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ABSTRACT

In his study of combined finite extension and torsion of a nonlinearly

elastic cylinder, Rivlin [1] established a relation for the torsional

stiffness which depends only on the axial force, the axial extension ratio and

the radius of the undeformed cylinder, in the case of mall twist. The

relationship did not depend on the structure of the stored energy function and

is hence termed a 4Ulniversal Relation.* In this paper, extend Rivlin's '-i

result to the case of combined extension and torsion of a cylindrical mixture

of a nonlinearly elastic solid and fluid.
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siGniFiCANC3 AND KXPLAEWIION

Zn the case of the combined finite extension followed by a mall twist of

a nonlinearly elastic cylinder, the torsional stiffness depends only on the

axial force, the axial extension ratio and the radius of the undeformed

cylinder, the stiffness being independent of the specific form of the stored

energy function which characterizes the nonlinearly elastic material. It is

found that the torsional stiffness possesses a similar property in the case of

a cylindrical mixture of a nonlinearly elastic solid and fluid.
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COMBINED TENSION-TORSION OF A CYLINDRICAL
MIXTURE OF AN ELASTIC ": LID AND FLUID

Mukesh Gandhi*, K. R. Rajagopalt and A. S. Wineman*

INTRODUCTION

In his study of the combined finite extension and torsion of a circular

cylinder of a nonlinear elastic incompressible, isotropic material, Rivlin

[1] established a striking result in the case of small twist. He exhibited

a relation for the torsional stiffness (twisting moment per angle of twist)

which depends only on the axial force, the axial extension ratio and the

radius of the undeformed cylinder, and does not depend on the mathematical

structure of the stored energy function of the nonlinearly elastic material.

This relation has been termed a "Universal Relation" because it is the same

for all nonlinearly elastic incompressible, isotropic materials. In this

paper we extend Rivlin's result to the case of combined extension and torsion

of a cylindrical mixture of a nonlinearly elastic solid and fluid.

The first treatment of the problem of combined extension and torsion of

a, rubber cylinder containing fluid appears to be due to Treloar [2]. In his

analysis, the cylinder is assumed to be saturated with the fluid. In addition,

the problem is not treated within the context of mixture theory. The present

work differs from Treloar's [2] in two respects. First, the problem is studied

within the context of the theory of interacting continua. Second, there is

no restriction on the fluid content of the mixture, the state of the cylinder

could range from being completely dry to fully saturated.

*Department of Mechanical Engineering and Applied Mechanics,
University of Michigan, Ann Arbor, MI 48109

tDepartment of Mechanical Engineering, University of Pittsburgh,
Pittsburgh, PA 15261

Sponsored by the United States Army under Contract No. DAAG29-80-C-041.

1k

L II __ I Ilm l ... . ...... . .



In the present problem, both the solid and fluid constituents are at
rest. However, the fluid can be non-homogeneously dispersed throughout the

mixture region, which gives rise to concentration gradients. The physical

mechanism for the existence of such gradients is provided by the presence

of a diffusive body force which each constituent exerts on the other.

Nowever, when the twisting is small, it is found that the fluid is dispersed

uniformly throughout the mixture.

A brief review of the notations and basic equations relevant to a mixture

of interacting continua is provided in section 2. The general problem of

torsion superposed on finite extension is formualted and discussed within the

context of mixture theory, in section 3. The problem of a "small" twist

superposed on a finite extension is studied in detail in the final section.



2. MPlLIHINIARES

In this section, we provide a brief discussion of the basic balance

laws and their consequences which is pertinent to mixture theory. A detailed

exposition of the same can be found in Boren (31 and Atkin and Crane (41..

A mixture of two continua, a solid SI and a fluid S2, which are in notion

relative to one another is considered. Let

' %I(Xt) and % a x2 (,t) (1)1.2

denote the notion of the solid and fluid, respectively. Also, let u, and

z, £ denote the velocity and acceleration vectors of S1 and $2, respectively.

The deformation gradient tensor for the solid 1 Is given by

all 
(2)

Let p, and P2 denote the densities of SI and S2 at time t, measured per unit

volume of the mixture. The mean velocity of the mixture and the total density

of the mixture are then defined by

PX = PIS * P220 P r- Pl + P2 " (3)1,2

The appropriate form for the balance of mass for the solid and fluid are

P1 det F a plo, (4)

r2+ div (P2 z) 0, (5)

where p10 is the mss density of the solid before forming the mixture.

Let 2 and x denote the partial stress tensors for 8 and S2, respectively.

