. o(x,t) S(x) and s(x,t) " -iw), equation (2.7) reduces to

O) - (c - JO m(s)ds)7(x) ( (2.9)

and thus (2.8) states that the equilibrium stress modulus is positive.

A natural nonlinear generalization of (2.7) is provided by the

constitutive equation

UA(x,t) - *((x,t)) - ) m(s)#(C(x,t-s))ds (2.10)

where # and # are assigned smooth functions with

4(0) - #(0) - 0, #'(0) > 0, #'(0) > 0 , (2.11)

and a is positive, decreasing, integrable, and satisfies

- J m(s)ds)#'(O) ) 0 (2.12)

it is convenient to define the relaxation function a by

a(t) :- It m(s)ds, t e (0,-) (2.13)

and the equilibrium stress function X by

X(M) :0 4() - a(O ), C e it ( 2.14)

m~-4
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If a satisfies the preceding conditions then a is positive, decreasing,

and convex, and x'(O) > 0.

We note that a' E -a. Thus (2.10) can be written in the form

o(x,t) - *(C(x,t)) + o a'(s)*(C(xt-s))ds (2.15)

and (letting T :- t-s) also in the form

O(x,t) - *(c(x,t)) + j.. a'(t-T)*(C(xr))dT . (2.16)

The corresponding equation of motion is

u (xt) - (Ux (x,t))x + jt a(t-T)(U x(X,T)) xdT (2.17)utt x x x)

+ f(x,t), x e a, t ) 0

Observe that a', rather than a, appears in equations (2.15), (2.16),

and (2.17). In this paper, we are normalizing a so that a(t) + 0 as

t + -. (See (2.13).) The reader is cautioned that other normalizations are

frequently used.

An appropriate dynamic problem is to determine a smooth function

u : 8 x (Rai) w 3 vhich satisfies equation (2.17) for t ) 0, together

with suitable boundary conditions if B is bounded, and

u(x,t) - v(x,t) x e 8, t 4 0 , (2.18)

where v is a given smooth function. The history value problem (2.17),

(2.18) can be reduced to an initial value problem as follows. Define a new

forcing function g by

g(x,t) Sm f(x,t) + ]of al(t-T)(v x(XT)) xdT, (2.19)

xeB, t < o

and initial data u0 , u I by

u0(x) - v(x,0), uj(x) -vt(x,o), x e a . (2.20)

It is clear that u is a solution of (2.17), (2.18) if and only if it is a

solution of the initial value problem

-5-
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Utt(x t) - (U(X,t))1 + J a'(t-T)W(U (xe)) xd (2.21)

+ g(xt), x e B, t ) 0

u(x,O) - Uo(X), ut(xO) - U1 (X), x e B . (2.22)

Conversely, the initial value problem (2.21), (2.22) can be converted to

a history value problem of the form (2.17), (2.18) by constructing suitable

functions v and f. (Of course, such a procedure does not uniquely

determine a history value problem.) For consistency, we state all results for

initial value problems. Clearly, there are analogous statements for history

value problems.

We consider pure initial value problems (Cauchy problems) with 9 - 3,

as well as initial-boundary value problems with 3 - [0,1] and boundary

conditions of Dirichlet, Neumann, or mixed type, i.e.

u(0,t) - u(1,t) - 0, t ) 0 , (2.23)

ux(0,t) - Ux(lt) - 0, t ) 0 , (2.24)

or

u(0,t) - u x(1,t) " 0, t ) 0 • (2.25)

The physical interpretation of (2.23) is clear. Under certain appropriate

conditions, (2.24) is equivalent to

O(Ot) - O(1,t) - 0, t ) 0 . (2.26)

See, for example, [7]. (A similar comment applies to (2.25).)

For initial-boundary value problems, the initial data and g should be

compatible with the boundary conditions. For example, suppose that u is a

classical solution of (2.21), (2.22), (2.23), (with g : 0 for simplicity) on

(0,1] x (0,T] for some T > 0. Differentiating (2.23) twice with respect

to t yields

ut(Ot) - ut(1,t) - utt(Ot) - utt(1,t) - 0 (2.27)

V t e (0,T)

. , .L: ' ' •  - - ., .-6-
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If (2.21), (2.22), (2.23), and (2.27) are to hold at t - 0 (and #I(up

does not vanish), then u0  and u 1 must satisfy

uo(O) - u0 (1) U(O) - u 1(1) , u;(O) , u(1) - 0 . (2.28)

Violation of the above condition should be interpreted as a singularity in the

initial data on the boundary. Due to the hyperbolic nature of equation

(2.21), such a singularity would try to propagate away from the boundary and

into the interior. Analogous compatibility conditions are required for (2.24)

and (2.25). (If g 1 0, then the compatibility conditions also involve g.)

