AD-A136 348 RPPLICRTIUNS DF NFITURHL CUNSTRHINTS IN CRITICHL POIHT 11
THEORY TO PERIODIC. . <U)> WISCONSIN UNIV-MAD
MATHEMATICS RESEARCH CENTER E W VAN GROESEN NOV‘ a3
UNCLASSIFIED MRC-T5R-2593 DAAG29-88-C-0841 F/G 12/1




L A S S o o iabiling

EE

EEEE

FEEF

FEREEE R

.]gq

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

« .t

ALY VA CARHENL BRGNS E O HES 2N KN R DT RO OO




s iniai 1"

- - SP.d

DA el ey

sy

‘80 ‘-“u 5_1';'-'-.':"".('5" LA;;;! \(h{“‘ PR Ca o T o w e

MRC Teochio 0 “immary Report #2593

APPLICATIONS O NATURAL CONSTRAINTS
IN CRITICAL P)INT THEORY TO
PERIODIC SOLUTIONS OF

aD
<
A
:D NATURAL HAMILTONIAN SYSTEMS
am)
=i
=T

E. W. C. van Groesen

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53705

November 1933

(Reccived Scptember 22, 1983)

Approved for public release
(RN o

L--v‘ i— T N JI ~" Distribution unlimited

Sponsored by

‘. S. Army Research Office
P. O. Box 12211

Kesearch Triangle Park
North Carolina 27709

83 L& <~ véw

: "a% '.-.-.‘,>.'. T R )

-4!_-_. gt e e W NN




UNIVERSITY OF WISCONSIN ~ MADISON
MATHEMATICS RESEARCH CENTER

APPLICATIONS OF NATURAL CONSTRAINTS IN CRITICAL POINT THEORY
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ABSTRACT
This paper deals with periodic solutions of Hamiltonian systems of the
form -ﬁst'v'(x) with V a given function. Assuming V to be either a
convex or an even function, and prescribing the period, existence results are
obtained for the number of solutions in relation to the minimal period of
these solutions, assuming superquadratic growth at infinity only, or subqua-
dratic growth at infinity together with specific behaviour at the origin for
V. By introducing natural constraints, these results are obtained by applying

variational methods directly to the action functional.

AMS (MOS) Subject Classifications: 34C15, 34C25, 58E30.
Key Words: periodic solution, Hamiltonian system, variational methods,
natural constraints.
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2 SIGNIFICANCE AND EXPLANMATION N
&
. The system of equations =% = V'(x), with V a given potential energy -:

function, model the motion of a dynamical system. Prescribing the period X

’ T, the action functional associated with this system on the set of T-periodic :
functions is not immediately suited for application of known variational PR

a

methods to obtain periodic solutions. Assuming V ¢to be an even or a convex "

K1

function, it is shown in this paper that it is possible to apply these methods

z after introducing certain subsets (called natural constraints) which have the ,';
» o
g; property that critical points of the action functional restricted to these ﬁ::
subsets also provide T-periodic solutions. Using specific natural o

, oconstraintg, the existence of superharmonic solutions, i.e. solutions which o
s
= bave period 1T/2, 7/3,... , is also investigated. In the paper the case of ?:
B f.m
superquadratic growth at infinity, as well as the case that V is subgquadra-

. ) tic at infinity and satisfies conditions at the origin, are investigated. K2
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APPLICATIONS OF MATURAL CONSTRAINTS IN CRITICAL POINT THEORY
TO PERIODIC SOLUTIONS OF NATURAL HAMILTONIAN SYSTEMS

E. W. C. van Grooun'
1. Introduction and Results.
In this paper we shall consider the problem of finding periodic solutions
with a prescribed period T > 0 of the autonomous system of second order

equations

(1) x =V (x) , x(t)eR ,

where V @ C2(E',R) is a potential energy function, normalized such that
V(0) = 0. Equations (1) correspond to a Hamiltonian system with a "natural”
Hamiltonian (of the form kinetic plus potential energy) given by

H(x,p) = % pl2+vx) , (xp e x® ,
where, here and in the following, | | denotes the Bucledian norm in =»*
{occasionally we shall also write pz for Iplz). In the results to be
presented, some of the next conditions will be required. In the !omiation
ve let A, 1= (2x/)? ana j, tem

(vy) 11--upﬂ§1<%x1 .
Ix|+» x

V(x)>ll 2

Ix|*0 x

vix) _1_ 2 n -
.(Vs)‘ xz < 3 X1(l+‘l) for all xe R .

(V4) There exist numbers u > 2 and R > 0 such that

*
Mathematical Institute, Catholic University of NYmegen, The Netherlands.
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V'(x)ex > uV(x) for all x € B® for which Ix}] >R .

”
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The first result deals with subquadratic potentials, i.e. condition (V)
holds, which satisfy for some j @€ M condition (vz)j. Clark [1] for the case o

- that V 4is even, and Costa and Willem [2]) for the case that V is convex, i

. ocbtained the existence of at least j°n distinct T periodic solutions R
# ("distinct solutions® will mean, here and in the following, solutions that :
have distinct trajectories). See also Amann and Zehnder [3] for a
multiplicity result in case V 1is even and asymptotically linear at ‘

infinity. These results do not give any information about the minimal period ::,
i of these solutions. In that respect, Clarke and Ekeland (4] established the

existence of at least one solution with minimal period T for the case of

general Eamiltonian systems with convex Hamiltonians which satisfy conditions

| PSP,

like (V4) and (Vz)j. (Their method can be modified to be applicable to the

natural Eamiltonians we are considering here, but their results do not seem to

)

cover this case directly.) See also Ambrosetti and Mancini (5] for related

results. _'

In the formulation of the next theorem, and in the following, we use the ‘.‘-V

notation [a] for a > 0 to denote the integer part of a: :‘.:::

‘A

- (a] = max{x : x ewv (0}, k < a}. i

THEOREM 1. R

~

Suppose that V is even or strictly convex, and that V satisfies for 3

some j € W conditions (Vy) and (V3)4. Then we have: N~

(1) Por each k€N, 1< k € j, there exists at least one solution of ] ;

equation (1) with minimal period T/k. f?.

