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ABSTRACT

This paper deals with periodic solutions of Hamiltonian systems of the

form -f V'(x) with V a given function. Assuming V to be either a

convex or an even function, and prescribing the period, existence results are

obtained for the number of solutions in relation to the minimal period of

these solutions, assuming superquadratic growth at infinity only, or subqua-

dratic growth at infinity together with specific behaviour at the origin for

V. By introducing natural constraints, these results are obtained by applying

variational methods directly to the action functional. _
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SZIICAUC3 AND ZPLANATIOU 4

fte system of equations VU - V, with V a given potential energy

functicn, model the notion of a dynamical system. Prescribing the period

T, the action functional associated with this system an the set of ?-periodic

finftions is not immediately suited for application of known variational

methods to obtain periodic solutions. Assing V to be an even or a convex

function, it is shown in this paper that it is possible to apply these mathods

after Introducing certain subsets (called natural constraints) which have the

property that critical points of the action functional restricted to these

subsets also provide Y-periodic solutions. Using specific natural

onstraint, the existence of superharmonic solutions, i.e.* solutions which

have period T/2, T/3,... , is also investigated. In the paper the case of

muyerguadratic growth at infinity, as well as the case that V is subquadra-

tic at Infinity and satisfies conditions at the origin, are investigated.
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APPLCATOZS OF ATURAL COSTRI WS N CRIICL POZNT THBORY
TO PERIODIC SOLWTZOU8 OF NATURAL EAMZLTONZAN SYSTEM8

1* Introduction and Results.

In this paper w shall consider the problem of finding periodic solutions

with a prescribed period T > 0 of the autonomous system of second order

equations

(1) -Ve Wx x(t) e R ,

where V C2 (Kn,t) is a potential energy function, normalized such that

V(0) - 0. Equations (1) correspond to a amiltonian system with a "natural"

amiltonian (of the form kinetic plus potential energy) given by

1 2

where, here and In the following, I I denotes the tcledian norm in nP

(occasionally we shall also write p2  for Ip12). Zn the results to be

presented, @me of the next conditions will be required. In the formulation

we let 1 - (2VT)2 and A eV.

Ixlim x

V(x) 1 2
(V2 ) 1 ,,infla >-1  •

Ixl+0 x

(V) l(1+l) 2 for ll x e 3n
3 1 2 2 1

x

(V4 ) There exist numbers u > 2 and R > 0 such that

Mathematical Institute, Catholic University of Nquegen, The Netherlands.
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V'Cx)ox )o OW~x for all x e6V for which lXI ~ R.

The first result deals with subquadratic potentials, i.e. condition (VI)

holds, which satisfy for some j e63 condition (V2 )1 . Clark [I] for the case

that V is even, and osta and Wlillem (2] for the case that V is convex,

obtained the existence of at least Jon distinct T periodic solutions

(distinct solutions" will mean, here and in the following, solutions that

have distinct trajectories).* See also Amann and zehnder [3] for a

multiplicity result in case V Is even and asymptotically linear at

Infinity. These results do not give any information about the minimal period

of these solutions. In that respect, Clarke and Ikeland [4] established the

existence of at least one solution with minimal period T for the case of

general Remiltonian systems with convex Ramiltonians which satisfy conditions

like (VI) and (V2 ) 1. (Their method can be modified to be applicable to the

natural Ummltonians we are considering here, but their results do not seen to

cover this case directly.) see also Ambrosetti and Mancini [51 for related

results.

In the formulation of the next theorem, and in the following, we use the ..

notation (a] for a > 0 to denote the integer part of at

(a] - mx(k t k6 evu (0), k < a).

Suppose that V Is even or strictly convex, and that V satisfies for -

some j 63N conditions (VI) and (V2)1. Then we haves

(i) lor each k 0 8, 1 < k < J, there exists at least one solution of

equation (1) with minimal period TA.

(11) Equation (1) has at least Jon distinct (non-constant) solutions of

period T. -

K -2-
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It# in addition, V satisfies (V3 )j, then we have furthermoret

(Uii) Equation (1) has at least Jon distinct (non-constant) solutions of

period T with minimal period not less than T/J.

(iv) For each k e N, with [J/21 + 1 4 k 4 J, there exist at least n

distinct solutions of equation (1) that have minimal period

precisely T/k.

The T-periodic solutions which have minimal period less than T, thus having

period T/2, T/3,... , shall be called superhareonic solutions (cmpare these

with the subharmnic solutions considered e.g. by Rabinowits (61 ). The other

result deals with the case that V is superquadrtic at infinity, i.e. V

satisfies (V4 ). In that case it is well-known that for arbitrary (large) A >

0, equation (2) has a periodic solution with period T and with Le-norz

larger than A (cf. Rabinoitz (7,81).

We shall show, at least when V is even or convex, that there exists

such a solution that has the additional property that its minimal period is

arbitrary small.

THOR- 2.

Suppose that V is even or strictly convex, and that V satisfies

condition (V4 ).

Then for any T > 0 there exist a number k0 e and a sequence

(NO}, k e 6, k ) ko, of T-periodic non-constant solutions of equation (1) for

which Ixk 'L + as k + - and for which the minimal period, to be denoted

by T k' Satisfies Tk ( T/k.

All the results stated above will be obtained by applying variational

methods directly to the action functional of which (1) is the Ruler-Lagrange

equation, i.e.

-3-
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(2) (x)= 2 J j V(x),

where, here and in the following, j denotes integration with respect to t

over an interval of one period, to be taken to be the interval [-T/l,T/21.-

If 3 denotes the set of T-periodic functions, a direct treatment of -

on Z is known to cause difficulties, mainly because Z contains the set of

constant vectorfunctions (- A?). However, it will be shown that, by

restricting # to suitable subsets of 3, namely natural constraints, theme

difficulties can be overcome and, in fact, more specific information about the

set of critical points is obtained.

To clarify the underlying idea of natural constraints, let, more

generally, 3 be an~y set and # 6 C I(2,R) a given functional on N. We

denote by S(#,3) the set of critical points of # on 3.

Definttion 1.