3. Survey of Results

Observe that if a' vanishes identically, then (2.21) reduces to an

undamped quasilinear wave equation. If a' 1 0 and the appropriate sign

conditions are satisfied, the memory term in (2.21) induces a weak type of

dissipation. A great deal of information concerning the strength of this

dissipative mechanism is contained in the work of Coleman and Ourtin [2] on

the growth and decay of acceleration waves in materials with memory. Roughly

speaking, they showed that (under physically natural assumptions) the ampli-

tude of a certain type of weak singularity (involving jump discontinuities in

second derivatives of u) decays to zero as t + -, provided its initial

amplitude is sufficiently small. On the other hand, the amplitude of such a

singularity may become infinite in finite time if its initial amplitude is too

large.

This suggests that (2.21) should have globally defined smooth solutions

for sufficiently smooth and small data, and that smooth solutions can develop

singularities in finite time if the data are suitably large. (Here we use the

term data to mean initial data and forcing function.) Results of this type

have been obtained by a number of authors. At the present time, the situation

-7-
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concerning existence of global solutions for small data is quite well

understoodi less is known about the formation of singularities. It should be

noted that several important ideas used in the analysis of (2.21) were

motivated by the work of Nishida [271 and Katsumura (261 on quasilinear wave

equations with frictional damping.

Local existence of smooth solutions to (2.21) can be established by more

or less routine procedures. (See, for example, (7].) The local arguments

require only positivity of #' and smoothness of *e *, a, and the data. In

particular, they are insensitive to the Nsign" of the memory term and the size

of the data. However, rather delicate a priori estimates are needed to show

that local solutions can be continued globally. These estimates rely

crucially on the memory term having the correct sign and the data being mall.

For the special case # - *, global existence theorems have been

established by MacCamy [21], Dafermos and Nohel [61, and Staffans (30). In

order to simplify our discussion of these results, let us

assume that g = 0 and consider the problem

u (xt) - V(u(xt)) + Jt a'(t-T)#(u (XT)) d (3.1)
tt x x 0 x x

xeB, t) 0

u(x,0) - u0 (x), ut(xO) - ul(x), x e B • (3.2)

The main hypotheses on # and a are

e C3(3), #(0) 0, #(0) > 0 , (3.3)

a, a', a" e L 1 (0,-) , (3.4)

a is strongly positive definite , (3.5)

a(O) < 1 . (3.6)

(Some additional technical assumptions on a are used in 1211 and 161.) We

refer the reader to [291 and [301 for properties of strongly positive definite

kernels. We note, however, that twice continuously differentiable a which

-8-
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satisfy

(-1)k a (t) ; 0 V t N 0, k - 0,l,2; a' V 0 , (3.7)

are automatically strongly positive definite. (Corollary 2.2 of [291.)

Condition (3.6), together with +'(0) > 0, simply states that x'(0 ) > 0.

1 Remark 3.1: We note that a' rather than a appears in equation (3.1). Our

normalizations of a (with a(i) - 0) is different from that used in [21],

[61, and [301. For this reason, the conditions on a above are in a slightly

different form than in (211, [61, and [301.

The assumptions needed on u0  and uI vary slightly depending on the

type of boundary conditions. Roughly speaking it is required that

u;0 u, u0 ', u 1 , uu" e 2 (3) (3.8)

and that the L2 (B) norms of the functions listed in (3.8) be sufficiently

small. In addition, the data must be compatible with the boundary conditions

if B is bounded. It is not assumed that the L2 (B) norm of u0  is

small. However, for certain initial-boundary value problems, this is implied

by the PoincarS inequality and smallness of the L2 (B) norm of uI.

Under the above assumptions, the initial value problem (3.1), (3.2),

2
with B - 3, has a unique solution u e C (R x [0,0)) such that

,tt, e c( [0,-), L2() ) . (3.9)

Moreover, as t * m
utt, ua, uxx + 0 in L2(3) , 

(3.10)

ut, Ux, uttU, xx 0 uniformly on R • (3.11)

Similar conclusions hold for initial-boundary value problems for (3.1) with

B - (0,11 and boundary conditions (2.23), (2.24), or (2.25). The precise

decay statement depends on the boundary conditions. For (2.23) or (2.25)

(i.e., Dirichlet or mixed conditions),

-9-



u, ut , ux , utt, Utx, Uxx + 0 uniformly on (0,1] (3.12)

as t * -, while for (2.24) (Neumann conditions),

u x , utt, Utx, U xx + 0 uniformly on [0,1] (3.13)

as t . -. The difference is due to the fact that nontrivial rigid motions

are possible under (2.24), but not under (2.23) or (2.25). See [21], [6], and

[30] for the proofs. (The boundary conditions (2.25) are not discussed

explicitly, but the same proofs apply with only trivial modifications.)

