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ABSTRACT
- e epe 50V
In this paper we present-a singular perturbation analysis of the
fundamental semiconductor device equations which form a system of three second
order elliptic differential equations subject to mixed Neumann-Dirichlet
boundary conditions. The system consists of Poisson's equation and the
continuity equations and describes potential and carrier distributions in an
arbitrary semiconductor device.

The singular perturbation parameter is the minimal Debye-length of the
device under consideration.

Using matched asymptotic expansions we demonstrate the occurrence of
internal layers at surfaces across which the impurity distribution which
appears as an inhomogeneity of Poisson's equation has a jump discontinuity
(these surfaces are called 'junctions') and the orcurrence of boundary layers
at semiconductor-oxide interfaces. We derive the layer-equations and the
reduced problem (charge-neutral-approximation) and give existence proofs for
these problems. They layer solutions which characterize the solution of the
singularly perturbed problem close to junctions and interfaces resp. are shown
to decay exponentially away from the junctions and interfaces resp.

We show that, if the device is in thermal equilibrium, then the solution
of the semiconductor problem is close to the sum of the reduced solution and
the layer solution assuming that the singular perturbation parameter is small.
Numerical results for a two-dimensional diode are presented.
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SIGNIFICANCE AND EXPLANATION

In this paper qualitative properties of the soluticns of the system of partial i
dif!;tential equations which describes potential and carrier distributions in an i
arbitrary semieonductor device are discussed. The system consists of Poisson's equa-
tions for the potential and of the continuity equations for the carrier densities.
The problem can be classified as elliptic (in the static case). After appropriate

scaling a small parameter Az, which is physically identified as the square of the

normed minimal Debyelength of the device under consideration, appears as multiplier

s — e — oo .

of the Laplace-operator in Poisson's equation. Therefore, the system is singularly
perturbed.

We investigate the asymptotic behaviour of solutions as the singular perturbation !
parameter xz converges to zero and demonstrate the occurrence of internal lavers
{(thin regions of fast variations) in the potential and the carrier densities. These
layers occur at curves in the device where n-regions (i.e. regions in which the doping
profile is positive) and p-regions (i.e. regions in which the doping profile is
negative) meet. In the analysis we also prove existence theorems for the reduced

problem (Az set to zero) and for the layer-problems.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.




A SINGULAR PERTURBATION ANALYSIS OF THE
FUNDAMENTAL SEMICONDUCTOR DEVICE EQUATIONS

*
Peter A. Markowich
. INTRODUCTION

An analysis of the two-dimensional, static equations which describe potential distri-
bution and current flow in a semiconductor device is presented.

The basis semiconductor device equations are (see Van Roosbroeck (1950)):

(1.1)(a) diviegmy) = a(n -~ Cix,y)) | Poisson's equation

l
(1.1)(b) div(Onvn -unnvw) = R % (x,y) € = electron continuity equation
(1.1)(c) div(Dpvp +uppvw) = R & . hole continuity equation

where the dependent variables are

y : electrostatic potential
n : electron density

g @ hole density

2 15 & bounded domain in RZ representing the device geometry; g is the semiconductor
permittivity (which will be assumed to be constant in the sequel;; dgrdg are the

electron and nole mobilities resp.; 0,‘,30 are the electron and hole d4iffusion coeffi-

cients resp. and Q is the elementary cha}ge.

C{x,y) is the doping profile,
that means C(x,y) is the difference of the electrically active concentration of do-
nors and tne electrically active concentration of acceptors. R is the recombination
generation rate. In the sequel we will neglect recombination-generation effects, that
means we et R»0. Of course only solutions with n>0, p>0 are admitted

We assume the validity of Einstein's relation

0 0
(1.2) B fE = UT(I const)
- Jp

=]

Where UT is the thermal voltage.

The electron and hole current densities Jn and Jp are given by

(1.3)(a) Jy 2 3{Dy7n -unan)

(1.3).0) JD =z -q(Dpvp +Jppr).
Numerical values for the parameters (for Silicon at roomtemperature)are given in Table 1

The ellipt-c syst-m of differential equations(l.1l) has to Se supplemented by appropriate
boundary conditions for ,,n,p determined by tne device under cOnsideration. We assume

that . spolirtsupinto three dispoint parts, namely ..,3%Y._ and 3> _. Y.i._ and 1 are
r ¢ is 0s is 0s
open, i . is connected and .= U Cyyr 20 where the Ck are ciosed and connected Ires
. . : Y k=
with positive {one-dimensional) 0 Lebesguemeasure.

*Institute fOr Angewandte und Numerische Mathematik, Technische Universitdt Wien,
Gusshausstrasse 27 - 29, A-1040 Wien, Austria. Eurcpe .
Sponsored by the United States Army under Contract No. DAAGZ29-50-C-004T.




Dirichlet boundary conditions for u,n,p are given on aa. (the Ckare Ohmic contacts) and
: zero Neumann boundary conditions are prescribed on My (insulating segments).an°s repre-
2 seats a semiconductor-oxide interface occuring in MOS-technology (see Sze (1981)

for a survey on M0S-devices). The oxide is located in a bounded domain » which is
. such that 3nd = 30, and

(1.3) ay = 0, (x,y) €9
4 holds. The carrier densities n,p only exist in {. Usually 29 splits into three parts,

namely 3, (oxide-contact) where a Dirichlet condition for ¢ is prescribed, 30,
(insulating segment)where a zerg Neumann condition for ¥ holds,and the interface
My ¥ has to be continous accross L and

{ € (x.y)€e

(1.4) [c?b.ﬁ] (x,y)Eﬂ

= 0, e(x,y)
aﬂos

holds where €y is the oxide pe:n1tt1v1ty (-—-~34 ({f]. denotes the jump of the
function f accross the curve [). 1 is the exte§1or unit normal vector of 30. The

condition (1.3) represents the continuity of the electrical displacement accross

the semiconductor oxide interface.

The electron and hole current density components Jn' pt and Jp-n (perpendicular to
2 s) vanish on 3905. This gives boundary conditions for n and p (by using (1.3}) at
the interface.

The Dirichlet boundary conditions for n and p at the Ohmic contacts are given by the
vanishing-space-charge condition

(1.5) (n-p = Clx,y))lyq = 0
and the thermal equilibrium condition

= nz

(1.6) npianc i

where 1, is the intrinsic number of the semiconductor.

For the following we assume that @ splits up into N+l connected subdomains 2.,
N
(% = 'U :i), such that C does not change sign in each of the a; and C has jump -
i=g
discontinuities accross the curves F = ﬁi . n§ {abrupt doping). Ei an = {} holds
for i #j. 2, is called a n region 1f C&-. >0 and it is calleda a p region if C!- <0.
Ty is apnjunction if it is the joint boﬂndary of ap and ann region and it is én

rn (pp) Jjunction if it is the joint boundary of two n (p) regions.

de also assume that the Ohmic contactsCk have positive distance from the junctions

li.

The performance by the device under consideration is mainly determined by the
location of the subdomains, of the oxide (for MOS-devices) and by the location of the




Ohmic contacts. The boundary conditions for the potential (at the Ohmic contacts)
are

(1.7) (a) Mck = Ugln %1'ck*”k' i1f c e, and c\5i>o

in n-regions and
\ "y -
(1.7} (b) wck = Uqgln —;{c‘:uk it ¢ =a, and CI51< 0,

in p-regions where Uk represents the potential applied to the Qhmic contact Ck' We
remark that there are devices which are sych that not every n or g region "has" an
Ohmic contact (for exampie thyristors,see Sze (1981)).

An externalliyapplied potentia)l UG is given at the oxide {(gate) contact LLPX

(1.7)(c) “reg " Ug = Up
where{the flat band voltage) Up 15 a canstant which depends on the samiconductor,
on the oxide contact and on the doping. The appiied potentials U UG are constants,

tdo.

P

As illustration for the notation of the device geometry we show 3 typical MQS-transistor

in Figyre [.
EQC

c>0109°.§22
<01'Il§'1

ey |
il

Figure 1. Mos-Transistor

There are two n-regions and one p-region [n-channektransistor), three Ohmic contacts
(Clzsource-contact, Cztdrain contact, C_ buik contact] and one oxide contact
(aoc: gate contact).

o]

The vertical boundaries of q 3nd ¢ are insylating (B“is and 30,5 resp.).

We remark that the rectangular shape of 2 and s as shown in Figure | is a
simplification commonly used for numerical simulation {see Selberherr(1983)). The
following theory however s not restricted to particular shapes of domains.




The problem (1.1) can be put into a simpler form by the transformation (called
Boltzmam Statistics)

4 R

L8 3,

(1.8) nsen;e (TR p=rnye v,

9 [
Here u = exp (- Uﬂ), v s exp (Uﬂ ) where L ‘p are the electran and hole quasifer-
milevels resp. (u>0, vs>0 has to hold). Then {1.1) takes the form {by using
(1.2) , assuming R®0 and ¢, to be constant)

§ b

(1.9)(a) egav = a(n,e Ty - n;e Ty« ¢(x,y))

T

-8

(1.9)(c) div (ue T ov) = 0.

(1.9)(b) div (uge  wu) = 0 (x,y) € 9.

The continuity equations (1.9)(b),(c) are in self-adjoint form.

There have been many analytical and numerical investigations of (1.1) ((1.9)).
Mock (1972) showed the existenceof a solution of (1.9) subject to the mixed set

of boundary conditions and he proved that this solution is unique if the applied
potentials Uk are sufficiently small. He only assumed C€L”(2). Continuous depen-
dence of the solutions on the boundary data was also shown in this paper.

A very similar existence proof was given recently by Bank, Jerome and Rose (1982).

The parabolic semiconductor problem (with homogenous Neumann boundary conditions
on a3) was investigated by Mock (1974). Finite difference methods are discussed in
Mock (1973), (1981).

