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NEURON LEARNING TO NETWORK ORGANIZATION*

LLeon N COOPER
Depariment of Phvsics and Center for Neural Science. Brown University, Providence.
R1 02912, USA

Introduction

Although we now rank Maxwell among the greatest of 19th century
physicists. he wrote that he was adding little to the work Faraday had
already done.

1 have endeavored to make it plain that 1 am not attempting to
establish any physical theory of a science in which I have not made a
single experiment worthy of the name. and that the limit of my design is
to show how by a strict application of the ideas and methods of Faraday
to the motion of an imaginary fluid, evervthing relating to that motion
maybe distinctly represented, and thence to deduce the theory of
attractions of electric and magnetic bodies, and of the conduction of
electric currents.” (Maxwell. 1856)

Maodesty perhaps, but not entirely unwarranted: for in spite of his
enormous talents. the import of his inventions become apparent in the
light of later developments with a clarity lha(lfor all of his genius, could
have not have been visible to him.

Maxwell's historic achievement was to write down the equations of
clectricity and magnetism in such a way as to incorporate the experimen-
tal discoveries of Coulomb, Ampére and Faraday and to realize that these
cquations were inconsistent. To make them consistent he was forced to
profoundly alter their character, giving rise to a new class of solutions:

*The work on which this article s based was supported in part by the U S. Office of Naval
Rescarch, under contract #NO013-x1-§00136
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propagating waves whose speed (as he calculated using experimental data
on clectric and magnetic susceptibilities) corresponded very closely to the
speed of light.

“The velocity of transverse undulations in our hypothetical medium,
calculated from the electromagnetic experiments of M.M. Kohlrausch
and Wceber, agrees so exactly with the velocity of light calculated from
the optical experiments of M. Figgau. that W can scarcely avoid the
inference that light consists in the transverse undulations of the same
medium which is the cause of electric and magnetic phenomena.”
(Maxwell, 1862.)

And in a letter to William Thomson (Lord Kelvin):

I made out the equations in the country before I had any suspicion of
the nearness between the two values of the velocity of propagation of
magnetic effects and that of light. so that 1 think I have reason to believe ‘
that the magnetic and luminiferous media are identical.” (Maxwell, :
1861)

He thus produced a unified field theory of electricity. magnetism and
light—the first of its kind. But even this monumental result was just the
beginning. For he opened the path to the twentieth century: the Michel- j
son-Morﬁ experiment, relativity, the primacy of field theory and sym-
metry considerations, Lorentz and, most recently. gauge invariance as
general symmetries underlying ail physical theories.

This emerges in retrospect. And Maxwell would no doubt be ¢nor-
mously pleased by the great success of the enterprise he began. But he
might remind us that his new inventions were preceded by a long
exploration of known territory. For most of his working lifetime he
applied his physical and mathematical intuition to write down a set of
equations that would summarize what was already known.
When this could be clearly stated, existing contra-
dictions became apparent-and the new assumptions to
remove them relatively quickly made.

Today. I would like to discuss some work that my colleagues and 1 have
been doing recently on the organization of the brain. Although this is
somewhat removed from what physicists usually think about, there is a
habit of analysis that, 1 believe, a physicist can profitably bring to complex
problems in biology. and perhaps in other areas. Also it is not impossible
that a precise understanding of such a complex system could produce
surprises—anot a new fundamental force or field. but rather a new
understanding of the behavior of large interacting systems that could
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illuminate the systems of equations that concern us in other domains (as
has happened previously in the past generation with the problems of
superconductivity, superfluidity and phase transitions).

First, let me attempt a very quick description of the elements of this
problem. In Fig. 1. we see a view of the human brain. It is an incredibly
complex piece of machinery involving many individual elements—the
most relevant of which are known as neurons or nerve cells. It is believed
that information processing, memory storage. logical thinking. etc.. occurs
among the neurons. Neocortex (new cortex)—generally thought to be the
thinking part of the brain—is on the surface: this sheet of neurons if
spread out is rather large—perhaps several square meters. To fit it into a
reasonably sized skull. it had to be folded: typical folds on the surface of
the cortex are seen in the Figure. In Fig. 2 a portion of the neural
network (in visual cortex) is shown. We see here suggested some of the
complexity of the cellular circuitry.

The new part of the brain. cortex. the special biological gift of higher
mammals evolved very rapidly. in only a few million vears. In contrast,
other parts,such as the brainstem that we share with reptiles and that are

Fig. I. Side view of the human brain, from
DeArmend, Fusco and Dewey Structure
of the Brain. !
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Fig. 2. A portion of the neural network in visual cortex,
from R. Cajal, Histologie du Systeme
Nerveux.
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mostly hard-wired and perform a great variety of control functions took
hundreds of millions of years to develop. This is a very suggestive fact.

The neurons are a marvellous piece of machinery. Like most cells, they
share basic structures to keep themselves alive, but have become
extremely specialized. Their primary function is to transmit (and probably
also to store) information. The fundamental device utilized by these cells

! is an excitable membrdne. The cell is capable of altering normal ion
concentrations in its interior. The proportions of ions such as Na*, Ca’",
K* and so on in squid blood are almost those in sea water,

which by the way, suggests strongly where the blood comes
from (Table 1).

Inside a neuron there is an excess of K* and too little Na*. This is due
to a metabolic pump which slowly pumps sodium out and potassium in.
(Fig. 3) The pump can be thought of. for pracucal purposes. as slowly
charging a battery. A channel is left open for K* ions. Duc to the
concentration difference. the K ions try to get outside. But since they
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Table 1
Concentrations of wons mside and  ovivde freshhy
wobited anons of squid

Concentration (mM)

Ton Axoplasm Blood  Scawater
Potassium 4 20 il
Sodium S 40 Jet
Chlonde J0-150 Se S0
Calcium 03t 10 10

*The precise value of iomzed intraceliular calcium
not known. Data from Hodgkin (1964) and Baker.
Hodgkin. and Ridgway (1971), from

Kuffler and Nicholls, from Neuron
to Brain,

carry positive charge, they build up an electric
potential difference across the membrane as
they move along the concentration gradient. This
potential difference balances the concentration difference when there is a
potential difference of about 70 miilivolts across the membrane.
Efcctrical or chemtical disturbances on some region of the membrane
open the Na® channel: there is a rush of ions locally in that region; the
negative resting potential. of about —70 millivolts. miy jump 10 a positive
potential (about +55 millivolts): this is known as the action potential.
Eventually equilibrium is re-established in the original region. But the
potential disturbance has spread a bit: this opens the Na® channel a bit
down the line: then one has another action potential. So the action
potential moves down the membrane. Depending on how much
depolarization, in a wav that | do not have time to go into. one can
convert a signal of a given intensity into a given number of action

CIT IN
EXCESS OF No* QUTSIDE

EQUILIBRIUM
* SODIUM
PUMP

=70x1073y

EXCESS OF K+ INSIDE

Fig. 3 The neuron membrane.
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potentials per sccond. Thus the information is frequency modulated and
can be transmitted with essentially no loss over large distances. It is quite
remarkable. considering the materials available. that information can be
transmitted with such accuracy.

The transmission of information from one neuron to another is perhaps
even more remarkable. An axon of one neuron will terminate. in general,
near the dendrite of another in a structure known as a synaptic junction
(Fig. 4). Action potentials arriving from the axon initiate release of
transmitter substances that diffuse across the synaptic cleft. Upon arrival
at the post-synaptic membrane. these transmitters produce changes in
membrane conductivity, initiating a flow of ions that alter the dentrite
potential. The dendrite potentials propagate to the cell body where they
are integrated and determine the firing rate of the
post-synaptic cell. Thus the information flow con-
tinues.

It is now commonly thought that the synaptic junction may be a means
to store information (memory, for example) as well as to transmit it from
neuron to neuron. Large networks of ncurons connected to other neurons
via moditiable synaptic junctions are what we have used to try to
construct entities that are capable of holding memory and performing
mental acts. :

Although the central nervous system contains something of the order of
10-100 billion neurons, it is somewhat depressing to learn that these cells
are so specialized that they do not reproduce. Thus when the embrvo is
given its store of neurons. these are the only ones we will ever have. But ceils

L:AXON ,PRE-—SYNAPTIC MEMBRANE

__—POST-SYNAPTIC
) MEMBRANE

RECEPTGCRS

SYNAPTIC |
VESICLES ¢

]
MITOCHONDRIAN’

DENDRITE

Fig. 4. A wwnaptic junction
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die. We lose an estimated hundred thousand neurons each day so that,at
the end ot a long lifetime. we have lost a very substantial number of
neurons. Any theory that purports to explain the functioning of the central
nervous sysiem must explain how it continues to function in spite of the
loss of individual neurons.

This is one of the facts that makes the sometime emploved analogies
between the brain and current computers reallv very bad. Modern com-
puters perform large numbers of sequential operations very rapidly and
very accurately. It is a technological miracle that so many operations can
be performed with so few mistakes. The central nervous system works
slowly with cycle times that cannot be shorter than a few milliseconds. 1t
is not very accurate: neurons may not fire if they are tired or depressed or
just too lazy—in addition. they die.

It may be that current computers can do some of the things that we can
do. However. most of the things a computer can do. we do not do very
well. We are very poor at arithmetic and sequential logical operations:
this is what current computers do very well. We are very good at
recognizing things and getting a sense of what is going on. For this
computers are very bad. So. if computers can mimic human beings by
doing some of things we do. it is very likely that the same thing is being
done in a rather different way with rather different hardware.

