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ABSTRACT |
TIn this paper we survey recent results concerning global existence and
decay of smooth solutions of certain quasilinear hyperbolic Volterra equations
which provide models for the motion of one-dimensional viscoelastic solid of
the Boltmmann tyre. We also sketch the derivation of these equations from
physical principles, discuss the physically appropriate assumptions, and prove

a special case of a new existence theorem for the Cauchy problem)<§
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GLOBAL EXISTENCE AND ASYMPTOTICS IN
ONE-DIMENSIONAL NONLINEAR VISCOELASTICITY

W. J. Hrusa's2 ana J. A. wohel!
1. Introduction

For nonlinear elastic hodies, the balance laws of continuum mechanics
lead to equations of motion (of hyperbolic type) which have the property that
smooth solutione may break down in finite time due to the formation of shock
waves. Some material models of physical interest incorporate a nonlinear
"elastic-type" response in conjunction with a natural dissipative mechanism.
For such materials it is important to understand the effects of dissipation on
solutions of the equations of motion.

Some dissipative mechanisms (e.g., viscosity of the rate type in one
space dimension) are so powerful that globally defined smooth solutions exist,
even for very large initial data. A much more subtle type of dissipation, due
to memory effects, arises in viscoelasticity of the Boltgzmann type.

In this paper we discuss global existence and decay of smooth solutions
of certain quasilinear hyperbolic Volterra equations which provide models for
the motion of nonlinear viscoelastic solids of the Boltzmann type. In Section
2 we formulate the dynamic problems to be considered and discuss the relevant
assumptions. In Section 3 we give a survey of known results. 'moore-.3.1 is
new; the complete proof will appear elsewhere (17]). FPinally, in Section 4, we

prove a special case of Theorem 3.1.
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We restrict our attention throughout to one~dimensional motions.
Although the details have not been carried out completely, analogous results
can be obtained for multidimensional viscoelastic solids of the Boltzmann
type. This is discussed briefly in (7]. Local existence results which are
applicable to multidimensional bodies occupying all of space have been given
by Grimmer and Zeman {12].

We close the introduction with some remarks on notation. Let D be a
subset of R X R. Por a function w : D+ R we use subscripta x and ¢t
(or 1) ¢to indicate partial differentiation with respect to the firat and
second argument, respectively. Moreover, we use the same symbol w to denote
the mapping t» w{e¢,t) when there is no danger of confusion. A prime is
used to denote the derivative of a function of a single variable, and the
symbol := indicates an equality in which the left hand side is defined by
the right hand side. All derivatives should be interpreted in the sense of

distributions.

2. FPormulation of Dynamic Problems

Consider the longitudinal motion of a homogeneous one~dimensional body
that occupies the interval B in a reference configuration (which we assume
to be a natural state) and has unit reference density. We denote by ul(x,t)
the displacement at time t of the particle with reference position x

(i.8., x + u(x,t) 41is the position at time t of the particle with reference

position x), in which case the strain is given by

€(x,t) := ux(x,t) . (2.1)
For smooth displacements, the equation of balance of linear momentum here
takes the form

utt(x,t) - dx(x.t) + f({x,t), xeB, t>0 , (2.2)
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where 0 is the stress and f is the (known) body force. BEquation (2.2)
must be supplemented with a constitutive assumption (stress-strain relation)
which characterizes the type of material composing the body.

If the body is elastic, then the stress depends on the strain through a
constitutive equation of the form

ol(x,t) = ¢(e(x,t)) , (2.3)
where ¢ is an assigned smooth function with ¢(0) = 0, and the resulting
equation of motion is

Ve = #lu ) +E (2.4)
Experience indicates that stress increases with strain, at least near
equilibrium, so it is natural to assume that ¢'(0) > 0. Lax (18] and MacCamy
and Mizel [23] have shown that (2.4) (with f = 0) does not generally have
globally defined smooth solutions no matter how smooth (and small) the initial
data are.

For viscoelastic materials of the rate type, the stress depends on the
strain rate as well as the strain. A simple model corresponds to the
constitutive relation

o(x,t) = ¢(e(x,t)) + Xet(x,t) P (2.5)
where ¢ 4is as above and ) is a positive constant, which leads to the
equation

U, = Q(ux)x + x“xtx + £ . (2.6)
Greenberg, MacCamy, and Mizel [11] have shown that the Dirichlet initial-
boundary value problem for (2.6) has a unique globally defined lnootﬁ solution
provided that the initial data are sufficiently smooth. Viscosity of the rate
type is so powerful that global smooth solutions exist even if the initial

data are very large. Similar results for more general viscoelastic materials

of the rate type have been obtained by Dafermos (3] and MacCamy (19].
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Experience indicates that in certain materials, the stress at a material

Ry ,

point x depends on the entire temporal history of the strain at x. In

‘a 1876, Boltezmann [1] proposed the constitut. e —aOB 4

o(x,t) = ct(x,t) - [[ m(s)e(x, t-a)ds , (2.7)

where ¢ is a positive constant and m is positive, decreasing, integrable, .
and satisfies

e~ |y ms)as >0 . (2.8)

The history of the strain up to time t = 0 is assumed to be known.

