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NEURON LEARNING TO NETWORK ORGANIZATION*

Leon N COOPER

Department of Phvsacs antl Centwr for Neural Science. Brown (Inicersity. Providencc.
RI 02912. USA

Introduction

Although we now rank Maxwell among the greatest of 19th century
physicists, he wrote that he was adding little to the work Faraday had
already done.

-1 have endeavored to make it plain that I am not attempting to
establish any physical theory of a science in which I have not made a
ingle experiment worthy of the name, and that the limit of my design is

to show how by a strict application of the ideas and methods of Faraday
to the motion of an imaginary fluid, everything relating to that motion
maybe distinctly represented, and thence to deduce the theory of
attractions of electric and magnetic bodies, and of the conduction of
electric currents.* (Maxwell. 18.56)

Modesty perhaps, but not entirely unwarranted: for in spite of his
enormous talents, the import of his inventions become apparent in the
light of later developments with a clarity that, for all of his genius, could
have not have been visible to him.

Maxwell's historic achievement was to write down the equations of
electricity and magnetism in such a way as to incorporate the experimen-
tal discoveries of Coulomb. Ampire and Faraday and to realize that these
equations were inconsistent. To make them consistent he was forced to
profoundly alter their character, giving rise to a new class of solutions:

"'he work on which ihim article t% hactd w^s ",upported in par bv the .1 S. Office of Naval
Rcscarch. tinder contract sNIlNIC4-xl .i13o
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propagating waves whose speed (as he calculated using experimental data
on electric and magnetic susceptibilities) corresponded very closely to the
speed of light.

"The velocity of transverse undulations in our hypothetical medium.
calculated from the electromagnetic experiments of M.M. Kohlrausch
and Weber, agrees so exactly with the velocity of light calculated from
the optical experiments of M. Fivau. that mcan scarcely avoid the
inference that light consists in the transverse undulations of the same
medium which is the cause of electric and magnetic phenomena."
(Maxwell, 1862.)

And in a letter to William Thomson (Lord Kelvin):

"I made out the equations in the country before I had any suspicion of
the nearness between the two values of the velocity of propagation of
magnetic effects and that of light, so that I think I have reason to believe
that the magnetic and luminiferous media are identical." (Maxwell.
Is61.)

He thus produced a unified field theory of electricity, magnetism and
light-the first of its kind. But even this monumental result was just the
beginning. For he opened the path to the twentieth century: the Michel-
son-Morf experiment, relativity, the primacy of field theory and sym-
metry considerations, Lorentz and, most recently, gauge invariance as
general symmetries underlying all physical theories.

This emerges in retrospect. And Maxwell would no doubt be enor-
mously pleased by the great success of the enterprise he began. But he
might remind us that his new inventions were preceded by a long
exploration of known territory. For most of his working lifetime he
applied his physical and mathematical intuition to write down a set of
equations that would summarize what was already known.
When this could be clearly stated, existing contra-
dictions became apparent-and the new assumptions to
remove them relatively quickly made.

Today. I would like to discuss some work that my colleagues and I have
been doing recently on the organization of the brain. Although this is

somewhat removed from what physicists usually think about, there is a
habit of analysis that. I believe, a physicist can profitably bring to complex
problems in biology, and perhaps in other areas. Also it is not impossible
that a precise understanding of such a complex system could produce
surprises-not a new fundamental force or field, but rather a new
understanding of the behavior of large interacting systems that could
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3.
illuminate the systems of equations that concern us in other domains (as
has happened previously in the past generation with the problems of
superconductivity, superfluidity and phase transitions).

First, let me attempt a very quick description of the elements of this
problem. In Fig. I, we see a view of the human brain. It is an incredibly
complex piece of machinery involving many individual elements-the
most relevant of which are known as neurons or nerve cells. It is believed
that information processing, memory storage. logical thinking. etc.. occurs
among the neurons. Neocortex (new cortex)-generally thought to be the
thinking part of the brain-is on the surface: this sheet of neurons if
spread out is rather large-perhaps several square meters. To fit it into a
reasonably sized skull, it had to be folded: typical folds on the surface of
the cortex are seen in the Figure. In Fig. 2 a portion of the neural
network (in visual cortex) is shown. We see here suggested some of the
complexity of the cellular circuitry.

The new part of the brain, cortex, the special biological gift of higher
mammals evolved very rapidly, in only a few million years. In contrast.
other partssuch as the brainstem that we share with reptiles and that are

Fig. I. Side view of the human hrain, from
DeArmend, Fusco and Dewey Structure
of the Brain.
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A. couche petsforme R co.oche des petite$ celliies pyrmdles - C, commencC.ent
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Fig. 2. A portion of the neural neiwork in visual cortc\

from R. Cajal, Histologie du Systete

Nerveux.

mostly hard-wired and perform a great variety of control functions took
hundreds of millions of years to develop. This is a very suggestive fact.

The neurons are a marvellous piece of machinery. Like most cells. they
share basic structures to keep themselves alive. but have become
extremely specialized. Their primary function is to transmit (and probably
also to store) information. The fundamental device utilized by these cells
is an excitable membrdne. The cell is capable of altering normal ion
concentrations in its interior. The proportions of ions such as Na*. Ca",
K+ and so on in squid blood are almost those in sea water,
which by the way, suggests strongly where the blood comes
from (Table 1).

Inside a neuron there is an excess of K' and too little Na'. This is due
to a metabolic pump which slowly pumps sodium out and potassium in.
(Fig. 3) The pump can be thought of. for practical purposes. as slowly
charging a battery. A channel is left open for K" ions. Due to the
concentration difference, the K" ions try to get outside. But since they
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Table I
0(mIccottat'l iof|i of tom inside and oulside lreslil
1%ohlelud aXoln, oI %(JUld

( nceniraion nill)

loll Axoplasm Blood Seawatr

'olas'.iluii 44) 211 1(
Sodium 5W -1 -Uil

(hloridc 45641 544
Calcium |.3 x i0 ' it) III

"The precise value of ionized intracellular calcium i,

not known. Data from Hodgkin (19W) and Baker.
Hodgkin. and Ridgway (1971)v from
Kuffler and Nicholls, from Neuron
to Brain.

carry positive charge, they build up an electric
potential difference across the membrane as
they move along the concentration gradient. This
potential difference balances the concentration difference when there is a
potential difference of about 70 millivolts across the membrane.

Efecrrica or chemical disturbances on so rie regiori of the membrane
)pen the Na" channel- there is a rush of ions locally in that region. the
negative resting potential. of about -70 millivolts. may jump to a positive
potential (about +55 millivoltsl this is known as the action potential.
Eventuall, equilibrium is re-established in the original region. But the
potential disturbance has spread a bit. this opens the Na" channel a bit
down the line- then one has another action potential. So the action
potential moves down the membrane. Depending on how much
depolarization. in a way that I do not have time to go in'to, one can
convert a signal of a given intensity into a given number of action

EXCESS OF No* OUTSIDE EQUILI In

+ PEQUILIBRIUM

.SODIUM

,70xO.
3

V /PUMP

EXCESS OF K" INSIDE

it A Thc neuron nicnli ran.

I f -I I q
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potentials per second. Thus the information is frequency modulated and
can be transmitted with essentially no loss over large distances. It is quite
remarkable, considering the materials available, that information can be
transmitted with such accuracy.

The transmission of information from one neuron to another is perhaps
even more remarkable. An axon of one neuron will terminate, in general.
near the dendrite of another in a structure known as a synaptic junction
(Fig. 4). Action potentials arriving from the axon initiate release of
transmitter substances that diffuse across the synaptic cleft. Upon arrival
at the post-synaptic membrane, these transmitters produce changes in
membrane conductivity, initiating a flow of ions that alter the dentrite
potential. The dendrite potentials propagate to the cell body where they
are integrated and determine the firing rate of the
post-synaptic cell. Thus the information flow con-

tinues.

It is now commonly thought that the synaptic junction may be a means
to store information (memory, for example) as well as to transmit it from
neuron to neuron. Large networks of neurons connected to other neurons
via modifiable synaptic junctions are what we have used to try to

construct entities that are capable of holding memory and performing
mental acts.

Although the central nervous system contains something of the order of
10-100( billion neurons, it is somewhat depressing to learn that these cells
are so specialized that they do not reproduce. Thus when the embryo is
given its store of neurons, these are the only ones we will ever have. But cells

/AXON /PRE-SYNAPTIC MEMBRANE

_.._ POST- SYNAPTIC
MEMBRANE

) * RECEPTCR5

SYNAPTIC

VESICLES

/ DENDRITE
MITOCHONDRIAN

Fig. 4 A vnalicp Itindclo
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die. We lose an estimated hundred thousand neurons each day so thatat
the end ot a long lifetime, we have lost a very substantial number of
neurons. Any theory that purports to explain the functioning of the central
nervous system must explain how it continues to function in spite of the
loss of individual neurons.

This is one of the facts that makes the sometime employed analogies
between the brain and current computers really very bad. Modern com-
puters perform large numbers of sequential operations very rapidly and
very accurately. It is a technological miracle that so many operations catn

be performed with so few mistakes. The central nervous system works
slowly with cycle times that cannot be shorter than a few milliseconds. It
is not very accurate: neurons may not fire if they are tired or depressed or
just too lazy-in addition, they die.

It may be that current computers can do some of the things that we can
do. However. most of the things a computer can do. we do not do very
well. We are very poor at arithmetic and sequential logical operations;
this is what current computers do very well. We are very good at

recognizing things and getting a sense of what is going on. For this
computers are very bad. So. if computers can mimic human beings by
doing some of things we do. it is very likely that the same thing is being
done in a rather different wav with rather different hardware.

Although this is a very complex problem. in a certain sense there is
much that is known. A set of coupled non-linear differential equations.
including time delays, can be written down that in effect summarizes
everything that is known about the transmission of electrichl signals along
excitable membranes and from axon to dendrite in a large coupled and
reentrant network of neurons. Such systems can be stationary or can
evolve in time by various learning algorithms. Obviously such a set of
equations with no simplification is extremely complex and beyond the
capacity of current analysis or numerical techniques. The essential point is
to make the appropriate approximations and to clearly illuminate the
paths connecting assumptions and consequences. Various approaches
such as those of Amari (1974), Wilson and Cowan (1973),
Edelman (1981), Edelman and Reeke (1982) and
Grossberg (1982).

