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Abstract

In recent years much progress has been reported in the fabrication of

multilayer reflectors for x-ray and XWV radiation (1A - 6001).

The characteristic optical properties of materials at these

wavelengths (dielectric constants are comqplex and aroacch unity), allow

one to obtain slutions to Maxwell's equations for a quasi-periodic

reflector whose layers my ontain arbitrary Index gradients.

This solution can be formulated as a difference equation that

propagates the aplitude reflectance across each layer pair. The

difference equation resembles the Airy sumnation for single layers, but

has a simpler Ricatti form.

From the difference equation one can derive design criteria for

maximization of oultilayer reflectivity. These criteria provide guidance

in the selection of appropriate multilayer materials, and have been used

to derive approximate scaling laws for multilayer reflecting properties.

The difference equation forms the basis for a non-perturbative

analysis of mltilayer reflectivity in the presence of randu thickness

errors (Including the residual loss in reflectivity that remains when

reflectance wmitoring is Used to ompensate for thickness errors during

multilayer fabrication). Under certain circumstances, the difference

equation can be used to analyze the effect of interfacial roughness on

multilayer reflectivity. Accurate closed-form molutions to such

stochastic problem can be found by neglecting higher order powers in the

Iroxherent comonent of multilayer reflectivity.



The reflecting poperties of u-ray maltilsyars my eiit5n±

qualitative signatures that correspond to thee different kinds o

structural defects.

Our theoretical results Indicate that significant constraints on

efficiency wa field of view ar involved in using witilayers to extend

optical technology to the x-ray regime. buqplas discussed Include

microscopes aperating at short x-ray wvelengths (i - 21), where

multilayer8 can provide a uaeful laml of secttal selectivity, and

resonant cavities for projected x-ray laes (501 - 2001), where the

couling of the intracavity field to the aplifier can be strongly

increased if the cavity configuration is based on two sultilayers

that are tuned to reflect at normal incidence.
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Chapter I Introduction

Section I-1 - Literature Review

Part A) X-Ray Jltilayer Reflectors

In recent years such progress has been reported in the fabrication of

reflecting ultilayers having period lengths in the 1001 regime (Haelbich

and Kunz, 1976; eeelbich, Segmuller, and Spiller, 1979; Barbee and

Keith, 1979; Spiller et al., 1980: Barbee, 1981; Spiller, 1982b; Underwood

and Barbee, 1982). Such devices may be regarded either as

short-wavelength uultilayer coatings, or as artificial crystals having

large spacings between the diffracting 'planes". (There are few true

crystals having spacings larger than about 12A.)

These devices should prove useful for the spectral region below

-600A (Spiller, 1972, 1976). In this part of the spectrum all materials

have complex dielectric constants that depart only slightly fron unity;

i.e. materials are absorbing and are incapable of providing a high

single-surface reflectivity.

In this work we present a theoretical analysis of the reflecting

properties of x-ray multilayers. In the present chapter we review the

field, and also discuss related topics (and associated terminology) from

other fields, such as x-ray diffraction theory.

I-1-1
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Arding to Barbee (1982), the first attempts to fabricate x-ray

multilayers (generally unsuccessful) were made by Koppe (1929) and

Deubner (1930).

more recently, Dinklage (1967) succeeded in fabricating

iron/magnesim reflectors having a reasonably stable reflecting power

(roon tenperature half-life about one year). Dinkl ge has not reported an

absolute reflectivity for these structures.

Spiller (1972, 1976) reognized that in an absorbing ajitilayer it is

not necessarily desirable to minimize the absorption of both the high and

the low index layers. By making the thickness of a strongly absorbing

high index layer substantially thinner than one quarter-wave, one

decreases the absorption of the layer more rapidly than one oes the

reflectivity, allowing in principle for a more than compensating increase

in the total number of reflecting layers. Larger total reflectivities are

then obtained when a dense, high Z material is used in high index layers

that are alternated with low absorption spacing layers.

Eaelbich and Kwuz (1976) achiet-od 1.21 peak reflectivity at 1501 (15"

incidence to the normal) from a 9 layer structure of gold and carbon that

was designed according to the above considerations. Carbon was chosen as

a spacer mterial because of Its low absorption, and because it does not

diffuse readily with metals.

uaelbich, Seguller, and Spiller (1979) used a rheniwm/tungsten alloy

(ReW) as a high index layer and carbon as a low index layer to obtain 9.50

peak reflectivity (15* angle of incidence) with 7 layers at 200A. The Rew

a1l ,y was found to provide smother layers than did other high density



! 1-1-3

materials such as gold.

In these early efforts, the number of participating layers that the

structures could ontain ws limited by an inability to precisely ontrol

the layer thicknesses, and so aoid the accumulation of dephasing &e to

random errors (eelbich and Kunz, 19761 Naelbich, Segmuller, and

Spiller, 1979). In order to reach abeorptiwn-limited reflectivities,

x-ray multilayers must contain a larger number of layer pairs than are

required in optical multilayers, because at x-ray wavelengths the

interaction f an Individual unit cell with the incident beam is weak.

