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THEORETICAL STUDIES ON FREE ELECTRON LASERS

The subject of this investigation has been the Free

Electron Laser4 (FEL), a device which is capable of

converting the kinetic energy of a relativistic electron beam

into coherent electromagnetic radiation. The investigation

focused on two main topics:

'_ * .The FEL operated as an oscillator and an amplifier

using variable parameter wigglers.2

Y B. 'The FEL oscillator operated in conjunction with a

storage ring using gain-expanded3 and phase area

displacement wigglers.2

During the two-year period extending from August 1,

1981 to September 30, 1983, the following tasks were

accomplished:

1. An eigenmode analysis 4 of the linearized one-

dimensional FEL equations leading to a determination of the

linear gain characteristics of FEL oscillators with variable

parameter wigglers. Various cases studied include electron

pulses, long and short compared to slippage length; constant

and variable parameter wigglers, and FELs with and without

optical sideband suppression.'I
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2. The development of a one-dimensional self-

consistent particle and electromagnetic wave code 4 to

simulate the operation of FELs with variable parameter

wigglers and with frequency filtering of the electromagnetic

(EM) pulse.

3. A study of the time evolution of an EM pulse in FEL

oscillators in which the growth of the pulse is followed from

low noise levels all the way to steady state, with particular

attention paid to the effectiveness of electron trapping and

to the suppression of sideband modes by frequency

discrimination.

4. A study of the effect of unstable sideband modes on

high-extraction FEL amplifiers, with particular reference to

a proposed ATA design.
5

5. An extension of the analytic linear theory of

unstable sideband modes to include not only the amplitude

perturbations previously considered,2 but also the phase

perturbations of the EM pulse.

6. A Hamiltonian formulation of the electron equations

of motion for the "thin lens" gain-expanded FEL,6 with

derivation of the Manley-Rowe relation and generalized

gain-spread theorems.

7. A study of the phase area displacement wiggler,

with estimation of the theoretical efficiency possible in

storage rings.
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8. A preliminary survey of the role of two-dimensional

effects on FEL operation.

Tasks 1, 2 and 3 for ultra-short electron micropulses

as well as most of Task 6 were completed by the end of the

first contract year and are discussed in detail in the 1982

Annual Report.
4
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I. FEL OSCILLATOR

In an FEL oscillator, a variable parameter wiggler is

positioned between two mirrors and an EM pulse is reflected

repeatedly through the wiggler. Relativistic electron

micropulses are injected at periodic intervals so that on

each forward pass of the pulse through the wiggler, there is

overlap of the EM pulse and the electron micropulse. The

pulse grows in amplitude on each forward pass and eventually

electrons are trapped in the ponderomotive potential well or

"bucket" produced by the combined electromagnetic fields of

the wiggler and pulse. At this stage, the pulse continues to

grow with enhanced efficiency as the bucket is decelerated

down the wiggler and energy extracted from the trapped

electrons. A stationary state is reached when the energy

extracted from the electrons is balanced by the energy

losses.

Tasks 1, 2 and 3 address those issues of the operation

of an FEL oscillator which relate to the startup phase,

saturation of linear gain with effective electron trapping,

and stable propagation of the finite amplitude EM pulse in

steady state. The principal results are:

1) Adequate linear gain can be obtained in a variable

parameter FEL oscillator sufficient to overcome the losses at
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the mirrors and to grow the EM pulse to a large amplitude in

a finite number of passes.

2) The linear phase of growth saturates at a high

enough level to ensure trapping except for systems which seek

to enhance linear gain by use of a long constant parameter

section at the front.

3) At high saturation amplitudes, frequency

discrimination is required to prevent nonlinear breakup of

the EM pulse due to the coupling of unstable sideband modes

to the periodic motion of the trapped electrons in the

bucket. Qualitative agreement with the theory of sideband

instabilities is obtained for the width of the frequency

filter required to suppress sideband growth.

4) An FEL oscillator with an EM pulse of one micron

wavelength has been simulated. With proper frequency

discrimination, the EM pulse was grown from noise to a stable

steady state and 30 percent efficiency was achieved.

5) A criterion has been derived (and verified

numerically) for the minimum current required to have

adequate linear gain as well as frequency discrimination:

Ay r 2 y2
r o r

<I> > 1.42 x 105 (1 - r) T.2 a 2f amps.
w

where the electron mict- ,Ise was assumed to be ultra-short,

<I> is the current averaged ove a slippage distance, r0

the beam radius, Ayr the change in the resonant energy Yr
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while traversing the wiggler of length L, aw the

dimensionless vector potential amplitude of the wiggler,

f the filling factor, and (l-r) the fractional reduction in

amplitude due to energy losses on reflection at the mirrors.

6) The limitation on beam thermal spread is determined

more by the need for good linear gain than by that for

effective electron trapping.

These results were first obtained in the limit of an

ultra-short electron micropulse modeled as a 5-function.

Due to computer time limitations, this limit is easier to

simulate since the number of particle orbits which must

be followed is far fewer than that required to represent a

long continuous electron micropulse. This limit is also

analytically tractable. However, the basic physics of the

electron-photon interaction is qualitatively the same for

long electron micropulses. The details of this investigation

may be found in the first annual report.

The theory of linear gain for the more realistic limit

of long electron micropulses is discussed in Appendix A.

Simulations of micropulses several slippage distances long

exhibit a behavior similar to that of ultra-short pulses.

Because of computer time constraints, only a limited number

of simulations of finite length micropulses have been done

(up to four slippage distances long). It was again found

that frequency discrimination is necessary to suppress the

6
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growth of unstable sidebands. In the absence of frequency

discrimination, the EM pulse shape at saturation is broad but

very irregular.7 With frequency discrimination, smooth pulse

shapes were obtained, although the saturated pulse energy was

somewhat smaller. However, the indications are that with

longer micropulses such as those actually envisaged,

frequency discrimination would be effective not only in

producing smoother saturated pulse shapes, but also

relatively higher pulse energies.

The physics of the saturated state should not depend on

the electron micropulse length since the EM pulse is many

synchrotron bounce periods in length. From arguments similar

to those used in the case of the ultra-short pulse, a

corresponding minimum current can be derived whic 3nsures

that a value of frequency discrimination may be chosen to

allow for both linear gain and stable propagation:

Ip > 2.77 x 104 (1 - r) (AYr)

kwr 4 Y r /

( 3 a2 f amps

w

Ip is the peak current. Note that the usual resonance

condition k = 2k Y2 /(l + a 2 applies and that usually
wr w

the length L is limited by the Rayleigh condition

L < k r 0
2  Details of the derivation are given in

Appendix A.
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II. FEL AMPLIFIER

In high-gain FEL amplifiers, electrons are trapped in

the bucket at the front of the wiggler, the bucket is

decelerated and energy is transferred from the trapped

electrons to the EM pulse in one pass. Since the trapped

electrons undergo many bounce osLillations in the bucket

during its passage through the wiggler, the growth of the

unstable sideband modes which can detrap electrons and

reduce energy extraction efficiency is also a major concern.

In Task 4, a series of simulation runs were carried

out using the one-dimensional long pulse simulation code

described in Appendix B in order to assess the effect of

sideband instabilities on efficiency in the ATA FEL amplifier

experiment planned at the Lawrence Livermore National

Laboratory (LLNL). A typical set of design parameters for

the proposed ATA FEL amplifier is:

Table 1

Y = 98.85 + 1.87)

Ip = 5.93kA electron beam

r = 0.387 cm

Pinput = 2.4 Gigawatts / w = 8 cm

rp = 0.447 cm A~w = 3.026 kilogauss-cm

As = 10.6 x 10 - 4 cm Ayr/Yr = 0.33

L = 22 meters

8
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AYr is the effective change in Yr down the wiggler. The

actual wiggler profile is shown in Figure 1.

The results of the simulations using the above

parameters are:

1. With zero initial noise perturbation in the

EM pulse, an FEL efficiency of 18 percent was observed,

agreeing with LLNL estimates. About 54 percent of the

electrons were effectively trapped. Figure 2 displays

a plot of the dimensionless pulse amplitude as a

function of the dimensionless independent variable

v = (t - z/c) c/L(c/V-l) for u = (z/V - t) c/L(c/v-I) 0.

Note that kw(z) = constant. The wiggler extends from v = 0

to v = 1. The pulse amplitude increases by a factor of 4.8

through the wiggler. Outside the wiggler (v > 1), the pulse

amplitude is constant.

The bounce frequency WB of electron trapped at the

bottom of the bucket varied from wBikL/ws 61 at the

front of the wiggler to wBfkwL/ws = 113 at the back of

the wiggler.