In this paper we scale the problem (1.9) appropriately and obtain 2 singular
perturbation problem. The singular perturbation parameter A is the minimal normed
Debye length of the device under consideration.

Using matched asymptotic expansions (as A -0+) we demonstrate the occurance of a
boundary layer in ¢ at oxide-semiconductor interfaces and the occurance of internal
layers (in ¢) at pn, nn and pp junctions. U and v are the slow variables, that
means they do not exhibit zero-order layers.

We derive the reduced problem (vanishing space charge approximation) which is ob-
tained by setting the singular perturbation parameter to Zero, and the {boundary

and internal) layer equations and give existence proofs for these problems. We diss-
cuss theasymptotic behavior of the current densities Jn.Jp (as X «0+) and show the
validity of the asymptotic expansions for the equilibrium problem (2ero external
potential applied at the contacts).

The singular perturbation approach was applied to the one dimensional semiconductor

iy -




problem by Vasileva and Stelmakh (1977), Vasileva and Butuzow (1978);
Markowich, Ringhofer,Selberherr and Langer (1982 a,b).

The main advantage of the singular perturbation approach is that it gives
qualitative information on the behaviour of the solutions.This a-priori information
can be used to construct appropriate discretisation methods for the numerical solu-
tion of the semiconductor device equations. In particular efficient mesh-strategies
employing only a reasonable number of grid points {but still giving accurate
numerical approximations even in layer regions) can be obtained (see Markowich,
Ringhofer and Selberherr (1982) and Section 6).

All results in this paper also hold for the one and three dimensional static
semiconductor problemsafter obvious modification of assumptions (e.g. junctions are
then represented by points and surfaces resp.). We chose the two-dimensional
semiconductor problem for the presentation since it is most often used for numerical
simylation.

The paper is organized as follows. In Section 2 we perform the scaling which leads
to the singular perturbation problem , prove an existence and a regularity thecrem
and derive a-priori estimates of the solutions. [n Section 3 we derive (the zeroth
order terms of) the asymptotic expansions, in Section 5 we give the existence proofs
for the reduced problem and for the layer problems and the equilibrium problem is
discussed in Section 5. Section 6 is concerned with numerical examples and with
possible extensions of the theory.

Table 1. Numerical! values of the Parameters for Silicon and Silicon oxide at
roomtemperature T~ 300 k.

Parameter Physical Meaning Numerical Value

q elementary charge 10" 19as

£ semiconductor .12
permittivity constant 10 As/Vem

“o ::;g?nwny constant 3107 2%s/vem

Yo electron mobility 103cm2/Vs

By hole mobility 103cm2/Vs

0, electron diffusion 2
constant 25cm®/s

Dp nole diffusion constant 2518m2/§

n, intrinsic number 10" /cm

Us thermal vaitage 0.025 ¢V

The numerical values given for un.up,on.Dp have to be understood as averages, since
these quantities are generally modelled by functions of x and y.




2. THE SINGULARLY PERTURBED PROBLEM

We assume that C is bounded in 2 and set

(2.1) ¢ = supiC(x,y)l, O L
a ¢

and

(2.2) 1 = diam (9).

The dependent variables are scaled as follows

x ] :ﬂ 33 - =
(Z-Z) Ws UT. ns c ] Ps C * us U, v v

and the independent variables
X - -
(2.3) ST T s -, (xgryg) €RG UGG

Then {1.9) transforms to (after dropping the subscript s):

(2.4)(a) A% = 5%e% - 6% ¥ -0 }

(2.4)(b) div{e*vu) = 0 y (x,y)€n

(2.4)(c) div(e Ygv) = 0 J

and (1.3) remains unchanged:

(2.95) av = 0, (x,y) €9

where

(2.6) (a) x2=(i{3)2= :-;-g%— (b) 52,1;. [

nolds. \p is the minimal Debye length of the device.

For (2.4) we assumed that the mobilities Hpsp are constant throughout the device
(for numerical values see Table 1 ).

The following theory however carries over to the case that u "y are smooth and nosi-

n
tive functions of x and y.

The (scaled) boundary conditions are

(2.7)(a) 7w, = Tu ., xSV =0
3‘)1’5 )x.is mis

fthe (unit)vector nis pernendicular %o 3N and is assumed to exist almost everywhere) and




(2.7)({b) ulck =@ , v}ck' e

,,n[ mm]l Uy

(2.73(c) wie, ’“'r'
for k=Q0,..,r.

(2.7) is derived from (1.5), (1.6), (1.7) (a,b) by using (1.8)}.
Boundary conditions on 3¢ are

(2.8)(a) vvdl,, =0
S

(T denotes the exterior unit normal vector of 3¢ )

(2.3)(b) vl -
. b Yl » - L")
oo Tp T U 7 VG
and
(2.8)(c}) " [v] =0
aQOS
{ 1, (x.,y)€n
c®Ty N - - €
(2.8)(d)}  [e*9y "]anos 0, * ;3 AX,y) €
s

(2.8)(e) Vu-n[anos x Vv-diaﬂos =0
u and v are only defined in 2.

-3

For modern devices & 310 7cm™3. With the realistic value 125x10"%cm and the numerical
values for q, c.,Uy; given in Table 1 we get 2251077 << 1. Therefore tne problem (2.4),
(2.5),(2.7),(2. d) constitutes a singularly perturbed quasilinear elliptic
system of differential equations (subject to mixed Neumann-Dirichlet boundary and
interface conditions).
The parameter 52 << 1, too {(normally 52 slo'7 holds). This however gets compensated
by the Dirichlet boundary conditions (2.7)(d),(e) which imply that 52(e°u «e Vy) =0(1)
at Ohmic contacts as 52 -+0. Note that the potential difference between an Ohmic con-
tact in a n-region and an Ohmic contact in a p-region behaves asymptocally (as
52 .0) tlike 1n L.

3
We regard 62 as (fixed) parameter and investigate the asymptotic properties of the
solutions as \ «0+. We will thean show that the asymptotics are uniform in § as long
as § does not converge to Zero too fast (compared to A ).

-7-




The scaling factors for the current densities J , Jp are qunCUT and qupCUT resp.
Then the scaled current densities are given by
2

(2.9)(a) 3, = 82’7y, (3) 9 = -sfe Vov.

The scaled carrier densities follow from (2.2)

(2.8)(c) n = s2e¥, (d) p = 62e” Y.

We now give definitions which will be needed in the sequel.

We denote by L9(a) the space of g-integrable real valued functions defined on Q with the
norm

1
4

.. ('l q )a
IIFIIC“Q : \b.f(x.y)l dxdy
and by L®(a) the space of bounded functions on 2 and
”f’L,n = s%p If({x,y)I
]

Cm(n) for m € N° is the space of all functions defined on 2 which together with their
partial derivations of order up to m are continuous in Q

Cm(ﬁ) is the space of all functions which are in Cm(n) and which together with their
partial derivatives of order up to m are bounded and uniformly continous in 2. A norm
on C™(3) is given by

= lal
m,a 3
el max sup ——;———;E fix,y)

Ogiaism @ 3% lay

where u'(ul.az) and |al *a;ta,

Spaces of H3lder continuous function Cm's(n). Cm'e(ﬁ) for 0 €3 €1 and the:r norms are
as in Adams (1975).

We define the functional

(

"fln,2,0 " '0‘|§|sm

1
2 \ 7

2,a,

lal I
57 |
ax ay

and write Hm(n) for the completion of (u €Cm(n):uuum 24f°) with respect to the norm
L] .

“'”m,Z,a'

For rcan we denote by Hg(aur) the completion of (u ECm(n): Uil 4 o <wmandy vanishes

in a neighbourhood of [} with respect to Il.1|

m,2,a°




e i o

For the following we set A = ) van o U ¢ and state the existence theorem which is
basic for the theory of the semiconductor equations.

Theorem 2.1 Assume that D is defined in &, D €L™(2) and that D is
Lipschitzcontinuous in a neighbourhood of anc. Also assume that aA
and 3Q are Lipschitzcontinuous and piecewise ¢® and that tve (one-
dimensional) measure of anc is positive.

Then the problem (2.4),(2.5),(2.7),(2.8) has a weak solution (w,u,v)
for which v € W (a) NL™(8), u,vEHi(a)nL™(a) holds.

Every solution (¥.u.v) €HI(a) x (H'(2)%), v €L™(A) fulfills the a priori
astimates

U Sk
{2.10)({a) wu_: min e T s u{4A,y) €max e Ut
3 k
U
U L4
e T

(2.10}{b) v_: min e T € v(x,y) $max e
k k

for (x,y) €3 and

(2.10)(c) w_: min (V_, infy) Su(x,y) € max (¥_, sup ¥):= v,
39c QOC

for (x,y) €X where

VDE + 84 u,v,

252u

0, +
(2.11)(a) ¥,:= In { } . 0, = sup D(x,y)
Q

(2.11)(p) ¥ _ = inf D(x,y)

3

deu

+

- 0-+J _2+464u_v_
_:® 1In , D

Proofs of slighty weaker existence theorems were given by Mock (1974) and Bank,
Jerome and Rose (1982). We therefore only sketch the

Proof: The a priori estimates (2.10)(a)(b) follow immediately by on application of
the maximum principle for Hl-solutions(see Gilbarg and Trudinger (1977},
Chapter 8) to (2.4)(b),(c), (2.7)(a),(b) and (2.8).