] :.\

!_\

(11) Equation (1) has at least j°n daistinct (non-constant) solutions of
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? If, in addition, V gsatisfies (V3)j. then we have furthermore:

g2 (114) BEquation (1) has at least 3j*n distinct (non-constant) solutions of

% . period T with minimal period not less than 7/4.

i‘% (iv) Tor each k &€ N, with [§/2) + 1 < k < j, there exist at least n

M. distinct solutions of equation (1) that have minimal period

«,7, precisely 7T/k.

’0_: The T-periodic solutions which have minimal period less than T, thus having

» B

period 7T/2, T/3,... , shall be called superharmonic solutions (compare these
with the subharmonic solutions considered e.g. by Rabinowits (6]). The other

,TS result deals with the case that V is superquadratic at infinity, i.e. V

*
satisfies (Vq ). In that case it is well-known that for arbitrary (large) A >
0, equation (2) has a periodic solution with period T and with L_-norm

larger than A (cf. Rabinowitz (7,8]).

We shall show, at least vhen V is even or convex, that there exists

) such a solution that has the additional property that its minimal period is

¥ arbitrary small.
THEOREM 2.
i Suppose that V is even or strictly convex, and that V satisfies

condition (v‘) .

_.. Then for any T > 0 there exist a number ko € N and a sequence
{x}, x €W, x > kj, of T-periodic non-constant solutions of equation (1) for

which lkuL +® a5 k+e and for vhich the minimal period, to be denoted
[_J

by t,, satisfies Tt_ <€ T/k.
k X

. All the results stated above will be obtained by applying variational
- methods directly to the action functional of which (1) is the Euler-Lagrange

equation, i.e.
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(2) oo =3 -] v,
wvhere, here and in the following, | denotes integration with respect to ¢t
over an interval of one period, to be taken to be the interval ([~7/2,T/2].

If E denotes the set of T-periodic functions, a direct treatment of ¥
on B is known to cause difficulties, mainly because E contains the set of
constant vectorfunctions (% X'). However, it will be shown that, by
restricting ¥ to suitable subsets of E, namely natural constraints, these
difficulties can be overcome and, in fact, more specific information about the
set of critical points is obtained.

To clarify the underlying idea of natural constraints, let, more
gin.rally, E De any set and ¢ € c'(x,n) a given functional on E. w;
dencte by S(¢,E) the set of critical points of ¢ on E.

Definition 1.

A subset T of E will be called a natural constraint for the couple

(¥,R) if:

S(e,E) c S(y,8) ,
i.e. any critical point of the functional ¢ restricted to the set E is
also a critical point of 9 on E.

Note that, since any critical point of ¥ on E that belongs to
E is also a critical point of ¥ on E, an equivalent definition is

S(9,E) = S(9,B) n E .

The notion of natural constraint is known in the literature. In a more
restricted sense, requiring at least S(¥,E) = S(#.E) it has been studied and
propagated most strongly by Berger (9,10,11,12,13,14]), but incidentally this
method turns up at several places (c.f. for instance Nehari [15], Coffmann

{16]), Hempel [17]), Ambrosetti and Mancini [(5,18]).
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To obtain more specific information about the solution set S(y,E) we
shall use natural constraints also in a more restricted senss. For the
applications we have in mind, this more restricted use can be formulated as
follows.

* Definition 2.

Awapping ® s E+ E c E will be called a natural embedding for the
couple (¥,E), and E defined by ¥ := ¢Z will be called a naturally &
embedded set for (9,B), if

(1) the functional ¥, defined by ¥ := %8 : E + R belongs to clz,m),
and

(11) for every x € S(§,E) it holds that &x e S(¢,E).

It is clear that a naturally embedded set ¥ is a natural constraint in the
sense of definition 1.

One of the reasons to consider natural constraints is that more specific
information can be obtained for the set S(9,E). In fact, merely the fact 4
that there are critical points that belong to a certain subset £ may provide
already specific characterizations or properties of these critical points.
Furthermore, and this is especially important from a "constructive" point of
- view, critical points which are "saddle points” for % on E may be minimal
points for ¢ when ¢ is restricted to some natural constraint. It must be
remarked, however, that the determination of useful natural constraints for a .:;":
given problem is not constructive, but requires some a-priori reflection on
potentially useful subsets of S(¥,E).

To return to the specific Hamiltonian problem under consideration, if ::E
V is an even function, we shall consider the action functional ¢ on the N

natural constraint E°® which consists of the 0dd T-periodic functions. Then
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B° n 2* = {0}). Note that S(¥,E°) c S(¥,E), but simple examples show that
these sets need not coincide. ([PFor even potentials one can consider instead
of E° an even more restricted set E C E* as a natural constraint. The
corresponding period solutions in E are called normal modes (c.f. (19,20]).]
In case the potential V is a convex function, one usually considers
instead of the functional ¥, the dual action functional (or variants), see
e.g. Fxeland [21], Clarke and Ekeland {[4], Ambrosetti and Mancini (5,18],
Costa and Willem [2]. We shall show that it is possible to deal directly with
the action functional (2), if ¥ 1is considered on the set i defined by
(3) Ei={xe€E: | V(x) = 0}
(c.f. Berger [12]). Then En g = {0}. we shall show that £ is a natural
constraint for (¥,E), and in this case S(t,;) £ S(¥,E). (Por non~convex
potentials V it could happen that S(§,E) is a real subset of S(t,;)). In
fact, we shall show that the constrained variational problem
(4) stat{9p(x) : x eE, | V'(x) = 0}
is, for strictly convex functions V, an explicit characterization of the
unconstrained variational problem
(3) stat{max{9(xty) : x €R'} : y e §}
where the set E is written as the direct sum of constant vectorfunctions,
®®, and functions with mean value zero, £. I particular, when "stat" is
replaced by "inf" in (4), and consequently in (5), which is meaningful if V
satisfies (Vy), (V,)4, the constrained minimization problem (4) is an explicit
formulation for the mini-max problem (5).
Remark 1, It is likely that (5), contrary to (4), gives for a larger

class of potentials than the convex ones the desired critical points, but this

has not been investigated in detail yet.
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Remark 2. For the problem of finding T-periodic solutions of more

general Hamiltonian systems, it is also possible to introduce a natural

constraint i the Hamiltonian is assumed to be (strictly) convex. In fact,
defining spaces E and £ as above for 2n-vector functions x, (4) is the
constrained canonical action principle for a system with Hamiltonian V {f
the functional ¢ is taken to be