A subset 3 of X will be called a natural constraint for the couple

(#,A) if:

S(O,,) C S(#.Z)

i.e. any critical point of the functional #' restricted to the set 3 is

also a critical point of #' on 3.

Note that, since any critical point of # on 3 that belongs to

3 is also a critical point of # on 3, an equivalent definition is

(O ) - S(4',3) n lc .

The notion of natural constraint is known in the literature. In a ore

restricted sense, requiring at least S(,3) - S(*,i) it has been studied and

propagated most strongly by Berger (9,10,11,12,13,14], but incidentally this

method turns up at several places (c.f. for instance Hehari (15], Coffmann

[161, Dsepel (171, Ambrosetti and Mancini (5,181).

4-
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To obtain nore specific information about the solution set S(*,X) we

shall use natural constraints also in a more restricted sense. For the

applications we have in mind, this more restricted use can be formulated as

follows.

Definition 2.

a mapping s Z c 2ci will be called a natural embedding for the

couple (#,Z), and Z defined by 1 1- @3 will be called a naturally

embedded set for (#,Z), if

(i) the functional 4, defined by : : 3 R belongs to CI(2,R),

and

(ii) for every x e S(Ji) it holds that Ox e S(,Z).

It is clear that a naturally embedded sot 8 is a natural constraint in ,the

sense of definition 1.

One of the reasons to consider natural constraints is that more specific

information can be obtained for the set S(#,3). n fact, merely the fact

that there are critical points that belong to a certain subset I may provide

already specific characterizations or properties of these critical points.

Furthe~~e, and this is especially important from a "onstructive" point of

view, critical points which are "saddle points* for # on 3 may be minimal

points for # when # is restricted to some natural constraint. It must be

remarked, however, that the determination of useful natural constraints for a

given problem is not constructive, but requires some a-priori reflection on

potentially useful subsets of S(*,Z).

To return to the specific Hamiltonian problem under consideration, if

V is an even function, we shall consider the action functional # on the

natural constraint 3O which consists of the odd T-periodic functions. Then

.. .v . . . . . . .... . . .. .. ..-Il-



z- n IP (0). note that S(,I) C S(*,), but simple examples show that

these sets need not coincide. (For even potentials one can consider instead

of 90 an even more restricted set 3 c 30 as a natural constraint. The

corresponding period solutions in 5 are called normal modes (c.f. (19,20]).]

In case the potential V is a convex function, one usually considers

instead of the functional *, the dual action functional (or variants), see

e.g. Ikeland [21], Clarke and Ikeland [4], Ambrosetti and Mancini [5,18],

Costa and Willem (2]. We shall show that it is possible to deal directly with

the action functional (2), if # is considered on the set Z defined by

(3) (x -- I• J v'(x) -0)

(c.f. Berger [12]). Then Z n Rn - (0). We shall show that 3 is a natural

constraint for (*,z), and in this case S(*,Z) 2 S(*,Z). (For non-convex

potentials V it could happen that S(*,Z) is a real subset of S(*,Z)). In

fact, we shall show that the constrained variational problem

(4) stat(*(x) : x ez, J V'(x) - 0)

is, for strictly convex functions V, an explicit characterization of the

unconstrained variational problem

(3) statlmax(#(x+y) x 0 tn  y e

whoe the set 3 is written as the direct sum of constant vectorfunctions,

IF, and functions with mean value zero, 3. In particular, when 'state is

replaced by "inf" in (4), and consequently in (5), which is meaningful if V

satisfies (VI), (V2 )1 , the constrained minimization problem (4) is an explicit

formulation for the mini-max problem (5).

Remark 1. It is likely that (5), contrary to (4), gives for a larger

class of potentials than the convex ones the desired critical points, but this

has not been investigated in detail yet.

-6- j



Remark 2. For the problem of finding T-periodic solutions of more

general lamiltonian systems, it is also possible to introduce a natural

constraint i the Hamiltonian is assumed to be (strictly) convex. In fact,

defining spaces E and I am above for 2n-vector functions x, (4) is the

constrained canonical action principle for a system with Hamiltonian V if

the functional * in taken to be

*(x) - J x v(x)

where Iis the usual symplectic matrix Q w .~ 0  ith I the identity

matrix in 1P.

Writing i for 3- if V is even and for Z if V is convex, we
shall take as naturally embedded sets the sets Z, k e N, consisting of

k-th superharmonic functions of 3, i.e. functions in 3 which have period

T/k.

The advantage of using these natural constraints becomes clear from the

proof of the theorems. In fact, for Theorem 1, the j solutions referred to

in part 1i) will be obtained as the minimizing elements of the functional

an Nk, I C k C J. Exploiting invariance properties of the couple (*,3),

the other solutions are obtained using Ljusternik-Schnirelmann theory. For

Theorem 2, for each k 6 N, k ) k0 , a non-trivial critical point of

on 3 k will be obtained by using the Mountain Pass Lema (Ambrosetti and

Rabinovitz (221).

Remark 3. in the situation of theorem 2, with an additional

(monotonicity) condition on V, it is possible to obtain solutions which have

minimal period precisely T/k. Instead of applying the Mountain Pass ZAmma,

these solutions are obtained as solutions of a specific minimization problem

-7-
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which involves an additional natural constraint. See [20] for the case of

normal modes.

Remark 4. The (regularity) assumptions on V may be weakened. In fact,

for the case that V is even, the proof of the results only uses V e C.

For convex, not necessarily strictly convex, C1 functions V, the results

can be established by approximating V by strictly convex C2  functions (see

Berger (9, p. 338-3391 for an example of such an approximating procedure).

Other applications of the use of natural constraints in critical point

theory, in particular to the problem of multiple solutions in semi-linear

boundary value problems on domains with rotation symetry, shall be dealt with

in a forthcoming paper (23].

In Section 2 we shall present the proof of Theorems 1 and 2 for the case

that the potential V is an even function, whereas Section 3 deals with the

* case of convex potentials.

I thank Paul H. Rabinowitz for suggestions for improvement of the

presentation of the results.

