7 AD A136 325 A SINGULAR FREE BOUNDARY PROBLEMIU) WISCONSIN )
UNIV-MADISON MATHEMATICS RESEARCH CENTER

. K HOLLIG ET AL. OCT 83 MRC-TSR-2582 DAAG?9 80 C 0041
INCLASSTFLED F/6 1271




;
|
g
-

i3 J28 2.5

.0 whe e
=k j22
Ll ¥ s 20
i ",,'-.8
=

b:

2 Illll

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ 1963 - 4




it

8

A1363825

i <)].Z -

MRC Technical Summary Report #2582

A SINGULAR FREE BOUNDARY PROBLEM

Klaus H81lig and John A. Nohel

Mathematics Research Center

University of Wisconsin—Madison

610 Walnut Street |
Madison, Wisconsin 53705

October 1983

(Received September 13, 1983)

DTIC

Approved for public relea ELECTE

““c FiLE COPY Distribution unlimited DEC 2 71983 3

Sponsored by

U. S. Army Research Office National Science Foundation Je
P. O. Box 12211 Washington, DC 20550 ;
Research Triangle Park [

North Carolina 27709

83 12 27 (47




e

T \—-—-—-———

UNIVERSITY OF WISCONSIN - MADISON

MATHEMATICS RESEARCH CENTER Accession For
[NTIS GRARI )4
A SINGULAR FREE BOUNDARY PROBLEM DIIC TAB
(1)(2) (1 Unannounced
Klaus HBllig and John A. Nohel Justificatio:

Dedicated to Karl Nickel on his 60th birthday

By.
Technical Summary Report #2582 | Distribution/
Availability Condes
October 1983 Avail and/or
Dist Special
ABSTRACT
We study the singular Cauchy pyoblem
v 4V, (xt) @R x [0,7], T >0 M",

v(x,0) = g{x) , x€R .
The constitutive function ¢(£) = max(0,£); the initial datum g is smooth
(bounded) on R\{0} and satisfies
g(0) = 0; xg(x) >0, x € By g'(07) » g'(0 ) # 0 ,
where the superscript "+" ("-") denotes the limit from the right (left). We
show that the free boundary s given by v(s(t)*,t) = 0 sgatisfies

s(t) = =/t + o(Yt) (e + 0 ,
where «k > 0 is a monotone function of p = g'(0+)/g'(0-), implicitly
defined by the equation

2 3

2 2
K_ K /4 = =t /4
*3 e ]-x e

N|n

(*) p= dt, x>0 .

This generalizes an earlier analysis [7] for the special case of smooth data
g in which g'(0+) - g'(o') # 0, and p = 1. In this case the numerical
value x = .903446... as computed from (*) is consistent with our previous

result.

AMS (MOS) Subject Classifications: 35K055, 35K65, 45G05

Key Words: Cauchy problem, parabolic, nonlinear, regularity of free boundary,
self similar solutions, nonlinear singular integral equation.
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'\ SIGNIFICANCE AND EXPLANATION

e e e O

The Cauchy problem‘;€:£ed in the Abstract 13 similar to the well-known
one phase Stefan problem (in one space dimension). In the latter one would
agsume g(x) = -1 for x < 0, as well as g(x) > 0 for x > 0, so that
g would have a jump discontinuity at x = 0. Our assumptions on the initial
data g vyield a different behavior of the solution v and of the resulting
free boundary. Indeed, the free boundary is not (infinitely) differentiable
at t = 0, contrary to the situation for the classical Stefan problem.

This problem also serves as a prototype of nonlinear parabolic problems

> e

which arise as monotone “convexifications™ of nonlinear diffusion equations
ar e ’__,/_,.___—.-__.,_.,\

with nonmonotone constitutive functions /ﬁ' (see [S5], [6]). That analysis
shows the existence of infinitely many solutions v of the nonmonotone
problgm)each having v bounded, but oscillating more and more rapidly as

ot).
t » F{. Thus each solution v exhibits phase changes. Numerical experiments
further suggest the conjecture that the ;;hysically correct'9:;1ution of the
nonmonotone problem is the one which for t > 0 sufficiently large approaches

the unique solution of the appropriately related convexified monotone

problem. This paper is another step towards the understanding of this

intriguing phenomenonv“ Our earlier analysis of the Cauchy problem stated in
the abstract was for smooth data g with g'(0+) = g'(0") >0, [7]. The

present analysis shows how the free boundary s(t) depends near t =0 on

more general data for which p = g'(0+)/g'(0-) need no longer be 1., We
present two approaches: (i) a generalization of the integral equation for the
free boundary studied in [7], (11Y\f preliminary analysis via self similar

solutions which will be exploited in\lel.