2. With initial perturbations of sideband modes at a

frequency w in the range of the bounce frequency WB

large sideband amplifications were observed. Figure 3

displays a plot of the variation of pulse amplitude with v

for the case where the initial amplitude of the sideband mode

at frequency wkwL/ws = 90 was 0.001 of the main pulse

9
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amplitude. The sideband mode grew in amplitude by a factor

of -2,660. In Table 2, the amplitude amplification factor of

sideband modes is tabulated for different values of frequency

wk w L •

Table 2

Sideband Ratio of Initial Amplification
Frequency w Sideband Amplitude Factor

to Main Pulse Amplitudek Lu/k c
w 5

50 10 - 3  3.7 x 102

90 10- 3  26.6 x 102

130 10- 3  4.6 x 102

150 10 - 3  7.7 x 102

165 10 - 3  5.9 x 2

180 10 - 3  4.5 x 102

The observed sideband amplification factors are

consistent with a theoretical analysis of sideband growth for

a high extraction FEL amplifier in which the electrons are

all deeply trapped. The details of this analysis will be

reported elsewhere.

3. With an initial white noise perturbation containing

0.5% of the optical pulse energy but only about 10- 4 of the

optical pulse energy in the sideband frequency range, the

sidebands grew to appreciable amplitudes and the resulting

13
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jutput pulse shape (v > 1) displayed in Figure 4 was highly

irregular. The efficiency was reduced from 18% to 15% and

the effective trapping from 54% to 44%.

No serious degradation in efficiency occurs until the

noise on the incoming laser or e-beam pulse is of order 10- 4 ,

well above that due to spontaneous emission. Clearly a 2-D

sideband theory is required to assess whether beam quality

under circumstances such as shown in Figure 4 is severely

degraded.

Since the growth of sidebands in an amplifier is

exponential, the growth may be expected to be a sensitive

function of detailed design parameters.

While even the large levels of growth predicted here

would not be sufficient to amplify spontaneous emission, it

is clear that it is essential that noise levels on the

electron beam or laser not be excessive. We may note that

coherent transverse oscillations of the beam induced by

accelerator or transport systems could represent such a noise

source. The second and higher harmonics of the betatron

frequency are in the dangerous range for sideband growth.

14
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III. SIDEBANDS

One of the principal problems with tapered wiggler

oscillators is their instability with respect to sideband

growth necessitating frequency discriminatory optics. The

previous theory 2 has neglected the effect of the electrons

on the optical phase. The theory has now been redone

exactly. Some details are presented in Appendix C.

In Figures 5 and 6, the results of analytic theory

and simulations for linear growth rates we have done are

displayed. Growth of sideband minus growth of signal per

pass is plotted in dimensionless units, such that signal

growth in these units should be sin -j r (where sin r

measures the acceleration of the bucket and is defined below

in terms of the Hamiltonian), versus sideband frequency < in

units of (a 0j, the synchrotron frequency of an electron at

the bottom of the ponderomotive well. The growth rates are

presented for two particle distribution functions.

(I) Uniformly filled bucket. In Figure 5, linear gain

curves for the old and new theories are compared.

While Case (1) is easy to calculate analytically, it is

impossible to simulate because of nonlinear effects on

particles at the separatrix. Thus we look also at a

distribution f with a linear gradient.
0
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(2) f = (Hmax - H)(Hmax - Hmin) where H is the

particle Hamiltonian H = -a (cos + tsin $ r) . The solid

curve in Figure 6 is the numerically evaluated analytic

dispersion relation for this case with sin r = 0. It, will

be observed that for sin 4r = 0, the curves for case (1) and

case (2) are quite similar so that results may be expected to

be prototypical for all distributions which extend over the

whole bucket. Sideband growths would be larger for distribu-

tions concentrated near the bottom of the bucket.

The points are simulation results for sin r = 0, 0.2,

0.5. It will be observed that for sin ' r = 0.2 and 0.5, the

peak growth of sidebands is 4.5 and 2.5, respectively, times

signal growth. More detailed comparison between theory and

simulation for sin r = 0 is given in Appendix C.

It should be noted that for sin : r # 0, the new

theory predicts slightly higher growth than that given

in Reference 2. In particular, sideband growth exceeds

signal growth at frequencies close to that of the signal,
2

5 = 1 + &(K/2)2. Thus, some frequency discrimination is

required even against low-lying sidebands.

19
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IV. GAIN-EXPANDED FELS

In a gain-expanded FEL, the sensitivity of gain to

variations in the energy of the exciting electrons is reduced

by using a periodic magnetic wiggler with transverse

gradients such that the electrons which lose energy move to

different transverse positions and continue to remain in

resonance with the ponderomotive potential well. The reduced

sensitivity to energy makes it attractive to operate a gain-

expanded FEL in conjunction with a storage ring since many

passes of the circulating electrons through the FEL would

occur before gain is significantly affected by energy spread.

However, transverse betatron oscillations of the electron

A trajectories are simultaneously excited and may negate the

effectiveness of gain expansion unless the oscillation

amplitudes are kept small. For steady state operation in a

storage ring, it is desirable to maximize the gain whlile

minimzing the level of betatron oscillations.

in order to obtain some insight into the gain

characteristics of gain-expanded FELS, a Hamiltonian formula-

tion of the equations of motion for the "thin lens"

gain-expanded FEL was derived. Two fundamental limitations

on gain-expansion schemes were established: The Manley-Rowe

relation which relates gain to betatron excitation, and the

generalized Madey theorem relating gain to energy spread and

20



betatron excitation. The details of this analysis can be

found in Appendix A of the 1982 Annual Report.

These analytic results were compared this year with

John Madey's Monte Carlo simulation 8 of gain-expanded FELs in

storage rings and the following conclusions were reached:

1. The latest version of the simulations are now

consistent with the Manley-Rowe and the gain-spread

relations.

2. At low laser power, there is good agreement between

the simulation and the analytic results. At higher power,

the Monte Carlo simulations exhibit some degradation in

performance. This may be due to cavity coupling to betatron

oscillations which lead to resonance spreading, an effect not

included in the analysis. However, proper magnet design

which minimizes this coupling could improve the performance.

3. While all designs are limited in consequence of the

above theorems to AE laser/EEsynchrotron < -5Y/Y where -

is the rms spread in electron energy, it would appear that

gain-expanded wigglers may be advantageous compared to

conventional wigglers by virtue of larger energy acceptance.

Studies of various designs will continue in collaboration

with Madey's group.

21
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V. PHASE AREA DISPLACEMENT

In the deceleration of relativistic beam electrons by a

phase area displacement wiggler, the resonant energy of the

wiggler is increased from the front to the back such that the

bucket is moved through the phase area occupied by the

electrons. The result is a downward displacement in the

electron energy by an amount of the order of the phase area

of the bucket divided by 27. In the idealized limit of

infinitely slow deceleration, there should be no energy

spreading.

This method of beam energy extraction has two features

which are attractive with respect to operating an FEL

oscillator in conjunction with a storage ring: The energy

extracted is insensitive to the beam energy spread, and the

ratio of the energy extracted to the increase in root mean

square energy spread can be made to be small.

Numerical simulations of a one-dimensional FEL with a

phase area displacement wiggler have been done and theIf
results were consistent with the theoretical picture of an

average energy loss and an average energy spread independent

of the initial energy, although the simulated energy loss was

about 20 percent lower and the spread about 25 percent higher

than predicted by the crude theory. The details of these

simulations are described in Appendix D.

22
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An FEL oscillator can be operated in steady state with

a storage ring if the laser-induced increase in energy spread

can be balanced by a decrease due to incoherent synchrotron

radiation and the beam energy boosted by a radio-frequency

cavity to compensate for the losses in the wiggler and in

synchrotron radiation.

In order to obtain good efficiency during steady state

operation, it is essential that the electron interaction with

the bucket be adiabatic and that electron trapping be

negligible. Typically, adiabaticity requires long wigglers.

The bucket must remain essentially constant through the

wiggler since bucket variations can affect not only

adiabaticity, but lead to electron trapping. Thu6, it wiA'

be necessary to have a smooth and long (many times the

slippage distance) EM pulse, entailing a good frequency

discrimination.

If these conditions are satisfied, the FEL efficiency

(measured in terms of the ratio of the energy extracted from

the electrons Ay¥laser to the energy loss in synchrotron

radiation ,ysyn) is estimated to be:

AY laser 0 . 5 k2L 2  w

syn w

P P(GW) V4k2r 2
s p

23
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Hee 1 is the wiggler dimensionless magnetic vector

potential, k wthe wave number, k s the optical wave number,

and r pthe optical pulse radius.

For a particular design discussed in Appendix D, a

value of AYlrA - 0.15 was observed in the

simulation, in rough agreement with theoretical predictions.

Long wigglers containing many wiggler periods and EM

pulses with large circulating peak powers are particularly

effective in obtaining high efficiencies.

The linear gain per pass tends to be very small unless

appreciable micropulse peak current densities are available.

Detailed formulae are given in Appendix D. Even if linear

gain is adequate, it is not clear whether the desired final

steady state is accessible by growing the EM pulse from noise

levels. The scenario of the time evolution to a steady state

is complex and remains to be elucidated. It is thus not yet

clear whether a phase displacement pulse can be grown from

noise or whether some alternate startup strategy must be

found.

24



VI. TWO-DIMENSIONAL EFFECTS

Hitherto, the electron equations of motion have been

considered as a one-dimensional problem in which the electron

motion is reduced to the pendulum equation in the ponderomo-

tive potential well formed by the wiggler and EM pulse

fields.