Although this is a very complex problem. in a certain sense there is
much that is known. A set of coupled non-linear differential equations.
including time delays. can be written down that in effect summarizes
evervthing that is known about the transmission of electrical signals along
excitable membranes and from axon to dendrite in a large coupled and
reentrant network of neurons. Such systems can be stationary or can
evolve in time by various learning algorithms. Obviously such a set of
equations with no simplification is extremely complex and beyond the
capacity of current ana!ysis or numerical techniques. The essential point is
to make the appropriate approximations and to clearly illuminate the
paths connecting assumptions and consequences. Various approaches
such as those of Amari (1974), Wilson and Cowan (1973),

Edelman (1981), Edelman and Reeke (1982) and
Grossberg (1982).

In our work we emphasize the transfer of information between neuron
sets to neuron sets, we propose that there is much parallel processing in
the central nervous system and - ‘1 contrast with machine memory,
which is at present local (an ¢ «v tored in a specific place) and
addressable by locality (requiring some cquivalent of indices and files).
our memory is distributed and addressable by content or by association.
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In addition there need be no clear separation between memory and

'logic', which is a result of association and an out-come
of the nature of the memory itself.

Such distributed memories are more like a hologram than a photograph.
An individual synaptic junction holds superimposed information
concerning many events. In order to obtain a single event. one has to
gather information from many junctions. In a system like this. loss of
individual neurons decreases the signal to noise ratio but does not losc
individual items of information. Therefore, if it is overbuilt in the first
place. one can retain a complete memorv with an acceptable signal to
noise ratio even with loss of neurons.

These ideas as described in more detail in what follows. Although these
initial attempts are clearly oversimplifications. our hope is to capture
some of the important qualitative features of a very complex

j phenomenon in a piece of structure that is clear enough so that we can
sayv what follows from what. an explicit enough so that we can make
contact with experiment as soon as possible.

1. Theoretical background

1.1 Distributed memorv

;
{ That most intriguing aspect  of memory: its persistence in spite of
continual loss of individual neurons over the lifetime of the individual, led
' us carly to the concept of distributed rather than local memory storage.
Distnibuted storage possesses in a very natural way the property of
,* relative invulnerability, to the loss of individual storage units. We have
been analyzing a class of ncural models for the acquisition and storage of
. distributed momories that displav. on a primitive level. features such as
. recognition, association and generalization, and which suggest some of

the mental behavior associated with animal memory and learning (Cooper
(1973): Anderson and Cooper (1978)). The mechanisms we employ seem
to be plausible biologically and are not inconsistent with known nceuro-
physiology. In addition the networks that results seem to be a reasonable
outcome of evolutionary development under the pressure of survival,
Some of our ideas are related to or are generalizations of carlier concepts
such as perceptrons or similar models (Block, (1962); Block. Knight and
Rosenblatt (1962); Minsky and Papert (1969)). In addition holographic or
non-local memories have been explored previously (Longuet-Higgins
(19680). Longuet-Higgins (1968h)).
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Although the concept of distributed mappings and memory storage is
less familiar than those of local storage, distributed mappings and their
properties have been discussed (Anderson (1970). (1972): Cooper (1973):
Kohonen (1972). (1977)) and probably have already been observed. An
example is superior colliculus. In spite of the fact that the retinal afferents
that project to the colliculus form a very precise, fine grained map, cells
that are just a few millimeters below the very precise cells, respond to
stimuli over a wide area of visual space. Thus we have the apparently
paradoxical situation—that secems to be true of other parts of the brain as
well—that great precision of response is generated by systems composed
of cells that progressively show less and less selectivity as the motor
output of the system is approached (Mcllwain (1976)).

We believe that much of the learning and resulting organization of the
central nervous system occurs due to modification of the efficacy or
strength of at least some of the synaptic junctions between neurons, thus
altering the relation between pre-synaptic and post-svnaptic potentials. It
is known that small but coherent modifications of large numbers of
synaptic junctions can result in distributed memories. Whether and how
such synaptic modification occurs, what precise forms it takes. and what
the physiological and/or anatomical bases of this modification are. rank
among the most interesting questions in this area.

There is direct experimental evidence that at least some modification of
synaptic strength occurs in invertebrates (Kandel (1976)) and there are
various indications that synaptic modification is a rather general
phenomenon (sce, for example. (Levy and Steward (1979)). In recent years
many conjectures have been made concerning the kind of modification that
might occur at synaptic,junctions. Kandel and coworkers have shown that
modification of the synapse between a sensory and motor neuron of the
marine Mollusk Aplysia is the basis of habituation and sensitization. The
synaptic modification they have observed can be dependent onlv on
pre-synaptic information. In our work. we have had to assume that synaptic
modification is a function of more general variables: local. quasi-local. and
global. The presence of quasi-local variables leads to forms of synaptic
modification (denoted as Hebbian) that depend on information not im-
mediately available at the synaptic site (e.g., cell firing rates).

These hypotheses have been developed in some detail (Nass and
Cooper (1975). Cooper. Liberman and Oja (1979): Bienenstock. Cooper
and Munro (1982)) and applied to experimental results that have been
obtained in visual cortex by many workers over the last gencration as well
as to higher level network properties. As will be explained more fully, we
have been able to obtam agreement with classical visual cortex experi-
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mental results and in addition have suggested new experiments. These
theoretical results have been obtained with a minimum of anatomical
details and have been primarily concerned with single neurons. It is very
likelv., however. thar interactions between cortical neurons play an im-
portant role in cortical function as well. perhaps in selectivity of in-
dividual cortical cells (Creutzfeldt et al. (1974): Sillito (1975)). In addition
individual svnapses are generally cither inhibitory or excitatory and not
both as some theoretical work has assumed for simplicity. One objective
of our current rescarch is to extend our results, taking into account a
more realistic anatomy so that a more detailed comparison between
theory and experiment can be made.

The theoretical ideas mentioned above have also led to several sug-
gestions for new experiments in visual cortex. In these experiments we
attempt to verify  predictions concerning  the  connection  between
specificity and ocular dominance of cortical cells under various rearing
conditions. In addition. we investigate connections between  ocular
dominance and the variety of visual input allowed to the open eve. We
expect the results to give us further information about the detaled
mechanism of synaptic modification among cortical cells as well as to
enable us to determine various system parameters.

For a distributed memory it is the simultaneous or near simultancous
activities of many different neurons (the result of external or internal
stimuli) that is of interest. Thus a large spatially distributed pattern of
neuron discharges. cach of which might not be verv far from spontancous
activity, could contain important, if hard to detect. information. Let us
consider the behavior of an idealized neurial network (that might be
regarded as a model component of a nervous svstem) tollustrate some of
the important features of distributed mappings.

Consider N neurons 1.2 ... N, cach of which has some spontancous
firing rate r,. (This need not be the same for all of the neurons nor need 1t
be constant in time.) We can then detine an N-tuple whose components
are the difference between the actual tiring rate 7. of the yth neuron and
the spontancous firing rate r,

f,=r - ra. (.

By constructing two such banks of neurons connected to one another
(or even by the use of a single bank which feeds signals back to nself) we
arfive at a simphificd model as dlustrated m Fre. 5

The actual svnaptic connections between one neuron and another are

10.
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Fig. 5. Anwdeal distnibuted mappane. Each of the N input acurons m F s connected 1o cach
of the N output ncurons i G by a single deal junction (Only the connections 1o 1 are
drawn.)

generally complex and redundant: we have idealized the network by
replacing this multiplicity of svnapses between axons and dendrites by a
single ideal junction which summarizes logically the etfect of all of the
synaptic contacts between the incoming axon branches from neuron § in
the F bank and the dendrites of the outgoing neuron i in the G bank (Fig. 6.).
Each of the N incoming neurons, in F. is connected to cach of the N
outgoing neurons, in G, by a single ideal junction.

Although the firing rate of a neuron depends in o complex and
nonlinear fashion on the presvnaptic potentials. there is usually a reason-
ably well defined linear region. Some very interesting network properties
are already evidentin this tinear region. We therefore focus our attention,
for the moment. on the region above threshold and below saturation for
which the firing rate of neuron i in G g, is mapped from the firing rates
of all of the neurons, £, in F by:

o
T W (1.2)
|
o
.//
7
<y

i

G BANK F BANK

e 6 A rdeal ssiaphic junchion

11.
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In doing this we are regarding as important average firing rates. and time
averages of the instantancous signals in a neuron (or perhaps a small
population of neurons). We are further using the known integrative
properties of neurons,

We mav then regard [A,] (the synaptic strengths of the N7 ideal
junctions) as a matrix or a mapping which takes us from a vector in the F
space to one in the G space. This maps the neural activities f = (f,.
fr...fV) in the F ospace into the neural activities g = (g, ... gy) in the G
space and can be written in the compact form

£ =Af. (1.3)

We propose that it is in moditiable mappings of the type A that human
memory is stored. Presently machine memory is local (an event stored in
a specific place) and addressable by locality (requiring some equivalent of
indices and files). In contrast. human memory is likely to be distributed
and addressable by content or by association. In addition for such a
memory there need be no clear separation between memory and ‘logic’.

It is convenient to write the mapping., A, in the basis of vectors the
svstem has experienced:

A=T g f (14

e

Here g* and f* are output and input patterns of neural activity while the
¢, are coetlicients reflecting the degree of connection between various
inputs and outputs. The symbol. X represents the “outer” product between
the input and output vectors. Although (1.4) is a well known mathemati-
cal form. its mc;min'g as a mapping among neurons deserves some
discussion. The ijth element of A gives the strength of the ideal junction
between the incoming neuron j in the F bank and the outgoing neuron i
in the (G bank (Fig. 6.).

Thus. tf only £ is non-zero, g, the firing rate of the ith output neuron is

¢ A (1.5)

Since

AL =N et (1.0)

1

12.
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the ijth junction strength is composed ot @ sum of the entire experience of
the svstem as reflected in firing rates of the neurons connected to this
junction. Each experience or association (). however. is stored over the
entire array of N x N junctions. This is the essential meaning of a
distributed memory: Each cvent is stored over a large portion of the
system, while at any particular local point many events are superimposed.