Remark 3.2: If, under boundary conditions (2.24), it is assumed that the data

have zero average spatially then the solution will have zero average spatially

and (3.13) can be replaced by (3.12). A Neumann problem can always be reduced

to one in which the data have zero average by superposition of a rigid

motion. (See, for example, (71 or [16].)

Remark 3.3: The above results remain valid if a suitably smooth and small

forcing function 9 (which behaves properly as t + -) is included in

(3.1). See (6], (21], and (30]. (See also Theorem 3.1 below for an

indication of the type of assumptions required of g.)

On the other hand, Hattori [133 has shown that if #'(C) > 0

v C e a and *" 0, then there are smooth initial data (compatible with the

boundary conditions) for which the initial-boundary value problem (3.1),

(3.2), (2.23), with B - (0,1], does not have a globally defined smooth

solution. Such data must necessarily be large in view of the aforementioned

existence results. The precise manner in which loss of regularity occurs is

not discussed in [13]. Markowich and Renardy (25] have obtained numerical

evidence which indicates the formation of shock fronts in smooth solutions of

the initial value problem (3.1), (3.2) with B - 2 and suitably large initial

data.

-10-
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The following idea of MacCamy reveals that there is a close similarity

between (3.1) and a wave equation with frictional damping. Observe that*

N (x) x can be expressed in terms of utt through an inverse linear Volterra

operator. An integration by parts can then be used to transfer a time

derivative from Utt to the resolvent kernel associated with a'. This

introduces a frictional damping term and renders the memory term a linear

perturbation of lower order.

More precisely, the (scalar) linear Volterra operator L defined by

(Lw)(t) :- w(t) + t a'(t-T)w(T)dT, t ) 0 , (3.14)

is invertible with inverse given by

(L-w)(t) " w(t) + 1 k(t-T)w(T)dT, t ) 0 ,

where k is the resolvent kernel associated with a', i.e. k is the unique

solution of

k(t) + It a'(t-T)k(T)dT - -a'(t), t ) 0 ( (3.16)

Using (3.15) to solve (3.1) for $(ux) x  in terms of utt yields

(u(x,t))x = ut(xt) + jt k(t-T)utt(x,T)dT (3.17)

x e B, t > 0

After an integration by parts, this becomes

Utt (x,t) + k(0)u t(x,0) - (ux(x,t)) x + k(t)u1 (x (3.18)

-I k'(t-T)ut(x,T)dT , x e B, t ; 0

where use has been made of (3.2). It follows from (3.16) that k(O) -

-a'(0), and thus the term k(O)ut has a damping effect if a'(0) < 0.

This form of the equation is extremely convenient for many purposes.

Remark 3.4: If 1 *, then (2.21) also arises in a mathematical model for

heat flow in materials with memory. For the heat flow problem, (3.3), (3.4),

and (3.5) are still appropriate, but (3.6) should be replaced by a(0) - 1.

This seemingly minor change leads to major differences in the analysis. The

, -11-



memory term actually has a slightly stronger dissipative effect in this

situation. (See [201, [6], and [30].)

For the general case with # different from #, Dafermos and Nohel [71

exploited the positivity of X' (0) and the strong positive definiteness of

a to obtain global a priori estimates for solutions of initial-boundary value

problems with B -[0,1]. They integrate by parts and use (2.14) and (2.22)

to rewrite (2.21) in the form

ut(x,t) = X(ux(x,t)) + Jt a(t-T)*(ux(x,T)) dT (3.19)

+ a(t)#*(u,(x))u;(x) + g(x,t)

xel, t)o

They obtain estimates for certain higher order derivatives directly from

(3.19) and use the Poincar6 inequality to estimate lower order derivatives.

Their procedure yields global existence (and decay) of smooth solutions for

small data with 9 [0,1] under boundary conditions (2.23), (2.24), or

(2.25). However, due to the lack of Poincar&-type inequalities on all of

space, their results do not apply to the pure initial value problem (2.21),

(2.22) with 3 - t.

Regarding *, *, and a, they assume that

e, c 3 (n), 0(0) - *(0) - 0 , (3.20)

#'(0) > 0, #'(0) > 0, xI(O) > 0 , (3.21)

and that (3.4) and (3.5) hold. Their assumptions on the data and the

conclusions of their existence theorems are essentially the same as those

stated previously for initial-boundary value problems in the special case

*5,.

