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ABSTRACT
Consider an environment having d possible atates, where the state of

the environment evolves through time according to a stationary Markov chain.
A natural model for noise in such an environment is to assume that the
disturbance is driven by a white noise process that depends on the current
state of the environment. In this note, it is shown that such a noise process

may be represented by a (d+1)th order ARMA model.
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SIGNIFICANCE AMND EXPLAMATION

- J
Autoregressive moving average (ARMA) models are frequently used to

. describe disturbances associated with signals. Usually, such processes are
discussed in the context of finite dimensional linear systems. In this note,

the awthar
}/ showsthat ARMA models also occur in a rather different setting, namely as

descriptions of white noise in a randomly varying environment. Such a result

is useful in better understanding the proper role of ARMA processes in systems
theory. ‘/
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ON ANMA REPRESENTATIONS FOR WHITE NOISE
IN A MARKOVIAN ENVIRONMENT
Peter W. Glynn

1. Introduction

Autoregressive moving average (ARMA) models are frequently used to
describe disturbances associated with signals. Usually, such processes are
discussed in the context of finite dimensional linear systems. In this note,
we shall show that ARMA models also occur in a rather different setting,
namely as descriptions of white noise in a randomly varying environment. Such
a result is useful in better understanding the proper role of ARMA processes
in systems theory.

' ? To be precise, we consider an enviromnment possessing 4d possible states,

labelled 1t to 4. The state of the environment at time n is given by a
stationary Markov chain {xn 3 = ¢ n <*®) having an aperiodic irreducible
transition matrix P. Associated with each state i is a seguence of
independent identically distributed finite variance random variables

{z ali) t = <n< ®=}; the sequences are independent of one another and {xn).
The noise process {Yn 1 *» < n <o} {s then defined by the rule Y =

zn(xn). In other words, Y, is driven by the white noise z“( i) whenever

Xn . equals {. H
As an application, consider the following siwmple model for signal

disturbances caused by atmospheric distortion. Assume that the atmosphere has

a finite number of states {(e.g. high and low humidity) and that state
transitions occur according to a Markov chain. If the disturbance is assumed
to be a vhite noise proceas that depends on current atmospheric conditions,

then the noise can be realisged as a special case of the above model.

Sponsored Dy the United States Army under Contract Wo. DAAG29-80-C-0041,
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2. Calculation of the Spectral Density

We first review some basic properties of the transition matrix P (see
Chapter 4 of [1]). The matrix P has a unique d x 1 stationary vector «
solving ®'P = %' (y' denotes the transpose of y). If N is the A x 4
matrix with each row identical to w', then IIP = PNl = ﬂz =] anda P -1
has spectral radius less than 1.

Turning to the calculation of the spectral density, let u and az be
d x 1 vectors with i'th component given by u(i) = !zn(i) and
02(1) = var zn(i), respectively. Then,

BY = ) E(y | X =i}P{x =i} =%’y :

i
and

var Y = Ir

2 2
) (E2, (1) - (E v,EZ (1))

= 1'02 + u'T(I-NMp

where T is a diagonal matrix with Ty ™ L Furthermore, for m > 1

cov(Y ,¥ ) = prre™ - My .

The spectral density of {Yn} is given by

«»
1 1Ak .
£(A) = 27 2 e cov(Yo,Yk) ;
(1)

k=n=0

= '; (w'cr2 + u'T(I-N + D(A) + D(-)))p}

»
where D()\) = E onk(Pk -m.
k=1
i -1
Lemma 1. The inverse matrix P(A) = (I - P + ¢ 1) exists for all ), and

D(A) = PP(-A) - oPn.




-

Proof. OCbserve that D()) = ): cuk(l' - l!)k. 8ince P - N has spectral
k=1

radius less than 1, it follows that the matrix sum for D()A) converges

absolutely, and hence D(A) exists. Letting n + @ in the identity

i‘ JAK

k=1

e -mam-p+ ey

ap =X - .ﬂn(P_n)nﬂ

DM -7 + ¢ 1) =p -1

Moy +snm-rren -

and thus PF(-1) exists. It is easily seen that NF(-L) = .“n, from which
D(A) = PP(-A) - onl follows from (2).