In our work we emphasize the transfer of information between neuron
sets to neuron sets, we propose that there is much parallel processing in
the central nervous system an('' • ;i contrast with machine memory.
which is at present local (an e, . .- ored in a specific place) and
addressable by locality (requiring some :quivalent of indices and files).
our memory is distributed and addressable by content or by association.
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In addition there need be no clear separation between memory and

'logic', which is a result of association and an out-come
of the nature of the memory itself.

Such distributed memories are more like a hologram than a photograph.
An individual synaptic junction holds superimposed information
concerning many events. In order to obtain a single event. one has to
gather information from many junctions. In a system like this. loss of
individual neurons decreases the signal to noise ratio but does not lose
individual items of information. Therefore. if it is overbuilt in the first
place, one can retain a complete memory with an acceptable signal to
noise ratio even with loss of neurons.

These ideas as described in more detail in what follows. Although these
initial attempts are clearly oversimplifications, our hope is to capture
some of the important qualitative features of a very complex
phenomenon in a piece of structure that is clear enough so that we can
say what follows from what. an explicit enough so that we can make
contact with experiment as soon as possible.

I. Theoretical background

I. I Distributed inemory

That most intriguing aspect of memory: its persistence in spite of

continual loss of individual neurons over the lifetime of the individual. led
us early to the concept of distributed rather than local memory storage.
Distributed storage possesses in a very natural way the property of
relative invulnerabilityi, to the loss of individual storage units. We have
been analyzing a class of neural models for the acquisition and storage of
distributed momories that display, on a primitive level, features such as
recognition, association and generalization, and which suggest some of
the mental behavior associated with animal memory and learning (Cooper
(1973): Anderson and Cooper (1978)). The mechanisms we employ seem
to be plausible biologically and are not inconsistent with known neuro-
physiology. In addition the networks that results seem to be a reasonable
outcome of evolutionary development under the pressure of survival.
Some of our ideas are related to or are generalizations of earlier concepts
such as perceptrons or similar models (Block. (1962); Block. Knight and

Rosenblatt (1962); Minsky and Papert (1969)). In addition holographic or
non-local memories have been explored previously (l.onguet--liggins
(19 68a); L.ongue:-l-liggins (146Xb)).
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Although the concept of distributed mappings and memory storage is

less familiar than those of local storage, distributed mappings and their
properties have been discussed (Anderson (1970). (1972): Cooper (1973):
Kohonen (1972), (1977)) and probably have already been observed. An
example is superior colliculus. In spite of the fact that the retinal afferents
that project to the colliculus form a very precise, tine grained map, cells
that are just a few millimeters below the very precise cells, respond to
stimuli over a wide area of visual space. Thus we have the apparently
paradoxical situation-that seems to be true of other parts of the brain as
well-that great precision of response is generated by systems composed

of cells that progressively show less and less selectivity as the motor
output of the system is approached (Mcllwain (1976)).

We believe that much of the learning and resulting organization of the
central nervous system occurs due to modification of the efticacv or
strength of at least some of the synaptic junctions between neurons, thus
altering the relation between pre-synaptic and post-synaptic potentials. It
is known that small but coherent modifications of large numbers of
synaptic junctions can result in distributed memories. Whether and how
such synaptic modification occurs, what precise forms it takes, and what
the physiological and/or anatomical bases of this modification are. rank
among the most interesting questions in this area.

There is direct experimental evidence that at least some modification of
synaptic strength occurs in invertebrates (Kandel (1976))'and there arc
various indications that synaptic modification is a rather general
phenomenon (see, for example. (Levy and Steward (1979)). In recent years

many conjectures have been made concerning the kind of modification that
might occur at synaptic, junctions. Kandel and coworkers have shown that
modification of the synapse between a sensory and motor neuron of the
marine Mollusk Aplysia is the basis of habituation and sensitization. The
synaptic modification they have observed can be dependent only on
pre-synaptic information. In our work. we have had to assume that synaptic
modification is a function of more general variables: local, quasi-local, and
global. The presence of quasi-local variables leads to forms of synaptic
modification (denoted as Hebbian) that depend on information not im-
mediately available at the synaptic site (e.g.. cell firing rates).

These hypotheses have been developed in sotie detail (Nass and
Cooper (1975): Cooper. Liberman and Oja (1979): Bienenstock, Cooper
and Munro (1982)) and applied to experimental results that have been
obtained in visual cortex by many workers over the last generation as well
as to higher level network properties. As will be explained more fully, we
have been able to obtain agreement with classical visual cortex experi-
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mental results and in addition have suggested new experiments. These
theoretical results have been obtained w\ith a nlnimulnm of anatomical

details and have been primarily concerned with single neurons. It is very

likely, however, that interactions between cortical neurons play an iiii-
portant role in cortical function as well. perhaps in selectivity of in-
dividual cortical cells (Creutzfeldt et al. (1974)- Sillito (1975)). In addition
individual synapses are generally either inhibitory or excitatory and not
both as some theoretical work has assumed for simplicity. One objecti'c
of our current research is to extend our results. taking into account a
more realistic anatomy so that a more detailed comparison between
theory and experiment can be made.

The theoretical ideas mentioned above have also led to several sug-
gestions for new experiments in visual cortex. In these experiments we
attempt to verify predictions concerning the connection between
specificity and ocular dominance of cortical cells under various rearing
conditions. In addition. we investigate connections between ocular
dominance and the variety of visual input allowed to the open eve. We
expect the results to give us further information about the detailed
mechanism of synaptic modification among cortical cells as well as to
enable us to determine various system parameters.

For a distributed memory it is the simultaneous or near simultaneous
activities of many ditTercnt neurons (the result of external or internal
stimuli) that is of interest. Thus a large spatially distributed pattern of
neuron discharges, each of which might not be cry far from spontaneous
activity, could contain important, if hard to dtect. i nformation. Let us
consider the behavior of an idcalized neural nctwork (thati ihlt be
regarded as a model component of a nerous vsicnl to illustrate onc ot
the important features of distributed mappings.

Consider V neurons I. 2... N. each of which has some spont.tneolus,
firing rate r,,. (This needl not be the same for all of the ncuro , nor need it
be constant in time.) We can then define an N-tuple vhosc components
are the dillerence between the actual tiring rate r. of the Ith neuron and
the spontaneous firing rate r,,

13v constructing two such banks of ncuron, connected to one another

(or even hv the use of a single bank which feet,, signals back to itself . we
arrive at a simplitied model as illustraled In Fig.

The actual svnaptic connections between one rciron and another arc

,MON
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Fig. A rn da Il ditrbu ted mnappuine. Iich of th. input eurot s in irsV conncted to cask h

of the N otp illt neurons ( G b% a singlel ideal junction (()il% th connctllio% it 1 are

draw%,'n.)

generall\' complex and redundant- ve have idealized the network b\
replacing this multiplicity of synapses between axons and dendrites by a

single ideal junction which summarizes logically the elect of all of the

synaptic contacts between the incoming axon branches from neuron i in
the F bank and the dendrites of the outgoing neuron i in the G bank (Fig. 6.).

Each of the N incoming neurons. in F. is connected to each of the N
outgoing neurons. in G. by a single ideal junction.

Although the tiring rate of a neuron depends in a complex and
nonlinear fashion on the presynaptic potentials. there is usually a reason-

ably well defined liticar region. Some very interesting network properties
are alreadv. evident in this linear region. We therefore focus our attention.

for the moment, on the recion above threshold and below saturation for
which the tiring rate of neuron i in G. g,. is mapped from the tiring rates

of all of the neurons. i. in F by:

(1.2)

9 llL

G BANK F BANK

it ........ I " II i~ 1 *\s -iii.I I I".s--- ' - ..... .lii-
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In doing this we are regarding as important average firing rates, and time
averages of the instantaneous signals in a neuron (or perhaps a small
population of neurons). We are further usine the known integrative
properties of neurons.

We may then regard IA,,, (the synaptic strengths of the N ideal

tunctions) as a matrix or a mapping which takes us from a vector in the F
space to one in the G space. This maps the neural activities f= (ft.

... , ) in the F space into the neural activities g = (g, ... g,) in the G

space and can be written in the compact form

g = Af. (1.3)

We propose that it is in modifiable mappings of the type A that human
memory is stored. Presently machine memory is local (an event stored in

a specific place) and addressable by locality (requiring some equivalent of
indices and tiles). In contrast, human memory is likely to be distributed

and addressable by content or by association. In addition for such a
memory there need be no clear separation between memory and 'logic'.

It is convenient to write the mapping. A, in the basis of vectors the
system has experienced:

A = ,.""'f .(1.4)

Here g" and P are output and input patterns of neural activity while the
c,,, are coefficients reflecting the degree of connection between various

inputs and outputs. The symbol. X represents the *outer' product between
the input and output vectors. Although (1.4) is a well known mathemati-

cal form. its meaning as a mapping among neurons deserves some
discussion. The ijth element of A gives the strength of the ideal junction

between the incoming neuron j in the F bank and the outgoing neuron i

in the G bank (Fig. 6.).
Thus. if only f, is non-/ero, g,. the firing rate of the ith output neuron is

.,, A -,,t (1.5)

Since

A C (, . (1.6)
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the ilh junction strength is compOse'd ot a sum of the entire experience of
the system as reflected in iring rates of the neurons connected to this
junction. Each experience or association (/ai,). however. is stored over the
entire array of N x N' junctions. This is the essential meaning of a
distributed memory: Each event is stored over a large portion of the
system, while at any particular local point many events are superimposed.

We show below that the non-local mapping A can serve in a highly
precise fashion as a ,nemorv that is content addressable and in which
'logic* is a result of association and an outcome of the nature of the
menorv itself.