AN

The responsibility for the wording and views expressed in this descriptive
sumnmary lies with MRC, and not with the authors of this report.




A SINGULAR FREE BOUNDARY PROBLEM
Kaus 88111g¢"" 2} ang Jonn a. noher!")
1. Introduction.
We study the Cauchy problem

) Vt = ¢(V)xx: (x,t) e r x (0,T] ,

v(+,0) = g
with the piecewise linear constitutive function ¢(£) = max(0,£); the initial

data g are assumed bounded, smooth on R\{0} and satisfy
g(0) = 0; xg(x) >0, xerR ,
(2) + -
g'(0 ) » g'(0 )#0 .
Here, the superscript "+" ("-") denotes the limit from the right (left).

One motivation for the study of the Cauchy problem (1) - (2) is that it
serves as a prototype of nonlinear parabolic problems which arise as monotone
“convexifications" of nonlinear diffusion equations with nonmonotone
constitutive functions ¢ (see [5]) and (6]); in (6, section 4) the reader
will £find the formulation and preliminary analysis of such a convexified
problem. In this note we are primarily interested in the behavior of the free
boundary s, given by v(s(t)+,t) = 0, for small t and for this purpose it
is sufficient to consider the simplified model (1) - (2).

Problem (1) - (2) is similar to the one phase Stefan problem (3, 4, 9,
10) where g(x) = -1t for x < 0. However, the assumption (2) yields a
different behavior of the free boundary and of the solution v. In fact, for

smooth initial data (g'(0%) = g'(07)), v_ is not continuous at (x,t) =

x

(0,0), whereas solutions to the Stefan problem are smooth on the set

{(x,t) : x> s(t), t e (0,T]},

1)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
(2)

This material is based upon work supported by the National Science
Foundation under Grant No. MCS~7927062, Mod. 2 and partially supported by
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For a sufficiently regular solution, problem (1) - (2) is equivalent to

the free boundary problem

vt = Vex ’ s(t) < x <> ,

3 vis(t),t) =0

v(x,0) = 3(x)

g(s(t))s' (t) = v*(s(t).t), t>0 ,

(4)
s(0) =0 .

One easily verifies that a solution of (2) ~ (4) which is extended by
(5) vix,t) = g(x) , == < x<s(t) ,
is a weak solution of problem (1), (2).

In [7]) we studied the equivalent integrated version of problem (1) in the

form
ut = ¢(ux)x
(1)
u(x,0) = £(x) := [ gly)ay .
Assuming sufficient regularity, the solutions of problems (1) and (1') are
related by
x t
ulx,t) = [o viy,t)ddy + [§ ¢(v)_(0,T)aT .
The houndary condition (4 can be also easily derived from (1'):
continuity of u across the free boundary s implies
f(s(t)) = u(s(t),t) .
Differentiating with respect to t and using ux(s(t)+,t) = v(s(t)+,t) =0

ard f'(x) = g(x) we obtain (4).
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We assumed in [7] that the initial data f for the Cauchy problem (1')
are smooth: f € CB(IJ with bounded derivatives, xf'(x) > 0(xeR) and
£7(0) > 0 (i.e. for (1) g'(07) = g'(0%) > 0). We showed that the free
boundary s(t) for (1') (and also for (1) with g'(0") = g'(0+) > 0)
satisfies
(6) s(t) = -/t + ol/E) (t+0") ,
where the constant x = 0.903446... does not depend on g. This is not
consistent with (4) which formally implies

g'(0)s(t)s'(t) = g'(0) + o(1) ,
i.e. (6) with x = /2, Therefore, the solution v of (1) cannot have vy
continuous at (x,t) = (0,0) (equivalently the solution u of (1') cannot
have u . continuous at (x,t) = (0,0)).

The purpose of this note is to extend these results and study the effect
of a discontinuity in the initial data g' for (1) at x =0 on the local

behavior of the free boundary s at t = 0. Our result shows that (6) still

holds, but with x now determined by the ratio g'(0+)/g'(0-).

Theorem. let g satisfy the assumptions (2). The problem (3), (4) has a

unique solution (v,s) having v bounded and the free boundary s satisfies

(6). The constant x is a monotone function of p := g'(07)/g'(0”) which is

implicitly given by

2 3 2 2
4 4
(7) p=i-e B ST Y My

Figure 1, at the end of the paper, shows x as a function of p as
computed from (7). We observe from (7) that

2
p(x) = 5— + 0o(1) as x +0 ,

_ 3 2
p(x) = /x g* e /1+0(1)) as x+ = .

