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SECTION 1

INTRODUCTION

This report describes the application of a large-scale numerical wave

solver to the time domain study of seismic wave phenomena in filled basins.

The solver uses an explicit finite element algorithm designed for fully vec-

torized execution on the CRAY-l, permitting the solution of discrete hyperbolic

problems on a scale at least one order of magnitude faster than conventional

scalar machines allow (e.g., CDC 7600). This computing power is sufficient

to analyze large 2-D inhomogeneous sections of the Earth's upper crust with,

for example, a minimum of 2 Hz frequency resolution of Rayleigh and shear

waves in a 50 km x 7 km grid (120 x 1000 elements). Such geologic models are

essential to the present study of body and surface wave propagation in realis-

tic basin structure, particularly the questions of edge effects, Rayleigh wave

interactions, and wave coupling between basins on either side of a mountain.

Because large scale computing is fairly new, the numerical modeling aspects

of the problem are described in detail with emphasis on wave solver mechanics.

In Section 2, a set of four basin configurations are analyzed for two load-

ing conditions and two velocity functions. The three single basin models

include a steep faulted flank, an echelon faulted flank and a dipping flank. A

larger scale basin-range-basin model completes the set. Full-field synthetic

seismograms are displayed and interpreted for each model. In Section 3, the

finite element theory is described for a cartesian computational mesh. The

emphasis is on methods of reducing the operations count to minimize computer

processing time. In Section 4, the calculations and theory are summarized and

conclusions drawn.

---



SECTION 2

FULL-FIELD SEISMIC RESPONSE IN BASINS

The two-dimensional numerical calculations described in this section

include a layered halfspace model and three symmetric basin models indicative

of local geologies in the Basin and Range province of the western United

States. In addition a larger model of two basins separated by a mountain

range is used to investigate the degree of seismic coupling between basins.

Near-surface seismic velocity functions are constructed using typical data

compiled by Battis (1981) from a variety of Basin and Range studies. Velocity

gradients in bedrock are taken from Prodehl (1979), based on USGS crustal

refraction data. Vertical and horizontal surface loadings on the mcdel

centerline provide the seismic input, while vertical velocity seismograms

and particle motion plots are used to interpret response.

2.1 Geologic Models

The Basin and Range province is characterized by east-west lateral

extension, crustal thinning and uplift forming many parallel faults

trending north-south. The resulting topography consists of parallel, elon-

gated basins separated by narrow mountain ranges. The formative mechanism

is thought to be block subsidence due to extension, Stewart (1971), although

secondary block tilting may also be significant. A schematic illustration is

given in Fig. 2-1. The resulting horst and graben model involves high angle

faulting with typical dips between 45 and 70 degrees and fault throws on the

order of a kilometer or more. Average basin depth is 2 km, width is 15 to

20 km, and length is approximately 70 km. The intervening mountain ranges

are usually about 15 km wide and maximum elevation above basin fill may range

from 0.3 to 1.2 km. These typical data were compiled by Battis (1981) in a

study of the open literature on Basin and Range geology and tectonics.

-2-
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Figure 2-1. A schematic of the graben structure
caused by deep seated extension and block
subsidence in the Basin and Range province.

ItI

Figure 2-2. Nominal Basin and Range graben basin, 16 km wide
and 2 km deep with faulted flanks dipping at
approximately 60 degrees.
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Based on the above data, a nominal basin is assumed to be 2 km deep and

16 km wide, with normal faulted flanks dipping at approximately 60 degrees.

The length is assumed to be four times the width--sufficient to justify a two-

dimensional model of the structure for numerical analysis. Such a basin is

illustrated in Fig. 2-2 for the asymmetric faulting case. This cross section

suggests the models for numerical study shown in -ig. 2-3. The simple layer

model, Fig. 2-3a, establishes a baseline for response in the basin fill, with-

out edge effects. The basin models, Fig. 2-3b,c,d, provide three types of

edges--a single faulted flank (b), an echelon faulted flank (c), and a

shallow dipping flank (d) which is the limiting case of echelon faults. The- "

models assume symmetry across the basin axis in order to minimize problem i.

Some effects of asymmetry can be estimated from them. On a larger scale,

Fig. 2-4 shows the two-basin model with an intervening mountain range. HeJ

and width of the range are taken as 1 km and 16 km, respectively.

2. 2 Velocity Models

The graben basins have been continually filled during their development--

predominantly with alluvium from stream erosion of neighboring mountains, but

with significant ash and lava deposits during periods of volcanism. The sur-

rounding crustal blocks include a variety of sedimentary, volcanic, and plu-

tonic rock types. This situation indicates a highly inhomogeneous velocity

distribution for the basin fill and bedrock.

Basin seismic velocities are tabulated by Battis (1981) from studies by

Thompson, et al. (1967) and Healy and Press (1964). The average P-wave veloc-

ities and bounds are shown in Fig. 2-5a. Superposed on these is a linear

approximation to the average, starting at 2 km/sec on the free surface with

-4-



a. LAYER b. FAULTED FLANK

7 -

c.ECHELON FAULTED FLANK d. DIPPING FLANK

Figure 2-3. Layer and basin cross sections for numerical analy-
sis of edge effects. Basins are 2 km deep and 8 km
from centerline to edge.

BASIN -RANGE-BASIN

Figure 2-4. Two-basin model with an intervening meuntain range,
16 km wide and 1 km high.
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Figure 2-5. Velocity functions assumed for basin fills and
surrounding bedrock. Basin data compiled by
Battis (1981) and crustal gradients derived
from Prodehl (1979).
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a 1 km/sec/km gradient down to 1 km depth and a 0.5 km/sec/kIn gradient to

2 km where the velocity is 3.5 km/sec. This approximation ignores the low

speed surface layer with velocity betwetr. 1 and 2 km/sec in the upper 0.2 km.

Of course, the average data does not indicate lateral variations in velocity

across the basin due to differences between interior (flats or playa) and

perimeter (alluvial fan) deposits; nor does it include volcanic anomalies

like intrusions, old surface flows, etc. These will be neglected here in

comparison to the lateral change between alluvium and bedrock properties at

the basin edge.

Bedrock seismic velocities have not been studied to the extent that

basin velocities have; however, estimates from in-situ measurements of

exposed bedrock indicate a range from 4.7 to 5.1 km/sec, Thompson et al.

(1967). The variation of bedrock velocity with depth is not known. USGS

crustal refraction data in the Basin and Range, reduced by Prodehl (1979)

yield a crude estimate of the upper crust gradient at 0.4 km/sec.km. This

is based on a surface velocity of 4 km/sec varying smoothly to 6 km/sec at

5 km depth, from Prodehl's velocity function drawings. The actuaL gradient

is probably not constant and could easily be half the above value, assuming

a surface velocity of 5 km/sec for example. The resulting upper crust veloc-

ity model is shown in Fig. 2-5b. At 2 km depth the P-wave velocity ii

4.8 km/sec rising linearly to 6 km/sec at 5 km depth. Below 5 km the data

show a very low gradient, hence a constant velocity is assumed. A piecewise

constant model is also drawn in the figure, with 2.8 km/sec in the basin fill

and 5 km/sec in the rock. This choice of basin velocity gives the same

vertical transit time as the piecewise linear model.

The remaining seismic data needed for analysis are S-wave velocities

and material densities. A good S-wave approximation for the deeper basin

-7-



fill and bedrock is the Poisson assumption, v = 0.25 giving a ratio of P to

S velocity of Vp/VS = v'. For simplicity, this will also be used for the

shallow basin fill, although data show that the ratio is generally higher

for the weathered layer. Densities are assumed to be 2.2 gm/cm3 for alluvium

and 2.5 gm/cm3 for bedrock. These values are probably within 10 to 15 percent

of the actual depth dependent densities.

2.3 Finite Element Models

The geologic cross sections in Figs. 2-3,4 are modeled by cartesian,

plane strain finite element grids. A 7 x 20 km model for the echelon faulted

flank case, Fig. 2-3c, is illustrated in Fig. 2-6, for example. Boundary con-

ditions are such that the surface is traction free, the left side is a line

of symmetry, while the right and bottom sides are transmitting boundaries

(normal impedance type). Only seismic line sources on the surface are consid-

ered, consisting of normal or tangential tractions in a Gaussian distribution

over a few nodes about the model centerline. This spread of surface loading

is necessary to minimize nonphysical element deformational modes associated

with single node forcing functions.