We set
Qv) » 22div(ewy) - (52e¥ys - s2e Vys.pe)
u in @ [v in =2 [D in a
i ¢ 3 . 3 .« 3
with Y {0 ing * VY 10 in 5 0 10 ir -




The weak formulation of Q(vw) = 0 subject to (2.7)(a),(2.8)(a),(2.8)(c).(2.8)(c).
(d) is

Q(v,0) = j(xzc'vw-vw +(szewu‘-sze'vv‘-o‘)@)dxdy
A [ 3
[ ] f(XZV¢-vw+(szewu-sze'vv-O)wdxdy + \2 ?3 [y Tedxdy
Q s ¢
=0

for al1<o€H;(A van, . uaois) since if v,0 are sufficiently smooth on A then the
arbitrariness of ¢ 1implies (after integration by parts) that Q(¢) =0 in QU9

and that the zero-Neumann boundary condition on 3, Ve, and the interface conditions
(2.8)(c),(d) are fulfilled ((2.8)(c),(d) are the'natural” interface conditions for the
problem Q(v)=0).

and Q(v) 30, #!

¥

A simple calculation shows that Q(v,) €0,v[, YT N

3
TR TPRAEE
Therefore we get for every weak solution of Q () =

Q) -Qv,) = 2 2div(era(4-v,)) = F(x.y)(s=v,) 3 0
and

Q0(s) - Qlv.) = 22div(e*7(v-v_)) - g(x,¥)(9-v_) & O

v ¥ -
where f{x,y) = 52(e 1u'c-e Y20, g(x,y) = Sz(e 2u‘+e zv') £0
and yl(x,y) (wz(X-Y)) is between y(x,y) and ¢ _(v_). As for the continuity

equations the maximum principle yields (2.10)(c).

-,Ulv.

The existence statement of Theorem 2.1 follows by using Schauder's fixed point theorem
as in Bank, Jerome and Rose (1982).qa

We remark that y_=3_ and 4 =3 holds if ¢ is empty and that the estimates (2.10) imply
that the solution is unigue if Uk-O for k=0,...,r. Then usvel in 0 which implies
Jnndp-O. The whole device is in thermal equilibrium.

Mock (1974) showed (under slightiy more stringent smoothness assumptions on the
ooundary conditions) that the solution is unique if lUkl are sufficiently small.
Uniqueness for arbitrary U, cannot be expected since there are wellknown devices
{(like thyristors,see Sze (1981)) which exhibit multiple solutions.

We now show {for devices without oxide-regions) that any solution of the semiconductor
problem is classical if the doping profile D is piecewise Hodercontinuous.

We denote by CR(:) the set ofcritical points of 3@, that is the set of all points
Pe3n for which either P € e nSﬁiS (Ohmic contacts and insulating segments meet),

-10-
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PEG 0 aq.(Ohmic contacts and the oxide boundary meet) or 32 N8 _(P) (where B,(P) 1s
the open ball withradius o centred at P) does not have a C e parametrisation for
any o>0.

Theorem 2.2: Let ¢={ } and assume that 238 s Lipschitzcontinuous and piecewise c”
an¢ that r, are C™ curves for {=1,..,N. Also assume that 0 s defined
on &, that D €L™(a) and that Ofg, €C°’(a,) for t=0,...,N and some
a>0.
Moreover D is Lipschitzcontinuous in a neighbourhood of . Then every
weak solution (¥,u,v) of the semiconductor problem (2.4), (2.7) for which
v € L™ () holds, fulfills

(2.12)(a) (v.u.v) € (CMd-cCRr(an)))?

(2.12)(b) wl, € C3(a,), i=0,....N

eE

and
(2.12)(c) (u.v) € (c2(an?2.

Also all second derivatives of v,u,v are square integrable over any subregion of R
which has positive distance from the critical points of 3

Proof: For a given weak solution {(u*,u®,v*) we set
Wy @ -ty ®
Fixay) = s2(e¥ 00V pu(n,y) - e (0 ya i y)) - D(xuy)-
Since v*,u*,v* €L7(2) we have FEL™(a). v*is the unique solution of

(2.13) xZAw = F(x,y), (x.y) €n !

subject to the mixed Dirichlet-Neumann conditions (2.7)(a), (2.7)(d),(e). From
Kawohl (1980) we obtain that y* EHZ(Q') where Q' is any subdomain of @ with positive
distance from thecritical potats of 2 and that v fulfills (2.13) and the boundary
conditions almost everywhere (with respect to the two and one dimensional Lebesgue
measures resp.). Therefore y* € C(3-CR(2R)). Theorem 15.1 in Ladyzenskaja and
Ural'tseva (1968, pp.203) implies ¢* €C1'“(§') and ¢* € Cl(i-CR(an)).

The same theorem implies that the solutions u®*,v* of

divie? X Y)ayy w0
and
div(e-w.(x'Y)Vv) 20

fulfill ye, ve €C1'°(5') and therefore u%,v* ecl(é-ca(an)). Theorem 6.24 in Gilbarg
and Trudinger (1977, page 6.24) yields u*,v* ecz(n).

-11-




Let 2* be a subdomain of ni with Lipschitzcontinuous boundary and with a positive
distance from the critical points of 3a,. Then w'.u‘,v‘,o‘€c°'°(n") and therefare
Fec? 3 (a"). Since v* solves

2

Ataw = F(x,y), (x,y) €a"

AR R PY

. 2.5 " ; N X . 2

we get ¢ €C (") which implies w*€C (ni). a
v,u and v may have singularities at the critical points of 32 and second derivatives
of v are discontinuous accross the junction r, if (0]r, «0. The extension of
Theorem 2.2 to MOS devices is straight~forward using the methods of Ladyzenskaja and

Ural'tseva(1968, Chapter 3, Section 16).

We remark that (2.10)(a),(b) yield an a-priori estimate on the number of active
carrier-pairs. (2.9)(c),{d) gives

(2.14) np = sduv  in 3

and (2.10)(a),(b) imply:

i Vo ay | ty | B
(2.15) sdexp (-__ﬂﬁi_\ <$np ¢ sdexp (——ﬂli-) in
T/ T
where
:vmax’ = Ta: IUk -Ull
v lis the largest (in-adbsolute value) voltage applied to two Ohmic contacts.

max
This estimate was anticipated by Oe Mari (1968) and it was proven by Markowich,

Ringhofer, Selbernerrand Langer (1982 a,b) for the one-dimensional case.

Also estimates for n and p follow from (2.9)(c).(d) and (2.1). We get for non-MOS
devices

< L .
D+ VoSeas exn( 1y, 17Yy) oo (- Vaax'y .,
> \C T )
(2.16)(13)
S ENR ;
; 0’ +/D’»46 e‘p(lvmaxl/UT)e‘p (lvmaxl \ in 3
2 Uy )
and
v l T
1 max '\ ) /'Y max
25 exp(- 2 S exp| — ) .
(2.16) () 0y _J €5 s \ 0y in 3.
0, o/DE#ddlexp(IvdepUT) D_+ JD?*“J“"("VMU/UT)

<12~




If 0_<0, D, >0 then the lower bounds fn (2.16) are 0(s%) as § ~0, the upper
bounds are 0(1) (for fixodlvm'xn.

There is numerical gvidence (see Markowich, Ringhofer, Selberherr and Langer
(1982 a,b)) that the estimates (2.16) are not sharp. The factors

v } v
exp (-—-%:—"-) . exp(ﬁ?’%x—) can probably be omitted.

-13~
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3. ASYMPTOTIC EXPANSIONS

We are now concerned with the asymptotic behavier of the solutions of (2.4),(2.5),
(2.7), (2.8) as x =0+,

When we set 1s0 in (2.4)(a) we see that y(r=0) has to be discontinuous at pn, nn

and pp junctions (sinceD isdiscontinuous at these junctions) assuming that u(is0)
and v(Aa=0) are continuous in o (note that (2.4)(b),(c) only admit weak solution in
C(a) if 4 € L¥(a)). Therefore, standard singular perturbation theory implies that we
have to expect an internal layer in y (that is a region of fast variation of ¢ ) at
these junctions. Also boundary layers occur at 3Q if the reduced solutions (i.e. the
solutions of (2.4) with As0) do not fulfill the boundary conditions.

e

for the following analysis we assume that the profile D0 is discontinuous accross only
one (open) C™-curve I which splits 2 into two connected subdomains @ and 2_. Also
we assume that Ol. ECo'a(ﬁ‘). 0iz € Co'u(ﬁ_) for some 2>0 and (D), «0. Also

7 N3ae = L 1.0 doe$ not change sign in 3, and in a_.

We denote by t(x,y) the orienteddistance of (x,y) from ', that means

t>0 in 2,_and t<0 in &_. s(x,y) -(sl(x,y),sz(x.y)) is the point on [ which is closest
to (x,y) (s is unique in a sufficiently small strip about r). Similarly r(x,y) 30
denotes the distance of (x,y) to 32 (32 fulfills the assumptions of Theorem 2.1) and
a(x.y)=(q;(x.y), q(x,y)) denotes the point on 3a closestto (x,y). Note that

or' . _=-1 and vti,. is the unit-normal vector of [ pointing into a_.

3N
For a function f defined on 2 (or Q) we set

FT(t,s) w f(x,y)

and

PAC JPEUF A

F2(r.q) = £(x,y)

in neighbourhoodsof T and 3R where s and q resp. are unique.

Ye define for some sSE€T

£7(0+,s):= Tim fla,b)
(a,b) =5
(a.b)Eﬂ*

k F7(0-,8):s lim f(a.b)
(a,b)-s
(a,b)€x_

-14- i
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{assuming that the limits exist).

We also set

bl S 2 29 ath ar?

IX 31 ax X F3 39,
) s - 3 s |3 3 r ) 3 3
(x.y] as; as,| . T0Gy) 1 2821 , e s lafT}, vofte ol

v T v **2 "9
and remark that

T T
( s )vglr .(A)Vr]anla
a(x,y) 3(x,y)

holds (the superscript T genotes transposition).