1.2. Long and short-term tl tnorV

The N2 junctions. A,. contain the content of the distributed memory. It
could be that a particular junction strength. A,. is composed of several
different components with ditferent lifetimes. e.g..

A A - A ' - A!' . (1.7)

where the individual A ,," might be thought of as corresponding to
different physiological or anatomical etTects (e.g.. changes in numbers of
presynaptic vesicles. changes in numbers of postsynaptic receptors.
changes in Ca" levels and/or availability, anatomical changes such as
might occur in growth or shrinkage of spines). We then have the pos-
sibilitv that the actual memory content (even in the absence of additional
learning) will vary with time. For a twvo-component system we might have

V;)-- A. t ) - ) (1.8)

where V' represents the memory at some time. t. while A(o-9 and Athh,,I
have long and short lifetimes. Thus in time A ho will decay. leaving
A(,'= A(!" Whether what is in the short-term memory component is
transferred to the long-term component might be determined by some
global signal-depending on the interest of the information contained in
the short-term component. The existence of such global signals as well as
possible anatomical or physiological correlates of short or long-term
memory are the subject of some of our current research.

From this point of view the site of long and short-term memory can be
cssentiall, identical. At any given time there is a single memory. The
distinction between long and short-term mieniory is contained in the
lifetime of the difTcrent components of ,,
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1.3. Rec nition and recolh'lion

The fundamental problem posed by a distributed memory is the ad-
dress and accuracy of recall of the stored patterns. Consider tirst the
'diagonal' portion of A,

(A ),d.... .I / --- ,, X " 19

An arbitrary event. e. in the external world mapped by the sensory
apparatus into the pattern of neural activity. f. will generate the response
in G

g = Af.

(The pattern. f. might also be the result of some other internal pattern of
neural activity.) If we equate recognition with the strength of this res-
ponse. say the inner product (g. g). then the mapping A will distinguish
between those events it contains, the '., v =1.2 . ... K and other events
separated from these.

The work 'separated' in the above context requires definition. Suppose
the vectors P' are thought to be independent of each other, and to satisfy
the requirements that, on the average

%+

i I .*- .(lft

Any two such vectors have components which are random with respect to
one another so that a new vector, f. presented in the F bank as above
gives a noise like response in the C; bank since on the average (f". f) is
small. The presentation of a vector seen previously. fA however, gives the
response in the G bank

I?f' cAg' - noise. (1.11)

It can be shown that if the number of imprinted events, K. is small
compared to the dimensionalit . N. the signal-to-noise ratios are reason-
able.

If we define separated events as tho,,e which map into orthogonal
%ectors, then clearlv a recogntion matrix composed of K orthogonal
vectors f". f. f

a,
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K

. x p (.12)

will distinguish between those vectors contained and all vectors separated
from (perpendicular to) these. Further, the response of the system to a
vector previously recorded is unique and completely accurate

fA = cAAg' . (1.13)

In this special situation, the distributed memory is as precise as a localized
memory.

In addition, this type of memory has the interesting property of
recalling an entire associated vector g' even if only part of fl is presen-
ted. Let

fA = f+ (.14)

If only part of f'. say f, is presented. we obtain

•f+ = C,(f .f)g+ noise . (1.15)

The result is the entire response to the full fA with a reduced coefficient
plus noise.

1.4. Association

If we now take the point of view that presentation of the event e'
which generates the vector f" is recollected if

. -f" (-,,,g" + noise. (1.16)

Then the ot-diagonal terms

N c.go P. ().17)

may tie interpreted as Containing associalions between events initially
separated from one another.

For such terms he presCentaltion of event g' will generate not only g"
(which is equivalent to the recollection of e, I but also. and perhap% more
weaklk. go which shoull result with the preenltation of v". Thu. for

IL
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f AA fq - eN

Fig. 7. An idal a%%oCiatlon.

example, if gA will initiate some response. originally a response to e-, The
presentation of el when c,,,;' 0 will also initiate this response.

We can thus divide the association matrix A into two parts:

A x P ,,g '  - .I + ..4,I.8

where

:h = (A)d,,ct-nal ,- g X f (I.19)

• = (A ),,-d ,, -  C7,.g × (.2 )

The c,,, are then the direct recollection and association coeticients. Some
of the consequences of the properties discussed in the last two sections
are the subject of some of our cuirent and continuing research and are
further discussed in Subsection 1.5, 1.6, and 1.7.

1.5. Network modificatiox. learmng

The properties described above require coherence among many svnap-
tic junctions. We therefore ask: According to what rule and by what
means do neurons modify themselves to form a matrix of junctions with
the properties of memory'? A major effort of our research is to elucidate
this question.

Such a modification rule can be cast in the form of stochastic or
deterministic differential equations dependent on variables that we clas-
sify as local, quasi-local and global.

Ai,, P(q,. t',. t. .... .). ( 1.21 )

l)itferent such rules lead i various types of memories. In the following
sections ,everal rule, rule,, Ior plasticity will be examined. The recollec-
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tion-association memory (1.18) described above is obtained from the
following simple bilinear modification rule:

SA,, gf (1.22)

This tSA,, is proportional to the product of the differences between the
actual and the spontaneous tiring rates in the pre- and post-synaptic
neurons i and j. (This is one realization of Hebb's form of synaptic
modification (Hehb (1949)).) The addition of such changes to A for all
associations g" x f" results tinally in a mapping with the properties
discussed in the previous sections.

Synaptic modification dependent on inputs alone, of the type already
directly observed in Aplysia (Kandel and Tauc (1965) Castellucci and
Kandel (1974)) is sufficient to construct a simple memorv--4ne that
distinguishes what has been seen from what has not. but does not easilN
separate one input from another. To construct a mapping of the form
above, however, requires synaptic modification dependent on information
that exists at different places on the neuron membrane, what we call two
(or higher) point modification.

In order that this take place, information must be communicated from.
for example. the axon hillock to the synaptic junction to be modified. This
implies the existence of a means of internal communication of in-
formation within a neuron-in the above example in a direction opposite
to the flow of electrical signals (Cooper (1973)). The junction ij. for
example. must have information of the firing rate f, (which is locally
available) as well as the tiring rate g, which is somewhat removed (Fig. S).

One possibility could be that the integrated electrical signals from the

,, --- . - I .. " ~-- --4 _. -I

INFORMATION FLOW

- - °SIGNAL FLOW

' 1
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dendrites produce a chemical or electrical response in the cell body which
controls the spiking rate of the axon and at the same time communicates
(by backward spiking. for example) to the dendrite end, the information
of the integrated slow potential. Another possibility is that dendritic
shafts act as somewhat independent units so that the local integrated

dendritic potentials interacting with the potentials incoming to the in-
dividual spines combine to produce changes in spine shape and resistivits.
Such changes might be observable in anatomical studies and are the
subject of one of our current research projects.

One might guess that once the physiological mechanism for such
communication was available. different types of two (or higherl point
modification evolved in various ways. It is tempting to conjecture that a
liberating evolutionary step was just the development of this means of
internal communication that, coupled with the ability of synapses to
modify, created the possibility for a new organiiation principle.

There is a variety of means by which the coefficient A, might be
modified, given that the necessary information is available at the i/th
junction. Among these might be growth of additional or change in
electrical properties of dendrite spines, addition of new synaptic junc-
tions, activation of synaptic junctions previously inactive. changes in
membrane resistivity and/or changes in the amount of transmitter or
receptor in a synapse. Although some structural changes have been
observed, there is little evidence vet to choose among the possibilities

mentioned above. This is the subject of much current research.

I.05. Passitve 11odification

To make the moditicarton

SA t' (.23)

by any of the mechanisms suggested above, the system must have the
signal distribution f[ in its F bank and g" in its G bank. It is easy to
obtain f" since this is mapped from either an external event or is some
internal pattern. But to get gK in the ( bank is more ditficult since this in
effect is what the system is trving to learn.

In what we denote as active learning, the system is presented with some
1 . searches for a response, and is given sonie indication of when it is

coming closer. When by some procedure or another it finds the 'right'
response, say g-, it is 'rewarded' and responds to the reward b, printing
into A the information:
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.5A,, = iTg-,ft . 0I.24)

(The information is available at the time of the reward since at that time
the system is mapping f'. responding g-. and thus has just the desired
spiking frequencies in the F and G banks of neurons.) Active learning
probably describes a type of learning in which a system response to an
input is matched against an expected or desired response and judged
correct or incorrect.

However. there is a type of learning that does not seem from visible
external indications to require this type of a search procedure. It is the
type of learning in which, as far as can be seen. an animal is placed in an
environment and seems to learn to recognize and to recollect in a far
more passive manner.
To arrive at an algorithm which produces what we call passive learning.

we utilize a distinction between forming an internal representation of
events in the external world as opposed to producing a response to these
events that is matched against what is expected or desired in the external
world.

The simple but important idea is that the internal electrical activitY that
in one inind signals the presence of an external event is not necessarily (or
likely to be) the sane electrical activitv that signals the presence of that
same event for another mind. There is nothing that requires that the same
external event be mapped into the same neural patterns by different
animals. The event e" which for one animal is mapped into the signal
distributions f] and g'. in another animal is mapped into f'" and g". What is
required for eventual agreement between animals in their description of
the external world is not that electrical signals mapped be identical but
rather that the relation of the signals to each other and to events in the
external world be the same (Fig. 9.).

If we now allow the output of a cell to be determined be the input to
that cell and the already existing synaptic junction strengths. as well as by
possible noise-like fluctuations (making no prior requirement on what the
output should be). we arrive at a mathematical formulation of what we
call passive modification (Cooper (173)):

,S \. IZ,/" 0.,.\,i;•( .2i)

It has been shown in the abo c reference that with a Nimple form of
rslIl C modification a sVte eeneraiteS its own responC to inconlllt
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e lernal flhril and to each other

patterns in such a way as to construct distributed mappings that can
function as memories capable of recognition and association. To a limited
extent these mappings can be regarded as internal representations of what
has arrived from the outside world. It has further been shown (Nass and

Cooper (1975)) that a form of passive modification can result in the
formation of feature detectors or threshold response units which learn to
respond to repeated patterns ce n in the absence of any initial bias. Such
units can serve to perform sonic nonlcinar separations.