¥ix) = | %m}a’: -] wx) ,

where J is the usual symplectic matrix J= (_: :) with I the identity

matrix in R,

Writing E for E* if V isevenand for E if V is convex, we

shall take as naturally embedded sets the sets 'ik c E, k €N, consisting of
k=th superharmonic functions of E, i.e. functions in E which have period
/k.

The advantage of using these natural constraints becomes clear from the
proof of the theorems. In fact, for Theorem 1, the 3} solutions referred to
in part (i) will be obtained as the minimizing elements of the functional ¢
on ik' 1<k € j. Exploiting invariance properties of the couple (t,'i).
the other solutions are obtained using Ljulto;nik-Schnirelunn theory. For
Theorem 2, for each ke K, k > ko, a non-trivial critical point of
¥ on ik will be obtained by using the Mountain Pass lLemma (Ambrosetti and
Rabinowitz (22}).

Remark 3. In the situation of theorem 2, with an additional
(monotonicity) condition on V, it is possible to obtain solutions which have

minimal period precisely T/k. Instead of applying the Mountain Pass Lemma,

these solutions are obtained as solutions of a specific minimization problem

\ )
X,
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which involves an additional natural constraint. See [20]) for the case of
normal modes.

Remark 4. The (regularity) assumptions on V may be weakened. In fact,
for the case that V is even, the proof of the results only uses V € cl.

1 functions V, the results

Por convex, not necessarily strictly convex, C
can be establighed by approximating V by strictly convex C2 functions (see
Berger (9, p. 338-339) for an example of such an approximating procedure).

Other applications of the use of natural constraints in critical point
theory, in particular to the problem of multiple solutions in semi-linear
boundary value problems on domains with rotation symmetry, shall be dealt with
in a forthcoming paper [23].

In Section 2 we shall present the proof of Theorems 1 and 2 for the case

that the potential V is an even function, whereas Section 3 deals with the

case of convex potentials.

I thank Paul H. Rabinowitz for suggestions for improvement of the

presentation of the results.
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2. Proof of Theorem 1 and 2 for even potentials.

In this section we consider the cagse that V is an even function. Llet
E Dbe the set of T-periodic functions:
E={xen (RK) : x is T-periocdic} ,

vhere 31(I,IP) is the usual Sobolev space of n-vector functions. E° will
denote the subset of odd T-periodic functions:

E*= {x@E : x is ocdd} .
Note that any x € E* satisfies x(0) = x(-T/2) = x(T/2) = 0. E* is a
Hilbert space with norm denoted by 1 I:

Ixt := ] ;¢2}1/2 for x e E* .
For k€ K, we define on E the mapping .k

(2.1) .k t E+E , ORx(t) 1= x(kt) ,

and introduce sets Ep as the image of E® under Okz

Bi 1= 'k B .

Then E§ = E°, and E} consists of all odd, periodic functions with period
T/k (superharmonic functions of E°).

The action functional ¢, given by (2), is well defined on E and
satisfies ¢ € c'(z,n) and ¢ e c‘(n‘,n). The restriction of ¥ to E

1-functional on E¢:

defines via *k 1= tok ac
(2.2) b =27 | ¥ - v .

To show that E* 1is a natural constraint for the couple (¥,E), observe
that any critical point x of ¢ on E® gatisfies for some even function
E(t) the equation

-x=V'(x) +E .
Taking the inner product of this equation with £ and integrating over
(~1/2,1/2) gives | E2 = 0 because x, and hence V'(x) and x are odd.

Thus £ 2 0, and x satisfies equation (2), i.e. x is a solution of the
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original problem. Thus S(¥,E°) c S{y,E) as required.
That ’k is a natural embedding follows from the observation that if

2; = V'(y).

y € E* ip a critical point of *k on E°, y satisfies -k
Hence, defining x(t) := Oky(t), x satisfies equation (2) and x e Ef, which
shows that ¢, is a natural embedding. Note that if y e S(¥),E®) 1is known
to have minimal period T, then &y € S(y,E°) has minimal period T/k.
Resuming these results we have

LEMMA 1.

If for some kX @ N, x € S(*k,E°), then &,x e S(y,E°) and Vp(x) =
O(Qkx). Moreover, if x @ E* has minimal period T, then ka e Ef has
minimal period T/k.

The proof of Theorem 1, part (i), is an immediate consequence of lemma 1
and the next lemma.

LEMMA 2.

Suppose that V satisfies (V,) and, for some j e N, (Vz)j. Then, for
any k@ N, 1<k € j, the minimization problem
(2.3) inf{, (x) : x e E°}
has at least one solution x,, and x, is nontrivial and has minimal
period T.
Proof.

Let us start to recall, for future reference, the Poincaré-Friedrichs
inequalities: with A, = (2n/T)?