We show below that the non-local mapping A can serve in a highly
precise fashion as a memory that is content addressable and in which
logic” is a result of association and an outcome of the nature of the
memory itself.

1.2. Long and short-term memory

The N7 junctions. A,. contain the content of the distributed memory. It
could be that a particular junction strength, A, is composed of several
different components with different lifetimes. e.g..

A= AN AR+ Al (1.7)

where the individual AY’ might be thought of as corresponding to
different physiological or anatomical effects (e.g.. changes in numbers of
presynaptic vesicles. changes in numbers of postsynaptic receptors,
changes in Ca*® levels and/or availability. anatomical changes such as
might occur in growth or shrinkage of spines). We then have the pos-
sibility that the actual memory content (even in the absence of additional
learning) will vary with time. For a two-component svstem we might have

AL = Ao + Al (p) (1.8)

where A represents lh:' memory at some time. £ while A{™® and Ayt
have long and short lifetimes. Thus in time A" will decay. leaving
A = Aleen Whether what is in the short-term memory component is
transferred to the long-term component might be determined by some
global signal—depending on the interest of the information contained in
the short-term component. The existence of such global signals as well as
possible anatomical or physiological correlates of short or long-term
memory are the subject of some of our current rescarch.

From this point of view the site of long and short-term memory can be
essentially identical. At any given time there is a single memory. The

distinction between long and short-term memory is contained in the
lifetime of the ditfferent components of A,

13.
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1.3. Recognition and recollection

The tfundamental problem posed by a distributed memory is the ad-
dress and accuracy of recall of the stored patterns. Consider first the
‘diagonal” portion of A,

(A dugonat = A =2, Cug” X f*. (1.9)

An arbitrary event. ¢, in the external world mapped by the sensory
apparatus into the pattern of neural activity, f. will generate the response
in G

g =Af.

(The pattern. £, might also be the result of some other internal pattern of
neural activity.) If we equate recognition with the strength of this res-
ponse. say the inner product (g. g). then the mapping A will distinguish
between those events it contains. the 7, v =1.2.... K and other events
separated from these.

The work “separated” in the above context requires definition. Supposc
the vectors f* are thought to be independent of each other, and to satisfy
the requirements that, on the average

N N
Sri=0. S(r=1. (L1

Any two such vectors have components which are random with respect to
one another so that a new vector, f, presented in the F bank as above
gives a noise hike responst in the G bank since on the average (f*. f) is
small. The presentation of a vector seen previously. fA however. gives the
response in the G bank

At = cag + nowse . (1.1

It can be shown that if the number of imprinted cvents, K. is small
compared to the dimensionality, N, the signal-to-noise ratios are reason-
able.

If we define separated events as those which map into orthogonal
vectors, then clearly a recognition matrix composed of K orthogonal

veetors 150 [
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LY
A= g X f (1.12)

will distinguish between those vectors contained and all vectors separated
from (perpendicular to) these. Further, the response of the system to a
vector previously recorded is unique and completely accurate

AP = gt (1.13)

In this special situation. the distributed memory is as precise as a localized
memory.

In addition. this type of memory has the interesting property of
recalling an entire associated vector g* cven if only part of f* is presen-
ted. Let

fr=n+n. (1.13)
If only part of f*. say f1 is presented. we obtain

Aft = ca(fi. g + noise . (1.15)

The result is the entire response to the full £ with a reduced coetlicient
plus noise.

1.4, Association
If we now take the point of view that presentation of the cvent ¢
which generates the vector f* is recollected if

A= 8"+ noise . (1.16)

Then the off-diagonal terms

A= g (1.17)

"

may be interpreted as contatnig associations between events initially
separated from one another.

For such terms the presentation of event ¢ will generate not only g*
{which is equivalent to the recollection of ¢#) but also. and perhaps more
weaklv, ¢ which should result with the presentation of ¢#. Thus, for

15.
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QY -— ~ fV - eV
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Fig. 7. Anideal association.
example. if g# will initiate some response. originally a response to ¢, The

presentation of e* when c,, # 0 will also initiate this response.
We can thus divide the association matrix A into two parts:

A= cur* <= +aof, (1.18)

where
R = (A)dagonal = 2, Cuk’ X f* (1.19)
o = (f‘ )nﬂdmmmal = E ('“.'\k"' x ,‘r . (12”)

The c,, are then the direct recollection and association cocthcients. Some
of the consequences of the properties discussed in the last two sections
are the subject of some of our current and continuing research and are
further discussed in Subsection 1.5, 1.6, and 1.7.

1.5. Network modification. learning

The properties described above require coherence among many synap-
tic junctions. We therefore ask: According to what rule and by what
means do neurons modify themselves to form a matrix of junctions with
the properties of memory? A major cffort of our research is to elucidate
this question,

Such a madification rule can be cast in the form of stochastic or
deterministic differential equations dependent on variables that we clas-
sify as local, quasi-local and global.

A, - B At ). (1.2n

DitTerent such rules lead 1o various types of memories. In the Tollowing
sections several rules rules tor plasticity will be examined. The recollec-




L.N. COOPER / NEURON LEARNING TO NFTWORK ORGANISATION

tion-association memory (1.18) described above is obtained from the
following simple bilinear modification rule:

sA, . (1.22)

This 8A, is proportional to the product of the ditferences between the
actual and the spontaneous firing rates in the pre- and post-synaptic
neurons i and j. (This is one realization of Hebb’s form of synaptic
modification (Hebb (1949)).) The addition of such changes to A for al}
associations g* X f* results finally in a mapping with the properties
discussed in the previous sections.

Synaptic modification dependent on inputs alone. of the type already
directly observed in Aplysia (Kandel and Tauce (1965); Castellucci and
Kandel (1974)) is sufficient to construct a simple memorv—one that
distinguishes what has been seen from what has not. but does not easily
separate one input from another. To construct a mapping of the form
above. however, requires synaptic moditication dependent on information
that exists at ditfferent places on the neuron membrane, what we call two
(or higher) point modification.

In order that this take place. information must be communicated from.
for example. the axon hillock to the synaptic junction to be moditied. This
implies the existence of a means of internal communication of in-
formation within a ncuron—in the above example in a direction opposite
to the flow of electrical signals (Cooper (1973)). The junction . for
example, must have information of the firing rate f, (which is locally
available) as well as the firing rate g, which is somewhat removed (Fig. 8).

One possibility could pe that the integrated electrical signals from the

——= INFORMATION FLOW
- = = SIGNAL FLOW

Fig 8 Two point modihicabion

17.
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dendrites produce a chemical or clectneal response in the cell body which
controls the spiking rate of the axon and at the same time communicates
{by backward spiking. for example) to the dendrite ends the information
of the integrated slow potential. Another possibility s that dendntic
shafts act as somewhat independent units <o that the local integrated
dendritic potentials interacting with the potentals incoming to the in-
dividual spines combine to produce changes in spine shape and resistivity.
Such changes might be observable 1in anatomical studies and are the
subject of one of our current research projects.

One might guess that once the physiological mechanism for such
communication was available. different types of two (or higher) point
modification evolved in various ways. It is tempting to conjecture that a
liberating evolutionary step was just the development of this means of
internal communication that. coupled with the ability of synapses to
modify. created the possibility for a new organization principle.

There is a variety of means bv which the coethicient A, might be
modified. given that the necessary information is available a1 the isth
junction. Among these might be growth of additional or change in
electrical properties of dendrite spines. addition of new synaptic junc-
tions, activation of svnaptic junctions previously inactive. changes in
membrane resistivity and/or changes in the amount of transmitter or
receptor in a synapse. Although some structural changes have been
observed. there is little evidence vet to choose among the possibilities
mentioned above. This is the subject of much current rescarch,

1.6. Puassive modification
To make the modificanon
SA - gr (1.23)

by any of the mechanisms suggested above, the system must have the
signal distribution f* in its F bank and ¢* in its G bank. It is ecasv to
obtain f* since this is mapped from esther an external event or is some
internal pattern. But to get ¢# in the ¢ bank is more diflicult since this in
effect is what the system is trving to learn.

In what we denote as active learning. the system is presented with some
f*. searches for a response. and is given some mdication of when it s
coming closer. When by some procedure or another at finds the “right’
response, say g« it is rewarded’ and responds to the reward by printing

into A the information:

18,
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S8A, = ngeft. (1.24)

(The information is available at the time of the reward since at that time
the system is mapping f*. responding g« and thus has just the desired
spiking frequencies in the F and G banks of neurons.) Active learning
probably describes a type of learning in which a system response to an
input is matched against an expected or desired response and judged
correct or incorrect.

However, there is a type of learning that does not seem from visible
external indications to require this type of a search procedure. It is the
type of learning in which, as far as can be seen. an animal is placed in an
environment and seems to learn to recognize and to recollect in a far
more passive manner.

To arrive at an algorithm which produces what we call passive lecarning,
we utilize a distinction between forming an internal representation of
events in the external world as opposed to producing a response to these
events that is matched against what is expected or desired in the external
world.

The simple but important idea is that the internal electrical activity that
in one mind signals the presence of an external event is not necessarily (or
likely 10 be) the same electrical activity that signals the presence of that
same event for another mind. There is nothing that requires that the same
external event be mapped into the same neural patterns by ditferent
animals. The event ¢* which for one animal 1s mapped into the signal
distributions f* and g*. in another animal is mapped into f* and g"*. What is
required for eventual agreement between animals in their description of
the external world is not that electrical signals mapped be identical but
rather that the relation of the signals to each other and to events in the
external world be the same (Fig. 9.).