The constant ¢ measures the instantaneous response of stress to strain,
and the first two conditions on m say that the stress “"relaxes” as time
increases and that deformations which occurred in the distant past have less
influence on the present stress than those which occurred in the recent
past. Equation (2.8) also has an important mechanistic interpretation. In
statics, i.e. o(x,t) = o(x) and €(x,t) £ ;kx). equation (2.7) reduces to

3(x) = (c - [g ma)dsIE(x) |, (2.9)
and thus (2.8) states that the equilibrium stress modulus is positive. *

A natural nonlinear generalization of (2.7) is provided by the

constitutive equation
a(x,t) = $(e(x,t)) ~ o m(s)¥lelx, t-8))an (2.10)

i where ¢ and ¢ are assigned smooth functions with
! $(0) = $(0) = 0, $°(0) > O, $*(0) > 0 , (2.11)
and m is positive, decreasing, integrable, and satisfies

$'(0) - (}; m(s)ds)¥9'(0) > 0 . (2.12)
It is convenient to define the relaxation function a by

a(t) = J: m(s)ds, t € [0,») , (2.13)
, and the equilibrium stress function x Dby

X(E) = ¢(E) - a(0)9(§), Eer . (2.14)
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If m satisfies the preceding conditions then a 1ia positive, decreasing,

and convex, and x'(0) > 0.
We note that a' 3 -m. Thus (2.10) can be written in the form
a(x,t) = $(e(x,t)) + T a'(s)¥(e(x,t-8))ds (2.15)
and (letting T := t-s) also in the form
o(x,t) = ¢(e(x,t)) + JE  a’(e-t)0(elx,T)rar . (2. 16)
The corresponding equation of motion is
(6, t) = dlu (x,e)) + S at(t-0)wtu (x,1)) ar (2.17)
+ f(x,t), x @B, £t >0 .
Obgerve that a', rather than a, appears in equations (2.15), (2.16),
and (2.17). 1In this paper, we are normalizing a so that a(t) + 0 as
t +e, (See (2.13).) The reader is cautioned that other normalizations are
frequently used.
An appropriate dynamic problem is to determine a smooth function
us:Bx (~»&) + R which satisfies equation (2.17) for t > 0, together
with suitable boundary conditions if B is bounded, and
u(x,t) = vix,t) xeB, t<0 , (2.18)
where v is a given smooth function. The history value problem (2.17),
(2.18) can be reduced to an initial value problem as follows. Define a new
forcing function g by
glx,t) 1= £lx,0) + |0 a'(e-1)p(v (x, 1) ar, (2.19)
xeB, t<o0 ,
and initial data ug, u4 by
ug(x) = v(x,0), uq(x) = v.(x,0), x€B . (2.20)

It is clear that u is a solution of (2.17), (2.18) if and only if it is a

solution of the initial value problem




U (X0t) = $lu (x,8)) + |T a'(t=T)W(u (x,7)) dt (2.21)
+ g(x,t), xeB, £t >0 ,
ulx,0) = u,(x), ut(x,O) = u.x), xeB . (2.22)
Conversely, the initial value problem (2.21), (2.22) can be converted to
a history value problem of the form (2.17), (2.18) by constructing suitable
functions v and f. (Of course, such a procedure does not uniquely
determine a history value problem.) For consistency, we state all results for
initial value problems. Clearly, there are analogous statements for history
value problems.
We consider pure initial value problems (Cauchy problems) with B = R,
as well as initial-boundary value problems with B = [0,1] and boundary

conditions of Dirichlet, Neumann, or mixed type, i.e.

u(0,t) = u(t,t) = 0, t>0 , (2.23)
ux(O,t) = ux(1,t) =0, t>»0 , (2.24)

or
u(0,t) = ux(1,t) =0, ¢t>0 ., (2.25)

The physical interpretation of (2.23) is clear. Under certain appropriate
conditions, (2.24) is equivalent to

o(0,t) = o(1,t) =0, t >0 . ‘ (2.26)
See, for example, [7]. (A similar comment applies to (2.25).)

For initial-boundary value problems, the initial data and g should be
compatible with the boundary conditions. For example, suppose that u is a
classical solution of (2.21), (2.22), (2.23), (with g £ 0 for simplicity) on
(0,1) x [0,7)] for some T > 0. Differentiating (2.23) twice with respect
to t yields

u (0,t) = u (1,t) = “tt(o't) =u,(1,t) =0 (2.27)

vete(or .
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If (2.21), (2.22), (2.23), and (2.27) are to hold at t = 0 (and 0'(u6)

does not vanish), then u,; and uy must satisfy

ug(0) = ug(1) = v, (0) = u (1) = ug(0) = ug(1) =0 . (2.28)
Violation of the above condition should be interpreted as a singularity in the
initial data on the boundary. Due to the hyperbolic nature of equation
(2.21), such a singularity would try to propagate away from the boundary and
into the interior. Analogous compatibility conditions are required for (2.24)

and (2.25). (If g # 0, then the compatibility conditions also involve g.)

3. Survey of Results

Observe that if a' vanishes identically, then (2.21) reduces to an
undamped quasilinear wave equation. If a' ¥ 0 and the appropriate sign
conditions are satisfied, the memory term in (2.21) induces a weak type of
dissipation. A great deal of information concerning the strength of this
disgipative mechanism is contained in the work of Coleman and Gurtin [2]) on
the growth and decay of acceleration waves in materials with memory. Roughly
speaking, they showed that (under physically natural assumptions) the ampli-
tude of a certain type of weak singqularity (involving jump discontinuities in
second derivatives of u) decays to zero ag t * ®, provided its initial
amplitude is sufficiently small. On the other hand, the amplitude of such a
singularity may become infinite in finite time if its initial amplitude is too
large.