Element size depends on the miminum wavelength to be resolved. From the

velocity functions described above, clearly the slowest phase in these models

will be the Rayleigh surface wave, for which V 1 0.919 V > 1.06 km/sec
R S -

(based on VS  V / = 1616 km/sec at the free surface). Assuming the maximum
p

frequency of interest is 2 Hz (1/2 second period) then the minimum wavelength

is 503 meters. The minimum number of elements per wavelength is no less

than 10, whence the maximum element size is 50 meters. To gage whether 10

elements per wavelength is adequate, it is sufficient to compare maximum input

frequency to the minimum natural frequency of 50 meter square elements. From

~-8-
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Section 3.5, fN = I/TN = Vp/(8.89Lx) 4.45 Hz, hence the input of 2 Hz is

less than half the element ringing frequency and adequate for modeling purposes.

Because the normal impedance type transmitting boundary conditions used

here are not perfect, some energy will be reflected back into the grid. To

minimize the possibility of confusing reflected phases from the boundary with

refracted phases, elements are graded in size near the boundary to introduce

dispersion and scattering. Therefore, elements are made square in a 3 x 16 km

strip including the basin in Fig. 2-6, but are graded by 3 percent per element

to the bottom and right boundaries yielding a maximum element aspect ratio

of 3 there. This is a crude solution at best to the transmitting boundary

problem and will be evaluated later.

The resulting finite element models to be solved on the CRAY-l contain

36,000 elements for each of the basin flank cases shown in Fig. 2-3, and

120,000 elements for the basin-range-basin model in Fig. 2-4. The explicit

finite element code used (for which the theory is described in Section 3) re-

-6
quires two microseconds (2 x 10 sec) to evolve each element one timestep.

The timestep is taken as 80 percent of the minimum element transit time which,

-3
from Fig. 2-5, gives 6.7 milliseconds (6.7 x 10 sec) for 50 m elements. Finite

element run times are chosen to propagate the free surface Rayleigh wave across

the model (approximately) requiring 1500 timesteps for the constant velocity

flanks, 2000 steps for the variable velocity flanks and 5000 steps for the

basin-range-basin case. Multiplying number of model elements by number of

6 6 8
timesteps gives 54 x 10 , 72 x 10 and 6 x 10 element-rimesteps, respectively,

for these cases, requiring 108, 145 and 1200 seconds for their execution.

2.4 Synthetic Seismograms

Model response to the surface traction inputs is recorded at many output

points over the free surface, and also through depth at selected ranges.

-10-



Only surface response is examined here, however. Because the model is linear

(small displacements), it suffices to use a Green's function formulation, i.e.,

the original source time function is a generalized function (delta function,

step, etc.). Any desired time history may then be obtained by convolution

(Duhamel superposition). Of course, frequency resolution is no better than

the original finite element grid will allow. Thus, from a single finite ele-

ment run, synthetics are constructed for any source time function. The effect

of instrument response, if necessary, is included by a second convolution. A

change in source type or addition of new structure to the model requires a new

finite element run.

Before examining model response, some comments on interpretation are in

order. The suite of synthetics typically shows a number of phases identified

by their correlation in space and time from one trace to the next. There

are a variety of tools available to aid in extracting quantitative information

from the synthetics. One is a correlation function to track phases (station-

ary phase points) automatically yielding travel time curves, phase velocities,

etc; and another is beam-forming to determine the direction of incident waves.

In the following, only qualitative results (visual correlations) are discussed

but it will be clear that quantitative tools in conjunction with finite ele-

ment solutions offer major advantages. Another comment concerns the effect

of structural modifications in the model. These are easily found by subtract-

ing the original and modified suite of synthetics, showing seismic influence

independently of the complete seismogram (which contains a variety of strong

phases masking subtle structural effects). Applications include effects of

local changes in wavespeed due to inclusions and cavities, corner diffractors,

etc. Finally, it should be recognized that detailed interpretation of seismo-

grams requires a ray tracing capability in inhomogeneous media. Therefore, to

-Ii-



quantify aspects of the following visual interpretations, a two-point ray trac-

ing analysis would be useful and some will be described in the final report.

2.5 The Layer/Halfspace With Constant Velocity

To establi-h a baseline for subsequent basin analyses, it is useful to

start with the simple layer model loaded by normal surface traction at the

origin. This first calculation assumes the piecewise constant velocity func-

tion in Fig. 2-5b. The model and vertical velocity seismograms are shown in

Fig. 2-7a. The Green's function is convolved with a 2 Hz wavelet for these

synthetics and amplitude is normalized by the Rayleigh wave maximum on the

second trace, 300 meters from the origin. The dominant phase is clearly the

Rayleigh wave and to see the body waves each trace is multiplied by 10 and

truncated as shown in the upper suite. Data was collected at a finer spatial

increment but the 300 meter spacing in the figure is convenient for visual

interpretation.

Slope of the Rayleigh wave arrivals (time-distance curve) in Fig. 2-7a

yields a phase velocity of approximately 1.45 km/sec, which is 2.4 percent

lower than the theoretical value for a halfspace of the layer medium (basin

fill) only. Because the wavelength is 0.743 km (providing 15 elements per

wavelength) the 2 km interface is 2.69 wavelengths below the surface, hence

the surface wave is barely affected by the faster halfspace. The .2.4 percent

discrepancy between exact and measured phase velocity is caused by the dis-

crete finite element model--a combination of discrete data (15 elements per

wavelength), the lumped mass approximation, and reduced stiffness of element

bending modes.

Body waves are much lower in amplitude and more complicated to interpret

than surface waves. The body wave arrivals in Fig. 2-7a are a summation of

direct waves in the layer, reflected waves from the interface and head waves.

-12-
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The direct P-wave grazing the surface is the first arrival out to a range of

3.35 km, after which head waves overtake it. The head wave begins at the

critical range of 2.71 km (travel time = 1.67 sec) and is seen most distinctly

as the very low amplitude first arrival beyond 9 km. Reflected waves from

the interface follow the direct P-wave and are seen in the range from 0 to

1.5 km with peak amplitude arriving at about 2 sec (first arrival at

1.43 sec.). This arrival is obscured by the Rayleigh wave from 1.5 to 4 km

and reappears at 4 km out to 8 km or so, but beyond amplitude drops consider-

ably. The change in amplitude is caused by constructive interference of

direct, reflected and head waves in the range from 4 to 8 km due to closely

spaced arrival times. 3eyond 8 km the arrivals are separated in time and

do not interfere significantly.

The S-wave phases at any range follow the same travel path as correspond-

ing P-waves (because V p/VS is constant over the model), but have travel time

,T longer. They are obscured by the Rayleigh wave out to 8 km and are diffi-

cult to pick thereafter, probably because of constructive interference by

* P-wave multiples. This interference begins to form a ducted Rayleigh wave

beyond 9 km (starting at 6 sec.).

Reflections from the model boundary, although minimized, are still in

evidence, particularly near the origin aL 4 and 8 seconds. These dispersed

wavetrains are principally reflected from the graded elements rather than

the boundary itself, and their influence downrange is difficult to assess.

However, based on the absence of clear reflected phases prior tc the Rayleigh

wave arrival, the boundary reflections downrange appear to be minimal. Behind

the Rayleigh wave this may not be the case.

2.6 The Layer/Halfspace Weith Linear Velocity

The second layer calculation uses the same finite element model as above

but with the piecewise linear velocity function in Fig. 2-5a; again loaded by

-14-
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normal surface traction at the origin. Normalized seismograms for the 2 Hz

wavelet are shown in Fig. 2-7b. The Rayleigh wave is clearly more dispersed

in this case, caused in large part by the velocity gradient--but also increased

by coarser frequency resolution near the free surface (10 elements/wavelength

rather than 16 as in Fig. 2-7a). The dispersion is readily seen by viewing

obliquely along the crest of the phase in Fig. 2-7b. At any range, phase

velocity, measured by the local slope of a line connecting stationary phase

points, is approximately constant; but time of peak amplitude arrival is

continuously retarded.