In fact, the electromagnetic fields do depend on

transverse dimensions. Transverse variations of the wiggler

field produce transverse betatron oscillations and diffrac-

tion effects introduce curvature of the wave front.

In the simplest approximation, the transverse betatron

oscillation ("frequency" k S) is decoupled from the

longitudinal "synchrotron" oscillation (bounce "frequency" 2)

in the ponderomotive potential well. However, curvature of

the wave front couples the two oscillations. This coupling

is weak except near resonance when 2k, = which occurs

typically at peak circulating power levels near 1 Gigawatt.

The details of the effect of this resonance coupling in

detrapping electrons is described in Appendix E.

Under resonant conditions, the coupling is marginally

strong enough to lead to some detrapping. Thus, a detailed

numerical simulation of specific cases may be required.

In an amplifier, it appears that the parameters may

change rapidly enough that the resonance is passed through

25
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without significant detrapping. During the buildup phase of

an oscillator passing through resonant power levels, the peak

potential detrapping is estimated to be of the order of

40 percent if the emittance is the maximum allowed by other

considerations. Hence, if a reasonable gain margin exists,

this detrapping is not essential. With smaller emittances,

the effect is, of course, smaller. For actual cylindrical

cases where many orbits do not pass close to the axis, the

effect is further reduced.

In the analysis, the self-consistent effect of betatron

motion on emission was not studied, but only the effect of an

assumed wave shape on electron trapping. Subject to these

caveats, it would appears that two-dimensional effects do not

seriously perturb the simple one-dimensional picture of an

FEL or introduce significant additional design constraints.

26
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APPENDIX A

THEORY OF LINEAR GAIN: FREE ELECTRON LASERS OPERATED

IN OSCILLATOR MODE - FINITE LENGTH ELECTRON PULSE

1
In the 1982 Annual Report, the theory of linear gain

was investigated for a Free Electron Laser (FEL) operated

as an oscillator with ultra-short electron pulses. In such

a device, a periodic magnetic field wiggler of length L

and wave number k is positioned between mirrors so thatw

an electromagnetic pulse can be reflected repeatedly

through the wiggler. The FEL is driven by a successive

series of ultra-short electron beamlets injected at

periodic intervals so that there is overlap of beamlet and

the electromagnetic pulse on each forward pass through

the wiggler. By ultra-short is meant beamlets with

length Z much less than the slippage distance between

electrons and EM pulse s = k L/k , with k the wave
w s

number of the EM pulse. In fact as we will see herein for

the results of Reference 1 to be valid, we must require

s/7 > Z > 2rr/k s with r = 2k wL AYr/yr >> 1, where

"(r/ r is the fractional change in the resonant energy down

the wiggler. The linear eigenmode equations, obtained by

linearizing the FEL equations in the amplitude of the laser

pulse, were analyzed and the linear gain per pass determined

as a function of the FEL parameters.

29
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In this paper, we extend the analysis to cover the

case of electron beamlets with lengths much larger than the

slippage distance, £ > s/F . Our starting point will be

the conventional set of FEL equations applicable in the

Compton regime, as derived and discussed in Reference 1.

These will be restated without derivation in Section 1 for

completeness of presentation.

We anticipate the need to suppress the growth of

sideband instabilities when the pulse reaches a finite

amplitude sufficient to trap beam electrons. This may be

accomplished by frequency discrimination of the pulse in

which frequencies above and below the desired pulse

frequency ws are attenuated. Thus, the analysis will

encompass variable parameter wigglers without and with

frequency discrimination. The linear eigenmode equation

and their solutions are discussed in Section 2 and

Section 3 for wigglers without and with frequency discrimi-

nation, respectively.

In Section 4, the results are compared with those

previously obtained for the ultra-short electron beamlets.

I. FEL Ecuations

The set of equations which describe the temporal

(t) and spatial (z) evolution of the electromagnetic pulse

in the wiggler are most conveniently expressed in terms of

the new independent variables u and v:
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C Z-

L(-l (t

where V = w /(k w+k ) is the electron resonant longitudinal

velocity.

The periodic magnetic field wiggler and the

electromagnetic pulse are represented by circularly

polarized vector potentials A and A with negligi-

ble spatial variations transverse to the direction of

electron beam propagation. The case of plane polarization

is given by letting A - A/J. The electromagnetic pulse is

approximated by a plane wave -A exp(-iw t + ik z + i )

with slowly varying amplitude A and phase .5

The electron equations of motion are:

v

= r + e a - i e (2)
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w'n e r

where

2k L_~ w
Y = - (Y -Y ryr r

r

S dz + k z - w t

0

S ) + a2

wr

r 2kkL 2

ws wW S S
r

2k L
r Y= ,-

r

y and q are the electron energy and phase angle.

aw = eA /mC
2 and as = eA /mc2 are the dimensionless

w w S S

vector potential amplitudes of the magnetic field wiggler

and pulse, respectively. a* is the complex conjugate of

a. In these equations, a and k are considered tow w

be constants, except as they determine the resonant energy

Yr' and the variable parameter wiggler is modeled by

7 0, where 'Y corresponds to the change in the resonantr

energy in going through the wiggler. We are engaged

primarily with high efficiency cases, , >> 1. It is also

assumed that y - yr << .

The equations for a and ; (from Maxwell's

ecuations) are:
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- _ i n h(u) e (3)
U

where

8,e 2 N k L2 a 2

T w w

y mcV(l+a
2)

r w

fdu h(u) = 1

NT  is the total number of electrons in the beamlet per

unit area, NT = fdz n(z,t) where n(z,t) is the beam

density. h(u) is a form factor which is determined by the

profile of the electron beamlet. For an ultra-short pulse

as described in Reference I, h(u) = 6(u). The anaular

brackets imply integration over the initial energy distri-

bution and average over the random optical phase of the

electrons

2-

<e", > = _L - i"- = 1- d fdY f(y ) e
e2- d0 f d 0f(YCe

where f(y ) is the initial energy distribution of the
0

electrons.

In u-v space, the wiggler (L z;!O) lies between

the lines u + v = o and u + v = i. The beam electrons
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move on lines of constant u and the photons of the

electromagnetic pulse, propagating in the beam direction,

move on lines of constant v. The beam electron and

photons interact only when their trajectories in the u,v

plane intersect within the lines u + v = 0 and u + v = 1.

II. Linear Theory - Without Frequency Discrimination

The formulation of the linear eigenmode equations

has previously been discussed in Reference 1. If we follow

the same procedure, we obtain for the pulse amplitude an

on the nth pass:

(-r + 5 ) a -

l-v

Sin f duh(u) Kexp(-i2> (4)

-v

<exp (-i)

-1 d f() fdv' (v-v')an (v')

-u (5

exp i: (v'-v) + i ( 2 - - 2uv
22
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r accounts for the reduction in amplitude due to energy

losses on reflection at the mirrors and is close to but

less than unity. S = k CAt/k wL << 1 where Lt is the

pass-to-pass temporal advance of the electromagnetic pulse

relative to the electron beamlet on entry into the wiggler,

and j0 is the value of * at wiggler input. We have

expanded i(v+a) = a + Bda/dv + B2 . . . . The linear gain

and phase shift per pass 5 is the eigenvalue. The

boundary conditions are a (v) - 0, v - ±

In deriving Equation (4) and Equation (5), it is

assumed that 6 << 1.

Substituting Equation (5) in Equation (4)

Ov

:= -i - fdx dy h(y-v) i (v-x) 1(x) x

0 x

exp (iFx i.xv) (6)2

nh(-v) dx a(v-x) I(x)
27,

x i.-x e.: p 2--

I)

where
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and h~-) is assumed in accordance with the Iona-pulse

assumption to be a slowly varying function of its argument

so that h~y-v)= h(-v) + ... , I >. y> 0. Hereafter we drop

the superscript n on a

If we take 'h~u) to be Lorentzian

and we define the Fourier transform b(k) of a

b(k) Jdv e i kv

we obtain from Equation (6 ):

~~1 +A.~ I1~G(. A~ 0 07
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where

1.

o( K(8)

Iex exp(i ilexp\ - 2/ ,- ~~ -- i

22

S= (-r + 6 1/F 2

1 2ru B6V

0

The parameter u 0is a measure of the length

of the pulse (full width at half maximum), u = k/L(l-V/c),

where L(I-V/c) is the "slippage distance."

We see from the dimensionless form of Equation (7)

that the long or short pulse approximations depend on

whether .'u is larae or small compared to unity. It may0

L* seen a posteriori that >~u > 1 justifies our expansion0

of h(y-v).