More detailed discussion of the c'tuscquences of these nodificatton

procedures and the propertics of soic of the Imappinigs that result is

contained in the references cited above. The application of these ideas to

,isttal cortical cells is discussed in Section 2.
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1. 7. I-allmr abstraction

Sonie networks of neurons must ha e the ability to extract meaningful
information from a broad range of input environments. In the case of
serorv input to cortex, for example. the system',, range is internall\
constrained b' the response characteristics of the sensorv neurons and
externally by the nature of the stimulus environment. This StiuI1Uhls
environment depends a great deal upon the nature of the creature's
surroundings. Precise statements regarding aspects of environmental
strtcture relevant to mathematical models are given in the next section.

Consider the recognition-association memory (1.1,")described above. In
actual experience, the events to which the system is exposed are not in
general highly separated nor are thev independent in a statistical sense.
There is no reason, therefore, to expect that all vectors, f". printed into A
according to the modification rule (1.25) would be orthogonal or even
very far from one another. Rather it seems likely that often large
numbers of these vectors would lie close to one another. Under these
circumstances, a distributed memory might be 'confused' in the sense that
it will respond to new events as if they were old. if the new event is close
to an old one. It will 'recognize' and 'associate' events never, in fact, seen
or associated before.

The memory will tend to categorize stimuli on the basis of the past
history of tIke system. For example. suppose a number of vectors in the
memory are of the form

f" f' ,#r (I.261q

where ni varies randomly: I" will eventually be recognized more strongly
than any particular f' actually presented. This. of course, is reminiscent of

ps_ chological properties called 'generalization' or *abstraction'. Front
,t'ch a point of view, eneralization grows from the loss of detail of
individual instances. a trade-olT that seems characteristic of distributed
s\stems.

We have here an explicit realization of feature abstraction. This
generalizing quality might be described as the result of a built-in directive
for inductive logic. The associative memory by its nature takes the step

1" ,in. r'............W n'. ,.,,,f(1.27)

which one perhaps attempts to describe in laniuae as passing from
pairtictilars: cal'. catf. C: t . . to general: cal.
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How fast this step is taken depends on the parameters of the system.
By altering these parameters. it is possible to construct mappings which
'arv from those which retain ll particulars to which they are exposed. to
those which lose the particulars and retain only common elements--the
central vector of any class.

In addition 1to 'errors' of recognition, the associative memory also
makes 'errors' of association. If. for example. all (or mans,) of the vectors
of the class {/" }. defined as a class of vectors not very separated from one
another, associate some particular go so that the mapping contains terms
of the form

A

. -, f, P"E {f} . (1.,,)

with c n, over much of v I . 2. K. then the new event e' l which
maps into P,- also in the class {t"} will not only be recognized, the inner
product (.l . RfK. I) being large, but will also associate g . *.if

'
.

=

t .. ' as strongly as any of the vectors P ... fk explicitly contained in
(1.28).

If errors of recognition lead to the process described in language as

going from particulars to the general, errors of association might be
described as going from particulars to a universal: cat' meows. cat:

meows . . all cats meow.

Whatever efliciacv this inductive process has will depend on the order
of the world in which the animal system tinds itself. If the world is
properly ordered, an animal system that 'jumps to conclusions' in the
sense above nav be better able to adapt and react to the hazards of its
environment and thus survive.

B\ a sequence of mappings of the form above (or by feeding the output
of A back to itself) one obtains a fabric of events and connections that is
rich as well as suggestive. One easilv sees the possibility of a flow of
electrical activity influenced both by internal distributed mappings and
the external input. This flow is governed not only by direct association
coefficients c- (which can be explicitly learned) but also by indirect
associations due to the overlapping of the mapped events. One can
ilagile 'itLations arising in which direct access to all event, or i class ot
,.enis. as, been Iot \ ,hile the e\istence of this cu ent or class of events ill
A influences the flom. of electrical actiit\.

One problem in making the ident iti;t lol', suggested aboe is that such
sxVtem, tend to form exessm,,clv lamrLc all-encompassing classes. Bit
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means have been de ised to limit the extent of class formation In fact
such mappings can -e made to separate classes its well its to unite them
(Kohonen (1977): Cooper, liberman and ()ja (l4979). ((I()
Bienenstock. Cooper and Munro (I 9821. ( NI I).

Another problem is a direct consequence of the assumption of the
linearit\ of the systen. An' st;me is generallk a superposition of m ilous
vectors. Thus one has to find a nleans by which events-or the entities
into which they are mapped-are distinguished from one another.

There are various possibilities- neurons arc so non-linear that it is not at
all dilicult to imagine non-linear or threshold devices that V ould separate
one vector from another. Such separation processes compliment general-
ization processes in that they bring out the differences in an input
environment while generalizing cells tune to the component most common
to the constituent stimuli. But the occurrence of i %ector ii a distributed

menorN in in set of signals over a large number if neurons each of s, hich

is far from threshold. A basic problem, therefore. is ho%. to associate the
threshold of a single cell or a group of cells with such a distributed signal.
One way this might come about has been shotl hN Nass and Cooper
(1975). Another possibility is the stochastic process recently discussed tv
Hoptield (1982).

In addition to the appearaice of 'pontifical ' cell, or groups of cells.

there will be a certain separation of mapped signals due to actual
localization of the areas in which these signals occur. For extmaple. optical
and auditory signals are subjected to much processing before the\ act u-
aIlly meet in cortex. It is possible to imagine that identification of optical
or auditory signals (ats optical or auditory) occurs first from where the\
appear and their immediate cluster associations. Connections between
an optical and an audkory event might occur as suggested in Fig. 1I.
Although the systems described abo,,e arc relativel\ primitive. the\
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stLiggest yarn lus p')N chological properties and ire usedI in out rescarch to
construct models at sontic iispccts of beha\ iar and l:(iletimge learnint!.

2. Application to iisual cortex: Comparison of theor% %0ih experinment

. SuiainrY of relat1ed visu al (()rwA C speri a iental dao 

The discussion above leads to a central issueLI: what is thle principle ot
local org~anizationi that. acting in at large netvo(rk. can produce the
observed complex behavior of higher mental processesc,. There Is no0 need
to assume that such a mechanism-believed ito invole synapt ic
mo1dificaItion--operates in exactlv thle samec marnner inl all portions of the
nervouN systemn or in all animals. Howc, er. one ss ould hope that certain
fundamental similarities exist so that at detailed analysis of the properties
of this mechianiisnm ii one preparation ss ou Id lead to sonc conclusions thfat
arc gerieralk applicable. We arc interested in isua;l cortex becauise the
vast aniount of experiniental work done in t his, area of thle birainl-
particularl\ area 17 (it cat and mnonkev---stron0l\ Indicate that one is,

obscr% iiig a process oit NN iaptic Iiiodificatioii depenideiit of the Information
locallyV aid globall1V ailabikle to tile cortical cells,.

E~xperimenital work of thle last igeneration. bin ~ning, with thle pathbireak-
Iris work of Hubiel arid \Vicel (N 59, I1902). has shown t hat there exists cells
in visual cortex (areas 17. 18. and 19) of the adult cat that respond ill a precise
arid hlighly tuned fashion to external patterns. in particular bars or edges ot

gciveli orienitat ion and moving in al givriI direction. Miuch further work
(B lakemore and Cooper 0 970t): Blakeriiorc and Mitchell (1 973) Hirsch and
Spirielli (I 971): Pettigrew anid Freemni (1973)) has beeni taiken to indicate
that the nuriber and response characteristics of such cortical cells can bec
modified. It hats been observed~ in particular (hunbert and Buisseret (1975):
Blakemnore arid Van Sluvters (1975): Buisseret and hubert (1976); and
Fregtiac and Inihert (1977. 1978)). that the relative number of cortical cells,
that are highly N pecific in their response to visual patterns varies iii a very

striking way' with the visuial experience of the aiiimal during thle critical
period.

Most kittens ti rst open thtir r eN ait thle end of the ti rst wkeek after birth
It Is riot easy, to assess whethter or riot orieritation selectis e cells exist at
thiat time in striate cortex: few cells are visuaill responriis. and thle
responses, mrain characteristics, are cerieralls slugish ~ness' arid atitcalil-
jity I cose r. it is quite genria~lly alrrei 0131i asN soon as Cortical Mell are
ielrihs% %istiall stininlmied (vee. at 2 \%eeks), sonic tirc orieitatiori selee-
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Ii' i.\~ i~ic~i lei pr1cl ion'. %istil c\Ipcfcc otl tile anrurlal (ct. I hih1cl and
\k Ic'.cl kl(ji,3L Ijl ikcIrrrorc iridj \anIl Slrtcrs ( 1'1'";) Brii.ccrt tind Inrhcrt

)l lintaion '.lclti Itl, dc% chop'. aind cstcird'. to all \. vial ceills inl area 17
1t tile .irrirrai is lcarcd. and bchal c'. frciv Ii a normal rsumrI crrmi-on*

irictit I NR coinpictc ',pcrticaitiiirr and Tinral hinlociarrtm, (about Sit".

o1rsiiii ccii') arc leiched at about hi %ccks, of ;irc (1-rciniac arid

Inrbcrt (11)7S)). I iowc'. cr. it tile aimial Is, reared Inl tOtal fakcs rom
birth to tile aicc otl 0 wccks (D), none or fc\% orientation .ciccti\-c cells.
arc thenii ccordcd (from 0iit) dcpcndini! onl tlic author'. and tilec

ciass"iticatloll clIrcria : how)%c~cr. thc(. distribution (of ocular domrnancc

SecnrS trIialCOCtd tilakcriorc anid Mlitchell (1l973): irnbcrt and liturscrct

1975) 1~ Mikcmllorc and Van S Iiut I 17) I iuis'crct and( incrt ( 19701:
I .cscnthal and Hiprch (I I)O) * Frci~nac and ircri (19~78)). lIn animals.
'Mlro'.c C\ Cbi'. 1havc b)ccn '.lured at birth. and %hInch arc thus hriocuiar\

dcprrx cd ot pattern \isiori (1I) I. a1 '.orricohat igh!Icr proportion (fromt I-

to 1;0".) f (li thcIsiiallk cciablecCN ccl' ar,'trill orientaion '.clccti%c it 0i

%kccks, (anid cl.cii hcv~ord 2-1 mronth,, of auc a n d tile proportion ill

L:biroctilmi kccli'. is, lcs'. than normal (Wiecsc anid I ltil l t Wh,: Hlakcmorc

aMid Vair Slii~tcrs I1075). Kiati .iiid Sp)car 09-6). 1 ccrithal arnd H ir'.ch
Wa197-i', ct al1.. (111).