This suggests that (2.21) should have globally defined smooth gsolutions
for sufficiently smooth and small data, and that smooth sclutions can develop
singularities in finite time if the data are suitably large. (Here ;. use the

term data to mean initial data and forcing function.) Results of this type

have been obtained by a number of authors. At the present time, the situation




concerning existence of global solutions for small data is quite well
understood; less is known about the formation of singularities. It should be
noted that several important ideas used in the analysis of (2.21) were
motivated by the work of Nishida (27] and Matsumura ([26]) on quasilinear wave
equations with frictional damping.

Local existence of smooth solutions to (2.21) can be established by more
or less routine procedures. (See, for example, [(7].) The local arguments
require only positivity of ¢' and smoothness of ¢, $, a, and the data. In
particular, they are insensitive to the "sign" of the memory term and the size
of the data. However, rather delicate a priori estimates are needed to show
that local solutions can be continued globally. These estimates rely
crucially on the memory term having the correct sign and the data being small.

For the special case ¥ = ¢, global existence theorems have been
established by MacCamy [21], Dafermos and Nohel [6], and Staffans [30]. 1In
order to simplify our discussion of these results, let us
assume that g 5 0 and consider the problem

U (Xot) = dlu (x,8)) + J5 a'(t=T)(u (x,7T) dv (3.1)
x@B,t>»0 ,
ui{x,0) = uo(x), ut(x,O) = u1(x), xeB . (3.2)

The main hypotheses on ¢ and a are

secim), #(0) =0, $'(0) >0 , (3.3)
a, a', a" e L‘(O,-) ' (3.4)
a is strongly positive definite , (3.5)
a{0) < 1 ., (3.6)

(Some additional technical assumptions on a are used in [21] and [6].) We
refer the reader to [29) and [30] for properties of strongly positive definite

kernels. We note, however, that twice continuously differentiable a which




satisty
(-1)ka(k)(c) 20 ¥¢>0, k=0,1,2; a7 0 , (3.7)
are automatically strongly positive definite. (Corollary 2.2 of [29].)

Condition (3.6), together with ¢'(0) > 0, simply states that x'(0) > 0.

Remark 3.1: We note that a' rather than a appears in equation (3.1). Our
normalizations of a (with a(®) = 0) is Adifferent from that used in [21]),
{6], and [30]. For this reason, the conditions on a above are in a slightly

different form than in ([21], (6], and ([30].

The assumptions needed on u; and u4 vary slightly depending on the
type of boundary conditions. Roughly speaking it is required that
u, w3, ud't, u, ul,u e L3(e) (3.8)
and that the LZ(B) norms of the functions listed in (3.8) be sufficiently
small. In addition, the data must be compatible with the boundary conditions
if B is bounded. It is not assumed that the L2(B) norm of u, is
small. However, for certain initial-boundary value problems, this is implied
by the Poincaré inequality and smallness of the LZ(B) norm of “6’
Under the above assumptions, the initial value problem (3.1), (3.2),
with B = R, has a unique solution u € Cz(l x {0,®)) such that
LI WL N Rl L L Tl N S c([0,=); Lz(l)) . (3.9)
Moreover, as t + =,

ua ., u

e su + 0 in 2 |, (3.10)

tx

u u u
¢’ ’

" e’ utx' uxx + 0 uniformly on R . (3.11)

Similar conclusions hold for initial-boundary value problems for (3.1) with
B = [0,1] and boundary conditions (2.23), (2.24), or (2.25). The precise

decay statement depends on the boundary conditions. For (2.23) or (2.25)

(i.e., Dirichlet or mixed conditions),




e S
R
Uy Uy Uy Qo0 U U + 0 uniformly on (0,1]) (3.12)
as t + », yhile for (2.24) (Neumann conditions),
Upr Uper Qg U * 0 uniformly on [0,1] (3.13)

as t +* », The difference is due to the fact that nontrivial rigid motions
are possible under (2.24), but not under (2.23) or (2,25)., See [21], (6], and
{30] for the proofs. (The boundary conditions (2.25) are not discussed

explicitly, but the same proofs apply with only trivial modifications.)

Remark 3.2: If, under boundary conditions (2,24), it is assumed that the data
have zero average spatially then the solution will have zero average spatially
and (3.13) can be replaced by (3.12). A Neunann problem can always be reduced
to one in which the data have zero average by superposition of a rigid

motion. (See, for example, (7] or [16].)

Remark 3.3: The above results remain valid if a suitably smooth and small

forcing function g (which behaves properly as t + ®) ig included in
(3.1)., See (6], [21]), and [30). (See also Theorem 3.1 below for an

indication of the type of assumptions required of gq.)