If we now allow the output of a cell to be determined he the input to
that cell and the already existing synaptic junction strengths, as well as by
possible noise-like fluctuations (making no prior requirement on what the
output should be). we arrive at a mathematical formulation of what we
call passive modification (Cooper (1973)):

\

SAaf, N A (1.25)

—
A

It has been shown in the above reference that with a simple form of

passive: modification o svstem penerates its own response to incoming

19.
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Fig 9 Representations i two different svatems of the same external fabnc ot events. The
two representations are not wdentical, but they cach stand 10 a one-to-one relation to the
external fabnie and to cach other

patterns in such a way as to construct distributed mappings that can
function as memorics capable of recognition and association. To a imited
extent these mappings can be regarded as internal representations of what
has arrived from the outside world. Tt has further been shown (Nass and
Cooper (1975) that a form of passive modification can result in the
formation of feature detectors or threshold response units which fearn to
respond to repeated patterns even in the absence of any initial bias. Such
units can serve to perform some nonlinear sepirations,

More detailed discussion of the consequences of these moditication
procedures and the properties of some of the mappigs that resalt s
contained in the references cited above. The application of these wdeas to

visual cortical cells s discussed in Section 2.

20.
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1.7, Featre abstraction

Some networks of neurons must have the ability to extract meaningful
information from a broad range of mput environments. In the case of
sensory input to cortex, for example. the system’s range s internally
constrained by the response characteristics of the sensory neurons and
externally by the nature of the simulus environment. This stimulus
environment depends a great deal upon the nature of the creature’s
surroundings. Precise statements regarding aspects of environmental
structure relevant to mathematical models are given in the next section.

Consider the recognition-association memory (1.18) described above. In
actual expenence. the events 1o which the system is exposed are not in
general highly separated nor are they independent in a statistical sense.
There is no reason, therefore. to expect that all vectors, f*, printed into A
according to the modification rule (1.25) would be orthogonal or even
very far from one another. Rather it seems likely that often large
numbers of these vectors would lie close to one another. Under these
circumstances, a distributed memory might be “confused’ in the sense that
it will respond to new events as if they were old. if the new event is close
to an old one. It will ‘recognize” and "associate” events never. in fact, seen
or assoctated before.

The memory will tend to categorize stimuli on the basis of the past
history of the system. For example, suppose a number of vectors in the
memory are of the form

fr=f+n (1.20)

where n* varies randomly: f° will eventually be recognmized more strongly
than any particular f* actually presented. This. of course. is reminiscent of
psvchological properties called “generalization® or c“abstraction”. From
such a point of view. $encralization grows from the Joss of detail of
individual instances, a trade-off that seems characteristic of distributed
swsems,

We have here an explicit realization of feature abstraction. This
genceralizing quality might be described as the result of o built-in directive
for inductive logic. The associative memory by its nature takes the step

et fento fen.. f (L.27

which one perhaps attempts to deseribe e language as passing from

particulars: cat'. cat’s cat’ - to general: cat.
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How fast this step is taken depends on the parameters of the system.
By altering these parameters, it is possible to construct mappings which
vary from those which retain all particulars to which they are exposed. to
those which lose the particulars and retamn only common clements-—the
central vector of any class.

In addition to ‘errors” of recogmition, the associative memory also
makes “errors’ of association. If, for example. all (or many) of the vectors
of the class {7}, defined as a class of vectors not very separated from one
another, associate some particular g7 so that the mapping contains terms
of the form

A
St L Edf). (1.28)
with ¢, =0 over much of v = 1.2, ... K. then the new event e*°! which

maps into A" also in the class {2} will not only be recognized. the inner
product (Af*1 2K ") being large. but will also associate g¥, yf*! =
cg? + -+ cas strongly as any of the vectors 1L Y explicitly contamed in
(1.28).

If errors of recognition lead to the process deseribed in language as
going from particulars to the general. errors of association might be
described as going from particulars 10 a universal: cat! meows. cat
meows .y all cats meow. )

Whatever etliciacy this inductive process has will depend on the order
of the world in which the animal svstem finds itself. If the world is
properly ordereé. an animal system that “jumps to conclusions’ in the
sense above may be better able to adapt and react to the hazards of its
environment and thus survive.

By a sequence of mappings of the form above (or by feeding the output
of A back to itself) one obtainy a fabric of events and connections that is
rich as well as suggestive. One casilv sees the possibility of a flow of
clectrical activity influenced both by internal distributed mappings and
the external input. This How is governed not only by direct association
coctheients ¢, (which can be explicitly learned) but also by indirect
associations due to the overlapping of the mapped events. One can
imagine situations ansing in which direct access to an event, or a class of
events, has been lost while the existence of this event or class of events in
A influences the Tow of efectrical activity

One problem in making the wdentitications suggested above s that such
systems tend o form excessinvely laree all-encompassing classes. But
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means have been devised to limit the extent of class formaton In fact
such mappings can be made to separate classes as well as to unite them
(Kohonen  (1977). Cooper, Liberman and  Oja (1979),  (CLO).
Bienenstock. Cooper and Munro (19821, (BOM)).

Another problem s a direct consequence of the assumption of the
lincanty of the svstem. Any stete s generally a superposition of varnious
vectors. Thus one has to find a means by which events—or the entities
into which they are mapped—are distinguished from one another.

There are various possibilitics: neurons are so non-linear that it is not at
all difticult to imagine non-lincar or threshold devices that would separate
one vector from another. Such separation processes comphiment general-
ization processes in that they bring out the ditferences in an input
environment while generalizing cells tune to the component most common
to the constituent stimuli. But the occurrence of a vector in a distributed
memory i a set of signals over a large number of neurons cach of which
is far from threshold. A basic problem, therefore, is how 1o assaciate the
threshold of a single cell or a group of cells with such a distributed signal.
One way this might come about has been shown by Nass and Cooper
(1975). Another possibility is the stochastic process recently discussed by
Hoptield (1982).

In additton to the appearance of “pontitical” cells or groups of cells,
there will be a certain separation of mapped signaly due to actual
locahization of the arcas in which these signals occur. For exmaple. optical
and auditory signals are subjected to much processing before thev actu-
allv meet in cortex. It is possible to imagine that identification of optical
or auditory signals (as optical or auditory) occurs tirst from where they
appear and their immediate cluster associations. Connections between
an optical and an audmory event might occur as suggested in Fig, 10
Although the svstems described above are relatively primitive. they

[T =

Fae 100 N model opticat-anditony sastem
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suggest varnous pavehological properties and are used v our rescarch to
construct models of some aspects of behavior and language learning.

2. Application to visual cortex: Comparison of theory with experiment

20 Swmmary of related visual cortex experimental data

The discussion above leads to a central issue: what is the principle ot
local organization that. acting in a large network, can produce the
observed complex behavior of higher mental processes. There is no need
o assume  that such  a mechanism—believed to involve  svnapue
modification—operates in exactly the same manner i all portions of the
nervous svstem or in all animals. However, one would hope that certain
fundamental similanities exist so that a detaled analysis of the properties
of this mechanism in one preparation would lead to some conclusions that
are generally applicable. We are interested i visual cortex because the
vast amount of experimental work done in this area of the brin-—
particulariy area 17 of cat and monkev——strongh andicate that one s
observing a process of svnaptic modification dependent of the information
locally and globailv available to the cortical celis.

Experimental work of the last generation, beginning with the pathbreak-
ing work of Hubel and Wiesel (1959, 1962). has shown that there exists cells
in visual cortex (areas 17, 18, and 19) of the adult cat that respond in a precise
and highly tuned fashion to external patterns, in particular bars or edges of
given onentation and moving in a given direction. Much further work
(Blakemore and Cooper (1970): Blakemore and Mitchell (1973); Hirsch and
Spinelli (1971); Petugrew and Freeman (1973)) has been taken to indicate
that the number and response characteristics of such cortical cells can be
maodified. Tt has been observed in particular (Imbert and Buisseret (1975):
Blakemore and Van Sluvters (1975). Buisseret and Imbert (1976): and
Fregnac and Imbert (1977, 1978)), that the relative number of cortical cells
that are highly specific in their response to visual patterns varies in a very
striking wav with the visual experience of the ammal durmy the critical
penod.

Most Kittens tirst open their eves at the end of the first week after arth
It 1s not casy 1o assess whether or not orientation selective cells exist at
that time in striate cortex: few cells are visually responsive, and the
response’s mann characteristics are generally sluggishness” and faugatal-
iV, However,its quite generally agreed that as soon as cortical eclis are
rehabhy visuallyv stmulated (e at 2 weeks), some are onentation selec-

24,
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tve. whatever the previous visual expernience of the ammal (cf. Hubel and
Wiese! (1963 Blukemore and Van Slusters (1975 Buisseret and Imbert
(1970, Fregnac and Imbert (1978),
Onentation selectvity develops and extends to all visual cells i area 17
i the ammal s reared, and behaves freelv, inoa normal visual environ-
ment (NR): complete sspecthcation” and normal binoculanty (about 80,
of responsive eells)y are reached at about 6 weeks of age (Fregnace and
Tmbert (1978 However, af the ammal s reared in total darkness from
birth to the age of 6 weeks (DRY none or few onentation selective cells
are then recorded (from 0 1o 1370 depending on the authors and the
clussthicattion critenia); however. the distribution of ocular dommance
seems unatfected (Blakemore and Mitchell (1973); Imbert and Buisseret
(1975). Blakemore and Van Sluvters (1975); Buisseret and Imbert (1976):
k Leventhal and bhrseh (1980); Fregnae and Imbert (1978). In amimals I
whose evehds bave been sutured at birth, and which are thus binocularly
deprived ot pattern viston (BD) o somewhat higher proportion (from 12
to 3070 of the visuallv exatable cells are sull onientation selective at o
weeks tand even bevond 24 months of age) and the proportion of
binocular cells s less than normal (Wiese! and Hubel (1903 Blakemore
and Vian Sluvters (197350 Kratz and Spear (19761 Feventhal and Hirseh
(1977). Watkins, ¢t al., (1978)).
Imbert and Buisseret have cliassitied cortical cells that respond to visual
p- stimuh into three groups-—aspecitic. immature. and specite. They, Frep-
‘ nac and Imbert have measured the relative proportuons of these groups
depending on the visual oxperience of the ammal. The distribution of the

difterent cell tvpes i three age groups is shown m el 11

Fxanunation of these results, which were obtamed from the o of
TS0 cells, shows that cells having some of the highly specific responce
] properties of adult visual cortical neurons, especially concerning oricn-
tatton selectivity are present i the carhiest stages of post-natal develop-
ment independent of visual expenence (Fregnac and Inbert (1977, T978)).