W -8-



2. Proof of Theorem I and 2 for even potentials.

In this section we consider the case that V is an even function. Let

3 be the set of T-periodic functions:

X - (x e Hi(it,Rn) : x is T-periodic) ,

where HI(.IP) is the usual Sobolev space of n-vector functions. e will

denote the subset of odd T-periodic functions:

z* (x e z :x in odd)

Note that any x e 3. satisfies x(O) - x(-T/2) - x(T/2) - 0. 3. is a %

Hlbert space with norm denoted by I I:

,x, . (j 2)1/2 for x e. .

For k e X, we define on B the mapping #k

(2.1) , + Z , *kx(t) :- x(kt)

and introduce sets 3~k as the image of V. under *k

ZJ:" k I •

Then 91 = O, and A% consists of all odd, periodic functions with period

T/k (superharmonic functions of ZO).

The action functional *, given by (2), is well defined on N and

satisfies * 6 C (1,R) and 4 e Cl(O,R). The restriction of 4 to E;

defines via *k *4 k a Cl-functional on s:

(2.2) *kI) -nk2  - Vx)

To show that 30 is a natural constraint for the couple (*,!), observe

that any critical point x of on ZO satisfies for some even function

4(t) the equation
- x -V'(x) +

Taking the inner product of this equation with F and integrating over

(-T/2,T/2) gives j C2 - 0 because x, and hence V'(x) and x are odd.

Thus C 0, and x satisfies equation (2), i.e. x is a solution of the

-9- p
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7 .

original problem. Thus S(0,E) c S(VE) as required.

That Ok is a natural embedding follows from the observation that if

y e r is a critical point of k On Ee, y satisfies -k y = V'(y).

Hence, defining x(t) :- #ky(t), x satisfies equation (2) and x e E;, which

shows that #k is a natural embedding. Note that if y e S(*k,EO) is known

to have minimal period T, then *ky e S(,E*) has minimal period T/k.

Resuming these results we have
IJUlMA 1.

If for some k e N, x e S(*k,E*), then okx e S(,EO) and *k(x) =

(kx). Moreover, if x e E6 has minimal period T, then ekX E has

minimal period T/k.

The proof of Theorem 1, part (i), is an immediate consequence of lemma I

and the next lemma.

LEMMA 2.

Suppose that V satisfies (Vj) and, for some j e N, (V2 )j. Then, for

any k e N, I < k 4 J, the minimization problem

(2.3) inff{k(x) x e EO)

has at least one solution xk, and xk is nontrivial and has minimal

. period T.

Proof.

Let us start to recall, for future reference, the Poincarg-Friedrichs

inequalities: with X , (2w/T) 2

(2.4) xi2  I x2  and Ixlc 0 < I( ,x
.1.

valid for all functions x for which J x - 0, so certainly for all x e EO.
AX;

As a consequence of condition (V1) there exist constants a and M,

satisfying 0 < a <' such that

(2.5) V(x) < 1/2 u1x1 2 + M for all x e Rn

-10- '
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Using this, together with (2.4), we have for the functional k: (keg)

1 2 2 1 2  4 TlJa "
*k(x) k I, I a l, - , - X

since a < X1, it follows that is coercive on Vs *k(X) * as

It is a standard result that *k is also continuous with respect to the

weak convergence in 0*. As a consequence, Weirstrass' theorem provides the

existence of a solution of the minimization problem (2.4), for any k e u.

lemains to show that xk is non trivial and has minimal period T for

k N, I < k 4 j if condition (V2 )j is satisfied. 7b prove that xk YO 0 for

k ( J, note that *k(0) - 0, whereas we shall show that the minimum value of

(2.3) is negative. In fact, as a consequence of (V2 ) , there exists numbers

> A and p > 0 such that

(2.6) VIxI > 1/2 0-J for x e lx, Ixl < 0

Hence, with (2.6) we have for x(t) - p sin,/1 t, p < 0  and k 4 j:
21 1 2 1 j2X 2

k(x) k2 ,xl 2 - j 0 x2 C j i(x1-0) j X < 0

To show that xk has minimal period T, suppose on the contrary that x k

has minimal period T/m, for some m e 9, m 2. Define a function z by

z(t) : xk(t/m). Then z e Io and
1 k2  2i

#k(z) " . 1
-2 2 *'k2Is J V(xk)

m

As x is non-trivial, IxkI 9 0, and thus *k(z) ( lk(Xk) contradicting

the fact that xk is a solution of the minimization problem (2.3).

This completes the proof. U

For the proof of the other parts of theorem I we shall use Ljusternik-

Schnirelmann theory. Therefore it is necessary that the Palais-Smale

condition is satisfied.

-11-
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LzuI 3.

Suppose that V satisfies the condition (V1). Then, for each k e v,

the functional 1 k on V. satisfies the P.S. condition, i.e. if {x ) isk n

any sequence in EZ such that (i) I*k(Xn)I is bounded and (ii) +(xn) 0

as n *, then x n } contains a convergent subsequence.n

The proof of this result is standard; it is the same as the proof of

lemma 3 in the next section if one puts 0(y) E 0 and replaces i by VE

in that proof.

Next observe that 30, being a linear space, and the functionals

which are even since V is an even function, are invariant for the action of

the group Z2  {id,-id), where id is the identity map in VO. In the

application of the mini-max theory we shall use the genus as index theory (cf.

Krasnoselskii [24], Coffmann [16]). The genus of a symmetric, compact

subset A c E*\O) will be denoted by ind(A), and is defined as ind(A) -

m e 9 U (0) if m is the least number for which there exists an odd,

continuous mapping A + R\{O), and ind(A) - if no such mapping exists.

If * is any even functional on V, satisfying the P.S. condition,

(0) - 0, and a :- inf(#(x) : x e OI}  is finite and negative, the results

of the Ljusternik-Schnirelmann theory can be summarized as follows (cf. Clark

125]):

The number of Z2-distinct critical points of * on ZO with values less

than or equal to b < 0, is not less than ind($ 1 ([a,b])), where

* (Ca,b]) - {x e ze : a C #(x) C b) is the preimage of [a,b] under *.

As a consequence, if one can find some symmetric, compact set

Z c eV\0} with ind(E) - x e 3, the number of distinct critical points of

* (with negative critical values) is not less than Z if *(E) < 0.