On the other hand, Hattori [13) has shown that if ¢°'(E) > 0
VEEeRrR and 4" # 0, then there are smooth initial data (compatible with the
boundary conditions) for which the initial-boundary value problem (3.1),
(3.2), (2.,23), with B = (0,1], does not have a globally defined smooth
solution. Such data must necessarily be large in view of the aforementioned
existence results. The precise manner in which loss of regularity occurs is
not discussed in [13]. Markowich and Renardy (25] have obtained numerical
evidence which indicates the formation of shock fronts in smooth solutions of
the initial value problem (3.1), (3.2) with B = R and suitably large initial

data.
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The following idea of MacCamy reveals that there is a close similarity

between (3.1) and a wave equation with frictional damping. Observe that

¢(ux)x can be expressed in terms of Uy through an inverse linear Volterra
g operator. An integration by parts can then be used to transfer a time
derivative from u,, to the resolvent kernel associated with a'. This

introduces a frictional damping term and renders the memory term a linear

perturbation of lower order.
More precisely, the (scalar) linear Volterra operator L defined by

(Lw) (£) = w(t) + |5 a'(e=T)wtr)ar, £ 0 (3.14)

is invertible with inverse given by
w0 = We) + IS x(e-iwtnar, €30 (3.15)
where k 1is the resolvent kernel associated with a', i.e. k is the unique
solution of
K(£) + J5 a'(t=T)k(T)ar = -a'(t), £ > 0 . (3.16)
Using (3.15) to solve (3.1) for Q(ux)x in terms of wu., yields
$lu (x,£)) = u_ (x,£) + [ k(t=T)u , (x,0)dr (3.17)
xeB,t>»0 .
After an integration by parts, this becomes
“tt(x't) + k(O)ut(x,O) = Q(ux(x,t))x + k(t)u’(x) (3.18)
-5 k' (t-T)u (x,T)dr , x€B, t >0 ,
where use has been made of (3.2). It follows from (3.16) that k(0) =
-a'(0), and thus the term k(0)u, has a damping effect if a'(0) < o.

This form of the equation is extremely convenient for many purposes.

Remark 3.4: If ¥ T ¢, then (2.21) also arises in a mathematical model for
heat flow in materials with memory. For the heat flow problem, (3.3), (3.4),
and (3.5) are still appropriate, but (3.6) should be replaced by a(0) = 1.

This seemingly minor change leads to major differences in the analysis. The

-1f=
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memory term actually has a slightly stronger dissipative effect in this

situation. (See [20]), (6], and [30].)

For the general case with ¢ different from ¢, Dafermos and Nohel (7]
exploited the positivity of x'(0) and the strong positive definiteness of
a to obtain global a priori estimates for solutions of initial-boundary value
problems with B = [0,1). They integrate by parts and use (2.14) and (2.22)
to rewrite (2.21) in the form
u (6,8) = x(u (x,£)) + [b a(e=Ddlu (x,7)) ar (3.19)
+ a(t)#'(ua(x))uS(x) + gi(x,t) ,
x€eB, t>»0 ,
They obtain estimates for certain higher order derivatives directly from
' (3.19) and use the Poincaré inequality to estimate lower order derivatives.
Their procedure yields global existence (and decay) of smooth solutions for
small data with B = [0,1] under boundary conditions (2.23), (2.24), or
{2.25). However, due to the lack of Poincaré-type inequalities on all of
space, their results do not apply to the pure initial value problem (2.21),
(2.22) with B = R,
Regarding ¢, ¢, and a, they assume that
o, vecim, #(0) = y(0) =0 , (3.20)
$'(0) > 0, $'(0) > 0, x'(0) >0 , (3.21)
and that (3.4) and (3.5) hold. Their assumptions on the data and the
conclusions of their existence theorems are essentially the same as those
stated previously for initial-boundary value problems in the special case
L IR
Subsequently, Hrusa and Nohel (17] established a global existence

theorem for the Cauchy problem

-12-~




Uy, (X,8) = $lu, (x,£)) + [ a'(t=T)#(u (x,1) dt (3.22)
+ g(x,t), x€R, £t >0 ,
u(x,0) = uo(x). ut(x,O) = u’(x), xeRrR . (3.23)

We state a slightly simplified version of this result.

Theorem 3.1: Assume that (3.20), (3.21), (3.4), (3.5) hold, and that
a satisfies some (mild) additional technical conditions. Then, there exists

a constant u > 0 such that for each u,, uy : R+ R and g : Rx [0,#) + R

with
u, e Lioc(l), “6' “3' u&", Uy u;, u; e Lz(l) ¢ (3.24)
9 9, 9, €cliom Zm) , (3.25)
% g, € (o, t2m) (3.26)
9 9 © 20, t2m) ., (3.27)
and
U2 oy o? + wn? + ug 't to? + 00 (3.28)
1
+ u;(x)2 . u-;(x)z}(xmx)’2
1
+ sup (]:. {92 + qi + 9’2(}(x.1:)dx)"2
€20

1

+ J; (J:. {g® + 9:}(x,t)dx)/2dt
1

I P (9: + git}(x,t)dxdt)é

<y ,
the initial value problem (3.22), (3.23) has a unigue solution
uec?(Rx [0,) which satisfies (3.9). Moreover, as t + @, (3.10) and

(3.11) hold.