Following standard singular perturbation theory we make the ansatz':

t ~ . r(x,
(o) w o fEen (852, ) fm-‘—x—ﬂ» atx.y))
(3.0 by [~ 22t [ | | S ER) s | |U,-(”' . alx.y)
vix.yad) uilx.y) \vy (B, sixuy)) (3 (S5, agxuy)
where the functions marked with '-' are independent of A, the functions marked with

‘A' are defined on (-w,») xT and decay to zero as t= %-so(internal layer terms),the
functions marked with ‘~' are defined on (0,®=) x 32 and decay to zero as »= ; - =

boundary layer terms).

We insert (3.1) into (2.4), {2.5), (2.7), (2.8) and obtain equations for the i-th temin
the series (3.1) by comparing coefficients of » . We start with

A) The Reduced Problem

Evaluation of (2.4) away from © and 32 and comparing 0(1l) terms gives (after dropping
the index 0) the zeroth ordar reduced problem

(3.2)(a) O = dze';-] - sze'%-o(x.y) !
1

- |

(3.2)(b) div(e’vq)= 0 \
|

(3.2)(c) div(e ¥oW)= 0 ‘

In the context of semiconductor device physics this problem is referred to as
‘Zero-~space charge approximation'.

~15-
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By investigating the internal and boundary layer problems we will supplement (3.2)
by interface and boundary conditions.

B8) The Internal Layer Problem

We evaluate (2.4)(b) close to r but away from 2a and compare O(A'Z) terms (after
carrying out the differentiations).

This yields:

A

A
+
orr © Yor¥or " 0

A
u ox
(subscripts_ardenote differentiation with respect to <) and therefore

A
Aor « s(s)e °F. From Go(r.s) -0 as t-2w we get U_®=0. Similarly v, ®0 fallows. u and

u
0
v do not have zeroth order internal layers.

A A A A A A
For the following we set u Uy, vEv, and ¢ "y,

Comparing O(A"I) terms in (2.4)(b) (again after differentiation) and evaluating
close to T but in q, gives
A A - A
Upp * ¥ (U (0+,s) +u ) =0, >0
{subscripts t denote differentiation with respect to t) and evaluation close to T but
in Q_:

er * Y (Ug(0-,s) + 8 ) =0, r<O.

Integration yields

a€(0+.s)(e‘$("5)-1), t>0

A s
(3.3) ') =
o Lalco-usye o9y, v <o

Proceeding analogously with (2.4)(c) gives

G§(0+.s)(e$("s)-1). >0

(3.4) v (t.s) = { ;;(0_'5)(e®(r.5)_1), 1<0

A A
v

We used that §,u, and their t-derivatives vanish at t=sm for all s€T.

The internal-layer problem for 3 is obtained by evaluating (2.4)(a) close to ™ (but
away from 30) and by comparing 0(1) coefficients:




3
-ity

-T A -
(3.5)(a) er w62e¥ (04.8)4¥5T o o ;243 (0«.5)-3;r(0_'5)
- 07 (0+,s), t>0
-T A -
(3.5)(6) = s2e¥ (OSM¥Glo. o) L 42¢7 (0us)-05r g

- 0f(0-,s), t<0

Interface condition for (3.5)(a),(b)are derived by using that ¢ € Cl(n) (see Theorem
2.2), which implies ' (0+,5)=¢7(0-,5) and v}(0+,5)=y{{0-,5). Inserting (3.1) into
these relations and comparing 0(1) and 0(2"") coefficients yields

(3.5)(¢) $(0+,5) - $(0-,5) = §7(0-,s5) - §T(0+,s)
A A

(3.5)(d) wt(0+.s) s wt(O-.s).

(3.5)(e) V(+m,5) » $(-w,s) = O

A
(3.3) - (3.5) are supposed to hold for all s€r. ¢ is discontinuous at =0 for all
s €T since [5]r *0.

Theorem 2.2 also provides interface conditions fOr the reduced problem (3.2) since it
- n
implies that u' (0+,s) = ur(o-.s). vr(0+.s) = vr(O-.s) and ui(O#.s) = ug(o-.s).
v£(0+.s) = v;(o-.s). Inserting the expansions
- A t
(3.6)(a) u(x,y,2) ~u(x,y) + Au(g,s) + ...

(3.6)(b) V(X g ) ~T(x,y) ¢ ANE sy + .

(the dots denote a power series in A stating with the O(AZ) term) into these
relations and comparing 0(1l) terms yields

(3.7)(a) tul, =0, (¥l =0

and using (3.3), (3.4)

A A
-4(0+,5) J€<o_'s)e-w(0-.s)

G€(0+.s)e
$(0+,5) v(0-,s)

9{(0*.s)e . 9{(0».s)e

(3.5)(c) implies

r . -

ol (0s,5)e? (0%48) 4 G710 5)eb (0729) |
- - - :
G€(0+,s)e-m (0+,s) 3;(0-.s)e'w (0-,5) i
|

-17-




So we obtain the interface conditions for the reduced problem

{3.7)(b) [e%a-vnr =0, le'GVG.vt]r =
since f(0,s) = TE(x9) TGy ager OTES-

C) Ohmic Contacts

A straight-forward calculation shows that the Oirichlet boundary conditions on .
for ¢, u and v fulfill (3.2)(a). Therefore we do not expect boundary layers at anc.
That means

(3.8) To(0.0) ® Wi(0,a) » ¥V (0:q) 80 for o >0 and g€ am.

To proove (3.8) one has to proceed as Markowich, Ringhofer, Selberherr and Langer
(1982 a,b) did for the onedimensional semiconductor problem.

(3.8) implies that we have to impose the same Dirichlet boundary conditions for the
reduced problem (3.2) as for the full singularly perturbed problem:

v‘aﬂc = w|39c. ulan = ui’“c' vi

(3.9) = v
e 'anc

where v,u,v on 3, are given by (2.7).

0) Insulating Segments

We assume that D is differentiable in a neighbourhood of 32 and that

(3.10) VD ni s 0
L

holds. Differentiating (3.2)(a) gives

(3.11) 0 = s2(e¥i+e Vi)9i + 5%(e¥9i-e"Vvv) - w0

v

Since e¥ure ¥y >0 in 3 we get

(3.12)(a) TN, s 0
My
if
(3.12)(b) 7U.n;3nws [ Vv.n:aﬂis s 0

holds. (3.2){a) is compatible with the zero Neumann conditions for w,u,v on 3Qis and
we get

<18~




(3.13) T,00,9) = U (0,0) ® V (0,9) ® 0 for 0>0, q€an,,
as well as

(3.14) ¥1(0.9) # T (s,9) ® Vi(0,q) ® 0 for 0>0, q€an,,.
No zeroth and firstorder layers occur at Ay,

1f we did not assume (3.10) then (3.14) and (3.12)(a) would not hold (of course
(3.13) would still be valid).

(3.12)(a),(b) define homogenous Neumann boundary conditions for (3.2) on M.

E) Oxide-Semiconductor Interface

As for junctions we get U sV, =0 and setting UsU;, VeV, 7%, we obtain
(3.05)(a) T, (s.a) = @2(0.@) (e (1), 550, qena
(3.15)(b)  V (0.q) = ;ﬁ(o,q)(ez(""”-z). 0>0, g€
Since we set

(3.16)(a) U(ayad) ~ Glxy) ¢ AG(E,s) «aT(fa) ¢ L

- At ~r
(316)(b) V(*-.le) ~ V(X|Y) + ‘V(Yls) + XV(TlQ) .

(where the dots denote a power series in A starting with the O(AZ) term), we get
by inserting (3.16) into (2.8)(e) and by comparing 0(1) coefficients

0 (%) (a) ¢ d2(0.a)(e V), qeany
0 +(vi-d) () ¢ F20,@ (et 0y, qean
Therefore
0= d2(0.q) = ¥2(0,q), qe€an
r | A os
and U’'s2,q) @ V(o,q) #0 for 5>0, g €30 .. Boundary conditions for d.v on Inyg are

13.17) vu- ! = Ov-nl 2 0
' e EPY ’
o3 [V

[f




o) G A e e o Lo

N

holds then (3.17) implies (as for insulating segments)

(3.19) v9-n| s 0.
anOS

By evaluating close to My ¢ but away from I we obtain the boundary layer equation for

vl,q which is analogous to the interface problem (3.5):
os

-3 ~ -3 ~
. ngw (°'°)’*G°(o,q) - 62V (O'Q)'°G°(o.q) - 0%(0,q), >0, q€ a0,

<}

(3.200(a) T,

(3.20)(b) ¥(w=,q) = 0, Q€2 .

To obtain theboundary condition for (3.20) at »=0 we solve Laplace's equation in the
oxide.

Let G(x,y,E,n) denote the Green's function (see Protter an¢ Weinberger (1967), Chapter
2, Section 7) of the problem

a9 = f in 3

. ") . .
°'aec =9, Vw-c‘3¢is *h, 7o Cl’“os k
{note that Z| =-7| y.
Mo Mo
Then, since VU0 fulfills
Ay = 0 in .
o] =0, 70¢ 20, 707 e - 20y
30¢ 304 g e, 0
we get
Cs -
v osvg - = [ G(x,y.€,n)T¥(E,n) R(E,n)d(E,n)
0o IR
0s

This gives the boundary condition (for the singularly perturbed probiem in 2):

€ -
(3.21) vl + 20 ax,yaEm i, Ve(€,n) M(E,n)d(E,n) = ¥..
My € 3, (x.y)eanos G

[«

For the following we assume that if T hits Sﬁos (which in fact happenS in MOS-techno-

logy) then T is perpendicular to 5505. that means
(3.22) Tt(S) 9~(S) = 0 for (St afnida ..
We insert the expansion
- At ~ r
(3.23) V(xay o A) ~ u(x,y) + u(3as) + ¥(1.0) + .