If G (<) is now expanded about < = K: where

G (9)
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Equation (7) may be approximated by:

7u ) 1+ G (<)+ A 0
.U- cK i 2 - A =

(10)

Furthermore, if

1 + G ( ) + . . . . 0 ( l1 )1 2,u 0 0

Equation (10) will have the solution:

K-K 7u' 'G
A = a exp 2 2 K

2

0 C

and this guarantees a(v) 0 as v ± provided that

Re - > 0 (12)

Equation (9) and Equation (11), subject to Equation

(12), constitute the eigenvalue equation which determines 6
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If we take f(If,) to be Lorentzian

TT1 1f('> ) = T [ -

th L( -)'thJ

we obtain for I([/F ):

A = e

£ (Tth +

and in the limit of an infinitely long wiggler where

r >> 1, Equation (8) for G (K) may be approximated by:

G = z (13)

where z(e) is the Plasma Dispersion Function

ie

z(e) = 2i exp(-&2)Jd C exp(-2)

-c

If we substitute Equation (13) for G (<) in

Equation (9) and Eauation (11), we obtain the eigenvalue

equations

1 +1 + 0 Z -

8i U2

, Z 
(14) 

(o3
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= Zl-i)(, - £ (15)

where

iK +E
0

0 l-i

Re - Z

Equation (14) is solved for 6o and substitution of e
00

in Equation (15) yields 5 as a function of a

-2.u and c.

In the limit of Fu 2 - and a o 2
0 1 / 7 >1

we use the asymptotic form of Z(e ) in Equation (14)

to determine e 2 = ia /2, and after substitution in
0 1

Equation (15), we obtain for the linear gain:

- - + i (16)

(1- r ) 2 (2 ) - th+

More generally, Equation (14) and Equation (15) are

solved numerically and the variation of the dimensionless

linear gain
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+ E= ( 6-r+ 6)
Re -r

is plotted as a function of 1/a, for various values of

u in Figure 1. The linear gain (Tth = 0, F u 0 o)0 0

reaches a maximum

Re(I- r+ 6) 1.16
max u 112

0

at a value of

27u ar
2

0 0 3.

The curves for r u = 1,3 were obtained by
0

numerically integrating Equation (7) subject to the

boundary condition A(<) - 0, K - ± -.

There also exist additional solutions of

Equation (14) and Equation (15) corresponding to eigen-

modes with an increasing number of nodes in the amplitude

a(v). The linear gain for the three "lowest" eigenmodes in

the limit of T u >> 1 are displayed in Figure 2. It may
0

be seen that for extremely long wigglers these higher modes

may grow even when the fundamental is damped.
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II. Linear Theory - With Frequency Discrimination

With frequency discrimination, the electromaqnetic

pulse is filtered after each pass through the wiggler by a

band pass filter with frequency half width -w:

vc
= L(c/V-1)

where v is an additional parameter which characterizes

the magnitude of the frequency half width. Since filtering

leads to an effective retardation of the pulse by i/v

relative to the electron beamlet, while 6 represents a

forward shift, it appears optimal to choose v = 1/6 to

avoid the pulse running ahead or lagging behind the

electron beamlets.

With this choice of v = 1/6, the linear eigenmode

equation for the nth pass is determined by:

(1n 2 2,n

2 v2

l-v
in f du h(u) <exp(-I.)> 0 (17)

-V

A straightforward repetition of the analysis

described in Section 2 yields the following equation for

the Fourier amplitude b(K):
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!

u- (- G4 i-B ( = 0 (18)

where

k = 2 K

= (<2 +6 ) 

22

G 2 + d I exp(-i )

2

22((i - r) .)
0

~exp (-k.)-exp (~

= Ti

7 U B2/
0

K = (1-r 5)(19)

Thus, the eigenvalue equations are given by:

C) 0 (20)

+G (2G O (21)
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subject to the requiremnent

Re ( K2) > 0j (22)

For an initial distribution function fh, which

is Lorentzian, and in the limit of an infinitely long

wiggler where >> 1, Equation (19) for G 2(K) may be

approximated by:

G (K) =-(23)
2 (KZ+2(-i

If we substitute Equation (23) for GWc in

Equation (20) and Equation (21), we obtain:

1 - 4K + 167u,2 K Z (
C 0 0

Z' (6) +1i Z =24

K 0  2 (24)

2 1+i)K ZCG
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Pr-,

where

iK +E

0o l-i

Re i-+ i) Z_(e_ > 0<z Z(6 2< 4 0

Equation (24) is solved for 8 , and substitutiono

of e in equation (25) yields 6 as a function of a,,
0 2

7'u
2 , and £.G

In the limit of 7u
2  

, -- 0, ando

2 = /I u 0 6
2f l>>, we use the asymptotic form of Z(6

in Equation (24) to determine e a 3i-l)/8, and after

substitution in Equation (25), we obtain for the linear

gain 6:

~%
(-r + 6) = (26)

2

In the limit of Fu0 - , -- 0, and

/u 2 < a << 1, we use the series expansion of Z(e ) in
2 0

Equation (24) and Equation (25) to determine e =(l-i)a /4
0 2

and the linear gain

( r + = -i3 (27)
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Equation (24) and Equation (25) are solved

numerically, and the variation of the dimensionless linear

cain

Re(6 /a) = Re (1-r+ ) u

is plotted as a function of i/ch for various values of

u in Figure 3. The linear gain (E=O, ru 0 ) reaches
o 0

a maximum

Re(l - r + 6) z 0.56
iruf

for a value of 6 given by( - 5, 2
7TU 2 r /

0 0.81

The curves for 1 u o =1,3 were obtained by

numerically integrating Equation (18) subject to the

boundary condition B(<) - 0, < .

In Figure 4, the reduction in linear cain due to a

finite energy spread Y th is displayed, while Figure 5

indicates that linear gain is maximized if the input beam.

energy is below the resonant energy.
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Discussion

The Iona electron beam pulse limit is characterized

by

U 2k L r0 w w -Yr  0
02

where u is the ratio of the pulse length (full width at

half maximum) to the slippage distance.

In the limit of a lona wiggler (0 > 1) and a long

electron beanlet (r'u >> 1), the linear gain in the0

absence of frequency discrimination is a maximum

Re(l- r + ) = 1.16
max /

7TU
0

for a value of 5 given by [27u B'/pJ z 3.0, and it is0

close to that estimated by Kroll, et al. 2 With frequency

discrimination, the linear gain is slightly lower and has a

maximum

Re(l - r+ 5) m 0.56 3max u "

0

for a value of a given by

0.85
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.1
The corresponding results of the linear gain

analysis for the ultra-short electron beamlet (7 u << 1)
C

are Re(l-r+5) max ; .18n/7 at 26F7/~n - .45 (without

frequency discrimination) and Re(l-r+6) z .105 7/f
max

at af/n .43 (with frequency discrimination). Note that

for pulse length F- u - 1, the growth rates of long and0

short pulses are comparable. For longer pulses the growth

depends on peak current f/u
0

Finite temperature reduces gain significantly wben

Yth 1. Linear gain may be increased somewhat (in the

presence of frequency discrimination) if the input beam

energy is decreased below the resonant energy.

The need for frequency discrimination to prevent

nonlinear breakup of the saturated large amplitude EM

pulse due to the growth of sideband instabilities has

previously been discussed for the case of ultra-short
1

electron beamlets. It is anticipated that a similar

requirement will also be necessary for the case of long

electron beamlets.

To suppress sideband frequencies of the order of a

quarter of the electron bounce frequency , the

reduction in the pulse energy due to frequency discrimina-

tion, that is,

!a a
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should exceed the relative gain due to sideband

instabilities. This implies

2(1- r) -

where G is the ratio of the sideband instability gain to

the EM pulse amplitude gain at saturation. If we substitute

for the pulse amplitude a . saturation

n-(1 C-r) T

and we take v = 1/6, we obtain

7Tu (1-r) 3 > 32 (G- 1)

Theoretical estimates indicate G - 2 to 3.

From a survey of the ultra-short electron beamlet

simulation results, 3 it was estimated that for stable

propagation

B2 u(r)Z3 50. (2S)

Since the physics of the saturated state does not

depend on beam length as the EM pulse is many synchrotron

periods in length, this inequality should be applicable to

finite length electron beamlets, and stable propagation is

obtained by choosing S = 1/- large enouch to satisfy

Eauation (2P).
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However, it is also necessary that the choice of 3

to secure stable propagation be in a parameter regime where

the linear gain is finite.

In the limit of a long electron beamlet with no

thermal energy spread, the linear gain tends to a non-zero

value (Equation 27):

Re (1- r + ))
4nru P

0

as B increases,

_ _ _21 >> 7 .s2rs, > --

0 0

Thus, if we substitute B2 = nu 0 /27-T' i n

Equation (28), and we demand Re 6 > 0, we obtain the

followina inequalities to be satisfied in order to have

both stable propagation and finite linear gain:

71, > 21.5 (29)

7 (l-r)-u V 3 3
0

2.26 r(30)
7 (l-r) u

These ineaualities impose a lower limit on the peak

bean current. It should be noted that in derivina these

inenua ti#es, a Lorentzian beam profile was considered
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(h(u) 1/7u, (i+u-/u')). For u > 5.4, this lower

limit is determined by Equation (30), the criterion for

finite linear gain. This implies that the peak beam current

I must exceed a value given by
p

(A~) (1r)(1 + a 2

9.6 x 10 3  ( r? (1- r)w p)1
S"Y k r a 2  amps (31)r w 0 w

where a = e' /mk c 2, the wiggler length is L = k r 2

w w wso

and r0  is the beam radius.

The corresponding inequality for ultra-short beamlets

is

> (32)
(1-r)" 0.06

and it may be viewed as an inequality imposing a lower limit

on the beam current averaged over a slippage distance.