IrIrbcrt arnd Buis'.crct liarsc clasittcd cortical cell,, that rcsponld ro, 'istral

.11111 tiirlint thrcc rop-asc imm rratuiire, and .pc.6nc. Vhci\, I-cg-

nac ;Ii(d Irnflct (taic ncasnirei tilicai~tis c prtipomtoris O tltc'.c groups

lcpcniimii! till tile oisual twycricticc of tiic aninual. The dlistributioni utf rhc,

diticrcnt cel t\pc Ii thircc auc grups i'. '.11011 Iii ii I Ii.
I:viriiiiatoi ot thcse rcsuilts. Mhuch \%etc obtinerd tront thl. .fk -, of

i1tSI) cels, shlo." that ccii'.;\11 ,a inc '.orrc oft rie Iir llo spccitic c 1 hi'

propcr-tics oif aduit visuial cortical ricuronls. cspcciallv concernirw or(n-
tatroir sclctil 1k arc prcscrt Iii tiic c;irlicst stagcs, of posr-iiatal dIcs clip-

irucuit Iiidcpciiciit urf visuial cxlpcriciicc (lrcuiiac arid ilbcrt (19~77. 110/8)).

I \~~c.immil c~pcricricc bct'.ccr 17 arid - a11 & ,is critical inl dctcr-

iiictice cl ollitiori oftrhc'.c Cel',, . 11I~ .\tna' Carrcd Tnornallv 'howcd a

nirakc i niiccac Ii tiie iriiricr of ,pccitic ccli' as, comipared \%til
i'pctci 1' pcriod b)CtwCCrI 17 ;1121(1 ' '.ii.ral tiiciilt to rc~icli

file noi iii idiilt lc~cl ot '.pccilrtso IiC iclC% 1r i trnIic tfirl arri1M~it

r'C.ircd In trc dlL A statistical :riis.sOf this' C\0liit01i. p1crbrrmIcd b\

hecitnaic (1"S ,h'l .imrs -ciarl% tie '.rrkirrg dcpciidIciICC Of tile ratio Of

O.larl tiiiicdl1 t oiil, tiled kCciN' dcpcri.IdincV on1 111C c'\rICItCc' lt the
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III addition. as has been shlown h Imibcrt and IBuissect (1975). 13(115-

Nerct and Inibecrt ( 197wu andl( 13isseret el al. ( 1978) as little as six hours otl
normal %1s4ua1 C\IspelnCe at about1 42 da' sOf iee! cani alteri i strikilig
lash ion the ratio o1 specific or inithaturc to apci cells (i.-2.). Trhat

suich I Quilt \istial especrience call ChMIi'c thle ttilin , ratios so mnarkedly is
clear evidence of the ,rcrat plasticity of these cortical cells atl the heii~t of
fie critical peruid.

O f a1 lll ul depris itin paradigmvs. pulting itie ec.e inl a comeitioe
Ids antaiLe overi tile other has probal the most strikIngU conISequITen s. If
monocular lid-sutlure NMis pefre ~II citical' periodI (ranging
fromt about 3 .%eeks to about 12 weeks)I. there is, a rapid loss Of hIno0-
en laritv to the protit of the open es e (Wiesel and H uhel (1 9h3. 1965)). At
this stage, opeingli thle closed eeand closini! tile experienced one nms
result ill ia complete rev.ersal of ocular dominanceTIC (Blaketrore anld \'an

Slnterst, (1974)). A disruption oif blinocularits that does not favor one of
thle evesC mayle otid.for examiple. h\ provoking anl artificial
qtrabsl"Iu (1 I)Cib mid \Vtescl ( 196s)) orI h\ alt Ilernating monocuilar

iinCltisiniti1 Ml ich .,~"111eses ;itt equal atliniilit of visulal stimltionl
Blakemore (1070)). In1 \%hat lollosss. \%e call tfisl, unorrelatenl rearing!

'[Ihiesi. results seemi to It,, to pro\ ide dict e\ idecnee for thle modiliabilit
of 11te reponlse nof sIInel cells in thle cortex ni aI hlieher mautnial aeeordin t

Ill its siilh experienceIL DI )pennhne unil MIshethior not pauitted \is11;l
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II Ill IV
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121 50 36 187

Fig. 12. Distribution in r-rcentage of the three Iypes of visual cortical units (area 17)

recorded after h hours of %isual csqxrure ,or ,-,week-old dark-reared kittens. Columns: 1.

dark-reared kitten . IV. normally reared kittens During 8 hours of exposure, conditions
%ere: in II and Ill. freely moving. in Ill. 12 hours in the dark followed the h hours of

exposure Numhers ot visual cell% recorded are given under each column. Specific cell%

(cross-hatched) are activated by oriented stimuli within a sharp angle (<-N). Immature cells
(diagonal stnpes) are activated by oriented stimuli within a larger angle (< t.o). Nonspecific

cells (open) are activated by nononented stimuli moving in any direction. A statistical analysis

reveals no significant difference in the percentage of immature and specific units between

columns Ill and IV. Therefore it may he that for a b-week-old dark-reared kitten, a 6-hour
exposure to isual input followed by 12 hours in the dark is sufllicient to produce a distribution of
cortical cells similar to that of normally reared animals. (From Buisseret et al. (1978).)

information is part of the animal's experience, the specificity of the
response of cortical neurons varies widely. Specificity increases with
normal patterned experience. Deprived of normal patterned information
(dark-reared or lid-sutured at birth. for example) specificity decreases.
Further, even a short exposure to patterned information after six weeks
of dark-rearing can reverse the loss of specificity and produce an almost
normal distribution of cells.
We do not claim and it is not necessary that all neurons in visual cortex

be so modifiable. Nor is it necessary that modifiable neurons are especi-
ally important in producing the architecture of visual cortex. It is our
hope that the general form of modifiability we require to construct
distributed mappings manifets itself for at least some cells of visual
cortex that are accessible to experiment. We thus make the conservative
assumption that biological mechanisms, once established, will manifest
themselves in more or less similar form% in diflerent regions. If this is the

- -- - ~ - - I
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case. modifiable individual neurons in visual cortex can provide evidence
for such modification more generally.

2.2. Modification of cortical svnapst's: global and local variables

To apply the general theoretical ideas of the previous section to visual
Cortex, we introduce the following notation. Consider a cortical cell as
shown in Fig. 13:

c, tt

-. -d,(t)

Fig. 13. A model neuron which processes the input d(t) according t o the sy-naptic weights
m(t) to yield the response ct).

Replacing equations (1.1) and (1.2) we write

c~t) => ntd().(2.1)

where c(t) is the output at time t, priji() is the etlicacv of the jth synapse at
time t, d,(t) is the jth component of the input at time t (the firing
frequency of the jth presynaptic neuron) and Z, denotes summation over
j, i.e.. over all presynaptic neurons. We can then write:

In (t) = (MIt(t), P1(t). - ,MN()-

di(t) =(d,(t). t 2 (t). dN(t)) . (2.2)

c (t) In (t) d (t)

m,(t) and dl(g) are real-valued vectors, of the same dimension. N. i.e.. the
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number of ideal synapses onto the neuron, and c(t) is the inner product

(or 'dot product') of ni(t) and d(t). The vector of synaptic efficacies at
time t. rn(t), is called the state of the neuron at time t. (Note that c(t) as
well as all components of d(t) represent firing frequencies that are

measured from the level of average spontaneous activity, thus they might
take negative as well as positive values, n,(t) is dimensionless.)

We can now formulate the question: What is the local principle of
organization, by asking what is the change in time of m,(t) (the jth

synapse onto the cortical cell. receiving inputs d,(t)) and on what variables

does this depend.
The various factors that influence synaptic modification may be divided

broadly into two classes-those dependent on global and those dependent
on local information. Presumably, global information in the form of

chemical or electrical signalling influences most (or all) modifiable junc-
tions of a given type in a given area in the same way. Evidence for the

existence of global factors that atlect development may. for instance, be
found in Kasamatsu and Pettigrew (1976. 1979). Singer (1979. 1980) and
Buisserec et al. (1978), Baer and Daniels (1983) and

Bear et al. (1983). On the other hand, local information
available at each modifiable synapse can influence each

junction in a different manner.

An early proposal as to how local information could affect synaptic

modification was made by Hebb (1949). His, now classical, principle was
suggested as a possible neurophysiological basis for operant conditioning:
'when an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it. some growth process or metabolic

change takes place in one or both cells such that A's efficiency, as one of
the cells firing B, is increased." Thus the increase of the synaptic strength
connecting A to B is dependent upon the correlated firing of A and B.

Such a correlation principle has inspired the work of many theoreticians
on various topics related to learning, associative memory, pattern recog-

nition. organization of neural mappings (retinotopic projections) and
development of selectivity of cortical neurons.

It is fairly clear that in order to actually use Hebb's principle one must

state conditions for synaptic decrease as specific as those for synaptic
increase: if synapses are allowed only to increase, all synapses will

eventually saturate; no information will be stored and no selectivity will

develop (see for example Seinowski. (1977a.b)). What is required is thus a

complementary statement to Hebb's principle giving conditions for

synaptic decrease. Such a statement is given in what follows.
For a general form of synaptic modification, we write:
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pi, = F(d,. .. Pi,; d, ... i. ... c, X .... Y .... Z ), (2.3)

where the first set of variables d.... Pi are what we call local, the second
set of variables dk ... e what we call quasi-local, while the third set what
we call global. Local variables such as d,. . . in, are those directly at the
synaptic site. Thus any information would be directly available. Quasi-
local variables are those such as d,... c. e. These are physically connected
to the synaptic site by the cell itself. However, in order that the in-
formation they contain be available, some means of internal cellular
communication must be assumed. Note that we include among these such
variables as e (the averaged activity of the cell over time). Global
variables are called X ... Y... Z.