However, visual expenience between 17 and 70 davs s entical i deter-

. mintme the evolutton of these cells. Anmals reared normally showed a

markced ancrease o the number of speanic cells as compared  wath

aspecitie. (The period between 17 and 28 davsas uswadly saflicient to reach
# the normal adult level of speaticity) The reverse s true for ammals
d reared mothe dark s A statistical anadvas of this evolution, performed by
b Fregnae (1978) shows clearly the sdnkme dependence of the ratio of

sharpiv timed o broadhv tuned cells dependime on the experntence of the

animal
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In addition. as has been shown by Imbert and Buisseret (1975). Buis-
seret and Imbert (1976) and Buisseret et al. (1978) as little as six hours of
normal visual experience at about 42 dave of age can alter an a striking
fushion the ratio of specitic or immature to aspecttic eells (Fig. 1.2)). That
such a short visual expenience can change the tuning ratios so markedly is
clear evidence of the great plastioty of these cortical cells at the height of
the entical period.

OF all visual deprivation paradigms. putting one eve in a competitive
advantage over the other has probably the most striking consequences. If
monocular hid-suture (MDY s performed during i enitical” period (ranging
from about 3 weeks to about 12 weeks), there s a rapid loss of bino-
culanity to the profit of the open eve (Wiesel and Hubel (1963, 1963)). At
this stage. opening the closed eve and closing the experienced one may
result i a complete reversal of ocular dominance (Blakemore and Van
Sluvters (19740, A disruption of binoculanty that does not favor one of
the eves mav be obtammed. for example. by provoking an artificial
strabismus (Hubel and Wiesel (1963)) or by an alternating monocular
occluston, which gives both eves an cqual amount of visual stimulanon
(Blakemore (19763 In what follows, we call this uncorrelated rearning
(U'R).

These results seem 1o us to provide direct evidence for the moditiabihy
of the response of single cells e the cortex o o higher mammal according

toats visual expenence Depending on whether or not patterned visual




L.N. COOPER / NEURON LEARNING TO NETWORK ORGANISATION

11 v
100%

S S,

A =

o et
0% 21 50 36 187 |
Fig. 12, Distnbution an percentage of the three 1ypes of visval corcal umts (area 17)
recorded after 6 hours of visual exposure for d-week-old dark-reared kittens. Columns: 1, i
dark-rearcd Kittens: 1V, normally reared httens Dunng 8 hours of exposure. conditions .
were: an 11 and 111 freelv moving: in 11, 12 hours 1n the dark followed the 6 hours of
exposure. Numbers of visual cells recorded are given under each column. Specific cells |
(cross-hatched) are activated by onented stimuly within a sharp angle (< 6l°). Immature cells
(diagonal stnpes) are activated by onented stimul within a larger angle (<150°). Nonspecific

cells (open) are activated by nononented stimuli moving 1n any direction. A statistical analysis

reveals no sigmificant ditference in the percentage of immature and specific units between

columns H1 and 1V. Therefore it may be that for a 6-week-old dark-reared kitten, a 6-hour
exposure to visual input followed by 12 hours in the dark is sutficient to produce a distribution of

cortical cells similar to that of normally reared amimals. (From Buisseret et al. (1978).)

information is part of the animal’'s experience. the specificity of the
response of cortical neurons varies widely. Specificity increases with
normal patterned experience. Deprived of normal patterned information
(dark-reared or lid-sutured at birth, for example) specificity decreases.
Further, even a short exposure to patterned information after six weeks
of dark-rearing can reverse the loss of specificity and produce an almost
normal distribution of cells.

We do not claim and it is not necessary that all neurons in visual cortex
be so modifiable. Nor is it necessarv that modifiable neurons are especi-
ally important in producing the architecture of visual cortex. It is our !
hope that the general form of modifiability we require to construct '
distnibuted mappings manifests itself for at least some cells of visual
cortex that are accessible to experiment. We thus make the conservative :
assumption that biological mechanisms, once established. will manifest
themselves in more or less similar forms in ditferent regions. If this is the
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case. modifiable individual neurons in visual cortex can provide evidence
for such modification more generally.
2.2, Moadification of cortical synapses: global and local variables

To apply the general theoretical ideas of the previous section to visual
cortex, we introduce the following notation. Consider a cortical cell as
shown in Fig. 13:

m, (1)

g, (1)
m,(t)
- d,(1)
. |
. 4 R i
m, (1)
cin) - —. ¢, (1)
myft) I
g~ dy(1) [

Fig. 13. A model neuron which processes the input d(f) according to the synaptic weights
m (1) to yicld the response c(t).

Replacing equations (1.1) and (1.2) we write

c()= E m(1)d,(1). Q.

/

where c (1) is the output at time ¢+, m,(¢) is the efficacy of the jth synapse at
time f, d,(t) is the jtif component of the input at time t (the firing
frequency of the jth presynaptic neuron) and T, denotes summation over
J. i.e.. over all presynaptic neurons. We can then write:

m(t)y= (m(1), ma(t). ... .mn(1)).

d(®) = (di(D). dy(1). . ... du(D)), (2

c(t)=m(1)-d(1).

m(t) and d(1) are real-valued vectors, of the same dimension, N, i.e.. the

28.
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number of ideal synapses onto the neuron, and c¢(t) is the inner product

(or *dot product’) of m(t) and d(r). The vector of synaptic efficacies at

time £ m(1). is called the state of the neuron at time . (Note that (1) as

well as all components of d(1) represent firing frequencies that are

measured from the level of average spontanecous activity; thus they might
p take negative as well as positive values: m, (1) is dimensionless.)

We can now formulate the question: What is the local principle of
organization, by asking what is the change in time of m,(¢) (the jth
synapse onto the cortical cell, receiving inputs d,(¢)) and on what variables
does this depend.

The various factors that influence synaptic modification may be divided
broadly into two classes—those dependent on global and those dependent i
on local information. Prcsumably, global information in the form of i
chemical or electrical signalling influences most (or all) modifiable junc-
tions of a given type in a given arca in the same way. Evidence for the
existence of global factors that affect development may. for instance, be
found in Kasamatsu and Pettigrew (1976, 1979), Singer (1979. 1980) and
P Buisseret et al. (1978), Baer and Daniels (1983) and
Bear et al. (1983). On the other hand, local information
available at each modifiable svnapse can influence each i
junction in a different manner. :
_ An early proposal as to how local information could affect synaptic
3 modification was made by Hebb (1949). His, now classical, principle was
suggested as a possible neurophysiological basis for operant conditioning:
“when an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
py change takes place in one or both cells such that A's efficiency. as one of
B the cells firing B. is increased.” Thus the increase of the synaptic strength

connecting A to B is dependent upon the correlated firing of A and B.

Such a correlation principle has inspired the work of many theoreticians
& ' on various topics related to learning, associative memory, pattern recog-
; nition, organization of neural mappings (retinotopic projections) and
development of selectivity of cortical neurons.

It is fairly clear that in order to actually use Hebb's principle one must
state conditions for synaptic decrease as specific as those for synaptic
! increase: if synapses are allowed only to increasc. all synapses will

eventually saturate: no information will be stored and no selectivity will
develop (see for example Seinowski, (1977a.b)). What is required is thus a
9 complementary statement to Hebb's principle giving conditions for
synaptic decrease. Such a statement is given in what follows.
For a general form of synaptic modification, we write:

Dlgcea )
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m=F(d,...m: d,...¢..c.:X...Y...Z). (2.3)

where the first set of variables d, .. . m, are what we call local. the second
set of variables d, ... ¢ what we call quasi-local, while the third set what
we call global. Local variables such as d,...m, are those directly at the
synaptic site. Thus any information would be directly available. Quasi-
local vaniables are those such as d, . . . ¢. ¢&. These are physically connected
to the synaptic site by the cell itself. However, in order that the in-
formation they contain be available, some means of internal cellular
communication must be assumed. Note that we include among these such
variables as ¢ (the averaged activity of the cell over time). Global
variables are called X ... Y. . Z

In work done in the past few years we have explored a form of synaptic
modification that can be written as follows. Referring to the jth synaptic
junction:

n, = ¢(c. €)d, — em,. 294

Note that as in passive modification, the output of a cell is determined by
the input and the already existing synaptic strengths as well as by
noise-like fluctuations. The precise form of ¢ is not critical as long as it
has certain general characteristics. Cooper. Liberman. and Oja (1979),
(CLO) showed that if the function ¢ goes through zero then the sharp-
ness of the tuning curve is altered by the visual experience of the animal
in agreement with what is observed. This modification might be called
‘Hebbian" when the output is above the modification threshold. 6y, and
“anti-Hebbian® when the output is below this threshold. The function. &.
is also assumed to have a dependence on global variables, not explicitly
written. CLO thus assumed that the modifiability of a synaptic junction is
dependent on events that gccur at different parts of the same cell and on
the rate at which the cell responds. They proved several theorems which
show that with this form of passive modification there is an increase in the
specificity of the response of a cortical cell to visual input (sharpening of
its tuning curve) when that cell is exposed to stimuli that are the result of
normal patterned visual experience and a loss of specificity when that cell
is exposed to noise-like input, such as might be expected when an animal
is dark-reared or raised with eyelids sutured. Specificity can be regained.
however, with a return of input due to patterned vision.