(As a rule of thumb, a sultilayer should contain more than (6001 / K )

pairs of layers in order to achieve absorption-limited reflectivity at

normal incidence; sfe sec. 11-3.)

In the above experiments, the deposited materials were transferred to

the substrates by vacuum evaporation. Barbee and Keith (1979), and

Barbee (1982). report the fabrication of tungsten/carbon multilayers with

periods as short as 15i using a vacuum sputtering technique.

Sophisticated deposition aparatus and procedures appear to be the key to

their achievement of high quality diffracting structures.

Spiller et al. (190) report the iMPlmentation of an in-situ

reflectance woitoring technique in which the interference oscillations of

a reflected x-ray probe beem are minitored during mltilayer fabrication.

Such a system directly monitors the phasing between the partially

deposited uper layer and the proceeding stack (in ocntrast to the usual

crystal oscillator which Monitors the (mass) thickness of the upper layer

alone). In essence, the reflectance mcnitoring technique allows the



reflection amponent from the upper layer to be brought into phase with

the proceeding stock, despite any thickness errors that this stack lay

contain.

At present Spiller's group at Tom and Bubee's group at Stanford may

be regarded as the dminant centers for research in this field. X-ray

multilayers have also recently been fabricated by Soviet researchers using

laser evapoation of the materials to be deposited (Gaponov at al., 1981).

The most omui ly used materials in multilayers to date are carbon

for the low index layer and tungsten or rhenium/tungsten allay for the

high index layer. 2be optical constants of rhenium CZ a 75) and tungsten

(Z a 74) are generally coparable, so the nominal performance of the two

materials should be similar in the absence of defects. We vill generally

use tungsten/carbon multilayers when presenting numerical exailes. In

doing so we use preliminary versions of the optical constants data in

Henke et al. (1982), generously provided to us by the authors.

Vinogradov and Zeldovich (1977) present an analytic treatment of

reflection fron periodic x-ray multilayers. They use (normal incidence)

coupled wave equations whose unknowns are the envelope functions of

high-frequency electromagnetic field oscillations. (The "carrier

frequency is taken to be the spatial per iodicity of the multilayer

structure.) Such CWpled-Wave equations MPPly to mltilayer reflectivity

when the oupling Constant is weak, as it is in the x-ray case.

Vinogradov and Zeldovich obtain expressions for the reflectivity of a

periodic ultilayer comtaining an arbitrary nisber of layers. They also

determine the cndition which optimizes the ratio in thickness of the two
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different layers, and finally they derive *Aat is in effect a hybrid

optimization awdition that gives the optima total thickness of the

period, when the thickness ratio is also optimized. (The tw relations

together thus i~plicitly give a refractive correction to Bragg's law.)
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Part 3) Crystal Diffraction

In many respects, reflection from x-ray multilayers is similar tW

diffraction from crystals in the Bragg mode (atonic planes parallel to the

crystal surface); this is particularly true in the case of periodic

multilayers.

Most crystals have period length& (or "d-spacings') that are a few

angstrais cc less between adjacent diffracting planes, so that the longest

wavelength that can be reflected from most crystals is less than ten

angstrom. (The longest wavelength that can be reflected is aprox mately

twice the period length, which is referred to as the '2d-spacing'. The

basic period of a crystal (as a physical entity) is usually referred to as

the "unit cell".)

The optical constants of materials in the soft x-ray region

(5A - 125A) and the extreme vacuum ultraviolet (125A - 600i) have a

qualitative similarity to the optical constants of materials at

conventional x-ray wavelengths (0.SA to 5i).

In the high frequency (but nn relativistic) regime where the

radiation-induced electron oscillations are limited primarily by electron

inertia rather than by coupling with the atom ('free-electron regimeo),

the real part of the index of refraction (less unity) scales as

While the imaginary part scales as X4 (Beitler, 1954, p.208), so that at

short x-ray wavelengths absorption as small caripred to dispersion.

Since the real part of the index of refraction is less than one for

electromagnetic frequencies above the plasma frequency, Ototal external

reflection' of x-rays can occur when the angle of incidence to a single
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reflecting surface is less than the critical angle given by

[=Y(l- Re(;t) radians, with n the Index of refraction of the

substrate (James, 1965, p.171). X-ray reflectivities that proach unity

can therefore be obtained at glancing angles (typically - B9 to the

normal) when absorption is small. Ttal external reflection of short

wavelength x-rays can therefore be quite efficient.

In the soft x-ray region the Imaginary part of the index of

refraction can become crwable in magnitude to the real part (less

unity). The effective wr*ber of free electrons per atom (known as the

"atomic scattering factor') must then be treated as a omplex quantity

whose dependence on wavelength is irregular due to atomic resonances.