Body waves are seen to be stronger phases in this case due to the linear

gradient. The arrivals now consist of refracted waves in the layer, reflected

waves from the interface discontinuity and refracted waves in the underlying

bedrock. The piecewise linear velocity gradient curves the wavefronts and

rays and reduces the head wave to insignificance in comparison to the analo-

gous refracted wave. The predominant first arrivals in the range out to

4 km are refracted P-waves in the layer. Between 4 and 7.5 km the arrivals

are strengthened by constructive interference of reflected and refracted

bedrock waves in addition to refracted basin waves; and beyond 7.5 km the

arrival is predominantly refracted through bedrock (corresponding to head

waves in the constant velocity model).

Distinctive S-wave phases are more difficult to identify because of

interference by other arrivals--Rayleigh waves close-in and constructively

interfering P-wave multiples further out. Refracted basin S-waves are clear-

est at intermediate range, between 6 km and 7.5 km for example, with 4 to 5

second arrival time. Refracted bedrock S-wave arrivals continue smoothly

from the basin phase beyond 7.5 km but are preceeded by a P-wave phase

(between 10.5 and 13.5 km) and followed by an S-wave phase (both identified

-15-



on the basis of travel-time slope, i.e., phase velocity). These are probably

the result of multiple P- and S-wave refractions and mode conversion,

although a detailed ray analysis would be necessary to confirm this.

Comparing seismograms in Fig. 2-7a and 2-7b close to the origin shows

that reflections off the bottom model boundary are lower amplitude and less

coherent for the linear velocity structure. This follows because the element

grading effect is similar to that produced by the velocity gradient. In

addition, the curving of rays (energy travel paths) in the model turn much

of the downward propagating energy back towards the surface. Based on these

observations the grading and transmitting boundary conditions appear to

perform adequately for the linear velocity models.

2.7 Basins With Constant Velocity

Analysis of basin response will begin by considering the piecewise con-

stant velocity function in the three basin models. The models and 2 Hz

synthetics are displayed in Fig. 2-8a,b,c. Basin flanks are resolved in

the stepwise fashion indicated in Fig. 2-6. In comparison to the layer

results, the distinctive feature of these seismograms is transmission and

reflection of the Rayleigh wave at the basin boundary 8 km from the center-

line (line of symmetry). Comparing the magnified seismograms shows that the

steep faulted flank (Fig. 2-8a) is the most effective reflector, the echelon

faulted flank (Pig. 2-8b) is somewhat less effective, and the dipping flank

(Fig. 2-8c) is a relatively poor reflector. However, in terms of transmission,

the steep and dipping flanks are comparable, and both are better transmitters

than the echelon flank.

The body wave phases over the basin are composed of direct and multipli

reflected waves, head waves, and diffracted waves from the corners. At close
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Figure 2-9. Ray diagrams for the piecewise constant velocity
function illustrating the corner diffracted arrivals
excited by head waves on the interface (critical
angle = 340).
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range (out to 3 or 4 km) the first arrivals are direct P-waves and are the

same for each model. Later arrivals are masked by the Rayleigh wave. At

intermediate range, to the basin edge, the arrivals are modified by the flank.

For the steep flank the constructively interfering phases are virtually iden-

tical to the layer case in Fig. 2-7a. However, for the echelon and dipping

flank, the intermediate range arrivals constructively interfere over a shorter

segment on the surface but yield about the same amplitude.

Outside the basin the leading body wave arrivals are due entirely to

diffractions from the corners on the interface. They are caused by the head

wave traveling along the interface and exciting diffracted waves as each

corner is encountered. Elementary ray diagrams illustrating the process are

drawn in Fig. 2-9. Further magnification of the seismograms is necessary

to clearly identify these phases,as they are weak in the bedrock.

The later phases outside the basin are due to direct body and surface

waves within the basin interacting with the corners. The strongest is,of

course, the transmitted surface wave, but it is preceeded by a sequence of

weaker Rayleigh waves excited by the mode conversion of direct body, head,

and diffracted waves at the surface corner. These can be seen as leading

phases parallel to the transmitted Rayleigh phase, and are easily identified

by viewing obliquely from the origin along this strong phase. The most dis-

tinct example is for the steep flank in Fig. 2-8, where direct body waves

are partially converted to surface waves at the corner starting at 3 to 3.5

sec. Note that this mode conversion also excites body waves outside which

are too weak to see in the seismograms.

2.8 Basins With Linear Velocity

Synthetics for the three basin models with piecewise linear velocity

functions and normal surface traction at the origin are pictured in Fig. 2-10.
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In these cases, the seismograms indicate that steep and echelon faulted flanks

(Fig. 2-10a,b) are the more effective reflectors of Rayleigh waves, while

the dipping flank (Fig. 2-i0c)is a poor reflector. In terms of Rayleigh wave

transmission, the three basin flanks appear to be comparable. These conclusions

are consistent with the previous case of constant velocity basins.

The body wave phases within the basins are similar to those described for

the layer with linear velocity. The first arrivals out to about 4.5 km are

reflected P-waves in the basin. From 4.5 km to the basin edge, the arrivals

also include reflected and refracted bedrock waves, as well as diffracted waves

from the interface edges. However, the arrival sequence is difficult to inter-

pret from these relatively low frequency seismograms. Better resolution would

require higher frequencies, hence finer grid spacing in and around the basin.

In both the echelon faulted and dipping flank cases, the body wave amplitude

decreases beyond 5 km due to scattering and mode conversion of the refracted

P-wave by the shallowing interface. The predominant body wave arrivals follow-

ing the P-waves within the basin are refracted S-waves. These are clear in the

steep flank case (Fig. 2-10a), but are complicated by mode conversions in the

other basins. In the magnified seismograms for the steep and echelon faulted

basins (Fig. 2-10a,b), the refracted S-waves are seen to reflect very weak

Rayleigh waves back into the basin from the edge.

The body wave phases outside the basins are due to bedrock refractions,

interface edge diffractions and mode conversions at the basin edge. The first

arrival beyond the basins is the refracted P-wave. The refracted S-wave is

the next significant arrival and achieves its highest amplitude for the steep

flanked basin and is less pronounced for the echelon faulted basin, caused in

part by the interference of edge diffracted waves. For the dipping flank case,

the refracted S-wave is very weak, probably because of weaker P- to S-mode

conversion on the sloping interface.

-21-

IA



The surface wave phases transmitted outside the basin are caused princi-

pally by mode conversions at the basin edges. These may be body to surface

or surface to surface conversions. The strongest surface wave is the direct

conversion (surface to surface), as was the case for the piecewise constant

velocity model. In the present case, however, there are significant conver-

sions from S-waves to surface waves at the basin edge. These can be seen in

the magnified seismograms as the weak phases preceding the direct Rayleigh

wave phase and parallel to it. They are most coherent for the dipping flank

(Fig. 2-10c), probably caused by multiple reflection and conversions of the body

waves as they reverberate up the smooth slope. This mechanism is described in

a previous study, Wojcik et al. (1981). Conversions from P-waves to Rayleigh

waves are not indicated by the seismograms. Any conversion of surface waves is

obscured by the transmitted surface wave due to the low frequency resolution

of the model.

2.9 Basins With Tangential Surface Traction

The previous seismograms were calculated for a normal surface traction

at the origin. Synthetics resulting from a tangential surface traction are

illustrated in Fig. 2-11 for the three basins with velocity gradients

described above. They again show vertical velocity seismograms normalized by

the Rayleigh wave amplitude 300 m from the basin centerline (second seismogram).

On the centerline the vertical velocity is zero. The principal Rayleigh wave

reflects and transmits from the three basin edges, as described above in Sec-

tion 2.8, but the body waves and mode converted Rayleigh waves are significantly

different, both inside and outside.

Within the basin, P-waves appear as before but, as would be expected, the

S-wave phase is clearly stronger. This is difficult to quantify from the
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seismograms but is evident from relative amplitudes of the converted Rayleigh

wave (S-wave to Rayleigh wave) reflected back into the basin. This is seen

clearly in magnified seismograms for the steep flanked basin, Fig. 2-11a, and

is also in evidence for the echelon faulted flank. The converted Rayleigh

wave is completely absent for the dipping flank. There does not appear to be

a reflected S-wave in the basin in any case, probably because multiples within

the basin tend to obscure weak phases.