-12-
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For the functionals under consideration we shall show that we can use one

of the following sets EA with appropriate, on k dependent, subscript*t

and superscript P. For t e 6 and p > 0 the set E is defined by

(2.7) s- (x -" e asin(I ) t e 6.R for 1 < c a 4, -. , .

Then ind(EP ) -tn for any P > 0.

Lam C

Suppose that V satisfies (V 1 ) and (V2 )j , and let k e N, 1 C k C J.

Then the functional #k has at least (J/k] *n %-distinct critical points

on rO whose critical values are negative.

Proof:

We shall show that for P sufficiently mall, (En) provided

A C [j/k]. The Ljusternik-chnirelann theory summarized above, then gives

the result stated in the lea.

It is readily seen that for x 6 Z' we have

1 2 22 1 x 2

Together with (2.6) this gives

(2.8) k(X) 4 C (k 2 2 A , , ..P

which implies (because Z is compact) that *k(E) < 0 for p < pO

provided I (I /k]. U

Theorem 1, part (ii), follows imediately by taking k - I in lama 4.

According to lemma 1, to each set of critical points of the functional

*kF which have (not necessarily minimal) period T, there corresponds a got

of critical points of * with (not necessarily minimal) period T/k.

-13-
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For the set of critical points obtained in this way, it is always

possible to find a lower bound for the minimal period. Indeed, any potential

that satisfies condition (V1 ), satisfies condition (V3). for some t e a

(large enough). The following lemma gives this lower bound and one of the

conequences for the problem under consideration.

Lam S.

Suppose that V satisfies condition (V3)t for some t e N. Then we

have:

(i) Any critical point of the functional # on SO which has negative

critical value, has minimal period not less than T/t.

(ii) For k 6 N, [t/2] + 1 4 k 4 1, any critical point of the functional

*k on SO which has negative critical value, has minimal period T.

Proofs

Because of condition (V3 )t we have for k e 3:

2_tx) 1 x2) V 2(2.9) k ). k 2 ,x,2 -_ I X 2 ) " . , x2 ,-

for which it follows that *k  is non-negative on ZO for every k ) +l.

For k 6 W, let x e 20 be a critical point of * for which *k(x) < o

-and s sthat has T/m as minimal period, for some m 6 N. Define aan uppose tha xha

function z by z(t) :- x(t/m). Then z e 90, a is a critical point of the

functional *mk, and *k(z) - *k(x). Since *k(x) < 0 it follows that

mok must satisfy mok 4 t.

Taking k - 1 in this argument (thus #1 -), gives the result (i),

wheras if k ) [t/2] + I, this inequality can only be satisfied for m - 1,

which proves part (ii) of the lem. U

Now we are able to complete the proof of theorem 1. Part (iii) of

theorem 1 is an immediate consequence of Lomma 5 (i) with I = J, and the

observation that Lema 4 gives the existence of at least Jon distinct

-14-
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critical pQ,Lts with negative critical values. In the same way combining

Lia 4 and Lema 5 (i1) gives the proof of part (v) of Theorem 1. fTe proof

of Theorem I is therefore completed.

To prove theorem 2 we shall show that there exmists a number k e 2 such

that for each k e u with k ) kO, the functional * a has non-trivial

critical point Yke a* and that JYkcL + as k +.

Once the existence of a sequence {yk} with these properties has been

shown, the proof of theorem 2 follows imediately from the fact that 9 is

naturally embedded in 201 defining xk : for k V ko, each xk  is a

critical point of # on 3*, xk 6 Z; has minimal period not greater than

TA and IxklL. - lYklL.•

In fact we shall prove somewhat more than required. We shall prove that

for all c > 0 sufficiently small, the functional * C 1Cl(me,.) defined by

(2.10) *'(x) ,= I j ;s . €2 j v(x)

has a non-trivial critical point x6 , and that IxelL a C + 6* 0.

Taking a sequence Ck - 1/k 0 as k . gives the required result as a

special case.

PROPOSITION 1.

Suppose that the function V satisfies condition (V4 ) and let *' be

defined by (2.10). Then there exists a number co > 0 such that for each

€, with 0 < 9 < CO , the functional € has on VO a non-trivial critical

point x with the property that IxKL 91 as + 0.

V."
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Proof e

For the proof of the existence of a critical point we use the celebrated

Mountain Pass Loma (Ambrosetti and Rabinowitz [22] ). (Note that 9 is

neither bounded from below nor from above on E0.) For the applicability of

this lama the Palais-Smale condition has to be verified.

Lmma 6

C7
Let the function V satisfy (V 4 ). Then the functional 9 on 20

satisfies the P.S.-condition.

The proof of this result is standardi it is the same as the proof of

leIma 6 in the next section if one puts *(y) - 0 and replaces I by V. in

that proof.

C
Next, define a number c as:

cC :- inf max #(x)

where *max" is taken over the points of a continuous path in 10 connecting two

points xo, x1 e 20 , and "inf" is taken over all the paths with this

property. Then the mountain pass lema states that cC is a critical value

of 9 if

C > max(*l(x) , *(Xl) I

We shall take x0 
= 0, and for x I any point in V with sufficiently large

norm, say IlxI > 1, for which 9 (x1 ) 4 9(0) - 0. The existence of

points x, with this property is a consequence of condition (V4 ). Indeed,

this condition implies that there exist constants a > 0 and A e R such

that

(2.11) VlxI * aIxi" - A for all x e FP

Hence, for any y 6 *\ (01, and a > 0 we have the estimate

S2 1 2- +
*(0y) 4 -a 1 '(C JI 2 11~;~6

Since V > 2, it follows that f(ay) + - as a + m. Having chosen x,

-16-
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such that lxi I > 1, (z )(0, it remains to show that c > 0. out this

is easys for xSS e s t (x6 e Uxi1 10 it followsvwith (2.4) that

1 12 _2
W P) j -Twop, for xC e a

where H(p) s- mz{V(x) s x 6 1?, xj 4 AT p). ror given or say o I* 1 it

follow that

ot W CW~j) > for Iximi

for all C > 0 satisfying C * 0 1TO I nceo, for all c,

0 < C<ot cc >.I a c 9 in a critical value by the mountain pass less.