(Hever, it appears from the data in (Henke, et al. 1982) that for most

materials the imaginary part of the index scales very broadly as XL in

the soft x-ray region.)

The most rigorous theory of diffraction from crystals is generally

considered to be the dymmical theory of Ewald and von Laue (Batterman and

Cole, 1964; James, 1965, p.413). In the Eald - von Laue theory the

physical structure of the crystal is represented by a o=nlex dielectric

constant that is spatially periodic, and that has as interaction with

radiation given by Maxwell's material equations.

The dynamical theory can be used to treat multiple reflection

processes in which an incident beam interacts resonantly with more than

one set of atomic planes at once, but in the most omon case only one

pair of structural spatial frequency cmponents (positive and negative),

plus a DC coirponent, are considered to be active at ane time.

A-

- ' -- " ' .... * " ' nil i I i I l~ l ~m*'NI 1 N NW.
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From a fully classical point of view, the polarizability can be taken

to be proportional to a local electron density, but under a seiclassical

model the polarizability must be calculated quantm mechanically. At

short wavelengths where the dipole approximation breaks down, the

dielectric constant will therefore depend an the scattering angle. This

effect is mall if the 2d-spacing is larger than an individual atom.

When the surface of a thick crystal is cut parallel to the

diffracting planes, the reflectivity predicted by the Eeald - von Laue

thoery is the sue as that obtained with the earlier theory of Darwin and

prins (Jales, 1965, p.429). In essence, the Darwin-prins solution is

obtained by requiring that the change in the forward and

backward-traveling u'plitudes, as each cell is traversed, be cnsistent

with the cell reflectance and transmittance.
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part C) Thin Film Formaliums

gogelnik (1976) has derived (from coupled wve equations) &

differential equation that propagates the amplitude reflectanoe through a

quasi-periodic structure. This differential equation is similar to the

difference equation with which w treat x-ray mltilayer reflectivity in

Chapter II.

We derive our difference equation from a characteristic matrix

solution for the fields within the unit cell of an x-ray multilayer; this

unit call may contain an arbitrary one-dimensional index gradient. Such a

solution exists (in principle) for any medium in which the index of

refraction varies only in one dinmension (Born and Wolf, 1976, p.51). The

characteristic matrix solution for homogeneous layers is camoInly used in

optical thin-film calculations.

Although this work centers on the analysis of structures with a

one-dimensional index variation, we swumarize in Chapter IV the results of

a preliminary analysis we have made of the effect of interfacial roughness

an 3altilayer reflectivity.

This analysis is based on that of Bastman (1978), who showed that a

one-dimensional formalism can be used to treat interfacial roughness when

the roughness has a sufficiently gradual variation within the layers.

sasuman's methods have been summarized and extended by Carniglia (1981).

Shellan et a. (1978) use a coupled wave formalism to make a

perturbation treatment of the effect of random thickness errors in

dielectric multilayers. Our non-perturbative analysis of random thickness

errors in x-ray multilayers is presented in sec. 11-5.
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Section 1-2 - Outline of Text

This work contains four chapters, each of which is divided into

sections, and parts of sections. The present chapter reviews the field,

Chapter 11 presents our theoretical analysis of x-ray maltilayer

reflectors, Chapter III uses this theory to discuss aplications for x-ray

multilayers, and Chapter IV sunarizes our results.

The text uses a amson wuteration systam to number pages, equations,

figures and tables. As an exunple, the first equation of section 1 in

Chapter II is numbered -eq. 11-1-10, the second is eq. 11-1-2, and so on

through the final equation of the section (eq. 11-1-25). The first

equation of the next section is then eq. 11-2-i, and so forth. The same

system is used to number pages, figures, and tables.

In sec. II-1 we introduce the basic formalism for our treatment of

reflection from x-ray mwltilayers. Like the bald - von Laue theory of

diffraction fron crystals, we begin with a physical description of the

ultilayer in term. of a spatially varying omrplex dielectric constant.

We assume, as is natural for multilayers, that the dielectric Constant

varies only in one dimnalon. This assuqtion has an analogy with the

Swald - van Lauw theory, in that wa, in effect, neglect a portion of that

set at spatial frequencies which are also neglected in the

Xweld - n Laue theory when only one reflection is regarded as being

active (see above); for wwale, in the case of a periodic multilayer, we,

in effect, neglect any spatial frequencies that are not parallel to the

active pair of spatial frequencies (assumed to be normal to the
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substrate).

oNoever, unlike the dynamical theory, we do not require that the

multilayer be periodic; In effect we allow each of the active spatial

frequencies to be replaced by a narrow cntinuum of spatial frequencies.

Our formalism does not introduce such a cntinum explicitly, but

instead makes direct use of the structural pr.perties of the discrete

cells. This is accmplished with a difference equation that propagates

the amplitude reflectance from oell to cell (derived in sec. II-1).