Subsequently, Hrusa and Nohel (171 established a global existence

theorem for the Cauchy problem

-12-
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utt(xt) # *(u(xlt)) + J a'l(t-T)#(UxlXT))xdr (3.22)

+ 9(x,t), x e it, t ) o

u(xO) - u(X) , ut(x,O) - u,(x), x e a • (3.23)

We state a slightly simplified version of this result.

Theorem 3.1: Assume that (3.20), (3.21), (3.4), (3.5) hold, and that

a satisfies some (mild) additional technical conditions. Then, there exists

a constant u> 0 such that for each u :, u, R I and g : R x [0,-) + a

with

e L OR), u" U;' S'' u1, U, u e L2 (3) (3.24)u0 • ocl, u0 ,u

g6 t , • C([o,-)r L ()) , (3.25)

go t e L (0,-) L2(2)) , (3.26)

9 x' , tt e L21[O,-); L2lo) ( 3.27)

and

S{U(X)2 + U;(x )2 + uo ' '(x)2 + Ul(x)2  (3.28)

+ ui(x)2 + U"ix)2l )

+ sup (J" {g 2 +g g2)lx,t)dx)

4. (J J I+2 (x,t)dx~) d

the initial value problem (3.22), (3.23) has a unique solution

u e C2 (it x 10,-)) which satisfies (3.9). Moreover, as t + (3.10) and

(3.11) hold.

The proof combines certain estimates of Defermos and Nohel 171 for higher

order derivatives (which remain valid for 3 - t) with a variant of PAcCamy's

procedure. (se (17] for the details.) The additional technical

-13-



assumptions on a (which are stated precisely in (17]) are not very

restrictivei their purpose is to ensure integrability of certain resolvent

kernels. In particular, relaxation functions of the form

N -a t
a(t) :-. %je 0 t ) 0 (3.29)

ji

with Oj, a > 0 for j - 1,2,...,N, which are commonly employed in

applications of viscoelasticity theory, satisfy the assumptions of Theorem

3. 1.

It is interesting to observe that if the relaxation function is a single

decreasing exponential of the form a(t) e , then (2.21) corresponds to a

third order partial differential equation without memory. Indeed, in this

case (2.21) becomes

utt(x,t) - (u(Xt))x - a j e-(t'T)*(U (x,r))xdr (3.30)

+ g(x,t), x e a, t '0

and differentiation of (3.30) with respect to t yields

uttt(x,t) - #(ux(xt))xt - a*(Ux(x,t))x  (3.31)

+ a2 jt e-a(t-r)lu (x,r)) xdr

+ gt(x,t), x e 9, t ;o 0.

It follows from (3.30) that

02 it e-a(t-) (u (XT)) dr - m(u (x,t)) (3.32)

+ ag(x,t) - emtt(x,t), x e B, t 0

Substituting (3.32) into (3.31) and using the definition of X, we obtain

uttt + autt a CUx)xt + *X(Ux)x + gt + ag . (3.33)

Greenberg 18] studied equation (3.33) with B - (0,1] and g 3 0 under

homogeneous Dirichlet boundary condtions. He derived a priori estimates which

show that any sufficiently smooth and small solution decays to zero

exponentially as t *. His analysis relies on the Poincar& inequality and

-14-



consequently does not apply if 3 is unbounded. In the next section, we

prove Theorem 3.1 for equation (3.30).

In order to isolate the effects of nonlinearity in the memory term, Hrusa

[16] has studied (2.21) in the special case that # is linear (i.e.,

( ct for some constant c > 0), but # is allowed to be nonlinear.

His results apply to initial-boundary value problems as well as pure initial

value problems. It is shown in (16] that the local behavior of solutions of

utt(x,t) - cu (xt) + Jt a'(t-T)(U (XrT)) dT (3.34)

+ g(x,t), x e a, t ;P o

is quite similar to that of solutions of the semilinear equation

utt cuxx +(u x ) + g . (3.35)

In particular, a pointwise bound on ux  is sufficient to continue a C2

solution u globally. moreover, if #' is bounded, then (3.34) has globally

defined smooth solutions, even for large initial data - independently of the

sign of the memory term. (This requires only local assumptions on a.) Some

decay results for solutions of (3.34) which allow the data to be large are

also established in (161.

