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ABSTRACT
We study the singular Cauchy problem

vt = fVxx, (x,t) e R x [0,T], T > 0 Aw
v(x,0) - g(x) , x e R .arc

The constitutive function *( ) max(0,); the initial datum g is smooth I P

(bounded) on R\{0) and satisfies

g(o) - 0 xg(x) ) 0, x e RI g'(0 + ) • g,(0-) 7 0

where the superscript "+" ("-") denotes the limit from the right (left). We

show that the free boundary s given by v(s(t)+,t) = 0 satisfies
= 0+

s(t) -,c't + o(/t) (t +0 )

where K > 0 is a monotone function of p - g'(0+)/g'(0-), implicitly

defined by the equation

S 2 /4 2p- => E.- + E-- s _ e< ,K>o 0
2 4 -

This generalizes an earlier analysis (7] for the special case of smooth data

g in which g'(0 + ) - g'(0-) 10 0, and p - 1. In this case the numerical

value K - .903446... as computed from (*) is consistent with our previous

result.

AMS (MOS) Subject Classifications: 35K055, 35K65, 45G05

Key Words: Cauchy problem, parabolic, nonlinear, regularity of free boundary,

self similar solutions, nonlinear singular integral equation.
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SIGNIFICANCE AND EXPLANATION

The Cauchy problem stated in the Abstract is similar to the well-known

one phase Stefan problem (in one space dimension). In the latter one would

assume g(x) E -1 for x < 0, as well as g(x) > 0 for x > 0, so that

g would have a jump discontinuity at x = 0. Our assumptions on the initial

data g yield a different behavior of the solution v and of the resulting

free boundary. Indeed, the free boundary is not (infinitely) differentiable

at t - 0, contrary to the situation for the classical Stefan problem.

This problem also serves as a prototype of nonlinear parabolic problems

which arise as monotone 4convexifications/of nonlinear diffusion equations
9,

with nonmonotone constitutive functions / (see (51, [6]). That analysis

shows the existence of infinitely many solutions v of the nonmonotone

problem each having v bounded, but oscillating more and more rapidly as

t 1. Thus each solution v exhibits phase changes. Numerical experiments

further suggest the conjecture that the physically correctw9lution of the

nonmonotone problem is the one which for t > 0 sufficiently large approaches

the unique solution of the appropriately related convexified monotone

problem. This paper is another step towards the understanding of this

intriguing phenomenon. Our earlier analysis of the Cauchy problem stated in

the abstract was for smooth data g with g'(0 + ) - g'(0-) > 0, [7]. The

present analysis shows how the free boundary s(t) depends near t - 0 on

more general data for which p - g'(0+)/g '(0) need no longer be 1. We

present two approaches: (i) a generalization of the integral equation for the

free boundary studied in (7], (ii),'a preliminary analysis via self similar

solutions which will be exploited in' [8].

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A SINGULAR FREE BOUNDARY PROBLEM

Klaus H811ig ( 1 ) ( 2 ) and John A. Nohel1 )

1. Introduction.

We study the Cauchy problem

(I) vt - *(V)xx' (x,t) eRI x [0,T],

v(,0) = g

with the piecewise linear constitutive function f(E) max(O,E); the initial

data g are assumed bounded, smooth on R\(0) and satisfy

rg(0) = 0; xg(x) 0 0, x e R
g'(0 + ) 0 g'(0-) o 0 .

Here, the superscript "+" ("-") denotes the limit from the right (left).

One motivation for the study of the Cauchy problem (1) - (2) is that it

serves as a prototype of nonlinear parabolic problems which arise as monotone

"convexifications" of nonlinear diffusion equations with nonmonotone

constitutive functions + (see (5] and [6]); in (6, section 4] the reader

will find the formulation and preliminary analysis of such a convexified

problem. In this note we are primarily interested in the behavior of the free

boundary s, given by v(s(t) +,t) = 0, for small t and for this purpose it

is sufficient to consider the simplified model (1) - (2).