(2.4) 02 50, J x? and (x| 4 < /T Wxt
C

valid for all functions x for which | x = 0, so certainly for all x e E°.
As a consequence of condition (V1) there exist constants a and M,

satisfying 0 < a < X, such that

(2.5) vix) <Y%alx|?2 + M for a1l x e R .
-10-
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N ;
. : Using this, together with (2.4), we have for the functional 'k’ (ken) -
= v 00 > 3 xZna? - 1 Jllz-m>l(x"°)||2-m :
3 (X 3 x 2 @ x 2 x1 x .
’f: ) Since a < k1, it follows that 01: is coercive on E°: tk(x) + ® ag 0
'x: Ixl + =, ;
- It is a standard result that ¥, is also continuous with respect to the -
?:1 weak convergence in E°. As a consequence, Weierstrass' theorem provides the R
™ i
‘ ‘: existence of a solution of the minimization problem (2.4), for any k € N. X
1.\.
LV, N
£ Remains to show that x;, is non trivial and has minimal period T for K
3 k€M 1<k<3 if condition (Vp)y is satisfied. To prove that x, ¥ 0 for &
23 .
"1 k € j, note that ¥, (0) = 0, vhereas we shall show that the minimum value of iy
R (2.3) is negative. 1In fact, as a consequence of (Vz)j, there exists numbers
‘;':a.j 8> x1 and Po > 0 such that i
:: (2.6) v x| >1/2 B-jzlxl2 for x e R, |x| < Py * f::
N
Hence, with (2.6) we have for x(t) = p lin/11 t: p <p, and k < 3:
% 1,202 _ 1,27 .2.1.2 2 3
X % (x) € 5 x“0xl® - = 83 ] X <3 3%\ -8) [ x" <0 . -
\ : To show that x, has minimal period T, suppose on the contrary that Xy .
. has minimal period T/m, for some m € N, m > 2. Define a function z by ‘
o b
‘\; z(t) = x, (t/m). Then z € E° and >
be, & -
1 x2 2 R
s Z) m— e S o Ix ‘-] vV . N
o ¥ ¢ 2" 2 X ] vix) .
2 As x is non-trivial, OIx. ! ¥ 0, and thus ¥ (2) < ¥ (x, ), contradicting o
5y 2
NS the fact that x, is a solution of the minimization problem (2.3). i
:.‘.'1 :-‘
buag This completes the proof. B
. R »
o For the proof of the other parts of theorem 1 we shall use Ljusternik- -]
)
: Schnirelmann theory. Therefore it is necessary that the Palais-Smale :
W X
- condition is satisfied. :
:: 1
£ =
o :
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£ LEMMA 3.

.“ S —

Suppose that V satisfies the condition (V4). Then, for each k e N,
A the functional ¥, on E° satisfies the P.S. condition, i.e. if {xn} is

any sequence in E®* such that (i) I¢k(xn)| is bounded and (ii) bp(x,) + 0

AT
TV 45

as n+* ®, then {x ]} contains a convergent subsequence.

* o

Y The proof of this result is standard; it is the same as the proof of

R o 7

lemma 3 in the next section if one puts ¢(y) = 0 and replaces £ by E°
in that proof.

Next observe that E®, being a linear space, and the functionals *k'

e
RETS

which are even since V is an even function, are invariant for the action of

the group 2, = {ia,-id)}, where id is the identity map in E°®. In the

;J application of the mini-max theory we shall use the genus as index theory (cf.
g; Krasnoselskii [24], Coffmann [16]). The genus of a symmetric, compact

o subset A c E*\{0} will be denoted by ind(A), and is defined as ind(A) =
f; me WU {0} if m is the least number for which there exists an odd,

%él continuous mapping A + R'\{0}, and ind(A) = ® if no such mapping exists.

If ¢ is any even functional on E°, satisfying the P.S. condition,
$(0) = 0, and a := inf{¢(x) : x € E*} is finite and negative, the results
of the Ljusternik=-Schnirelmann theory can be summarized as follows (cf. Clark
[25]):

The number of Z,-distinct critical points of ¢ on E° with values less

than or equal to b < 0, is not less than ind(¢-1([a,b])). where

‘4 0-1([l,b]) = {x @E®* ; a < ¢(x) < b} is the preimage of [a,b] under ¢.
L] As a consequence, if one can find some symmetric, compact set

(s I c E°\{0} with ind(f) = 2 € M, the number of distinct critical points of

¢ (with negative critical values) is not less than & if ¢(L) < 0.




---------------
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For the functionals under consideration we shall show that we can use one

of the following sets I: with appropriate, on k dependent, subscript £

and superscript 0. Por L €N and p > 0 the set z: is defined by

2
(2.7)!:: = {x= ] osint/T mt) 16 e for 1<m< gy Ixt =p} .
=1

Then :I.nd(tg) = fen for any p > 0.

LEMMA 4.

Suppose that V satisfies (V4) and (vz)j, and let ke N 1<k < 3.

& L0

Then the functional 'k has at least (j/kl°n E,-distinct critical points

on E°* whose critical values are negative.

Proof:

o

K e

.
.
vy

We shall show that for p sufficiently small, tk(t:) < 0 provided

5o

£ € {j/k]. The Ljusternik-Schnirelmann theory summarized above, then gives

LA Ay
N,

v

the result stated in thc' leoma.

)

It is readily seen that for x & 2: we have

Li i 5
;" o....-‘. "n & /. .

1.2 ,92 _1 .22 2
g k7] x" <32, [ x® .

Together with (2.6) this gives

o5~

b i ed s d

(2.8) 0k(x) <-;- ():22211 - sz) .| x2 for x e P, 0 ¢ Po ¢

which implies (because Z: is compact) that tk(!Z:) <0 for o < Py

¥

provided £ < [3/k]. [ |

Theorem 1, part (ii), follows immediately by taking k = 1 in lemma 4. }::f

R

According to lesma 1, to each set of critical points of the functional

0“, which have (not necessarily minimal) period T, there corresponds a set

of critical points of ¢ with (not necessarily minimal) period T/k.
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For the set of critical points obtained in this way, it is always

possible to find a lower bound for the minimal period. Indeed, any potential
that satisfies condition (Vy), satisfies condition “'3’: for some 2 €N

{large enough). The following lemma gives this lower bound and one of the

A

consequences for the problem under consideration.

