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THEORETICAL STUDIES ON FREE ELECTRON LASERS

~
The subject of thig investigation has been the Free

Electron Laser™ (FEL), a device which is capable of
converting the kinetic energy of a relativistic electron beam
into coherent electromagnetic radiation. The investigation
focused on two main topics:

7 A» ) The FEL operated as an oscillator and an amplifier

using variable parameter wigglers.2’/

\

B+ *‘The FEL oscillator operated in conjunction with a

-

storage ring using gain-expanded3 and phase area

displacement wigglers.zﬁf ———

-

During the two-year period extending from August 1,
1981 to September 30, 1983, the following tasks were
accomplished:
' 1. 4

An eigenmode analysis® of the linearized one-~

—

dimensional FEL equations leading to a determination of the
linear gain characteristics of FEL oscillators with variable
parameter wigglers. Various cases studied include electron
pulses, long and short compared to slippage length; constant
and variable parameter wigglers: and FELs with and without

optical sideband suppression.
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2. The development of a one-dimensional self-
consistent particle and electromagnetic wave code? to
simulate the operation of FELs with variable parameter
wigglers and with frequency filtering of the electromagnetic
(EM) pulse.

3. A study of the time evolution of an EM pulse in FEL
oscillators in which the growth of the pulse is followed from
low noise levels all the way to steady state, with particular
attention paid to the effectiveness of electron trapping and
to the suppression of sideband modes by frequency
discrimination.

4. A study of the effect of unstable sideband modes on
high-extraction FEL amplifiers, with particular reference to
a proposed ATA design.s

5. An extension of the analytic linear theory of
unstable sideband modes to include not only the amplitude
perturbations previously considered,2 but also the phase
perturbations of the EM pulse.

6. A Hamiltonian formulation of the electron equations
of motion for the "thin lens" gain-expanded FEL,® with
derivation of the Manley-Rowe relation and generalized
gain-spread theorems.

7. A study of the phase area displacement wiggler,
with estimation of the theoretical efficiency possible in

storage rings.
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8. A preliminary survey of the role of two-dimensional
effects on FEL operation.

Tasks 1, 2 and 3 for ultra-short electron micropulses
as well as most of Task 6 were completed by the end of the

first contract year and are discussed in detail in the 1982

Annual Report.4




I. FEL OSCILLATOR

In an FEL oscillator, a variable parameter wiggler is
positioned between two mirrors and an EM pulse is reflected
repeatedly through the wiggler. Relativistic electron
micropulses are injected at periodic intervals so that on
each forward pass of the pulse through the wiggler, there is
overlap of the EM pulse and the electron micropulse. The
pulse grows in amplitude on each forward pass and eventually
electrons are trapped in the ponderomotive potential well or
"bucket"” produced by the combined electromagnetic fields of

the wiggler and pulse. At this stage, the pulse continues to

grow with enhanced efficiency as the bucket is decelerated
down the wiggler and energy extracted from the trapped
electrons. A stationary state is reached when the energy
extracted from the electrons is balanced by the energy
losses.

Tasks 1, 2 and 3 address those issues of the operation
of an FEL oscillator which relate to the startup phase,
saturation of linear gain with effective electron trapping,
and stable propagation of the finite amplitude EM pulse in
steady state. The principal results are:

‘ 1) Adequate linear gain can be obtained in a variable

parameter FEL oscillator sufficient to overcome the losses at




the mirrors and to grow the EM pulse to a large amplitude in
a finite number of passes.

2) The linear phase of growth saturates at a high
enough level to ensure trapping except for systems which seek
to enhance linear gain by use of a long constant parameter
section at the front.

3) At high saturation amplitudes, frequency
discrimination is required to prevent nonlinear breakup of
the EM pulse due to the coupling of unstable sideband modes
to the periodic motion of the trapped electrons in the
bucket. Qualitative agreement with the theory of sideband
instabilities is obtained for the width of the frequency
filter required to suppress sideband growth.

4) An FEL oscillator with an EM pulse of one micron
wavelength has been simulated. With proper frequency
discrimination, the EM pulse was grown from noise to a stable
steady state and 30 percent efficiency was achieved.

5) A criterion has been derived (and verified
numerically) for the minimum current required to have

adequate linear gain as well as frequency discrimination:

5 —_—
(1> > 1.42 x 105 (1 - 1) <777
w
where the electron mic:t2: .lse was assumed to be ultra-short,
{1> 1is the current averaged ove a slippage distance, rO

the beam radius, Ayr the change in the resonant energy Y.




while traversing the wiggler of length L, a the

w
dimensionless vector potential amplitude of the wiggler,

f the filling factor, and (1 -r) the fractional reduction in
amplitude due to energy losses on reflection at the mirrors.

6) The limitation on beam thermal spread is determined
more by the need for good linear gain than by that for

effective electron trapping.

These results were first obtained in the limit of an
ultra-short electron micropulse modeled as a §-function.
Due to computer time limitations, this limit is easier to
simulate since the number of particle orbits which must
be followed is far fewer than that required to represent a
long continuous electron micropulse. This limit is also
analytically tractable. However, the basic physics of the
electron-photon interaction is qualitatively the same for
long electron micropulses. The details of this investigation
may be found in the first annual report.

The theory of linear gain for the more realistic limit
of long electron micropulses is discussed in Appendix A.
Simulations of micropulses several slippage distances long
exhibit a behavior similar to that of ultra-short pulses.
Because of computer time constraints, only a limited number
of simulations of finite length micropulses have been done

(up to four slippage distances long). It was again found

that frequency discrimination is necessary to suppress the




growth of unstable sidebands. In the absence of frequency
discrimination, the EM pulse shape at saturation is broad but
very irregular.7 With frequency discrimination, smooth pulse
shapes were obtained, although the saturated pulse energy was
somewhat smaller. However, the indications are that with
longer micropulses such as those actually envisaged,
frequency discrimination would be effective not only in
producing smoother saturated pulse shapes, but also
relatively higher pulse energies.

The physics of the saturated state should not depend on
the electron micropulse length since the EM pulse is many
synchrotron bounce periods in length. From arguments similar
to those used in the case of the ultra-short pulse, a
corresponding minimum current can be derived whic :nsures
that a value of frequency discrimination may be chosen to
allow for both linear gain and stable propagation:

3

4
Ip > 2.77 x 100 (1 - r) (Ayr)

2

v E 3,
(kwro ) Yr

L3 a‘f
w

amps

Ip is the peak current. Note that the usual resonance

condition k = 2kwyr2/(l + awz) applies and that usually

the length L 1is limited by the Rayleigh condition

L < ksroz. Details of the derivation are given in

Appendix A.




I1. FEL AMPLIFIER

In high-gain FEL amplifiers, electrons are trapped in
the bucket at the front of the wiggler, the bucket is
decelerated and energy is transferred from the trapped
electrons to the EM pulse in one pass. Since the trapped
electrons undergo many bounce oscillations in the bucket
during its passage through the wiggler, the growth of the
unstable sideband modes which can detrap electrons and
reduce energy extraction efficiency is also a major concern.

In Task 4, a series of simulation runs were carried
out using the one-dimensional long pulse simulation code
described in Appendix B in order to assess the effect of
sideband instabilities on efficiency in the ATA FEL amplifier
experiment planned at the Lawrence Livermore National
Laboratory (LLNL). A typical set of design parameters for

the proposed ATA FEL amplifier is:

Table 1
Y = 98.85 + 1.87
Ip = 5,93 kA electron beam
ro = 0.387 cm
input 2.4 Gigawatts Ay = 8 cm
£, = 0.447 cm A,y = 3.026 kilogauss-cm
‘g = 10.6 x 107 cm By./Y, = 0.33

= 22 meters




Ay is the effective change in Yy down the wiggler. The

r
actual wiggler profile is shown in Figure 1.

The results of the simulations using the above
parameters are:

1. With zero initial noise perturbation in the
EM pulse, an FEL efficiency of 18 percent was observed,
agreeing with LINL estimates. About 54 percent of the
electrons were effectively trapped. Figure 2 displays
a plot of the dimensionless pulse amplitude as a
function of the dimensionless independent variable
v=(t - z/c) ¢/L(c/v-1) for u = (z/v - t) ¢/L(c/v-1) = 0.
Note that k _(z) = constant. The wiggler extends from v = 0
to v = 1. The pulse amplitude increases by a factor of 4.8
through the wiggler. Outside the wiggler (v > 1), the pulse
amplitude is constant.

The bounce frequency wg of electron trapped at the
bottom of the bucket varied from wBikwL/ws = 61 at the
front of the wiggler to wakwL/ws = 113 at the back of
the wiggler.

2. With initial perturbations of sideband modes at a
frequency w in the range of the bounce frequency wg
large sideband amplifications were observed. Figure 3
displays a plot of the variation of pulse amplitude with v

for the case where the initial amplitude of the sideband mode

at frequency wkwL/ws = 90 was 0.001 of the main pulse
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profile for a simulated FEL amplifier. ,
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amplitude. The sideband mode grew in amplitude by a factor
of ~2,660. In Table 2, the amplitude amplification factor of

sideband modes is tabulated for different values of frequency

wkwL/ws.
Table 2
Sideband Ratio of Initial Amplification
Frequency w Sideband Amplitude Factor
to Main Pulse Amplitude
k Lw/k_c
w s
50 1073 3.7 x 102
90 1073 26.6 x 102
130 10-3 4.6 x 102
150 10-3 7.7 x 102
165 1073 5.9 x 102
180 10-3 4.5 x 102

The observed sideband amplification factors are
consistent with a theoretical analysis of sideband growth for
a high extraction FEL amplifier in which the electrons are
all deeply trapped. The details of this analysis will be
reported elsewhere.

3. With an initial white noise perturbation containing
0.5% of the optical pulse energy but only about 10”4 of the

optical pulse energy in the sideband frequency range, the

sidebands grew to appreciable amplitudes and the resulting
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sutput pulse shape (v > 1) displayed in Figure 4 was highly
irregqular. The efficiency was reduced from 18% to 15% and
the effective trapping from 54% to 44%.

No serious degradation in efficiency occurs until the
noise on the incoming laser or e~beam pulse is of order 10'4,
well above that due to spontaneous emission. Clearly a 2-D
sideband theory is required to assess whether beam quality
under circumstances such as shown in Figure 4 is severely
degraded.

Since the growth of sidebands in an amplifier is
exponential, the growth may be expected to be a sensitive
function of detailed design parameters.

While even the large levels of growth predicted here
would not be sufficient to amplify spontaneous emission, it
is clear that it is essential that noise levels on the
electron beam or laser not be excessive. We may note that
coherent transverse oscillations of the beam induced by
accelerator or transport systems could represent such a noise
source. The second and higher harmonics of the betatron

frequency are in the dangerous range for sideband growth.
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I1I. SIDEBANDS

One of the principal problems with tapered wiggler
oscillators is their instability with respect to sideband
growth necessitating frequency discriminatory optics. The

previous theory2

has neglected the effect of the electrons
on the optical phase. The theory has now been redone
exactly. Some details are presented in Appendix C.