The principal difference between normal and tangential sources appears to

be body wave and converted phases outside the basin. For the steep flanked

basin, Fig. 2-11a, the S-wave from the interior converts to a Rayleigh wave and

a weaker, somewhat incoherent S-wave in the exterior. In contrast, for the

echelon faulted and dipping flanks, Fig. 2-11b,c, the interior S-wave is trans-

mitted as an S-wave, with little conversion to Rayleigh waves. These trans-

mitted S-waves are virtually nonexistent in the case of normal tractions. Of

course, a direct comparison of amplitudes between normal and tangential traction

synthetics is not valid because of different normalizations. However, relative

scaling of S-wave to P-wave amplitudes in each case confirm that the tangential

source excites much higher amplitude S-waves outside the basin for echelon

faulted and dipping flanks. Reasons for these differences probably involve

diffractions and constructive interference of multiple arrivals outside the

basin. Detailed analysis is beyond the scope of the present study.

2.10 The Basin-Range-Basin Model

The previous finite element calculations and interpretations serve to

characterize a variety of basin interfaces, velocity functions and source

types for a single symmetric basin in a halfspace. In this section, these

results are extended to a two-basin model with an intervening 1 km mountain.
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Vertical velocity synthetic seismograms are drawn in Fig. 2-12 for the normal

surface traction source. The wavelet frequency is centered at 1 Hz in these

synthetics to minimize data storage requirements (rather than the 2 Hz wavelet

used previously). Amplitudes are normalized by the Rayleigh wave maximum on

the second trace, 600 m from the model centerline where the load is applied.

Qualitative features of the seismograms are as expected from the previous

basin flank synthetics. The principal phase is the Rayleigh wave which is

partially reflected and transmitted across the first basin edge. The

transmitted surface wave travels over the mountain with a decreased amplitude,

due to scattering losses and a higher characteristic impedance, and is trans-

mitted with little evidence of reflection into and across the second basin.

Although these plane strain results indicate virtually no change in amplitude

with distance (except at edges), in actuality, for a point source the Rayleigh

wave signal would decay more like v6Rassuming axisymmetric geometry, where R

is distance from the centerline in kilometers. This is, of course, due to cylin-

drical divergence of the surface wave (assuming unit amplitude at .6 km). Thus,

at the mountain peak (R = 16 km), the amplitude is about 20 percent of that

shown, and in the center of the second basin (R = 32 km), it is reduced to

nearly 14 percent. These are estimates of qualitative behavior only. A three-

dimensional calculation is necessary to quantify the true amplitude decay.

Within the first basin, the Rayleigh wave is seen to undergo multiple

reverberations, equivalent to reflections from the opposite basin edge. The

second reflection at 23 seconds and 8 km in the magnified synthetics is weak

and loses coherence in the background noise; however, the transmitted wave is

still significant. Over the mountain, the direct Rayleigh wave appears to be

only slightly modified by the topography and is followed 15 seconds later by the
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much weaker transmitted wave from the reverberation in the basin. In the second

basin, the direct wave transmits across the left edge with an increased ampli-

tude because of the decrease in impedance. There is no coherent indication

of direct Rayleigh wave reflection at the basin edge. This is probably charac-

teristic of incidence from a high impedance to low impedance medium, but also

depends on details of the edge geometry. Across the second basin, the direct

wave propagates uniformly.

Body wave phases over the left basin and mountain are essentially the same

as those found in the steep flanked basin calculation, Fig. 2-10a, with allowance

made for the reduced frequency resolution of the present synthetics. Arrivals

on the mountain consist of refracted P- and S-waves, a mode converted Rayleigh

wave from S-waves in the left basin, and the direct Rayleigh wave. In contrast,

over the second basin the body wave arrivals become considerably more involved.

Because the velocity gradient goes to zero at a depth of 5 km, the second basin

is probably in a shadow for refracted P- and S-waves through the bedrock. There-

fore, the first body wave arrivals are shallower refractions, reflected one or

more times from the free surface. From the magnified synthetics, the first

(refracted) P-wave is seen to decay very rapidly across the basin. Subsequent

body wave arrivals are much stronger and appear to correlate with S-wave and

Rayleigh wave arrivals at the left edge. That is, they are caused by diffrac-

tion and mode conversion from interaction with the faulted flank on the left

side of the basin. It is obvious from the seismograms that to understand the

complex of arrivals in the second basin requires both higher frequency resolu-

tion and a detailed ray theory analysis to discriminate the body and surface

waves.
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2.11 Selected Particle Motion Plots

To facilitate comparison of surface wave amplitudes across each model,

as well as between models, particle motion plots are drawn above selected seis-

mograms in Figs. 2-13,14,15. They generally show retrograde elliptical orbits

corresponding to the Rayleigh wave, and complicated low amplitude motion from

the body waves.

In Fig. 2-13, seismograms and orbits are shown for the three basin types

with velocity gradients and normal traction source (described in Section 2.9).

The most striking feature is the similarity of orbital motion between each

basin type. This suggests that the Rayleigh wave is relatively insensitive

to details of interface geometry. Wavelength of the 2 Hz surface waves in the

basin is on the order of a kilometer, indicating that the depth of significant

motion is about 2 km. Therefore, in the deeper basin interior away from the

edges, similar orbits would be expected. However, the plots show that this is

true near the edges as well, indicating the insensitivity of free surface Ray-

leigh waves (in contrast to ducted Rayleigh waves) to the interface shapes and

impedance contrasts assumed here.

Orbits outside the three basins also show that the transmitted surface

wave amplitude is relatively independent of the edge geometry, although the

details of motion appear to differ more than in the interior. The maximum

amplitude ratio of interior to exterior waves is approximately a factor of three

in all cases. The ellipticity (ratio of vertical to horizontal motion) is gen-

erally about 1.5. Major axes of the elliptical orbits are vertical, except

near the traction source and very close to the basin edge. Near the source,

the orbit is skewed because strong body waves are superposed on the surface

wave. However, close to the edge the skewness is probably caused by the local
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change in wavespeed in the horizontal direction, similar to the effect of

anisotropy.

Particle motions from the tangential traction source are plotted for the

echelon faulted basin in Fig. 2-14. They show a more erratic motion in the

first two orbital plots (compared to the same basin in Fig. 2-13) because of

stronger refracted body waves from the tangential source. The ellipticity is

found to be in the range 1.4-1.5 and the maximum amplitude ratio of interior to

exterior waves is again about three because the Rayleigh wave, once generated,

is independent of source type.

In Fig. 2-15, particle motion is plotted for the basin-range-basin

model. Comparing amplitude in the left basin to that over the mountain gives

a ratio of approximately three, although there appears to be some variability

over the mountain. The amplitude ratio between left and right basins is about

1.7. As for any of these plane strain models, the amplitude ratios should be

scaled to account for the Rayleigh wave's cylindrical divergence from a more

realistic point source.
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SECTION 3

THE FULL WAVE FIELD SOLVER

This section describes the discrete numerical algorithm used to solve

the time domain wave field equations in two-dimensional inhomogeneous, elastic

and acoustic media. The physical domain is a rectangular 2-D section over

which the Lagrangian, small displacement computational mesh is globally carte-

sian. A discrete system of equations is derived by factoring the wave field

into elastic and inertial components and discretizing each separately. A

finite element displacement approximation over rectangular mesh boxes (ele-

ments) yields elastic force resultants at the mesh points (nodes), while a

lumped mass approximation at the mesh points provides the inertial force

resultants. The nodal distribution of lumped masses (particles) is moved

incrementally in time according to the discrete impulse-momentum equality,

with the incremental elastic restoring forces at each node accumulated from

contiguous elements. The global time increment is chosen smaller than the

shortest transit time across any element, yielding a stable explicit integra-

tion algorithm for the uncoupled system of discrete equations. Large-scale

modeling applications require on the order of 105 nodes entailing approxi-

10
mately 10 floating point operations per model. Therefore, coding of the

algorithm is necessarily designed for the pipeline and parallel capabilities

of existing supercomputers, specifically, vectorization on the CRAY-i.