For C < 90, lot x C be any *mountain pass point", i.e. a critical

point of with N"(x) - c't* As cg ), 0, K2t is nontrivial. 2b show that

x satisfies lxl ** as 9 +Or take the L2-innerproduct of the

function x~ with the equation satisfied by x6 I

A partial Integration yields -xt 2 92 1 , e .xe and consequently

N9x) in C2 V.1~(Xc)gC- V(x6))
2

Since 0 )>14 for all C0, It followsthat

2 -

From this result one concludes that Ix 1 is unbounded as c 4e 0. his

completes the proof of the proposition.U
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3. fteof of themes I and 2 for convex tentials. I
In this section we consider the case that V is a strictly convex

funotion and V 6 C2 (lf,R). Without loss of generality we may, and shall,

ass= that V attains its minimum value at the origin and that this value is

sere (as befores

V(O)- 0 V(x) for all x e T N

For the space 2 defined in section 2, we shall use the decomposition 2 IF

6 1, where I is given by

Am(yes, y a )
21'

is a Hilbert space with the norm I I as in section 2: yl - (1 2 .

1or the norm in Z we shall take

+ nyn for x - +y, xeIF, ye I

In the space • we consider the subset 3:

(3.1) 3 - {x e • , J V'(x) - 0) .

NO shall investigate this set in detail below, but note already that

n I? - (0) and that 3 is a regular manifold in 3, i.e. for every

x 6 3, the linear mapping

I# J VO(x)C maps E onto n .

2te mapping Ok, k e 3, given by (2.1), defines a set =  • As is
ak a

easily verified, 3k c 3.

The action functional # belongs to C I(3,R) and defines via the

definition M s- Oek  functionals # C I(;,), explicitly given by (2.2). a"

To show that Z is a natural constraint for the couple (#,3), observe

that any critical point x of 9 on K satisfies for some multiplier

0 •P the equation

- t=V'lx) + V"lx)o

together with periodicity conditions x(-T/2) - x(T/2), *(-T/2) = (T/21.

-18-
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Taking the n-innerproduct of this equation with the vector a, and inte-

grating over (-T/2,T/2) gives I Vlxlo.a - 0. Since V(x(t)) is for

every t e (-T/2,T/2) a positive definite matrix, it follows that a a 0.
A

Thus x satisfies equation (2), i.e. S(C,) c S(,3) as required.

In the same way as in section 2, it is readily verified that #k  is a

natural embedding. Consequently we haves

ams 1 I LenMa I, with Be replaced by Z.

in order to be able to prove theorems I and 2 for the convex case along

the same lines as in section 2, we need more information about the set 3.

The following proposition gives a characterization of this set 3. and may be

of interest in itself.

Proposition 2.

Lot V S C2(§n,3) be strictly convex, V(O) - 0 4 V(x) on I n , and let

3 be defined by (3.1). Then we haves

Ci) 3 is an unbounded subeet of 3 and 3 is closed with respect to weak

convergence in 3.

(ii) There exists a single-valued mapping * a I n  such that
A

(3.2) 3-=i14+) ,

where id Is the identity mapping. In fact, for any y @ If 4(y) is

uniquely determined as the solution of the minimiSation problem

lurthermore, * Is differentiable and continuou with respect to weak

convergence in I.

(iii) Lt 8 denote the sphere of radius p in 3, and I the bell of

radius p in I. Then there exists a monotonically increasing

function a s 3. * i% with a(O) - 0, a(P) * . as p s , such that

(2ns9 ) nlIo) for all p > 0

- ".
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equialentlyt for any x- x+ y x e S , y e I it holds1

(3.4) IIjxtll • e a(IilxIII) •

(Uv) The following inequalities holds

(3.5) TV(C(y)) C J V(y+#(y)) 4 J V(y) for all y e

Is If the functional V is quadratic, then #(y) - 0 for all y 6, i.e.

ore generally, if the functional V is even, then 30C 3,

where 90 Is the space of odd periodic functions introduced in section 2.

in that case, 0 j 3 in general.

2. The remarks made in the introduction concerning the formulations (4) and

(5) are an inmediate consequence of tis proposition, part (ii).

3. Naving defined the mapping # as in the proposition, the problem of

finding critical points of * on 3 can also be formulated as finding

critical points of the functional , defined by

(3.6) *(Y) * j2 -Jv(y4(y)) ,yC e

cm the got L, i.e. S(*,3) I S(*', I). (Note that ; e C1(IR)). we

shall wse this observation in the proof of the Palaix-Male condition in

the following.

Proof of proposition 2:

Part (i) of the proposition is an immediate conseqqence of part (ii). To

prove (ii), let y e I be fixed, and consider the function

YV 3t Ir +Yt y(x) t-j V(x+r)
y2

It Is a simple matter to verify that Vy C (O,R) and that it is strictly

convex. This function attains its mininme value at a unique point, to be

denoted by #(y). 2he stationarity condition v((y)) - 0 is precisely

) V'(,+#(y)) - 0, i.e. y + *(y) 61. This shows (id+#) I c 3.

-20-
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Vf k7 i:-nypoiLtn 4 -;

f a is anypoint in Z, then x- x+y, with x e and ye Z"

uniquely determined. Since j V1 ( Cy) - 0, x is a (and consequently the

unique) critical point of the function vy, i.e. x - #(y). Thiis shows
ay

c (id+*) I, and together with the other inclusion this gives (3.2).

Nov consider the function 1 e C ( 0? x1, L P) defined by

V(;,y) :- ) v'(2ey) .
b"

Since V is strictly convex, the derivative of F with respect to x is

non-singular: D r(xy) a # i v*(y)C is a non-singular mapping fromx

IP onto IF. the Implicit function theorem can thus be applied, and given

that, for any z0 + ye e 3, there exists a differentiable mapping, to be

denoted by *, from a neighbourhood U of yo into V such that

4(y) + y a• for all ye U. As *(y) is the unique point in 1P such that

y+¢(y) 6 9, it follow that *3 * , which shows that * is

differentiable. To show that # is continuous with respect to weak

convergence in 2, let Yfn y weakly in S Since I is compactly

e3bedded in :( y e CC(3nP) t y is T-periodic, j y - 0), it follows

that yn-yic. + 0 as n .