The proof combines certain estimates of Dafermos and Nohel {7) for higher
order derivatives (which remain valid for B = R) with a variant of MacCamy's

procedure. (See (17) for the details.) The additional technical

-13-




assumptions on a (which are stated precisely in {17]) are not very
restrictive; their purpose is to ensure integrability of certain resolvent
kernels. In particular, relaxation functions of the form
N -a,t
ale) = | Bye 37, es0 , (3.29)
=1
with Bj' °j >0 for j = 1,2,...,N, which are commonly employed in
applications of viscoelasticity theory, satisfy the assumptions of Theorem
3.1
It ie interesting to observe that if the relaxation function is a single
decreasing exponential of the form a(t) = e-ut' then (2.21) corresponds to a
third order partial differential equation without memory. Indeed, in this
cage (2.21) becomes

t ~a(t-1
e (X0t = dlu (x,8)) - a |5 o737

t(ux(x,t))xdt (3.30)
+ g(x,t), xeB, t >0
and differentiation of (3.30) with respect to t yields
“ttt(”'t) = O(ux(x,t))xt - cv(ux(x,t))x (3.31)

2 1t _-a(t-T)
+a jo e ¥l (x,1)) v
"’gt()t,t),xea,t)O .
It follows from (3.30) that
2 ¢t _~a(t=-T) -
a jo e $lu (6,1)) ar = adlu_(x,t)) (3.32)
+ agix,t) - autt(x,t), x€eB, t>»0
Substituting (3.32) into (3.31) and using the definition of Y, we obtain
Uppe ¥ OV, = O(ux)xt +axlu) + g, +ag . (3.33)
Greenberqg (8] studied equation (3.33) with B = [0,1] and g = 0 under
homogeneous Dirichlet boundary condtions. He derived a priori estimates which

show that any sufficiently smooth and small solution decays to zero

exponentially as t + ®. His analysis relies on the Poincarf inequality and

~14-
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consequently does not apply if B is unbounded. In the next section, we
prove Theorem 3.1 for equation (3.30).

In order to isolate the effects of nonlinearity in the memory term, Hrusa
(16] has studied (2.21) in the special case that ¢ is linear (i.e.,
¢(E) = c§ for some constant ¢ > 0), but ¥ is allowed to be nonlinear.
His results apply to initial-boundary value problems as well as pure initial
value problems. It is shown in [16] that the local behavior of solutions of

u  (x/t) = cu (x,t) + ]: a’(t=T)¥(u_(x,7)) At (3.34)
+ g{x,t), x @B, t >0 ,

is quite similar to that of solutions of the semilinear equation

u = cu
X

et +9u) +g . (3.35)

£
In particular, a pointwise bound on u, is sufficient to continue a c2
solution u globally. Moreover, if ¢' is bounded, then (3.34) has globally
defined smooth solutions, even for large initial data - independently of the
sign of the memory term. (This requires only local assumptions on a.) Some
decay results for solutions of (3.34) which allow the data to be large are
also established in [16].
Several authors have analyzed the similar first order problem
ut(x,t) + O(u(x,t))x + ]; a'(t-t)'(u(x,t))xdt =0, (3.36)
xeB, t >0 ,
u(x,0) = us(x) , xep . (3.37)

Equation (3.36) is simpler than (2.21) in that it is of first order, yet it
retains many of the important qualitative features of (2.21). The chief
motivation for studying (3.36) has been to gain insight into the behavior of
solutions of (2.21).

If a' vanishes identically, then (3.36) reduces to the (scalar)

congervation law
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u_ + 0(\!)x =0 . (3.38)

t
It is well known that (3.38), (3.37) does not gsnerally have a globally
defined smooth solution, no matter how smooth u, is. Nohel [28] has shown
that under reasonable conditions on ¢, ¥, and a, the initial-boundary
value problem (3.36), (3.37), with B = [0,1] and periodic boundary
conditions, has a unique global smooth solution if ug is sufficiently smooth
and small. (Here, uy should be small in the H2(0,1) norm.) Malek-Madani
and Nohel [24] have studied the formation of singularities in smooth solutions
of (3.36) with B = R, Under certain assumptions on ¢, ¥, and a (which
include (3.7) and convexity of ¢), they give rather precise conditions on
up under which (3.36), (3.37) has a local smooth solution for which first
derivatives become infinite in finite time.

Relatively little is known about weak solutions of (3.22) or (3.36).
Dafermos and Hsiao [5]) have established existence of global weak solutions (of
class BV) to systems of conservation laws with memory in one space dimension
for initial data having small total variation. They allow for very general
types of memory terms in the equations. Their global results apply in several
situations of physical interest (including the heat flow problem mentioned in
Remark 3.4), but not to (3.22) under assumptions which are appropriate for
viscoelastic solids of the Boltzmann type. (Their procedure does, however,
yield local (in time) existence of BV solutions to (3.22) in this case.)

In (22]), MacCamy studies several aspects of weak solutions of equation
(3.36) with % = §. He also discusses global existence of smooth solutions
for small data, and the formation of singularities in smooth solutions.
Greenberg and Hsiao (9] have studied the Riemann problem for a system which

-at

corresponds to (3.36) with a(t) = e r @ > 0. (See also [10].)
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The results of Coleman and Gurtin (2] on wave propagation (which were

discussed at the beginning of this section) hold for a more general class of
materials with memory. For these materials, the displacement u obeys an
equation of the form

v (et = = Glubx, o)) + £(x,e), x €8, €50 (3.39)
where G is a smooth (nonlinear) functional defined on a function space of
fading memory type, and for each x € B, t > 0,

u:(x,l) = ux(x,t-l) vys>»0 , (3.40)

i.e., u: is the history up to time t of the strain. Under physically
reasonable assumptions on G, Hrusa [14]) has established global existence
(and decay) of smooth solutions to certain history-boundary value problems for
(3.39) with B = (0,1] and suitably smooth and small data. See also (15)

(and the references therein) for a more complete discussion of equation

(3.39).

