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ABSTRACT

In this paper we present-ra singular perturbation analysis of the
fundamental semiconductor device equations which form a system of three second
order elliptic differential equations subject to mixed Neumann-Dirichlet
boundary conditions. The system consists of Poisson's equation and the
continuity equations and describes potential and carrier distributions in an
arbitrary semiconductor device.

The singular perturbation parameter is the minimal Debye-length of the
device under consideration.

Using matched asymptotic expansions we demonstrate the occurrence of
internal layers at surfaces across which the impurity distribution which
appears as an inhomogeneity of Poisson's equation has a jump discontinuity
(these surfaces are called 'Junctions') and the occurrence of boundary layers
at semiconductor-oxide interfaces.' We- derive the layer-equations and the
reduced problem (charge-neutral-approximation) and give existence proofs for
these problems. They layer solutions which characterize the solution of the
singularly perturbed problem close to junctions and interfaces resp. are shown
to decay exponentially away from the junctions and interfaces resp.

We show- that, if the device is in thermal equilibrium, then the solution
of the semiconductor problem is close to the sum of the reduced solution and
the layer solution assuming that the singular perturbation parameter is small.
Numerical results for a two-dimensional diode are presented.
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SIGNIFIANCE AND EXPLANATION

In this paper qualitative properties of the solutions of the system of partial

differential equations which describes potential and carrier distributions in an

arbitrary semiconductor device are discussed. The system consists of Poisson's equa-

tions for the potential and of the continuity equations for the carrier densities.

The problem can be classified as elliptic (in the static case). After appropriate

scaling a small parameter X2, which is physically identified as the square of the

normed minimal Debyelength of the device under consideration, appears as multiplier

of the Laplace-operator in Poisson's equation. Therefore, the system is singularly

perturbed.

We investigate the asymptotic behaviour of solutions as the singular perturbation

parameter X2  converges to zero and demonstrate the occurrence of internal layers

(thin regions of fast variations) in the potential and the carrier densities. These

layers occur at curves in the device where n-regions (i.e. regions in which the doping

profile is positive) and p-regions (i.e. regions in which the doping profile is

negative) meet. In the analysis we also prove existence theorems for the reduced

problem (A2 set to zero) and for the layer-problems.

The responsibility for the wordinq and views expressed in this descriptive su mary
lies with MRC, and not with the author of this report.
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A SINGULAR PERTURBATION ANALYSIS OF THE

FUNDAMENTAL SEMICONDUCTOR DEVICE EQUATIONS

Peter A. Markowich

I. INTRODUCTION

An analysis of the two-dimensional, static equations which describe potential distri-

bution and current flow in a semiconductor device is presented.

The basis semiconductor device equations are (see Van Roosbroeck (1950)):

(1.1)(a) div(cs7 ) - q(n -p - C(x,y)) Poisson's equation

(1.1)(b) div(Dn,n - nnv) - R (x.y) E electron continuity equation

(1.1)(c) div(0 P 12 +upp7*) - R hole continuity equation

where the dependent variables are

electrostatic potential

n electron density

p hole density

is a bounded domain in Z representing the device geometry; is the semiconductor

permittivity which will be assumed to be constant in the sequel); inp are the

electron and hole mobilities resp.; 0,0 are the electron and hole diffusion coeffi-
cients resp. and q is the elementary charge.

Clx,y) is the doping profile,

that means C(x,y) is the difierence of the electrically active concentration of do-

nors and the electrically active concentration of acceptors. R is the recombination

generation rate. In the sequel we will neglect recombination-generation effects, that
means we set R -0. Of course only solutions with n >O, p >0 are admitted

We assume the validity of Einstein's relation

0 n
(1.2) -n U const)

ri p T

where U, is the thermal voltage.

The electron and hole current densities Jn and J are given by

(1.3)1a) Jn M xQ D nn " .n,7-)

(1.3)1o) JP 2 - (D pp + pp7.).

Numerical values for the parameters (for Silicon at roomtemperature)are given in Table 1

The ellhptc syst'm of differential equationS(1.1) has to be supplemented by appropriate

boundary zonditions for ,n,o determined by tne device under consideration. We assume

that ;.solits up into three disjoint parts, namely ;7 , " i and .: . "is and is.os are

open, s is connected and *.. U ck,r : 0 where the C, ire closed and connected 3rcs
with positive (one-dimensional) Lebesguemeasure.

*Institute fOr Angewandte und Nuinerische ,iathematik, Technische Universit~t Wien,

Gusshausstrasse 27 - 29, A-1040 Wien, Austria. Eurcpe
Sponsored by the United States Army under Contract No. DAAG 9-0o-C-O041.



Dirichlet boandary conditions for %,n,p are given on aC (the Ck are Ohmic contacts) and

zero Neumann boundary conditions are prescribed on ais (insulating segments)ans repre-

se.ts a semiconductor-oxide interface occuring in MOS-technology (see Sze (1981)

for a survey on MOS-devices). The oxide is located in a bounded domain P which is

such that on 7- n -os and

(1,3) 0 0, (x,y) E0

holds. The carrier densities n,p only exist in 5. Usually a splits into three parts,

namely a$c (oxide-contact) where a Oirichlet condition for * is prescribed, 84is

(insulating segment)where a zero Neumann condition for l holds,and the interface

Qos. ;P has to be continous a cross )a,, and

Cot (xy)C4

(1.4) 1.0 a, a(xy) • :0: 6

holds where e is the oxide permittivity (L-f I) ((fI. denotes the jump of the

function f accross the curve r). A is the exte ior unit normal vector of Sn. The

condition (I.4) reoresents the continuity of the electrical displacement accross

the semiconductor oxide interface.

The electron and hole current density components J," t and J .. (perpendicular to

t sh )  vanish on s ". This gives boundary conditions for n and p (by using (1.3)) at
the interface.

The Dirichlet boundary conditions for n and p at the Ohmic contacts are given by the

vanishing-space-charge condition

(1.5) (n - p - C(x,y)) a c  0

and the thermal equilibrium condition

* n2
(1.6) np C I

where ni is the intrinsic number of the semiconductor.

For the following we assume that a splits up into N+I connected subdomains ni.
N

(2 J U2i), such that C does not change sign in each of the Q. and C has jump -i=O i

discontinuities accross the curves i  - i . (abrupt doping).
1 i- 1 F j h ld

for i *j. .)i is called a n region if C ,- >0 and it is called a p region if CI-. <0.

ri is a pn junction if it is the joint boundary of a p and an n region and it is n
nn (pp) junction if it is the joint boundary of two n (p) regions.

we also assume that the Ohmic contactsCk have positive distance from the junctions

The performance by the device under consideration is mainly determined by the

location of the subdomains, of the oxide (for MOS-devices) and by the location of the
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Ohmic contacts. The boundary conditions for the potential (at the Ohmic contacts)

are

( n ! I +Uk. if CkCi and C1.1
(a) Ck aUT n lk kI

in n-regions and

(1.7) (b) 'Ck a UTln P i

in p-regions where Uk represents the potential applied to the Ohmic contact Ck. We
remark that there are devices which are such that not every n or p region "has" an

Ohmic contact (for example thyrtstorssee Sze (1981)).

An externally applied potential U. is given at the oxide (gate) contact sCl

(1.7)(c) W, U
G  F

where(the flat band voltage) UF is a constant which depends on the semiconductor.

on the oxide contact and on the doping. The applied potentials Uk, UG are constants,

too.

As illustration for the notation of the device geometry we show a typical MOS-transistor

in Figf ure 1. 34C

'0 0 in NJ

Co

Figure 1. Mos-Transistor

There are two n-regions and one p-region tn-channel-transistor). three Ohmic contacts

(C:Source-contact, C:drain contact, C bulk contact) and one oxide contact

()*C: gate contact).

The vertical boundaries of a and 4 are insulating (aw s and lois reap.).

We remark that the rectangular shape of 2 and s as shown in Figure I is a

simplification commonly used for numerical simulation (see Selberherr(1980)). The

following theory however is not restricted to particular shapes of domains.

It . . . . -

ii ii



The problem (1.1) can be put into a simpler form by the transformation (called

&oltzmann Statistics)

(1.8) nan i  u , p n 1  v.

Here u exp exp ) whore s I are the electron and hole quasifer-
milevels resp. (u > 0, v> 0 has To hold). Then (1.1) takes the form (by using

(1.2) , assuming R O and cs to be constant)

(1.9)(a) c S 4 o q(nte T t, nie Tv -C(x,y))
T L

(1.9)(b) div twne T 7u) a 0 (x,y) C a.

(1.9)(c) dlv (Wpe 7v) T.j

The continuity equations (1.9)(b),(c) are in self-adjoint form.

There have been many analytical and numerical investigations of (1.1) ((1.9)).

Mock (1972) showed the existenceof a solution of (1.9) subject to the mixed set

of boundary conditiotns and he proved that this solution is unique if the applied

potentials Uk are sufficiently small. He only assumed C e Lw(). Continuous depen-
dence of the solutions on the boundary data was also shown in this paper.