LBS S.

comler o -
= irdes
s S

eI,

Suppose that V satisfies condition (V,), for some L € W. Then we
have:
(1) Any critical point of the functional ¥ on E®* which has negative

critical valus, has minimal period not less than T/%.

(i11) Por ke W, (2/2) + 1 < k € £, any critical point of the functional

GE . ¥, on E° which has negative critical value, has minimal period T.
; Proof:
S Because of condition (V,), we have for k & M:
29 00 > 2 6%1a? -1 a2 25 1 P-4 | X2, v x e
3 2 2" 2"
"% for which it follows that *k is non-negative on E®* for every k » f+1.
N Por k€N, let x €@ EB* be a critical point of 'k for which tk(x) <0,
i; and suppose that x has T/m as minimal period, for some m € WN. Define a
‘y'..’
:",'E'f function z by =z(t) := x(t/m). Then 2z € E®, z is a critical point of the
Y.

functional ’-k' and t-k(z) = vk(x). Since tk(x) < 0 it follows that
Seid
X mek must satisfy mek < L.
;:'M
f;a;; Taking k = 1 in this argument (thus 01 2 ¢), gives the result (i),

wvhereas if k > [L/2) + 1, ¢this inequality can only be satisfied for m = 1,

which proves part (ii) of the lemma. .

Now we are able to complete the proof of theorem 1. Part (iii) of

theorem 1 is an immediate consequence of Lemma 5 (i) with £ = j, and the

observation that Lesma 4 gives the existence of at least jen distinct
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oxritical po.uts with negative critical values. In the same way combining
lLesma 4 and Lemma 5 (i1i) gives the proof of part (iv) of Theorem 1. The proof
of Theorem 1 is therefore completed.

To prove theorem 2 we shall show that there exists a number k; € N such
that for each k € W with k > k;, the functional 'k has a non-trivial

critical point y, € E* and that 'Yk|t. + o a8 k+o
[ ]

Once the existence of a sequence (yk} with these properties has been
shown, the proof of theorem 2 follows immediately from the fact that Ef is
naturally embedded in BE°: defining x, := .kyk for k > kg, each x, is a

critical point of ¢ on E°, x, € Ep has minimal period not greater than

T/k and 'xkl!‘ - 'Yklln .
- ()

In fact we shall prove somevhat more than required. We shall prove that
for all € > 0 sufficiently small, the functional ¥° € c'(E°,R) defined by

(2.10) i) =3 ) 3 - v

has a non-trivial critical point x®, and that Ix‘lL + o ag €+ 0.
[_J

Taking a sequence € = 1/k + 0 as k + ®» gives the required result as a
special case.
PROPOSITION 1.

Suppose that the function V satisfies condition (V) and let ¥ be
defined by (2.10). Then there exists a number ¢, > 0 such that for each

€, with 0 <ce <e¢ the functional t‘ has on B® a non-trivial critical

ol
with the property that lx'ln +o ag ¢+ 0.

point x©

g3,

LR . | TR

" o
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‘ For the proof of the existence of a critical point we use the celebrated

Mountain Pass Lemma (Ambrosetti and Rabinowitz [22]). (Note that ¥° 1is :
Féé neither bounded from below nor from above on E®.) For the applicability of ;
3: this lesma the Palais-Smale condition has to be verified. a
K E— ;
%%3 Let the function V satisfy (V,). Then the functional ¥ on Ee E
3’5 satisfies the P.S.-condition. y
i The proof of this result is standard; it is the same as the proof of

e

f lemma ; in the next section if one puts ¢(y) = 0 and replaces £ by E® in

’ that proof.

S Next, define a number c® as:

;;E c® i= inf max te(x) .

?if where "max" is taken over the points of a continuous path in E® connecting two

o points x;, x, € E°, and “inf" is taken over all the paths with this

:;% property. Then the mountain pass lemma states that ce is a critical value

% of ¥ 1if

bﬁié e max(ve(xo), te(x1)) .

j‘;i We shall take x; = 0, and for x4 any point in E® with sufficiently large
_i‘ norm, say Ix1l > 1, for which te(x1) < te(O) = 0. The existence of

A points x4 with this property is a consequence of condition (V). Indeed,

1$3 this condition implies that there exist constants a > 0 and A € R such

that
(2.11) vix| > alx|" = A for al1 x e " .

Hence, for any y €@ E\{0}, and o > 0 we have the estimate

+(oy) < -o"(ezoj Iyl¥ - % o2 ¥ J §r2) + ehar .

Since u > 2, it follows that ¢(oy) + -» as 0 + ». Having chosen x,

-16-
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such that lx1l > 1, 0‘(8‘) € 0, it remains to show that c‘ > 0. But this
3 is easy: for x @ so : = {(xeg® : Ixl = p}, 4t follows with (2.4) that
t‘(x) > % g:»2 - czl'll(p). for x @ sp ’

where MN(p) = max{V(x) : x e ln, Ix| < /T p}. PFor givem p, say p = 1, it

follows that
oy 1 - l -
? 9 (x) >3 =) > for 1=,
. A
)| for all € > 0 satisfying ¢ < € =3 (TM(1)) » Hence, for all e,
i 0<e < €y o %, and c® is a critical value by the mountain pass lesma.
,' :' For ¢ < €o’ let x°* be any "mountain pass point”, i.e. a critical
; point of " wvith 9%(x®) = c®. as ¢® > 0, x* 1s nontrivial. T show that
x® satisfies lx‘lb +® ag ¢+ 0, take the L,-innerproduct of the
vk «»
h3 function x° with the equation satisfied by x°:
(s
- - -
€2 _ 2 o4, €\ €

A partial integration yields Ix 1° = ¢ | V'(x )ex , and consequently
) ¥ ix) = e? | (% v (x®)ex® - vx®)) .
i
S
£ since ¥°(x%) >V, for all ¢ > 0, it follows that
o J (% Vi aS)ex® - v(x®)) > (26)2 v @ as €00 .
,’é Prom this result one concludes that |x® ':. is unbounded as ¢ + 0. This
3 -
completes the proof of the proposition. [ ]
%
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3. Froof of theorem 1! and 2 for convex potentials.