In ec. 11-2 we consider the reflectivity of ideal, defect-free

multilayers; our main interest is in the optimization of the layer

thicknesses and materials.

Sec. 11-3 considers the angular and spectral scaling of the

reflection properties of tungsten/carbon multilayers.

Sec. 11-4 considers the possible utility of aperiodic reflector

designs, with particular emphasis on the layer by layer optimization

scheme of Carniglia and Apfel (1980). The in-situ reflectance monitoring

technique reported by Spiller et al. (1980) lends itself naturally to this

kind of design procedure.

Sec. 11-5 considers the effect of random errors in the layer

thicknesses. We make the problem tractable by neglecting higher powers in

a quantity that may be regarded as the incoherent reflectivity of the

degraded structure. In this way the analysis is able to treat a full

range of error magnitudes, from those which cause only a slight decrease

in reflectivity, to those large enough to substantially degrade the

reflectivity.

I I '-- i b ... ' "- " - -- " I - - l lIIFII II I L - I I
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Spiller at al. (1980) have verified experimentally that in-situ

reflectance mnitoring strongly reduces the degradation in reflectivity

caused by thickness errors. We model this effect quantitatively in

sec. 11-6. Bowever, due to the coplicated interaction involved in the

monitoring process, the results of sec. 11-6 should probably not be

regarded as strongly quantitative predictions.

In the first section of Chapter III we discuss points of general

relevance concerning the application of x-ray multilayers. In sec. 111-2

we discuss the possibility of using x-ray multilayers to form cavity

mirrors for projected x-ray lasers (X - 100A). Sec. 111-3 considers the

utility of imltilayer coatings in short wmvelength x-ray microsocpes

The first section of Chapter IV summarizes the results of the

preceding chapters. Sec. WV-2 discusses possible avenues for future

research, and also summarizes a preliminary investigation of the effect of

interfacial roughness on multilayer reflectivity. In terms of the above

discussion, the analysis of sec. IV-2 may be said to permit the continuum

of spatial frequencies in the multilayer structure to have a narrow extent

in the non-normal direction.



Chapter II Theoretical Analysis of Multilayer Reflection

Section II-1 - Analytic Formalism

Part A) Introduction

We have seen in the preceeding chapter that the dynmical theory of

x-ray diffraction is based n the assurption of a spatially-varying, complex

dielectric constant which has an interaction with radiation defined by

Maxwell's material equations. Despite the seemingly ad-hoc nature of this

assumption, the dynamical theory is generally considered to be the most

rigorous theory of x-ray diffraction, and has been found to yield fairly

reliable results with crystalline structures having angstrom periodicities

(Batterman and Cole 1964).

Because such assumptions permit the use of classical techniques of

electromagnetic theory, we will also use them in our treatment of x-ray

multilayer reflectors. However, in our case the effective dielectric

constant need not be assumed to be periodic, but mst, n the other hand, be

assumed to be a purely one-dimensional function varying only in the

direction perpendicular to the multilayer surface.

Our formalism will tie in closely with traditional methods of thin-film

optics. It will be applicable to a broader range of problems involving

x-ray multilayers than are other x-ray formalisms, and will provide analytic

11-1-1
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solutions in the x-ray regime to problem that require cumbersome mmrical

calculations if traditional thin-film wthods are used.

Our formalism will contain the structural properties of the different

cells explicitly, whereas the twald-van Laue cc oupled-wave foralisms are

based an the Fourier components of the diffracting structures. Fourier

components are somewhat inconvenient to use when analyzing aperiodic

multilayers.

hn additional advantage of our formalism is that it proceeds via a

well-characterized series of assumptions from standard results of

electronagnetic theory. For this reason our solutions include certain

higher-order terms that must be included in order to obtain even a

lowest-order analysis of certain problems of interest. Such problems

include the determination of the layer thicknesses in mltilayers made by

in-situ reflectance monitoring (sec. 11-4) and the determination of the

effect on reflectivity of randcn thickness errors in multilayer structures

(sec. 11-5).
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part S) Notation, Preliminary Results, and Characterization of

Approximations

The core of cur formalism is an analytic solution for the

electramagnetic fields inside the unit caell of an x-ray multilayer

that has an arbitrary gradient structure. In the optical regime, such a

solution cannot be obtained analytically with arbitrary gradients (see

below); we are able to obtain analytic solutions in the x-ray case by

treating the decrement in the dielectric constant as a small quantity.

It has been shown (Born and Wolf, 1975, p.51) that when the dielectric

constant has a purely one-dimeensional spatial variation along a direction

z, Maxwell's partial differential equations can be separated into ordinary

differential equations involving variables U(z) and V(z), where U and V are

defined in terms of the electromagnetic fields through the relations

ik sin ()

E -V (z)e s  Y

for the P case and

EX= U W e ik D sin y OE- 1.2)ik sine8y

Hy = V (z)e

for the S case. (We define the P case to be that in which the magnetic
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field H points along the x-axis, and the S case to be Uat in which the E

field points along x.)