© gt etgme e e Y




For smooth initial data (i.e. g'(0") = g'(0+)) we have p = 1 and «k =
0.9034... which is consistent with our result in (7].

A complete proof of the Theorem will be included in a forthcoming joint
paper with J. Vazquez [8]. It is based on comparison arguments using self
similar solutions of problem (1). More generally, we shall consider initial

data of the form

=,
x g+(x) , x>0 ,

g(x) =
m—
-Ixl g(x) , x<0 ,

with g&(ot) > 0 and determine the local behavior of 8 1in all cases.

In this note we prove the Theorem by extending the method used in [7].
This approach, compared to that using similar solutions, yields additional
regularity for the free boundary, namely for any a €& (0,%) we have
(8) & lotstene ()] =ot™"), as £+0" .
However, for technical reasons, we have to assume that p < 1.

We begin by constructing in Section 2 self similar solutions to problem
{(2) - (4) and derive the relation (7). The behavior of these solutions is
typical for the general case treated in Section 3. We prove (6) and (8) by

solving a nonlinear integral equation for the function r(t) := g(s(t))s'(t).

2, BSelf similar solutions.

For the gpecial initial data
px , x>0,

(9) g(x) =
px , <0 ,

it will be shown below that problem (2) - (4) has self similar solutions of

the form

OV S




(10) vix,t) = 2y 2y

Substituting (10) into equations (3) and (4) and assuming that s(t) =
-K/: we see that ¢ must satisfy the ordinary differential equation
(1) PUE) + 3 E V(E) - 3 WE) =0, E > ok,

with the boundary conditions

(12) V(-x) = 0, ¢'(~-x) = p_ ';' S
(13) 1m £ ) = P, -
Erem

Note, that (13) is equivalent to the initial condition v(x,0) = p.x.
Observing that c1E is a particular solution of (11) for any constant c,,
one easily finds that the general solution of (11) is
-62/4 £ /4
V(E) = .k + c, (2 + fo e fay)

From (12) we obtain

2 3 2
- X ,K K /4 x -y /4
¢ = P37+, fo e dy)
L2
S, " P, .

Therefore, by (13), p,, p. and «k must satisfy

cy + czlw =p,

which is the relation (7). This establishes the existence of self similar

solutions for the model initial data (?). Since s(t) = -x/t the assertions

(6) and (8) of the Theorem are trivially valid in this case.




3. Proof of the Theorem.

Existence and uniqueness of weak solution for problem (1) follow from
nonlinear semigroup theory [(2]. It is therefore sufficient to show existence
of a solution (v,s) for problem (2) - (4) and prove the assertions (6) - (8)
for the free boundary s. Making the restrictive assumption p < 1 this can

be done by extending the method in [7].
2

let T(x,t) := /1__ exp(~ %:) denote the fundamental solution of the
heat equation. Assum:“:hat (v,8) is a solution of problem (2) - (4) for
which the function
(14) r(t) := vx(s(T),T)
is bounded and continuous on (0,t]. Integrating Green's identity

(P(er,t-t)wE(E,t) - I‘x(x-E,t-'r)w(E,r))E - (P(x-E,t-T)w(E,T))T =0

over the domain {(E,T) : s(t) < E <=, T € (0,t)}, following [7] one can
derive an integral equation for r:

(15) rit) = 2 f; F(s(t)-£,t)g"(E)dE - 2 f; Px(s(t)-s(T),t—t)r(T)dt .

With the abbreviation

Als,t,T) := 5121:515%%
2(t-t1)
this equation can be rewritten as
r(e) = [2 expt- 3 (2 - 0)f)gr (e Drag
7n Yt
(16) + L ]; ﬂi%ffill exp(-Als,t, 1)) r(tT)dr

Vs
1= (Pr)(t) + (Kr)(t) .

The Theorem is a consequence of the following existence result for (16).

Proposition. Assume that

p=g(0')/g(07) = p/p_< 1 .




let 8 and r in (16) be related by

(17) r(t) = gls(t))s’(t) .