4. The Cauchy Problem with an Exponential Kernel

In this section we sketch the proof of global existence of smooth
solutions to the initial value problem (3.22), (3.23) for sufficiently smooth
and small data in the special case that the relaxation function is a
decreasing exponential of the form a(t) = ‘-ct. We also discuss the
modifications required to treat more general relaxation functions. A linear
rescaling of time shows that without loss of generality we may assume a = 1.
For simplicity we take g = 0.

In particular, we consider the initial value problem

t =(t-7)
-Jo.

“tt(x't) - O(ux(x.t))x t(ux(x.t))xgt .

(4.1)

xEeR t>0 ,




u(x,0) = uo(x), ut(x,O) = u,(x). xR . (4.2)

Observe that the corresponding equilibrium stress function is given by

X(E) 1= ¢(E) =~ ¥(B) vier . (4.3)
Concerning ¢, ¥, and X we make the assumptions

s, vecim, ¢0) = 90) =0 , (4.4)

$°'¢(0) > 0, ¥°(0) > 0, x'(0) >0 . (4.5)

Proposition: Assume that (4.4) and (4.5) hold. Then, there exists a constant
¥ > 0 such that for each wmu, s R*R with
Uy € L3 _(R), uj,uz,u0’tu ), o) e i) (4.6)
and
]:.(ua(x)z + u;‘,(x)2 + ua"(x)z + \:1(x)2

(4.7)
+ \x;(x)2 + u','(x)z)dx < ll2 '

the initial value problem (4.1), (4.2) has a unique solution u : Rx [0,») + R
with
uecimx (0,®) , (4.8)
2
ut'uX'“tt'utx'“xx'uttt'“ttX'“txx'“m e C( [op.)' L (.)) . (‘09)
Moreover, as t + ®
2
Upe U sV * 0 in L' (W) , (4.10)
L) W) Nl el + 0 uniformlyon R ., (4.11)
Proof: We choose a sufficiently small positive number § and modify ¢ and
¢ (and hence also X) smoothly outside the interval [-8,8] 4in such a wvay
that ¢' and ¢' are constant outside [-2§,28]) and
QCHENCY PCPEICP, xEx'(E)SY VvEeRr , (4.12)

where ¢, ;, L B ;, X ; are positive constants satisfying




X - dx<0 . (4.13)
(This can always be accomplished by virtue of (4.3) and (4.5).) There is no
harm in making this modification because we will show a posteriori that
lu (x,t)| € 8§ for all xe R, t > 0.

Making only minor changes in the proof of Theorem 2.1 of [7], one can
establish the following local existence result: (4.1), (4.2) has a unique

local solution u defined on a maximal time interval [0,Tg), Tg > 0, with
uecinx 0,70 (4.14)
2
ut’“x'“tt'“tx'“xx'“ttt'“t:tx'“txx'“xxx e c( [oo'ro)i L (m)) . (4.15)

Moreover, if

R T N R
tef{o,T,.)
0 2 2 2 (4.16)
tu L tu ot uxxx)(x.t)dx <® ,

then To = o,
We now proceed to establish a priori estimates for the local solution
u which will show that if (4.7) is satisfied with u sufficiently small then

(4.16) holds. For this purpose it is convenient to introduce

Uy t= ST luy0? + wrt0? + wiern? 4w in?

(4.17)
[ ] 2 . 2
+ u,(x) + u,(x) }Jax ,
- 2 2 2 2 2
E(t) := max [ {ul +ul +ul +ul +u
se[0,t) -t x tt tx xR
2 2 2 2

TWooe Y Ut Ut uxxx}(x,l)dx

(4.18)

t o 2 2 2 2 2
* o Jalte * Yex * Y * Yeee * Veex

i+ u:xx}(x,l)dxdl ,te o)
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9
vit) = sup (ui + u:x* uix}é(x.i) rt € [0.’1'0) . (4.19)
x€R
s€[0,t)

Throughout the remainder of this proof we use I to denote a (possibly large)
generic positive constant which can be chosen independently of ug, Uq, and Ty,
The reader should note that all of the computations which follow are aimed at
establishing an a priori bound of the form (4.43).

Differentiating (4.1) with respect to t and substituting for the integral
term from (4.1) (as in the derivation of (3.33)) yields

u tu, = Q(ux)xt + xlu), - (4.20)

tte
The required estimates will be obtained by combining several energy identities which
we derive from (4.20).

We first multiply (4.20) by u,, and integrate over space and time, performing
several 1ntegrationl by parts. The result of this calculation is

3 ]_.{ :t NN )u }(x,t)dx + ] ] :t(x.a)dxd-

+ 12, X(u Ju  (x,t)dx ~ ]o 12, x "(u, )u o (X/8)axas

- + 1 2
]- 2 tt + 36w ul + xlu Ju }x,0)dx (4.21)

+ % }: [ ¢"(u_ )u (x,8)dxds
vee IO,TO) .