In Figures 5 and 6, the results of analytic theory
and simulations for linear growth rates we have done are
displayed. Growth of sideband minus growth of signal per
pass is plotted in dimensionless units, such that signal
growth in these units should be sin v, (where sin Vr
measures the acceleration of the bucket and is defined below
in terms of the Hamiltonian), versus sideband frequency « in
units of (ao;%, the synchrotron frequency of an electron at
the bottom of the ponderomotive well. The growth rates are

presented for two particle distribution functions.

(1) Uniformly filled bucket. In Figure 5, .inear gain

curves for the old and new theories are compared.

While Case (1) is easy to calculate analytically, it is
impossible to simulate because of nonlinear effects on
particles at the separatrix. Thus we look also at a

distribution fo with a linear gradient.

16
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(2) £ = (H - H)(H - H

o max max min)' where H 1is the

particle Hamiltonian H = -ao(cosw + Ysin wr). The solid
curve in Figure 6 is the numerically evaluated analytic
dispersion relation for this case with sin wr = 0. It will
be observed that for sin wr = 0, the curves for case (1) and
case (2) are quite similar so that results may be expected to
be prototypical for all distributions which extend over the
whole bucket. Sideband growths would be larger for distribu-
tions concentrated near the bottom of the bucket.

The points are simulation results for sin wr = 0, 0.2,
0.5. It will be observed that for sin wr = 0.2 and 0.5, the
peak growth of sidebands is 4.5 and 2.5, respectively, times
signal growth. More detailed comparison between theory and
simulation for sin ¥, = 0 is given in Appendix C.

It should be noted that for sin Yy, # 0, the new
theory predicts siightly higher growth than that given
in Reference 2. 1In particular, sideband growth exceeds
signal growth at frequencies close to that of the signal,
§=1+ G(K/Q)z. Thus, some frequency discrimination is

required even against low-lying sidebands.
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IV. GAIN-EXPANDED FELs

In a gain-expanded FEL, the sensitivity of gain to
variations in the energy of the exciting electrons is reduced
by using a periodic magnetic wiggler with transverse
gradients such that the electrons which lose energy move to
different transverse positions and continue to remain in
resonance with the ponderomotive potential well. The reduced
sensitivity to energy makes it attractive to operate a gain-
expanded FEL in conjunction with a storage ring since many
passes of the circulating electrons through the FEL would
occur before gain is significantly affected by energy spread.
However, transverse betatron oscillations of the electron
trajectories are simultaneously excited and may negate the
effectiveness of gain expansion unless the oscillation
amplitudes are kept small. For steady state operation in a
storage ring, it is desirable to maximize the gain while
minimizing the level of betatron oscillations.

In order to obtain some insight into the gain
characteristics of gain-expanded FELs, a Hamiltonian formula-
tion of the equations of motion for the "thin lens”
gain-expanded FEL was derived. Two fundamental limitations
on gain~expansion schemes were established: The Manley-Rowe
relation which relates gain to betatron excitation, and the

generalized Madey theorem relating gain to energy spread and

20




betatron excitation. The details of this analysis can be
found in Appendix A of the 1982 Annual Report.

These analytic results were compared this year with
John Madey's Monte Carlo simulation8 of gain-expanded FELs in
storage rings and the following conclusions were reached:

1. The latest version of the simulations are now
consistent with the Manley-Rowe and the gain-spread
relations.

2. At low laser power, there is good agreement between
the simulation and the analytic results. At higher power,
the Monte Carlo simulations exhibit some degradation in
performance. This may be due to cavity coupling to betatron
oscillations which lead to resonance spreading, an effect not
included in the analysis. However, proper magnet design
which minimizes this coupling could improve the performance.

3. While all designs are limited in consequence of the
above theorems to AElaser/AEsynchrotron < 3y/Y where 3Yy
is the rms spread in electron energy, it would appear that
gain-expanded wigglers may be advantageous compared to
conventional wigglers by virtue of larger energy acceptance.

Studies of various designs will continue in collaboration

with Madey's group.
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V. PHASE AREA DISPLACEMENT

In the deceleration of relativistic beam electrons by a
phase area displacement wiggler, the resonant energy of the
wiggler 1is increased from the front to the back such that the
bucket is moved through the phase area occupied by the
electrons. The result is a downward displacement in the
electron energy by an amount of the order of the phase area
of the bucket divided by 27. In the idealized limit of
infinitely slow deceleration, there should be no energy
spreading.

This method of beam energy extraction has two features
which are attractive with respect to operating an FEL
oscillator in conjunction with a storage ring: The energy
extracted is insensitive to the beam energy spread, and the #
ratio of the energy extracted to the increase in root mean
square energy spread can be made to be small.

Numerical simulations of a one-dimensional FEL with a
phase area displacement wiggler have been done and the

results were consistent with the theoretical picture of an

average energy loss and an average energy spread independent
of the initial energy, although the simulated energy loss was
about 20 percent lower and the spread about 25 percent higher
than predicted by the crude theory. The details of these

simulations are described in Appendix D.
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An PEL oscillator can be operated in steady state with
a storage ring if the laser-induced increase in energy spread
can be balanced by a decrease due to incoherent synchrotron
radiation and the beam energy boosted by a radio-frequency
cavity to compensate for the losses in the wiggler and in
synchrotron radiation.

In order to obtain good efficiency during steady state
operation, it is essential that the electron interaction with
the bucket be adiabatic and that electron trapping be
negligible. Typically, adiabaticity requires long wigglers.
The bucket must remain essentially constant through the
wiggler since bucket variations can affect not only
adiabaticity, but lead to electron trapping. Thrs. it wii!
be necessary to have a smooth and long (many times the
slippage distance) EM pulse, entailing a good frequency
discrimination.

If these conditions are satisfied, the FEL efficiency
{measured in terms of the ratio of the energy extracted from

the electrons to the energy loss in synchrotron

AYlaser

radiation Aysyn) is estimated to be:

3
Ay a ‘
—2%eL . g.05 k 2L (———w )

AY l+a2
syn w
Y,
{p(awy | ™
k ?r ?
S p
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Here a, ~1 1is the wiggler dimensionless magnetic vector
potential, kw the wave number, ks the optical wave number,
and T, the optical pulse radius.

For a particular design discussed in Appendix D, a
value of AYlaser/Aysyn ~ 0.15 was observed in the
simulation, in rough agreement with theoretical predictions.

Long wigglers containing many wiggler periods and EM
pulses with large circulating peak powers are particularly
effective in obtaining high efficiencies.

The linear gain per pass tends to be very small unless
appreciable micropulse peak current densities are available.
Detailed formulae are given in Appendix D. Even if linear
gain is adequate, it is not clear whether the desired final
steady state is accessible by growing the EM pulse from noise
levels. The scenaric of the time evolution to a steady state
is complex and remains to be elucidated. It is thus not yet
clear whether a phase displacement pulse can be grown from
noise or whether some alternate startup strategy must be

found.
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VI. TWO-DIMENSIONAL EFFECTS

Hitherto, the electron equations of motion have been
considered as a one-dimensional problem in which the electron
motion is reduced to the pendulum equation in the ponderomo-
tive potential well formed by the wiggler and EM pulse
fields.

In fact, the electromagnetic fields do depend on
transverse dimensions. Transverse variations of the wiggler
field produce transverse betatron oscillations and diffrac-
tion effects introduce curvature of the wave front.

In the simplest approximation, the transverse betatron
oscillation ("frequency" kB) is decoupled from the
longitudinal "“synchrotron" oscillation (bounce "frequency" )
in the ponderomotive potential well. However, curvature of
the wave front couples the two oscillations. This coupling
is weak except near resonance when 2k, = & which occurs
typically at peak circulating power levels near 1 Gigawatt.
The details of the effect of this resonance coupling in
detrapping electrons is described in Appendix E.

Under resonant conditions, the coupling is marginally
strong enough to lead to some detrapping. Thus, a detailed
numerical simulation of specific cases may be required.

In an amplifier, it appears that the parameters may

change rapidly enough that the resonance is passed through

25
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without significant detrapping. During the buildup phase of
an oscillator passing through resonant power levels, the peak
potential detrapping is estimated to be of the order of
40 percent if the emittance is the maximum allowed by other
considerations. Hence, if a reasonable gain margin exists,
this detrapping is not essential. With smaller emittances,
the effect is, of course, smaller. For actual cylindrical
cases where many orbits do not pass close to the axis, the
effect is further reduced.

In the analysis, the self-consistent effect of betatron
motion on emission was not studied, but only the effect of an
assumed wave shape on electron trapping. Subject to these

caveats, it would appears that two-dimensional effects do not

(.

seriously perturb the simple one-dimensional picture of an

FEL or introduce significant additional design constraints.
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APPENDTIXK A

THEORY OF LINEAR GAIN: FREE ELECTRON LASERS OPERATED

IN OSCILLATOR MODE - FINITE LENGTH ELECTRON PULSE

In the 1982 Annual Report,l the theory of linear gain
was investigated for a Free Electron Laser (FEL) operated
as an oscillator with ultra-short electron pulses. In such
a device, a periodic magnetic field wiggler of length L
and wave number kw is positioned between mirrors so that
an electromagnetic pulse can be reflected repeatedly
through the wiggler. The FEL is driven by a successive
series of ultra-short electron beamlets injected at
periodic intervals so that there is overlap of beamlet and
the electromagnetic pulse on each forward pass through
the wiggler. By ultra-short is meant beamlets with
length £ much less than the slippage distance between
electrons and EM pulse s = kwL/ks, with k_ the wave
number of the EM pulse. 1In fact as we will see herein for
the results of Reference 1 to be valid, we must require
s/?k > 2 > 2ﬂ/ks with T = 2kwL Ayr/yr >> 1, where
Ayr/yr is the fractional change in the resonant energy down
the wiggler. The linear eigenmode equations, obtained by
linearizing the FEL eguations in the amplitude of the laser
pulse, were analyzed and the linear gain per pass determined

as a function of the FEL parameters.
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In this paper, we extend the analysis to cover the
case of electron beamlets with lengths much larger than the
slippage distance, & > s/T%. Our starting point will be
the conventional set of FEL equations applicable in the
Compton regime, as derived and discussed in Reference 1.
These will be restated without derivation in Section 1 for
completeness of presentation.

We anticipate the need to suppress the growth of
sideband instabilities when the pulse reaches a finite
amplitude sufficient to trap beam electrons. This may be
accomplished by frequency discrimination of the pulse in
which frequencies above and below the desired pulse
frequency w, are attenuated. Thus, the analysis will
encompass variable parameter wigglers without and with
frequency discrimination. The linear eigenmode eguation
and their solutions are discussed in Section 2 and
Section 3 for wigglers without and with frequency discrimi-
nation, respectively.

In Section 4, the results are compared with those

previously obtained for the ultra-short electron beamlets.

I. FEL Equations

The set of equations which describe the temporal
{(t) and spatial (z) evolution of the electromagnetic pulse
in the wiggler are most conveniently expressed in terms of

the new independent variables u and v:
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c z
e === (&)
1($-1)
v
e kY
L(S—l) ¢
v
where V = ws/(kw+ks) is the electron resonant longitudinal I

velocity.
The periodic magnetic field wiggler and the

electromagnetic pulse are represented by circularly

polarized vector potentials 5w and Al with negligi-

ble spatial variations transverse to the direction of
electron beam propagation. The case of plane polarizaticn
is given by letting A -+ A//Ei The electromagnetic pulse is
approximated by a plane wave -As exp(—iws t o+ iks z + ig)
with slowly varying amplitude As anéd phase ¢£.