Let k denote the diffusive body force. In the absence of external body forces,

the equations of motion for S1 and 82 are

div 2- k Pi It (6)

div + k w P2 g, (7)

and
+ T (8)

. . . .. . . + X
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Finally, we discuss briefly the constraint which Is Introduced on the

motion of the mixture In virtue of the assumption that both the solid 81 and

the fluid S 2 are Incompressible in their unmixed reference configuration.

If the solid S and the fluid 5have constant densities p10 and p 0 and volume2 2

Vand V 2, respectively, in their reference configuration and if one further

assumes that the volume'of the mixture is always constrained to be V I4 V 2

then (cf. Mills [51), it can be shown that

We shall assume that the mixture under consideration obeys the constraint

expressed by (9).

4



3. PROBLEM

Let us consider a solid circular cylinder whose dimensions in the refer-

ence configuration are given by a radius R and a length Lo. We shall denote

the co-ordinates of a material particle in the reference configuration in a

cylindrical co-ordinate system denoted by (R, 0, Z). We shall assume that the

cylinder is subject to the following deformation

r = r(R), (10)

e e + *xz. (10)2

and

z = Az, (10)3

where (r,Oz) denote the co-ordinates of the particle at (RG,Z) at the current

instant, A and * being constants. The above deformation corresponds to a

finite elongation (with an associated stretch ratio X) along the z-co-ordinate

direction, followed by a rotation of * per unit current length.

The Cauchy-Green strain tensor B which is defined as

E = F (11)

takes the following form for the above deformation:

0 0 + (*,\r) 2  2  (12)

0 *A 2 r x 2

A 2 0 0

X2 + (*RAeA) 2  *A 2AR (13)

0 X2 XaRx2/

where

r dR anR

I/



denote the stretch ratios in the r and 8 directions, respectively. The prin-

cipal invariants of B are then given as

' X + 2 (1x + o 2R 22) + X2  (14)

2 2 22 2 2

1 r (16)

We shall find it useful to express the balance of mass equation (for the

solid constituent) in terms of the stretch ratios. Thus (4) can be expressed

as

P - AA s  (17)
p1 0  ArA

where V. represents the volume fraction of the solid.

We now proceed to document the equations of equilibrium which are appro-

priate for the deformation being considered. Since the assumed form of defor-

mation implies that the stresses depend only on the r co-ordinate, the equa-

tions of equilibrium for the solid constituent, namely (4), reduces to

da rr + rr " °80 - b =0, (18)

dr r

where arr and 00 denote the appropriate components of a and br the component

of the diffusive body force b in the radial direction. The equilibrium equation

for the fluid constituent, namely (5), reduces to

dXrr + Xrr " 08 + b =0, (19)

dr r

where nrr and '88 denote the components of n. If T denotes the total stress

tensor, i.e.,

T=+ n,

then (18) and (19) imply that

T -Tdrr + rr T8 + o, (20)
dr r

which is the equation of equilibrium for the mixture.

6



We shall assume that the solid-fluid mixture is such thet its specific

Relmh~ltz free energy function has the following constitutive structure (cf.

i I5])

A = AQP2).

Under the assumption of isotropy and material frame indifference, the free

energy function A can be written in terms of an integrity basis for B as

A = A(1I , I2 13, P2). (21).

It follows from equations (4), (9) and (16) that

(1 3z)"  1 - o_2,9
P20

and thus A reduces to

A = A(U1, 12, p2). (22)

The above constitutive assumption seems to be an appropriate one for a mixture

of a non-linearly elastic materiej,'like rubber in a solvent (cf. Treloar [71).

The restrictions Imposed by thermodynamics and the reductions which can be

achieved for the forms of the constitutive relations for the stresses have

been studied in detail in [6]. We provide below the results obtained therein.

The constitutive relation involving the partial stress components for

the solid and fluid constituents are given respectively, by

P1° =(0 " P z ) aii + 2p((A1+ %I ) Bl -A B kBk (23)
10i 1 2 1 ij 2 Ik kj)(3

and

P2 PP2 A 8(24)
P20 Op2  ii

The constitutive relation for the components of the diffusive body force is

given by

7



p _2 3P1 DA 8P 2

bi =1xi 0 8i + p P2 xi

82k

" P2 (A1 + A2
1
1) Ak - A2BlkI ax. (25)

where 6ij denotes the kronecker delta and A,, i=1,2 is defined through

A 8A , i=1,2. (26)

The scalar p is due to the constraint of volume additivity. The scalar 0 was

introduced into the theory by Green and Naghdi 18] for thermodynamic consider-

ations. As can be seen from equation (6), (7) and (8) 0 drops out of the field

equations. It is only of interest if partial stresses are to be calculated.