Several authors have analyzed the similar first order problem

ut(x,t) + *(u(xt))x + Jt a'(t-T)#(u(x,r))xdr - 0, (3.36)

x0,t)0

u(x,0) - u0 (x) , x e 9 . (3.37)

Equation (3.36) is simpler than (2.21) in that it is of first order, yet it

retains many of the important qualitative features of (2.21). The chief

motivation for studying (3.36) has been to gain insight into the behavior of

solutions of (2.21).

If a' vanishes identically, then (3.36) reduces to the (scalar)

conservation law

-1O-
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ut + (u)X - 0 ( (3.38)

It is well known that (3.38), (3.37) does not generally have a globally

defined smooth solution, no matter how smooth u0 is. Hohel [281 has shown

that under reasonable conditions on *, *, and a, the initial-boundary

value problem (3.36), (3.37), with B - [0,11 and periodic boundary

conditions, has a unique global smooth solution if u0  is sufficiently smooth

and small. (Here, u0  should be small in the H2 (0,1) norm.) M4alek-Nadani

* - and Mohel [24] have studied the formation of singularities in smooth solutions

of (3.36) with B - M. Under certain assumptions on *, *, and a (which

include (3.7) and convexity of 4), they give rather precise conditions on

u 0 under which (3.36), (3.37) has a local smooth solution for which first

derivatives become infinite in finite time.

Relatively little is known about weak solutions of (3.22) or (3.36).

Dafermos and Heiao [5] have established existence of global weak solutions (of

class DV) to systems of conservation laws with memory in one space dimension

for initial data having small total variation. They allow for very general

types of memory terms in the equations. Their global results apply in several

situations of physical interest (including the heat flow problem mentioned in

Remark 3.4), but not to (3.22) under assumptions which are appropriate for

viscoelastic solids of the Boltzmann type. (Their procedure does, however,

yield local (in time) existence of OV solutions to (3.22) in this case.)

In [22], MacCamy studies several aspects of weak solutions of equation

(3.36) with * -* #. He also discusses global existence of smooth solutions

for mall data, and the formation of singularities in smooth solutions.

Greenberg and Hsiao [91 have studied the Riemann problem for a system which

corresponds to (3.36) with a(t) S • " t, a > 0. (See also (101.)

-16-
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The results of Coleman and Gurtin (21 on wave propagation (which were

discussed at the beginning of this section) hold for a more general class of

materials with memory. For these materials, the displacement u obeys an

equation of the form

3 tU xt) G(U (X,*)) + f(xt), x e 3, t ; 0 , (3.39)

where G is a smooth (nonlinear) functional defined on a function space of

fading memory type, and for each x e B, t ) 0,

u (xs) S- u (xt-s) V s ) 0 , (3.40)
x x

i.e., u is the history up to time t of the strain. Under physically

reasonable assumptions on G, Brusa 14 has established global existence

(and decay) of smooth solutions to certain history-boundary value problems for

(3.39) with B - [0,11 and suitably smooth and smll data. ge also (151

(and the references therein) for a more complete discussion of equation

(3.39).

4. The Cauchy Problem with an Exponential Kernel

In this section we sketch the proof of global existence of smooth

solutions to the initial value problem (3.22), (3.23) for sufficiently smooth

and small data in the special case that the relaxation function is a

decreasing exponential of the form a(t) -=M•s- . We also discuss the

modifications required to treat more general relaxation functions. A linear

rescaling of time shows that without lose of generality we may assuse a - 1.

For simplicity we take g 1 0.

n particular, we consider the initial value problem

utt(xt) # *(ux(xt))x i 0o(t T)#(u (xT)) dr
(4.1)

x-e7, t- 0

ii -17 -



u(x00) - U0(X), Ut(x,0) - U1 (x), x a a (4.2)

Observe that the corresponding equilibrium stream function is given by

X() - () - ( ) V t a 3 • (4.3)

Concerning t, o, and X we make the assumptions

*0 * e c3(a), #(0) - #(0) - 0 (4.4)

*'(0) ) 0, *'(0) > 0, x'(0 ) > 0 . (4.5)

Propositions kssume that (4.4) and (4.5) hold. Then, there exists a constant

j > 0 such that for each uO u1 s R I with

"0 e L 2 (a), ul,.; flu , U; e L2(.) (4.6)

and

j(u(x)2 + u;(x)
2 + i,(x)2 + U1(W)

2

2 2 2 (4.7)+ u~x)2 + u~lxl )dx ( a ,

the initial value problem (4.1), (4.2) has a unique solution u t R x (0,-) * 3

with

u eC(3t (0,)) (4.8)

u% u Xu xx 6 C([o,.)g L 2(3)) . (4.9)

Moreover, as t*

utt,utx,ux + 0 in L2 () , (4.10)

ut0UxUtt0Utx0Uxx * 0 uniformly on R . (4.11)

Proof: We choose a sufficiently small positive number 8 and modify # and

# (and hence also X) smoothly outside the interval [-8,81 in such a way

that #' and t' are constant outside [-26,26 and

' ( )' * I '() tx x'( ), x V I e It (4.12)

where 0 9, , 9, X0 X are positive constants satisfying

-18-



-2X -( [< 0 ( 4.13)

(This can always be accomplished by virtue of (4.3) and (4.5).) There is no

harm in making this modification because we will show a posteriori that

lux(xt)l 4 8 for all x e a, t ; o.