Another application of the implicit function theorem to the function

I , now considered as a mapping P 6 Cl(IF x 8, NP) gives the required

results #(y) (y) as n+ .

The essential contents of part (iiI) is that for given x 0, the et

of functions y 6 s such that x + y e 3 is bounded away from zero. Tlo

state this precisely, consider the function b s R+ + R+ defined by

b(r) :- inf{Iy2 : y 6 1, #(y) - r), r ) 0 "

As is continuous with respect to weak convergence in 1, this minimiza-

tion problem makes sense, and in fact has a solution (by Veierstras' theorm

for coercive, weakly lover semicontinuous functionals on weakly closed

-21-
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sets). It follow that b(r) > 0 for r > 0.- if bMr) were zero for r >

0, then 4(0) - r > 0, contrary to the fact that V'(x) - 0 on IP iff

22

that b is also given by b(r) - inf(Uyl :y e 21*(y) ,radttb

in a continuous, monotonically increasing function with b(r) + am r

Hence the function b has a monotonically increasing inverse c :mb-1

R+ *R+, satisfying c(0) - 0 and c(R) * as R + *.(In fact, c is

explicitly given by the inverse extrau formulation

22

cf. (263.) Thus oclyl 2)# (y) for all y 6 i. and hence

Itty+#(y)III2 _ lyE2 + *2 (Y 4 f 2(lye 2

where f in the function given by f(R) -- (R + C2(R))/- With c, the

function f is monotonically increasing, and (3.4) follows with the

function a defined as the square root of the inverse function of f.

Finally, to prove (iv), recall the well-known inequality for convex

functions:

V(u) - V(v) )o V' (v) *(u-v) for all u, v e l

Taking u -y+#(y), v - #(y), and u - y, v - y+#(y) in this inequality, an

% integration over (-1V2,T/2) gives th, result (3.5). This completes the

proof of proposition 2.U

Having established the foregoing proposition, from now on the proof of

theorems I and 2 for the case under consio-.ation resembles the proof given in

* section 2 in many ways. Therefore we shall restrict ourselves in the

following to the essentials.

Iosa 2 -Lemma 2, with Z* replaced by 3

-22- 1



Proof:

The most difficult part of the proof is to show that the functionals *k

are coercive on I. (Note that ik is certainly not coercive on E.)
4k
Writing x - *(y), we can use one of the inequalities of (3.5) to obtain

+k(x+y) k 2 k2  ;2  v(y)

Now using the inequality (2.5) for I V(y) (instead of for J V(x+y)) gives

the existence of constants 0 > 0 and P e , such that *k(y+#(y)) )

2aBlyl - V. The coercivity of *k on E then follows because of (3.4):

*k(x) + as nx e , IIIx11 .

As a consequence of proposition 2, (i), Weierstrass' theorem for

functionals on weakly closed sets, can be applied to provide the existence of

a solution of the minimization problem

infk(X x e z)

That the solutions of this problem are non-trivial and have minimal period

T for 1 4 k < J, follows as in the proof of lemma 2. U

Lemma 3 Lemma 3, with 3. replaced by R.

Proofs

In view of proposition 2 and remark 3 following it, the proof amounts to

showing that the functional 1k satisfies the Palais-Smale condition on 1,
p.k

where ;k is defined by

*k " 2. ;2. j v(y+#(y)), y e .

Let {yn} c I be any sequence for which I'k(Yn)l is uniformly bounded and

*1,, * 0 as n + -. Since is coercive on I, is coercive on 9

and hence, (yn }  is uniformly bounded in and thus has a subsequence,

again to be denoted by yn' which converges weakly in and strongly in

Co to some y e Z. From proposition 2 it follows that *(yn) # *(y), and

thus I V(yn+*(yn)) * 1 V(y+#(y)). Since * (y) * 0 implies

-23-
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< ( V~) - y~~ -y > +0 as n * one readily oban y-yl 0,
k ''n' k , oban

which has to be proved. U

In order to apply mini-max theory, observe that the set E and the

functional* '1 are invariant for the action of the group G S Z,

where S is the group provided by time-translations:

88x(t) t- x(t+O), for 6 e (-T/2,T/2]

and X2 fid, inv), with id the identity and inv time-inversion:

inv x(t) :x(-t)

The index of a compact G-invariant set A c W\O) will again be denoted by

ind(k), and is defined as (cf. [27, [28], (29]) ind(A) - m e V U (0) if

* u~ is the least number for which there exists an equivariant, continuous -.

mapping h : A + CN'\(0, and ind(A) - if no such mapping exists.

(The mapping h : A + Cm1(0} is equivariant if

h(80 x) - %h(x), h(inv x) - -h(x)

where R8  
3  is defined for Z- (Z1,z2,..O,%3 ) e C"as

Rz Z (e z1, e O2 .S..e z )with 0

As a consequence of the Ljusternik-Schnirelmann theory for invariant

functionals which are bounded from below on invariant sets, the number of (G -

distinct critical points of *kon E is not less than L. if s~me

compact, invariant set E c E\(0) can be found for which ind(E) I and

#kS 0.

Appropriate sets E for this case will be (compare with (2.7))

EP. :-(y+#(y) : y e E

where *is the mapping introduced in proposition 2, and Pis a subset

of I defined as T"!~( u r-() with

-24-
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* .4

ly I (m[in(/X I St + a)±cos( A- m + a

a e (-W,w], em e rn  for 1 C m i Lyl - p}

Because of the definition of *4 c A fp is compact (proposition 2, (ii))

and does not contain the zero-element for p > 0 (proposition 2, (ii)). For

any P > 0, ind(EP) - Zen.

Lemma ; Lemma 4, with E0 replaced by Z, and Z2  by G.

Proof: Almost the same as the proof of lama 4 instead of (2.8) we have for

y e (writing x*(yl):

1 22 2 y2 1 2-2
) C 2S-jTII ,

,.. with the same conclusions. U

Lemma 5 - Lemma 5, with 20 replaced by Z.