A very similar existence proof was given recently by Bank, Jerome and Rose (1982).

The parabolic semiconductor problem (with homogenous Neumann boundary conditions

on a) was investigated by Mock (1974). Finite difference methods are discussed in
Mock (1973), (1981).

In this paper we scale the problem (1.9) appropriately and obtain i singulAr

perturbation problem. The singular perturbation parameter x is the minimal normed

Debye length of the device under consideration.

Using matched asymptotic expansions (as h -0+) we demonstrate the occurance of a

boundary layer in p at oxide-semiconductor interfaces and the occurance of internal
layers (in *) at pn, nn and pp junctions. u and v are the slow variables, that

means they do not exhibit zero-Order layers.

We derive the reduced problem (vanishing space charge approximation) which is ob-

taii'ed by setting the singular perturbation parameter to zero, and the (boundary
and internal) layer equations and give existence proofs for these problems. We diss-

Cuss theasymptotic behavior of the current densities Jn'Jp (as x -0+) and show the
validity of the asymptotic expansions for the equilibrium problem (zero external
Potential applied at the contacts).

The singular perturbation approach was applied to the one dimensional semiconductor
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problem by Vasileva and Stelmakh (1977), Vasileva and Butuzow (1978);

Markowich, Ringhofer,Selberherr and Langer (1982 ab).

The main advantage of the singular perturbation approach is that it gives

qualitative information on the behaviour of the solutions.This a-priori information

can be used to construct appropriate discretisation methods for the numerical solu-

tion of the semiconductor device equations. In particular efficient mesh-strategies

employing only a reasonable number of grid points (but still giving accurate

numerical approximations even in layer regions) can be obtained (see Markowich,

Ringhofer and Selberherr (1982) and Section 6).

All results in this paper also hold for the one and three dimensional static

semiconductor problemsafter obvious modification of assumptions (e.g. junctions are

then represented by points and surfaces resp.). We chose the two-dimensional

semiconductor problem for the presentation since it is most often used for numerical

simulation.

The paper is organized as follows. In Section 2 we perform the scaling which leads

to the singular perturbation problem , prove an existence and a regularity theorem

and derive a-priori estimates of the solutions. In Section 3 we derive (the zeroth

order terms of) the asymptotic expansions, in Section 5 we give the existence proofs

for the reduced problem and for the layer problems and the equilibrium problem is

discussed in Section 5. Section 6 is concerned with numerical examples and with

possible extensions of the theory.

Table 1. Numerical Values of the Parameters for Silicon and Silicon oxide at

roomtemperature T-300 k.

Parameter Physical Meaning Numerical Value

q elementary charge 10' 9 As

cs  semiconductor 12
permittivity constant 10 As/Vcm

E oxide 10 12
permittivity constant 3 As/Vcm

n electron mobility 103cm 2 /Vs

- hole mobility 103 cm2 /Vs

D electron diffusion 2
constant 25 cm /sm2/

D hole diffusion constant 25 cm /s

np intrinsic number 1o1O/cm
3

UT  thermal voltage 0.025 V

The numerical values given for n,'Vpn'Dp have to be understood as averages, since

these quantities are generally modelled by functions of x and y.
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2, THE SINGULARLY PERTURBED PROBLEM

We assume that C is bounded in n and set

(2.1) • supiC(x,y)I, O-

and

(2.2) 1 a diam (a).

The dependent variables are scaled as follows

(2Z) 0S p4 n, PS us  u, vs  v
UT.

and the independent variables

(2.3) X x (Xsys) E 5

Then (1.9) transforms to (after dropping the subscript s):

(2.4)(a) X a4 62 eu -6 2e_ Pv-

(2.4)(b) div(e #u) a 0 £ (x,y) EQ

(2.4)(c) div(e'Vv) 0 Q

and (1.3) remains unchanged:

(2.5) a, - 0, (x,y) Es

where

2 A) £sUT 62 ni
(2.6) (a) x 2 2 3 e U (b) 6 2 ,

l~qCT

holds. k is the minimal Debyelength of the device.

For (2.4) we assumed that the mobilities , up are constant throughout the device

(for numerical values see Table 1 ).

The following theory however carries over to the case that wn, p are smooth and posi-

tive functions of x and y.

The (scaled) boundary conditions are

L2 is is 3Qis

the (unit) vector ; is perpendicular to ) and is assumed to exist almost everywhere) and

-6-



U k Uk

.k C

(2.7)c) *~ Ink

for k 0,.. ,r.

(2.7) is derived from (1.5), (1.6), (1.7) (a,b) by using (1.8).

Boundary conditions on as are

(2.8)(a) Y'i.),s 0

(' denotes the exterior unit normal vector of a)
UG  UF

(2.8)(b) U!$c" a " UF ' G

and

(2.8)(c) " [il • 0nOS

1, (x.y) Enn] 0, C"• € ,x y E
(2.8)(d) * . (XY) E#

Os Cs

(2.8)(e) 7u.'11Uos * 7v.;t os 0

u and v are only defined in 5.

For modern devices C I0 17cm"3 . With the realistic value 1 - 5 x 10"3cm and the numerical
values for q, csUT given in Table I we get X 2 10-7 << 1. Therefore tne problem (2.4),

(2.5),(2.7),(2.a) constitutes a singularly perturbed quasilinear elliptic

system of differential equations (subject to mixed Neumann-Dirichlet boundary and
interface conditions).

The parameter s2 << 1. too (normally S2 110-7 holds). This however gets compensated

by the Oirichlet boundary conditions (2.7)(d),(e) which imply that 32 (eu -e"'v) -0(1)
at Ohmic contacts as 32 -0. Note that the potential difference between an Ohmic con-
tact in a n-region and an Ohmic contact in a p-region behaves asymptocally (as

2 -0) like In

We regard 82 as (fixed) parameter and investigate the asymptotic properties of the
solutions as x -0+. We will then show that the asymptotics are uniform in 5 as long

as 5 does not converge to zero too fast (compared to k ).

-7-



The scaling factors for the current densities J n p are qu nCUT and qupCUT resp.

Then the scaled current densities are given by

(2.9)(a) Jn a 62e u' (b) Jp a -62e'$Vv.

The scaled carrier densities follow from (2.2)

(2.8)(c) n - 62e~u, (d) p - 62e'V.

We now give definitions which will be *eeded in the sequel.

We denote by Lq(n) the space of q-integrable real valued functions defined on n with the

norm

llifil q., :- :f(x,y)lqdxdy)q

and by L*Da) the space of bounded functions on Q and

11f . s I up Lf(xy)l

Cm (n) for m E N0 is the space of all functions defined on a which together with their

partial derivations of order up to m are continuous in n .

C m() is the space of all functions which are in C m(a) and which together with their

partial derivatives of order up to m are bounded and uniformly continous in n. A norm

on Cm(5) is given by

itfIm ' I . max sup f(x,y)

01 c iQ~m a 3x ay

where a- (31,2) and lal l,*+:2

Spaces of Holder continuous function Cm' (Q), Cm'B( ) for 0 < B 4 1 and ther norms are

as in Adams (1975).

We define the functional

( L a"" ~~ ~ ~ 1 II I~m'' i
O l ~ Ix I y 2 ,

K 3)

and write Hm(i) f(or the completion of (u E Cm(c):}Ullm,2,,,m with respect to the norm

For rc:a we denote by H (jur) the completion of (u C m(Q): Iluil <-andu vanishes

in a neighbourhood of 7} with respect to 11.I1 m,2,Q"

-8-



For the following we set A u 1 Jaos u s and state the existence theorem which Is

basic for the theory of the semiconductor equations.

Theorem 2.1 Assume that D is defined in 4. 01EL"(0) and that D is

Lipschitzcontinuous in a neighbourhood of Alc. Also assume that 3A

and an are Lipschitzcontinuous and piecewise C and that t'e (one-

dimensional) measure of an is positive.

Then the problem (2.4),(2.5),(Z.7),(2.8) has a weak solution (ou,v)

for which 0 E HI(A) n L(A). uv e Hi(a) n LLia) holds.

Every solution (*,u,v) 4H1(A) x (H1 (Q)2), C CLm(A) fulfills the a priori

estimates
J k

" UT
(2.10)(a) u_: min e u(A,y) *max e

k k

U Uk

(2.1O)(b) v: min e i v(x,y) imax e

k k

for (x,y) E5 and

(2.10)(c) : min (7_, inflo) 4 (x,y) 4 max ( u, sup -):- +

for (x,y) E X where

(2.11)(a) 7;• In +O+ . + SuP D(x,y)
252 u a

(2 .11 )(b ) - :- In 26, 0 * inf (x ,y)

Proofs of slighty weaker existence theorems were given by Mock (1974) and Bank,

Jerome and Rose (1982). We therefore only sketch the

Proof: The a priori estimates (2.10)(a)(b) follow immediately by on application of

the maximum principle for H .-solutions(see Gilbarg and Trudinger (1977),

Chapter 8) to (2.4)(b),(c), (2.7)(a),(b) and (2.8).