The electron equations of motion are:

= = y (1)
ov Y
CATE. r+iliae’ - iar e-lw] (2)
3v 2
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where

<
"

w
2k k L?
~ w's iz
a = 2 awas
YI
ZRQL
I = Ay .
YI'

Y and vy are the electron energy and phase angle.

a, = eAw/mc2 and a_ = eAs/mc2 are the dimensionless
vector potential amplitudes of the magnetic field wiggler
and pulse, respectively. a* is the complex conjugate of

a. 1In these eguations, a, and kw are considered to

be constants, except as they determine the resonant energy
Ypo and the variable parameter wiggler is modeled by

T # 0, where ﬁYr corresponds to the change in the resonant
energy in going through the wiggler. We are engaged

primarily with high efficjency cases, [ >> 1. 1It is also

assumed tha - <<
t oy Yr Yr-

The equations for a_ and  (from Maxwell's

equations) are:
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: -1.
—% = inh{u) <:e >’ (3)
where
8me?N_k 12 a2
n = T w w
Yy mcV(l+a?)
r w
'[duh(u) = 1 .
NT is the total number of electrons in the beamlet per
unit area, NT = .[dz n(z,t) where n{z,t) is the beam

density. h(u) 1is a form factor which is determined by the
profile of the electron geamlet. For an ultra-short pulse
as described in Reference 1, h{u) = &{u). The angular
brackets imply integration over the initial energy distri-
bution and average over the random optical phase of the

electrons

where f£(y ) is the initial energy distribution of the
0

electrons.
In u-v space, the wiggler (L 2 z 20) lies between

the lines u + v =0 and u+ v = 1. The beam electrons
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move on lines cf constant u and the photons of the
electromagnetic pulse, propagating in the beam direction,
move on lines of constant v. The beam electron and
photons interact only when their trajectories in the u,V

plane intersect within the lines u + v =0 and u+ v = 1,

II. Linear Theory - Without Frequency Discrimination

The formulation of the linear eicenmode equations
has previously been discussed in Reference 1. If we follow
the same procedure, we obtain for the pulse amplitude al

on the nth pass:

Qs
>

4 (l-r+3) 3% -

= in Jduh(u) <exp(-iw)> (4)
-V

‘El <exp (-i;)>

) v

b - L jd? £(v ) fdv'(v-V') a" (v
, 2 o) o}
. u

34




r accounts for the reduction in amplitude due to eneray
losses on reflection at the mirrors and is close to but
less than unity. B8 = ksCAt/kwL << 1 where A4t 1is the
pass~to-pass temporal advance of the electromagnetic pulse
relative to the electron beamlet on entry into the wiggler,
and ?o is the value of ¥ at wiggler input. We have
expanded A(v+8) = a + Bda/dv + B® . . . . The linear gain
and phase shift per pass § 1is the eigenvalue. The
boundary conditions are &%(v) - 0, v + * o,

In deriving Equation (4) and Equation (5), it is
assumed that & << 1.

Substituting Equation (5) in Equation (4)

2= - (1l-r+ %) a
ov
1 1
= -1 121 jdx J’dy h(y-v) & (v-x) I(x)x
o %
exp (12? - 1“xy) (6)

1
= l%‘_:ﬂ de A (v-x) I(x)
o]

where
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and h{y-v) 1is assumed in accordance with the lona-pulse

assumption to be a slowly varying function of its arcument

so that h(y-v) = h(-v) + ..., 1 >y > 0. Hereafter we drop
an

the superscript n on a .

If we take h{(u) to be Lorentzian

and we define the Fourier transform B(R) of a:

we obtain from Eguation (&):
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where o=
. Y .
A(x) = B7 (iv;—fl)b
1
rz
i 5 (-ic%)
d I(——-) exp (-1«g
G, () (ix-6,) Ry
0 (8)
r2 r2 1 ’
I ‘exo(-l” )-exp( = -11'2.{)‘
l 2
%
8 = (l-xr+ 8)/RT
1
. n___
4 * 2mu BT? .
o

The parameter uo is a measure of the length
of the pulse (full width at half maximum), u, = ¢/L(1-v/e),
where L(1-V/c) 1is the "slippage distance."

We see from the dimensionless form of Equation (7)
that the long or short pulse approximations depend on
whether T%uo is large or small compared to unity. It may
f Le seen a posteriori that F%uo > 1 djustifies our expansion

of hiy-v).

If G (x) is now expanded about <« =« . where

3G, (k) (9)
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Eguation (7) may be approximated by:

-
o
I3
1%
—
A
I
7
o
—V)
.
rs
)
—~

— == - J1 4 + - — A = 0
K EEETE t G, (x,) 2 ol |
: o) o}
? (10)
Furthermore, if
a2 2
3°G
1 1
R . = 0 (11)
1 + GI(KC) 2ru2 8'(; 4

Equation (10) will have the solution:

ané this guarantees a(v) - 0 as Vv - * o provided that

alcs1 ‘
5 > 0 . (12)
o]

Re

N
o~

Equation (2) ard Equation (11), subject to Equation ‘

(12), constitute the eigenvalue eguation which determines 61.
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If we take f(y_.) to re Lorentzian
- 1
£ = Y Tiv (o l'_)‘ ]
2 Yth L-L o ] / yth]

1 (fé) = e
TR
ez (v, + i)

and in the limit of an infinitely long wiggler where

I >> 1, Eguation (8) for Gx(K) may be approximated by:

_ i g (Eixe)
G, ) = Iy et ) I-1

where Z(g&) 1is the Plasma Dispersion Function
ie

Z (%) = 2i exp(-ez)Jﬂd £ exp(-£%)
- ac

If we substitute Equation (13) for G (<) in

Equation (9) and Fguation (11), we obtain the eigenvalue

equations

1 + 5: YA (~O)
n ' - li
3, Z (3,02 (TO)
+ - - = 0
8Tu’ z(=)
39
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o2 (1-1)8 + s - ¢ (15)
- (1 l)“o Z (£)
)
where
1k +¢
_ o
80 - 1-1

Equation (14) is solved for eo, and substitution of eo

in Equation (15) yields 61 as a function of a
‘u’ and €.

In the limit of Fu; -~ = and a = n/ZnUOEI‘2 >> 1,

we use the asymptotic form of Z(SO) in Equation (14)

to determine 82 x~ ia /2, and after substitution in
[e} 1

Egquation (15), we obtain for the linear gain:

2 z - . - ~
(l-r+3) = 2( .") -(vth‘*lY i (16

More generally, Equation (14) and Equation (15) are
solved numerically and the variation of the dimensionless

linear gain
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a

3.
§ +¢ 21ur i
1 = - Prast A
e <_) (1-r1+8) :
1

is plotted as a function of 1/(11 for various values of

X . , , - 3
Ffu in Figure 1. The linear gain (Yth =0, T uo -+ ®)

reaches a maximum

Re(l-r+6) ~ 1.16 —
max

™™ T%
o}

at a value of

2nu BT?
0

n

L
The curves for T uO = 1,3 were obtained by

numerically intearating Equation (7} subject to the

boundary condition Alk) + 0, kK + = =,

There also exist additional solutions of

Equation (14) and Eaquation (15) corresponding to eigen-

modes with an increasing number of nodes in the amplitude

a(v). The linear gain for the three "lowest" eigenmodes in

A the limit of rkuo >> 1 are displayed in Figure 2. It may

- be seen that for extremely long wigglers these higher modes

=S e S ———

may grow even when the fundamental is damped.
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Figure 1. Linear Gain Without Frequency Discrimination
42
!
e acamgi—— e -~ ~—————- e e— — - e . I -~ -

-t
~1




o}
n

2.80

2nu r'¥2

(1-r+6+8¥th)

4.40

3.60

2.00

1.20

0.40

Figure 2.

4 "

2. 00 6.00 10.00 14.00 18.0¢

27u RT?
o
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in the Limit Tzuo >> 1
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I11. Linear Theory - With Freguency lDiscrimination

with frequency discrimination, the electromagnetic
pulse is filtered after each pass through the wiggler by a
band pass filter with fregquency half width Aw:

vC
L{c/vV-1)

dw =
where v 1is an additional parameter which characterizes
the magnitude of the frequency half width. Since filtering
leads to an effective retardation of the pulse by 1/v
relative to the electron beamlet, while B8 represents a
forward shift, it appears optimal to choose v = 1/8 to
avoid the pulse running ahead or lagging behind the
electron beamlets.

With this choice of v = 1/8, the linear eigenmode

equation for the nth pass is determined by:

‘VAn

n g? 5%a

l1-r+§ -~ = =

{ ) a 2 av?

l-v
= in jduh(u) <exp(—1-)> = 0 (17)
~-v
A straightforward repetition of the analysis A

described in Section 2 yields the following equation for

the Fourier amplitude b(x):
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B(-) -(1—G.vné<w = 0 (18)

o
where
1
k = 1%
5 - I8 ..
B(x) = > (x +62)b
r's
a
G (k)= - ——— [ ag 1{ = i
2 (<Z+5)) £ (r“li) exp(-ix £)
o}
ig? iz ul
exp (- > ) -exp( —i_"zi)‘
= n
A, T ——
‘ ma gir*:
o
(19)
§ = 2(l-~r+5)
‘ 2T
Thus, the eigenvalue equations are given by:
5G2(< )
— % - 0 (20)
oK
o
1 32GQ Y
l + GA(( ) +( — - N) (21)
: 27u N
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subject to the requirement

For an initial distribution function f(§o) which
is Lorentzian, and in the 1limit of an infinitely long
wiggler where F% >> 1, Equation (19) for G2(<) may be

approximated by:

Z(i<+£)
_ %z 1-1 . (23)
G,(x) = = Ty (i-1)

If we substitute Equation (23) for G _(«) in

Equation (20) and Equation (21), we obtain:

2,20 (5) (i-Lya, 2 (2)
1 - 4r + léTu -« 2 (<))
7' (& ) ) E
s KO + (l:l) 2"(5’\) =0
( 0 - N ‘ (24)

2(1+i)<. 2(8 )

-~ A '
\

ty
w
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where

i<ﬁ+ €

6o = 1l-1i
] 1 l'2
(i-1) z (& ) }Z (¢ ) .
c o (1-1}) _» . }

Re | = 2 ) T2 7 Ta 2oLe) >0

o} )

Equation (24) is solved for 60 , and substitution

of ¢ _ in equation (25) yields & as a function of o,

0 2 2
ra?, and e.
v
In the limit of Tué -~ ®, ¢ - 0, and
) .
a, = n/n uOB I “>>1, we use the asymptotic form of 2Z(6 )
0

in Equation (24) to determine 503 = az(i-l)/B, and after

substituticn in Equation (25), we obtain for the linear

gain ¢&:

3 gn )
- = = — (26)
(1-r+3) > (2““or)

2

In the limit of Tuo -~ o, ¢ - 0, and

-2 . . .
1/Tu <a_ << 1, we use the series expansion of Z(eo) in

o) 2
Equation (24) and Equation (25) to determine eozz(l-i)a2/4

and the linear gain

(l-r+3) = -—S=21_ (27)