Making only minor changes in the proof of Theorem 2.1 of 17), one can

establish the following local existence result: (4.1), (4.2) has a unique

local solution u defined on a maximal time interval [0,T 0 ), To > 0, with

u e C2i2 x O,T0)) (4.14)

uxVttU txU xx, U tttUttxUtxxUxxx e c([0,T0)i L2(K)) . (4.15)

Moreover, if

e 2 2 u2 u2 2

sup ].{u t + + + + +
teOT0t x utt tx XX uttt (.6ter (0,T0) (4.16)

2 2 2
+ utt x +utx x +uxxX )(xt)dx <m

then T m.

We now proceed to establish a priori estimates for the local solution

u which will show that if (4.7) is satisfied with V sufficiently small then

(4.16) holds. For this purpose it is convenient to introduce

U0 :" J_.[uO(x)
2 + u;(x) 2 + u0 '(x)

2 + Ul(XW2

(4.17)

+ u;(x) 2 + u;(x) 2dx ,

E(t) max ] -(ut + u+ + + u

tt tx utt Ut xx

u2  + 2 + 2 + 2  2

(4.19)
+ J)( u~t + 2 + u 2  +u 2  +2

0 tx xx ttt ttx

42 2

txx Uxxx(x,s)dxds t e (O,T O)

-19-
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V(t) sup {u2 + Utx+ 2 );2(xs) , t e (0,T0) 0 (4.19)
xea

seto,ti

Throughout the remainder of this proof we use r to denote a (possibly large)

generic positive constant which can be chosen independently of uO , u 1 , and T0 .

The reader should note that all of the computations which follow are aimed at

establishing an a priori bound of the form (4.43).

*' Differentiating (4.1) with respect to t and substituting for the integral

term from (4.1) (as in the derivation of (3.33)) yields

uttt + utt " 4(ux)xt + X(Ux)x  . (4.20)

The required estimates will be obtained by combining several energy identities which

we derive from (4.20).

We first multiply (4.20) by utt and integrate over space and time, performing

several integrations by parts. The result of this calculation is

I l j u 2  + #,(u )u 2x (xt)dx + It 1% 2 (xs)dxds
tt x tx 0 tt

+ u x()u (x,t)dx- it J% )',( )u2 (x,x)dxds
x tx 0 tx

1 , (u )u2 + X(u )u )(x,0)dx

+i Uot + 1 ' x .tx -x
.1 it *" #(u )U3 (x,s)dxds

2 0 xtx

V t e [0,T O)

Next, we multiply (4.20) by ut and integrate as above, thereby obtaining

1, u2 + W(u ))(x,t)dx + j2 J "(u 112(x,s)dxds

-2 t x 0x tx

utututt(xt)dx I ) : u 2 (x,s)dxds (4.22)

j'.. u2 + W(u) + ututt)(x,O)d x

V t e [O,T O )

where

-20-
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W() : I x(n)d" V C•a . (4.23)

we multiply (4.22) by (1-c), with 0 < C < 1, and add the resulting equation

to (4.21). After rearranging certain terms we have

I j: { 2 + 2(-C)utut t + (1.c1 2 )(x,t)dx

2 )tx x tt

1+ j (cu 2  + [#'(u 6 *'(u )]u2 )(x,s)dxds
0 tt x x t

(4.24)

- J.{j 1 utt2 + *1,(Ux)utx + X(ux)utx

+ (1-C)[W(u x ) + uttt +.I ut])(x,O)dx

+ ! )0 *-- #-(u)u 3(xs)dds V t * (0,T0  .

We note that for each C e (0,1) the first integrand on the left hand side of

(4.24) is a positive definite quadratic form in ut and utt. Moreover, we have

Cut + ($'(Ux) C*'(Ux)]Ux t + 2 - 51)u30 (4.25)

which yields an obvious lower bound for the third integral on the left hand side of

(4.24) if e < 1/7.

The second integral on the left hand side of (4.24) merits special attention.