Proof: AS in the proof of lemma 2, first use one of the inequalities of (3.5)

before using the inequality implied by (V3 )j. Inequality (2.9) becomes,

writing x 4(y):

1 2 ;2 2 2 2
(+y )  - k V(y) - (1+1) 2 ) J y

with the same conclusions.

As in section 2, the proof of theorem I can easily be completed.

For the result of theorem 2 we shall consider, as in section 2, the more

general problem for the functional defined by (2.10), on the set E.

Then e c (1,R), and Theorem 2 follows as a special case of the following

proposition.
A

PROPOSITION 1 - Proposition 1, with EO replaced by 1.

For the proof of this proposition we have to verify

Lemma. 6 - Lemma 6, with 10 replaced by 1.

-25-
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7.7-

Proof: As in the proof of LAmma 3 we shall show that the functional

*6 C (2,3) defined by

;C(Y) ;2 _ V(y+(y)) , y e 0

satisfies the P.S. condition. We shall show that any sequence (yn ) £ for

which there exists 1 > 0 such that I* (yn)I C 1 and (yn ) + 0 as

n + m, is uniformly bounded in I. The rest of the proof is then the same as

in the proof of lemna ;. Writing xn - Yn + with xn - (yn , from

* (yn) + 0 it follows that for arbitrary small 8 > 0, for n sufficiently

large 1< (yn ) , yn >1 C 81yln. Since j V(x ) 0, this implies

J Yn2 - j V'(x) • xnl C alynI •

Because of condition (V4 ) there exists a constant A(40) such that

-V'(x) 0 x ) V(x) + A for all z e YP, and hence

1 02
I .. 2.n

Subtracting this result from J yn V(x) + No there results
(.1 _ .1) lynn2 < 14 x + +t ryns

Since ji > 2 it follow that lynl is uniformly bounded and the proof can be

completed. U

Proof of proposition 1.

For the application of the Mountain Pass Loins we first show the

existence of an element x1 with the properties:A- n
(3.7) x + y, e z, x e n, y, e z, ny, > I and # (x1 ) C 0

To that end, take any y e 1, y 0 0, and consider for a > 0, x :- x + aye

where x0 : *(oy) (# defined in proposition 2). Then x e and with

(2.11) it follows

+y) < _ 0 .2 2 I + + C2
ax )C j y _2 J +A •

Since a satisfies p > 2, a special case of Jensen's inequality, viz

/2 ~ -2/
Cjlgl}u 4 c JqIU/ 2  , with c -Tp2/2

-26-



can be used to obtain the estimate
1; + ayo1I2};+ ylu/2 ao1 Y2}U/2

and one easily concludes * (xa + ay) * -. as a , rom which the

existence of elements x, with the desired properties (3.7) follows.

Next, to show cc > 0, let Y e a :- (Y ( ye I E - p), and consider

x - y + #(y), # defined in proposition 2. With (3.4) it follows that

IIax-ll al(P), where a-' is the inverse of the function a. As

uinfl.T) 1x1 2  -C 11x 2  we find, taking P - 1 and writing

1 0
C

1.1 u. a-1 Y2s

*(y + #(y)) - c2T-(b) > for all y e s
2 4P

for all £ > 0 satisfying c '( to M (TMW)} 1 2

Am a consequence, on any continuous path connecting 0 and a point x1

with the properties (3.7), the functional #* attains values not less than

if c < t 0  Bence ac ) - for all c, 0 < cC

Along the same lines as in the proof of proposition 1, one shows that the

mountain pass points x satisfy Ixl 9 I as Ec 0. This completes the

proof of proposition 1. U

-27-

.. .f .... ... ........................... . . ..

_ -. j .- ',',+ ;+ +,,+, ,., : s,. I" " " ", "'' ' + P " " + + ". " +' "' " . . u ' "" , m '', %' ' ' . • "' ' '' " ''.,' ° .*



REFERENCES

1. CLARK, D. C., On periodic solutions of autonomous Hamiltonian systems of

ordinary differential equationsi Proc. A.M.S. 39 (1973) 579-584.

2. COSTA, D. G. and N. WILLEM, Multiple critical points of invariant

functionals and applications, MAC Report #2532, June 1983.

3. ANANN, H. and 3. ZEHNDER, Periodic solutions of asymptotically linear

Hamiltonian systems; Manuscripta math. 32 (1980) 149-189.

4. CLADXZ, F. and 1. ZMLAD, Hamiltonian trajectories having prescribed

minimal period; Comm. Pure Appl. math. 33 (1980) 103-116.

5. ADROS3TIJX, A. and G. MANCINI, Solutions of minimal period for a class of

convex Hamiltonian systems; math. Annalen 255 (1981) 405-421.

6. RABINOWITZ, P. H., On subharmonic solutions of Hamiltonian systems; Com.

Pure Appl. Math. 33 (1980) 609-633.

7. RABINOWITZ, P. H., A variational method for finding periodic solutions of

differential equations in: Nonlinear Evolution Equations, M. G.

Crandall, ed., Academic Press, New York, 1978, 225-251.

8. RABINOWITZ, P. H., Periodic solutions of large norm of Hamiltonian

systemsl to appear in Jrnl. Diff. Eqns.

9. BRGER, M. S., Nonlinearity and Functional Analysis; Academic Press, New

York 1977.

10. BERGER, M. S., Creation and breaking of self duality symmetry - A modern .

aspect of Calculus of Variations; Contemporary Mathem. 17 (1983)

379-394.

11. DEMRGR, M. S., On periodic solutions of second order Hamiltonian systems

(1)t Jrnl. Math. Anal. Appl. 29 (1970) 512-522.

12. BIIGIR, M. S., Periodic solutions of second order dynamical systems and

isoperimetric variational problems: Amer. J. Math. 93 (1971) 1-10.

-28-

% %,



13. BER, N. S. and Z. 3MIXRI, On PoincarG's Isoperimetric Problemi Jrnl.

Funct. Anal. 42 (1981) 274-298.