4m72u
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Equation (24) and Eguation (25) are soclved
numerically, and the variation of the dimensionless linear

gain ,
ZWUOT 2 ?
Re(d /a.) = Re {(l=-r+¢&) ———
2 2 n )

. 0 ;’ 1

is plotted as a function of l/a22 for various values of
L . . . . i

Ty in Figure 3. The linear gain (g=0, quo + =) reaches
o}

a maximum

Re(l-r+38) = 0.56 —~
mu 72
0
for a value of £ given by
5, \ 2
T gir72
0
= (.81
n
The curves for T%uo = 1,3 were obtained by

numerically integrating Equation (18) subject to the
boundary condition B(x) = 0, « =+ * =,
In Figure 4, the reduction in linear gain due to a

finite energy spread Y is displayed, while Figure &

th
indicates that linear 3ain is maximized if the irnput beam

energy 1is below the resonant energy.
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Discussiorn
The long electron beam pulse limit is characterized

by

[be

where u, is the ratio of the pulse length (full width at
half maximum) to the slippage distance.
In the limit of a long wiggler (T% >> 1) and a long

electron beamlet (I‘%uo >> 1), the linear gain in the

absence of frequency discrimination is a maximum

Re(l-r+¢) ~1.16 ——p
max

for a value of £ given by [2Wu08T2/nJ =~ 3.0, and it is
close to that estimated by Kroll, et a1.2 With frequency
discrimination, the linear gain is slightly lower and has a
maximum

Re(l-r+§) = 0.56 ——
max %4
nuof

for a value of 8 given by

SN\
[l

0.85

n
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The corresponding results of the linear qainl
analysis for the ultra-short electron beamlet (Tl‘uO << 1)
are Re(l-r+3) _ = .18n/T at 26T %y ~ .45 (without
frequency discrimination) and Re(l-r+5)max ~ .105 n/T
at BI‘/nLE ~ .43 {(with frequency discrimination). Note that
for pulse length 1“”5 uO ~ 1, the growth rates of long and
short pulses are comparable. For longer pulses the growth
depends on peak current n/uo.

Finite temperature reduces gain significantly when

?th/rg > 1. Linear gain may be increased somewhat (in the
presence of frequency discrimination) if the input beam
energy is decreased below the resonant energy.

The need for frequency discrimination to prevent
nonlinear breakup of the saturated large amplitude EM
pulse due to the growth of sideband instabilities has
previously been discussed for the case of ultra-short
electron beamlets.) It is anticipated that a similar
requirement will also be necessary for the case of long
electron beamlets.

To surpress sideband fregquencies of the order of a
quarter of the electron bounce frequency '~%ié{¥ , the

reduction in the pulse energy due to frequency discrimina-

tion, that is,

53




shculd exceed the relative gain due to sideband

instabilities. This implies

la! =
~ > 1 - (G-1
T 2(1-r) )

where G 1is the ratio of the sideband instability gain to
the EM pulse amplitude gain at saturation. If we substitute

for the pulse amplitude a* saturation

3] —
(l-r)ﬂuO

and we take v = 1/8, we obtain

ki
I‘ -—
S el BRI
o]

Theoretical estimates’ indicate & ~ 2 to 3.

From a survey of the ultra-short electron keamlet
simulation results,3 it was estimated that for starle
propagation

'n
ma_ (1-1)°
0

82
Since the physics of the saturated state dces not
depend on beam length as the EM pulse is many synchrotron
periods in length, this inequality should he applicarle to
firite lenath electron beamlets, and stable proraacation is

ottained by choosing 8 = 1/v large enocuah to satisfy

Fguation (28).
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However, it is alsc necessary that the choice of
to secure stable propagation be in a parameter regime where
the linear gain is finite.

In the limit Of a long electron beamlet with no
thermal energy spread, the linear gain tends to a non-zero

value (Equation 27):

Re(l-r+8) = 0 3,
4ma T 7
o
as B increases,
n 2

1 > @ ———— >
mu Br% ru?’
0 0
. 3
Thus, if we substitute 8% = m /27T in
Equation (28), and we demand Re ¢ > 0, we obtain the

following inequalities to be satisfied in order to have

both stable propagation and finite linear gain:

2 2 21.5 (29)
(1) - u
(1 r)‘uO T% a
(o]
2 s 2.26 T% (30)
T(l-r)ﬂ'uﬂ

These inecualities impose a lower limit on the peak

mear current. It should be noted that in deriving these

irequalities, a Lorentzian beam profile was considered




(h(u) = l/’?uc (l+u:/ué)). For nguA > 5.4, this lower
limit is determined by Equation (30), the criterion for
finite linear gain. This implies that the peak beam current

Ip must exceed a value given by

-~ ! amps (31)

w 0 w

A 2)3
EY_r 2 (L-1r) (l+aw)/:
P

I > 9.6 x 103 (
r

where a = eB /mk c?, the wiggler length is L =k r?,
and r, 1is the beam radius.
The corresponding inequality for ultra-short beamlets

is

e o.los (32)
and it may be viewed as an inequality imposing a lower limit
on the beam current averaged over a slippage distance.

Equation (30) imposes a current limit comparable tc
Equation (32) for T% ~ 7.4.

In the proposed Los Alamos FEL experiment T& ~ b,
while for the nominal parameters discussed in Reference 2
T;5 ~ 45. Thus, Equation (31) implies a required peak beam
current for the latter case larger by a factor of ~ 6 than
that discussed in Reference (2).

We have not discussed herein the question of

transition from linear to saturated states and whether any
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difficulty in intermediate states arises from amplitude
dependent frequency response, i.e., chirping. This appears
best resclved numerically and for the LASL parameters our
simulations confirm behavior in linear and saturated states
with a smooth transition. Higher efficiency systems (e.g.,
' = 1000) for long beamlets require very lengthy simulations
which remain to be done, although for ultra~short beamlets

(Reference 3) no new difficulties were observed.
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APPENDIKX B

SIMULATION ALGORITHM FOR AN

ARBITRARILY TAPERED WIGGLER FEL

A relatively simple model of the tapered wiggler FEL
has proven adequate for the analysis and simulations involved

1 The crucial simplification

in determining FEL scaling laws.
involved introduction of a fictitious uniform static electric
field into the model. This axial field served to maintain
the resonant electrons at a constant <y as energy was
extracted by the ponderomotive fields. Thus a uniform
wiggler performs as a linearly tapered wiggler.

Recognizing that a more detailed model would be
necessary to optimize and evaluate actual tapered wiggler
designs, the following model was derived. It has the
attractive feature of retaining the basic structure of the
simpler one referenced earlier, thus minimizing the recoding
necessary to implement it. It differs from the previous
model also in that the optical mode is assumed to be a
transverse electric rectangular waveguide mode and the

wiggler is plane polarized. These added features allow

simulation of a larger class of physical designs.




The vector potential for a plane polarized wiggler and

transverse electric (TE) optical mode were taken to be

4

A, (z) cos J'kw(z)dz

o]

>
I
X;

- X Aslz,t) cos (kxyy) cos (kgz - wgt + o(z,t)

(1)

Here A K

W' Kyr A and § are the wiggler amplitude and wave

S

number, optical amplitude and phase, and are assumed to be
slowly varying functions of their arguments.
Analysis similar to that of Appendix B of Reference 1

yields the following equations for the particle dynamics.

4 dYr Jsawas
iz F{‘Yr) R P 2Yrc sin (. +2) (2)
do wsu“
. ) (3)
o o (v Y,)
r
dt 1 2 L
— = + k _— = = 1+ = =
dz (kw S) R ( 2.{2 ) v (4)
[ r
where
2z
= .[k dz + kz - . t (5)
w S S
b)
eAw,s (6)
a = T 7
W, S mc
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w

.
‘r 2c(k_+ 3k ) (7)
W s
aw
weo= + — 8
1 > (8)
. ;S
ko= ok - —
s fq - (9)

Averages have been taken over small-scale oscillation and it

has b 2 >> 2 >> 2 =9 <<
een assumed that Yr a; ag and (v {r) {r‘

Also, yY? >> 1 and 2, %<1 prior to entry into the

wiggle.. All of the particle transverse displacements are

assumed negligible compared to 1/ky'

The transverse velocity may be computed by assuming

conservation of transverse canonical momentum

z
v = a Ccos k dz +
g w ‘I w B(as,aw) (10)
Making use of the slow variation of a_ and -,
Maxwell's ecquations
-ZA _‘I'__ ' X - - £. e 1
0y c®  at- c x (11)
give
0 . i -e a , .
N + S ] a el _ V«_ .e—l \ (12)
1z c’k Lt s k _cms &\ /
S s
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where H(z/V-t) 1is the electron pulse number density. Note
that the effective photon velocity is not ¢ but Czks/”s’
which is the group velocity of the TE mode. Coupling to
other modes has been neglected. The angle brackets represent
averages over the particle phase and energy distributions.
The filling factor £ 1is defined below and is the result of
averages over the cos kyy dependence of the TE mode.
Introducing a modified definition of u and v, see

Equations (18) and (19) of Appendix C of the 1982 Annual

Report,

k L k L k L
ow 3 ow ow
u = L K 2 {(13)
1
k o | K9 Tk
ow S ow
o}
» t w 2
R c'k "k L
_ w S ow
\"4 = L k2 (14)
1 ¥
k dz -
k L J. 2 x k
W s ow

Applying this transformation to the equations of motion

yields
2k L Ty
f - ow r
v 3
Yor v
L a . . . (15)
N r w g i a el. Lk =1
A 2 2 s g ©
r W
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) k + 'k
a. _ rQr ( W S) N (16)
o = g
v k
’ Tr ow
ié = nqh{ aw ‘or —1,\
u W) a . 9t © /> (17)
oW r
where L 1is the wiggler length and a., and k., 6 are the

normalized wiggler vector potential and the wiggler wave

number at the input of the wiggler and

(18)

(19)

(20)

(21)




2.x Ly
- - (22)

X ! :
yo ol -

NT 1s the total number of electrons per unit area in
the beam pulse.

The functions aw/a <. /k

wr S and y which are

sw! 7r/7:r

xnown functions of 2z must be transformed into functions of

u + v by the transformation

oW J S ow
u+v = L k: (23)
L x 4 b4
k L wz k k
! W s >w

Comparing the Equations (15) through (17) with
Equations (20) through {(22) in Appendix C of Reference 1, it

is evident that the algorithms of Equations (26) through (52)
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of Reference 1, Appendix C may be utilized with the introduc-
. . . 1.
tion of the functions aw/acw' kw/k:w' p /Y and ky as
coefficients.
The diagnostic package was also used intact, but the
interpretation of the Fourier transform argument within the

wiggler must include the revised transformation from u,v to

z,t.
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A PPENDTIZX C

SIDEBAND INSTABILITIES

The linear theory of sideband instabilities, involving
the coupling of small amplitude sideband modes to the
periodic motion of electrons trapped in the ponderomotive
potential well or "bucket" produced by the combined fields of
the wiggler and a large amplitude EM pulse, has previously
been discussed neglecting perturbations of the phase of the

EM pulse.1

More recently, the analysis has been extended to
include both amplitude and phase perturbations of the EM
pulse.