Observe that (4.4) and (4.12) imply

Ix( )t ' xlIl, w(s) ) 1 2 v C 6 a (4.26)

Therefore, we have

1 * '(u2 )u 2  +. x(U2 )Ut +. (-C)W(u 1xltx + tx x
(4.27)

1 2 -lu u I + I

2 'tt xI1 ~~ tx 12)

A simple computation reveals that the right hand side of this last inequality is

positive definite in ux  and utx for c sufficiently small, by virture of

(4.13).

-21-
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Thus, by choosing c small enough in (4.24), ve conclude that

2 2  
2 +u2 )(x,t)dx..ut + 'x+ + t

+j j.(ut + u2l)(x,s)dxds

(4.28)

-c r j-(u 2 +u 2 + U2 + U2 )(x,0)dxut x utt tx} xO

3
+ . rj ]- *(ux)u(x,*)dxdIl V t e (0,)

We observe that utt(x,O) - *"(u;(x))u;(x) by (4.1) end (4.2), and since

vanishes outside 1-26,28] we have

It J. 4(u )u 3 (xs)dxdsl

4 sp #"u ) ('sI t . 2
Sup I*(ux)u (xt ) ) u tx(xs)dxds (4.29)

se[o,t]

c rv(t)z(t) V t e [0,TO)

It now follows from (4.28) that

* 2 u2 2 +2J~ t +x + tt + tx(x)x

+ 1t 2 +2 (x,*)d (4.30)0 1-("t tx

IC o + rv(t)z(t) v t e (0,To )

To obtain our next identity w multiply (4.20) by uxx and integrate as

before, thus producing
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#(u )u _ uu m (x, t) dx

2 xxx xx tt0 Il(x' (Ux )u230 -U 3Cutt)(x,s)dxds

u 2 (x,t)dx (4.31)" J .tx

,(u )u2  u U- x 1 2 )(x,O)dx

-2 x xx xx tt 2 'tx
+ tI-

_o #_(ux)u U2 (xs)dxda v t e [0,T)

For each e > 0 we have

uUtt CU2  + L u 2 (4.32)

we use (4.12) and (4.32) with e sufficiently small to obtain lower bounds for the

first two integrals on the left hand side of (4.31), and we majorize the right hand

side as before. This yields the estimate

S u2 (x,t)dx + it J u2 (x,s)dxds

- r 0.U + U2 )(~td - r. itj: 2 (x,s)dxds (4.33)

c ru0 + Fv(t)E(t) V t e 1O,T O)

Combining (4.30) and (4.33) we conclude that

j-(u 2 + u2 + u 2 +U 2  + u2  (x,t)dx
t x tt tx xx

+ it r:( 2  2 u 1 + 2 )(x,s)dxds (4.34)0o '-utt + t ut x . ,.,

I ru0 + rv(t)E(t) V t e [0,TO )

We now must obtain similar bounds for third order derivatives of u. In order

to avoid purely technical complications and highlight the main ideas, we give only

formal derivations of the remaining energy identities (4.36), (4.37), and (4.39).

The difficulty in that the local solution is not smooth enough to justify our formal

procedure. However, all of these identities are in fact valid for our local
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solution. They can be derived rigorously by approximation. (One way to do this is

to use difference operators. See (7] for more details.)

Differentiation of (4.20) with respect to x yields

U uxttt + U *xtt  (ux)xxt + X(U x)xx . (4.35)

We first multiply (4.35) by uxtt  and integrate as before. The outcome of this

computation is

I {u 2 + *'(u )u2  )(xt)dx
2 ttx x txx

+ t U2 txlXs)dxds
0 tt

+ J_. x'(u x)U xxutxxx,t)dx

0 x xx

+ Je~ i~x)u_ u (x,s)dxds Vte[, 0

{ u2 + *. #uu 2  + X'(u )U u )(x,0)dx (4.36)2 ttx 2 x txx x xx txx

+ It J(2 '"(u )uuuX +#"(u )u

+ 41-(u )U2  + 1 2
x xxtxUttx (ux)utxutxx

+ X "(u x )ut u xu tx (x,s)dxds V t e [0,T 0

Next, we multiply (4.35) by ux and integrate as usual to obtain

I. j: (u2 + X'(u )u2 )(x,t)dx
2 -tx x xx

+ # x,'u )U2 (x,s)dxds
-x txx

+ Ji u (x,t)dx - it ie- u 2t (x,s)dxds
1(!u txx 0 2

.. 2 tx 2 X'( (u)u xx+ U tXuttX (x,O)dx (4.37)

+ it j(* u ft ~ u~

+ I X"(u )Uu 2u )(x,s)dxds v t e [0,T)
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Taking a suitable linear combination of (4.36) and (4.37) and estimating the left

hand side from below and the right hand side from above as we did with (4.21) and

(4.22) shows that

j:.{u 2 + u 2  + U2 + U2 )xtd

tc xx ttx txx

+ J:.J(ut + U ,)(x,s)dxds (4.38)

< 1
0 + r{v(t) + v(t) 2)E(t) V t e [O,T O)

To obtain our final identity, we multiply (4.35) by Uxxx  and integrate as usual.