Next, we multiply (4.20) by u, and integrate as above, thereby obtaining

J' TR N w(ux)}(x,t)dx + j: j:. "(“x)“:x(x",dxd'

--"2 "t
+ j:. u .y, (x,t)dx - jt j:. tt(x.l)dxdl (4.22)
-7 u +Wu) +uu Hx0)ax

vee [O,To) ¢

where




WE) = ]g x(ndan VEeR . (4.23)

We multiply (4.22) by (1-€), with 0 < € < 1, and add the resulting equation

to (4.21). After rearranging certain terms we have

1 (* .2 2
7 Jalug, ¥ 201-€uu, + (1=e)u Hx,t)ax

+J2.G el ¢ xiu e, ¢+ (1-6)W(0 ) (x,t)dax

+ ]: 1:.{Cu:t + () - tO'(ux)luix)(x,s)dxds
(4.24)

=" 1 2
| {3 up, +3 ¢ (uul + xtu du,

1 2
+ (-e)lwlu ) + uu, t3 utl}(x.O)dx

t ® L. 3
Jo Jo ¢ (u du (x,8)dxds V¢t e [0,T) .

1
3
We note that for each € € (0,1) the first integrand on the left hand side of

(4.24) is a positive definite quadratic form in u and u,,.. Moreover, we have
2 [ - t 2 2 - el
e“tt + (¢ (ux) €é (“x)]“tx > €u,, + e‘)utx (4.25)

which yields an obvious lower bound for the third integral on the left hand side of

(4.24) if € < 9/4.

The second integral on the left hand side of (4.24) merits special attention.

Observe that (4.4) and (4.12) imply
Ix(E)1 € XIEl, w(E) > %xez vEienr . (4.26)

Therefore, we have

1 2
2 "(“x)“tx + x(“x)“tx + (1-c)W(ux)
(4.27)

1 2 - 1 2
>3 !ptx - xluxutxl +3 Q=g .
A simple computation reveals that the right hand side of this last inequality is

positive definite in u, and ., for ¢ sufficiently small, by virture of

(4.13).

2=




Thus, by choosing ¢ small enough in (4.24), we conclude that

® .2 2 2 2
j-.{“t T YUyt “tx}(x't)dx
+ J: J:-{“:t + u:x}(x,l)dxdo

(4.28)

2 2

<r j:.(u:_ tu tu o+ uix}(x.O)dx

s+ TS IS, 0'(ux)u:x(x.l)dxdal vee (0T .
We observe that uge(x,0) = ¢'(ug(x))ug(x) by (4.1) and (4.2), and since
¢* vanishes outside [-2§,28]) we have

”: ]: 0'(ux)u:x(x,-)dxdll

< sup IO"(ux)utx(x,s)l }: }:. uix(x,-)dxd- (4.29)
xeR
se(0,t)

< TV(t)E(t) vee[,r, .
It now follows from (4.28) that

}:_{u: + u: + “:t + u:x)(x.t)dx

t = (2 2
+ g JWluy, * ug, tix,e)axds (4.30)

< ruo + Tv(t)B(e) ©vee [0.10) .

To obtain our next identity we multiply (4.20) by u,, and integrate as

before, thus producing




-1, 2 _
]_.{5 $'(u du uxxutt}(x,t)dx

+ J: J:.{X'(“x)u:x - uxxutt}(x,s)dxds

- % J o u tx(x,t)dx (4.31)

o 1 2 1
J-{i $(udu -u w. -3 u }(x 0)ax

Al

t = " 2
ts3 ]o ]_. ¢ (ux)utxuxx(x,s)dxds vte [O,To) .

For each € > 0 we have

2 1 2
P+ — . R
'uxxutt| < eu .+ 7% Vet (4.32)

We use (4.12) and (4.32) with € sufficiently small to obtain lower bounds for the

first two integrals on the left hand side of (4.31), and we majorize the right hand

side as before. This yields the estimate

uix(x,t)dx + ]E J:. u:x(x,s)dxds

| -

-r ot tt + u o (%et)ax = T }o j_. tt(x,s)dxds (4.33)
< Tu, + Tv(t)E(t) Ve [oT) .
Combining (4.30) and (4.33) we conclude that
J:.{u: + uz + “:t + u:x + u:x}(x,t)dx
+ ]; 2 M it uix + uix}(x,s)dxds (4.34)

€ Ty + TV(t)E(t) Ve e (0,7 .

We now must obtain similar bounds for third order derivatives of u. In order
to avoid purely technical complications and highlight the main ideas, we give only
formal derivations of the remaining energf identities (4.36), (4.37), and (4.39).
The difficulty is that the local solution is not smooth enough to justify our formal

procedure. However, all of these identities are in fact valid for our local




solution. They can be derived rigorously by approximation. (One way to do this is

to use difference operators. See [7) for more details.)

Differentiation of (4.20) with respect to x yields

Uttt ¥ Uxer T O e T XU -

(4.35)

We first multiply (4.35) by U+, and integrate as before. The outcome of this

computation is

L bl 2 . 2
2 J-{uttx te (ux)“t:xx}(x":)dx

2

+ JE JZ0 v, (x,8)dxds

+ j:_ x'(ux)uxxutxx(x,t)dx

t >~ . 2
Jo Jow X' (u Du  (x,8)dxds

2

1 1
= 1:-(3 u t3 "(ux)utxx * x'(ux)uxxutxx}(x'o)dx

t (o -
* J0 J-'{2¢ (“x)u u + ¢"(ux)“t:xut:t:x“xxx

xx e Ve tx

2 1 2
+ e + - "
¢ (ux)uxxutxuttx 2 ¢ (“x)utx“txx
L]
+ X (ux)utxuxxutxx}(x,s)dxds vtee[oT) .