Here the parameter k is defined by

k-

with X. the vacuum wavelength. 6 is the vacuum angle of incidence to the

normal. In most cases we will follow the usual optics convention where

angles of incidence are specified to the normal.

The exponents in the y oscillation factors have been put in a

trigonometric form that enables them to be fit to boundary conditions that

are independent of x and that apply in planes of constant z, i.e. our

solutions are appropriate to a Bragg geometry in which the y-z plane is the

plane of incidence (See fig. 11-1-1).

The P case is somewhat sore interesting than the S case, and is

disscussed in somewhat less detail by Born and Wolf (1975, p.54). For this

reason w will briefly describe the steps by which the solutions for the

fields in P polarization are put into daracteristic matrix form.

As is shown by orn and Wolf, the amplitudes U and V satisfy the

ordinary differential equations

d IUj d (nCMi)) dU
d z 2 dz d z k (E(z)-3ifB)U= 0

di' dA
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and

Vd ( -a)
ke (z) dz

in the P case.

We consider next the unit cell of an x-ray multilayer reflector that

extends froM zz to zOz 1  (with zi < zz ). As indicated in

fig. n-1-1 we will define the direction of increasing z to be towards the

substrate from the incident side. Let U1 (z) ,Vl (z); U, (z),V S (z) be tw

sets of solutions for the transverse fields H. and E that satisfy

Ut (z,)=- 0, V1 (1) =(

UA ()= 1, V& ( X L)= 0

Then following well-known procedures for linear ordinary differential

equations, we have the following unique relation connecting general fields

at z i th those atz :

, (z z)i V, (zA) V (z a -E (zI)
U (1 (zt) Uj (Z3)) ( :S :~

(1-1- 7)



(The minus signs in the field vectors are a result of the definitions in

eq. 11-1-1). This linear relation obtains because eqs. U-i-4,5 are

The determinant of the above matrix must be one according to the same

mathematical arguments as are used in the S case by Born and Wolf (1975, p.56).

(Note that their supplemental physical arguments concerning conservation off

energy cannot be applied in the case of an absorbing structure).

Since the determinant is unity we can write the folloing inverse to

eq. 11-1-7:

(ji(i) (L~ zL V' (Z't) (.E' (ZI&'~

H,. (-,)' U, (ZZ V, (z ) 1  H1 (zd)

or, in wore usual form:

( , (z,)\ (1 (zL) Vt (z2 ) / H (b /

T h is (z) on(Zo) / " a tr ) /

This is what Born and Wolf Call the characteristic matrix solution for the
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fields in a stratified medium; in the case of a unit cell in an x-ray

reflector it expresses the fields on the incident side of the oell in terms

of those an the substrate side. In order to wee onrveniently treat

reflection at nn-normal angles of Incidence we will refer to a slightly

different matrix as the darcteristic matrix (eq. 11-1-14 below). In this

way we will automatically incorporate in our equations certain well-known

rules of thin-film optics that reduce the case of off-normal-incidence

reflection to the normal incidence case (Baumeister, 1962).

We will subscript all quantitities that appear on the right side of the

characteristic matrix equation with the cam= subscript K. Thus the fields

at the substrate interface of a particular cell in a multilayer will have

the same subscripts as the structural parameters of the cell, while the

subscripts of the fields at the incident interface will be larger by one.

Generally, we will use the indicial label K to refer to an arbitrary

cell in a multilayer, and the label J to refer to the last or total nuber

of cells. Thus, K is equal to I at the substrate and rises to J+l at the

upper interface (see fig. 11-1-1). (Note that given the matrix inversion

performed between eqs. 11-1-7 and 8, we have chosen to have K increase in

the direction of decreasing z.)



sq. 11-1-4 can easily be transformed into a Sctrodinger equation by

eliminating the d U/41 tars. Since the Schrodinger equatii can enly
be solved analytically in s few isolated cases (Willims, 192) e eq. 11-1-4

cannot be solved analytically in the case of an arbitrary gradient.

However, in Appendix 1, we show how straightforward perturbation

techniques can be used to solve egs. 11-1-4,5 under the assuption that the

parameter A , defined by

is gmall ocrepared to one. Since A may be thought of as the unit decrement

to the index of refraction, this perturbation solution is appropriate to the

x-ray regime where the indicies of refraction of all materials approach

unity.

Ibe cell structure is considered to be specified by the function ()

in the rage zi  4 z zZ.

ithout loss of generality we can position the znD origin at the

idpoint of the call. We then specify the cell thickness in terms of a

dimensionless Bragg detuning parameter T :

LW it - k. Cos (z -z,) (i-I-i)

= Wt - cos 9 j

with a the call thickness.