3.1 Background

Solution techniques for the full elastic/acoustic wave field in inhomo-

geneous media generally depend on some form of discrete algorithm. The usual

basis is a finite difference (FD) or finite element (FE) spatial discretiza-

tion over an appropriate computational mesh. In the case of finite differences,

the governing partial differential equations (PDE's) are typically reduced
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to a discrete system of ordinary differential equations (ODE's) in time by

means of difference operators for spatial derivatives at mesh points. In

contrast, with finite elements the particle displacement field is discretized

via element shape functions, and the reduced system of discrete nodal ODE's

derived by enforcing element equilibrium. Provided the differencing operator

and element shape function are of the same order, both FD and FE discretiza-

tions result in similar systems to be solved, e.g., Frazier ec al. (1973).

Note that the FE method does not explicitly use the governing PDE's (as does

the FD method) but instead satisfies equilibrium directly. In this sense it

provides a more fundamental algorithm, based directly on elemental mechanics

rather than infinitesimal mathematics (which are abstracted from the mech-

anics). This is best appreciated in terms of ease of implementation for

complicated media and shapes, as well as the simplicity of elemental solutions

and higher order generalizations.

There remains time integration of the discrete field equations by means

of implicit and/or explicit schemes, whereby the ODE's are reduced to an

algebraic system. These equations may be classified as hyperbolic (wave-like)

and/or elliptic (potential-like) depending on the time scales and character-

istic lengths in the problem. The terms, hyperbolic-elliptic, follow from the

usual classification of partial differential equations. Briefly, for elastic/

acoustic fields, when inertial forces dominate elastic forces, the system is

hyperbolic--but when elastic forces dominate, it is elliptic. In a hyperbolic

system, disturbances at one point do not influence other points until the wave

arrives. However, in an elliptic system, a disturbance at any point influ-

ences every other point without time delay. Explicit and implicit time inte-

grators exhibit similar behavior. Explicit schemes (hyperbolic integrators)

involve the independent integration of each nodal equation of motion by
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virtue of the hyperbolicity of the problem. That is, the time step is chosen

small enough that integration (motion) of one node does not influence an adjacent

node during one time step. Implicit schemes (elliptic integrators) require

the simultaneous integration of the entire system of equations, assuming

coupling between all nodes over one time step, i.e., elliptic behavior. This

allows the use of a somewhat larger time step than for the explicit case.

Actually all nodes are not coupled in hyperbolic problems, but depend on each

node's sphere of influence, proportional to the time step chosen; hence, only

those within the sphere are coupled in an implicit scheme. This feature makes

an implicit solver for lar4e hyperbolic systems prohibitively redundant.

in the present tu , .ain wave pr)paa Lion of pulses is til

phenomenon of interest, governed by hyperbolic equations. Because the require-

ment is to solve very large systems at fast cycling rates (mesh or element

time steps/second), explicit time integration of the discrete equations is

essential. The choice of spatial discretization, finite element or finite

difference, is not so obvious in view of the inherent similarities of the

resulting systems. However, experience with the implementation of both

methods shows that the intuitive and mechanical aspects of finite element

modeling offer clear advantages. Therefore, an explicit finite element

algorithm is used here, and is described in the remainder of this section.

3.2 Computational Mesh

The first consideration in implementing a large-scale vectorized wave

solver is the computational mesh--i.e., the distribution of discrete field

points through the domain. Given a rule for field interpolation between

points, the mesh must be capable of resolving the wave pulse in space and

time, as well as inhomogeneities in the medium. In this study it must also

satisfy a large-scale requirement--that the minimum wavelength resolved be a
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small fraction (rath,4r than a multiple) of the characteristic dimension of

the model. Or cne computational side, the mesh must possess sufficient regu-

larity to permit vectorization of the algorithm and minimize the arithmetic

and storage used in coordinate processing. Finally, with regard to physical

modeling, it should easily represent (from a user's viewpoint) complicated

inhomogeneities and interfaces to a degree of approximation consistent with

its frequency resolution.

The simplest computational mesh satisfying these requirements is carte-

sian, illustrated in Fig. 3-1 for equidistant grid lines. The bold contours

are a fit of the geologic model in Fig. 2-1 showing the stepwise resolution

of material interfaces. In applications, the grid density necessary for

pulse resolutior, would be at least quadrupled, with sixteen times more ele-

ments--approximately 36,000 in Fig. 3-1--yielding a dense matrix of (picture)

elements for inhomogeneous modeling. This identification of finite elements

with picture elements, so-called pixels in incremental computer graphics

applications, e.g., Newman and Sproull (1979), provides a simple, flexible

scheme for constructing large-scale models while minimizing user and computa-

tional overhead.

To propagate a wave pulse through the inhomogeneous grid, some minimum

number of elements must support it, depending on the degree of field inter-

polation function used. An adequate minimum in what follows is ten per wave-

length of the highest frequency compcnent to be preserved in the pulse.

Therefore, if an interface in the carte.-ian grid is composed of one or two

element steps as in Fig. 3-1 (typically), its local scale is equal to or less

than one-fifth of the shortest wavelength. A somewhat denser support of the

wave over the mesh, in conjunction with inherent smoothing by the lumped mass

and finite element discretizations, makes the interface practically negligible

in terms of its non-specular scattering effect on pulses.
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Figure 3-1. Example of a cartesian mesh with equidistant

grid lines, and the stepwise resolution of
geology (c.f. Fig. 2-1).
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Figure 3-2. Cartesian grid and element coordinate systems.
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Alternatively, the stepwise interface roughness could be reduced by

using conforming elements, e.g., quadralaterals for a piecewise linear fit.

However, this increases arithmetic, storage and the level of element approxi-

mation, as well as complicating the vectorization of code loops necessary for

rapid mesh cycling. For these reasons the simple cartesian mesh with stepwise

resolution of inhomogeneities will be used exclusively in what follows.

3.3 The Finite Element Approximation

To introduce finite element discretizations of the wave field, consider

a rectangular domain covered by a cartesian grid of rectangular elements.

Global coordinates are (x,y) and local (element) coordinates are ( ,n), meas-

ured from the origin at (x1,Yj) of the ij element. These are illustrated in

Fig. 3-2. Assuming that the material displacement vector, d(x,y,t) = (uv)T

is regular over the grid, it may be expanded in a two-dimensional time depend-

ent Taylor series about any of the local origins as

d(xi+, yj+nt) = d(xi,yj,t) + dx i + rdyj

+ I (& 2 d +2&Td +r2d ) + ... (3-1)
2 x x y. -y yS i  ij

where O< A<x, O<nAy and derivatives at the grid points are denoted by sub-

scripts, e.g., d x When the grid spacing is made sufficiently small (but

finite), only certain leading terms in this expansion will be significant

within the element. If these principal degrees of freedom can be solved in

terms of nodal displacements, i.e., the generalized displacement of the prob-

lem, then local continuum analysis may proceed on this basis. Provided the

series truncation is uniform over the grid of local expansions, the global

field is continuous, C 0 , i.e., inter-element displacements are compatible.
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The simplest local interpolant is a two-dimensional version of the

familiar trapezoidal rule, which follows by neglecting curvature terms, i.e.,

second and higher x i and v* derivatives in (3-1), giving

(xi+,yj+,) -' (XiY.,t) + ;d x + nd y + Cn4x (3-2)

For this truncation of the Taylor series the remaining nodal derivatives are

expressible as first order differences of the element nodal displacements,

(t) = (u nVn) as

d . ( 2Ol/x d . 3 ( -')/Ly', d = (61-2 -4 /-xY. . (3-3)

where n runs from i to 4 (clockwise in Fig. 3-2). Introducing the nodal dis-

placement vector,

5 e-- (u'v)T = (ulu2u3vUv49VV v2'V3'V4)T

the element expansion, (3-2) becomes,

d(xi+ 'Yj+'t) - De(' (3-4)

where 0
" D --i rl0 0 0 _0

,e ' X~y 0 0 0 0 E n q

and

- '-Y , -

Retention of higher order derivatives in the truncation requires additional

data at intermediate points on or in the element for a unique representation.