In work done in the past few years we have explored a form of synaptic
modification that can be written as follows. Referring to the jth synaptic
junction:

ft, = O(c. )d, - em,. (2.4)

Note that as in passive modification, the output of a cell is determined by
the input and the already existing synaptic strengths as well as by
noise-like fluctuations. The precise form of 4) is not critical as long as it
has certain general characteristics. Cooper. Liberman. and Oja (1979),
(CLO) showed that if the function 4) goes through zero then the sharp-
ness of the tuning curve is altered by the visual experience of the animal
in agreement with what is observed. This modification might be called
"Hebbian' when the output is above the modification threshold, OM. and
"anti-Hebbian" when the output is below this threshold. The function, 4b.
is also assumed to have a dependence on global variables, not explicitly
written. CLO thus assumed that the modifiability of a synaptic junction is
dependent on events that Vccur at different parts of the same cell and on
the rate at which the cell responds. They proved several theorems which
show that with this form of passive modification there is an increase in the
specificity of the response of a cortical cell to visual input (sharpening of
its tuning curve) when that cell is exposed to stimuli that are the result of
normal patterned visual experience and a loss of specificity when that cell
is exposed to noise-like input, such as might be expected when an animal
is dark-reared or raised with eyelids sutured. Specificity can be regained.
however, with a return of input due to patterned vision.

In addition to this basic behavior, simulations and mathematical results
on the asymptotic states of the neural network show some more subtle
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phenomena that depend upon values of system parameters. Of note are
the rate of decay (forgetting per unit time), the strength of selective
modification of synaptic junctions, the interaction of modifiable with
non-modifiable synapses, and the different statistical properties of noise
factors.

The reason for the increase of selectivity is the crosso-ler of the 4,
function from the negative to the positive region at the modification
threshold 0f. -This was- recognized-by CLO to be associated with some
property of the cell, possibly the average firing rate. This idea was
enlarged and extended by Bienenstock, Cooper and Munro
(1982) (BCM) and applied to a great variety of situations
in visual cortex. The essential idea of BCM was
to allow 3. to vary non-linearly with the average activity of

the cell, J. Doing this they achieved a variety of desirable properties as
well as a theoretical structure in excellent agreement with available
experimental data. The crucial point in the choice of the function 46 (c, OE)
is the determination of the threshold 0tq(t), i.e., the value of c at which
d(c. e) changes sign. A candidate for 0f(t) is the average value of the
postsynaptic firing rate. e(t). The time average is meant to be taken over
a period T preceding t much longer than the membrane time-constant 7
so that e(t) evolves on a much slower timescale than c(t). This can usually
be approximated by averaging over the distribution of inputs for a given
state m (t)

J(t) = ,n(t) ,. (2.5)

This results in an essential feature, the instability of low selectivity points.
(This can be most easily seen at zero selectivity equilibrium points, where,
with any perturbation. the state is driven away from this equilibrium,
whatever the input.)

Therefore. if stable equilibrium points exist in the state space, they are
of high selectivity. However. do such points exist at all? The answer is
generally yes provided that the state is bounded from the origin and from
infinity. These conditions, instability of low-selectivity equilibria as well as
boundedness. are fulfilled by a single function 6(c, e) if we define 6h,(t) to
behave as a nonlinear function of i(t), for example. a power. The
exponent should then be larger than I. The final requirement on d, (c. e)
thus reads:

sign ((c. e) = sign (c - (4)'e) for c >0. (2.6)

¢(().)= 0 for all e.
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where co and p are two fixed positive constants. The threshold 0.%, ()
('~Ic,Y' thus serves two purposes: allowing threshold modifications when

eC 0 as well as driving the state from regions such that e 4 c0I or E > co.
The process of synaptic growth. starting near 0 to eventually end in a
stable selective state. may be described as follows. Initially. e < co hence
0k(c, e~) > 0 for all inputs in the environment: the responses to all inputs
grow. With this growth F' increases, thus increasing Om. Now some inputs
result in postsynaptic responses that exceed Om. while others-those
whose direction is far away (close to orthogonal) from the favored
inputs-give a response less than Om. The response to the former con-
tinues to grow while the response to the latter decays. This results in a
form of competition between incoming patterns rather than competition
between synapses. The response to unfavored patterns decays until it
reaches 0, where it stabilizes, for fh(0. e) = 0 for any e. The response to
favored patterns grows until the mean response e is high enough, and the
state stabilizes. This occurs in spite of the fact that many complicated
geometrical relationships may exist between different patterns. i.e.. that
they are not orthogonal since different patterns may and certainly do
share common synapses.

Any function. (b, that satisfies (2.6) will give these qualitative results.
The precise form of this function (e.g., the numerical values of p and co)
will aff ect the detailed behavior of the system such as rate of convergence.
height of the maximum for a selective cell as well as a variety of other
more subtle effects. We are presently investigating the consequences of
various detailed assumptions concerning the form of 0(c, e) and compar-
ing these with existing and proposed experiments. In doing this we hope
to arrive at a detailed understanding of the form of the function that
controls synaptic modification.

We note also that with this form of modification, the control of 0,% by a
global signal (in addition to e) could produce the following results: If 0"
is set to he very large the cell's response would diminish. This will result
in a behavior that is like that described by Eric Kandel in Aplysia
habituation experiments. If 0h,f is set very low the cell will rapidly increase
its response to a stimulus. This could he related to a type of sensitization
in which the sensitizing signal has the effect of resetting 6

Mt to a very low
level. For a variable 0,., as will be shown below applied to visual cortex.
one gets increasing and decreasing of selectivity such as those seen in
experimental results over the last generation. We thus have the possibility
that a single mechanism of modification, functioning in slightly different
ways can account for a variety of experimental data in both invertebrates
and vertebrates.
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values in the space of inputs to the neuron V. The variable d represents a
random input to the neuron, and is characterized by its probability
distribution that may be discrete or continuous. (During normal
development, the input to the neuron or neural network i is presumably
distributed uniformly over all orientations. In abnormal rearing con-
ditions le.g., dark rearedi the input during development could be different
from the input for measuring selectivity. How this should be translated in
the formal space RI will be discussed later.) This distribution defines an
environment, mathematically a random variable d. Selectivity is estimated
(before, or after development) with respect to this same environment.
Obviously. Seld(S) always falls between 1) and I. and the higher selec-
tivity of .N in d, the closer Selt(X) is to 1.

We analyze the behavior of (2.4) for r = 0. The behavior depends
critically on the environment, that is. on the distribution of the stationary
stochastic process, d. Two classes of distributions may be considered:

(a) Discrete distributions (K possible inputs dl- . d., d1): These are
generally assumed to occur with the same probability 11K. The process d
is then a jump process which randomly assumes new values at each time
increment. The vector m is (roughly) a Markov process.

(b) Confinuots distributions: in work of BCM, the only continuous
distribution that is considered is a uniform distribution d over a closed
I-parameter curve in the input space RN. Although the principles under-
lying the convergence to selective states are intuitively fairly simple.
mathematical analysis of the system is not entirely straightforward, even
for the simplest d. Mathematical results, obtained only for certain discrete
distributions, are of two types: (1) equilibrium points are locally stable if
and only if they are of highest available selectivity with respect to the
given distribution of d, (2) given any initial value of m in the state space.
the probability that rn(t converges to one of the maximum selectivity
fixed points as t goes to infinity is 1. Results of the second type are much
stronger, and require a tedious geometrical analysis. Results are stated
here in a somewhat simplified form. For exact statements and proofs, the
reader is referred to B3ienenstock (1980) or to BCM (1982). To illustrate.
we study the simple case where d takes on values on only two possible
input vectors di and d2, that occur with the same probability and let r (I
in (2.4):

P1d = dI = Pfit = ,-1 = 1/2.

Whatever the real dimension N of the system it reduces to two dimen-

ILI
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Fig. 14 A function %atsftng condition (2.)). The three diagrams show the behavior of
0(c. e) as a function of c for three different constant values of e. In each diagram, the solid
part of the curve represents; (c, e) in the vicinity of ,. which is the relevant part of this
function.

23. Some mathemarical results

Seec' tiv

It is common usage to estimate the orientation selectivity of a single
visual cortical neuron by measuring the half-width and half-height--or an
equivalent quantitv--A)f its orientation tuning curve. The selectivity is
then measured with respect to a parameter of the stimulation, namely the
orientation, which takes on values over an interval of 180 ° . In our work.
various kinds of inputs are considered, e.g.. formal inputs with a parameter
taking values on a finite set of points, rather than a continuous interval. It
will then be useful to have a convenient general index of selectivity, defined
in all cases. We propose the following:

mean response of A' with respect to 1 (27)maximum response of S' with respect to d

With this definition, selectivity is estimated wsith respect to. or in an
entironmtrent for rite neuron, that is. a random variable d that takes on

'--
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sions. (Any component of in outside the linear subspace spanned by d'
and &2 will eventually decay to 1 due to the uniform decay term.)

Analytic results in two dimensions

It follows immediately from the definition that the maximum value of
Sela(in ) in the state space is 1/2. It is reached for states in which give null
response when d' comes in (i.e.. are orthogonal to d') but positive
response for d:-or vice versa. Minimum selectivity, namely 0, is
obtained for states in such that in • = • d. Equilibrium states of both
kinds indeed exist.

Lemma 1. Let df' and d2 he linearly independent and d satisfy P[d = d
Pid = d-] = 1/2. Then for any (h satisfying (2.6) the systen (2.4) admits
exactly 4 fixed points. in", in'. in -. and in '- with: Sel(M")= Seln(m '2) (,
and Sela(n ) = Sela(m ) 1/2. (Mere the superscripts indicate which of the
d are not orthogonal to m. In" is the origin.j Thus for instance in' • d - 0,

di •d = 0.)