Equation (30) imposes a current limit comparable to

Equation (32) for -- 7.4.

In the proposed Los Alamos FEL experiment 61

while for the nominal parameters discussed in Reference 2

_ 45. Thus, Equation (31) implies a required peak beam

current for the latter case larger by a factor of -6 than

that discussed in Reference (2).

we have not discussed herein the question of

transition from linear to saturated states and whether any
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difficulty in intermediate states arises from amplitude

dependent frequency response, i.e., chirping. This appears

best resolved numerically and for the LASL parameters our

simulations confirm behavior in linear and saturated states

with a smooth transition. Higher efficiency systems (e.g.,

r = 1000) for long beamlets require very lengthy simulations

which remain to be done, although for ultra-short beamlets

(Reference 3) no new difficulties were observed.
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APPENDIX B

SIMULATION ALGORITHM FOR AN

ARBITRARILY TAPERED WIGGLER FEL

A relatively simple model of the tapered wiggler FEL

has proven adequate for the analysis and simulations involved

in determining FEL scaling laws.I The crucial simplification

involved introduction of a fictitious uniform static electric

field into the model. This axial field served to maintain

the resonant electrons at a constant y as energy was

extracted by the ponderomotive fields. Thus a uniform

wiggler performs as a linearly tapered wiggler.

; rRecognizing that a more detailed model would be

necessary to optimize and evaluate actual tapered wiggler

designs, the following model was derived. It has the

attractive feature of retaining the basic structure of the

simpler one referenced earlier, thus minimizing the recoding

necessary to implement it. It differs from the previous

model also in that the optical mode is assumed to be a

transverse electric rectangular waveguide mode and the

wiggler is plane polarized. These added features allow

simulation of a larger class of physical designs.
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The vector potential for a plane polarized wiggler and

transverse electric (TE) optical mode were taken to be

A = x Aw(z) Cos f kw(Z)dz
0

- x As(z,t) cos (k yy) cos (ksz - Wst + (z,t)

(1)

Here A, kw , As  and C are the wiggler amplitude and wave

number, optical amplitude and phase, and are assumed to be

slowly varying functions of their arguments.

Analysis similar to that of Appendix B of Reference 1

yields the following equations for the particle dynamics.

d r s w a sin ) (2)-(- Y- si=.+T 2
dz r dz 2 yc

r

d 3 ('Y - r  (3 )

dz c1 r rr

dt c i ( + 2 z ) 1
(k +k ) - --z w s "S c 2"f V(4

where

z

=fkwdz + kz - .t (5)

eA s (6)

a
ws Iftc
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S

r 2c(k + 6k (7)
w s

a
aww j (8)

H 2
2

-k - (9)
s s c

Averages have been taken over small-scale oscillation and it

has been assumed that y 2 >> a 2 " a 2 and (Y-Yr) << Yr w sr

Also, Y2 >> 1 and << 1 pri to entry into the

wiggle:. All of the particle transverse displacements are

assumed negligible compared to 1/ky.

The transverse velocity may be computed by assuming

conservation of transverse canonical momentum

"cos dz + (as. a) (0x w fw (0

Making use of the slow variation of a and

Maxwell's eauations

AA x 4-

give

~-e' a_e S3i- ,.-i.\

+ e = f e 12)
ck s f
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where H(z/V-t) is the electron pulse number density. Note

that the effective photon velocity is not c but c 2k 5/9 ,

which is the group velocity of the TE mode. Coupling to

other modes has been neglected. The angle brackets represent

averages over the particle phase and energy distributions.

The filling factor f is defined below and is the result of

averages over the cos kyy dependence of the TE mode.

Introducing a modified definition of u and v, see

Equations (18) and (19) of Appendix C of the 1982 Annual

Report,

z k s t
1 k dz + s

k L Jw +k L z kL
ow f OW ow

U 2 (13)
1 k dz-

k IDL f w k kOW S1 OW
C

t2
s s

k L c k2 k L
2W S OW

V L k (14)
k1 k dz Y

-w WS OW

Applying this transformation to the equations of motion

yields
2k L r7

- Ow r

or

a F 1 (15r - - a e - a e
a 2 2 s s
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D r (k w+ k ) (16)
kg

Ow

where L is the wiggler length and aw and k are the

normalized wiggler vector potential and the wiggler wave

number at the input of the wiggler and

K2k L (~)(

r

2k L 2  a O - sj
a =a e (9

or

k2

k L w k k

g k kk

k k k(0
: w s Ow

8 -e-L'N T a ( -sk # 'k) f

r io2k smc V Lkd ky

[kLfkd w kk
JwS 3Wj (1
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2 L x _-y"f -, x -X-y area o beam (22)

NT  is the total number of electrons per _,nit -rea in
the beam pulse.

The functions aw /aw, kw/k w , :r/Y'{r and y which are

known functions of z must be transformed into functions of

u + v by the transformation

Z k
f 'wd y _z

3w k k L

u+v (23)

k dz v

k L f w k k

0

Comparing the Equations (15) through (17) with

Equations (20) through (22) in Appendix C of Reference 1, it

is evident that the algorithms of Equations (26) through (52)

of Reference 1, Appendix C may be utilized with the introduc-

tion of the functions aw/aw, kw7k w, and ky as

coefficients.

The diagnostic package was also used intact, but the

interpretation of the Fourier transform argument within the

wiggler must include the revised transformation from u,v to

z,t.
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APPENDIX C

SIDEBAND INSTABILITIES

The linear theory of sideband instabilities, involving

the coupling of small amplitude sideband modes to the

periodic motion of electrons trapped in the ponderomotive

potential well or "bucket" produced by the combined fields of

the wiggler and a large amplitude EM pulse, has previously

been discussed neglecting perturbations of the phase of the

EM pulse. 1 More recently, the analysis has been extended to

include both amplitude and phase perturbations of the EM

pulse.

A summary of the principal results will be discussed in

this appendix. The details of the analysis will be reported

elsewhere.

CONSTANT PARAMETER WIGGLER

We consider stationary states in which the ponderomotive

potential well remains constant and is unaccelerated through

the wiggler. The EM pulse is represented as a plane wave

IN. M. Kroll, P. '1orton and M. N. Rosenbluth, "Free

Electron Lasers with Variable Parameter Wigglers," IEEE
Journal of Quantum Electronics, Vol. QE-17, pp. 1436-1468
(1981).
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The linear gain increases linearly with </ for

<< 1 and reaches a maximum of Re 0.26 at

</I = 0.75.

The growth of sideband modes has been simulated

numerically using our previously-described I-D particle-

pushing code.

The electrons are randomly distributed within the

trapped region of phase space, weighted by a linear function

of k 2 to model the distribution function described by

Equation (16). The procedure for determination of the

sideband eigenmodes involves three simulation runs, one

reference run with only the main optical pulse and two runs

with additional linearly-independent perturbations. A

response matrix analogous to Equations (1) and (2) is

determined by Fourier transforming the output optical pulse

and the eigenvalue of this matrix yields the sideband growth

rates.

The linear gain evaluated from the simulations are also

tabulated in Table 2 for different values of <,

The agreement between theory and simulations is

satisfactory.

The two cases discussed in this appendix are

representative of the classes of trapped electron distribu-

tion functions which could be found in realistic FELs. It

may be noted that the magnitude of the linear gain of
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sideband modes as well as the structure of the linear gain

dependence on frequency for these two cases are similar.

This analysis can readily be extended to discuss the

growth of sideband modes in variable parameter wigglers and

is currently in progress. Some preliminary results are

presented in Figure 6 of the main summary of this report.

77





11~~ eeO /e ir)(L)

L 7T 7 IT7 77-7i

Figure 1. Motion of empty buckets through electron
phase space in a phase area displacement FEL.
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the final beam energy spread is nearly equal to the initial

beam energy spread.

This method of beam energy extraction has two features

which are attractive with respect to operating a variable

parameter Free Electron Laser (FEL) oscillator in conjunction

with a storage ring: (1) The energy extracted is insensitive

to the beam energy spread; (2) The ratio of the energy

extracted to the increase in the root mean square energy

spread can be made to be small.

In practice, the bucket acceleration is never

completely adiabatic and some energy spread will occur.

Furthermore, a nonadiabatic entry and exit from the wiggler

will induce additional energy spreads. Thus, such a device

may be operated in steady state only if the increase in the

effective phase space area occupied by the beam, due to the

energy spreading on each passage through the wiggler, can be

balanced by a corresponding decrease due tD incoherent

synchrotron radiation in the storage ring, and the beam

energy ')oosted to compensate for the losses in the wiggler

and storage ring. A convenient measure of efficiency is the

ratio of the energy radiated in the wiggler to that lost in

the storage ring during steady state operation. It is

clearly desirable to maximize this ratio.