A summary of the principal results will be discussed in

this appendix. The details of the analysis will be reported

elsewhere.

CONSTANT PARAMETER WIGGLER

We consider stationary states in which the ponderomotive
potential well remains constant and is unaccelerated through

the wiggler. The EM pulse is represented as a plane wave

lN. M. Kroll, P. 'torton and M. N. Rosenbluth, "Free
Electron Lasers with Variable Parameter Wigglers," IEEE
Journal of Quantum Electronics, Vol. QE-17, pp. 1436-1468
(1981).
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with a slowly varying amplitude As and phase g,
As exp (—iwst + ik z + ics). The one-dimensional FEL
equations, written in terms of dimensionless variables, are

described in Appendix A.

The independent coordinates are transformed to 2 and

N

where L is the wiggler length and V the electron resonant
longitudinal velocity. The front of the wiggler is at Z = 0

and the back at 2 = 1.

The linearized FEL equations for the perturbed

amplitude is = A 4(2) ¥V  and phase Ly = 51(2) etV  of

sideband modes with dimensionless frequency « are solved to

obtain the change in amplitude and phase through the wiggler:

al (Zzl) - al (0) " :\—0- ) (0) " (1)
a . | 12
o] (o]
nO

where

2E
B, = 2 fdJFo(J) (T . 1) - I (2)  (3)

67




2E
3. e = 2% IdJFO(J) (K - 1) ¥ L,(,0,)

21
(4)
E |
E 2 3Fo - n? n
E 1 I,(,0) = 2mQ IdJ = 24 _g («,2) (5)
3 b 0 B~ 7 o) 3J K (1+qn)z n 0
al:.o m" n®q"
= ) —_— Q 6
I,(c,0) =25 2 IdJ = &y g (,2) (8
n even (1-q)

Q | |
‘ 0 i1 -exp (-i(x-n0)l
gn(K'Q‘D) (k - n?) 1+ (x - nQ)
4k *L% a_a
a - w zw [of-]
) (1+aw )
2 2 J‘
n = S(RWL) “w k I;' r ¢ :cI’ !
2
) (l+aw) s o

{ k
s
r 2kw (1+awz)

m
. 2K '?o
Q = a.%
) o

g 4k ?L%*a a,
| g & sl
: o)
e (1+aw)
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qy me?
eA
0s
a = 3
os mc
SQO ‘
S 'E(k) - (1-%k?) K(k)
/2
N g—
) (1-k?sin? £) %
m/2
E = I de (1 -Kk? sin? £)%
0
q = exp ,-mK(k")/K(k)
' = (1-kn¥

2 IdJFO(J) =1 (7
a, is the dimensionless amplitude of the finite
amplitude pulse and is independent of Z. al(z) is the
dimensionless perturbed amplitude. N, is proportional to
the current density I/nroz, with r = the beam radius.
f 1is the filling factor. QO is the dimensionless
frequency of oscillation at the bottom of the bucket. FO(J)
is the equilibrium distribution function of the electrons
trapped in the bucket and is a function of the electron
action variable J only. Equation (7) determines the

parameter k as a function of J or vice versa. For
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s

electrons at the bottom of the bucket k =~ 0, J = 0, while at
the top k =1, J -»E-f:ﬁ.

It is assumed that rlc,/a:o << 1 so that the linear gain
per pass is small.

Let a,(z=1) = efa,(0) = (1 + §+ . . .) a,(0), and
(2=1) = (1 + §+ . . .) L;(0) where § is the linear gain
and phase shift per pass. The linear gain § is determined

by substitution in Eguations (1) and (2):

T . 2 2E | d
5 . .2uIdJFo(J)(K ) -1,

] 2E ] (8)
_-ZNIdJFo(J) (K - l) +I2

I1f the bounce frequency is large, -o >> 1, 9, may be

approximated by 9, = Qo/(K-nﬂ), and I, and I, reduces

to
. . n’®q" N
h * nzodd 2”‘0[‘” 37 K (1+q0)? (c-n0)
(9)
Z ¥ 4 a q" Ry
1 - 2m Q IdJ prove o 2 gy
2 o o 3J K (1-qgh) (x - nQ) (10)

In the limit of « >> Qo' 1/(k=n0l) may be expanded as

a power series in «/nQ, and by doing the summation in n:
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2E _ K"
Il 2T fd.] FO _K 1) + F + O(—Q .,)
0 o (11)

16Qc> BFO ‘
B > —— - 2
12 3 dJ %; lZE(Z k%)
2 2
- 3% -k'PR |+ 0(;“7) 12)

The linear gain & is then given by:

~
A

n
<

©wn

n 2
§2 = —=— == [2nIdJF°(J)(§-1)

0
169o BFO ‘
. _ 2
+ 3 IdJ x; 'ZE(Z k*)

- = - k'zx{] (13)

The magnitude of the 1inéar gain depends on the
structure of the electron distribution function FO(J).

Two specific electron distribution functions have been
investigated and the linear gain evaluated as a function of

the sideband frequency K/Qo-

Case 1

In the case where the bucket is full:

A . ot & (14)

g4




The integral

me
2e 1
ZnIdJFO(K -1) 3
(o]

and the summation in Equations (9) and (10) for I, and
I, (Ro >> 1 is assumed to be large) may be converted into

an integral:

. 3 0 a
I, = -Z LA I 0
1 8 K (1+qD) (x - nQ)
n odd k?+1
+ @
2 Vi 1
T o2 ) coehiL (o - 1)
x | n? n’q" 0
I '2 5| Q-q»° (<x-n2)
n even k?-1

O

2 A3 1
= ‘FI d Siahtx (o=

where o = 20 .

The integrals may be written in terms of V-functions or

an infinite sum. The linear gain & is then determined Dby:
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2 2 3 i
: o (DY ] 2T L . av? eyt n+1
§ (ao) [sinhzwry + i(3 hy" Sy nz-:o [(n+1)2+§72|Z

2n’y? 2 _aeh - n+%
cosh?ny + i(&y b 2 [(n+!5)2+y2|‘

n=0
(15)
p K
wh = = s .
ere Y = = 35
o}
Sa »
Re ... is tabulated as a function of ™ in Table 1.
no 0
Table 1

5a°

-ﬂ-"- Re —

(o] no

0.2 0.059

0.4 0.196

0.6 0.332

0.8 0.412

1.0 0.428

1.2 0.393

1.6 0.265

2.0 0.147
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No comparison with simulations has been made because of
the anticipated difficulty (imposed by running time limita-
tions) in having adequate numbers of particles very close to

the separatrix, k? -+ 1.

Case 11
In the case where Fo decreases linearly in k? from

the bottom to the top of the bucket

F - 64—99—(1"](2)' 1>%k%>0 ’ (16)
o

the integrals in J may be transformed to integrals in %%,

, 40 K
fdJ > fdk 9 . Thus 2nfdJFo(J) (ZI'(E. - 1) = 0.6, and
™
the other integrals may be evaluated numerically. In the
2
limit é%? << 1, Equation (13) yields for the linear gain:
)

n
d o 005 am o= @ (17)
a, Q
(o]

More generally, using Equations (5) and (6) for I

and 12. the linear gain ¢ may be calculated from

Equation (8). Ten terms in each sum 10 > n > =10 are
sufficient to obtain convergence. Re is tabulated in
Table 1 for different values of K/QO- The values of the FEL
dimensionless parameters are ", * 320 and . - 640, with
QO = 25.3 corresponding to four bounce periods for an

electron at the bottom of the bucket.
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The linear gain increases linearly with /= for
'</f.Q << 1 and reaches a maximum of Re ! = 0.26 at
</%, = 0.75.

The growth of sideband modes has been simulated
numerically using our previously-described I-D partic!e-
pushing code.

The electrons are randomly distributed within the
trapped region of phase space, weighted by a linear function
of k° to model the distribution function described by
Equation (16). The procedure for determination of the
sideband eigenmodes involves three simulation runs, one
reference run with only the main optical pulse and two runs
with additional linearly-~independent perturbations. A
response matrix analogous to Equations (1) and (2) is
determined by Fourier transforming the output optical pulse
and the eigenvalue of this matrix yields the sideband growth
rates.

The linear gain evaluated from the simulations are also
tabulated in Table 2 for different values of </*:.

The agreement between theory and simulations is
satisfactory.

The two cases discussed in this appendix are
representative of the classes of trapped electron distribu-

tion functions which could be found in realistic FELs. It

may be noted that the magnitude of the linear gain of
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sideband modes as well as the structure of the linear gain
dependence on frequency for these two cases are similar.

This analysis can readily be extended to discuss the
growth of sideband modes in variable parameter wigglers and
1s currently in progress. Some preliminary results are

presented in Figure 6 of the main summary of this report.




APPENDIX D

PHASE AREA DISPLACEMENT

P

I. INTRODUCTION

In the deceleration of relativistic beam electrons by

| phase area displacement,1 the beam electrons are injected

into a variable parameter wiggler in which the resonant

energy of the wiggler Y increases from the front of the

r
wiggler to the back, y.(L) > Yr(o). The beam energy Y
is such as to produce a resonant interaction of the beam
electrons with the ponderomotive potential well or "bucket"
(produced by the combined fields of the wiggler and
electromagnetic [EM] pulse) inside the wiggler, Y = Yr(z),
L >z > 0, usually near the center of the wiggler. The

{ interaction may be viewed, as shown in Figure 1, in terms of
an acceleration of the bucket through the phase area (v.v) of
the beam electrons. The result is a downward displacement in
energy of the phase area occupied by the beam electrons by an
amount of the order of the phase area of the bucket divided
by 2m.

1f the bucket acceleration is adiabatic and no

electrons are trapped in the bucket during the interaction,
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Figure 1. Motion of empty buckets through electron
phase space in a phase area displacement FEL.




the final beam energy spread is nearly equal to the initial
beam energy spread.

This method of beam energy extraction has two features
which are attractive with respect to operating a variable
parameter Free Electron Laser (FEL) oscillator in conjunction
with a storage ring: (1) The energy extracted is insensitive
to the beam energy spread; (2) The ratio of the energy
extracted to the increase in the root mean square energy
spread can be made to be small.

In practice, the bucket acceleration 1is never
completely adiabatic and some energy spread will occur.
Furthermore, a nonadiabatic entry and exit from the wiggler
will induce additional energy spreads. Thus, such a device
may be operated in steady state only if the increase in the
effective phase space area occupied by the beam, due to the
energy spreading on each passage through the wiggler, can be
balanced by a corresponding decrease due t> incoherent
synchrotron radiation in the storage ring, and the beam
energy "Hoosted to compensate for the losses in the wiggler
and storage ring. A convenient measure of efficiency is the
ratio of the energy radiated in the wiggler to that lost in
the storage ring during steady state operation. It 1s
clearly desirable to maximize this ratio.

In this respect, we discuss an investigation of the
efficiency of phase area displacement wigglers operated in

a storage ring. The startup problem is first addressed in
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Section I. The linear gain is calculated from an eigenmode
analysis of the linearized FEL equations. This is followed
3 in Section II by a comparison with numerical simulations

L of the theoretical estimates of beam energy loss and beam

3 energy spread due to interaction of electrons with a finite

amplitude ponderomotive potential well. In Section III, the

results of numerical simulations of steady state operation is :
described, the efficiency is determined, and the scaling of %
efficiency with the wiggler and EM pulse parameters is
derived.