=20~
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(the dots denote a power series starting with the O(A) term whose coefficients have
the same form as the 0(l) terms) into (3.21). Assuming that

%
(3.24) ¢ ‘lelx ¢,

where CX'CZ are independent of ), we obtain by comparing 0(x'1) terms and by using
(3.22):

[ 4
(3.25) [ B(x,y,6.n)) ‘V_(0,9(€,n))d(&,n) = 2Ly..
3, (x.y)€30°s ) cst
This integral equation is uniquely soluble (for Ea(o,q)) since WD(O.Q)*V"'?)(Q)
where w is the (unique) solution of

Aw = 0 in 9

Obviously we€ C™(a-CR(23¢)) holds.

If » is a rectangle as in Figure 1 (which is a common assumption in MOS-modelling)
€

with d sdist (anos'3°c) then w is a linear function and V"'Eian = -ngwc. In this

case 0s s

~ . 1
(3-26) 00(0|Q) Xa:: WG .

No zeroth order layer occurs at the oxide-semiconductor interface if the right hand
side of (3.26) is not O(1l) as v =0,.

(3.25) (or equivaiently (3.26) if » is a rectangie) provides the missing boundary
condition for the interface layer problem (3.20).

Equations for the higher order terms of the expansion /’.1) <. be derived in a
analogous way.

When the asymptotics of v,u,v are known then expansions of n,p and of Jn, J, as given
by (2.9) can easily be derived. We get from (3.1)

p

(3.27) n(x,y,A) = A(a,y) + AFis) ¢ F(ia) - L
(3.28)(b)  p(x.y.A) = Bix.y) + BeEis) + B(Eiq) + .

(3.16) and (3.23) imply

23 5269 (0428) (¥(1u5) 1)if(0,5), © > 0
. n o= -' .( -5) = - .
(3.29)(a) n = &%"u, n(x Gze*r(°"s)(eW("5)-1)ar(o,s). o

-21-
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(3.29)(b) H{o,4) » 0 far o0>0, Q€ 30,00,

(3.29)(c)  Fo.q) = adel (00 (F02a) gy ,5g, €2,
(3.29)(d) 5 = s%e™¥q
ard simi]ar expressions for 3 and ;.

Differentiating (3.16) and using (3.3), (3.4) gives

(3.30)(a)  Jp(xayar) = Jo(xay) + Q(Es) ¢ T (Faa) v .
(3.300(0) 3,00y = Lptxay) + Ip(Fs) + T (Fa) o

with

-~

(3.31)(a) 3, = s%e¥m, (b) 3, a-5207V7

’ ) A N
R '52ew (0+,s)(ew(r,s)_l) ::(:, ' - Jr(0+,s), >0
(3.32)(2)  d(as) = ] I (x,y) e
!
\

370~ 4 : or
;529 (0 |S)(eU(T.5)_1) i%_ﬁ:_:{l_;_'(x y)’s.vsu.(o_'s)' 1 <0

(3.32)(») J (5.) 0 for >0, Q€32 U 20

is
~ -3 ~
(3,32)(c)  J (0.a) = s%e¥ (39 qvlona) g 2alx.y), v, 3%(0.9), q€s3a
T (x,y)=q 9 os

Analagous expressicns hold for Sp and jp.

. T... T
Sinc 35 Top 39 o

nce (3T7T?7) t .o (371777) r!an s 0 holds we get
(3.33) J J § J

. J rot|{_ aJ_‘7r| «d vt] = J Or =0

IR B T T BAARE S AT TR

Therefare the current density components perpendicularto the junctisns(to the semi-

conductor oxide interface} have no zeroth order layers while the current density
junctigns (to the semiconductor-oxide interface) may very

This phenomen is illustrated by the M0S-transistor

components parallel %o the
well have zeroth aorder layers.
simulation performed by Selberherr (1380).

S0 far we only considered one curve of discontinuity of 0. Generally, an internal
A .

Tayer in y occurs at each junction s, and each layer-term . fulfills

the corresponding layer problem (3.5) (with r;-local coordinates [si4t5)).




4, EXISTENCE OF THE REDUCED SOLUTION AND OF THE LAYER SOLUTIONS

A. Reduced Solution

We now assume that we have N C*-junctions Ty which are as in Section 1. [D]r‘ s 0
holds for isl,...,N. We denote the normalvector to r, by &, (=7t;).
Then the interface conditions (3.7)(a),(b) read

(4.1)(a) [u}ri =0, [\71r1 = 0, isl,...,N

(4.1)(b) [eavﬁ‘c‘.lr‘-o, [e""??-tilr s 0, isl,...,N.

Moreover 3 fulfillsthe assumptionSof Theorem 2.2. We prove:
Theorem 4.1 Assume that
(4.2) 0, = eC(E.i). isl,... N

holds and that 0, r;, 3a fulfill the assumptions given above. Then the
reduced problem (3.2),(3.9), (3.12)(b),(3.17),(4.1) has a weak solution
{a,v) € (Hl(n) nL’(n))z. $ €L™(a). Every weak solution fulfills the

estimates (2.10)(a),(d) and

(4.3) T.os ulxay) €T, (x.y) € 2
where J_, ¥ _ are defined in (2.11)(a),(b)). Also every weak solution
satisfies

(8.4)a) ¢ C(ﬁi - CR(a3n)), (b) (4.v) € ({2 -CR(aﬂ)))z for i=0,...,N.

- e R
Proof: A weak solution of the reduced problem is given by a triple (v,u,v)with (u,v)€{H (ﬂ))z.
3 € L®{q) which solves (3.2)(a) pointwise (almost everywhere), which assures
the Dirichlet boundary conditions on e in the sense of (Hl(.’z))3 and which
fulfills

(4.5)(a) Lilvsuio) = fe¥ou'sgdxdy = 0
Q

(8.5)(b) Lz(w.v.o) . je'wvv‘vudxdy =0 for all o eHi(n ulg;guaa

).
0
a s

(If y,u,v and ¢ are sufficiently smooth, then {4.5)(a),(b) yields (3.2)(b),
(¢}, (3.12)(b), (3.17) and (4.1) using integration by parts.)

The maximum principle for weak solutions of linear equations in divergence
form immediately implies that G4,v fulfill {2.1) (a}.(b) if o €L™(a).
v3.2)(a) gives
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(6.6)  §(3,4) = In [“’ :
28y

and (4.3) is immediate. (4.4)(b) follows from a posteriori regularity
theorem (see Ladyzenskaja and Ural'tseva(l1968), Chapter 3, Section 14) and
(4.4)(a) is implied by (4.6).

To establish the existence statement of the theorem we employ Schauder's
fixed point theorem similarly to the existence proof of Bank, Jerome

and Rose (1982) for the singularly perturbed problem (see Theorem 2.1). The
existence proof for the reduced problem issiightly more difficult because
the regularising property of Poisson's equation is lost.

We define the following set M:
o« 2,
(4.7) M= {(u,v) € (LT(a})"fu_sSusu_, v _svsv

and regard M as closed and convex set in (Lz(ﬂ))z. A mapping T: M--(LZR))2
is defined as follows:

(4.8) T(uo,vo) = (ul,vl)
where Upsvy are tne weak solution of
(4.9)(a) div(e*lUovolyy ) a0

(4.9)(b) div(e *(¥aYolay ) 2 o
subject
to the already specified doundary conditions. T is well defined since (4.9}
{a).,(b) has a unique weak solution (u;,vy) €(H1(n))2. Clearly every fixed
point of T s a weak solution of the reduced problem.

The a priori estimates (2.10)({a),{(b) imply that T:M=M( since they are inde-
pendent of the multipliersof Yu,7v in (4.9)). The wellposedness of (4.9) in
(Hl(n)finduces the boundedness of Range(T) n (Hl(n))z. therefore Range(T)
i3 relatively compact in (Lz(:))2

To show that T €C(M) we take a sequence {(u_,v_) €M, such that

n n
La(2)
Un nd us n -
Ly()
V' 24 ve, N -

n

holds. We will show that every subsecuence of T(u,,v,) has a subsequence which

-24-
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converges to T(u®,v*) in (LZ(Q))2 (which implies T(un.vn) - T{(u®*,v*) in
(Wand).

Since the range of T is relatively compact in M and since M is closed we
conclude that every subsequence of T(un,vn) has a convergent subsequence (with
Timit in M). Lat T(un "V ) be such a convergent subsequence (of a subsequence
of T(u,.v,)) and let © K T(Up, ¥, ) = (8:0) € W in (1%(0))% as k ~ =.

Obviously
) L2(a)
w(unk.vnk) - y(u*,ve) a5 k -e
holds. Therefore there is a subsequence I«(unk .vnk ) such that
- J J
w(unkj.vnkj) - eeee)
e - e

apl{y®.ve
e e “(U v )
almost everywhere pointwise in 2

Theorem 5.3 in Ladyzenskaja and Ural'tseva (1968, Chapter 3, Section 5) implies
that the weak solutionsof

)
k. k.
div (e ] Jqu)y =0
div (e s d gy so0

subject to the boundary and interface conditions converge in Hl(n) a5 j =
to the solutionsof the limiting problems

giv (e?(U" VMg o div (o7 U5V )gy) . 0
{subject to the boundary and interface conditions}.
This yields T(un W J = T(u*,vs} in (LZ(Q”Z as j =eo and (a,b) sT(u*,ve*).
Therefore T is kj kj acontinuous and compact mapping from M into M and
Schauder's fixed point Theorem implies the existence of a fixed point of T
in M. g

Note that , has jumpdiscontinuities along r., isl,...,N.