In view of the minimal arithmetic involved in (3-4) and proven utility of the

trapezoidal rule in numerical analysis, higher order elements will not be

considered further.
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With an approximation (interpolant) available for intra-element displace-

ments, 2-D elasticity theory yields elemental stresses and strains. The

linear, isotropic stress-strain relation is

~ )T

' = (T a a C E, (3-5)

where the infinitesimal strains are

-- (E E ) (u, vu +v) T  (3-6)

C is the constitutive matrix given by

C - C c 2 1 (3-7)
0 0 c 3

and the constants are

Plane strain: c1 
= (3K+4G)/3 , c2 = (3K-2G)/(3K+4G) , c = G/c 1

Plane stress: c1 -- 4G(3K+G)/(3K+4G) , c2 = (3K-2G)/(3K+G)/2 , c 3 = G/cI

with K and G the bulk and shear moduli,respectively. Strains are evaluated

T
by differentiating d - (u,v) in (3-4) giving

q B e 6 e(3-8)

where Be is the strain-displacement matrix,

n ) n-nr 0 0 0 0
o o o~ -

B 0 0 0 - (3-9)
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Therefore, from (3-5) and (3-8) the stress-displacement relation is

= CB 6 (3-10)

The final step is to calculate the generalized elastic and inertial

forces, f = f E + fI. i.e., the equivalent nodal forces corresponding to the
-e -e -e

generalized displacements, e . This is accomplished using the principle of

virtual work. For a virtual displacement, e of the nodes the internal work

is

TdA= f TBTCB :ddn

A 0 0 ee e-e

and the external work of the nodal elastic forces is 6Tf . Equating these

expressions, noting that 6 is arbitrary, yields_e

E
f =K (3-11)-~e e-e

where
yAx T

Ke Bj BcB ddn (3-12)
e 0 0 e e

is the element stiffness matrix. Similarly, the work of inertial forces due

to constant mass density, o is

"T IV Ax T
f d(:d)dA = T D oD 6 ddn

A 0 0 e e e-e

and that of the corresponding nodal forces is -6 f. Equating and solving
e _e

gives

fl = -MS (3-13)
~e e-e

where
Ly AxT

M= f De D d~d (3-14)
0 0

is the element mass matrix.
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The symmetric stiffness and mass matrices are 8 x 8 for 2-D and their

closed form calculation from (3-12, 14) is straightforward, involving the

integration of simple polynomials over the element. The resulting stiffness

matrix is fully populated while the mass matrix consists of two 4 x 4 blocks

on the main diagonal. Both are given in Przemieniecki (1968), for example,

and a straightforward numerical evaluation of the resulting force equations,

(3-11,13) requires approximately 150 floating point operations (adds, multi-

E Iplys, etc.) per element for f and 50 such operations for fl•

The discrete system of equations governing motion of the single finite

• E
element follows from D'Alembert's principle (dynamic equilibrium, i.e., f =

f + g ) as
-e ~-e

Mee e = -Ke 6 + g e (3-15)

The force vector, g e represents influence of adjacent elements, external

forces, etc. In order to solve the linear systemit is very useful to trans-

form the equations to a more natural displacement basis than the nodal basis

in (3-15).

3.4 The Canonical Finite Element Basis

Element stiffness and inertia properties can be defined with respect to

any complete set of displacement modes. These may be nodal displacements as

in (3-11), or translations and some combination of element deformations, e.g.,

extension, shear, dilatation, rotation, etc. Although the cartesian displace-

ment basis used above is ideal for derivation of the governing ODE's, in

terms of computational efficiency and an understanding of element dynamics,

it is not. The best choice is the canonical finite element basis--defined

here to be a displacement basis in which the mass matrix is diagonal (by

linear transformation rather than lumped mass approximation). This definition
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requires a nontrivial eigenvalue-eigenvector analysis of (3-14) to determine

the basis. Alternatively, the canonical basis may be defined by the ortho-

gonal cartesian displacement modes of a continuum element: translations

Tx,Ty, and element centered extensions Ex,Ey, shears Sx,Sy, and bends Bx,By.

These are illustrated in Fig. 3-3. This modal definition yields a convenient

mechanical interpretation.

The canonical basis is found most directly by inspection of the modes

pictured in Fig. 3-3. Writing the modal vector as

6 = (Tx,Ex,Sx,Bx,Ty,Ey,Sy,By)T  (3-16)

the normalized orthogonal transformation, S between nodal and modal basis

vectors is

e 6 2 (0) S 6 (3-17)

where S is unitary (S- =s ) and its nonzero blocks are

S1 =  1 i 11' S2 =-1 1I -11( -8

1 S 2 (3-18

The columns of this transformation constitute the modes (eigenvectors), i.e.,

the normalized nodal displacements ordered clockwise from the origin in Fig.

3-3. In the new basis, element displacement and stress-strain relations are

d = D 6 = D 6 = D S6 (3-19)~ e-e mn-m e-rn

= B 6 = B 6 = B S6 (3-20)
- e-e rn-r e-m

a = Cc = DB S6 (3-21)

Evaluating the modal strain- and stress-displacement matrices, the strain and

stress equations are
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TRANSLATION

Tx: U +(l'l,l,l)T Ty:. (1,1.1.1)T

EXTENSION

SHEAR

Sx:u U 1. (..,.)T S~j~~~~)

BEND

B:uBy: v . (1 I1 .. )T

Figure 3-3. The normalized orthogonal cartesian displacement
modes of a 2-D continuum element.
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(0 Ay 0 2n)-Ly 0 0 00

nn 4L-y0 0 0 0 0 Ax 0 2 .Ax) '(322

o: (0 0 -x 2 -Ax 0 0 Ay 2n-Ly/ (3-22)

oy Ay 0 2TI-Ay 0 c 2IX 0 c2 M-Ax)

nn = A c2Ay 0 c2 (2n-Ay) 0 x 0 2.-Ax m

t:.) 0 c3Ax c3 (2C-Ax) 0 0 c3AY c3 (2n-Ay)/ (3-23)

which demonstrates that translation (columns I and 5) makes no contribution

to the stress-strain state, while extension (columns 2 and 6) and shear

(3 and 7) produce uniform states over the element, and bending (4 and 8)

adds linear variation.

T
To express the stiffness and inertia matrices, K = B GB dA and

T m A m
M = p f D D dA respectively; in the new basis it is only necessary to set
m m mA

B = B S and D D S and evaluate the integrals, giving
m e m e

O 0 0 0 0 0 0 0

0 a 0 0 0 c2  0 0

0 0 a2c3  0 0 0 c3  0

c 0 0 0 b 0 0 0 0
K sTK S c- (3-24)m e 4 0 0 0 0 0 0 0 0

0 c2  0 0 0 a2 0 0

0 0 c3  0 0 0 a c3  0

O 0 0 0 0 0 0 b2
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1 0 0 O 0 0 0 0

0 1/3 0 0 0 0 0 0

0 0 1/3 0 0 0 0 0

T 0 0 0 1/9 0 0 0 0M -STM s m (3-25)

m e0 0 0 0 1 0 0 0

0 0 0 0 0 1/3 0 0

0 0 0 0 0 0 1/3 0

0 0 0 0 0 0 0 1/9

where m - oAxAy is the element mass and a, - Ay/Ax, a 2 
= Ax/Ay, b I = (al+

a2c3 )/3, b 2 - (a2+a1c3 )/3. This demonstrates that the canonical basis does

indeed diagonalize the mass matrix, as well as significantly reducing the

number of nonzero entries in the stiffness matrix (from 69 to 10) due to the

simple modal stress states.