14. BaUGWR, M. S. and N. SCHECHTR On the solvability of semilinear gradient

operator *quationsi Advances in Math. 25 (1977) 97-132.

15. NISARI, Z., On a class of nonlinear second order differential .quationst

Trans. A.M.S. 95 (1960) 101-123.

16. COFFMANN, C. V, A minimum-maximum principle for a class of nonlinear

integral equationsi J. Analyse Math. 22 (1969) 391-419.

17. HEMPEL, J7. A., Multiple solutions for a class of nonlinear boundary value

problems: Ind. Univ. Math. Jrnl. 20 (1971) 983-996.

18. ANDROSMTI, A. and G. MANCINI, On a theorem by Uceland and Laury

concerning the number of periodic Hamiltonian trajectoriest Jrn.

Diff. Bqns. 43 (1982) 249-256.

19. VAN GROESEN, 3. 3. C., Existence of multiple normal mode trajectories on

convex energy surfaces of even, classical Hamiltonian systems: .rnl.

Diff. Sq., to appear.

20. VAN GROZUZN, R. W. C., Multiple normal modes in natural Hamiltonian

systems: in: Topological Methods in Nonlinear Analysis, proceedings

of 22-nd session of Stainaire de Hath~atiques Supericures, A.

GRAMRS, ad., Universitfi de Montreial, suer 1983, to appear.

21. IRELAND, I., Periodic solutions of Hamiltonian equations and a theorem of

A' P. Rabinowitzi .Jrnl. Diff. Eqns. 34 (1979), 523-534.

22. ANDROBSTIT, A. and P. H. RABINOWITZ, Dual variational methods in critical

point theory and applications; .Yrnl. Funct. Anal. 14 (1973) 349-381.

23. VAN GROESEN, 3. W. C., Applications of natural constraints in critical

point theory to boundary value problems on domains with rotation

symetry; NBC Report #2594, November 1983.

-29-



24. KURAS KO6SKXZ, N. A., Topological methods in the theory of nonlinear

integral equations; Macmillan, Nov York, 1964.

25. CLARK, D. C., A variant of lAsternik-SchnLrlman thoory, Indiana Univ.

Math. J. 22 (1972) 65-74.

26. VAN GIROZuI, 3. U. C., Dual and inverse formulations of constrained

extres problems, Jrnl. Math. Modelling, 1 (19S0) 237-254.

27. FADULL, 2. and P. R. RUAINWITZ, Generalixed oohomological index theories

for Lie group action with an application to bifurcation questions

for Hemiltonian systemst Invent. Math. 45, (1976) 134-174.

26. D3RCI, V., A geometrical index for the group a and ome applications

to the study of periodic solutions of ordinary differential

equations; Comn. Pure Appl. Math., 34 (1981) 393-432.

29. 1C1, V., On critical point theory for indefinite functionals in the

presence of symoetriesi Trans. A.N.. 274 (1982) 533-572.

3.

I.'

°.

'°S

.5-

--, ~ r, _, , ,,,,,' .,., _ _ __ - - .. ..-. . ... ,' . .- .. .. .,,,,,.,,-',,,.- .... -- .. . • - . . . . .-.



S|SCURITY CLASSIFICATION OF THIS PAGE (efm DOS *AW000o
3aDf DISTUCTOsI

REPOR DMWENTATION PAGE stiom COUPL3IIN rom
" . REPORT NUM1 II. .RECIPIENTS CATALOG NUM0ER

'2593 ..__Y

4. TITLE (in. 80lo0j 1. TYPE Or REPORT a PERIOD COVERED

Summary Report - no specific
Applications of Constraints in Critical Point reporting period
Theory to Periodic Solutions of Natural 4. PERFORMING ORe. REPORT NUUER

Hamiltonian Systems

7. AUTNOW#) S. CONTRACT OR GRANT NULIMER(q)

Z. W. C. van Groesen DAAG29-80-C-0041

. PERFORING ORGANIZATION NAME AND ADDRESS '0. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMERS
Mathematics Research Center, University of Nork Unit Number 1 -

610 Walnut Street Wisconsin Applied Analysis
Madison. Wisconsin 53706 -_1

It. CONTROLLING OFFICE NAME ANG AODRESS is. REPORT DATE

U. S. Army Research Office November 1983 . -

P.O. Box 12211 IS. HNUsUR OF PAOS

Research Triangle Park, North Carolina 27709 30."
M1. MONITORING AGENCY NAME 0 ADDRSS(I dIFRIMP01 bo0 CM10ib0 O1110) 1i. SECURITY CLASI. (of dueO "@Pon)

El UNCLASSIFIED

I" ag. r .,CATON, DWNGRADING'-

1i. DSTRI*UTION STATIMENT (of Wo Repea')

Approved for public release; distribution unlimited.

17. DISTRIOUTION STATEMENT (of SI. be~ mte In stock 20, It dIfmnt hm Report)

IS. SUPPLEMENTARY NOTES

WS. KEY WORDS (Conthewu on t aide it noeee60 M idmifn Iby block numbor)

periodic solution, Hamiltonian system, variational methods,
natural constraints

20. ASTRACT (Coed.m an rewe aide ,Ofeaoeoeofy aId idonItfr hrblock amobor)

This paper deals with periodic solutions of Hamiltonian systems of the

form -x - V (x) with V a given function. Assuming V to be either a

convex or an even function, and prescribing the period, existence results are

obtained for the number of solutions in relation to the minimal period of

these solutions, assuming superquadratic growth at infinity only, or sabqua-

dratic growth at infinity together with specific behaviour at the origin for
V. By introducing natural constraints, these results are obtained by applying

variational mthods directly to the action functional.

Do ,F', 1473 EDITION OF I NOV48 IS OGSOLETE NLSSFE
L ~JA 73 oN , O s,.Om.T UNCLASSIFIED"-

SECURITY CLASSIFICATION OF T.,1S PAGE ( ....DOO 2,0,o
** r' .P t . . - * s, .. *.m . - •o-. . . -. - - o. •o . .- . ... . ...... . . ."

I*,, , . . . . . . , . - . . . . ... * . .-, . . . . .. . ... . . •- . . . . . . . . -.



dft