In this respect, we discuss an investigation of the

efficiency of phase area displacement wigglers operated in

a storage ring. The startup problem is first addressed in
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Section I. The linear gain is calculated from an eigenmode

analysis of the linearized FEL equations. This is followed

in Section II by a comparison with numerical simulations

of the theoretical estimates of beam energy loss and beam

energy spread due to interaction of electrons with a finite

amplitude ponderomotive potential well. In Section III, the

results of numerical simulations of steady state operation is

described, the efficiency is determined, and the scaling of

efficiency with the wiggler and EM pulse parameters is

derived.

A full self-consistent simulation would be very

difficult to run since a very long E1 pulse is required for

adiabaticity, involving a correspondingly long electron

micropulse and many particles. Our results must thus be

interpreted only as necessary conditions in the design of

phase area displacement wigglers.
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,k
S

k L
w

(u) I

f h (u) du 1

S fIdz

V is the electron longitudinal velocity, aw  and kw , and

hence yr' are considered to be constant down the wiggler.

The actual variable parameter wiggler is modeled by the

inclusion of a constant electric field, that is # 0.

y r is the change in I which would be experienced by an

electron freely accelerated by the electric field. is the

nominal electron micropulse beam length. h(u) is a form

factor determined by the beam profile. Y0  is the beam

radius and I is the beam current. f is the filling

factor. The angular brackets imply integration over the

initial energy distribution (y ) and average over the initial
0

phase (,) of the electrons:

2-

- fd, fdY FC¥,) e
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F(j ) is the initial electron distribution function

normalized so that d FC0 1.0

In the (u,v)-space, the wiggler (L a z 0) lies

between the lines u + v =0 and u + v = 1. The electrons

move on lines of constant u and the photons of the EM

pulse, propagating in the beam direction, move on lines of

constant v. The beam electrons and photons interact only

when their trajectories in the (u,v)-plane intersect within

the lines u + v = 0 and u + v = 1.

The electron phase space (yy) trajectories are

determined by the solutions of Equations (i) and (2), with

initial conditions Y = Y0, = at v = -u. The phase of

the electrons entering the wiggler is uncorrelated with that

of the EM pulse. Thus, i is distributed uniformly between0

0 and 27.

To model a phase area displacement wiggler, a constant

decelerating electric field (7 < 0) is applied to decelerate

the electrons. At the front of the wiggler, the electron

energy is greater than the resonant energy, (0) = > a.

As the electrons move down the wiggler, y decreases, passes

through zero (at which point the electrons are in resonance

with the ponderomotive potential well), and is negative at

the back of the wiggler (the beam energy is less than the

resonant energy, y(L) f 1 0). Thus, the deceleration of

the electrons is used to model the increase of the resonant

energy of the ponderomotive potential well from a value below
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the beam energy at the front of the wiggler to a value above

the beam energy at the back of the wiggler.

A determination of the linear gain from an eigenmode

analysis of the linearized FEL equations has previously been

discussed in the 1982 Annual Report for FEL oscillators with

constant ( 0 = ) and variable parameter wigglers with - > 0.

By following the same procedure, the linear gain for FEL

oscillators with a phase area displacement wiggler (7 < 0)

can readily be derived.

In order to exploit the special properties of a phase

area displacement wiggler, it is desirable to have an EM

pulse with frequency such that the electrons (with mean

energy ) are in resonance (with the ponderomotive potential

well) near the middle of the wiggler, and with amplitude

constant over many slippage distances so that the electron

interaction is adiabatic. In order to grow an EM pulse with

these characteristics, it will be necessary to provide for

frequency discrimination (by passing the pulse through a

narrow band pass filter) to select the mode with the desired

frequency, and to use long electron micropulses. Thus, it is

relevant to restrict the analysis of linear gain to long,

constant amplitude EM pulses and correspondingly long

electron micropulses. In this limit, the emerging EM pulse

is a(L) = e a(0), where the linear gain and phase shift per

pass S ( < 1) is easily derived from Equations (1)

through (3) to be:
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Fiu-ure 2. Electron phase trajectory in the

pond-rornotive potential of a phase

area displacemnent wiceler.
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where YF is determined by H = - a cos •
The integrals in Equation (9) have been evauated in

Reference 1 and the following estimates obtained of the beam

energy loss and root mean square energy spread:

I-'

7 8 '2ii
y - (a) Tr L (10)

( r s) -= Isin r LAY (11)
swiggler
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A further energy spread can occur if the beam entry

into and beam exit out of the wiggler is nonadiabatic. This

contribution to the room mean square energy spread is

estimated to be

2a

(AYrmS) ends 2 (12)

where the mean initial energy - P/2. However, the

magnitude of this contribution can be essentially eliminated

by a gradual tapering of the front and back of the wiggler so

that the beam enters and exits the wiggler adiabatically.

If the end contributions are taken to be statistically

independent of the wiggler contributions, the total root mean

square energy spread is:

rms Ia-  a12

a (13)

The theoretical estimates of AT L and Airms'

Equations (10) and (13), have been compared with the results

of numerical simulation of a one-dimensional FEL with a phase

area displacement wiggler.

In the simulations, a monoenergetic electron beam with

energy Y = Yi, distributed uniformly in phase angle, is

injected into the wiggler. The transitions into and out of

the wiggler were step-functions, and hence nonadiabatic. The

I
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mean energy 7f and energy spread Ayrms on exit from the

wiggler are evaluated. The results for one set of FEL

parameters (610 particles are used in the simulations) are

shown in Table 1.

It may be noted that when the initial beam energy

Yi is such that the electrons are in resonance with

the ponderomotive potential well inside the wiggler

(F - 2a > > 2a )' the simulation results are consistent

with the theoretical picture of an average energy loss

(A z 204) and an average energy spread (Ayrms = 40.0)

independent of the initial energy, although the simulated

loss was about 20 percent lower and the spread about

25 percent higher than predicted by the crude theory.

No significant trapping is observed except when the

electrons are in resonance at the beginning or end of the

wiggler. When trapping occurs at the beginning of the

wiggler, the energy spread is considerably enhanced as the

trapped electrons are dragged along in phase space by the

ponderomotive potential well.
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TABLE 1

a =104 r -1000

y A= Yj - f rms

150 -212 529

170 -58 436

200 212 62.1

250 214 35.7

300 
207 49.9

350 198 34.7

400 197 34.6

450 202 42.4

500 207 30.7

550 205 44.2

600 203 38.1

650 203 40.0

700 
212 32.8

750 191 39.1

800 
203 32.6

850 
204 40.3

900 
203 42.1

950 199 58.7

1000 
196 63.4
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IV. STORAGE RING OPERATION

An FEL oscillator with a phase area displacement

wiggler can be operated in steady state with a storage

ring if the increase in energy spread can be balanced by a

decrease due to incoherent synchrotron radiation and the beam

energy boosted by a radio-frequency (RF) cavity to compensate

for the losses in the wiggler and in synchrotron radiation.

The energy loss Aysy n due to synchrotron radiation

is proportional to y2, AYsyn = -SoY 2. In terms of the

dimensionless variable y:

2k L

syn 0 Yr r 2kwL

2k L 21 )2 1,t
0 Jr 2k L(l+7/2kwL)

- syn + i k L + .

(14)

The energy change per pass Ay is the sum of three

terms:
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yn = s + Ay - ATL

= - AY + k L Y + ATRp 
w

(15)

where Ay is the energy increase in the RE cavity. To

attain steady state operation, &RF is required to

compensate for the total mean energy losses, 6T syn + A7L.

The presence of a storage ring can therefore be

included in the simulations previously described by

recirculating the electrons through the wiggler while

modeling the effect of the storage ring on the electron

energy with the following equation:

. (n+l) (n)
Yo f + b (16)

where ? (n) is the value of y on exit from the wiggler on

the nth pass, and i^(n+l) the input value of y on the

(n+l)th pass. The parameter a is related to Aysyn by

Syn(
a = 1 (17)

kL
w
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The parameter b is determined by the requirement that the

mean input energy of the beam on each pass is maintained

constant.

The simulations are carried out for a given wiggler

design with the value of a (and hence the synchrotron energy

loss Aysyn) adjusted until an efficient steady state opera-

tion is obtained. This is achieved when AYsyn  is just

large enough to limit the energy spread so that electron

trapping is negligible. Electron trapping is undesirable,

particularly when it occurs at the beginning of the wiggler,

since it results in considerably enhanced energy spreading.

The evolution of the electron distribution function F

per pass may be described by a Pokker Planck equation, and in

steady state

1 32 <(jI = () 2 > F- - <A> F=0 (18)

where the energy spread in the wiggler

< ()2 > = rms)

is balanced by the synchrotron damping in the storage ring

= -~7 ( - 7)<A^ > = - AT ( -7
syn k L

If the dependence of (AYrms)' on y is neglected,

the solution of Equation (18) is:

I
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2,2

[ Ay 7)21
[ kL (Lrms)2 

(19)

where C is a normalization constant.

An approximate theoretical criterion for negligible

trapping in steady state may therefore be obtained by

restricting the fraction of electrons which can be in

resonance with the ponderomotive potential well at the

beginning of the wiggler to less than 10- 5 . This imposes the

following lower limit on A7syn:

A¥ (j )2
syn > I -4 rms

k L ( _ 2a) (20)w (0

where T IFI/2 so that electrons with the mean beam energy

are in resonance near the center of the wiggler.