We set

Q( 2) • 2div(0- ) - (32 elu -5 2 e'V .v . )

w I th u " (u in •O . v i D O • 0 in
o in 0 10 in 2 0 in '

-9-



The weak formulation of Q(o) a0 subject to (2.7)(a),(2.8)(a),(2.8)(c).(2.8)(c),

(d) is

U((x2Cfk 4 +2 ' (62 e42 eu*-62e' -Oa)o)dxdy

A2 2 4 2 2 0 fV-Vo df(x V*-7(9(6 e u-6 e'v-O)todxdy + X
2 - u7dxdy

n
*0

for all (EH(AUis ) since if 4,,,p are sufficiently smooth on A then the
arbitrariness of t implies (after integration by parts) that Q(4) - 0 in n Uo

and that the zero-Neumann boundary condition on anis u34is and t-he interface conditions
(2.8)(c),(d) are fulfilled ((2.8)(c),(d) are the"natural" Interface conditions for the

problem Q(o)-O).

A simple calculation shows that Q(,k+) 4O,'JarCU )O * P and Q(j) A0, *! cu 34C A-.

Therefore we get for every weak solution of Q ) •

Q -Q( OP +) - k div(cV(o-*+)) - f(xy)(-*+) ) 0

and

Q(*) Q . X 2d i v{ , 2 - g(x.y)(w-i.) , 0
whr Q(x,) Q (e V @

where f(xy) *(e 4u*e )) O)0, g(x.y) a 52(e u*+e v*) '0
and P1(x,y) ( 2(x,y)) is between (x,y) and 1 (J.). As for the continuity

equations the maximum principle yields (2.10)(c).

The existence statement of Theorem 2.1 follows by using Schauder's fixed point theorem

as in Bank, Jerome and Rose (1982).a

We remark that . and p+-7+ holds if 4 is empty and that the estimates (2.10) imply
that the solution is unique if Uk-O for k-O, .. ,r. Then umve1 in Q which implies

J nJ O. The whole device is in thermal equilibrium.
p

Mock (1974) showed (under slightly more stringent smoothness assumptions on the

boundary conditions) that the solution is unique if lUkl are sufficiently small.
Uniqueness for arbitrary Uk cannot be expected since there are wellknown devices
(like thyristorssee Sze (1981)) which exhibit multiple solutions.

We now show (for devices without oxide-regions) that any solution of the semiconductor
problem is classical if the doping profile D is piecewise Hodercontinuous.

We denote by CRC Q) the set ofcritical points of Q, that is the set of all points

P E) 3 for which either P E )aC n JPis (Ohmic contacts and insulating segments meet),

-10-
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P E ; n a A(Ohmtc contacts and the oxide boundary meet) or ja n B 0 (P) (where 8 (P) is

the open ball withradius D centred at P) does not have a C2 "A parametrisation for

any > O.

Theorem 2.2: Let os( } and assume that 3n is Lipschitzcontlnuous and piecewise C"

and that rt are Cc curves for Il..,N. Also assume that 0 is defined

on . that 0 CLa (Q) and that 0 1n E C°'"(ni) for 1-0 .... N and some

Moreover D is Lipschitzcontinuous in a neighbourhood of 3nC" Then every

weak solution (o.u,v) of the semiconductor problem (2.4), (2.7) for which

SL (a) holds, fulfills

(2.12)(a) (o.uv) e (CI t -CR(aa)))
3

(2.12)(b) ili E C2( ni). i-O.....N

and

(2.12)(c) (u~v) - (C2 (*))

Also all second derivatives of ou.v are square integrable over any subregion of a

which has positive distance from the critical points of

Proof: For a given weak solution ( *,u*,v*) we set

F(x,y) - 2 (ey(xY)u*(x,¥) -e' *(x vY) v (x.y)) - D(x,y).

Since v*,u*,v E L'(a) we have FIE L (). O'is the unique solution of

(2.13) X24* a F(xy), (x,y) C

subject to the mixed Dirichlet-Neumann conditions (2.7)(a), (2.7)(d),(e). From

Kawohl (1980) we obtain that " EH 2 W() where a, is any subdomain of a with positive

distance from thecritical points of Q and that g fulfills (2.13) and the boundary

conditions almost everywhere (with respect to the two and one dimensional Lebesgue

measures resp.). Therefore j" CC(5-CR(,Q)). Theorem 1S.1 in Ladyzenskaja and

Ural'tseva(1968, pp.203) implies aCC1 '(i') and t" E Cl(i-CR(30)).

The same theorem implies that the solutions u*,v" of

div(eO*(x y)*u) - 0

and

div(e' O (x-y)v) '0

fulfill u-,v* E CI'Q(5 ' ) and therefore u*,v" C (-CR A)). Theorem 6.24 in Gilbarg

and Trudinger (1977, page 6.24) yields u.v EC 2().

-11-



Let Q" be a subdomain of Q i with Lipschitzcontinuous boundary and with a positive

distance from the critical points of 3a .. Then *,u*,v ,D*Ec O,3 (0" ) and therefore

F(CO'a(fl). Since i" solves

S aFx,y), ixy) e "

we get *'CC 2"(0 ") which implies ** C(ni). a

*,u and v may have singularities at the critical points of 3a and second derivatives

of , are discontinuous accross the junction ri if [0], i *0. The extension of
Theorem 2.2 to MOS devices is straight-forward using the methods of Ladyzenskaja and

Ural'tseva(1968, Chapter 3. Section 16).

We remark that (2.10)(a),(b) yield an a-priori estimate on the number of active

carrier-pairs. (2.9)(c),(d) gives

(2.14) np 54 uv in .

and (2.10)(a),(b) imply:
4 /I Vmax I 4 /b/max ') i

(2.15) 64exp (----- -- np - 4 exp in 1
T T

where

!Vmax I max IUk -U11
I ,k

Umax lis the largest(in-absolute value) voltage applied to two Ohmic contacts.
This estimate was anticipated by De Mari (1968) and it was proven by Markowich,

Ringhofer, Selberherrand Langer (1982 a.b) for the one-dimensional case.

Also estimates for n and p follow from (2.9)(c).(d) and (2.1). We get for non-MOS

devices
D v/02*464exp(-IVaxi/UT) ('

D_~~~~~~~ ~ -i! 4 x (-I Ma 1111IV max I n Iexp -

(2.16)(3)2
2 T0O.+ V62+Z 4 S4exp( iV ax /Ur) IV ., I

0 +bD~depi max T) ,iiax -

2 ep T---Iu----T- in

and

25 4 Ve a max 4  IVmaxli
(2.16)~~~~) -3_______ _ \-) in

0, -V'D+4.,45exo( V.,xIUT) D O2 4 4 exp(I Vmax /UT

-12-
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If 0 <0, D+ ),0 then the lower bounds in (2.16) are 0( 4 ) as 6 -.O, the upper

bounds are 0(l) (for fixedlVmaxl).

There is numerical evidence (see Markowich, Rlnghofer, Selberherr and Langer

(1982 ab)) that the estimates (2.16) are not sharp. The factors

*" IVmax-" ) , xp(..) can probably be omitted.

-13-



3. ASYMPTOTIC EXPANSIONS

We are now concerned with the asymptotic behavior of the solutions of (2.4).(2.5).

(2.7). (2.8) as X -0+.

When we set xaO in (2.4)(a) we see that p(x-0) has to be discontinuous at pn, nn

and pp junctions (sinceD.idiscontinuous at these junctions) assuming that u(A*O)

and v(x.O) are continuous in n (note that (2.4)(b),(c) only admit weak solution in

C(n) if -p 6 L (n)). Therefore, standard singular perturbation theory implies that we

have to expect an internal layer in oi (that is a region of fast variation of * )at

these junctions. Also boundary layers occur at an if the reduced solutions (i.e. the

solutions of (2.4) with XsO) do not fulfill the boundary conditions.

For the following analysis we assume that the profile 0 is discontinuous accross only

one (open) Co-curve r which splits nl into two connected subdomains n+ and 1. Also

we assume that Di i EC 0 (i+), DI n E C 0 CL(5_) for some % > and (D .0. Also

*~ ( 1. 0 does not change sign in i+and in 12.

We denote by t(x~y) the oriented distance of (x,y) from rl, That means
t >0 in 1 and t<0 in n-. s(x,y) * (51(x,y),s 2(x-y)) is the point on r which is closest

to (x,y) (s is unique i n a sufficiently small strip about r). Similarly r(x~y) It0

denotes the distance of (X,y) to 3Q (30 fulfills the assumptions of Theorem 2.1) and

q(x~y)'(ql(x,y), q2(xly)) denotes the point on 30 closest to (x~y). Note that

7r' 31 -n and 7tl, is the unit-normal vector of 7pointing into il+.