Then, for any a € (0,1/2), there exists T > 0 such that the integral

equation (16) has a solution T for which

(18) sup  t Yer(e)] <w .

te(o,T)

We postpone the proof of this proposition and complete the proof of the

Theorem.
Let r be a solution of (16) for which (18) holds.
see that s, given by (17), satisfies

_ 1
(19) s(t) + /e = o(e2%%

1
with «x = (2r(0)/p_)/2 . To verify (7) we pass to the limit t>» 0 in (16).
Since
Als,0,1) = - g 1-/1 ,
V/i-1
we obtain
2
K 1 2
P = = IO exp(- 2 (x+§)")p, &
) (20)
11k 1 1-1, &
- cloa = s et T e g AT
4 Y1-1(1+/ 1
: 1-/
; Substituting y2 = L in the second integral and solving for p = p,./p_
1+/1
get
f
2 K3 2 11 3 /4 1 (= /4
: (20") p= Gt =y e Y dy)/—_IK ¥ Cay
- 1+y 4

Then, it is easy to

oo e =

. s




A simple calculation shows that this is equivalent to (7): Subtracting the

right hand sides of equations (7) and (20') and multiplying by /r x-a[---]

gives
2 2 2 i 2 2 2
1,1 /8 e s, e /a1 1y -y
(ZK + iy fmt e dy) !K e dy (2K * 2 ID 2 © dy)
14y
2/4 - K 2/4
Using +x ey dy = 4 Y IO e Y dy, the last expression simplifies to
2 2, 2 2
1 4 1 4 - +
1 &~ /" (- !o 4. k (y 1)/4dY 4 (x - (I: Y /de’z)] .

4y

The term in square brackets vanishes for « = 0. Since also

— [eee] =

ax

2,2 2 2
2 f; o< ly +1)/’4dy ek /4, [: oY /4dy
= 0 ’

this finishes the argument.
It remains to prove the Proposition. To this end we define for
ae (0,1/2) the seminorm

IrlT =  sup ti-alr'(t)l .
te(0,T)

Further, we denote by c a generic constant which may depend on g, a, Kk and

monotonely on T and IrlT.

2
If r(0) = p_g- with Kk given by (7) and s 1is related to r by (17),
we claim that the following estimates hold:

(21) I!rIT < cl(T) + (c1(x,a) + c(m)) IrlT

(22) Ixel],, < te,(x,a) + clT)) IrIT

T
with




e te,a) = 1 L BUO 2y

/; 1+a «
Cz("a’) -
a 2 —
—1: (3 ; ___T — exp(- f— 1:45)61 +
2/% /1=t (t+/t 1+t
1 342a s 1-g /2% - 2 1T oo P 17T o
',;(2+2¢)(2+4¢) 0 (1_1)3/2 2 1+/% 4 1477

Here, T + c(T) denotes a continuous function with c(0) = 0. Note, that the
constants ¢, and ¢, do not depend on T and hence are not small for
small T. This reflects the fact thgg the operators F and K are not
compact. Our existence proof relies on the fact that
(23) w 3= c1(x,%) + CZ(K,%) <1
which, however, is valid only for k < 1.05..., or equivalently p < 1.59,.. .
This explains the artificial restriction on p in the Proposition.

Assuming (23), we can proceed in a standard manner. We iterate the

integral equation (16) in the form
(24) !

with p related to x by (7). By (20) rn(O) = r, for all u. Moreover,
if we choose a close to 1/2 and T > 0 so small ghat
(cy(x,a) + c(T)) + (cz(x,a) + c(T)) =: w' <1 ,
the estimates (21) and (22) imply
Iz pqlg S otT) + w'ir |, .
It follows that

lr_|

[ ]
e €c(T) /(1=w'), nenm ,

and we can select a subsequence which converges to a solution r, of (16)

in C[0,T] which satisfies (18).




The proof of the estimates (21), (22) is fairly technical and we refer to
(7], since only minor modifications are necessary to incorporate the case
g'(0+) ¥ g'(0”). It is not quite satisfactory that one has to compute the
constants ¢, and ¢, explicitly. It may perhaps be possible to avoid this
by estimating the nonlinear operators F arnd K in a suitable weighted
norm. In facg we conjecture that a stronger result can be proved namely that

for smooth initial data g, r and s are smooth function of /Z at t = 0.

0=
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ABSTRACT (continued)

where the superscipt "+" ("-") denotes the limit from the right (left).

show that the free boundary s given by v(s(t)+,t) = 0 satisfies
s(t) = -x/k + o(vk) RN
where « > 0 is a monotone function of p = g'(07)/g'(07), implicitly

defined by the equation

2 3 2 2
*) p =S+ e” /4 12 et Mat, « > 0

We

This generalizes an earlier analysis [ ] for the special case of smooth data

g in which g'(o+) =g'(0") # 0, and p = 1. In this case the numerical

value k = .903446... as computed from (*) is consistent with our previous

result.
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