In addition to this basic behavior, simulations and mathematical results
on the asymptotic states of the neural network show some more subtle

30.
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phenomena that depend upon values of system parameters. Of note are
the rate of decay (forgetting per unit time), the strength of selective
modification of synaptic junctions, the interaction of modifiable with
non-modifiable synapses. and the different statistical properties of noise
factors.

The reason for the increase of selectivity is the crossover of the ¢
function from the negative to the positive region at the modification
threshold 8y.-This was-recognized-by CLO to be associated with some
property of the cell, possibly the average firing rate. This idea was
enlarged and extended by Bienenstock, Cooper and Munro

(1982) (BCM) and applied to a great variety of situations

in visual cortex. The essential idea of BCM was

to allow 3y to vary non-linearly with the average activity of

the cell. €. Doing this they achieved a variety of desirable properties as
well as a theoretical structure in excellent agreement with available
experimental data. The crucial point in the choice of the function ¢ (c, ¢)
is the determination of the threshold 6y (1), i.e.. the value of ¢ at which
& (c. €) changes sign. A candidate for 6y (r) is the average value of the
postsynaptic firing rate, £(r). The time average is meant to be taken over
a period T preceding ¢ much longer than the membrane time-constant
so that é(r) evolves on a much slower timescale than c(r). This can usually
be approximated by averaging over the distribution of inputs for a given
state m (1)

ét)y=m()-d. 2.5)

This results in an essential feature, the instability of low selectivity points.
(This can be most easily seen at zero selectivity equilibrium points, where,
with any perturbation. the state is driven away from this equilibrium,
whatever the input.)

Therefore, if stable equilibrium points exist in the state space. they are
of high selectivity. However, do such points exist at all? The answer is
generally yes provided that the state is bounded from the origin and from
infinity. These conditions. instability of low-selectivity equilibria as well as
boundedness, are fulfilled by a single function ¢(c, ¢) if we define 6,(1) to
behave as a nonlinear function of ¢(t), for example. a power. The
exponent should then be larger than 1. The final requirement on & (c. ¢)
thus reads:

sign & (c. ¢) = sign (c - (E)pf) for ¢ >0}, (2.6)

$0.¢)=0 forall ¢,
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where ¢, and p are two fixed positive constants. The threshold 6(¢) =
(¢/co¥€ thus serves two purposes: allowing threshold modifications when
¢ = ¢y as well as driving the state from regions such that ¢ <€ ¢, or ¢ > ¢y.
The process of synaptic growth, starting near 0 to eventually end in a
stable selective state, may be described as follows. Initially. ¢ < ¢, hence
¢{c, ¢)>0 for all inputs in the environment: the responses to all inputs
grow. With this growth ¢ increases. thus increasing 6. Now some inputs
result in postsynaptic responses that exceed 6,, while others—those
whose direction is far away (close to orthogonal) from the favored
inputs—give a response less than 6y. The response to the former con-
tinues to grow while the response to the latter decays. This results in a
form of competition between incoming patterns rather than competition
between synapses. The response to unfavored patterns decays until it
reaches 0, where it stabilizes, for ¢(0, ¢) =0 for any ¢. The response to
favored patterns grows until the mean response ¢ is high enough, and the
state stabilizes. This occurs in spite of the fact that many complicated
geometrical relationships may exist between different patterns, i.e., that
they are not orthogonal since different patterns may and certainly do
share common synapses.

Any function, ¢, that satisfies (2.6) will give these qualitative results.
The precise form of this function (e.g., the numerical values of p and co)
will affect the detailed behavior of the system such as rate of convergence,
height of the maximum for a selective cell as well as a variety of other
more subtle effects. We are presently investigating the consequences of
various detailed assumptions concerning the form of ¢(c. ¢) and compar-
ing these with existing and proposed experiments, In doing this we hope
to arrive at a detailed understanding of the form of the function that
controls synaptic modification.

We note also that with this form of modification, the control of 6y by a
global signal (in addition to ¢) could produce the following results: If 6y
is set to be very large the cell’s response would diminish. This will result
in a behavior that is like that described by Eric Kandel in Aplysia
habituation experiments. If 6y, is set very low the cell will rapidly increase
its response to a stimulus, This could be related to a type of sensitization
in which the sensitizing signal has the effect of resetting 6y to a very low
level. For a variable 6y, as will be shown below applied to visual cortex,
one gets increasing and decreasing of selectivity such as those seen in
experimental results over the last generation. We thus have the possibility
that a single mechanism of modification. functioning in slightly different
ways can account for a variety of experimental data in both invertebrates
and vertebrates.
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values in the space of inputs to the neuron .v. The variable d represents a
random input to the neuron, and is characterized by its probability
distribution that may be discrete or continuous. (During normal
development, the input to the neuron {or neural network] is presumably
distributed uniformly over all orientations. In abnormal rearing con-
ditions [e.g., dark reared] the input during development could be different
from the input for measuring selectivity. How this should be translated in
the formal space R¥ will be discussed later.) This distribution defines an
environment, mathematically a random variable d. Sefectivity is estimated
(before, or after development) with respect to this same environment.
Obviously, Sely, (&) always falls between 0 and 1. and the higher selec-
tivity of & in d, the closer Sel;(.V) is to 1.

We analyze the behavior of (2.4) for £ =0. The behavior depends
critically on the environment, that is. on the distribution of the stationary
stochastic process, d. Two classes of distributions may be considered:

(a) Discrete distributions (K possible inputs df, ... d*). These are
generally assumed to occur with the same probability 1/K. The process
is then a jump process which randomly assumes new values at each time
increment. The vectoy m is (roughly) a Markov process.

(b) Continuous distributions: in work of BCM, the only continuous
distribution that is considered is a uniform distribution d over a closed
f-parameter curve in the input space R™. Although the principles under-
lving the convergence to selective states are intuitively fairly simple,
mathematical analysis of the system is not entirely straightforward, even
for the simplest d. Mathematical resuits. obtained only for certain discrete
distnbutions, are of two types: (1) equilibrium points are locally stable if
and only if they are of highest available sclectivity with respect to the
given distribution of d, (2) given any initial value of m in the state space.
the probability that m(!’ converges to one of the maximum selectivity
fixed points as 1 goes 1o infinity is 1. Results of the second type are much
stronger, and require a tedious geometrical analysis. Results are stated
here in a somewhat simplified form. For exact statements and proofs, the
reader is referred to Bienenstock {1980) or to BCM (1982). To illustrate.
we study the simple case where d takes on values on only two possible
input vectors d' and d°, that occur with the same probability and let £ = 0
in (2.4):

Pld=d'l=P{d = d*]=1/2.

Whatever the real dimension N of the system it reduces to two dimen-
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Fig. 14 A funchion satisfying condition (2.6). The three diagrams show the behavior of
@(c. ¢) as a function of ¢ for three different constant values of é. In each diagram, the solid
part of the curre represents (e, &) in the vicinity of & which is the relevant part of this
function.

2.3. Some mathematical results

Selecuvity

It 1s common usage to estimate the orientation selectivity of a single
visual cortical neuron by measuring the half-width and half-height—or an
equivalent quantity—of its orientation tuning curve, The selectivity is
then measured with respect to a parameter of the stimulation, namely the
orientation, which takes on values over an interval of 18(°. In our work.
various kinds of inputs are considered, e.g., formal inputs with a paramcter
taking values on a finite set of points, rather than a continuous interval. It
will then be useful to have a convenient general index of selectivity, defined
in all cases. We propose the following:

mean response of .V with respect to d o
maximum response of .4 with respect to d -

Selv)=1-

With this definition. selectivity is estimated with respect to. or in an
environment for the neuron, that is, a random variable d that takes on
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sions. (Any component of m outside the linear subspace spanned by d'
and d° will eventually decay to 0 due to the uniform decay term.)

Analviic resudts in two dimensions

1t follows immediately from the definition that the maximum value of
Sely(m) in the state space is 1/2. It is reached for states m which give null
response when ' comes in (i.e., are orthogonal to d') but positive
response for J°—or vice versa. Minimum selectivity. namely 0, is
obtained for states m such that m - d' = m - d°. Equilibrium states of both
kinds indeed exist.

Lemma 1. Let d* and d° be linearly independent and d satisfy P(d = d'] =
Pld = & = 1/2. Then for any & satisfying (2.6) the system (2.4) admits
exactly 3 fixed points, m*. m*. m*, and m'* with: Sely,(m") = Sely(m**) = 0.
and Sely(m'y = Sely (m?) = 1/2. (Here the superscripts indicate which of the
d are not orthogonal to m. [m" is the origin.] Thus for instance m'-d' >0,
mi-d*=10.)

The behavior of the system depends on the geometry of the inputs. in
the present case on cos{d'. d?). The crucial assumption that is needed
here is that cos(d'. d°y>0. This is a reasonabie assumption which is
obviously satished if all components of the inputs are positive, as is
assumed in some models (Von der Malsburg (1973): Perez et al. (1975)).
We may then state the following:

Theorem 1. Assume that in addition to the conditions of Lemma 1.
cos(d'. d?) > 0. Then m* and m'? are unstable, m' and m* are stable. and
whatever s initial value. the state of the svstem converges aimost surely
(i.e.. with probabilitv 1) either to m' or 1o m-,

Theorem 1 is the basic result in the 2-dimensional setting: it charac-
terizes evolution schemes based on competition between patterns, saying
that the state eventually reaches maximal selectivity even when the two
input vectors are very close to one another. Obviously this requires that
some of the svnpaptic strengths be negative since the neuron has lincar
integrative power. Inhibitory connections are thus necessary to obtain
selectivity. Some selectivity is also reafizable with no inhibitory con-
nections—not even intracortical’ ones— if the integrative power is ap-
propriately nonlincar. However, whatever the nonlinearity of the in-
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tegrative power, Theorem 1 could not hold for evolution equations based
on competition between converging afferents.