Problem (1) - (2) is similar to the one phase Stefan problem (3, 4, 9,

10] where g(x) = -1 for x < 0. However, the assumption (2) yields a

different behavior of the free boundary and of the solution v. In fact, for

smooth initial data (g'(0 + g'(0-)), vx  is not continuous at (x,t) =

(0,0), whereas solutions to the Stefan problem are smooth on the set

((x,t) : x ) S(t), t e [0,T]}.

(1)
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

(2)
This material is based upon work supported by the National Science

Foundation under Grant No. MCS-7927062, Mod. 2 and partially supported by
Texas A & M University.



For a sufficiently regular solution, problem (1) - (2) is equivalent to

the free boundary problem

t xx

(3) v(s(t),t) = 0

v(x,O) = g(x)

(4) g(s(t))s'(t) = v "(s(t)'t)' t > 0 sO=0

S(O) - 0

One easily verifies that a solution of (2) - (4) which is extended by

(5) v(x,t) = g(x) , < x < S(t)

is a weak solution of problem (1), (2).

In [7] we studied the equivalent integrated version of problem (1) in the

form

(1')

U(xO) - f(x) := fO g(y)dy

Assuming sufficient regularity, the solutions of problems (1) and (1') are

related by

u(x,t) = f v(yt)dy + f (V) (0,T)dr
0 0 x

The boundary condition (4) can be also easily derived from (1'):

continuity of u across the free boundary s implies

f(s(t)) = u(s(t),t) .

Differentiating with respect to t and using ux(s(t) ,t) v(s(t)+,t) 0

and f'(x) g(x) we obtain (4).

-2-



We assumed in [7] that the initial data f for the Cauchy problem (W')

are smooth: f e C3 () with bounded derivatives, xf'(x) > 0(xeR) and

f"(0) > 0 (i.e. for (1) g'(0-) = g'(O+) > 0). We showed that the free

boundary s(t) for (W') (and also for (1) with g'(0) - g'(0) > 0)

satisfies

(6) S(t) -Kct + o(it) (t + 0 )

where the constant K - 0.903446... does not depend on g. This is not

consistent with (4) which formally implies

g'(0)s(t)s'(t) = g'(0) + o(),

i.e. (6) with K = 2. Therefore, the solution v of (1) cannot have vx

continuous at (x,t) - (0,0) (equivalently the solution u of (1') cannot

have uxx continuous at (x,t) - (0,0)).

The purpose of this note is to extend these results and study the effect

of a discontinuity in the initial data g' for (1) at x = 0 on the local

behavior of the free boundary a at t = 0. Our result shows that (6) still

holds, but with K now determined by the ratio g' (0 +)/q'(0-).

Theorem. Let g satisfy the assumptions (2). The problem (3), (4) has a

unique solution (v,s) having v bounded and the free boundary s satisfies

(6). The constant K is a monotone function of p :- g' (0 ,+)/g'(0 - ) which is

implicitly given by

2 3 e /4 2 ey2/4dy

(7 2 4 :W

Figure 1, at the end of the paper, shows K as a function of p as

computed from (7). We observe from (7) that
2

p(t) - + o(1) as + 0,

P( , ,w"3 e2/41o

p(') - 0 e+o1)] as K +
2

-3-

• I
1II



For smooth initial data (i.e. g'(O') - g'(O +)) we have p 1 and K -

0.9034... which is consistent with our result in (7].

A complete proof of the Theorem will be included in a forthcoming joint

paper with J. Vazquez I8]. It is based on comparison arguments using self

similar solutions of problem (1). More generally, we shall consider initial

data of the form

x +g+(x) , x > 0
g(x)-

m

-lx- g (x) , x < 0

with g (Ot) > 0 and determine the local behavior of s in all cases.

In this note we prove the Theorem by extending the method used in (7].

This approach, compared to that using similar solutions, yields additional

regularity for the free boundary, namely for any a e (0,1) we have

d 0-I +
(B) - [g(s(t))s'(t)1 - O(t ), as t + 0

However, for technical reasons, we have to assume that p ( 1.