For the carrier densities n and p we get from (3.29)(a),(4.6)
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=1

L0 v0fhastii -0 /oPeastid

2 2

Therefore the a-priori- estimates on u, v yield

'3 [R"] | 3 A
D +0(8 explemrm@X_1yin 2, if Dz >0
DFU;——)) i a;

A= N in L™(q)
4 . .
016 axpi—mMax ina, ifDlz <0
Dk-jTF—-)) i ﬁi
and
o(s? Unax! ) if D 0
exp(——U?——))1n 2y 1 3.2 .
- ! in L (Q)
P 1 4 'Vmaxl . )
-0 +0(S exp(—U?——- )yin a, if Dlii <0
If

d4exp(——ﬂﬁil }yis small ('low injection condition') then the electron density in the
Zero space charge approximation is close to the doping profile in n-regions and
close to 2ero in 9 regions while the hole density is close to zero in n regions and
close to the negative doping profile in p regions. n regions are depleted of holes
and p-regions are depleted of electrons.

We now investigate the behaviour of ¥,d,v 2s & -0. We assume that there is exactly
one Ohmic contact Ci in every ai for i20,...,N and that no two n (and no two p)
regions have a joint boundary, that means

(4.10) sgn 01, = - sgn Oi, i=l,...,N.
RS 5

holds.

We define the functions

1
B E ,
e “Tin ay 3f Dz >0 (n-region)
- R 9
(4.11) i, - { o |
uy, Im oy if D;ii <0 {p-region)
where u__ solves
01
(a) div (- UVGO) =0 in 2,
{5y w7 . . 0
(4.12) ) )‘1n&:“1s uaa )
- ; '7}
e uo‘C; s e
(d) [“o]iﬂi—%; =0
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and y

. e in a; if Dig <0 (p-region)
Yo -{ i

v . in R, if 0l3 >0 (n-region)
i

where v ; solves

(a) div (év&o) 0 ina

-,

(b) ‘7\7 [ ] s
o 3“iﬁ€3“isuaﬂos)
(4.14) UTL
(¢) VO;Ci = e
(d) [uo]301~an' 0 .

The condition (4.10) implies that (4.12)(d), (4.14)(d) give Dirichlet boundary
conditions for u°1, 301 resp. by using (4.12). The problems (4.12), (4.13) have
unigue solutions “01’ v 0i €M (Q;) (see Xawohl (1978))assuming that

(4.15)  Dyz e ch'(A), a0,

1

We prove

Theorem 4.2. Let the above mentioned assumption on 2,0 hold and assume that 33 fulfills
the assumption of Theorem 4.1. Also assume that

4 U max
(4.18) v = 3 egp(dm?x U— )(exp(—-U———) -1l) <
where yand Saresufficiently small (depending on D, Qy .-« Ay only) and that
T €L{ny))2, W, €L(a;))nolds. Then the
reduced problem (3.2), (3.9), (3 12)(b), (3.17), (4.1) has a locally
unique solution (U,v) e(Hl(n)) which fulfills

(4.17)(a) G = J°+0(y) (b)y Vv = G°¢0(v)
and
Ul
i 1n(1) . 0 0(y~$ Yime Q if Dfsi > 0
(4.17)(c) & = ‘
5-5)« ¢Ov+s)1nn if Dz <0
35

in L'(Ji). The estimates are uniform in ,Uﬁl {as long as (4.16) holds).

Proof: We assume that there are only two differently doped regions G50y separated by

© and that D's <0, D=z >0 hoids. The generalisation (under the given
3, 2
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assumptions on 9 and D) to more than two differently doped regions is straight

forward.
We set
1
j G=ly v €, Ve vE,
7}
i tn( D) + ot in g
P v » € #{ ;z U? !
] Ug

2
In(dy) » 0 in a

and compute Ew from (3.2)(a)

;’ n [R.’__U___”)*“‘“" in 2,

1
(4.18) €, E (E E .8) = { fﬂeﬂ(u;}“

‘ y
; [ZDexo P
{ T

L In

e ——— ———— in 420
0+V02»45'qu

y -
-

Then we rewrite (3.2)(b),{c}), (4.1)(a), (b) as L

E
aiv {De %Eu) =0 in3

"1
_ Yorh g .
(4.19) div S‘e Uy t=g) e (VEu ’vUﬁ) U- 0 in '\‘o
!
£, 0
i, 4§ TUT 1 - . -
e, 1 =0, De E <t/ ) (- w)(7E +90 3Tt . FEN . 2 0
g u (1) b} u 0! oy 30, Uan
where fjr (a,b) = lim fyx,y) for (a,b) € and
(1) {x,y)=(a,b)
(xs.V)eﬂi
[ % )
‘ ’ -E' .
div \64e T é e b(?Ev¢Vvo)} = 0 in 2y
. " .
(4.20) div {-0De va) = 0 inoa, Uo'ul
- oy -€
4 Tl v s e -
(e, 1 =0, -De 9,7t . 5 e )e (v€ +ov )Tt ®E -7 =0
vis & (o) \D v "o ) an, uan
i' We define theoperator F_: (Hl'z Ui, uan ))2 - wauan, uon ))2).
. 5° o' “is 0% ((Hy (R uang ‘os

(the superscript '*' denotes the dual space} by
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E,(€y,E5,8)
De ¥ 1°72

(4.21) Fs(El'E?(”x”%) VEI-Voldxdy

Lt

U_-v
oY1 :
E, (E1,Ep.8) _
s4e 0T (e ¥ 172 (VE,+75 ) Vo, dxdy

a, -

‘EW(El'EZ's)

+

nf (-0)e VE, - V@,dxdy

0
—U-u°'ul E (E,.E,,8)
- ,( ’ s 8 -
v 5% UT ﬂf% e v 1772 (VE,+9V ) Vo, dxdy
1

far all (0y.0,) € (Hiauaa, van 2.

£ 1 = £ | = 0 yields F _(E ,E ) = 0,
“janc METH srruTy

that means Fs(Eu'Ev) 2 0 is the weak formulation of (4.19), (4.20). In the sequel
we equip (Hg(ﬂ U’Qis uaa‘zos))2 with the weighted norm

UO-U

1
iR Fon? e f1of idxdy v 5% U7 19k, 120nay
8,1 2 ,
Uy-Yy
o [1oF,i2axdy + ste VT [ 19F,1%axay
Q Q
° 1
and corresponding scalar product. The dual space is equipped with the induced functional
norm 1. 1! ; 1-) Because of (4.11) - (4.18) and (4.18) F_(0,0) =0 holds and
L]
(4.21) ”Fs(°-°”s.1 = 0(«x)
iy

;
where « = v/exp(}max-TH-). The bilinear form obtained by linearizing F° at (0,0} is
given by T
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-

Up-ty
fa 4 : . 4. 77
Li2pesp091095) 2§ 0V7, " Todxdy + ST T & (}U)(vql~vwl
3 1,
-Uo
oo
A UZVUO-Vol)dxdy

+
J (-O)Vaz'szdxdy + 45 e qfé(ch-sz
“1

c o

1
+ eU?aIVJQ-sz)dxdy.

To show that L is coercive we estimate

. 7 . 2.1 2.
15,95, 7a,1 %r;;VUoinw'J(m|v°ll + 2 13,1%) and choose w such that

UQ

Tr 1

< Vz N G
Lo e H'7U°n|w'nu 2 5

o l|2 2

Moreover 9,1l 3 ¢ ¢ [ (vc,i“dxdy holds
vy ° q 2

and we also require | -%;cs°e Uy nwﬁollaﬂ/(min 101)
{see [4.16)) and the smoothness assumption oﬁ ?Go imply that there is a y > 0 such
that both inequalities hold. By proceeding analogously with sIVGo'VaZ {in the last
integral of L (31.32.51.:2)) the mixed terms are estimated below c:cn that L is
coercive with acoercivity constant independent of & and (U, /Ur!. Therefore

2,5 L The small f
v 2o e sma ness o Y

8.2 -1
( 2) II(DE £ F,(0,0)) ity 4¢ const
u'v
(DE £ denotes the Frechet-derivative with respect to (Eu,EV)). Since DE £ F5
ou'Ty . . . . ’
is uniformiy Lipschit2zcontinuous the implicit function theorem Y Y

implies the existence of a locally unique solution Eu'Ev of Fs(Eu’Ev) = 0 for §
sufficiently small and

HCELE My o = 0(x)

holds. Then
(4.23) HEulH 2.: + ”EviH.Z.ﬂ = Q(«<)
is easily established by considering the problems(4.19}, (4.20) in 2, and 2,

separately.
To obtain an L®-estimate we write (4.19) as
1iv (avE ) = div f

with
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P

g mn 91

-

~

U -y ' £ .-
64exp(—%——1) 5 (e ”-1)7u° in &,
T

{note that we used (4.12)(a) to obtain f in this form). The maximum principle in the

form given by Gildarg and Trudinger (1977, Chapter 8, paragraph §) yields (since
o

feEL (qa) and Eu‘anc s 0)

£
. ..
WEJ, o € C(n,q)quoll_lno e ¥-1

o 8 Qtﬁo

for any q>2. The embedding theorem gives

i Eu”a, € CDnstJWUOIL IIEWH

Q "2 1.2.9°

and (4.23) implies (4.17)(a). (4.17)(b) follows analogously and {(4.17)(¢c) is obtained
from (4.18).9

The implicit function theorem could not be applied if there is an n or p regicn

without a contact since u, or v, resp. is not uniquely defined in this region. The

linearized problem has a zero eigenvalue then.
{3.31) and (4.17) impiy
j- Iy = 0(9), Jy = 0(a)
The reduced current densities are small close to thermal equilibrium.

Theorem 4.2 can easily be extended to the case that two n(or p) regions have a joint
boundary . The limiting function for ¥ (see (4.17)(c)) remains unchanged.