Next, we multiply (4.35) by u,, and integrate as usual to obtain

J° (u?

2
L}
R ¢ (ux)uxx}(x,t)dx

N

+ J; J:. ¢'(ux)u:xx(x,s)dxds

L] 2
o= Yeex

+ ] U (x,8)dxds

(x,t)ax - | |
® 1.2 1 2
Jalg v * 3 X e+ uup JOxe0)ax
t ™ (am
* J0 }-{’ (ux)utx“xxutxx

1 w 2
+3X (ux)utxuxx}(x,s)dxds vte (0T, .

(4.36)

(4.37)




Taking a suitable linear combination of (4.36) and (4.37) and estimating the left

hand side from below and the right hand side from above as we did with (4.21) and
(4.22) shows that
L4 { 2 2 2

2
+ +
J u, Wt Yeex * utxx}(x.t)dx

+ J; J:'{u:tx + uixx}(x,s)dxda (4.38)
<Tu, + TMve) + v IE(E) viee fo,T) .

To obtain our final identity, we multiply (4.35) by Uyex and integrate as usual.

This yields

R ANY 2 _
IR CR ) (u du “xxxuttx}(x't)dx

t 2
+ 15 J:;{x'(ux)uxxx " U o] (X08) dxds

1 ;o 2
-3 - utxx(x,t)dx

- 1 ., 2 _ _1.2
J-{i ¢'(uu - u 3 gy (X0004X 14.39)

t o 1 ., 2 "
+ J0 1-0{5 ¢ (ux)utx“xxx -2 (“x)“xxutxx“xxx

- L] 2 - [N ] 2
¢ (“x)utx“xxx ¢ (ux)utxuxxuxxx

" 2
X (ux)uxxuxxx}(x.s)dxds vee [0,T) -

Treating (4.39) in the same fashion as (4.31) and combining the result with (4.38)

gives
- 2 2 2 2 2
J--(“tx Pt Veex t Yexx t uxxx}(x't)dx
t ® 2 2 2
+ L]
+ 1, J-"{uttx tu Ul o) (x8) axds (4.40)

< Tu, + T{v(e) + wit)lE(t) vere 0,7y) -

w28

ki VY Bt E I RE L 175 2t e B TR T GRS L Y e, S0 R 02t a (7Lt e A L T ekt - e S o B e ——

1 * t




Squaring (4.20) we get

2 , 2 . 2 2
LI < 4 (“x)“txx + 4¢ (“x)“tx“xx
(4.41)
2 2 2
+ 4°tt + 4x'(ux) Uk ¢
which, in conjunction with (4.34) and (4.40) yields
- 2 t (o 2
Jcw g XeB)OX + [0 ] [ ul (x,8)dxds
(4.42)
< Ty, + T{v(t) + vit)?IE(L) vte (0T .
Combining (4.34), (4.40), and (4.42) we finally deduce that
E(t) < fuo + T{v(r) + vie)2)e(e) vteloT, , (4.43)

where T denotes a fixed positive constant which can be chosen independently of
ug, 9, and Tje

At this point, it should be noted that there are sgeveral other ways to obtain
some of the estimates leading to (4.43). In particular, (4.1) can be used to
express u,, in terms of u,, (and "amall” correction terms) through an inverse
linear Volterra operator. This eliminates the need for the identities (4.31) and
(4.39).

We are now ready to synthesize the proof. We choose E, u > 0 such that
TL2EY2+ 28) ¢ 3, E< 82, and Tu? < JE. suppose now that (4.7) holds with the
above choice of u. It follows from the Sobolev embedding theorem that

vie)? < 26(0) vre 0,7 . (4.44)

Therefore, we conclude from (4.43) that for any t e [0,Tq) with E(t) < E we

actually have E(t) < % E. Consequently, by continuity,
E(t) < %E vee o) ., (4.45)
1 -
provided that E(0) < 3 E.




|

If necessary, we can always choose a smaller u > 0 such that (4.7) implies
E(0) < %E and hence also that (4.45) is satisfied. This immediately yields
To = by virture of (4.16). It then follows from (4.18), (4.45), and standard
embedding inequalities that (4.10) and (4.11) hold. PFinally, we note that since

E < 82, (4.19), (4.44), and (4.45) show that lu (x,e)| < § tor all

X @R, t > 0. This completes the proof. B

T

We close with a few remarks concerning the modifications required to treat the

Cauchy problem with a more general relaxation function. As noted earlier, estimates
for certain higher order derivatives can be obtained directly from (3.22) using the

procedure of Dafermos and Nohel {[7]. Under the assumptions of Theorem 3.1, equation
(3.22) can be written in the form

-1 - -1
Ueee + a(0) u., Q(ux)xt + a(0) x(\lx)x

(4.46)

+a(0) Ye 'gT (K*(bCu ) + € =u )]

where the * denotes convolution (with respect to the time variable) on [0,t],
i.e.

(v*w) (t) := |§ vit-Tiw(t)ar , € >0 , (4.47)
and K is the solution of a certain integral equation involving a' and a".

Equation (4.46) is quite similar to (4.20) and this suggests a natural

procedure to get estimates for the lower order derivatives. The chief difficulty
lies in handling the convolution term. This is accomplished by rewriting it in
several convenient equivalent forms involving derivatives on which we already have

information. The details are carried out in [17].
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