In this section we consider the case that V is a strictly convex
function and V @ c2(EP,R). Without loss of generality we may, and shall,
assume that V attains its minimum value at the origin and that this value is
sero (as before):

V(0) = 0 < V(x) for all xe R* .
For the space I dJdefined in section 2, we shall use the decomposition E = R°
o i, vhere £ is given by

Ea(yex:[y=0} .
£ 1s a Hilbert space with the norm 1 1 as in section 2: fyl = { 52}1’& .
For the norm in E we shall take
x|t = {I;l2 + lylz}% for x -;*y, x e, yetk .

In the space E we consider the subset ;8
(3.1) Ei={xex: ) Vix) =0} .
We shall investigate this set in detail below, but note already that
o = {0} and that E isa regular manifold in E, i.e. for every
x € ;. the linear mapping

Ew | V"(x)f maps E onto R° .
The mapping .k' k €N, given by (2.1), defines a set ;k t= .k;' As is
easily verified, ik c i.

The action functional ¥ belongs to c'(;,n) and defines via the
definition & 1= ¥§_ functionals ¥ e c'(2.R), explicitly given by (2.2).

To show that ; is a natural constraint for the couple (9,E), observe
that any critical point x of ¥ on ; satisfies for some multiplier
e " the equation

- %=V'(x) + VV(x)o ,

together with periodicity conditions x(-T/2) = x(1/2), :.c(-'r/2) = a':('r/z).
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A ) Taking the R'-innerproduct of this equation with the vector o, and inte-

i grating over (-T/2,7/2) gives | V"(x)oec = 0. Since V"(x(t)) is for

,»f . every t € (-T/2,T/2) a positive definite matrix, it follows that ¢ = 0.

J,t Thus x satisfies equation (2), i.e. S(*,;) c S(¥.E) as required.

.“’“ In the same way as in section 2, it is readily verified that .k is a

(’ natural embedding. Consequently we have:

':‘;g Lemma 1 3 Lemma 1, with E° replaced by z.

s In order to be able to prove theorems 1 and 2 for the convex case along
3\? the same lines as in section 2, we need more information about the set ;-

;, The following proposition gives a chaucto:i:_ation of this set ;. and may be
s of interest in itself.

*ﬂt: Proposition 2.

‘f'; | Let V e C2(B,R) be strictly convex, V(0) = 0 €< V(x) on 3, and let

E Dbe defined by (3.1). Then we have:
(1) B 4s an unbounded subset of E and E is closed vwith respect to weak

convergence in B.

(11) There exists a single-valued mapping ¢ : %+ 2 such that

k2, (3.2) = aep) £,
:f wvhere 14 is the identity mapping. 1In fact, for any y € i. ¢(y) is .

unigquely determined as the solution of the minimization problem
(3.3) ain{] V(x+y) 1 x @ 2} .

'“.f{‘:é?; ; ; ’

A3

Purthermore, ¢ is differentiable and continuous with respect to weak

ks

convergence in .

L3

;;'5 (111) Let 8, dencte the sphers of radius § in E, and By the ball of
‘I radius p in !. Then there exists a monotonically increasing

function & : R, * R with a(0) = 0, a(p) * ® as p ¢ ®, such that

(» nlp) ni.(p,-l for all p> 0 ,

v " T
.. :":{u:"f
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equivalently: for any x = x+ y e ;, xe l.n, y € £ it holds:
(3.4) Hixtll > 10 > aChiIxiil) .
(iv) The following inequalities hold:

(3.5) TV(N(y)) € | Viytd(y)) € | V(y) for all ye E .

Remarks .

1. If the functional V is quadratic, then ¢(y) = 0 for all y e i, i.e.
; - 3. More genarally, if the functional V is even, then E°® < i.
where B®* is the space of 0dd periodic functions introduced in section 2;
in that case, £ # z in general.

2. The remarks made in the introduction concerning the formulations (4) and
(5) are an immediate consequence of this proposition, part (ii).

3. Having defined the mapping ¢ as in the proposition, the problem of
£inding critical points of ¥ on x can also be formulated as finding
critical points of the functional ;: defined by

(3.6) W) = | 3 v L yek
on the set £, i.e. S(0,B) 2 S(¥, £). (Note that % e c'(E,m). we
shall use this observation in the proof of the Palais-Smale condition in
the following.

Proof of proposition 2:

Part (i) of the proposition is an immediate consegquence of part (ii). To
prove (i1), let y @ £ be fixed, and consider the function
vy ? 2+ ' vy(;) :-]V(;fy) .

It is a simple matter to verify that v, € c?(x®,R) and that it is strictly

convex. This function attains its minimum value at a unique point, to be

denoted by ¢(y). The stationarity condition v;(o(y)) = 0 is precisely

] Viy*4(y)) = 0, i.e. y + ély) € E. This shows (1a+4) £ c E.
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If x 4is any point in ;-, then x-;ry, vith x € R and yei
uniquely determined. Since | V'(x+y) = 0, x is a (and consequently the
_nM.qu) critical point of the function Vg i.6. x = ¢(y). This shows
£ c (16+0) £, and together with the other inclusion this gives (3.2).