3.5 Canonical Element Dynamics

In the canonical basis the ODE's governing element dynamics become

M 6 M -K +gm (3-26)

With M diagonal and K sparse, this representation allows closed form solu-m m

tions. In particular, the homogeneous system (setting gm = 0) reduces to the

following set of equations for the element centered free-vibration modes,

(Ex) 3c ,C\IX

Ey/ 4m c2  a2 )\Ey)

Sy 3c c3 a 2 \ / , (3-27)

Sy)(1 a V\
(B; -9c l b 1 0 x
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where only the bending modes are uncoupled. Assuming time harmonic solutions,

i.e., aeit and solving for the unknown frequencies and modal coupling,

Extensional vibrations

WEx1 (c E/2m)(a +a2 =v ( a - a )
4

"Ex -Ey 2 1
(3-28)

Ey/Ex - (a 2 -a I ±,,(al-a 2 )+4c 2 )/(2c2 )

Shearing vibrations

0 ; Sy/Sx = -a2

S v(3G/m)(a1+a2) ; Sv/Sx a

Bending vibrations

W - vC bl/M 3 B C vib2/m (3-30)
BRx 2 1 1  1 uBy 2 1 2

Specializing these solutions to a square element (Ax=Ay, hence a,=a2= 1

b Ib 2.(1+c3 )/3) yields the simple picture of free element dynamics shown in

Fig. 3-4. The zero frequency shearing vibration, Sy/Sx - -1, is seen to

yield rigid body rotation, hence there are only five deformational modes.

The pure shear mode, Sy/Sx 1 1 and pull-push extensional mode, Ey/Ex = -1

have the lowest natural frequency, ,N_ v3/2 cs /x; while the bending modes,

Bx and By and the pull-pull extensional mode, Ey/Ex = I have the highest,

-'Bx = (k2 l)/2 N and Ex = / N ( Ex > Bx when k >< v), where k E

c c / is the wavespeed ratio. When cS = 0 (k-o) in an acoustic medium these

natural frequencies reduce to wN = 0, "Bx = V3/2 cp/A xand x v372 c /Ax.

The natural period, TN = 27r/w may be written as T = 5.13k Ax/cp. In geo-
N p*

logic media for example, where k = V') is a good approximation, the natural

element period is TN = 8.89t e, with Ate denoting p-wave transit time across

the element. Thus, in applications ,N is a clear upper bound to the frequency

resolution of a finite element mesh based on this element. In operation, if

the mesh is driven externally at frequencies approaching or exceeding N'
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EXTENSIONAL VIBRATIONS

I i - -
II
I I

Ei: C2u=kN.',Ey/Ex-1 E2: O2l.Ey/Ex-1

SHEARING VIBRATIONS

I--

S2: Cl. Sy/Sx l St: QOO.Sy/Sxu-1

BENOING VIBRATIONS

Bx: 0- Bx e i w t  By: 2 By elw t

Figure 3-4. Free vibration modes and frequencies in the canonical
finite element basis. The reduced frequency is
12 - /2-/Twx/c S and the signs at node 1 correspond to
those of the x component mode assumed in Fig. 3-3.
The wavespeed ratio, cp/cS, is denoted by k.
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individual elements will resonate at their modal frequencies, introducing a

spurious high frequency ringing to the wave field. This is.. of course, equiva-

lent to the numerical dispersion generally associated with discrete mathema-

tical systems or the ringing of any mechanical (force-motion) transducer.

3.6 Explicit Integration and the Lumped Mass Approximation

.4ith the element ODE's known, the equations must be assembled (coupled)

and solved by numerical integration in time, specifically by advancing the

global system incrementally, at timestep At. However, the degree of system

coupling depends on the extent of dynamic interaction between nodes during

a single timestep. This is measured by the radius of a node's circle of

influence (sonic circle), r = c-t shown graphically in Fig. 3-5. If It is

less than the shortest element transit time, i.e., if the circle is contained

within a quad of elements (the smallest circle in Fig. 3-5), then no global

interaction occurs because all nodal motions are uncoupled during one time-

step. Such behavior follows from hyperbolicity of the system and provides

the basis for the explicit integration scheme used here. For larger It the

equations for elements within and including the sonic circle must be assembled

and solved simultaneously using an implicit integration approach.

To proceed, it is useful to write the assembled system of model equations

as

MU = -KU + G (3-31)

where U is the global nodal displacement vector, M and K are the assembled

mass and stiffness matrices, and G is the global external force vector. The

symmetric banded structure of M and K depends on the nodal ordering of U.

They are assembled by first switching rows and columns in the element

matrices and inflating with rows and columns of zeros so the ordering and

spacing of element nodal displacements correspond to the global arrangement
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r -cpAt

Figure 3-5. A schematic of dynamic interaction between nodes
for various -.t measured by the central node's
circle of influence (sonic circle).
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in U; and second, summing the inflated mass and stiffness matrices to give

M and K, respectively.

For explicit integration the internal force vector, F = -KU need not be

assembled but is instead determined by accumulating nodal forces via an

element by element evaluation of the element stiffness equation, (3-11). With

the right hand side of (3-31) known, the incremental form of the equations

is

M- F +G , (3-32)
At *.. -

whence the equations for velocity increments over the timestep become

MU = t(F+G) (3-33)

This is recognized as the incremental impulse-momemtum equality. The result-

ing integration algorithm includes the following steps,

I. AU = M-At(F+G)

2. ~ + A

3. T _t U

4. F = -KL'U

5. F= F+AF

6. G= G + 1 G (3-34)

where the external force increments, LG, are assumed given in the problem

definition. Returning to step i, the process is repeated for the next and

subsequent timesteps. In this algorithm nodal velocities should be con-

sidered mean values, hence are formally evaluated at the timestep midpoint,

while forces and displacements are evaluated at each timestep. However,

in applications to linear problems no distinction need be made. Note that

nodal displacements are not calculated during the integration, as only

increments are used to find _F thus F.
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To solve for AU in (3-33) it is necessary to premultiply by the mass

matrix inverse, which requires assembly and inversion of the global mass

matrix and complicates the algorithm considerably. The explicit scheme averts

these global matrix operations by diagonalizing the mass matrix using the

lumped mass approximation. On the element level this amounts to replacing

M defined in (3-14) by mI/4 where I is the identity matrix and m is thee

element mass, pAxLy. Assembling the global mass matrix yields a diagonal

form, with each nodal entry having 1/4 the mass of contiguous elements.

From the previous analysis of element dynamics the effect of mass lump-

ing is easily found. The relation between modal and nodal element mass

matrices is Mm = STM eS so that (Mm)lumped = sT (mI/4)S = mI/4, whence.

(mlumped ( lumped Comparing M in (3-25) to (M ) eshows that
('1 lupe em ped m m lumped

the lumped mass is 3/4 of the consistent mass for extensional and shear

modes and 9/4 for bending modes. Substituting into (3-28) - (3-30) gives

(/)we = 2/'3 1.15 for extension and shear, and (w) P/) 2/3(lumped lumped

0.667 for bending.

3.7 Further Development

This final form of the explicit finite element algorithm could have been

written more directly than the above derivation indicates, with only minor

recourse to theory (or a textbook) for the stiffness matrix. However, the

requirements of this study--to solve very large problems as efficiently as

possible on supercomputers--warrant a closer look at the basic algorithm. The

above exposition and theory are the basis for a more effective formulation of

cartesian finite elements.

The theory is developed here to a level commensurate with the algorithm

embodied in the FORTRAN code applied in Section 2. However, the theory can be
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carried further. In particular, the idea of applying a linear transformation

to diagonalize the element mass matrix can be applied to the element stiffness

matrix yielding the free vibration modes in Fig. 3-4, which further reduce the

operations count. This provides a bonus in that mathematically consistent fre-

quency independent damping can now be selectively defined for each of the ele-

ment vibration modes, e.g., the pure dilatational and pure shear modes. This

is equivalent to Rayleigh damping in the canonical stiffness basis and appears

to be a new implementation of damping in explicit finite element codes (for

which frequency independent damping has always been a problem). Furthermore,

the global assembly of element equations in cartesian coordinates is facilitated

by linear transformation to diagonal mass and stiffness matrices because the

inflated transformation matrices have very simple inverses.

These concepts will be explored fully in the second part of this research

study involving the effects of material damping and three-dimensional modeling.

Results will be reported in a second and final report.

- 2
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SECTION 4

SUMMARY AND CONCLUSIONS

This study was motivated by the need to understand free-field ground

motions over laterally inhomogeneous models of the Earth's crust--specifically,

graben basins typical of the Basin and Range province. To address this ques-

tion on the physical scale of a nominal graben basin, i.e., 16 km long, 2 km

deep with wavelengths as small as 500 meters, requires a level of wave propaga-

tion computing power approximately one order of magnitude greater than scalar

computers allow (e.g., CDC 7600). This scale of computation necessitates using

a powerful vector computer on the order of a CRAY-I or CYBER 205 to be economi-

cally feasible. However, in addition to a supercomputer, an efficient vector-

ized algorithm is necessary to approach the theoretical limit of performance.