In Theorem 1. we have a discrete sensory environment which consists
of exactly two different stimuli—a situation, although simple mathema-
tically, not often encountered in nature. It may, however, very well
correspond to a visual environment restncted to only horizontally and
vertically oriented contours, present with equal probability. Theorem 1
then predicts that cortical cells will develop a selective response to one of
the two orientations, with no preference for either (other than what may
result from initial connectivity). Thus. on a large sample of cortical cells.
one should expect as many cells tuned to the horizontal orientation as to
the vertical one. So far. no assumption is made on intracortical circuitry.
We discuss this later.

The proof of Theorem 1 is based on the cxistence of trap regions
around each of the selective fixed points:

Theorem 2. Under the same conditions as in Theorem 1, there exists
around m'(m*) a region F\(F?), such that once the state enters F'(F?), it
converges almost surelv to m*(m?),

The meaning of Theorem 2 is the following: once m(1) has reached a
certain selectivity, it cannot “switch® to another selective region. Applied
to cortical cells in a patterned visual environment. this means that once
they become sufficiently committed to certain orientations, they will
remain committed to those orientations (provided that the visual
environment does not chamge), becoming more selective as they stabilize
to some maximal selectivity. Theorems 1 and 2 are illustrated in Fig. 15.

It is worth mentioning that when cos(d'. d*) <0, the situation is much
more complicated: trap regions don’t necessarily exist and periodic
asymptotic behavior, t.c.. limit cycles, may occur. bifurcating from the
stable fixed points when cos(d!, d?) becomes too negative (see Bienen-
stock (1980)).

Higher dimensions

We now turn to the case where d takes on K values. The following is
casily obtained:

Lemma 2. Let d'. d°, ..., d¥ be linearly independent and d satisfy Pld =

d] = -+ = Pld = d¥) = l/K. Then. for any & satisfving (2.6). (2.4) admits
exactly 2% fixed points with selectivities 0. 1/K, 2/K.... (K - IVK. There
are K fixed poinis m'. | mX of selectivity (K — 1)/K.
{
[y
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/

Fig. 15. The phase portrait of equation (2.4) subject to condition (2.6). The diagram shows
the trajectonies of the state of the neuron starting from different initial points. The final state
of the svstem (m' or m*) is determined when the trajectory enters the corresponding “trap’
(shaded) region (F' or F°).

Obviously, (K - 1)/K is also the maximum possible selectivity with
respect to d. It means a positive response for one and only one of the
inputs. The situation is now much more complicated than what it was with
only 2 inputs: it is not obvious whether in all cases assuming that all the
cosines between inputs are positive is sufficient to yield stability of the
maximum selectivity fixed points. However, we may state the following:

Theorem 3. Assume. in addition to the conditions of Lemma 2. that
d'. ... d* are all mutually orthogonal or close 1o orthogonal. Then the K
fixed points of maximum selectivitv are stable, and. whatever its initial
vaine. the state of the svstem converges almost surelv to one of them.
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The proof of Theorem 3 also involves trap regions around the K
maximally selective fixed points. and the analog of Theorem 2 is true
here.

Although the general case has not yet been solved analvtically, as will
be seen later, computer simulations suggest that for a fairly broad range

of environments if d'-d’ >0, even if d'.....d* are far from being
mutually orthogonal, the K fixed points of maximum selectivity are
stable.

Simulations suggest further that even if the d', .. .. d* are nor linearly
independent and are very far from being mutually orthogonal. the
asymptotic selectivity is close to its maximum value with respect to d.

Analvtic results in two dimensions and computer simulations in higher
dimensions indicate that the form of synaptic modification described here
leads, in general. to the evolution of maximum selectivity with respect to
the environment. We are trying to extend the linear
analvsis of stability perfermed in two dimensions to
higher dimensions. Stabilitv analvsis has been attemnted
on svstems of K dimensions tor general linearly
independent environment (Cooper et al. (1982). The
same arguments that lead to statements of stability in two dimensions .
apply in this general case. However, the technical difficulty increases. The
problem may be stated in terms of a Kth order cigenvalue equation.
Local stability for an s = 1 fixed point will be assured if the eigenvalues of
the matrix of coeflicients of the K differential equations fare negative.
Similarly, the instability of points for which s > 1 would be characterized
bv the presence of positive eigenvalues. Since this matrix of coeflicients
exhibits some symmetry. there is hope that the problem could be solved
analvtically (for reasongble size K. the svstem of equations could be
solved numerically for special cases). This kind of analytic statement
would confirm that the states of high selectivity observed in computer
simulations are indeed stable asymptotic states.

The monocular problem . A simple circular environment

We now apply this theory to the problem of orientation selectivity and
hinocular interaction in primary visual cortex. The ordinary development
of these properties in mammals depends to a large extent on normal
functioning of the visual svstem (i.e.. normal visual experience) during the
first few weeks or months of postnatal life. This has been demonstrated
many times by various expeniments, based mainly on the paradigm of
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rearing the animal in a restricted sensory environment. We show that the
theory described above can account for both normal development and
development in restricted visual environments.

Consider first a classical test environment used to construct the tuning
curve of cortical neurons. This environment consists of an elongated light
bar successively presented or moved in all orientations—in a random
sequence—in the neuron’s receptive field. Thus all the parameters of the
stimulus arc constant except one, the orientation, which is uniformly
distributed on a circularly symmetric closed path. We assume that the
retino-cortical pathways map this family of stimuli to the cortical neuron’s
space of inputs in such a way as to preserve the circular symmetry (as
defined below). Thus, the typical theorctical environment that will be
used for constructing the ncuron's tuning curve is a random variable d
uniformly distributed on a circularly symmetric closed one-parameter
family of points in the space R¥. The parameter coding onentation in the
receptive field is, in principle. continuous. However, for the purpose of
numerical simulations, the distribution is made discrete. Thus, d takes on
values on the points d,, . ... d¥

The requirement of circular symmetry is expressed mathematically as
follows: the matrix of inner products of the vectors d'. ... . d¥ is circular
(i.c.. cach row is obtained from its ncarest upper neighbor by shifting it
one column to the right) and the rows of the matrix are unimodal. A
random variable. d. uniformiv distributed on such a set of points will be,
hereafter, called a circular environment. Such a d may be roughly charac-
terized by 3 parameters: N, K and a measure of the mutual geometrical
closeness of the d's, for instance the minimum value of cos(d'. d') over
the environment.

We are now faced with the difficult problem of specifying the stationary
stochastic process that rc.prcscnts the time-sequence of inputs to the
neuron during development. To begin, we simplify the problem by giving
the stochastic process exactly the same distribution as the circular d
defined above. In doing so. we assume that development of orientation
selectivity is to a large extent independent of other parameters of the
stimulus. e¢.g.. contrast. shape, position in the receptive field, retinal
disparity for binocular neurons, cte. The clementary stimulus for a cortical
ncuron is a rectilinear contrast edge or bar. Any additional pattern present
at the same time in the receptive field is regarded as random noise. (A
discussion of this point is given in Cooper et al. (1979).

Simulations show the following behavior:

(1) The state converges rapdily to a fixed point, or altractor.

e ———— e LT
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(2) Various such attractors exist. For a given d and ¢ they all have the
same sclectivity, which is close to its maximum value in d.
(3) The asvmptotic tuning curve is always unimodal. One may thus talk
of the preferred orientation of an attractor.
; (4) There exists an attractor in each possible orientation.

(5) If there is no initial preference, all orientations have equal prob-
ability of attracting the state. (Which one will become favored depends on
the exact sequence of inputs). This does not hold for envitonments which
are not perfectly circular, at least for a single neuron system as the one
studied here.

The system thus behaves exactly as expected from the results of the
preceding section.
] .

b The binocular problem: a more complex environment

We now consider a binocularly driven cell. The firing rate of the neuron
at time ! is now given by

c(ty=m) - d(4)y+ m, (1) d,(1). 2.8)

with evolution schemes for "left” and ‘right” states m, and m, straightfor-
ward generalizations of {2.4). We have partitioned the input Vector space
into a left space and a right space; hence m goes to (m,m,) and d
becomes (dy. d,). Since d, and d, can be independent. the topology of the
environment is potentially more complex.

Various possibilities exist for the input (d. d,): one may wish to
consider normal rearing fboth d, and d, circular and presumably highly
correlated), monocular deprivation, binocular deprivation, and so on. The
vector (d. d,) is a stationary stochastic process, whose distribution is one
of the following, depending on the experimental situation one wishes to
reproduce:

Normal Rearing (NR):

di(t) = d,(1) for all ¢, and d, is circular. (Noise terms that mav be added
to the inputs may or may not be stochastically independent.)
Uncorrelated Rearing (UR):

d; and d, are ii.d. (independent identically distributed): they have the
same circular distribution, but no statistical relationship exists between
them.

Binocular Deprivation (BDY:
The 2N components of (di. d,) are iid.: d and d, are uncorrelated

noise terms.
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Monocular Deprivation (MD):

dy is circular, d, is a noise term: d, = n.

In the NR case. the inputs from the two eyes to a binocular cell are
probably well correlated. We therefore assume that they are equal, which
is mathematically equivalent. The BD distribution represents dark dis-
charge.