For a function f defined on a (or i)we set

f, t~s) *f(K~y)

and

f(r,q) a f(x.y)

If in neighbourhoodsof rl and )Q where s and q resp. are unique.

4e defin~e for some s Er

f (0+.,s):- lim f(a,t')
(a,b) -s
(a ,b)CI+

f'(O-,s):x urn f(a~b)
(a ,b)-s

-14-



(assuming that the limits exist).

We also set( asI as2  (aq, aq-,) q 2 'f r M r a .(
73 7 as, 3s2  , a 3(xY) aq1_ _;_Y S afr 9 q f u af'

and remark that

T T

gt% *(i. Vr *0

holds (the superscript T denotes transposition).

Following standard singular perturbation theory we make the ansatz':

(3.1) Ai A i(t A * s(x,y)) + i(-r- J(x - . q(xy)),(x.y. A .) i(X.Y)Y Av( L :L S(X.y)) . L_ _,q x

where the functions marked with '-' are independent of A, the functions marked with
'A' are defined on (--,-) xlr and decay to zero as T. T *M(internal layer terms).ther

functions marked with '-' are defined on [0,-) x a and decay to zero as - - -

boundary layer terms).

We insert (3.1) into (2.4), (2.5), (2.7), (2.8) and obtain equations for the i-th temin

the series (3.1) by comparing coefficients of X. We start with

A) The Reduced Problem

Evaluation of (2.4) away from 7 and )s and comparing 0(1) terms gives (after dropping
the index 0) the zeroth order reduced problem

(3.2)(a) 0 - 52 e;, _ 2e_ -D(x,y) ]

(3.2)(b) div(e1;Ta)- 0 (x,y) en - r

(3.2)(c) .iv(e' 7) • 0

In the context of semiconductor device physics this problem is referred to as

zero-space charge approximation'.

-15-
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By investigating the internal and boundary layer problems we will supplement (3.2)

by interface and boundary conditions.

8) The Internal Layer Problem

We evaluate (2.4)(b) close to r but away from an and compare O(x" 2) terms (after

carrying out the differentiations).

This yields:

A A A

O t UO * O 0

(subscripts. 0 tdenote differentiation with respect to 7) and therefore

UOr * : Fro UOiT,5j -o 0 a we get U .0. Similarly 4 0m0 follows. u and
v do not have zeroth order internal layers.

A A A A A A
For the following we set u aul, v sv 1 and w a'Po'

Comparing O(X" I ) terms in (2.4)(b) (again after differentiation) and evaluating

close to " but in I+ gives

A A
u + tO s) = u 0r - , r >0

(subscripts t denote differentiation with respect to t) and evaluation close to r but

in Q.

A +AT ^ "T ^ ) r O, T < 0.
u + (ut(O-, s) ) 0, <

Integration yields

A

A r ut(O+s)(e ) -1), > 0(3 .3) u (( ,S ) G r 0 ,s (e -$ (T s ) -I ,v.

Proceeding analogously with (2.4)(c) gives

A vt(O+,s)(e ( 's -1), ' > 0

(3.4) v T( ,S) - r,(( ,s

We used that $,u,v and their t-derivatives vanish at t-- for all s Er.

AThe internal-layer problem for o is obtained by evaluating (2.4)(a) close to (but

away from n) and by comparing 0(l) coefficients:

-16-
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^-r A _ r(3.5)(a) ,I . (.s4*r(,, 2~Dv(-s
- 2(,s), , •0

(3.5)(b) t T e0 -6 2er( s)0;r,(-,s)

- r (0-,s), 0

Interface condition for (3.5)(a),(b)are derived by using that * e CIn) (see Theorem
2.2), which implies *r(o+.s)-*r(o-,s) and o,(O+,s)-*t(O-,s). Inserting (3.1) into

these relations and comparing 0(1) and O(XAr) coefficients yields

A
(3.5)(c) .(O ,s)-_ (o-,s) . ;r(o-,s) ;r(o ,s)

A A
(3.5)(d) g,(0+,s) * ii (O-,s ).

A(3 .5 ) (e ) ( _ .~ S ) A ( -- ,s ) . 0

A

(3.3) - (3.5) are supposed to hold for all s Er. * is discontinuous at t=0 for all

s C r since ] r *0.

Theorem 2.2 also provides interface conditions for the reduced problem (3.2) since it

implies that u (O+,s) a u (O-.s), vr(O+,s) - v (O-,s) and u (0+,s) =u (O-,s),

vt(O+,s) - vt(O-,s). Inserting the expansions

(3.6)(a) u(X,y,X)~_G(X,y) + X u( ,s) + . .

(3.6)(b) v(X,y,A) - (x.y) + AO(I,s) + .

X2

(the dots denote a power series in x stating with the O(A2) term) into these

relations and comparing 0(1) terms yields

(3.7)(a) [, O, I " 0

and using (3.3), (3.4)
A A

6t(0+.s)e o(O ,s) • t(O.,s)e *(O-,s )

(3.5)(c) implies

r (0.s)e ;r(O+.s) 5r )er(o-,s)
;r -O . ;r ut(O);7 -,s (O '

(O .s)e. (Os) * t(0s)e

-1.7-



So we obtain the interface conditions for the reduced problem

(3.7)(b) [eo'Vvt] r - O, [e' 7;.Vt] r * 0

since f (Os) V 7f(x,y)'Vt(xY)I(xy)= r holds.

C) Ohmic Contacts

A straight-forward calculation shows that the Dirichlet boundary conditions on C
for 0, u and v fulfill (3.2)(a). Therefore we do not expect boundary layers at anC"

That means

(3.8) ;0(0.q) a 0(p,q) a 7o(pq) a 0 for o > 0 and q C aC

To proove (3.8) one has to proceed as Markowich, Ringhofer, Selberherr and Langer

(1982 a,b) did for the one dimensional semiconductor problem.

(3.8) implies that we have to impose the same Dirichlet boundary conditions for the

reduced problem (3.2) as for the full singularly perturbed problem:

(3.9) 'P C = I) , ui~n la l

where b,u,v on )aC  are given by (2.7).

0) Insulating Segments

We assume that 0 is differentiable in a neighbourhood of 3n and that

(3.10) VD'n * 0
is

holds. Differentiating (3.2)(a) gives

(3.11) 0 62 (e*-+e' )v Vj-2 ( e7'V;) - 70

Since e' ue ', >0 in i we get

(3 .12 )(a ) i7 . 30 • 0

if

(3.12)(b) 7' n 7v;.n . 0
si

holds. (3.2)(a) is comoatible with the zero Neumann conditions for ,u,v on ;n and

we get

-18-

I i
.. . . .I , ¥ F . ..". .. -- .. ...



(3. 13) O(,q) a zo(O.q) a 7 0 (o,q) a 0 for P> 0, q E301

as well as

(3.14) ; 1 (p.q) a ZI(p,q) - 7 1(p,q) e 0 for p> 0. q Eans.

No zeroth and first order layers occur at aots"

If we did not assume (3.10) then (3.14) and (3.12)(a) would not hold (of course

(3.13) would still be valid).

(3.12)(a),(b) define homogenous Neumann boundary conditions for (3.2) on anis"

E) Oxide-Semiconductor Interface

As for junctions we get o 70 and setting 0 • 1. o we obtain

(3.1S)(a) o(,q) * 5(0,q)(e-'(P-q)-1), p > 0, q 6 no

(3.15)(b) ( , v,(0q)(e ( q -1). o 0 q 2 - ,os

Since we set

(3.16)(a) u(x,yx) ~ (x,y) + Xu(1,S) + . .t.

t . xZ( ,q)+

(3.16)(b) v(xy.X) ;(xy) + v(t S) + X(.,q) +

(where the dots denote a power series in A starting with the 0(x2) term), we get

by inserting (3.16) into (2.8)(e) and by comparing 0(l) coefficients

0 -(Vu)(q) + u'a(O q ) (e 'Z (O 'q ) 'l )
, q C af

0 ,(v .)(q) + ;'(O,q)(eT(O'q)1), q Eanos

Therefore

0 ar(Oq) 0(O,q), q Eanr r os

and ) * (oq) .0 for >0, q C os" Boundary conditions for uv on )a are

(3.17) . *;' I l • 0.

If

(3.18) vO. • 0
C Os

-19-



holds then (3.17) implies (as for insulating segments)

(3.19) . n os 0.

By evaluating close to anos but away from r we obtain the boundary layer equation for

Oigo 03which is analogous to the interface problem (3.5):

(3.20)(a) - 2 e;(,q)4-a ( v (0.q) - 0 (0,q). P>0, q E

(3.20)(b) -(,q) 0 0, q E3nos.

To obtain theboundary condition for (3.20) at a-0 we solve Laplace's equation in the

oxide.