The accuracy of this criterion has been estimated by

comparison with numerical simulations for a wiggler design

with the following physical parameters.

B 8 kGw
Yr 10 3

k 2T x 104 cm- 1

L 2 x 104 cm

kwL 1.77 x 104

Peak Circulating Power 4.9 GW/cm2

Change in Resonant Energy Ayr = 28
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The corresponding simulation parameters are:

a = 104

Irl = lo3

and T was set equal to

Y = Irl/2.

The observed minimum value of A7 syn/kwL for which no

significant electron trapping occurred after 200 steady state

passes (using 123 particles for each pass) is

6-Y syn 0.075 . (21)
kL

w

The observed energy loss in the wiggler is

Aylaser 205 (22)

and hence

I asr~ 0.15 .(23)

AYsyn imulation

This ratio is a measure of the FEL steady state efficiency.

The theoretical estimate of syn/k wL obtained from

Equation (20) with A^ determined by Equation (13) and

-YL by Equation (10) is
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syn 
(24)

k L -0.11
w

It is larger than the observed value [Equation (21)] by a

factor of 1.4. The difference may be attributed to the

dependence of Airms on ii, since Alaser = ATL  is

somewhat larger than the observed value [Equation (22)], the

theoretical estimate of FEL efficiency

l 1aser1

( ya7 s r)t h 
0.13A syn theory

is close to that seen in the simulations.

The scaling of efficiency with wiggler and EM pulse

parameters may be obtained from Equation (20) by substituting

Equation (11) for Aj (the energy spreading due to

nonadiabatic entry and exit is assumed negligible):

AYlaser aL k

ATsyn kwL I

__(meaa )

8 k 2L a w ) 4a 2

295w 25)

where 7 = JPJ/2 and a > IF' > 4a

As can be seen from the preceding discussion of the

comparison between theory and simulation, the numerical

coefficient is perhaps uncertain by about 50 percent.
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V. DISCUSSION

In order to obtain good efficiency during steady state

operation, it is essential that the electron interaction with

the ponderomotive potential well be adiabatic and that

electron trapping be negligible.

Furthermore, a long constant amplitude EM pulse is

necessary to produce a potential well which remains unchanged

through the wiggler. Variations of the potential well can

affect not only adiabaticity, but lead to electron trapping.

As a general rule, the electrons should "see" negligible

amplitude fluctuations in a traversal time across a "bucket."

The slippage AZ of the electrons in the EM pulse during

traversal through the "bucket" in which reflection occurs

(Figure 2) is estimated to be

it ia aAZ - L -1 = Zn >> 1

excluding those exponentially few electrons "caught" at the

top of the potential well. Thus, an approximate criterion

i for restricting the probability of trapping to less than

T (due to increases Aa in amplitude) is obtained by

demanding

da Az A Aa < Ta

3dz
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that is

1 da T/(2a) 2

a dz g - irZn (a (26)

The fraction T of electrons which are trapped are

presumably accelerated to high energies and must be replaced

or reprocessed.

For a = 104 and f/a = 10-1 and r = 10 - 4 ,

1 da 1
a dz 460L(E - )

V

which implies slow amplitude variations over many slippage

distances.

For the numerical example discussed earlier, this

implies pulse lengths of 5 cm.

When the above conditions are satisfied, the FEL

efficiency in steady state is estimated to be

[Equation (25)3:

Llylaser (a 31

as 0.048 k L2  2

sy n  w1

P(GW) 3' 1 4a (2-7)

s p

where the dimensionless pulse amplitude asl is related to

the power P(GW) in gigawatts of the EM pulse (assumed to be

circularly polarized) by
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P(GW) 0.69T k s r aS12

2 is the effective area of the pulse.p

If the wiggler length L is taken to be the Rayleigh

2
diffraction length LR = ksrp , Equation (27) reduces to

, (kwL3) 3/ 1 a 2  4a/4
-laser < 0.029 p) (i-4a -

\l a
2 i+

syn Yr W + a (28)

The extracted beam energy ACO(ev) in electron volts

per pass is

... 16 laser

A(F(ev) 0.511 x 106 r 2k L

and the power AP(GW) transferred per pass to the EM pulse

from the electron micropulse with peak current I(amps) in

amperes is

2P(GW) = 5.11 x 104 Y 4a I(amps)

rirk L
w

29 )
X 1.4 10 7y' Pk2 '" r I (amps)

(29)

105

- -*1



In steady state, the power lost by the EM pulse at the

mirrors equals the power gained from the electron micropulse:

LP(GW) = 2(1 - r) P(GW) (30)

and hence the current required to maintain steady state for a

given value of the fractional power loss 2(1 - r) is:

I(amps) = 1.40 x 103 i r ( ) (i2r2 4 p 3 '(GW)'Yr  a w  P

31.4 x (1- r) 2kwLR a (GW)

r w

L =L k r
s p (31)

In the case of the physical parameters described in

Section IV where the peak circulating power is P = 4.9 GW,

ks = 2,7 x 104 cm- r = 103, aw = 5.3, if the power loss is

1%, 2(1 - r) = 0.01 and rr p2 = 1 cm , the peak electron

micropulse current is I = 13.5 amperes.

This limit on the peak micropulse current is not

particularly severe.

A more severe constraint arises if the operation of the

FEL oscillator is to be initiated by growing the desired EM

pulse from noise levels. The peak current density must then
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be large enough to produce adequate linear gain per pass to

overcome the energy losses at the mirrors. For long electron

micropulses with finite energy spreads, the linear gain per

pass for a long constant amplitude EM pulse is determined by

Equation (7):

k 2 L3  a 2 f3 kw L awf
Re S 3.76 x 10 ( I(amps)

y k r 2  (1+a 2 )
r s o ~ W

(32)

~th (2T -1)

If the energy spread is taken to be [Equation (20)],

the maximum allowable,

7 w- 2
-2-(Arms) 2 kwL ( -2i2a )

t h 2,A sy 18.4~syn

the linear gain for the example previously described, where

I = 13.5 amps and the beam area is taken to be Trr 2= 1 cm 2 ,

0

is

ReS = i 1 x 10-3 27 I f

This value of the linear gain is somewhat on the low side to

overcome any reasonable mirror losses. Higher micropulse

peak currents or alternative startup strategies would

probably be required.

Even if the wiggler and beam parameters can be designed

so that finite linear gain is obtained, there remains the
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issue of accessibility to the desired final steady state

operation. Further investigations are needed to determine

the evolution of the EM pulse from noise levels.

In summary, high FEL efficiency is theoretically

possible for FEL oscillators using a phase area displacement

wiggler in conjunction with a storage ring. Long wigglers

containing many wiggler periods and EM pulses with large

circulating peak powers are effective in obtaining high

efficiencies. Very smooth long pulses are required to avoid

trapping, hence good frequency discrimination. The linear

gain per pass tends to be small unless appreciable micropulse

peak current densities are available. The scenario of the

time evolution to a steady state is complex and remains to be

elucidated.
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APPENDIX E

TWO-DIMENSIONAL EFFECTS IN FREE ELECTRON LASERS

I. INTRODUCTION

The motion of electrons in a free electron laser under

the combined influence of the wiggler magnets and

electromagnetic wave may be calculated from the particle

Hamiltonian as discussed below. This problem has hitherto

been considered essentially as a one-dimensional problem in

which the electron's motion can be reduced to the pendulum

equation in the "ponderomotive" potential formed by the

wiggler and laser magnetic fields. 1 In particular, high

efficiency "tapered wiggler" configurations rely on electrons

being trapped and executing "synchrotron" oscillations in

this potential.

It is the purpose of this note to extend that

description by taking account of the fact that the fields

actually depend on transverse dimensions. To simplify our

discussion, we will consider transverse dependence on only a

single coordinate, x. The most obvious consequence of the

transverse (focusing) variation of the wiggler magnetic

field is that the electron undergoes transverse betatron
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oscillations. In the simplest approximation, the betatron

and synchrotron oscillations are decoupled, since one is

transverse and the other longitudinal insofar as the laser

pulse may be treated as a plane wave. Herein we propose to

analyze the coupling which results from such physical effects

as curvature of the optical wave front. Radial variation of

optical amplitude introduces effects similar to but somewhat

smaller than those we consider here.
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II. DERIVATION OF DRIVEN PENDULUM EQUATION

It is conventional to express the vector potential in

dimensionless units a = eA/mc 2 . We denote by subscript w

quantities relating to the wiggler magnet and by subscript s

those relating to the laser field.

Hence the vector potential is A Y with

Ay = aw cosh kwx cos kwz

- a (x,z,t) cos [ks(Z - ct) - (x,z,t)] (1)
5 5

Typically aw  &11) and a s  o(l0 - ).

The transverse dependence of the laser amplitude and

phase are presumed given. We will concentrate our attention

on phase behavior near x = 0 where - ksx 2/R with R

the effective radius of curvature of the wave front. As a

specific example, we sometimes consider a low gain oscillator

for which the laser pulse in the optical cavity will be well

described by a Gaussian mode

as ~ (x + ) X exp (-x2/ xC2 + 2i z/ks
S
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with x 0 the width of the beam waist and z the distance

from the optical waist. For such a pulse

I I z/zR
R 2Z + (z/Z) 2

R (2)

with the Rayleigh length ZR = ksx O /2.