We begin by constructing in Section 2 self similar solutions to problem

(2) - (4) and derive the relation (7). The behavior of these solutions is

typical for the general case treated in Section 3. We prove (6) and (8) by

solving a nonlinear integral equation for the function r(t) : g(s(t))s'(t).

2. Self similar solutions.

For the special initial data

(9) 
g(x)

(p-x < 0

it will be shown below that problem (2) - (4) has self similar solutions of

the form

-4-
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(10) v(x,t) t1/ (x- ' / 2)

Substituting (10) into equations (3) and (4) and assuming that s(t) -

-Kit we see that # must satisfy the ordinary differential equation

(11) *-(C) + Ii C V,( - VC () - 0, E > -€ I

with the boundary conditions

1 2
(12) *(-K) - 0, *,'(-K) - p_ i

(13) lim -( ) P+

Note, that (13) is equivalent to the initial condition v(x,O) - p+x.

Observing that c is a particular solution of (11) for any constant c,

one easily finds that the general solution of (11) is

2 2
C + c2(2e - C / 4 + C ft e - y /4 .

From (12) we obtain

S" E-K + K/4 fo e
-
y /4

C, 2+ e 0 'dy)

3 K2/4
c - p 4 e

Therefore, by (13), p+, p- and K must satisfy

c I + c2
1 1-p+

which is the relation (7). This establishes the existence of self similar

solutions for the model initial data (9). Since s(t) - -Kit the assertions

(6) and (8) of the Theorem are trivially valid in this case.

-5
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3. Proof of the Theorem.

Existence and uniqueness of weak solution for problem (1) follow from

nonlinear semigroup theory (2]. It is therefore sufficient to show existence

of a solution (v,s) for problem (2) - (4) and prove the assertions (6) - (8)

for the free boundary s. Making the restrictive assumption p 4 1 this can

be done by extending the method in [7].
1 2

Let r(x,t) := - exp(- 2) denote the fundamental solution of the
/2wt

heat equation. Assume that (v,s) is a solution of problem (2) - (4) for

which the function

(14) r(T) := v (S(T),T)
x

is bounded and continuous on (O,t]. Integrating Green's identity

(r(V-E,t-T)wE(t,T) - rx (X)-,t-T)w(E,T)) - (r(X-E,t-T)w(E,T))T = 0

over the domain {(E,T) : S(T) < E < T, T e (0,t)}, following (7] one can

derive an integral equation for r:

(15) r(t) = 2 f- r(s(t)-xt)g'(E)d- 2 f (S(t)-s(T),t-,)r(T)d .

With the abbreviation

s(t)-s(tT)A(S,t,r) :=2(tTl

2 (t-tr) /

this equation can be rewritten as

4r(t) -O exp(- -1 (s~-t- _ &)2)g'(E V/t)dE
1 1 (sltt) 2rV 4w Vt

(16) + f T exp(-A(stT)2 )r(tT)dT

: (Fr)(t) + (Kr)(t)

The Theorem is a consequence of the following existence result for (16).

Proposition. Assume that

p g'(0 + )/g'(O " ) : p+/p_

-6-
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Let s and r in (16) be related by

(17) r(t) = g(s(t))s'(t)

Then, for any a e (0,1/2), there exists T > 0 such that the integral

equation (16) has a solution r for which

(19) sup t If'(t)I <
te ( 0, T)

We postpone the proof of this proposition and complete the proof of the

Theorem.

Let r be a solution of (16) for which (18) holds. Then, it is easy to

see that s, given by (17), satisfies

(19) s(t) + K/t= O(t12+ ,

with K = (2r(0)/p_)12. To verify (7) we pass to the limit tv 0 in (16).