Let G(x.y,C,n) denote the Green's function (see Pnotter and Weinberger (1967), Chapter

2, Section 7) of the problem

o a f in v
= c  g, 'o'cl h, 7 'p s  k

eC is os

(note that Z! a nIos-- i s).

Then, since *-oG+kO fulfills

M = 0 in

* 0, 7oZJ =0, 7, = . j*19, 30C o , 7(p' a 0 is a2 s  0 31 -0 ,

we get

€sa

PG G(x,y,,) (,n). ({,n)d(,n)
os

This gives the boundary condition (for the singularly perturbed problem in a):

.)a o + - f G(xy,'rn)I(x'Y) o d  * G"
05 0 M f l

(3s

For the following we assume that if T hits 7-0os (which in fact happenS in MOS-techno-

logy) then F is perpendicular to T-Oos, that means

(3.22) 7t(S)'V:(S) - 0 for {S1 OS ' a"0os

We insert the expansion

At -
(3.23) ;U(x,y , ) (x,y) + S(,s) + i( ,q) + .

-20-



(the dots denote a power series starting with the O(k) term whose coefficients have

the same form as the 0(1) terms) into (3.21). Assuming that

(3.24) C II0GIA X C2

where C1 ,C2 are independent of A. we obtain by comparing O(k"1) terms and by using

(3.22):
£

(3.25) f G(x,y,.,n)(xy) o ' (O,q( ,n))d( ,n) •X
an0  05 5-Go$

This integral equation is uniquely soluble (for T(O,q)) since (O.q) 7 (q)
where w is the (unique) solution of

%w 0 in 0

0, w.I 3 )!ai s  0

Obviously wECm(;-CR(3s)) holds.

If s is a rectangle as in Figure 1 (which is a common assumption in MOS-modelling)
with d =dist (nos,aC) then w is a linear function and 7kw. os  .C In this

case

(3.26) (O-Q) M -X Ca

3o zeroth order layer occurs at the oxide-semiconductor interface if the right hand

side of (3.26) is not 0(1) as -0.

(3.25) (or equivalently (3.26) if s is a rectangle) provides the missing boundary
condition for the interface layer problem (3.20).

Equations for the higher order terms of the expansion 1.1) _t be derived in a
analogous way.

When the asymptotics of o,u,v are known then expansions of n,p and of Jn, Jp as given
by (2.9) can easily be derived. We get from (3.1)

(3.27) n(x,y,x) - A(x,y) + 1(ts) + 7( ,q) +

(3,28)(b) D(x.y.X) • (x,y) + $(;,s) + i q .

(3.16) and (3.23) imply

2 6 62eJ (0+S)(e (-tsl-ll;r(O's), r >, 0

(3.29)(a) 6 . 2 e , (T.s) 22ejr(O.,s) (e (TS).l)ar(O,s), 0

-21-



(3.Z9)(b) (o.q) n 0 for a >0, qEQC U Dois

-2 _'( q

(3.29)(c) 2( , " (O'q){(e' v 1) , 
0 ,  

q( E ilos

(3.29)(d) p 6 e• V

A
and similar expressions for p and p.

Differentiating (3.16) and using (3.3), (3.4) gives

(3.30)(a) Jn(x,y,) Jn(x'y) + n,'s) + an(x,q) +.

(3.30)(b) Jp(xyA) J (X,y) + Jp( ,q) + ..

with

(3.31)(a) 31 . 62 e 'd, (b) p - 62e.;7

6-,0+ S e ' ) six'.y), '7 r' 0+,s), r >0
(3,32)(a) Jn(T,s) s

2 se 1''(e 'S)(rs-1) SXY

e (e -1) - x'yI(xy) . .Vs uO-,s), r<0

(3.32 (b) an(.) 0 for j >0, q E ,IC U Dis

~q) ( ' e (e ) O,q) , q E os

Analogous expressions hold for Jp and p.

Si c s )T 17 : q TSince (o)xt5 7t - T
7 r!a a 0 holds we get

A A
(3.33) Jnt * 7r!,, J trO W V3 os 0

Therefore the current density components perpendicularto the junctions(to the semi-

conductor oxide interface) have no zeroth order layers while the current density

comonents parallel to the junctionS(to the semiconductor-oxide interface) may very

well have zeroth order layers. This phenomen is illustrated by the MOS-transistor

simulation performed by Selberherr (1980).

So 'ar we only considered one curve of discontinuity of 0. Generally, an internal

layer in p occurs at each junction and each layer-term I fulfills

the corresponding layer problem (3.5) with r -local coordinates .

-22-



4. EXISTENCE OF THE REDUCED SOLUTION AND OF THE LAYER SOLUTIONS

A. Reduced Solution

We now assume that we have N Co-junctions ri which are as in Section 1. [*r 0

holds for i,.... N. We denote the normalvector to r, by ti (.t i ).

Then the interface conditions (3.7)(a).(b) read

(4.1)(a) [ r • [;lri = 0. i=l,....N

(4.1)(b) [e%' " tilr. O, [e' * t. 0il ,N

Moreover )a fulfillsthe assumptionsof Theorem 2.2. We prove:

Theorem 4.1 Assume that

(4.2) D E C(ji), i1.N

holds and that 0, 7i , as fulfill the assumptions given above. Then the

reduced problem (3.2),(3.g), (3.12)(b),(3.17),(4.1) has a weak solution
(u,v) 1 (H1 () n L;))2 EL-( ). Every weak solution fulfills the

estimates (2.10)(a),(b) and

(4.3) _ '(x,y) < , (Xy ) E

Where , are defined in (2.11)(a),(b)). Also every weak solution
satisfies

(4 .4 )(a) E € C(5 i -CR(an)), (b) ( E,) C( -CR(an))) 2  for i=O,.... N.

Proof: A weak solution of the reduced problem is given by a triple (;,5, )with (u, )E(H (a))2

E L'(a) which solves (3.2)(a) pointwise (almost everywhere), which assur"es

the Dirichlet boundary conditions on )aC in the sense of (H1 (.1))3 and which

fulfills

(4.5)(a) LI(v,u,o) m fe17u'7dxdy 0

(4.5)(b) L2 (w,v," ) . e-4 v'7Qdxdy - 0 for all q EH o' U i U

(If P,(j,v and p are sufficiently smooth, then (4.5)(a),(b) yields (3.2)(b),

(c), (3.12)(b), (3.17) and (4.1) using integration by part.)

7he maximum principle for weak solutionsof linear equations in divergence

form immediately implies that G, fulfill ,2.1) (a),(b) if €L ().

3.2)(a) gives

-23-
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(4.6) In 26in

and (4.3) is immediate. (4.4)(b) follows from a posteriori regularity

theorem (see Ladyzenskaja and Ural'tseva(1968), Chapter 3, Section 14) and

(4.4)(a) is implied by (4.6).

To establish the existence statement of the theorem we employ Schauder's

fixed point theorem similarly to the existence proof of Bank, Jerome

and Rose (1982) for the singularly perturbed problem (see Theorem 2.1). The

existence proof for the reduced problem isslightly more difficult because

the regularising property of Poisson's equation is lost.

We define the following set M:

(4.7) M - ((u,v) E (L (n)) 2 u. *u Iu ', v. I v +)

and regard M as closed and convex set in (L2 (1 2 . A mapping T: M-L2 f2))2

is defined as follows:

(4.8) T(uoVo) (ul,v 1 )

where ul,v I are tne weak solution of

(4.9)(a) div(e (U 0Vo)7'u,) 0

(4.9)(b) div(e 0UoVo)7v1 ) 0

subject
to the already specified boundary conditions. T is well defined since (4.9)

1 2
(a),(b) has a unique weak solution (ul,vl) E(H ( )) . Clearly every fixed

point of T s a weak solution of the reduced problem.

The a priori estimates (2.10)(a),(b) imply that T:M-M( since they are inde-

pendent of the multipliersof Vu, 7 v in (4.9)). The wellposedness of (4.9) in

(H1 (.') induces the boundedness of Range(T) in (HI( .)) 2,  therefore Range(T)

is relatively compact in (L2 2.

To show that T E C(M) we take a sequence (un ,vn ) E M, such that

L2(; )
u n - tj 0 M _

vn - ve. n-

holds. We will show that every subseouence of T(jnvn) has a subsequence which

-24-
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converges to T(u*,v*) in (L2 (Q))2  (which implies T(unVn) - T(u*,v) in

(L2 (f ))2 ).

Since the range of T is relatively compact in M and since M is closed we

conclude that every subsequence of T(unvn) has a convergent subsequence (with
limit in M). Let T(un vn ) be such a convergent subsequence (of a subsequence

of T(unvn)) and let k  T(un kv k) - (ab) F M in (L (n))2 as k -

Obviously
L2(

;(un kv n k ()(uv) as k--

holds. Therefore there is a subsequence ;(un kj v n such that

;(un  IVnM )kj~ ~ kj.e(U,
j j

e k n kj - e" (u* V* )

. n k.)

almost everywhere pointwise in a

Theorem 5.4 in Ladyzenskaja and Ural'tseva(1968, Chapter 3, Section 5) implies

that the weak solutionsof

(un vn )
k. k.

div (e j i 7u) • 0

u n k : ,vn  kj ) x
div (e J k v) • 0

subject to the boundary and interface conditions converge in Hi(n) as j --

to the solutionsof the limiting problems

div (e (u v*)u) - div (e'"(u''v')V v) = 0

(subject to the boundary and interface condition ).