. . . .. .
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In eq. mi-l, 3 is the order o diffraction. Under the

approximations to which we win work (soe below), a resonance in ith order

may unambiguously be defined as the situation in which T is mani.

A single unit cell can be treated with a perturbation approach because

the interaction of the single cell with the incident x-ray beam Must be

weak.

We will generally be interested in multilayers operating sufficiently

near resonance that the reflectivity of the total structure is significantly

higher than the reflectivity of the individual cells. For this reason it

will generally not be appropriate to treat the entire structure using a

perturbation approach.

As an alternative, we could, of course, obtain the characteristic

matrix solution for the entire structure by multiplying the matrix solutions

for the individual cells together. This standard procedure is based on the

continuity of the transverse field components across the cell interfaces

Such a prooedure may be thought of as a nwerical integration of

eqs. 11-1-4,5 with the thickness of each unit cell serving as the step size

(thus the requirement that the change introduced by each unit cell be

small).

Rather than mltiplying the individual cell matricies together to fird

the overall solution, we will, instead, derive from the individual cell

solution a difference equation that propagates the uiplitude reflectivity

from cell to cell. The know (and usually regligable) reflectivity of the

substrate then serves as a boundary condition from which to determine the

reflectivity of the entire structure.



The derivations of the matrix solution and difference equation are

presented in Appendicies 1 and 2; before presenting these results %a will

first characterize wore precisely the approximations Oed.

In terms of our notation, the usual theories of x-ray diffraction

generally include only first order terms in the decrement A and the

detuning parameter Neglect of high orders in & is generally well

justified in the x-ray regime.

Neglect of higher orders in 4? is justified when the structure is

periodic and operating near resonance (near enough that the reflectivity of

the overall structure is significantly higher than that of the individual

cell).

This may be seen b' the following argument. The number of cells

participating in the reflection can be at most of order 1/4 due to

extinction of the beam. Here A may be considered to be an average of the

decrement over typical values for the cell. (If extinction were due only to

absorption, we could consider only the imaginary part of A here, but at

shorter wavelengths, depletion by back reflection is also significant.)

Success in obtaining high reflectivity will depend on the total pha.se

detuning in the stack of participating cells; this detuing will be of orde.

J/& since i is essentially the detuning per cell. For operation near

resonance, the total detuning cannot be large €criared to one radian, sc

that in cases of greatest interest, T/A £ 1. Given that <( 1, a-

expansion that is first order in 9 as well as in A is adequate.

Higher order terms are necessary to treat two kinds of aperiodicties.
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The first are aperiodicities of a stochastic nature; in such cases a

randem error in I at one point in the structure might be canoeled out by

that at another, so that larger MS detunings within the individual Cells

can be tolerated than is possible in the periodic case. Specifically, since

we would expect the total U)E phase error from the J cells that participate

in th ref lecticn to be of order f3[ <4p) which is of order

j (~2 /~ "~ *we would expect that in the cases of greatest interest:

In fact, we will see in sec. 11-5 that if the expectation value of 4? is

equal to its unperturbed value (i.e. its value in the periodic case), the

lowest order effect of rand errors in V' on the reflectivity is through

terms of order TZ

The second kind of multilayer structure whose performance is strongly

dependent on higher order terms is that which results when in-situ

reflectance monitoring is used. In such multilayers the 4P value for the

Ith pair of layers is intended to be that value which maximizes the

reflectivity R K4l of the entire stack of cells 1 ... 1 (see sec. 11-4).

Determination of this f value wnounts to setting a derivative of

intensity reflectance with respect to 4K equal to zero. We will see in

sec. 1-4 that the lowest order terms in such a derivative are of order &

(i.e. ,A rather than ,O ), Terms of order unity are missing be:aise

t~



the loAest order effect of a ange in K having magnitude $TK is to

multiply the reflected uiplitude by e* (-2i ST? ) leaving the intensity

reflectance unchanged. To obtain terms of order & in a differentiation

with respect to q , terms of order u s wait be included initially.

In order to treat both kinds of aperiodicity, our analysis will include

all orders in the parameter , and also terms of order q'P.

As in the traditional x-ray diffraction theories, we will include only

first order terms in A. Such an approximation breaks down at grazing

angles of incidence. As the angle approaches the surface the path traversed

through each cell increases for two reasons; first because the x-ray potons

traverse the cell at more oblique angles, and second because the cell

thicknesses have to be increased as the angle decreases in order to maintain

a resonant reflection from the multilayer. These two factors imply a

quadratic increase in extinction per layer with angle; therefore when

( -e < l13

a regime has been reached in which the bean has a strong interaction within

one single cell, and our formalism is no longer valid.

Our formalism will depart from the amuton practice in x-ray diffraction

theory in that we will include the trigonometrical factors that are

necessary for the theory to be applied near normal incidence.