A full self-consistent simulation would be very
difficult to run since a very long EM pulse is required for
adiabaticity, involving a correspondingly long electron
micropulse and many particles. Our results must thus be
interpreted only as necessary conditions in the design of

phase area displacement wigglers.




II. LINEAR EIGENMODE ANALYSIS

In this section we address the small signal problem;
i. e., growing the laser pulse from a very small amplitude.

It is assumed that the electron beam is relativistic
with energy parameter Yy >>1 and that the beam self-fields
are negligibly small (Compton regime). The periodic magnetic
field wiggler (with wave number kw and length L) and the
EM pulse (with frequency wg and wave number kg) are
represented by circularly polarized vector potentials A,
and A, with negligible spatial variations transverse to the
direction of electron beam propagation. The EM pulse is
approximated by a plane wave Ag exp (-iwgt + ikgz + iZ) with
slowly varying amplitude A, and phase z.

The electron equations of motion (in the resonant
approximation) in terms of the electron energy and phase

angle (Y,V¥) and the equations of the EM pulse amplitude Ag

and phase [ (from Maxwell's equations) are:

3y

N "7 (1)
N ooredltae 15 (2)
v 2
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u = S
o k L
w

\

=)

h(u) = : C I(E,t)
X I

fh(u)du = 1

1 = % .fIdz
L

V 1is the electron longitudinal velocity. a, and %, and
hence Yr' are considered to be constant down the wiggler.
The actual variable parameter wiggler is modeled by the

inclusion of a constant electric field, that is T # O.

Ayr is the change in Yy which would be experienced by an
electron freely accelerated by the electric field. + 1is the
nominal electron micropulse beam length. h(u) 1is a form
factor determined by the beam profile. Yo is the beam
radius and 1 1is the beam current. f 1is the filling
factor. The angular brackets imply integration over the

initial energy distribution (?O) and average over the initial

phase (., ) of the electrons:

s

2-
-1 1 . . -1y
<<e l'>> = 5= fd de_ F(v,) e *
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F(?O) is the initial electron distribution function
normalized so that J.d?o F(YO) = 1.

In the (u,v)-space, the wiggler (L 2 z = 0) lies
between the lines u + v =0 and u + v = 1. The electrons
move on lines of constant u and the photons of the EM
pulse, propagating in the beam direction, move on lines of
constant v. The beam electrons and photons interact only
when their trajectories in the (u,v)-plane intersect within
the lines u+ v =0 and u + v = 1.

The electron phase space (y,") trajectories are
determined by the solutions of Equations (1) and (2), with
initial conditions ¥ = ?o' b o= wo at v = -u. The phase of
the electrons entering the wiggler is uncorrelated with that
of the EM pulse. Thus, $o is distributed uniformly between
0 and 27,

To model a phase area displacement wiggler, a constant
decelerating electric field (T < 0) is applied to decelerate
the electrons. At the front of the wiggier, the electron
energy is greater than the resonant energy, y{(0) = Qi > 0.
As the electrons move down the wiggler, Y decreases, passes
through zero (at which point the electrons are in resonance
with the ponderomotive potential well), and is negative at
the back of the wiggler (the beam energy is less than the
resonant energy, v(L) = Qf < 0). Thus, the deceleration of

the electrons is used to model the increase of the resonant

energy of the ponderomotive potential well from a value below




the beam energy at the front of the wiggler to a value above
the beam energy at the back of the wiggler.

A determination of the linear gain from an eigenmode
analysis of the linearized FEL equations has previously been
discussed in the 1982 Annual Report for FEL oscillators with
constant (7 = 0) and variable parameter wigglers with 7 > 0.
By following the same procedure, the linear gain for FEL
oscillators with a phase area displacement wiggler (T < 0)
can readily be derived.

In order to exploit the special properties of a phase
area displacement wiggler, it is desirable to have an EM
pulse with frequency such that the electrons (with mean
energy V) are in resonance (with the ponderomotive potential
well) near the middle of the wiggler, and with amplitude
constant over many slippage distances so that the electron
interaction is adiabatic. In order to grow an EM pulse with
these characteristics, it will be necessary to provide for
frequency discrimination (by passing the pulse through a
narrow band pass filter) to select the mode with the desired
frequency, and to use long electron micropulses. Thus, it is
relevant to restrict the analysis of linear gain to long,

constant amplitude EM pulses and correspondingly long

electron micropulses. In this limit, the emerging EM pulse
is a(L) = esa(o), where the linear gain and phase shift per
pass §$ (,5) < 1) 1is easily derived from Equations (1)

through (3) to be:




in
(o] ~ ~ [] = L]
§ = 2 IdvoF(yo) rdzfdz (z=-2")
o o

: 12 . 2
exp :i.?o (z! = z) * lrzz = 11"22 t (4)

If the mirror losses are included, the gain per pass is
1-r+8. (1 - r) is the fractional reduction in amplitude
per pass due to energy losses at the mirrors, and ", " n/uo. |

1f we take F(?o) to be Lorentzian

= 1 1
- = 2/ % 2
0 mY [1+ L Y)/{th]

th

where 7 1is the mean energy and Vth the energy spread, we

obtain for T = - [T], 1r|35 > 1,

n .
oo 3% 0 kvl fi-1l)g
ik a|r|™ » )Z( 2 )
(1-1)(ie+lrl")
- (i+1) Z 3 (5)
where Vth*'i;
€ = ‘ﬁ
IT|
i
-2 k2
and 2(® = 21e Idiei ;
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Since Y sJ‘TL implies |e| >> 1, the function Z(®)

may be approximated by its asymptotir expansion:

(& = 2i1r}5exp (- &%)

--3;(1+1/20'+...),Ime'<0 £

Thus, if Y., = 0,

3

novr _i¥
l-r+4§ = % -(1+i)exp( Y)
2|r| 2|r|

2
: - ©
i e"p(l—(‘%%l_u_) (6)

The linear gain oscillates as Y varies and will be
significantly modified by a finite energy spread.
If the energy spread is finite with

it S
¥ s e
- ( T ) Te]

and
1
’e-ilrl’il

% exp t-vth Qa - T/IFI)} <<

in
)

l1=r+6 =
2|T| ete-ilT|™
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e

and

Re (l=-r+d) = noTth (ZY % “‘I)
- = — 2 2 — 2 = 2
2T, *+T )(Yth+(Y ")
8n ¥ ik
~ ——EB oy/ri-n, ¥, <Y =Irl/2 .
i (7)

The linear gain is reduced in magnitude and is positive
only when Y > |I'|/2. As will be apparent subsequently when
model parameters are discussed, the energy spreads to be
expected are such that Equation (7) is applicable and the
predicted linear gain is too small to be useful. Thus, an
alternate startup strategy is required; e.g.,

(a) Using another laser for startup.

(b) Varying electron energy so that electrons are

initially resonant at wiggler entrance or exit.
This is a complex scenario and it is not clear
that it is feasible when the transition phase
is considered.

In the remainder of this report, we assume that this
problem has somehow been solved and that a long laser pulse

of large constant amplitude is available.
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III. BEAM ENERGY LOSS AND ENERGY SPREAD

The electron equations of motion [Eguation (1) and

Equation (2)] are derivable from the Hamiltonian H({,¥):

pea &2
H(F,9) = *? - Ty - acos (¢ + 7)
a2
= L+ v (8)

Analytic estimates of the beam energy loss and beam
energy spread can be obtained in the limit where a and ¢
are constant.

In this limit, H is a constant of the motion. The
electrons see a potential well V(y) = -Ty - a cosy
(set T = 0), which is plotted in Figure 2 for [ < 0. The

stationary points of V(y) occur at

v = 2Nw + ¥re 2WT + Tsign (¥.) - o,

sin ¥y = T/a
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2. Electron phase trajectory 1n the
ponderomotive potential of a phase
area disrlacement wigaler.
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the potential well depth is:
AV = 2a ‘cos v+ sin ¥_ (¥, - I sign (¥ ))'
| r r \'g = 3 99 r’ly
corresponding to a bucket height G?max of
(S o % . 1 . %
Yoy = & cos V. + sin V. (wr - 3 sign (w,n

The difference in adjacent maxima is

' 2n|T|

= 2masin iwrl :

A typical trajectory in the ponderomotive potential
well is shown in Figure 2. The electron phase U increases
from an initial value y,, reaches a maximum Vg when it is
"reflected," and then decreases to a final value wz, Note
that if the amplitude a is increasing, the electrons may
become trapped. Thus the wiggler should be designed to
provide a very slow decrease in bucket height. Note also
that the amplitude cannot be allowed to fluctuate in time,
thus requiring a very strong optical filter.

Thus, by integrating Equations (1) and (2) through the
wiggler, the net change in the electron energy due to

interaction with the ponderomotive potential well is:
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l‘}F W2
- _J' asinvdy asinydy
Ja2(E-v) V2 (E- V)

V1 Ve

- yf2a_siny_

Ve .
dv =
f VE+a(ysint_+cosy)

- 00

1
VH+a(w sin wr+cos 'JJF)

(9)

where Y is determined by H = -Ti; - a cos vp .

F
The integrals in Equation (9) have been eva.uated in
Reference 1 and the following estimates obtained of the beam

energy loss and root mean square éenergy spread:

T g 5 = _ AT

by = - g @7E- Ay (10)

(AYrms) ' = stnwrjAYL . (11)
wiggler

93

NE—




A further energy spread can occur if the beam entry
into and beam exit out of the wiggler is nonadiabatic. This
contribution to the room mean square energy spread is
estimated to be

~ 22 (12)

A%
( Yrms)ends r

where the mean initial energy Y ~ I'/2. However, the

magnitude of this contribution can be essentially eliminated

by a gradual tapering of the front and back of the wiggler so

that the beam enters and exits the wiggler adiabatically.

If the end contributions are taken to be statistically
independent of the wiggler contributions, the total root mean

square energy spread is:

AY -
"rms . r? , 'a
bY a’ 16TZ

L

(13)

The theoretical estimates of AYL and AYrms'
Equations (10) and (13), have been compared with the results
of numerical simulation of a one-dimensional FEL with a phase
area displacement wiggler.

In the simulations, a monoenergetic electron beam with

-~

energy y = Yj, distributed uniformly in phase angle, is
injected into the wiggler. The transitions into and out of

the wiggler were step-functions, and hence nonadiabatic. The
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mean energy Vf and energy spread on exit from the

BYrms
wiggler are evaluated. The results for one set of FEL
parameters (610 particles are used in the simulations) are
shown in Table 1.

It may be noted that when the initial beam energy

?i is such that the electrons are in resonance with

the ponderomotive potential well inside the wiggler

(r - 2a% > ¥ > Za%), the simulation results are consistent
with the theoretical picture of an average energy loss

(AY =~ 204) and an average energy spread (AYrms = 40.0)
independent of the initial energy, although the simulated
loss was about 20 percent lower and the spread about

25 percent higher than predicted by the crude theory.