This yields T(u n ,vn  T(u*,v-) in (Lz(l))2 as j -m and (a.b) * T(us,v,).

Therefore T is ki j a continuous and compactmapping from M into M and

Schauder's fixed point Theorem implies the existence of a fixed point of T

in M. a

Note that ; has jumpdiscontinuities along i i 1......

For the carrier densities n and p we get from (3.29)(a),(4.6)
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- DD 4; -o ' 46u

2 2

Therefore the a-priori- estimates on U, yield

D + 0 4exp maX))ani if 01 > 0

inexp U L( )

0 ( )) in i if Dl I< 0

and

0(5 4  exp( m )x n a i f . >0
f 1 in L'(Q)

S Imax-0 +0(34 exp( T.--0- ))in Ri if 0lI~ (0

If

exp( -- ) is small ('low injection condition') then the electron density in the

zero space charge approximation is close to the doping profile in n-regions and

close to zero in p regions while the hole density is close to zero in n regions and

close to the negative doping profile in p regions. n regions are depleted of holes

and p-regions are depleted of electrons.

We now investigate the behaviour of ;,u,v as 6 -0. We assume that there is exactly

one Ohmic contact C in every . i  for i-O,...,N and that no two n (and no two p)

regions have a joint boundary, that means

(4.10) sgn 0 i. sgn O i, i l ... .

holds.

We define the functions
Ui

e in i if D: - >3 (n-region)

(4.11 ) 1 0

uo in if D < 0 (p-region)

where u . solves
01

(a) div " U o " 0 in i

(b) Vuo' h ) i s

(4.12) 0 1 iS 05

(c) Uo1C; e

(d) (u 0 . = 0

-26-



and U.
e i n : i if L)ji - 0 (p-region)

(4.13) o f -
Voi in Qt if 01i > 0 (n-region)

where ; solves

(a) div (17;) • 0 in ni

(b) V.Iin()sUa0os) • 0

1 i S

(4 .1 4 ) 
ui .

(C) ;oCi . e

(d) [5o])ni")n- 0

The condition (4.10) implies that (4.12)(d), (4.14)(d) give Dirichlet boundary

conditions for 5oi, V i rest. by using (4.12). The problems (4.12), (4.13) have

unique solutions 6oil ;oi EH (nt) (see Kawohl (1978))assuming that

(4.15) Ol~i E C''(Ui), i-..N.

We prove

Theorem 4.2. Let the above mentioned assumption on a,0 hold and assume that aa fulfills

the assumption of Theorem 4.1. Also assume that

4.15) -4 e lp(,Ui ,IVmax - 1)

where %and 5 are sufficiently small (depending on 0, 0 .. "N only) and that

7Uoi E(L'' i))2 ,7o i E(L(ai )) 2olds. Then the

reduced problem (3.2), (3.g), (3.12)(b), (3.17). (4.1) has a locally

unique solution (j,;) E(HI(0)) 2  which fulfills

(4 .17)+a) u = O +0(y) (b) ; +O(Y)

and

2 32 LUi
l4()) I 2 T +(. S4)in 01 if D 0

T II+<

in the estimates are uniform in (as long as (4.16) holds).

Proof: We assume that there are only two differently doped regions .o"11 separated by

7 and that 0 ,, <0, 0 ,5 >0 holds, The generalisation (under the given
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assumptions on a and D) to more than two differently doped regions is straight

forward.

We set

0 U E 0 #,Ev

I n 0 ) + in a,

In(2 Uo+ n- in a
T

and Compute E 1 from (3.2)(a)

I n 0oiDT-46 in Q
(4. 18) E;O- E (Eu  E,113) • i eZae U( ) u

In 20exp I-r)v n

-0+.VD2+45,,j

Then we rewrite (.2Lb),(c), (4.1)(a), (b) as

E

div (De 'E ) 0 in :I

d419 div 4(UO Ul e E '(117Eu 7u) 0 in

4 UT I -
(E u 0, Cle 'S e 5- (7Eu +7uoZt' ,7 E -: 3  isL Q 0

(1) (0) U i

where f,:- (a,b) lini fOx~y) for (a,b) E, and
(') (x~y)-(a,b)

CX ,Y)Eaj
U / U I

div~d 3e e (.E~ov " in a

(4.20) div (-De EV) 0 ini

CEq] 1 0. -be - im 7Ev7t ) os e 7T- eE EV+ 17E

iv 0 ¢ V , Q.@I

We define theoperator F.: (HI( 2 U 3 a U30 ))2  (H U 3 U ) 2

(the superscript '' denotes the dual space) by
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(4.21) F 5(El ,E2 (v1,to2) a I DeE Y(E £2E1
6) V dxdy

Uo-U I

410

* 5 *-r--~E (EE 1,E2(-7)e ({ E) iyvuo ) v 1dxdy

o
i + [(-O)e v2., 72dy

4 Uo U1  -E (EI E2. )
eS e (7E2 ~+7o)V0 2dxdy

for all (ti, V1 C (H( a U aisUM os))2

E i • a [ ) 0 yields F6(EuE v)  0,

that means FS(Eu,Ev) a 0 is the weak formulation of (4.19), (4.20). In the sequel

we equip (Ho(u 3nis U a3o )) with the weighted norm

11(F1 ,F2)1l
2  2 1" 11 ldxdy + 24e T f i7F 14dxdy

al n
UO.U 1

+ n fiF 2I 
2dxdy + 4e S IvF2 1

2dxdy
0o  1

and correspondino scalar product. The dual space is equipped with the induced functional

norm 111. 1.) Because of (4.11) -(4.14) and (4.18) Fo(OO) -0 holds and

(4.21) IF (0,0II O (K

IU .1
where - Yiexp(3max-T ). The bilinear form obtained by linearizing Fo  at (0,0) is

given by

-29-
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U U

"'DV%'Z'P' 72)" J 1 'dxdy +4eT-7 1 (5 )( T f

U 0

0( ) 7a2 'u. 1 )dxdy

UU

eUT,1 7; o'V2 )dxdy.

To show that L is coercive we estimate

o2Vu 
7  

V21  11 u I .(wIoll 2 + I i o21 2) and choose w such that

- U T I A I Moreover 110211 2 c2 2 dxdy holds

and 4e also require -- C6e T  /lol (min 101) The smallness of y

(see (4.16)) and the smoothness assumption oA 75 imply that there is a y > 0 such
t 0

that both inequalities hold. By proceeding analogously with oi1 vo,?a2  (in the last

integral of L (01.02,31,02)) the mixed terms are estimated below s cn that L is

coercive with a coercivity constant independent of 6 and IUi/UTI . Therefore

(4.22) II(OEu ,EvFo(0,0)) 1III' < const

(DEu,E v denotes the Frechet-derivative with respect to (Eu,E,)). Since DE ,Ev
is uniformly Lipschitzcontinuous the implicit function theorem u V

impliesthe existence of a locally unique solution Eu ,E of FS(EuEv) - 0 for 6
sufficiently small and

lI(Eu,EV)Ils = 0(c)

holds. Then

(4.23) H Eu ,l,2, l lEV 111,2 ,. 0(

is easily established by considering the oroblems(4.19), (4.20) in O and i I

separately.

To obtain an Lw-estimate we write (4.19) as

,liv (aVEU) = div f

with

E
0e in

exo(- ) T--T e in

-30-



0 in '
f''1

6 exp(-U--- ] ) (e *-1)7u o in

(note that we usedl (4.12)(a) to obtain f in this form). The maximum principle in the

form given by Gilbarg and Trudinger (1977, Chapter 8, paragraph 5) yields (since

fEL (n) and Eu l c  • 0)

E

for any q > 2. The embedding theorem gives

and (4.23) implies (4.17)(a). (4.17)(b) follows analogously and (4.17)(c) is obtained

from (4.18).0

The implicit function theorem could not be applied if there is an n Or p regicn

without a contact since uo or vo resp. is not uniquely defined in this region. The

linearized problem has a zero elgenvalue then.

(3.31) and (4.17) imp~y

3n•0(a) j Jp • 0(a)

The reduced current densities are small close to thermal equilibrium.

Theorem 4.2 can easily be extended to the case that two n(or p) regions have a joint

boundary. The limiting function for (see (4.17)(c)) remains unchanged.