8) The Internal Layer Probiem

We now investigate the layer problem (3.5) at a fixed curve T of discontinuity of O
and prove:

Theorem 4.3 . Let the assumptions on D on 2 given in Theorem 4.1 hold. Then (for given
b,3,v) the internal layer problem (3.5) has a unique piecewise monctone
A
solution » for every s€T which fulfills for every 0<ws <1

A ~

(4.26)(a) 19it,s)1 S Cexp((l-w)- VA (0- s#(0-5)t +0,v15 (0+,5) ~7{0-,5)1)

4 for t<-E, VI3 (0%,s) -3 (0-,8)! and
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/T
n

(6.26)(5) 15(x,8)0 € € exp( (~1eu) /R (0w,8) 45 (00,5) v + 0,/1370¢,5)-7" (0-,5))

for < <va46r(0¢.s)-5r(0-.s)l where

€, 10, +E, >0 depend on « but not on [J]r. Also v €C((==,0)xI)NC((0,®)xI) holds

Piecewise monotone means monotone on (-»,0) and on (0,=).

We do not give a proof for Theorem 4.3 since it follows completely the lines of the
proof of Theorem 3.3 in Markowich, Ringhofer, Selberherrand Langer (1982 b). We only
remark that

(4.27)  o(0s.s) » 0L0-5) (87(0+5)-87(0-5)) ¢ 3T(015)-Ri(0¢.5)+ 57(0-,5)257(04,5)
07 (0+,s) - 0T (0-,s)

(4.28) S(0ers) o DL0+08) (37 (0v,5)-i"(0-15))e #{0-,s)-Afours) + §(0-,5)-3T(0x,5)
D" (0+,s) -0 (0-,s)

holds.

The estimates (4.26) can be used to compute the width dr(s) = di(s)+d{(s) of the
internal layer of y at s€r

A

(4.29)(a) di(s) = O

\ B N ‘
In [__ } * /lar(o+.s)-5r(0n5)jj
rﬁr(0+,s}+5'(0+.5)

SAT(0%,s)+p (04,5

/[

AT

(4.29)(b) d°(r) = 0 i /|1n

Y 0+,s)-$r(0-.sﬂ]
AT(0-,5)+p" (0-,5)\

A
[ -l
fnr(O-.s)+pJ<0-.s>}

where di(s) (d{(s)) is the portion of the layer width which is on that side of I for
which t>0 (t<0) holds. (4.29) is uniform in [51r . The width of the depletion layer
depends linearly on the squareroot of the potential drop accross the junction.

d,,d_ can be estimated by using the a-priori estimates on n, p, U and v. We obtain
’vmax’
(4.30) I0F $n+p <10 + 0(54e Ut ).

1f sgnD%O*.s) = —sgmﬁo-.s) (that means [ is a pn-junction)then [4.6) yields

107 (0+,s)-0(0-,5) ! o
7 -1n 37 (0,s)

(4.31) 2T (0%,s) =47 (0-,8) = 1n

Nmax!

- 1n §T(0,s) + o(ste UT .

{f sgn 0 (0+,s5) = sgn DT(O-.s) (v is an nn or pp junction) then [u]. is uniformly
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bounded as & =~ 0. We get from (4.29)

|Vma“
(4.32)  af(s) =0 (__._‘._ U\n v ste T
nT(0+,s) nf(0s,s)

& T

. ‘,/n[w’(ohs)gr(o-.s)l} . lvln;axl)

(if r is a pn-junction). An analogous formuia holds for df(s). The square root
drops out if T is an nn (or pp) Jjunction.

C) The Semiconductor-Oxide Interface Problem

Theorem 4.4 The problem (3.20), (3.25) has a unique monotone solution b (for every

q €3n°s) which fulfills for every D<cw<li
(4.33) 7(5.3) 1 € € exp((~1+a) VA (0,9)+37(C,a)o+ 0, /T5(0.a)

for o > E 19(0.q)1 where C _,0 ,€ >0
are independent of ¥(0,q). Also

(8.34) 19(0,9) 1 € n(l?o(o.qﬂz.q). (b)  sgn¥(0,q) = - sgn¥ (0,q)

nolds, where n(°,q):[(0,o) = [0,=) is a monotonely increasing function which

fulfills

v

W(t-Q) ~
Vi2(0,9)+5°(0,9)

as t -0 and n(w,q) = o, nt(-.q) = 0.

Proof: From Fife (1974) we derive that there is a unique monotone solution of (3.20)

with given boundary value 3(0,q). At first we assume that §(0,q) > O.
Then ¥(p,q) fulfills

60(0.0) 4o

(4.35)(a) o = f
;(th) ” 2.9

where
(4.35)(b) G(a,q) = Z(i’<0.q)e‘ - 5%(0,q)e”" -0%(0,q))dt
s 77(0,9)(e%-1) + 5°(0,q)(e”%-1) -~ 0%(0.q)a

holds (see Fife (1374)).
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Differentiating (4.35)(a) with respect to o and evaluating at o=0 gives the
equation

(4.35) -39(0.q) = V26(%(0,9),q).

Therefore the interface problem (3.20), (3.25) has a unique monotone solution
for ¥ (0,9) < 0 if (4.36) has a unique positive solution $(0,q).

For 3(0,3) < 0 we apply the same argument to -U and find that (3.20), (3.25)
has a unique monotone sclution for ?D(O,Q) >0 if the equation

(4.37) ¥,(0,0) = /26(7%(0.9).q)

has a unique negative solution ¥(0,q). From Eo(o,q) = 0 we immediately get
v(5,9) 0. A simple calculation shows that the function

H(a,q) = +2G{a,q

is decreasing for 3 € {-=,0), increasing for a€[0,») and H{+=,q) = H(=,q) = =
for every q 63905.

This settles the existence statement of the theorem and (4.34)(b).

The estimate (4.33) follows by proceeding as in Markowich, Ringhofer, Selberherr
and Langer (1982 b, Theorem 3.3). To prove (4.34)(a) we set

2
202 %2700:9) 4nd rewrite (4.36), (4.37) as
2

G(Z,q) = 3, I:= 3(0,q)

for fixed q. At first we investigate the root Z1 >0. Differentiation with
respect to 8 yields

38z sz <

Zl(o) € (0,o) implies Zi(c) € (0,»), which 15 a contradiction. Therefore Zl(a) zm

and é;(m,q) = m»implies Zi{m] = 0. The root Z, <0 is investigated analogously
(Zy(=)=-, Z5(=m)=20 hold).

Tay'or expansion of G for 2 -0 gives the behaviour of Z close to zero.o

The width dé(q) of the 1nterface layar is v
; max

) T,
i e ViT0.e) s sTe

14.33) d,509) = 0 ;_:_.____ ‘ _7_:_____
Wwi07(0,a) a’ Vi (0,a) i
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The first order term of the expansion ¢ *+ § + ¥ cannot be expected to approximate
the solution of the singu'arly perturbed problem close to the point § wilh
{(sy = T nsﬁos since $(0,+) is discontinuous at q = $ unlass %(0,-) = 0.

Generally the first order term can only approximate the solution outside a small
sphere (with radius at least O(x;lnA{)) around S.

Theorem 4.4 can beused to compute an estimate for the threshold-gate-voltage, thatis the
gate-voltage at which stron; inversion {the minority carrier density at the inter-
face is at least as large as the absolute value of the doping profile) starts.

To demonstrate this we take the n-cnannel MOS transistor as shown in Figure l. n is
the minority carrier density inthe p-region nl, therefore strong inversion occurs if

3(0,q) > 10%(0,a)!

holds for some q € 30 _. Away from r,, T, we get {up to O(Ar)-terms) n?(0,q) =
~ 1n7(0,9)e ‘(O'Q such that the strong inversion condition is

7(0.9) 3 1n (-»-iz—-\

13 Gy (0,Q)
(0,q) / INY
(3.38), (4.37) yields o
max
~ 2 ~ 54e 07
({"’D{ovq))vn-;> = ZG(Jva<0-Q)9Q) s 2 ""—3"—‘_"—'—
t ' 107 (0.q)1t
3 'y
+210%(0,q)11n U891 4 210%(0,0) 12
5 =
and from (3.26), '2.8)(b) we derive that strong inversion occurs if
ﬂImaxl max|D|
UG 2 Ue + des 64e + Zmaxlolln ! +2max|D| liﬂill
U, tup e —nrrmrr-“ h Ty 2, Up
holds.
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5. ASYMPTOTIC REPRESENTATION OF SOLUTIONS

To demonstrate the validity of the expansions we show that if the device is in
thermal equilibrium, then the solution of the singularly perturbed problem is close
(in L*™(Q)) to the zeroth order term in the asymptotic expansion (3.1) assuming that

A is small. For simplicity we assume that there is cnly one C®-junction ©

(g = A ur unl).P intersects with 3a in two points S;,S, which have positive distance
from 3 - Also there arespheres with radius o centered at S1 and 52 within which T
and 3 are perpendicular lines.an 1is assumed to be as in Theorem 2.2. Moreover no
semiconductor-oxide interface occurs, i.e. o (!