The behavior of the system depends on the geometry of the inputs. in
the present case on cos(d'. d-). The crucial assumption that is needed
here is that cos(d' , d-) > 0. This is a reasonable assumption which is
obviously satistied if all components of the inputs are positive, as is
assumed in some models (Von der Malsburg (1973): Perez et al. (1975)).
We may then state the following:

Theorem I. Assone thrit in addition to the conditions of Lemna 1.
cos(d' , d) > 0. Then in" and in" are unstable, in' and in: are stable, and
whatever its initial t'alue. the state of the system converges almost surely
(i.e.. with probability I) either to inI or to in.

Theorem I is the basic result in the 2-dimensional setting: it charac-
terizes evolution schemes based on competition between patterns, saying

that the state eventually reaches maximal selectivity even when the two
input vectors are very close to one another. Obviously this requires that
some of the synaptic strengths he negative since the neuron has linear
integrative power. Inhibitory connections are thus necessary to obtain
selectivitv. Some selectivity is also realizable with no inhibitory con-
nections-not even "intracortical' ones- if the integrative power is ap-
propriatelv nonlinear. However, whatever the nonlinearity of the in-

I
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tcgrative power. Theorem I could not hold for evolution equations based
on competition between converging afferents.

In Theorem i. we have a discrete sensory environment which consists
of exactly two different stimuli-a situation, although simple mathema-
tically, not often encountered in nature. It may, however, very well
correspond to a visual environment restricted to only horizontally and
vertically oriented contours, present with equal probability. Theorem I
then predicts that cortical cells will develop a selective response to one of
the two orientations, with no preference for either (other than what may
result from initial connectivity). Thus, on a large sample of cortical cells.
one should expect as many cells tuned to the horizontal orientation as to
the vertical one. So far, no assumption is made on intracortical circuitry.
We discuss this later.

The proof of Theorem I is based on the existence of trap regions
around each of the selective fixed points:

Theorem 2. Under the same conditions as in Theorem 1, there exists
around n '(in) a region Fm(F"), such that once the state enters F'(F2 ), it
converges almost surely to n '(in2).

The meaning of Theorem 2 is the following: once ti(t) has reached a
certain selectivity, it cannot 'switch' to another selective region. Applied
to cortical cells in a patterned visual environment, this means that once
they become sufliciently committed to certain orientations, they will

remain committed to those orientations (provided that the visual
environment does not change), becoming more selective as they stabilize
to sonie maximal selectivity. Theorems I and 2 are illustrated in Fig. 15.

It is worth mentioning that when cos(d' , d?) < 0, the situation is much
more complicated: trap regions don't necessarily exist and periodic
asymptotic behavior, i.e., limit cycles, may occur, bifurcating from the
stable fixed points when cos(d'. d2) becomes too negative (see Bienen-
stock (1980)).

H tigher dimensions

We now turn to the case where d takes on K values. The following is
easily obtained:

Lemma 2. Let d', &.. d he linearly independent and d satisfy Plid =

,PI1 ..... Pid = d"I = I/K. Then, for any vb satisfying (2.6). (2.4) admits
exact/v 2' fixed points wiith selectivities 0. I/K. 2/K .... (K - )/K. There
are K fixed points itn ...... ti of selecti rity (K - 1)/K.
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Mi F

Ig. 15. The phase portrait of equation (2.4) subject to condition (2.6). Th diagram shows

the trale'tor is of the %tale of the neuron starting from different initial points. The final ;le

of the m,,tern or m') is determined when the trajectory enters the corresponding 'trap*
(shaded) n region (F' or *).

Obviously, (K - I)/K is also the maximum possible selectivity with
respect to d. It means a positive response for one and only one of the
inputs. The situation is now much more complicated than what it was with

only 2 inputs: it is not obvious whether in all cases assuming that all the
cosines between inputs are positive is sufficient to yield stability of the

maximum selectivity fixed points. However, we may state the following:

Theorem 3. Assiome, in addition to the conditions of Lemma 2, that

d ...... d. are all ,iutttall\ orthogonal or close to orthogonal. 77Ten file K

fixed points of maximnzily selectivity are stable, and. whateter its initial
valleh, the stale of the sysfepn converges almost surely to one of tlemn.

- -. - - - S ___________
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The proof of Theorem 3 also involves trap regions around the K
maximally selective fixed points, and the analog of Theorem 2 is true
here.

Although the general case has not Net been solved analytically, as will
be seen later, computer simulations suggest that for a fairly broad range
of environments if & d' >0 , even if d ..... dA' are far from being
mutually orthogonal, the K fixed points of maximum selectivity are
stable.

Simulations suggest further that even if the d . .... . d are not linearly
independent and are very far from being mutually orthogonal, the
asymptotic selectivity is close to its maximum value with respect to d.

Analytic results in two dimensions and computer simulations in higher
dimensions indicate that the form of synaptic modification described here
leads, in general, to the evolution of maximum selectivity with respect to
the environment. We are tryng to extend the linear
analysis of stability performed in two dimensions to
higher dimensions. Stabilitv analvsis has been attempted
on systems of K dimensions for ,:Ienerai lIneariv
independent environment (Cooper et a 1. (1982). The
same arguments that lead to statements of stability in two dimensions
apply in this general case. However, the technical difficulty increases. The
problem may be stated in terms of a Kth order eigenvalue equation.
Local stability for an s = 1 fixed point will be assured if the eigenvalues of
the matrix of coetlicients of the K diterential equations are negative.
Similarly, the instability of points for which s I I would be characterized
by the presence of positive eigenvalues. Since this matrix of coeflicients
exhibits some symmetry, there is hope that the problem could be solved
analytically (for reasonible size K. the system of equations could be
solved numerically for special cases). This kind of analytic statement
would confirm that the states of high selectivity observed in computer
,imulations are indeed stable asymptotic states.

'/'li monocular problem: A .sininp e circular en 'iron n) I'lI

We now apply this theorv to the problem of orientation selectivity and
binocular interaction in primary visual cortex. The ordinary development
of these properties in mammals depends to a large extent on normal
functioning of the \.isual system (i.e.. normal visual experience) druring the
first few weeks or months of postnatal life. This has been demonstrated
many times by various experiments, based mainly on the paradigm of

S
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rearing the animal in a restricted sensory environment. We show that the
theory described above can account for both normal development and
development in restricted visual environments.

Consider first a classical test environment used to construct the tuning
curve of cortical neurons. This environment consists of an elongated light

bar successively presented or moved in all orientations-in a random

sequence-in the neuron's receptive field. Thus all the parameters of the
stimulus are constant except one, the orientation, which is uniformly
distributed on a circularly symmetric closed path. We assume that the
retino-cortical pathways map this family of stimuli to the cortical neuron's

space of inputs in such a way as to preserve the circular symmetry (as
defined below). Thus, the typical theoretical environment that will be
used for constructing the neuron's tuning curve is a random variable d
uniformly distributed on a circularly symmetric closed one-parameter
family of points in the space R". The parameter coding orientation in the

receptive field is, in principle, continuous. However, for the purpose of
numerical simulations, the distribution is made discrete. Thus. d takes on
values on the points d .... (1K.

The requirement of circular symmetrV is expressed mathematically as
follows: the matrix of inner products of the vectors d1... .dK is circular

(i.e.. each row is obtained from its nearest upper neighbor by shifting it
one column to the right) and the rows of the matrix are unimodal. A
random variable, d. uniformly distributed on such a set of points will be.
hereafter, called a circular ctiironient. Such a d may be roug'hlv charac-
terized by 3 parameters: N, K and a measure of the mutual geometrical
closeness of the ,l's, for instance the minimum value of cos(d'. d') over
the environment.

We are now faced with the diflicult problem of specifying the stationary
stochastic process that represents the time-sequence of inputs to the

neuron during development. To begin, we simplify the problem by giving
the stochastic process exactly the same distribution as the circular d

defined above. In doing so. we assume that development of orientation
selectivity is to a large extent independent of other parameters of the

stimulus, e.g.. contrast, shape, position in the receptive field, retinal

disparity for binocular neurons, etc. The elementary stimulus for a cortical

neuron is a rectilinear contrast edge or bar. Any additional pattern present
at the same time in the receptive field is regarded as random noise. (A

discussion of this point is given in Cooper et al. (1979)).

Simulations show the followinw behavior:
(I) lThe state converges rapdily to a fixed point, or attractor.

S
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(2) Various such attractors exist. For a given d and (b they all have the
same selectivity, which is close to its maximum value in d.

(3) The asymptotic tuning curve is always unimodal. One may thus talk
of the preferred orientation of an attractor.

(4) There exists an attractor in each possible orientation.
(5) If there is no initial preference, all orientations have equal prob-

ability of attracting the state. (Which one will become favored depends on
the exact sequence of inputs). This does not hold for envitonments which
are not perfectly circular, at least for a single neuron system as the one
studied here.
The system thus behaves exactly as expected from the results of the
preceding section.

The binocular problem: a more complex entironment

We now consider a binocularly driven cell. The tiring rate of the neuron
at time t is now given by

c(t) = m!{t). , /(t) + In,(t), d,(t). (2.8)

with evolution schemes for 'left* and rihand i, straightfor-

ward generalizations of (2.4). We have partitioned the input \ector space
into a left space and a right space- hence m goes to (itn,, m,) and d
becomes (dt. d,). Since d, and d, can be independent, the topology of the
environment is potentially more complex.

Various possibilities exist for the input (d, d,): one may wish to
consider normal rearing Zboth dt and d, circular and presumably highly
correlated), monocular deprivation, binocular deprivation, and so on. The
vector ((,, d,) is a stationary stochastic process, whose distribution is one

of the following, depending on th! experimental situation one wishes to
reproduce:

Normal Rearing (NR):
dl(t) = d,(t) for all t, and d1 is circular. (Noise terms that may be added

to the inputs may or may not be stochastically independent.)
Uhcorrelated Rearing (UR):
,ll and 1, are i.i.d. (independent identically distributed): they have the

same circular distribution, but no statistical relationship exists between
them.