Since this is not of interest in the present problem, we drop reference to

it without loss of generality. Finally, the constitutive relation for the

total stress takes the form

Tij = tij + 7ij

= (-P + PP 8A "8) + 2p[(A 1 + A I )B -A (27)
28p2  ij ik

For the deformation under consideration, it follows from (13) and equa-

tions (25)-(27) that

r -(pl + 2P(A + A2II)Ar -
2P(A2)A4err P 1 (2p 1) r 2^ r

(28)

00 - (p -0 ) + 2P(A1 + A R A)

- 2pA2 (A 4 + *2R2 X2 )2 + *2 R2 A4 X, (29)

P1

z = p +10  2p(A 1  1 P,

2pA2 A4(1 222 (30)

8I



08z 2p(A1 + A2 I1 )RA X2 - 2pA{RA X2[0 + 222 + A2 ]1

= 2p#R ((A1 + A211)A2X - A2 [X2ke((l + R 2A2) + A2)1), (31)

rr = ne ! nzz =P--PP 2 -)" (32)

The expre3sion for the diffusive body force is quite complicated and for the

purposes of our analysis here it is sufficient to realize that the diffusive

body force takes the following form:

bP= I/+ 1  , + ,' R, ', X I X, (33)
r ~dr ' P10' SArp A8 'e ,R)

where the prime denotes differentiation with respect to the variable R.

It follows from equations (14)-(16) and (28)-(31) that the components of

the stress a have the following form

OiL p + fii(r' A0 A ,1 * - R2 )  no sum on i, (34)

and

Vez =if O£ez(Ar ' X' X, 2 R2 )" (35)

Also, the components of the total stress for the mixture T have the following

form

T = p + h..(Ar rA, A, *2R2), no sum on i, (36)

and

Te2 8 'P1'ez (Ar ' k 2 eR2) (37)

The equilibrium equation for the solid (18) can then be re-written in

the form

d { P f + (f rr " e0)  d P!
3r P10  rr (r/R) drp 1o)

g(A, \et R, A , X, 2 ) 0. (38)

r

,, a mmm mnmmmlllnlnllmnllE~m mE~ln II iI ;9



Thus

, ( + S I(lr, e, R, A',X , , 2 R2) 0. (39)

The equation governing the equilibrium of the mixture takes the form
.dh h-

dp = rr + rr "6 (40)
dr dr r

which is of the form

(Ar' AO' R, A - A, R 0. (41)
dR 2 r'r

Equations (39) and (41) are two highly non-linear second order ordinary

differential equations for r(R) and p(R). One boundary condition arises from

the assumption that the lateral surface of the deformed cylinder is traction

free. This requires that the radial component of the total stress vanishes,

e.g. T rr(R ) = 0. The choice of a second boundary condition is unclear. For

example, there is almost no physical guidance for specifying boundary condi-

tions on the partial stress components. However, for the purposes of this

work, which is the determination of a "Universal relation", the boundary

condition that T rr(R o ) = 0, is adequate.

Once r(R) and p(R) have been found, the partial and total stress com-

ponents can be determined. Thus, the twisting moment Hz and the axial force

F are given by the formulae

M = 2nf 0 o r2T dr= nO Rr2hzdr, (42)Nz  fo dr = o 2ez (2

and
r0  r0

F = 2n ffo Tzz rdr = 2n fo r(-p + hzz)dr, (43)

where r0 is the outer radius of the cylinder in the deformed swollen state.

10



Since the extent of swelling is not known and thus ro is not known

apriori, it would be convenient to express the moment Nz and the axial force

F in terms of integrals over the known reference configuration. Thus, we

can express (42) and (43) as

R0  h ezR3dR, (44)

and

R+F = 2w 100 A're( 'p + hzz)RdR" (45)

6
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4. SMALL TIST SUPERPOSED ON FINITE EXTENSION

In this section we consider the case when a small twist is superposed

on a finite extension. Thus we shall assume that Ifl << 1 and that we can

exp~nd the relevant quantities in a Taylor series expansion in t . Note that

in equations (39) and (41), g, and g2 depend on ,2 The solutions to (39)

and (41) will be of the form

r = r(R, s2 ), p = p(R, *2). (46)1,2

Thus we can express r and p by their Taylor series expansion as

2
r = (R) + O(02) (47)

p = P(R) + 0(42). (48)

Similarly one can expand Ar and A in terms of a Taylor series expansion in

2 and the Cauchy-Green strain tensor (13) now takes on the form

A2  0 0
r

0 2  * 2 XR 0(42= o e +0(.