Wow consider the function F € C‘(ln x §, ) defined by

P(X,y) t= | V'(xty) .
Since V 1is strictly convex, the derivative of F with respect to x is
non-singular: D_ P(x,y) 1 Ew J V"(;*y)t is a non-singular mapping from
2 onto . '1;. implicit function theorem can thus be applied, and gives
that, for any ;0 +yy© ;, there exists a differentiable mapping, to be
denoted by ¢, from a neighbourhcod U of Yo irto R such that .
:(y) +y e; for all yeU. As é(y) is the unique point in ® such that
y + #(y) € E, it follows that & = §, which shows that ¢ is
diflmnthbh.. To show that ¢ is continuous with respect to weak
convergence in i, let Y, * Y weakly in . since & is compactly
embedded in & := {y e co(R,B®) : ¥y is 'l.'-pcri;dic, ] vy = 0}, it follows
that |7n'7|c° +0 as n+ -,

Another application of the implicit function theorem to the function
P, now considered as a mapping F e c' (2 x & B®) gives the required
result: O(yn) + ${y) as n+ e,

The essential contents of part (iii) is that for given x # 0, the set
of functions y € £ such that x + ye ; is bounded away from zero. To
state this precisely, consider the function b : R _+ R, defined by

b(r) 1= 1nf{lyl2 tryef, ¢y) =z}, 220 .
As ¢ 1is continuous with respect to wu!: convergence in i, this minimiza-
tion problem makes sense, and in fact has a solution (by Weierstrass' theorem

for coercive, weakly lower semicontinuous functionals on weakly closed
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:‘::% sets). It follows that b(r) > 0 for r > 0: if b(r) were zero for r >
'5‘ 0, then ¢(0) = r > 0, contrary to the fact that V'(x) =0 on R iff
‘ X = 0. Furthermore, as |y|2 has no critical points in E\{0}, it follows
» that b is also given by b(r) = :ln!.‘{lyl2 tye@ i, ¢(y) > r}, and that b
i'* is a continuous, monotonically increasing function with b(r) + ® as r + e, '
Ji Hence the function b has a monotonically increasing inverse c¢ := b1
éq R_* R, satisfying c(0) = 0 and c(R) +® ag R+ e, (In fact, ¢ {is
,j explicitly given by the inverse extremum formulation

& c(R) = suplé(y) :y e £, Iy12 < R}

"' ct. (26).) Thus c(lylz) > ¢(y) for all ye i, and hence

¥ iy 112 = 1% + ¢2iy) < 2am?)

1
where f is the function given by f£(R) := (R + cZ(R))/z « With ¢, the

function £ is monotonically increasing, and (3.4) follows with the

function a defined as the square root of the inverse function of f.

Finally, to prove (iv), recall the well-known inequality for convex

B

2 Y
B.5 functions: -
2 N
"i V(u) - V(v) > V'(v) * (u-v) for all u, ve R . X
Taking u = y+¢(y), v = ¢(y), and u =y, v = y+¢(y) in this inequality, an

';5-. integration over (-T/2,T/2) gives the result (3.5). This completes the

)

proof of proposition 2. [ |
D

Having established the foregoing proposition, from now on the proof of

theorems 1 and 2 for the case under consics .ation resembles the proof given in

section 2 in many ways. Therefore we shall restrict ourselves in the

-,-’, following to the essentials.
2 - N
3% Lesma 2 = Lemma 2, with E°* replaced by E.
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Proof:

The most difficult part of the proof is to show that the functionals *k
are coercive on ;. (Note that *k is certainly not coercive on E.)
Writing x = ¢(y), we can use one of the inequalities of (3.5) to obtain

vk(?ay)-%kzjiz-Jva) >-;-kzj§2-1vm .

Now using the inequality (2.5) for | V(y) (instead of for J V(;4y)) gives
the existence of constants 8 > 0 and u € R, such that ¢k(y+0(y)) >
Blyl2 - 4. The coercivity of *k on ; then follows because of (3.4):
$(x)+= as x ek [lIxlll+=

As a consequence of proposition 2, (i), Weierstrass' theorem for
functionals on weakly closed sets, can be applied to provide the existence of
a solution of the minimization problem

1n£{tk(x) :xeE .

That the solutions of this problem are non-trivial and have minimal period
T for 1<k <3j, follows as in the proof of lemma 2. u

Lemma 3, with E® replaced by E.

!

In view of proposition 2 and remark 3 following it, the proof amounts to
showing that the functional ;k satisfies the Palais-Smale condition on ﬁ,
where ;k is defined by

;k(y) = | %52 -] Viyrety)), yek .
Let {yh} c £ be any sequence for which 1%, (v,)| 1is uniformly bounded and
;i(yh) + 0 as n + =, Since *k is coercive on ;, ;k is coercive én £
and hence, {yn} is uniformly bounded in £ and thus has a subsequence,
again to be denoted by Yo which converges weakly in £ ana strongly in

C* tosome y € . rFrom proposition 2 it follows that ¢(yn) + ¢(y), and

thus | V(y +4(y )) » | V(y+#(y)). Since Vi(y ) > 0 implies
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< t;(yn) - ;i(y), B >+ 0 as n * ®, one readily obtains lyn-yl + 0,
which has to be proved. 8

In order to apply mini-max theory, observe that the set i and the
tunctioﬁals 'k are invariant for the action of the group G = s1 X Zy,
where s! is the group provided by time-translations:

Sgx(t) = x(t+6), for 6O e (-1/2,T/2] ,
and 3, = {id4, inv}, with id the identity and inv time~inversion:
inv x(t) 1= x(-t) .

The index of a compact G-invariant set A c E\{0} will again be denoted by
ind(A), and is defined as (cf. (27, [28), [29]) ind(A) = m e W U {0} if
m is the least number for which there exists an equivariant, continuous.
mapping h : A + @™\{0}, and ind(A) = ® 4if no such mapping exists.

(The mapping h : A + €®|{0} is equivariant if

h(sex) = Reh(x), h(inv x) = ~h(x) ,

vwhere RO : @+ is definei for =z f_(z1,zz,...,zm) ec® as

) 18 10 T - 2N
Rez (e Zy, € 2400008 qm) with © T 6 .)