S.

a=



In the reminder of the text we will follow the standard Fractioe of

using primnes and double primes to denote real and imaginary parts,

respectively.

h6-~



Part C) Characteristic Matrix Solutio for the X-Ray egimte

In Appendix 1 w show that subject to the approximations disoussed

above, the solution for the P polarization field oplitudes 01,2 , V1 2 is

( U((-')'cos*K (c-l' sint,+r)
(-I ) it WCt X

I l i('1)M sin.tK-rK) (-1)3 1 wstK J (eg)

where

k P (9)

L'K - d z ( z) sins (2k c*3 Oz) tA

cell

,dz (Z)

cell

P(O) { cs zip P Polo.viza.tion

a S PoDJriz&.ion 
0I - I - IF)
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sq. 11-1-14 represents a straightforward perturbation solutio to

eq. 11-1-4; term of order A ar neglted, and the vacum (i.e. A O)

solution for U is substituted into all terms that are first order in A.

3j. 11-1-4 then becoes a driven harmonic oscillator equation.

In q. 11-1-14, & and ) are the field comonnents that are normal to

the k-ector in vacuum; from fig. 11-1-2 we see that these are defined by

S a -5sow/weo

(Again we note that e is the vacuum angle of incidence). Thus if we fol1ow

the usua3 sign onvention of thin-film optics in which the amplitude

reflectivity T is real and positive if the reflected z 7 is in phase with

the incident E, (for P polarization), we see from fig. 11-1-2:

ON N Ui~ A
-A (L-p) A

where A is sm -dependent field uqlitude.

We show in Apendix I that vq. 11-1-14 is also valid for the case of

5 polarization (in which - is polaaized along the x-axis) if we define

isE.
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COORDINATE SYSTEM FOR
CHARACTERISTIC MATRIX SOLUTION

In all figures p is real and positive. Field vectors are shown as solid
arrows, propagation directions as dotted arrows.

" Figure a shows S polarization at normal Incidence.

" Figure b shows P polarization at normal Incidence. The
coordinate system of fig. a has been rotated 900
relative to the field vectors.

" Figure c shows S polarization at non-normal Incidence.

" Figure d shows P polarization at non-normal Incidence.

X348

Caption for
Figure 11-1-2
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COORDINATE SYSTEM FOR
CHARACTERISTIC MATRIX SOLUTION

S Polarization P Polarization
Transmitted f, Transmitted w

x y x y

Reflected Reflected .- 9 W,

Incident £ Incident

a. b.
S Polarization P Polarization

Transmitted £ Transmitted

'I
a IxY Y

Reflected %7 Reflected

Incident €dI

X347 Figure 11-1-2



Z-i-i,

anld

-I H,/close (1-1-is)

Our use of a single matrix solution for both polarizations is analogous

to the use of tat Baumeister (1962) calls "effective maltilayer

parameters; both amount to reduction procedures for simplifying off-normal

incidence calculations.

.-
,-
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Part D) Difference Ruation for hqplitude Reflectance

As discussed in sec. 11-i-2 above, w choose to convert the matrix

solution for the unit call to a difference equation in %before Proceeding

to consider the reflectivity of the multilayer as a whole.

The derivation in Appendix 2 follows a wll-known procedure, except

that in the course of the derivation we make truncated expansions cnsistent

with the approximations discussed in sec. I1-1-B above.

In brief, eq. 11-1-17 is substituted into eq. 11-1-14, and the

arplitude A is cancelled from the resulting pair of equations. Terms of

order A are then neglected.

The resulting equation that propagates the wlitde reflectivity

across the Kth call is:

sq. 11-1-20 is analogous to the well-know Airy recursion formula that

is used to propagate the reflectivity from single-layer to single-layer in

optical oultilayers.

In fact, if we now wloy a phenoenological Airy argument based on the

usual swmation of partial reflection and tranmission aoqents within the

single-cell, w can Physically interpret eq. 11-1-20 by coaparing it with

the result of the Airy summation.

The Airy sumiation argument is sumarized in fig. 11-1-3; the

phenomenological derivation of the partial reflection and tranmission

coxanents has been omdtted, but arguments that are essentially the same are

II
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used in the Darin-Prins theory of x-ray diffraction (see Jwres, 1965, p.62).

As shown in the figure, the first term on the right side of eq. 11-1-20

represents a diuble tramnsaission through cell X with an intermediate

reflection from the stack of proeeding cells K-1, 9-2, ... 1. The second

term represents a reflection frm cell K back into the direction of the

incident medium. The third term represents a multiple reflection process

consisting of reflection from the proceeding stack of calls, reflection back

towards the substrate from cell K, and finally a second reflection from the

preceeding stack back into the direction of the incident medium. Higher

order multiple reflections are of order A s and are neglected.