No significant trapping is observed except when the
electrons are in resonance at the beginning or end of the
wiggler. When trapping occurs at the beginning of the
wiggler, the energy spread is considerably enhanced as the

trapped electrons are dragged along in phase space by the

ponderomotive potential well.
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150
170
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

TABLE 1

212
214
207
198
197
202
207
205
203
203
212
191
203
204
203
199

196

96

= -1000

rms

529

436
62.1
35.7
49.9
34.7
34.6
42.4
30.7
44.2
38.1
40.0
32.8
39.1
32.6
40.3
42.1
58.7

63.4




IV. STORAGE RING OPERATION

An FEL oscillator with a phase area.displacement
wiggler can be operated in steady state with a storage
ring if the increase in energy spread can be balanced by a
decrease due to incoherent synchrotron radiation and the beam
energy boosted by a radio~frequency (RF) cavity to compensate
for the losses in the wiggler and in synchrotron radiation.
The energy loss AYsyn due to synchrotron radiation
is proportional to Yy3?, Ay = -soyz. In terms of the

syn
dimensionless variable <¢:

2kwL ~ 2
A A = - 2 Y
Ysyn so Y, Ve (l * ZkWL)
2k, 7\ -3 |
= - S y 2 (1 + ) 1+ — ...
o v, r 2k L k L(1+7/2k L) \
. § -3 )
z - Ay 1 + + « o
syn kL s

(14)

The energy change per pass AY is the sum of three

terms:




hy
x,

syn k L * Bpp T 87

(15)

where Ayp. is the energy increase in the RF cavity. To
attain steady state operation, AYp. is required to
compensate for the total mean energy losses, Avsyn + AVL,
The presence of a storage ring can therefore be
included in the simulations previously described by
recirculating the electrons through the wiggler while
modeling the effect of the storage ring on the electron

energy with the following equation:

Q,(n+l)= g% (n)

i £ + b (16)

where Qf(n) is the value of Y on exit from the wiggler on

(n+l)

the ntM pass, and Qi the input value of ¥y on the

(n+1)* pags. The parameter o is related to AY b
syn oY

¢ = 1 - —x8 (17)
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The parameter b is determined by the requirement that the

mean input energy of the beam on each pass is maintained

constant.

The simulations are carried out for a given wiggler
design with the value of ¢ (and hence the synchrotron energy

loss ) adjusted until an efficient steady state opera-~

A.7?syn
tion is obtained. This is achieved when Avsyn is just
large enough to limit the energy spread so that electron
trapping is negligible. Electron trapping is undesirable,
particularly when it occurs at the beginning of the wiggler,
since it results in considerably enhanced energy spreading.
The evolution of the electron distribution function F

per pass may be described by a Fokker Planck egquation, and in

steady state

- =z AY F - —x Ay F=20 18

where the energy spread in the wiggler

<(A?‘2> = (A?rms)z

is balanced by the synchrotron damping in the storage ring

If the dependence of (A?rms)z on Y is neglected,

the solution of Equation (18) is:
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&

e,

syn (§ - V)2
= 2
e BV ) (19)

Ay
F = Co exp | - X

where CO is a normalization constant.

An approximate theoretical criterion for negligible
trapping in steady state may therefore be obtained by
restricting the fraction of electrons which can be in
resonance with the ponderomotive potential well at the
beginning of the wiggler to less than 1073, This imposes the

following lower limit on A?s

yn?
¥ svn l -4, (A»Alr:ms)2
—=¥8 5 l1og 107
k L (¥ - za!i)z
w Y (20)

where Y ~ |T]|/2 so that electrons with the mean beam energy
are in resonance near the center of the wiggler.

The accuracy of this criterion has been estimated by
comparison with numerical simulations for a wiggler design

with the following physical parameters.

By 8 kG
3
| 10
Kg 2n x 10% em7?
L 2 x 104 em
kL 1.77 x 104
w
Peak Circulating Power 4.9 GW/cm?
Change in Resonant Energy Ayr = 28
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The corresponding simulation parameters are:

a = 104

Ir| = 103

and Y was set equal to

Y = [r{/2.

The observed minimum value of A?Syn/kwL for which no
significant electron trapping occurred after 200 steady state

passes {using 123 particles for each pass) is

=¥ & 9.075 . (21)

The observed energy loss in the wiggler is

AY1ager = 205 (22)

and hence AT
Y1aser

— ~ 0.15 . (23)
AYS

n . .

Y simulation

This ratio is a measure of the FEL steady state efficiency.
The theoretical estimate of A?svn/kwL obtained from

Equation (20) with Aqrms determined by Equation (13) and

A?L by Equation (10) is
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AT
Yszn ~ 0.11 (24)
kL ‘ :

It is larger than the observed value [Equation (21)] by a

factor of 1.4. The difference may be attributed to the

dependence of A?rms on Y.

j+ Since AYlaser = Ay, is

somewhat larger than the observed value [Equation (22)], the

theoretical estimate of FEL efficiency

8y
laser -
AY = 0.13

SYn /theory

is close to that seen in the simulations.

The scaling of efficiency with wiggler and EM pulse
parameters may be obtained from Equation (20) by substituting
Equation (11) for A\?rms (the energy spreading due to

nonadiabatic entry and exit is assumed negligible):

2

¢
N
vy
u
~
=

Y 3
81aser < _T_ a 2 (l _ 4a%)

uYsyn w

Yy
_ 8n X 21,2 (awas ) (1 4a1/2)2
= — —_— -
295 “w l1+a/ [T (25)
%

where Y = |T|/2 and a > |T| > 4a”.
As can be seen from the preceding discussion of the

comparison between theory and simulation, the numerical

coefficient is perhaps uncertain by about 50 percent.
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V. DISCUSSION

In order to obtain good efficiency during steady state
operation, it is essential that the electron interaction with
the ponderomotive potential well be adiabatic and that
electron trapping be negligible.

Furthermore, a long constant amplitude EM pulse is
necessary to produce a potential well which remains unchanged
through the wiggler. variations of the potential well can
affect not only adiabaticity, but lead to electron trapping.
As a general rule, the electrons should "see" negligible
amplitude fluctuations in a traversal time across a "bucket.”

The slippage AZ of the electrons in the EM pulse during

ey

traversal through the "bucket" in which reflection occurs

e
i

(Figure 2) is estimated to be

BRRNCE 5 tho gy

excluding those exponentially few electrons "caught" at the

top of the potential well. Thus, an approximate criterion

for restricting the probability of trapping to less than

T (due to increases Aa in amplitude) is obtained by

93 Az ~ fa < Ta
dz

1 ! l demanding
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that is

a dz L(%—l)ﬂin(wa) (26)

The fraction <t of electrons which are trapped are
presumably accelerated to high energies and must be replaced

or reprocessed.

For a = 10% and r/a = 10! and 1 = 10794,

1da  _ 1
a dz c

460L{= -1

60L(> - 1)
which implies slow amplitude variations over many slippage
distances.

For the numerical example discussed earlier, this
implies pulse lengths of 5 cm.

When the above conditions are satisfied, the FEL
efficiency in steady state is estimated to be

[Equation (25)]:

AY a 2
—laser . 5.048 k212 [—2
w

A l1+a
Ysyn w
¥, 5\
{ 2(em) | L- é_a_) (27)
[kZ2x T
s P
where the dimensionless pulse amplitude .as] is related to

the power P(GW) in gigawatts of the EM pulse (assumed to be

circularly polarized) by
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= 2 2 2
P(GW) 0.697™ kg ry [as\

2
p

nr is the effective area of the pulse.

If the wiggler length L is taken to be the Rayleigh

diffraction length Ly = ksrpz' Equation (27) reduces to

The extracted beam energy A€(ev) in electron volts

per pass is

AS
Ylaser

6
= 0.511 x 10
Allev) 11 x Ye T

and the power AP(GW) transferred per pass to the EM pulse
from the electron micropulse with peak current I(amps) in
amperes 1s

1

Ala/2
r 1tk L
w

JP{GW)

]

5.11 x 107 y I (amps)

% %

a
_ -3 w P (GW)
= 1.43 x 10 Y, (l+—a2) (;;3—;1—) I (amps)
w s 'p

(29)




In steady state, the power lost by the EM pulse at the

mirrors equals the power gained from the electron micropulse:

AP(GW) = 2(1 - r) P(GW) (30)

and hence the current required to maintain steady state for a

given value of the fractional power loss 2(1 - r) is:
2
l1+a Y
I(amps) = 1.40 x 10° 3= ( w) (Trkzrz) PY(GW)
Y a s p
" r w
L /1 2\% 3
+

s 1.4 x 103 -1 (,nk y )“( aw) p(GW)
= LA x0T Phe) \TaZ

r w

L =1 = r-
R 5P (31)

In the case of the physical parameters described in

Section IV where the peak circulating power is P = 4.9 GW,

;f ' ko = 27 x 104 em7t, Yp = 103, a, = 5.3, if the power loss is
.f 1%, 2(1 - r) = 0.01 and ﬂrpz =1 cm , the peak electron
k' micropulse current is I = 13.5 amperes.

This limit on the peak micropulse current is not
particularly severe.

A more severe constraint arises if the operation of the
FEL oscillator is to be initiated by growing the desired EM

pulse from noise levels. The peak current density must then
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be large enough to produce adequate linear gain per pass to

overcome the energy losses at the mirrors. For long electron
micropulses with finite energy spreads, the linear gain per
pass for a long constant amplitude EM pulse is determined by

Equation (7):

k213 als
Re: =~ 3.76 x 10 ° W W I (amps)
Yy kr? (1+—a2)
Y § O
(32)
. tn (27 -1)
Ir]® \lr| .

If the energy spread is taken to be [Equation (20)1],

the maximum allowable,

~ 2 fr! nE
(AY ) k L —t-2a2
—2 rms/ "w_ 2
“th 207 18.4 ’
syn

the linear gain for the example previously described, where
I = 13.5 amps and the beam area is taken to be wr; =1 cmz,
is

ReS = 1.1 x 10°° (%——l)f .
This value of the linear gain is somewhat on the low side to
overcome any reasonable mirror losses. Higher micropulse
peak currents or alternative startup strategies would

probably be required.

Even if the wiggler and beam parameters can be designed

so that finite linear gain is obtained, there remains the




issue of accessibility to the desired final steady state
operation. Further investigations are needed to determine
the evolution of the EM pulse from noise levels.

In summary, high FEL efficiency is theoretically
possible for FEL oscillators using a phase area displacement
wiggler in conjunction with a storage ring. Long wigglers
containing many wiggler periods and EM pulses with large
circulating peak powers are effective in obtaining high
efficiencies. Very smooth long pulses are required to avoid
trapping, hence good frequency discrimination. The linear
gain per pass tends to be small unless appreciable micropulse

peak current densities are available. The scenario of the

T

time evolution to a steady state is complex and remains to be

elucidated.
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APPENDTIX E

TWO~-DIMENSIONAL EFFECTS IN FREE ELECTRON LASERS

I. INTRODUCTION

The motion of electrons in a free electron laser under
the combined influence of the wiggler magnets and
electromagnetic wave may be calculated from the particle

'} Hamiltonian as discussed below. This problem has hitherto
been considered essentially as a one-dimensional problem in
which the electron's motion can be reduced to the pendulum
equation in the "ponderomotive” potential formed by the
wiggler and laser magnetic fields.l! 1In particular, high

3 efficiency "tapered wiggler" configurations rely on electrons
. being trapped and executing "synchrotron" oscillations in
this potential.