As a consequence of the Ljusternik-Schnirelmann theory for invariant
functionals which are bounded from below on invariant sets, the number of (G -)
distinct critical points of wk on E is not less than £ if some
compact, invariant set I © i\{O} can be found for which ind(I) = £ and
vk(!:) < 0.

Appropriate sets I for this case will be (compare with (2.7))

Eg := {y+d(y) : y 72} ’
where ¢ is the mapping introduced in proposition 2, and E: is a subset

of £ defined as E: = ri(+) u 22(-) with
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X 5 =p 2

‘::..1 2;(1) = {y = m& em[sin(v’r; mt +0) % cos(/l—1 mt + 0)] :
o ce (-n,x], L e’ for 1<m< 4 iyl = p} .

a

;": Because of the definition of ¢, 2: c E, 2: is compact (proposition 2, (ii))

and does not contain the zero-element for p > 0 (proposition 2, (iii)). For

any P >0, ind(i:) = fen,

Lemma 4 = Lemma 4, with E° replaced by i, and 2, by G.

N: Proof: Almost the same as the proof of lemma 4; instead of (2.8) we have for
{'i‘ ye E: (writing x = é(y)):
R R R U W L I LI L Tr
‘\‘ with the same conclusions. ||
\ Lenma 5 = Lemma 5, with E° replaced by E.
f Proof: As in the proof of lemma E, first use one of the inequalities of (3.5)
;ﬁ: : before using the inequality implied by (V3)j. Inequality (2.9) becomes,

: .
:r.l: writing x = d(y):
Z)"' o (o) > 3% | ¥ - ) vy A ,02 - ey )2,
j with the same conclusions. [ |
Ez": As in section 2, the proof of theorem 1 can easily be completed.
sy Por the result of theorem 2 we shall consider, as in section 2, the more
general problem for the functional Oec defined by (2.10), on the set i-
N
:;S Then ’e e C1(;B,R), and Theorem 2 follows as a special case of the following
proposition.
_;g PROPOSITION 1= Proposition 1, with E®* replaced by E.
; For the proof of this proposition we have to verify

lemma 6 = Lemma 6, with E°® replaced by E.
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Proof: As in the proof of Lemma ; we shall show that the functional
¥ ec'(2,m) defined by

) ) 25 - vy L yek
satisfies the P.S. condition. We shall show that any sequence {yn} c g for
which there exists M > 0 such that I;e(yn)l <M and ;c'(yn) + 0 as
n+e, is uniformly bounded in Z. The rest of the proof is then the same as

in the proof of lemma 3. Writing x, = y, + X w;th x, = Q(yn), from

L
0‘ (yn) + 0 it follows that for arbitrary small § > 0, for n sufficiently

large i< ;e'(yn), Y, >} < 6lynl. Since | V'(xn) = 0, this implies

1) 32 -1 vix) o x 1< Sy 0 .
Because of condition (V4) there exists a constant A(<0) such that
%-v'(x) * Xx>V(x) +A for all x e ', and hence

-:‘-j }:>}V(xn)+n-6lynl .
Subtracting this result from % J ;ﬁ < | V(x ) + M, there results

(%- %) lynlz <CM-A+8lyT .
Since ¥ > 2 it follows that thl is uniformly bounded and the proof can be
completed. 8
Proof of proposition ;-

For the application of the Mountain Pass lLemma we first show the
existence of an element x4 with the properties:
(3.7) x4 = ;1 +y, e ;, ;1 e IP, vy € £, fy,0 > 1 and Ot(x1) <0 .
To that end, take any y € £, y # 0, and consider for ¢ > 0, X, = ;; + oy,
wvhere ;o = ¢(0y) (¢ defined in proposition 2). Then Xy e ; and with
(2.11) it follows
tt(;c + oy) <%oz J ;2 - ac? J I;c + oyl¥ + ¢ .

S8ince ¥ satisfies u > 2, a special case of Jensen's inequality, viz

g2 c e+ 19"? , with c =122 |

-26-

. . o T L e T Te T St ERE S LI »

FaT v ot e

“

B I T S
A T T T T T N

» . - - Ve - - - LY
A S R A Bt
TN AL SN .‘\._‘-\- SRS

. r -'--‘.u -

a

X5 AV 7 e S aite ety be e v it e AR AR NS AL s ORI IAAA S DAY

LA A A )

L

v

“y

N



Q.'A"-“' 4 3 LAl RS S NS AR A A AR A et S et Rt At S Tt b it R ) B A T AR U
s

¥

- can be used to obtain the estimate

J1Eg oyl o g ik o2 1l My 2

‘,,»4 _ and one easily concludes 0‘ (;c +0y) - a3 g+ e, from which the

?&; existence of elements x, with the desired properties (3.7) follows.

e Next, to show c© >0, let y @ 8, == (ve#: tyl =p}, and consider
f x=y + ¢(y), ¢ defined in proposition 2. With (3.4) it follows that

&, - -
; Hixll] € a 1(0). where a~! is the inverse of the function a. As

min(1,T) * lxlzo < HixI11?, we £ina, taking o = 1 and writing

1 (1) }

b= {3 unn-r)

iy + 0y > 2 - Pommy > 2

y for all yes

o *
Y
for all € > 0 satisfying ¢ < &, = (™M(D)}

As a consequence, on any continuous path connecting 0 and a point x4

".‘.
3
55

.

with the properties (3.7), the functional ¥¢ attains values not less than

;’:ﬁg 11! € <c.. Hence c‘>l for all ¢, 0 < ¢ < ¢,.
‘:: 4 0 4 0

;i‘;‘v Along the same lines as in the proof of proposition 1, one shows that the
e WY
mountain pass points x° satisty Ix‘lL +® ag ¢ * 0. This completes the

‘5;':‘ 'y -
::‘?:’ proof of proposition 1. .
Sy
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