8) The Internal Lay/er Problem

We now investigate the layer problem (3.5) at a fixed curve r of discontinuity of 0

and prove:

Theorem 4.3 . Let the assumptions an 0 on R given in Theorem 4.1 hold. Then (for given

,u,v) the internal layer problem (3.5) has a unique piecewise m onotone
A

sol uti on for every S E "which ful fills for every 0< ' < I

C4. 6) a) T s i ( ex (.- ) n (O ,S) 'O . + l r 0 ,s -i - s 
L

for < -E~ ':l(04,s) - (' 0-,s)i and
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for T< E iI,; (0.,s)-q' (0-,s)I where

C,,0 .E, > 0 depend on but not on [;3,. Also 'P 6 C((-,0)xr) nl CU(O,-)xr) hold S.

Piecewise monotone means monotone on (0)and on (0,-).

We do not give a proof for Theorem 4.3 since it follows completely the lines of the

proof of Theorem 3.3 in Markowich. Ringhofer, Selberherr and Langer (1982 b). We only
remark 

tha t
A 0(-s(i 0+,s)4'(O-,s))+ n (0 -.s)-~O,) 0,)~(+s

(4.27) ii(0..s) (0,);(r (+S+5(-S- 0,
D0 (0+.s) -0 (0-,s)

(4.28) ;P(0-,s) .0 (0+.S)".;(0+,s)-; (o-,s))+ ;i0-,s)-rY 0+,S) + 5,t0-,S)-! (0+S.,)
D (0e,s) - D (O-,s)

holds.

The estimates (4.26) can be used to compute the width dr(s) *d+(s)+d'(s) of the

internal layer of to at s E r

(4.29)(a) d*(S) 0( ~ in + ;. O,) (-s

(4.29)(b) d*(x) 0 /Lnt (in I)+ /I ()-,s

where d, +(s) (d -(s)) is the portion of the layer width which i s on that side of r for
which t >0 ( t <'0) holds. (4.29) is uniform in [1.The width of the depletion layer
depends Ilinearly on the square root of the potential drop accross the junction.

d, ,d can be estimated by using the a-priori estimates on A, p, u and v. we obtain
IV, a x 1

(4.30) 101 10 + ~ 0( 5 4 eVT).

IIF s g NY)0 +s) -s g nD 0- ,s) (that means ris a pn-junction) then :4.6) yields

(4,31) ( 0+,s) - (0-,s) . In 4.~.L.~ij.. ] -In :(0,s)
3 IV ImaxK

-In V'(0,s) +O(i eUT-).

If sgn 0 (0+,s) *sgn 01 (0-,s) (ris an nn or Do junction) then I..is uniformly
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bounded as 6 - 0. We get from (4.29)

1Vmaxi

(4.32) d r_ _ S) af 0 (1 64 T

r (O+,s) /r(O ,s)

10 0[~ +,, .Dr O, s~i6 I 'IVT--Tax, )

(if r is a pn-junction). An analogous formula holds for dr(s). The square root

drops out if r Is an nn (or pp) junction.

C) The Semiconductor-Oxide Interface Problem

Theorem 4.4 The problem (3.20). (3.25) has a unique monotone solution o (for every

q E 3os) which fulfills for every 0 <w<1

(4.33) I;( ,q) I f. C exp(( -I+ ) k(Ooq + 3(Oq o+  Dw q)

for P > Ew/1i (Oq)I where CO ,E >0

are independent of T(Oq). Also

(4.34) I1(O q)l n(l (O,q)l .q), (b) sgn (O,q) - 0(O,q)

holds, where n(',q):[O,w) - [0,=) is a monotonely increasing function which

fulfills

n't,q) - - as t -O and n(-,q) , nt(-,q) - 0.
A3{O,q)+p (O,q)

Proof: From Fife (1974) we derive that there is a unique monotone solution of (3.20)

with given boundary value Z(O,q). At first we assume that ;(Oq) > 0.

Then !(o,q) fulfills

,(O,q) d
(4.35)(a) f • f

where

(4.35)(b) G(i,q) 2 !(;)(O,q)et - ptfO,q)e- t  -D'(O,q;)dt

n (Oq)(e -l) p 5 (O,q)(e'0-1) - O (O,q)a

holds (see Fife (1974)).
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Differentiating (4.35)(a) with respect to a and evaluating at P-O gives the

equation

(4.36) - (Oq) - '2G(;(O,q),q).

Therefore the interface problem (3.20), (3.25) has a unique monotone solution

for (O,q) < 0 if (4.36) has a unique positive solution Z(O,q).

For (O,q) < 0 we apply the same argument to -Z and find that (3.20), (3.25)

has a unique monotone solution for Z(O,q) >0 if the equation
P

(4.37) 7j(O,q) - /2G(Z(O.q),q)

has a unique negative solution 7(0,q). From 0(O,q) - 0 we immediately get

(3 ,q) .O. A simple calculation shows that the function

is decreasing for i c (-m,0J, increasing for a E [0,m) and H(-m,q) - H(f-,q)
for every q E )aoe

This settles the existence statement of the theorem and (4.34)(b).

The estimate (4.33) follows by proceeding as in Markowich, Ringhofer, Selberherr

and Langer (1982 b, Theorem 3.3). To prove (4.34)(a) we set

2 (0'q) and rewrite (4.36), 4.37) as
2

G(Z,q) : , Z:= (O,q)

for fixed q. At first we investigate the root Z >0. Differentiation with

respect to B yields

;G (Z

Zl(-) E (0,-) implies Zi(,) E (0,*), which is a contradiction. Therefore Z1 (M) -

and --(,,q) implies Zjjil 0. The root Z, <0 is investigated analogously
(z2( )- W,.. Z;(-)ZO hold).

Tay!or expansion of G for 2 -0 gives the behaviour of Z close to zero.o

The width do(q) of the interface layer is max

14.33) do (q) _ !i__ n _ 1e
k ______ n ______~iIqj
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The first order term of the expansion +, + Z cannot be expected to approximate

the solution of the singu~arly perturbed problem close to the point S with

cS} - F ni-'os since Z(O,.) is discontinuous at q - S unless Z(O,,) a 0.

Generally the first order term can only approximate the solution outside a small

sphere (with radius at least O()Iln A)) around S.

Theorem 4.4 can beused to compute an estimate for the threshold-gate-voltage, thatis the

gate-voltage at which stron, inversion (the minority carrier density at the inter-

face is at least as large as the absolute value of the dooing profile) Starts.

To demonstrate this we take the n-cnannel MOS transistor as shown in Figure 1. n is

the minority carrier density in the p-region al, therefore strong inversion occurs if

n (O ,q ) at 1O 3(O ,q ) ,

holds for some q e ). Away from r1, 2 we get (up to O(X)-terms) n (0,q)

n3(O,q)eI(Ol
q) such that the strong inversion condition is

(O,q) i In ( C'D )  IN (O,q)

n (0,q)

(4.36), 4.37) yields IV m
max

( ( >, O N ,:' 2 2 G ( Z v( O. q ) q ) 2 e

iV Ix

-21D (O,q)Iln + 21D (O,q)l ---
6"T

and from (3.26), ,2.8)(b) we derive that strong inversion occurs if

UG. UF des 54 --l' T Imaxl

U I I

holds.
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5. ASYMPTOTIC REPRESENTATION OF SOLUTIONS

To demonstrate the validity of the expansions we show that if the device is In

thermal equilibrium, then the solution of the singularly perturbed problem is close

(in L"()) to the zeroth order term in the asymptotic expansion (3.1) assuming that

x is small. For simplicity we assume that there is only one Cc-junction r

(n a n0 U U unl)., intersects with an in two points S1 ,S2 which have positive distance

from anC" Also there arespheres with radius w centered at S1 and S2 within which r

and a. are perpendicular lines.aa is assumed to be as in Theorem 2.2. Moreover no

semiconductor-oxide interface occurs, i.e. o ( -

We have to overcome one technical difficulty, namely that the layer solution S)

is only defined in an open .,-strip S,(r) about r. In order to extend this function to

a we choose aEC'(]R) with

8(t) - I for t E [ 4(t)-0 for (ti -. j

and set

At(X~y, J XY)

-, S(x,y . (t(x,y)), (x,y) S (S .)

(s. ) e t ( ' ) ,  s(X,y))
C , (x~y) £{S (.)

(see Fife (1974).

We orove:

Theorem 5.1 Let 7 and a fulfill the above stated assumaptions. Also 0 is piecewise

constant, that means
0O in %

D D00 in Q0 where 0oD I are constants with 00 *01. Then

3

(5.2) (x,y,X) - wx,y) + . ( t ( x y )  , S(x,y))+ 0 (k ln6(Z).

5

holds if \, Olln41 are sufficiently small and if the device is in

thermal equilibrium (i.e. Uk,0 )

Proof: :n thermal equilibrium u v el holds and '2.4) simplifies to

(5.3)k a) k 2 • 2 .sinh, -0 in

subject to the boundary conditions

(5 3 (b n D+vD +* , , =4n

We set
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A
(5.4) * + lyA +

where the reduced solution ; is given by (4.6)

( 5 .5 ) n i n .|

since u m 1 holds. * is given by (5.1) (1(P~s) solves (3.5)).