3 It is the purpose of this note to extend that
description by taking account of the fact that the fields
actually depend on transverge dimensions. To simplify our
discussion, we will consider transverse dependence on only a
single coordinate, x. The most obvious consequence of the

b transverse (focusing) variation of the wiggler magnetic

field is that the electron undergoes transverse betatron
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oscillations. In the simplest approximation, the betatron
and synchrotron oscillations are decoupled, since one is
transverse and the other longitudinal insofar as the laser
pulse may be treated as a plane wave. Herein we propose to
analyze the coupling which results from such physical effects
as curvature of the optical wave front. Radial variation of
optical amplitude introduces effects similar to but somewhat

smaller than those we consider here.
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II. DERIVATION OF DRIVEN PENDULUM EQUATION

It is conventional to express the vector potential in
dimensionless units a = eA/mc?. We denote by subscript w

quantities relating to the wiggler magnet and by subscript s

those relating to the laser field.

Hence the vector potential is & = Ayy with
Ay = a, cosh kwx cos k.2
- ag (x,z,t) cos [ks(z - ct) - ¢(x,z,t)] . (1)

Typically a, ~ &(1) and ag ~ 8(10-3)-

The transverse dependence of the laser amplitude and
phase are presumed given. We will concentrate our attention
on phase behavior near x = 0 where ¢ ~ k.x®/R with R
the effective radius of curvature of the wave front. As a
specific example, we sometimes consider a low gain oscillator

for which the laser pulse in the optical cavity will be well

described by a Gaussian mode

. 2iz\ _zlz . ])
as ~(xD + o ) x  exp ( x/ X, + 212/ks
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with X, the width of the beam waist and 2z the distance

from the optical waist. For such a pulse

1 2/ g
2zR 1+(z/zR)2

a e

(2)

with the Rayleigh length iy = ksx; /2.
We may use the canonical momentum pz as our

Hamiltonian with (x, p Y, t) as the canonical coordinates

xl
and 2z the independent variable.? Taking vy >> 1, kX << 1,

as << 1, we find

Y __1- ‘1+pz+a2[1+k2x2]coszk 2
z 2y I X W w w

e
m

P

- 2a a cosk zcos[k (z~ct) - ¢]
w S w s ‘

Averaging over the fast wiggler oscillations and keeping only
the term in the cross product which allows for near electron

resonance, we find for the averaged Hamiltonian
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Recalling that a, <<ag we find for the transverse

motion the decoupled betatron equation

” 2a?
d x W W x = - kx
dz? 2y* ) ) (4)
with solution x = xB cos (kBZ +38).
For the longitudinal motion we have
a; k?a?x*
l+— + p? + w_w
d_E = 1 + 2 X
dz 2y?
a2
1+—-‘;—(l+k2xf)
= 1 + 272 =
(5)
and
d ksay g :
—1=-————sin(k+k)z-kt-kx—— X
dz 2y % s s s R (6)

It is convenient to rewrite Equation (5) in terms of

the optical phase

X~
R ' (7)

ik + k jz=-k ct - k
w s s s
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R kBsin(Zsz+-26) . (8)

Combining Equations (6)and (8), we recover the familiar
pendulum equation with a driving term

2

a
2 w 2 o 2 )
aty _ _ S U AR %5 ) a s sin.
dz? 2y w s '
2 .2
2k5k3 xB
+~———?;——— cos (2kez + 24)

or on introducing




we have our fundamental equation

2

d- .
dzl2

= = giny + Bsin (az' + 27%) . (9)

The phase § may be chosen to be 0 without loss of

generality.

Note that if x6 is comparable to the laser beam width

X and if the wiggler length is of order a Rayleigh length,
then B8 ~@&a?). o depends on many parameters but typically
o % 1, depending on whether the peak circulating power in the
laser is less than or greater than 1 GW. These limits will
be refined in the later discussion, but we anticipate by
noting that the most interesting case will be the resonant
case a ~ 1, and that such a power level is likely to be

realized during the buildup of a high power oscillator, or

et possibly in the operation of a high power amplifier.
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III. BEHAVIOR OF THE BETATRON SYNCHROTRON RESONANCE

We now turn to solution of the basic differential
Equation (9) treating « and {3 as given constants. The
solution depends on whether o 1is greater, less than, or
approximately equal to 1. We bear in mind that the primary
interest is whether particles trapped near the bottom of the

ponderomotive well become untrapped due to the driving term,

l. Case I - g << 1, High Optical Power

In this case the driving term changes adiabatically
and Y = sin~1 R sin(az’' + 28)|. Hence, the condition

that particles remain trapped is simply 8 <1, i.e.,

kg Xg?
% —EEE— a? < 1. For a Gaussian pulse at the most unfavorable
value 2 = ZR' we see from Equation (2) that this condition
2
Xz . .
becomes % —=x a? < 1. Since one must have xB 2 x  1n
X
o)

order that the electron remain in the optical field, it

follows that no significant detrapping occurs in this regime.

2. Case II -~ o >>1, Low Optical Power

Here, since we are interested in particles with
B
a’-1

leading to an approximate condition for avoiding detrapping

sin az',

v << 1, an approximate solution is U~

3/+% < 1/2 or for a Gaussian pulse xf/xé < 27 and again it

would seem that this regime is not dangerous. The form of
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the solution of course points out the potential dangers of

the resonance region o = 1.

3. Case III - a =1

Insofar as & and B8 are constants, we may obtain an
analytic approximate solution to Equation (9) as follows.

The Hamiltonian for Equation {(9) is

H = — =~ cosy - 3ysin az'

If we introduce angle action variables? for the unperturbed

3 {3=0) Hamiltonian, we have

H = J.ZdJ - 2i(J,¢) sin az'
{10)
Here
3 B 8 . . )
4 J = J.;' dy = = {E(k') - (1-k°) K(k‘)},
" m
~ = T 2 _ H+l
:‘ 2 EET;?T and k >
b ay 2
i Further d = — S K(k)
‘g 4 I v k* -sin” ¥/2 ,
o
ﬁ
and p = 4Kk/7 ‘[ cn (Ziw) do¢
L 1 . o K' (k%) |
= 4 Z _(?r;:—l—)_ sin (2n-1) f)/ cosh'(n-‘z)v KOk ‘
n=1
{(11)
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Here E and K are the usual complete elliptic integrals,
cn  is the Jacobian elliptic function, and K' = K(JI:ET) .
Electrons trapped at the bottom of the well are represented
by x? = o. Barely trapped electrons have k = 1.

Since we are interested in the case of near resonance,
we substitute Equation (11) into Equation (10), keeping only
the resonant term ¢ - az'. Introducing ¢' = ¢ - az' by a
canonical transformation, we obtain the new autonomous

Hamiltonian

8 ; 2 cos '
H = 2k® - ~x = [E -~ (1L-k%)K| - : .
T ¢ ) cosh {7K'/2K?
{(12)
which is now a constant of motion.
The bottom of the potential well corres&onds to
H' = 0. 1If [cos ¢‘< 1 for all k? between zero and 1,

then the orbit passing through the bot*om of the well is
connected to the top and most particles will be detrapped.
Equation (10) is easily solved for cos¢' and we find
graphically that such detrapping is most likely to occur at
a = 0.865. In this case, B < 0.1 1is found to lead to
detrapping. Recall that we have previously noted that for
a ~® 1, 8 =< % xBZ/xoz. Thus total detrapping could be
avoided for sz/xoz < 0.4. But even in this case
substantial detrapping could occur from electrons trapped

away from the bottom of the well.
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A more important limitation on predicted detrapping
results from the finite length of the wiggler. We crudely
estimate the detrapping of electrons from near the top of the

well where 7K'/2K < 1. From Equation (12),

aJ dz' 3H g sin ' < 20 3
dz dz  5¢° ‘s cosh (mK'/2K) ~ “"s= -+ (13)

For a Gaussian beam using Equations (2) and (13) and putting

& =1, we have

2
: ag *3 2/Zg .
4 az M%7 Ty’
0 R (14)
Fl Those electrons with J nearly equal to J = 8/7 may now

max

be lifted over the top if J increases sufficiently.
Consider a wiggler of length 2L with optical waist at
the center. Then we may obtain an estimate of the fraction

of trapped phase space, AJ/J which moves over the top of

max’
the well by integrating Equation (14) from 2 =0 to L. We
take only the half length to account crudely for the fact
that only half the electrons have phases leading to

dJ/d2 > 0. Then the possible fractional detrapping is given

by:
1 xZ
S S :
£ o= S5 T k 2y on (l+(L/ZR))] . (15)
max o]
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Thus it would appear that only long wigglers with large
kSZR can be subject to serious detrapping. This could put
an important emittance constraint on long wigglers. However,
we note that another such constraint is already conven-
tionally taken into account in wiggler design. This arises
from the fact that betatron motion at fixed <y leads to a
change in electron longitudinal velocity and hence does not

permit electrons to be trapped in the ponderomotive well.

From Equation (8) we may write

the limit coming from the depth of the potential well in

Equation (9). This means that the maximum allowable
emittance, éhax is determined from:
2
X
Smax
kSZR 2 = 22

{16)

DPefining the maximum allowable emittance from
Equation (16) and substituting into Equation ((13), we have

for the fraction of detrapped phase space:

PN

V2 :n [1«»(%‘;)2] €€ . (17)

max




For the usual wiggler L = ZR and allowing
approximately for the overestimates we have made, we conclude
£~ 0.4 €7€%ax with a numerical factor uncertain by perhaps

a factor of 2. Pending detailed simulations for specific

designs, it seems clear that for €V€max < % the detrapping

is not significant.




IvV. SUMMARY AND CONCLUSIONS

We have studied the effect of 2-dimensional motion on
electron "synchrotron"” oscillations in the ponderomotive
potential of a free electron laser. We find that the
transverse motion of the electrons is essentially an
unconstrained betatron oscillation. However, if the optical
wave front is curved, this motion couples into the
synchrotron oscillations. We find this coupling to be weak
except near resonance where 2ke = g which occurs typically
at peak circulating optical power levels near 1 GW. Under
resonant conditions, the coupling is marginally strong enough
to lead to some detrapping. Thus a detailed numerical
simulation of specific cases may be required.

However, it appears that in an amplifier the parameters
may change rapidly enough that the resonance is passed

3 During the buildup

through without significant detrapping.
phase of an oscillator passing through resonant power levels,
we have roughly estimated peak potential detrapping to be of
order of 40% if the emittance is the maximum allowed by other
considerations. Hence, if a reasonable gain margin exists,
this detrapping is not essential. With smaller emittances,
the effect is of course smaller. For actual cylindrical

cases where many orbits do not pass close to the axis, the

effect is further reduced.

123




It should be noted that we have not studied the
self-consistent effect of betatron motion on emission, but
only the effect of an assumed wave shape on electron

trapping. With these caveats we conclude that 2-dimensional
effects do not seriously perturb the simple l-dimensional
picture of a free electron laser or introduce significant
further design constraints.
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