A
We have to overcome one technical difficulty, namely that the layer solution w(%.S)
is only defined in an open w-strip Su(r) about . [n order to extend this function to
a we choose d¢C™(R) with

s(t) = 1 for teE(-5.3], 3(t)a0 for (tizu

and set

© s L, s (x,y)) 3 E(x,y)), (xay) €S ()
(5.1) TR sixLy)) o4

o, (x,y) £S5 (T)

(see Fife /1974).
We prove:

Theorem 5.1 Let © and 2 fulfill the above stated assumptions. Also D is piecewise
constant, that means
0o in 2, .
0 = {Dl in % where DO.D1 are constants with D0 201. Then
(5.2) L(X,y,x) = uix,y) + we(EL%Lll , S{x,y))+ 0 (xllns(z).
5
holds if 1, \Hnslz are sufficientiy small and if the device is in

thermal equilibrium (i.e. Uk-O)

Proof: [n thermal equilibrium usesv el holds and '2.4) simplifies to

(5.3)7a) %4y = 25 sinhy =D in 2

subject to the boundary conditions
n ST,
s (5.3)(b) T,on . 2, ‘V‘?"C - ]n’iOHZ/D +43
i o L 52

-

e}

We set




(S5.4) v o=+

where the reduced solution § is given by (4.6)

= o 1n [02¥D%eas?
v —_—r

26

(5.5)
since Uuav el holds. $e is given by (§5.1) (Q(t.s) solves (3.5)).
Assuming that » is less than the distance of SI'SZ from 3, we get
(5.6)(a) °laﬂ = 0

c
and because of (5.1)

(5.6)(b) merily, =0
18

{(note that 7§ Al = 0 because O is piecewise constant and { is perpendicular to

).

anis

Inserting (5.4) into (5.3)(a) gives

2 2

80 = 26°-sinh (544 +0)-0 in S (7).
2

- A . S @, . 1 a 1 : .'A
(note that A(w*we)(\n the weak sense) is in L (1) and equals “2¥ et T%r“t since ¥,v
do not depend on S and since the interface conditions (3.5)(c§,(d) nold). Also

A A
(5.7) Voo v At ¢

A
(5.8) Cav, + 220 » 252 sinn(§ + 8, +9)-0 in S (0 -5 (7)
2
and
(5.9) 1200 = 26% 'sinn(i +@)-D in a-5_(r)
holds.

By using the internal layer equatians (3.5)(a),(b) we rewrite (5.7) as

- A
(5.10) \ap + 25%cosh(ivi)e + s2e¥ TV (e9-p-1)

- A
- 52TV (e %0e1) - Al At in S (1)

2

and by using (3.2)(a; (with Gevel] wa obtain f=om (5.8}, (5.9)




140 b

Al il

- A
5.11) Zao = 252 cosn(iey Jo « s8avrie . pu)
- A
- 58TV Ve (e 9p-1)
A A
- .y s
- s%e7V(e &1y « s%e¥(e ©-1) - a%afy in s (1) -5 (1)
H
(5.12) \Zao = 252cosh(i)e + s%e¥(e®0-1) - s2e V(e ™%p-1) in 0 - S (1)

Therefore we have a problem of the form

(5.17)(a) a%a0 = 25%0sn(3+0)0 + Flo.x,y,1,8) in 2

(5.13)(b) o,y =7ed,. =0
e =

wnere F fyifills the estimate

(31
—
=y

A
FFlouxay daf)i ¢ C(K)(oz*nweuqs (7)-5 e N, o
-

Far lpisk witn Cox) 1ndependent of 3 and .
Team Markowich, Ringhoter, Selberherr and Langer (1982b) we get

bolil, g € max\ly_(O*)l.lwt(O-ll) £ 0, ~TTnsl

1 £
HA'UEHD'SM(:.)_S roy SDBTZTI expl :\)
2
wnere D‘.DZ.D3.E > 0 are independent 2f  and 5 a5 4 =0+, i = O+,
This yields
(5.14) F(0nkyaias) ! € Cyik) ol « 0TI

far  ypitk, vi.5and qlns| sufficiently smail.

We 70w prove in L™-gestimate for tne solution 2f *he problem
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2 - A . .
(5.15)(a) L ,w o law - 2sicosniien dw 5 Flxuy) in

(5.15)(b) w = gwoal = 3

‘iﬂc ;a‘.s
with feL¥(a).

Therefore we define the function

{5.16) Yy(x,y) = L+ exp (- —2—5——-— tz(x.y)) 8(t{x,y})
\ 211ns:

with L>0, 23>0.

A straight-forward calculation (analogous to the procf of Theorem 4.3 in Markowich,
Ringhofer, Selberherrana Langer (19825)) which 7eavily relies onthe estimate 76.26) shows
that =he constants L,3 can be crosen independently of .,i such that

const
L\‘stl‘x,y) s - TIRET ! (x,y) €

Yoo o b Wy tiag, 0
"‘C 1s
hoidgs. This 1mplies that vy can be used 3s comparism function and the maximum
principle yields
(3.17) LA P Filng| LRAII

for the solution w of (5.15) (F >0 1s independent of 3 ,5).

o) e

2 ) \ .
Now we define ine onperator M:4 SaL“(:) where A\ 5 ° (9 € Lz(n;llhonm 2 <€ GAiiasi

with G >0 independent of » and 5 such that o=M(g) is tnhe solution of

2 - A ;

T30 2 2 coshlysuglo + Flaus,y,au3) in 2

® . 'Vw'rl i 2 .

R Ns
1
A Fixeg-point ©* of M is a weak solution of (5.13), since Range {M)cH “(2). M is
¢continucus and therefare ds3col1’'s Theorem implies that it is compact. From the
estimages (5.14), (5.17) we canclude that M map A, . into itself if & > Ly {k)F and
2

i inslis sufficiently smail.Since A S is closed and convex in L2(3) Schauder's fixed
point theorem yields the existence o< a solution of {5.12) and {5.2) follows. As

mentioned before %this salution s ynigue {1n Hlfz)). -]

“neorem 3.1 can eastly de extended to doping prafiles which are not piecewise constant.
Aad]

o) (Y if oS, 3& depend
9n 5. This c2n be Jvercome by modifying tre interface conaition (3.5)(d)

K

The aroof 9roceeds aiong tne sime lines ascept At Ali+s

1
b
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appropriately(see Markowich, Ringhofer, Selberherr and Langer (1982b) for the
one-dimensional problem). The extension to more than one junction is also straight-

forward.
5
A main assumption of the Theorem is that \iln| 4 is small. (2.6) implies that
2
1€3qn,
(5.18) s . 02 2, g
s T

holds. For realistic devices 5 vzzo.l. §herefore § can be regarded to be at least

propartional to i and AInSI% ~ A1Tnal2 as A =0+,
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b. NUMERICAL RESULTS AND EXTENSIONS

We present numerical results for a two-dimensional diode. The geometry of the device
is depicted in Figure 2.

1017 en”3 2,

<107 ¢en3 in g

L 4

b3

1 s 5x10 3¢m
Figure 2. Diode

(2.6) gives 1% « g% = 1077,

The computations described in the sequel were performed using a specialised finite
difference discretisation method completely based on the singular perturbation
approach (see A.franZ et al (1982)).

Figure 3 showsthe potential in thermal equilibrium (UQ-UI-OV). Figure 4 shows the
electron density n and Figure 5 the hole density p. As proven in Section 4 the
n-region 2 is (almost) depleted of holes and the p-region no is (almost) depleted i
of electrons. The internal layer at the pn-junction T is clearly visible. Figure 6
shows the grid used for the discretisation (which was generated automatically by !
the code). An accumulation of grid points around the pn-junction T (in order to
'balance' the large derivatives of the solutions in perpendicular direction to ;)
is evident.

Figure 7 shows the potential distribution for ~10V applied bias (i.e. U-Uo-Uls-IOV).
The width of the depletion layer increased (compared to the equilibrium problem)
(see (4.32)).

The electron density n for Us0.75V applied bias is depicted in Figure 8.
s‘exv(iUl/UT) ~10°1 (we are dealing with a low injection iase) and n visibly '1ifts
off' from zero in the p region (the theory predicts A=0($ exp(1UI/Up)) in2 ).
Figure 9 shows the hole density p for Us=lV applied bias. Now 6‘exp(|Ul/UT) ~2.35 xlO3
holds (high-injection). p>>1Dlaway from the contact in the p-region 2, and the
n-region 3, is also flooded with holes. The absolute value of Jp, that is

(Jpl . V(J;)z¢(dﬁ)2 , is depicted in Figure 10. The 'peak’ 13 the edge of the contact
Co represenrts the singularity at intersections of 32 and A, o as discussed 1in
Theorems 2.1, 3.1. This phenomenon is physically interpreted as current crowding at

contact edges.
.
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In this paper we only dealt with abrupt doping profiles (that means 0 has discontinuities
accross junctions). This assumption is actually a simplification since 'physical’

doping profiles are exponentially graded near junctions. The singular perturbation
approach can be modified to accomodate this more realistic situation by setting

(6.1)  Dix,y,a) = B(x,y) + D(REdl, 5(x,y))

A
{close to a particular junction r) where § is abrupt and 1D{t.s)! & E(s)exp(-F(s)1)
holds with E,F>0. 0(.,.,rx) is continuous along © for 1 > 0.

A
Then 0 appears as 'inhomogeneity' to the internal layer equation (3.5)(a),(b). Other-
wise the preceding theory remains unchanged when § is substituted for D.

As mentioned in the introduction we neglected recombination-generation of carriers in
our model-equations (l.1}). The recombination-generation rate R in (l.1)(b),(c) is
(in the most general setting) a nonlinear function of n,p,J,,J and vu (see Sze (1981)

p
for details)

The existence proofs (Theorems 2.1 and 4.1) are affected by the introduction of |
recombination (since they usSe the linearity of the continuity equations in u and v).
The qualitative behaviour of solutions is pretty Mmuch wunaffected in low-injection con-
ditions since Ra0 in ihermal equilibrium. In high-injection conditions however
recombination generation has a decisive impact on the solutions and cannot be neglected
(see Schutz, Selberherr and Potzl (1982) for a numerical study of 'avalanche' effects
in MOS-transistors).

Tne validity proof for the asymptotic expansions in non-equilibrium is an unsettled
1ssue. For the one-dimensional semiconductor prablem Markowich, Ringhofer, Selbernerr
and Langer {1982 b) gave a proof (with estimate of the remainder term) for a diode
close to thermal equilibrium. There is numerical evidence that the asymptotic
2xpansions 'represent’' a solution even for large applied voltages (see Markowich,
Ringnofer, Selberherr and Langer (1982a,b)), but no estimate of the remainder term
for arbitrary bias is known so far.
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