We may use the canonical momentum pz as our

Hamiltonian with (x, px' Y, t) as the canonical coordinates

and z the independent variable. 2  Taking y >> 1, kwx << 1,

a << 1, we find
5

+ - 2 +p a 2 1 + k 2X2 Cos 2 k z

- 2a a cosk z cos Ik (z -ct)-

Averaging over the fast wiggler oscillations and keeping only

the term in the cross product which allows for near electron

resonance, we find for the averaged Hamiltonian

Pz Y 1 $+p + _ 2y l+ + - (l+k x2)Pz ? 2Y Px 2 w

-a w a cos (kw+ k)z-kt-ks - (3)
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Recalling that aw << as we find for the transverse

motion the decoupled betatron equation

d2x k 2 a 2 2k Xd w xx (4)
dz 2  2y

with solution x = x cos (k Z +6).

For the longitudinal motion we have

a 2  k 2 a 2Y

l+ W- + p 2 + W W
dt + 2 x 2
dz 2y2

a
2

and

wy k s a wa

dz 2y in Rk (6)

It is convenient to rewrite Equation (5) in terms of

the optical phase

1+k )z -k Ct - kx(7)
14 x R
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a 2

_k _ 2 2 w
dz w 2y

k sc
+ R k, sin (2ksz + 26) (8)

Combining Equations (6)and (8), we recover the familiar

pendulum equation with a driving term

a 2

dz2  2 4 w6 ) a a sin~

2k k 2 x 2
S R cos (2ks z + 26)

4R

or on introducing

1 [+ -(1 + k 2 X 2j (aw as)'

2k
s

I Z = Z ;c -;S 2 = SS
S 2 R
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we have our fundamental equation

dz1  -sin+ 4- + sin (cLz' + 2') (9)

The phase 6 may be chosen to be 0 without loss of

generality.

Note that if x is comparable to the laser beam width

x 0and if the wiggler length is of order a Rayleigh length,

then a _ &(2). a depends on many parameters but typically

a 1. depending on whether the peak circulating power in the

laser is less than or greater than 1 GW. These limits will

be refined in the later discussion, but we anticipate by

noting that the most interesting case will be the resonant

case a -1, and that such a power level is likely to be

realized during the buildup of a high power oscillator, or

possibly in the operation of a high power amplifier.
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III. BEHAVIOR OF THE BETATRON SYNCHROTRON RESONANCE

We now turn to solution of the basic differential

Equation (9) treating a and 3 as given constants. The

solution depends on whether a is greater, less than, or

approximately equal to 1. We bear in mind that the primary

interest is whether particles trapped near the bottom of the

ponderomotive well become untrapped due to the driving term.

1. Case I - a << I, High Optical Power

In this case the driving term changes adiabatically

and sin -1 13 sin(az' + 26)1. Hence, the condition

that particles remain trapped is simply 3 < 1, i.e.,
ks x3

2
z X6 a2 < 1. For a Gaussian pulse at the most unfavorable

R
value Z = ZR, we see from Equation (2) that this condition

X 2
becomes 2' a2 < 1. Since one must have x < x inxc

order that the electron remain in the optical field, it

follows that no significant detrapping occurs in this regime.

2. Case II - a >> 1, Low Optical Power

Here, since we are interested in particles with

y < I, an approximate solution is J-- sin az',

leading to an approximate condition for avoiding detrapping

3/A 2 < T/2 or for a Gaussian pulse X; 2 /X 2 < 2T1 and again it

would seem that this regime is not dangerous. The form of
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the solution of course points out the potential dangers of

the resonance region a'. 1.

3. Case III - a = 1

Insofar as a and S are constants, we may obtain an

analytic approximate solution to Equation (9) as follows.

The Hamiltonian for Equation (9) is

H 2 - cos y - y sin az'

If we introduce angle action variables 2 for the unperturbed

(S;0) Hamiltonian, we have

H = f dJ - 3:(J,t) sin az'

Here

i f di - 8 E(k) - (1- k) K(k

Sand k 2  H+I

.2K(k2 ) 2

Further 7 . ... . (k2)
4 J- s in ¢'/2 /

and 'p = 4Kk/T f cn ('K-+ d

4 1 sin (2n-l) t,/cosh 1(n-' 2)7 K'(k
2 )

ni (2n-1) K(k )

n(=1

118

ii '



Here E and K are the usual complete elliptic integrals,

cn is the Jacobian elliptic function, and K' = K(1l k- )

Electrons trapped at the bottom of the well are represented

by k2 = 0. Barely trapped electrons have k = 1.

Since we are interested in the case of near resonance,

we substitute Equation (11) into Equation (10), keeping only

the resonant term - az'. Introducing t' = - az' by a

canonical transformation, we obtain the new autonomous

Hamiltonian

SI _2 2cos_'H = 2k2 - ,- I E - (i-k 2 )K -7t I I cosh 7K''12Kt

(12)

which is now a constant of motion.

The bottom of the potential well corresiorLds to

H' = 0. If Icos J< 1 for all k2 between zero and 1,

then the orbit passing through the bottom of the well is

connected to the top and most particles will be detrapped.

Equation (10) is easily solved for cosV' and we find

graphically that such detrapping is most likely to occur at

= 0.865. In this case, 5 < 0.1 is found to lead to

detrapping. Recall that we have previously noted that for

S1, S = < x' /x O0. Thus total detrapping could be

avoided for x Z/x 2 < 0.4. But even in this case

substantial detrapping could occur from electrons trapped

away from the bottom of the well.
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A more important limitation on predicted detrapping

results from the finite length of the wiggler. We crudely

estimate the detrapping of electrons from near the top of the

well where 7K'/2K < 1. From Equation (12),

dJ = dz' H 2= 2 sin < 2(

dz dz ' s cosh (- K'/2K) - s (13)

For a Gaussian beam using Equations (2) and (13) and putting

a 1, we have

dJ 2 Z/Z
dz2 2k

dz x 0 1+ (Z/ZR)2  (14)

Those electrons with J nearly equal to Jmax = 8/7 may now

be lifted over the top if J increases sufficiently.

Consider a wiggler of length 2L with optical waist at

the center. Then we may obtain an estimate of the fraction

of trapped phase space, AJ/J max which moves over the top of

the well by integrating Equation (14) from Z = 0 to L. We

take only the half length to account crudely for the fact

that only half the electrons have phases leading to

dJ/dZ > 0. Then the possible fractional detrapping is given

by:

J k ZR n (1+ (L/ZR) (15)f J 8 x kSZ (15

max I'
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Thus it would appear that only long wigglers with large

k ZR  can be subject to serious detrapping. This could put

an important emittance constraint on long wigglers. However,

we note that another such constraint is already conven-

tionally taken into account in wiggler design. This arises

from the fact that betatron motion at fixed y leads to a

change in electron longitudinal velocity and hence does not

permit electrons to be trapped in the ponderomotive well.

From Equation (8) we may write

k ka ww 2

eff = 
2

the limit coming from the depth of the potential well in

Equation (9). This means that the maximum allowable

emittance, 6max is determined from:

amax

kZ max = 2 /2

(16)

Defining the maximum allowable emittance from

Equation (16) and substituting into Equation ((13), we have

for the fraction of detrapped phase space:

f2 "n 1 + L (17)

-4 [l(z)R] max

I
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For the usual wiggler L = ZR and allowing

approximately for the overestimates we have made, we conclude

f - 0.4 6/emax with a numerical factor uncertain by perhaps

a factor of 2. Pending detailed simulations for specific

designs, it seems clear that for e/emax the detrapping

is not significant.

122



IV. SUMMARY AND CONCLUSIONS

We have studied the effect of 2-dimensional motion on

electron "synchrotron" oscillations in the ponderomotive

potential of a free electron laser. We find that the

transverse motion of the electrons is essentially an

unconstrained betatron oscillation. However, if the optical

wave front is curved, this motion couples into the

synchrotron oscillations. We find this coupling to be weak

except near resonance where 2k, I s which occurs typically

at peak circulating optical power levels near 1 GW. Under

resonant conditions, the coupling is marginally strong enough

to lead to some detrapping. Thus a detailed numerical

simulation of specific cases may be required.

However, it appears that in an amplifier the parameters

may change rapidly enough that the resonance is passed

through without significant detrapping. During the buildup

phase of an oscillator passing through resonant power levels,

we have roughly estimated peak potential detrapping to be of

order of 40% if the emittance is the maximum allowed by other

considerations. Hence, if a reasonable gain margin exists,

this detrapping is not essential. With smaller emittances,

the effect is of course smaller. For actual cylindrical

cases where many orbits do not pass close to the axis, the

effect is further reduced.
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It should be noted that we have not studied the

self-consistent effect of betatron motion on emission, but

only the effect of an assumed wave shape on electron

trapping. With these caveats we conclude that 2-dimensional

effects do not seriously perturb the simple 1-dimensional

picture of a free electron laser or introduce significant

further design constraints.
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