Uncorrelated or strabismic rearing (UR) involves presenting fully two
independent circular environments (a ‘toroidal” environment). The final
state can be either monocular and specitic or binocular and specific with
no correlation between the patterns perferred by the two eyes.

The results of binocular deprivation or (correlated) normal rearing are

just those of the monocular case. We assume that binocular stimuli
presented during NR are exactly correlated so that each pattern incident
to the left-eve synapses is consistently accompanied by a corresponding
pattern to the right-eve synapses. Since the left and right components of
each pair are identical, the cell tunes to the same pattern in each eye.
Binocularly deprived input environments consisted of stimulus com-
ponents uniformly distributed over some range with zero mean. In this
case (BD). the average response of the cell is null and so ¢ is always
non-negative, resulting in random fluctuations of the svnaptic state.
k. The development of a neuron receiving patterned input from only one
eye (and uniform noise [rom the other) is somewhat surprising. The
response curve goes to maximum selectivity with respect to the open eve.
but. consistent with observation. the response to the closed eye does not
fluctuate randomly. Rather the neuron becomes nonresponsive to inputs to
the deprived cye. Asymptotic convergence to this state is assured regardless
of the initial state. The theoretical implications for the reverse suture (RS)
paradigm are straightforward: A monocularly deprived neuron, having
reached a monocular selective state is driven to another monocular selective
state preferring the newly opened eye upon reversal of suture.

This behavior relies upon some activity, albeit purely random. to be
y prescnt in the afferents from the closed eye. Such noise may be due to
3 diffuse light through the eyelid or spontaneous firing of LGN and/or i
retinal neurons. As a neuron becomes selective with respect to the open

eye, patterns which are preferred give a response near threshold
whereas the other patterns give a much lower response. In cither case ¢
4 is near zero. Noise accompanying a preferred pattern drives the neuron
N from the modification threshold, so the deprived synapses grow stronger.
However. the opposite effect weakens the synapses when non-preferred

¥

\

patterns are presented. A mathematical demonstration of

this argument, given in Appendix C of Bienenstock
et al. (1982), is presented in 2.4.
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2.4. Companson of theory with classical experimental results

F The simulated behavior of neurons in visual cortex with binocular
connectivity is illustrated in Fig. 16. The seemingly inconsistent experi-
3 mental results (MD vs. BD) are faithfully reproduced by computer

simulation. Each of these pa;adigms was tested in both deterministic and
3 stochastic simulation algorithms over several pattern sets. The model
F withstood considerable noisy input; indeed successful simulation of some
1 paradigms (RS in particular) required that a noisclike component ac-
company the ‘pure’ inputs.

Simulations of the behavior of the system in these different environ-
¥ ments give the following:

NR: all asymptotic states are selective, binocular and have matching
preferred orientations for stimulation through each eve.

BD: the motion of the state (m,;, m,) resembles a random walk. (The
small exponential decay term is necessary here in order to prevent large
fluctuations.) The two tuning curves therefore undergo random fluctua-
tions that are essentially determined by the second-order statistics of the
input d. As can be seen from the figure. these fluctuations may sometimes
result in a weak orientation preference or unbalanced ocular dominance.
However, the system never stays in such states very long; its average state

- on the long run is perfectly binocular and nonoriented. Moreover, what-

ever the second-order statistics of « and the circular environment in

which tuning curves are assessed. a regular unimodal orientation tuning

curve is rarely observed. and selectivity never exceeds 0.6, We may thus

;. conclude that orientation selectivity as observed in the NR case (both
experimental and theoretical) cannot be obtained from purely random
synaptic weights. It is worth, mentioning here that prolonged dark rearing
has been reported to increase response variability (Leventhal and Hirsch
(1980)). a similar observation was made by Fregnac and Bienenstock
(1981).

MD and RS: The only stable equilibrium points are monocular and
selective. The system converges to such states whatever the initial con-
ditions. In particular, this accounts for reverse suture experiments
(Blakemore and Van Sluvters (1974): Movshon (1976)).

UR: In contrast to NR, monocular as well as binocular equilibnia exist.

The asymptotic state generally observed with m(0) = m,(0) = 0 is mono-
cular. (This should be attributed to the mismatched inputs from the two
cyes. as is done by most authors.) Asymptotic states are selective, and
when they are binocular, preferred orientations through each eye do not
necessarily coincide. It should be mentioned here that Blakemore and
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Van Sluvters (1974) report that after a period of alternating monocular
occlusion, the remaining binocular cells may differ in their preferred
orientations for stimulation through each eye.

Selectivity and ocular dominance

As an example of the kind of new and subtle effects that are contained in
this theory, we consider in detail the sequence in which ocular dominance
and selectivity develop in the monocularly deprived environment.

According to (2.8) the firing rate of a binocularly driven neuron at time ¢
is given by

c(t) = ml(t)'df (e)-d_(t).

In a situation corresponding to monocular deprivation—patterned in-
formation to one eye (right), noise to the other (left)—we can write for
the environment

d=(d.n).
and for the set of synaptic weights

m = {(m,.m;).
[ 4
Where m, and m; are the synaptic weights from the right and left eves
respectively.

In this situation m, goes to one of its selective fixed points as in the
monocular case. The only fixed point for m, in the noise-like environment
is zero: but this is unstable in the monocular case. It is instructive to
follow the behavior of m, in this binocular case.

Let (x,. x;) be a small perturbation from equilibrium. The motion at
point (m?3 + x,, x;) is given by:

X, =¢dmt-d+x-d+x-nmi-d+x- d)d,. (2.9r)
H=¢(mi-d+x-d+x-nmi-d+x- d)n. .90

where we assume that the notse has zero mean.
We analyze separately. somewhat informally, the behavior of the two

cquations, The stability of (2.9r) is immediate from the stability of the
selective state m* in the circular environment d,. To' analvze (2.91) we

divide the range of the right eve input d, into three classes:
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(i) d, is such that m?’-d. is either far above threshold, 6., and
therefore ¢(m*-d,.m?*-d,)>0, or far below threshold, 6, (but still
positive) and therefore o(m?*-d.m*-d,)<0;

(ii) d, is such that m, - d, is near threshold, 6y, and therefore ¢p(m?7 - d.
m*-d)=0;

(iii) d, is such that m? - d, = 0 and again ¢(m?3-d.m7- d)=0.

For the first class of inputs, the sign of ¢ is determined by d, alone.
hence 29! is the equation of a random walk. To investigate the behavior
of 29! in the two other cases. we neglect the term x, and linearize ¢
around the relevant one of its two zeros. It is easy to see that case (i)
yields

X = &,(x,-n)n. (2.10)
whereas in case (iii) one obtains

X ==£xx;n)n. (2.1
where &, and &; are positive constants, measuring respectively the ab-

solute value of the slope of ¢ at the modification threshold and at zero .
Since n is a noise-like term, its distribution is presumably symmetric

3 with respect to x; so that averaging (2.10) and (2.11) yiclds respectively
X = FI'-'A:)XI- (2.12)
X = —Fa05x, (2.13)

o where 7j is the average squared magnitude of the noise input to a single
synaptic junction from the closed eye.

We thus sce that input vectors from the first class move x, randomly,
inputs from the second class drive it away from 0, whereas inputs from
the third drive it toward 0. In the case where the range of d, is a set of K
linearly independent vectors and m 3 is of maximum selectivity. (K - 1Y/K,
. case (1) does not occur at all. (The random contribution occurs only
Ep before the synaptic strengths from the open eye have settled to one of
' their fixed points.) Case (ii) occurs only for one input, say d), with m? - d}
exactly equal to threshold, 6y, and (iii) occurs for the other K - | vectors
which are all orthogonal to m3%. In the general case (d, any circular
& environment), the more selective m? with respect to d.. the higher the
’ proportion of inputs belonging to class (iii). the class that vields (2.13) i.c.,
that brings x, back to 0.
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The stability of the global system still depends on the ratio of the
quantities £, and &, as well as on the statistics of the noise term a (e.g. its
mean square norm). We may however formulate two general conclusions.
First, under reasonable assumptions (&, of the order of £, and the mean
square norm of n of the same order as that of d,) x, = 00 is stable on the
average for a selective m ;. Second. the residual fluctuation of x, around
0. essentially due to inputs d, in classes (i) and (ii). is smaller for highly
selective m 7’s than it is for mildly selective ones.

Thus, one should expect that in a monocularly deprived environment
nonselective neurons tend to remain binocularly driven. In addition since
it is the non-preferred inputs from the open eve accompanied by noise
from the closed eye (case three) that drive the response to the closed eye
to zero. if inputs to the open eye were restricted to preferred inputs (case
two) even a selective cell would remain less monocular.

)
: OPEN CLOSED :
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Fig 17, Progression ot deselopment of selectivity and ocular dominance. Note that selec-
tvity develops for the open eve hefore the response to the closed eve s dnven to zero
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To bétter confront these ideas with experiment, the
single (BCM) neuron must be placed in a network with
the anatomical features of visual cortex, a network in
which inhibitory and excitatory cells receive input
from LGN and from each other. This has been done
(Scofield and Cooper to be published). Their conclu-
sions are similar to those above with explicit further
statements concerning the independent effects of
excitatory and inhibitory neurons on selectivity and
ocular dominance. For example, shutting off inhibitory
cells lessens selectivity and alters ocular dominance
giving 'masked synapse' effects.

Quantitative tests of progressions such as those shown
in Figure 17 are in progress in our laboratory. We I
hope that such experiments can provide detailed compari-
sons with theorv and provide us with a sensitive tool for
determining synaptic modification among various classes
of neurons~—a possible entry to the process by which

the nervous svstem organizes itself.
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