As an immediate consequence of (1) and Lemma 1, we obtain a closed form
for f£()).
Theorem 1. The spectral density f£(A) of (!n} is given by

() = = (rva® 4 wra-n + pr + Pre-b) - Rett - me ) (3)

By Cramer's rule for calculation of matrix inverses, g(on)ru) is a
matrix of polynomials in ‘ﬂ of degree at most r < 4, where g(eu) is
the 4'th order polynomial dct(on = (P=-N)). Since £()A) 4is real, even, and

non-negative, it follows from (3) that £()A) wmay be written as

2
ey =L g .k.n(q-k)lz/' ’i’ bz.““"“ﬁ ' “
k=0 =0

vhere a; = bo = 1, the 'k.' and b!... are real, and q € p+1 € a+1; here
the numerator polynomial has no roots outside the unit disc, the denominator
has all roots inside the unit disc (recall that g(on) ¥ 0 for all 1), and

the two polynomials have no roots in common.
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3. ARMA Representations for ¥,
Our main result is the following.
Theorem 2. There exists an orthogonal mean zero stationary sequence

{en :t ~» ¢ n <»} and a constant B such that

Y + b, Y +...+b Y =€ + a.c +...t A € +8 .
n 1" n-1 p n-p n 1 n-1 q n-q
. = + l..+ -
Proof Let W, Yh b1‘ln_1 + bpyn-p (Yn A Yn EYn) and observe that
2 - 2
the spectral density of W, is given by a { % akeiX(q k)l /2%  (see (4)).

k=0
The spectral representation theorem for the weakly stationary sequence W,

can be utilized to write wh as

+...+ a

W, =€+ a4€ 19 qen-q

n n
where {en : ~» < n <®} is an orthogonal weakly stationary sequence (see
{2}, p. 504, for details).

It is natural to ask whether all ARMA processes may be regarded as white
noise in a Markovian environment. However, it is clear, from (4), that if the

order of the moving average component is two or more than the order of the

autoregressive part, that such a representation is impossible.

4. Martingale Difference Representations for Y

1 o2

= 0, then Yn = u(xn) is a 4 state Markov chain. In the
case d = 2, the ARMA representation may be calculated explicitly. First
observe that since P 1is irreducible, the eigenvalue 1 has algebraic
multiplicity 1; since P 1is aperiodic, 1 is the only eigenvalue of unit
modulus (see [3], p. 536-551). Thus the second eigenvalue A of P for

d = 2 has modulus less than unity and ig clearly real. We claim that

€ = Yn - Y - (1=2)x'y (5)

n n=-1

is a sequence of mean zero orthogonal random variables. lLet v =yu - x'ue

where e = (1,1)' 1is the right eigenvector associated with 1, and note that

b

e o i .




Ble, | X 1 k< n=1} = (Pvd(X ) -Aw(x _) .

Then, if x is the right eigenvector for A, v = a.e + a,x for some

°1' °2' so that v = a,x (use %'v =0 = x'Py). Thus Pv = \v and

t{tn | X 3+ x € n=1} = 0; a sequence ¢, having this property is called a

k
martingale difference sequence, and it followa from basic properties of

conditional expectation that cn is 2 mean zero orthogonal sequence, proving

(s).

In general, one might hops that for a stationary d state Markov chain

i Yn = u(xn), there exist constants b1,...,bp. L YPRRRRT W ¢ such that

Y +b Y +..+ b ¥ =¢ + a.t +.0est 2 € '.'8 (6)
n 1 n- p n-p n 1 n=-1 q n-q

1
wvhere the en'a are martingale differences. Condition both sides of (6) on

o k < n~1, to obtain

+ +.. .t - *0oot + .
(Pu)(xn_1) b1Yn-1 bpYn_p .1tn-1 lqen_q 8 (7

From (6) and (7), it follows that €, " u(xn) - (Pu)(xn_1). By the

D e

stationarity of Y,, one may back-solve in (6) to obtain

[ ]
Y = ] ve +8 (8)
B Lm0 k n<k

g s 3 et 32l i

where Y, = 1. Substituting ¢ = u(X ) = (Pu)(x __,), it follows from (8)

that (Pu)(X__y) - Yqu(X _4) is a function of Xy/ k < n-2. This, in

general, holds only if u 4is a constant vector, and therefore martingale

difference representations of the form (6) are usually nonexistent for

a4 3.

S. Conclusions

We have investigated ARMA representatio..s for white noise in a Markovian

environment. Such representations are always possible, although the converse

is incorrect (not all ARMA processes can be realized as white noise in a




Markovian environment). We have also shown that in a special setting, the

moving average innovations are martingale differences.

Acknowledgement

The author would like to thank Thomas G. Kurtg for pointing out (5).




i : {1] J. G. Kemeny and J. L. Snell, Finite Markov Chains. Princeton, NJ:

i ' . Nostrand, 1960.

% {2] J. L. Doob, Stochastic Processes. New York, NY: John Wiley, 1953,
{3] S. Karlin and H. M. Taylor, A First Course in Stochastic Processes.

York, RY: Academic Press, 197S.

PUG/jvs

Van

o e
el