Assuming that w is less than the distance of SPS2 from 39 C we get

(5 .6 )(a ) ol a a 0

and because of (5.1)

(s.6)(b) cf~
0

is

(note that q. - 0 because 0 Is piecewise constant and is perpendicular tois

Inserting (5.4) into (5.3)(a) gives

(5.7) V + Tat + k A - 2 6 sinh ( + +()-0 in S ( )

T T A 2

t h a a ( .. . I A t s i n c e P .w
(note that (ee)(in the weak sense) is in L (,) and equals ! , sec

do not depend on s and since the interface conditions (3.5)(cl,(d) hold). Also

A

(5.8) \ Aie  + X 2 2 . sinh(, e )-0 in S ( -S (T)

and

(5.9) A - 2d2  sinh( P )-D in i-S.(r)

holds.

By using the internal layer equations (3.5)(a),(b) we rewrite (5.7) as

-+A

6 2e- '(e-'4O-1) - P 'At in S (r)

and by using (3.2)(a, (with v 1) we obtain f-om (5.8), (5.9)
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-A

.2 2 + A 2 + we e D2 5 Cosh( V )0 + e (e -to- )

-5
2 e(e*- ) e'ee-)°kAeiS,()SI)

A A

5 e -W(e e_, 62 l( - 1 x in S (.r) -5,(r)

5.13)b) 'I(ee= 71-) x 2 •e

2 *2 2 - 2 2 -t(S. 12) ka 25cosh(O)tp + 8 e (e -0o-1) 6 e (e +Ip-) in Q S()

Therefore we have a croblem of the form

,vnere F f,jlfills the estimate

5.. 14) F , x y , j) 02 i(t( % l ei I -S + 11,. io, 7

(or S ,pak wicn Cs.) inle)endent of 5 and .

;713m Markowic.h. Ringhote-, Selberherr and Langer (1982b) we get

A

and .2 6), i,.1 mply
e ex

e-,S , )-s > 2Z

E
e ,S ( 7)-S ' -I < 3 - - e x p (- )

wnere DID 2 ,D3,E 0 are independent of 4 and 5 as -0*, - .

7hri yields

5. ) F( ,x,y, ,i) < C1  k)( , .

for pi <k, ,an .llnS 1 sufficIently sma i ,

We low prove in L--estimate for t )e solution if the oroblem
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(5 .15)ia) L ~jw £ 
2

w - cosnuie w f(x,y) in

(5.15)(b) w N a iS

with f E L"(Q).

Therefore we define the function

(5.16) Vb(x-y) • L + exp - t. x,y) e(t(x,y))
I Iln6~

with L > 0, a > 0.

A straight-forward calculation (analogous to the proof of Theorem 4.3 in Markowich,

Ringhofer, Selberherrana Linger (1982b)) which leavily relies on the estimate '4.26( shows

that the constants L,8 can be chosen independently of ,, SuCh that

const

L\ Vb(x y) - C o xy) nst

V L, 7Vb'i = 0

holds. This implies that ,' can be used as comparism finction and the maximum

principle yields

(5.17) '1wl , F1ln fll .

for the solution w of 5.!5) (F >0 is independent of x,s(.
23

Now we define the operator 1:. . -L' where A t L 2 I II.l.pl I S lln6I

with G >0 independent of and 5 such that D=M(o) is the solution of

k j'D 2 :osh( 41e )LD F(j,s,y,kd) in :i

i@ ' o s

e xeo-ooint o" of M is a weak solition of (5.13), since Range (M) CH M i S

continuous and therefore Ascoln's Theorem implies that it is compact. F-om the

estimates (5. t'l (5.17) we c~ncljde that M map A . into itself if C >0 CIk)F and

.in lI2 is sufficiently sa'I.Since A is closed and convex in L 2( ) Schauder's fixed

point theorem yields the existence j a solution of (5.12) and (5.2) follows. As

mentioned before this soltution 4s Jnique in H 1 )), o

Tneorem 5.1 can easily oe extenndeo to doo-ng profiles which are not piecewise constant.
. A - A

7he Droof oroceeds aiong tie sime 7tries eqcept tnac S' + ) )2) if , depend

in s. his ;- n be overome Dy modifying te interface condition (3.5)(d)

-39-
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appropriately(see Markowich, Ringhofer, Selberherr and Langer (1982b) for the

one-dimensional problem). The extension to more than one junction is also straight-

forward.

5

A main assumption of the Theorem is that Ilnl is small. (2.6) implies that

(5.18) a2 . y212 y 2 
2 qni

holds. For realistic devices 5 Y2 O.1 therefore 6 can be regarded to be at least

proportional to I and Alln6l W Ilnx12 as -0 .
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6, NUMERICAL RESULTS AND EXTENSIONS

We present numerical results for a two-dimensional diode. The geometry of the device

is depicted in Figure 2.

y C1

0 117 cm- 3  in QI

a -1017 cm "3  in 1o

r 
7 

1-

0  I 1 5 x 1 0 3 c m

Figure 2. Diode

(2.6) gives x2 10-

The computations described in the sequel were performed using a specialised finite

difference discretisation method completely based on the singular perturbation

approach (see A.Franz et al (1982)),

Figure 3 showsthe potential in thermal equilibrium (Uo.U 1 .OV), Figure 4 shows the

electron density n and Figure 5 the hole density p. As proven. in Section 4 the

n-region a is (almost) depleted of holes and the p-region I is (almost) depleted

of electrons. The internal layer at the pn-junction rI is clearly visible. Figure 6

shows the grid used for the discretisation (which was generatd automatically by

the code). An accumulation of grid points around the pn-junction 71 (in order to

'balance' the large derivatives of the solutions in perpendicular direction to rl)

is evident.

Figure 7 shows the potential distribution for -10V applied bias (i.e. UUo-U1=-10V).

The width of the depletion layer increased (compared to the equilibrium problem)

(see (4.32)).

The electron density n for UO.75V applied bias is depicted in Figure 8.
4 -Ilw ij c in c s )a d n v s by 'it5 exp(IUI/UT) 10 (we are dealing with a low injection case) end n visibly

off' from zero in the p region (the theory predicts n-0(5 exp(IUl/U)) in - .

43
Figure 9 shows the hole density p for U-IV applied bias. Now 5 exp(IUI/UT) -2.35 x10

holds (high-injection). p>>IDlaway from the contact in the p-region ao and the

n-region a is also flooded with holes. The absolute value of J g that is

SI j)(j) 2  is depicted in Figure 10. The 'peak at the edge of the contact

C represerts the singularity at intersections of )1c and a.s as discussed in

Theorems 2.1, 4.1. This phenomenon is physically interpreted as current crowding at

contact edges.
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Figure 3

PO0TEN TIR PL D]IOD L E OV

-42-



igure4

-4 3-



Figure 5
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Figure 6
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Fi gure 7
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Figure 8
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Figure 9
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Figure 10
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In this paper we only oealt with abrupt doping profiles (that means D has discontinuities

accross junctions). This assumption is actually a simplification since 'physical'

doping profiles are exponentially graded near junctions. The singular perturbation

approach can be modified to accomodate this more realistic situation by setting

(6.1) D(x,yX) 6(x,y) + t,x.) s(Xy))

A

(close to a particular junction r) where 6 is abrupt and ID(r,s)J 4 E(s)exp(-F(S)T)

holds with E,F >0. D( .. ,x) is continuous along r for x > 0.

A
Then D appears as 'inhomogeneity' to the internal layer equation (3.5)(a),(b). Other-

wise the preceding theory remains unchanged when 0 is substituted for D.

As mentioned in the introduction we neglected recombination-generation of carriers in

our nodel-equations (1.1). The recombination-generation rate R in (1.1)(b),(c) is
(in the most general setting) a nonlinear function of np,JnJ p  and v, (see Sze (1981)

for details).

The existence proofs (Theorems 2.1 and 4.1) are affected by the introduction of

recombination (since they use the linearity of the continuity equations in u and v).
The qualitative behaviour of solutions is pretty much unaffected in low-injection con-

ditions since R nQ in Lhermal equilibrium. In high-injection conditions however

recombination generation has a decisive impact on the solutions and cannot be neglected

(see Schutz, Selberherr and Pbtzl (1982) for a numerical study of 'avalanche' effects

in MOS-transistors).

The validity proof for the asymptotic expansions in non-equilibrium is an unsettled

issue. For the one-dimensional semiconductor problem Markowich, Ringhofer, Selberherr

and Langer (1982 b) gave a proof (with estimate of the remainder term) for a diode

close to thermal equilibrium. There is numerical evidence that the asymptotic

expansions 'represent' a solution even for large applied voltages (see Markowich,
Ringnofer, Selberherr and Langer (1982a,b)), but no estimate of the remainder term

for arbitrary bias is known so far.
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