This yields

j-.€ #'(ux)u 2  - uxu )(x,t)dx
2 x ; x'xx Uxxx ttx CoSdd

+ ij: (X(u )u2~ u u )(x,s)dxds
0 x xx xxxttx

- tx. 2 (x,t)dx

:.I#(u )u2  u u 1 u2  1(x,O)dx (.q

-xx txx Uttx

+ ij: J*(*N()u U 2  
-24"(u )u u u

0 o x txxxx x xx txx xxx

2 2
#"ux )utxxux0x '( Iut Ux

2
- X"(u )u u }(x,s)dxds v t e (0,T 0 )

x xx x0

Treating (4.39) in the same fashion as (4.31) and combining the result with (4.38)

gives

2 2 2 + 2 + 2J u + xx +Uttx +u U (x, t )dx

+ it J U:(2 tx + u 2 x x + u2 xx )(x's)dxds (4.40)
0 tt tx xx

< ruo + rfv(t) + v(t) 21(t) V t e [O,T O )
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Squaring (4.20) we get

2 2 22<4#'(uX)u tx + 4(U tx u xx

(4.41)
+ 4u2 + 4x, )2 2
+4 tt+ 4 x u x

which, in conjunction with (4.34) and (4.40) yields

u2 (xt)d + j j: u 2  (xs)dxds
- ttt 0 ttt

(4.42)

Sru0 + r{v(t) + v(t) 2E(t) V t e [0,T 0)

Combining (4.34), (4.40), and (4.42) we finally deduce that

E(t) < FU0 
+ y{v(t) + V(t) 2)E(t) V t e [0,T 0 ) , (4.43)

where f denotes a fixed positive constant which can be chosen independently of

u 0 , ul, and T0.

At this point, it should be noted that there are several other ways to obtain

some of the estimates leading to (4.43). In particular, (4.1) can be used to

express Uxx in terms of utt (and "small" correction terms) through an inverse

linear Volterra operator. This eliminates the need for the identities (4.31) and

(4.39).

We are now ready to synthesize the proof. We choose E, p > 0 such that

r((2B)2 + 2i 4 , C 82 , and fP2 C Suppose now that (4.7) holds with the

above choice of p. It follows from the Sobolev embedding theorem that

V(t) 2  21(t) V t e [0,T 0 ) . (4.44)

Therefore, we conclude from (4.43) that for any t e [0,T 0 ) with 1(t) < i we

actually have 1(t) 4 1-E. Consequently, by continuity,

(t) v t e [0,T 0) (4.45)

1-
provided that Z(O) 4 E.
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If necessary, we can always choose a ialler m • 0 such that (4.7) implies

E(0) - and hence also that (4.45) in satisfied. This immediately yields2

T o  by virture of (4.16). It then follows from (4.10), (4.45), and standard

embedding inequalities that (4.10) and (4.11) hold. Finally, we note that since

- 2
z-C 5 , (4.19), (4.44), and (4.45) show that ju x(X,t) a for all

x e R, t ) 0. This completes the proof. U

We close with a few remarks concerning the modifications required to treat the

Cauchy problem with a more general relaxation function. As noted earlier, estimates

for certain higher order derivatives can be obtained directly from (3.22) using the

procedure of Dafermos and Nohel (7]. Under the assumptions of Theorem 3.1, equation

(3.22) can be written in the form

uttt + a(O)- utt - #(Ulx)t + a()-1 X(ux)x

(4.46)
+ a(O)-f I a [K*(3(U ) + f - tt

at xx t

where the * denotes convolution (with respect to the time variable) on 10,t],

i.e.

(v*w)(t) : t v(t-T)w(T)dT , t ) 0 , (4.47)

and K is the solution of a certain integral equation involving a' and a".

Equation (4.46) is quite similar to (4.20) and this suggests a natural

procedure to get estimates for the lower order derivatives. The chief difficulty

lies in handling the convolution term. This is accomplished by rewriting it in

several convenient equivalent forms involving derivatives on which we already have

information. The details are carried out in [17].
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