0 4A 2AOR A2

- 0(*2). (49)

where

r= X(R, 0),
r r

and

= (R, 0).

Likewise, the principal invariants Ii, 12 and 13 and the densities pI, p2

and p can be expanded to be

I =A 2 + A2 + A 2  A2 + 2 +A+(4 2 )

I r 0 r e

I2 2r 0 2  2 +r + 2 2 = X 2r 8 + X
2Xr

+ 2+ 0 (* 2  : + 0(k2 (51)

1 A = "(



P1 z A, * °(*2), P2 A, 2), (53)1,2

p + 4 0(*2), (53)3

with

___ 1 P2 P

IP 5 A2  A,(54)3

4Thus, the normal components of the partial and total stress may now be

expressed as
J2

Z - + X1 e(2t, 2O. A) + O(W), no sUm on 1, (55)"ii P "i rl

Tii -0 + ii(2r X, A) + 0(#2), no sum on i. (56)

The diffusive body force b may be expressed as

br L (LA,).rj(r 0* R, I, 2 ) +. 0(#,2). (57)r dR PlO N •iXr1 Ie ; -'

The equilibrium equation for the solid and the mixture nov take the form

-* - %.4.51(2 r R, , X ) + 0( ) 0, (58)i

+ i r' R, 1, Xj, h) + 0 0.

We now proceed to show that the equations (58)1 and (58)2 in which terms

of 0(2) are ignored governs the basic finite uniaxial extension problem

wherein the solution is homogeneous, i.e.,

2r z constant, X a constant.

Since we shall assume that the material is isotropic

Xr Z X a constant. (59)

It follows from (54) that the densities A V 2 and a are constant. Moreover,

it follows from the definitions of tie and Li that

13 ii



ft a constant,

it a constant,

and

a rf and& fi
rr 8 rr 08.

The diffusive body force b vanishes since the gradients of the densities

and strain tensor components in (25) now vanish. It follows from equations

* (38), (40), (58)1 and (58)2 and the definitions of the function g and

that

8= 0, (60)1

= , (60)2

and

= 0. (60)3

It then follows from (36), (60) and the boundary conditions on the lateral

surface, Trr = 0, that

rrI(A, A8 , X) = ̂ (R) = constant. (61)

Finally, from (13) and (59), the deformation is found to be

r =X.() = AR, (62)

where

AAr = A (63)

is a constant. In the absence of a second boundary condition, A remains

arbitrary. Hence, the equations (58)1 and (58)2 in which terms of 0($2) are

Ignored, governs the homogeneous finite uniaxial extension problem. Thus the

general problem of combined uniaxial tension followed by small twist decouples

into a uniaxial tension problem in which the deformation is homogeneous and

a torsion problem in which the twisting is small.

We conclude our analysis by deriving a "universal relation" between the

twisting moment and axial force under the assumption of small twist.

1
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The expressions for the twisting mment HZ and axial force F in (42)

and (43) become

2" = 2r10A b* (Xr , ,)R 3dRt + 0(4,2),(4

and
R

. = 2m Jo Kry-Do(R) + haz(I' r A, 0)]RdR 0(@2. (65)

It follows from (50)-(52), (61)-(66), and the deforeations of Xrp AO

has and h that

?1 o0 Ah A(A I + 2X,), + 0(,), (66)

and

7 at 2 2 (m + A2- 2)Q .- 2) O O(2), (67)

where

Al m A (1 , 12, A2 , 1 u 1,2

By (66) and (67),
z 2

/ o
12. 2.* (68)

40 F 2

Equation (68) expresses a relationship between Ng and r which is inde-

pendent of the particular from of the specific Ielmholtz free energy A and

can hence be called a "universal relation". It is valid for all states in

which the elastic solid is swollen with fluid. In the absence of fluid,

P2 a O, and thus by (9), (17), and (63), 2 1 1.

In this case, one obtains from (68) that
2

s ix Z_ 1 (69)

which is the classical expression established by Rivlin (11.

We provide below alternate forms for the "universal relation" (68) in

terns of other parameters which are of physical interest:

15
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Volume Fraction of the Solid

Aim = (70)4.m --- 13,
41#+0 Fs ~

Solid Density

H I$ R 2 .2
Ai = --1 , (71)

A'-P 1/P10 -

Fluid Density

A im (72)

P20

Note that if the cylinder undergoes free expansion when it svells with

fluid, isotropy of the material implies A z A0 - A. Then A - A and the

axial force F : 0, by (67). Thus, the "universal relation" (68) is defined

only when A 0 A, in which case F 0 0.
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