Since

A(S,o,T) - - K 1 - T

we obtain

2p = _fo exp(- 1(K+t)2)p+ dt
P- 2 /w

(20)
2 - 2

I l r K I exp(K 1- T - K 
- .V p-- 21w /1 - ( 1.,/ 1.,/c

Substituting y2 1- in the second integral and solving for p = p+/p_ we
1+/i

get

2 3 2 y2/4 _ 2
!LK &K2 1-Ky d - /4dy "

(20' p 2 4 '0 +2 K

-7-
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A simple calculation shows that this is equivalent to (7): Subtracting the

--3
right hand sides of equations (7) and (20') and multiplying by hW 3C

gives

( e+ e 2/4 f (e_+1 d - f: 2 dy)
2K 4 2K 2 0 1+2

y /4 2
Using J+K = dy ; VW ' 4 dy, the last expression simplifies to

e 2/4- 4 _ 2ey2 +1)/4 dy+ (W - (f 2

The term in square brackets vanishes for K - 0. Since also

d
dK C'''] -

2K fl eK (y2+1)/ 4 y - -K2/4 2 ro "Y /4
, 0 0

this finishes the argument.

It remains to prove the Proposition. To this end we define for

a e (0,1/2) the seminorm

IrlT : sup t -r'(t)l
te(O,T)

Further, we denote by c a generic constant which may depend on g, a, K and

monotonely on T and IrT
T

2
If r(0) - p - with K given by (7) and s is related to r by (17),

we claim that the following estimates hold:

(21) IFrT ( c(T) + (c1(K,U) + c(T)) IrIT

(22) IKrIT 4 (c2(K,a) + c(T)) ItnT

with

S-8- ____1

i I _ _ __I_ _ _ __I



S(Iz) 1 1 exp(-2 /4)

c2(IC•a) -

I T 2 at 2
= If exp(- I - dr+

2¢/ 01--r (1+4 1 +

1 3+2* 1 fl 1/2+* 2 - K 2
fl 1-T K I-- exp(- -- .d

(2+2a)(2+4*) '0 (1_)3/2 2 1+ T 4 14-T

Here, T + c(T) denotes a continuous function with c(O) - 0. Note, that the

constants cI and c2  do not depend on T and hence are not small for

mall T. This reflects the fact that the operators F and K are not

compact. Our existence proof relies on the fact that

(23) w := cl(, 1,) + C2 (IC, 1 ) < 1

which, however, is valid only for K < 1.05..., or equivalently p < 1.59...

This explains the artificial restriction on p in the Proposition.

Assuming (23), we can proceed in a standard manner. We iterate the

integral equation (16) in the form

2
r1(t) 

p- 2
(24)

r n+l Frn +Kr n n en

with p related to K by (7). By (20) r n(0) - r for all u. Moreover,

if we choose a close to 1/2 and T > 0 so small that

(c1( I,ca) + c(T)) + (c2 (I,a) + c(T)) - w' < 1

the estimates (21) and (22) imply

Irn+1IT 4 c(T) + w'irnT .

It follows that

IrnIT 4 c(T) / (1-w'), n e w

and we can select a subsequence which converges to a solution r of (16)

in C(O,T] which satisfies (18).

-9-



The proof of the estimates (21), (22) is fairly technical and we refer to

[7], since only minor modifications are necessary to incorporate the case

g'(o+) 30 g'(O-). It is not quite satisfactory that one has to compute the

constants c1 and c2 explicitly. It may perhaps be possible to avoid this

by estimating the nonlinear operators F ard K in a suitable weighted

norm. In fact we conjecture that a stronger result can be proved namely that

for smooth initial data g, r and s are smooth function of /t at t 0.

-10-
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ABSTRACT (continued)

where the superscipt "+" C"-") denotes the limit from the right (left). We

show that the free boundary s given by v(s(t) +,t) - 0 satisfies

SWt K t + 0( (t 0 + )

where K > 0 is a monotone function of p = g' (0 +)/g' (0-), implicitly

defined by the equation 2 3 2 2K Ic eC2/4 t -t/4t
M* + e f +  e- d, K > 0

This generalizes an earlier analysis [ ] for the special case of smooth data

g in which g' (0+ ) = g' (0-) # 0, and p - 1. In this case the numerical
value K = .903446... as computed from (*) is consistent with our previous
result.
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