This report has addressed both the seismological calculations in three basin

configurations, executed on the CRAY-l, and the finite element theory used to

formulate them.

4.1 Summary of Calculations

Synthetic seismograms over the basin flank models are characterized by

the relative strength or weakness of a few principal phases. Typical travel

time curves for these phases, obtained from the synthetic seismograms, are

drawn in Fig. 4-1. Inside the basin, the first coherent arrivals are P-waves,

designated Ph 1 in the figure, including direct refracted as well as reflected and

diffracted waves from the interface. The second arrivals, Ph 2, are S-waves

following similar travel paths within the basin. These S-waves may have suf-

ficient amplitude to reflect significant Rayleigh waves, Ph 3, by mode conver-

sion at the basin edge. The direct Rayleigh wave, Ph 4, is the strongest phase

in all cases and reflects a weaker Rayleigh wave, Ph 5, back into the basin.
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Outside the basin, the principal body wave phases include a refracted P-wave,

Ph 6, and a refracted S-wave, Ph 7, probably including a transmitted S-wave

from the interior. The next arrival is a mode converted Rayleigh wave, Ph 8,

from the S-wave within the basin. This phase is typically offset in time,

probably due to a strong phase shift in the conversion process near the edge.

The strongest phase outside the basin is the transmitted Rayleigh wave, Ph 9,

from the direct wave in the basin.

The phases shown in Fig. 4-1 are incomplete in that there are a number of

other very weak arrivals discernable in the seismograms, but difficult to

identify visually as to source and type. Also, the actual ray paths and mode

conversion mechanisms, i.e., multiple reflections, diffractions, etc., of the

identified phases require more careful study to quantify. Therefore, the above

descriptions should be considered very qualitative, subject to a careful ray

analysis to identify single and multiple paths, and higher frequency finite

element analysis to allow better separation of phases in time for amplitude

estimates.

The basin-range-basin model and calculations extend the physical scale

of modeling to include the interaction of two basins separated by a mountain.

This demonstrates the practicality of very large-scale calculations, i.e.,

greater than 100,000 elements, on the CRAY-I. The resulting synthetic seismo-

grams show phases very similar to those described above for the basin flanks

and do not indicate any strong modification by the mountain. However, in the

second basin the phases are quite complex, caused by incident body and surface

waves interacting with the basin's leading edge. This is in contrast to the

simple surface source applied to the left basin centerline and requires addi-

tional analysis to quantify the resulting phases. The strongest phase is
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certainly the direct Rayleigh wave which does not appear to be strongly affected

by the mountain and couples efficiently into the second basin. Mode converted

S-waves (Rayleigh to S-wave) from the leading edge are the strongest body wave

phases within the second basin.

The effects of basin interface geometry, source type, and velocity functions

can be briefly summarized. The principal observation is that basin edges are

efficient transmitters of Rayleigh waves, apparently independent of the edge

details. Rayleigh wave reflection depends strongly on the edge slope, with

steep edges better reflectors than dipping edges. Body waves inside

a basin are affected by interface shape to some extent, although less than might

be expected. Higher frequency analysis is needed to clarify details. Shear

waves outside a basin depend markedly on the edge geometry due to mode conver-

sion of waves in the interior. These conversions favor S-waves for the steep

flank and Rayleigh waves for the dipping flank. The above observations apply to

the normal surface source. The tangential surface source generally excites

higher amplitude shear waves within the basin favoring stronger mode conver-

sions (S to S and S to Rayleigh) at the basin edge. Comparing the two load-

ing cases, the obvious feature outside the basins is the strong S-wave for

the tangential source in the echelon faulted and dipping flank, with little

or no converted Rayleigh wave. This situation is reversed for the steep

flanked basin. In terms of velocity functions, synthetics for the constant

velocity cases are qualitatively similar to the velocity gradient cases but

lose much of the detail. They are, therefore, instructive but not quantita-

tively useful in modeling real structures.

4.2 Summary of Finite Element Theory

Solving for seismic waves in completely inhomogeneous elastic media

requires some form of numerical analysis, based either on ray or wave theory.
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However, only wave theory provides complete solutions (in the sense that all

wave types are included). The most common implementations of wave theory

use finite difference or finite element discretizations. For reasons of effi-

ciency and accuracy (because they provide a closer link to the fundamental

mechanics of the seismic medium), finite element methods are preferred here.

Time integration of the finite element equations is performed using an explicit

approach, which is very efficient for transient phenomena, in contrast to

implicit methods. The two-dimensional computational mesh is a simple carte-

sian grid with a stepwise resolution of material interfaces.

The finite element algorithm is implemented in FLEX, a standard FORTRAN

computer code designed for highly efficient processing on scalar, as well as

vector computers. A brief summary of the algorithm follows. A finite element

displacement approximation over rectangular elements yields elastic force resul-

tants at the nodes, while a lumped mass approximation provides the inertial

force resultants. The nodal distribution of lumped masses is moved incrementally

in time according to the discrete impulse-momentum equality, with the incremental

elastic restoring forces at each node accumulated from contiguous elements. The

global time increment is chosen smaller than the shortest transit time across

any element, yielding a stable explicit integration algorithm for the uncoupled

system of discrete equations. A normal impedance type boundary condition is

included to mimic a transmitting boundary (approximately).

The theory described in Section 3 is aimed at reducing the number of arith-

metic operations required to evaluate the finite element equations. The standard

engineering implementation of finite elements allows general skewed elements, but

when rectangular elements only are used, much simpler closed form expressions

result. In particular, it is found that linear transformations exist which
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diagonalize the element mass and stiffness matrices, thereby reducing substanti-

ally the operations count. These transformations are equivalent to well-known

deformational modes in elasticity theory. An added benefit of the diagonalizing

transformation on the stiffness matrix is that frequency independent damping may

be applied to the pure dilatational and pure shear deformational modes. This is

accomplished in a mathematically consistent fashion and adds little computa-

tional overhead.

4.3 Conclusions

The conclusions to be drawn from this one-year research effort concern:

large-scale seismic modeling on supercomputers; graben basin response in the

Basin and Range province; and explicit finite element algorithms. The princi-

pal conclusion is that complete, linear elastic, high frequency wave fields in

inhomogeneous 2-D media can be economically calculated on a large physical

scale using the CRAY-I supercomputer and a vectorized elastic wave solver.

For example, comparisons made elsewhere between this approach and more conven-

tional wave solvers on the CDC 7600 show a speed increase of 100 or more and a

size increase of at least 10. Such a jump in computational power allows the

analyst to solve problems which could not be contemplated before, and at rela-

tively low cost.

The focus of the computational effort was seismic reFnonse of three basins

for normal and tangential surface sources. The suite of calculations showed

a number of differences between a steep faulted flank, an echelon faulted flank

and a dipping flank. They also showed that full field synthetics can be nearly

as complicated as real data to interpret, requiring interpretational tools like

ray tracing to identify phases. Synthetics were generated by convolving a 2 Hz

wavelet with a Green's function from the finite element run, but no comparisons
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with other time histories were made. Only a single, multilinear velocity func-

tion was used in the modeling (besides the piecewise constant function which was

too idealized) and it would be useful to examine variations on the velocity

function for a single basin model. No attempt was made to include material

attenuation, but the finite element implementation of damping was developed

and will be implemented in the second phase of this effort. The normal impedance

boundary absorber with element grading near the boundary appeared to suppress

boundary reflection for the cases considered. However, a better theory would

help to reduce problem size, especially in 3-D applications to be examined in

the second phase.

The major result of the finite element theoretical work was that, in the

context of cartesian finite element grids, the governing equations can be greatly

simplified, and formulated so as to admit selective seismic damping on pure shear

and dilatational modes of deformation. In addition, the application of linear

transformations on the global, as well as local, level offer the possibility

of further reducing operation counts and increasing execution speed of the fi-

nite element algorithm. This will be examined in the second phase for 3-D appli-

cations.
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