Binocular Deprivation (BD):
The 2N components of (ill, 1,) are iAd.: d, and 1, are uncorrelated

noise terms.
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Monocular Deprivation (MD):
d, is circular, d, is a noise term: d, = n.

In the NR case, the inputs from the two eyes to a binocular cell are
probably well correlated. We therefore assume that they are equal, which
is mathematically equivalent. The BD distribution represents dark dis-
charge.

Uncorrelated or strabismic rearing (UR) involves presenting fully two
independent circular environments (a 'toroidal' environment). The final
state can be either monocular and specific or binocular and specific with
no correlation between the patterns perferred by the two eyes.

The results of binocular deprivation or (correlated) normal rearing are
just those of the monocular case. We assume that binocular stimuli

presented during NR are exactly correlated so that each pattern incident
to the left-eve synapses is consistently accompanied by a corresponding
pattern to the right-eye synapses. Since the left and right components of
each pair are identical, the cell tunes to the same pattern in each eye.
Binocularly deprived input environments consisted of stimulus com-
ponents uniformly distributed over some range with zero mean. In this
case (BD), the average response of the cell is null and so (h is always
non-negative, resulting in random fluctuations of the synaptic state.

The development of a neuron receiving patterned input from only one
eye (and uniform noise from the other) is somewhat surprising. The
response curve goes to maximum selectivity with respect to the open eve.
but. consistent with observation, the response to the closed eye does Plot

fluctuate randomly. Rather the neuron becomes nonresponsive to inputs to
the deprived eye. Asymptotic convergence to this state is assured regardless

of the initial state. The theoretical implications for the reverse suture (RS>
paradigm are straightforv.rd: A monocularly deprived neuron, having

reached a monocular selective state is driven to another monocular selective

state preferring the newly opened eye upon reversal of suture.
This behavior relies upon some activity, albeit purely random, to be

present in the atlerents from the closed eye. Such noise may be due to
diffuse light through the eyelid or spontaneous firing of LGN and/or

retinal neurons. As a neuron becomes selective with respect to the open

eye, patterns which are preferred give a response. near threshold
whereas the other patterns give a much lower response. In either case 0
is near zero. Noise accompanying a preferred pattern drives the neuron
from the modification threshold, so the deprived synapses grow stronger.
However. the opposite effect weakens the synapses when non-preferred
patterns are presented. A mathematical demonstration of

this argument, iven in Appendix C of Bienenstock
et al. (1982), is presented in 2.4.
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2.4. Comparison of theory with classical experimental results

The simulated behavior of neurons in visual cortex with binocular
connectivity is illustrated in Fig. 16. The seemingly inconsistent experi-
mental results (MD vs. BD) are faithfully reproduced by computer
simulation. Each of these paradigms was tested in both deterministic and
stochastic simulation algorithms over several pattern sets. The model
withstood considerable noisy input: indeed successful simulation oif some
paradigms (RS in particular) required that a noiselike component ac-
company the 'pure' inputs.

Simulations of the behavior of the system in these different environ-
ments give the following:

NR: all asymptotic states are selective, binocular and have matching
preferred orientations for stimulation through each eye.

BD: the motion of the state (m, n,) resembles a random walk. (The
small exponential decay term is necessary here in order to prevent large
fluctuations.) The two tuning curves therefore undergo random fluctua-
tions that are essentially determined by the second-order statistics of the
input d. As can be seen from the figure. these fluctuations may sometimes
result in a weak orientation preference or unbalanced ocular dominance.
However, the system never stays in such states very long; its average state
on the long run is perfectly binocular and nonoriented. Moreover. what-
ever the second-order statistics of d and the circular environment in
which tuning curves are assessed, a regular unimodal orientation tuning
curve is rarely observed, and selectivity never exceeds (1.6. We may thus
conclude that orientation selectivity as observed in the NR case (both
experimental and theoretical) cannot be obtained from purely random
synaptic weights. It is worth.mentioning here that prolonged dark rearing
has been reported to increase response variability (Leventhal and Hirsch
(1980)); a similar observation was made by Fregnac and Bienenstock
(1981).

MD and RS: The only stable equilibrium points are monocular and
selective. The system converges to such states whatever the initial con-
ditions. In particular. this accounts for reverse suture experiments
(Blakemore and Van Sluvters (1974); Movshon (1976)).

UR: In contrast to NR, monocular as well as binocular equilibria exist.
The asymptotic state generally observed with rz,(O) m,() = (0 is mono-
cular. (This should be attributed to the mismatched inputs from the two
eyes. as is done by most authors.) Asymptotic states are selective, and
when they are binocular, preferred orientations through each eye do not
necessarily coincide. It should be mentioned here that Blakemore and
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Van Sluvters (1974) report that after a period of alternating monocular

occlusion, the remaining binocular cells may differ in their preferred
orientations for stimulation through each eye.

Selectivitv and ocular dominance

As an example of the kind of new and subtle effects that are contained in
this theory, we consider in detail the sequence in which ocular dominance
and selectivity develop in the monocularly deprived environment.

According to (2.8) the firing rate of a binocularly driven neuron at time I
is given by

c(t) = m (t).d (t).d r(t).

In a situation corresponding to monocular deprivation-patterned in-

formation to one eye (right), noise to the other (left-we can write for
the environment

d=(d,.n).

and for the set of synaptic w,,eights

m = (m,. n),).

Where tn, and m, are the synaptic weights from the right and left eves
respectively.

In this situation in, goes to one of its selective fixed points as in the

monocular case. The only fixed point for inm in the noise-like environment

is zero; but this is unstable in the monocular case. It is instructive to

follow the behavior of m, in this binocular case.
Let (x,. xt) be a small perturbation from equilibrium. The motion ait

point (in , * x,. x,) is given by:

f~, = ~ , d , + x , '- d , + x ,~ n -n , .d , + x , ' ,- , (2 ,9 r )

i, = 0(m *, d, * x, " d, + x1 * n. ?n,"d + x, " (1,)n,. (2.91)

where we assume that the noise has zero mean.
We analyze separately, somewhat informally, the behavior of the two

equations. The stability of (2.9r) is immediate from the stability of the

selective state in* in the circular environment d,. To'analyze (2.91) we

divide the range of the right eye input d, into three classes:
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(i) d, is such that n d, is either far above threshold, OM, and
therefore b(r* • d, in . d,) > 0, or far below threshold, OM, (but still
positive) and therefore d(m *. d, n *, • d,) < 0;

(ii) d, is such that ?n, d, is near threshold, 0kf, and therefore 6.(m d,m *,- d,)-= 0,
(iii) d, is such that n d, = 0 and again 6(mP , , m d) - 0.
For the first class of inputs, the sign of 'k is determined by d, alone,

hence 2.91 is the equation of a random walk. To investigate the behavior
of 2.91 in the two other cases, we neglect the term x, and linearize 0
around the relevant one of its two zeros. It is easy to see that case (ii)
yields

x1 -=e(x" -n)n. (2.10)

whereas in case (iii) one obtains

- 1 - - ,(xi • n)n. (2.11)

where el and E,, are positive constants, measuring respectively the ab-
solute value of the slope of 0 at the modification threshold and at zero.

Since i, is a noise-like term, its distribution is presumably symmetric
with respect to x, so that averaging (2.10) and (2.11) yields respectively

. j- x,. (2.12)

Xi-e:hr,. (2.13)

where fib is the average squared magnitude of the noise input to a single
synaptic junction from the closed eye.

We thus see that input vectors from the first class move x, randomly.
inputs from the second class drive it away from 0. whereas inputs from
the third drive it toward I. In the case where the range of d, is a set of K
linearly independent vectors and in , is of maximum selectivity. (K - 1)/K.
case (i) does not occur at all. (The random contribution occurs only
before the synaptic strengths from the open eye have settled to one of
their fixed points.) Case (ii) occurs only for one input, say d,' with i * • d'
exactly equal to threshold, 0f,. and (iii) occurs for the other K - I vectors
which are all orthogonal to Pi *. In the general case (d, any circular
environment), the more selective in, with respect to d,. the higher the
proportion of inputs belonging to class (iii). the class that yields (2.13) i.e.,
that brings x, back to 0.
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The stability of the global system still depends on the ratio of the
quantities e, and E2 as well as on the statistics of the noise term n (e.g. its
mean square norm). We may however formulate two general conclusions.
First, under reasonable assumptions (.- of the order of e2 and the mean
square norm of n of the same order as that of d,) x, = 0 is stable on the
average for a selective m*,. Second. the residual fluctuation of x, around
0. essentially due to inputs d, in classes (i) and (ii). is smaller for highly
selective i *'s than it is for mildly selective ones.

Thus, one should expect that in a monocularly deprived environment
nonselective neurons tend to remain binocularly driven. In addition since
it is the non-preferred inputs from the open eye accompanied by noise
from the closed eye (case three) that drive the response to the closed eye
to zero. if inputs to the open eye were restricted to preferred inputs (case
two) even a selective cell would remain less monocular.
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OPEN CLOSED
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Intermediate

OPEN CLOSED

Final
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To b4etter confront these ideas with experiment, the

single (BCM) neuron must be placed in a network with

the anatomical features of visual cortex, a network in

which inhibitory and excitatory cells receive input

from LGN and from each other. This has been done

(Scofield and Cooper to be published). Their conclu-

sions are similar to those above with explicit further

statements concerning the independent effects of

excitatory and inhibitory neurons on selectivity and

ocular dominance. For example, shutting off inhibitory

cells lessens selectivity and alters ocular dominance

giving 'masked synapse' effects.

Quantitative tests of progressions such as those shown

in Figure 17 are in progress in our laboratory. We

hope that such experiments can provide detailed compari-

sons with theory and provide us with a sensitive tool for

determining synaptic modification among various classes

of neurons--a possible entry to the process by which

the nervous system organizes itself.
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