The omparison thus implies (as can be shown rigorously fran the matrix

solution of eq. 11-1-14) that the reflectance of the Ith cell is

(-l)=(i r)e " t " from the incident side and (-I)ft(iK4 p e itx from

the substrate side, and that the transmittance of the cell is -e "i t ,

The analogy between eq. 11-1-20 and the single-layer Airy formula can

be formalized in another way if the cell is centrosymmetric, i.e. if it

contains a central plane of symuetry. In this case the method of equivalent

parameters can be employed (Herpin 1947, Knittl 1976). If the cell is

centrosymmetric, the parameter p defined in eq. 11-1-15 is zero, and

eq. I1-1-14 becmes, to first order in 9 and a

(:) ()

(1-1-21)J
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PROPAGATION EQUATION FOR AMPLITUDE
REFLECTANCE

~K*1

*I(r -ip)0 1  *-1t -1 (r + 1p) P KI

Kth
Cell

~~ (f i~- p)

The amplitude recursion equation It:

K *21t p (ir -p) *'It - (ir +4 p) e9 I p

X320

Figure 11-1-3
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in the sixplest rose where aw. If this atrix equation is cmapred to the

usual (non x-ray) chaacteristic matrix solution for single homogeneous layers

orn and Wolf, 1975, p.58) with 0 a 0:

In c iosP e .0 ~~ P ) ( :
we see that the two matricies can be formally equated if we make the

i dentif ications

S a( & r-I1--23)

t- r

e n P are kown as the equivalent parameters of the uit cell.

(w1. is the equivalent index and Pe the equivalent phase thickness of the

tell). There is a straightforward analogy between the unit cell of an x-ray

reflector and a single inogeneous layer that has an index of refraction

[I
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Vic and a phase thickness im i SLalarly, a reflector with J alls

corresponds to a stack of 3 equivalent layers, which is, in effect, a single

layer having index t and phase thickness J Pe . This coalezoence of the

3 equivalent layers into one is permissible because the internal equivalent

layers have no interaction with me another (since their refractive irdicies

are equal). TIhe equivalent parameters can therefore be cosidered to

incorporate implicitly the effect of multiple reflections within the

structure.

Eq. 11-1-20 is also analogous to the propagation equation that Kogelnik

derives (1976) fron standard oupled wave equations. This may be seen by

setting

,a AiK *edK

(1- 1- 24)

dK dK&

so as to obtain the differential equation

2- ( -- r R+) 0(f 2)
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where we have irdicated that the neglected term of order is almo ofd VS
order Az, ?. No A . In treating stochastic problem, a dif fre

equation has the iqportant advantage over differential equations of having

terms whose statistical properties can be determined quite easily; this is

because the terms of the differenoe equation have a one-to-Cne

correspondence with the properties of the individual cells.

Since the layer thicknesses are proportional to the order of

diffraction m, the absorption is least in first order (for given wavelength

and angle), and the first order reflectivity is therefore the largest.

Thus, although our formalism includes all orders of diffraction, our

discussion will generally involve only the first order case.

t 'i
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Sectian 11-2 - Defect-Free Multilayers

Part A) Reflectivity of Periodic ultilayers

The si"plest Cse that man be treated with the formaism developed in

the previous section is that of a perfectly periodic multilayer reflector.

Periodic x-ray multilayers have been treated by several authors in recent

years (Vinogradov and Zeldovich 1977, Lee 1981, and Underwod and Barbee

1981). Periodic x-ray multilayers are quite analogous in their diffracting

properties to cystals cut in the Bragg geaetry.

We will present brief derivations of the reflecting properties of

periodic x-ray Multilayers; the derivations will tend to be quite sketchy

except where previous work has been extended.

As discussed in sec. I-1-B, periodic multilayers can be treated with

an analysis that is first order in 4 and A. Dq. 11-1-20 becomes

The reflectivity of the periodic multilayer increases almot

nortonically as wre unit cells are added, until a steady-state regime is

reached. In the steady-state regime, we can set

Ro -g ?X-..
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so that eq. 11-2-1 becomes a quadratic equation to be solved for The two

solutions are

r-ip Az3

where tbo roots result from the sign ambiguity in the quantity

± - -r- (1-2-4)

We now discuss the sign choice that uast be made here. The sign choice

that we establish will be applicable in most of the remaining calculations

of the text. The few exceptions will be explicitly identified.

The parameter 6 has already appeared in eq. I1-1-23; in eq. 11-2-4 we

make the ambiguity in sign explicit, and generalize the definition to include

the vno-centrosymmetric case.

In order for the equivalent phase parameter to imply exponential

attenuation instead of exponential amplification, we must choose that root

in eq. 11-1-23 which causes the imaginary part of 5 to be positive. In the

remainder of the text, the quare roots that occur in expressions of the
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form bt w ill by definition be osen to be on the branch

corresponding to positive imaginary parts.

We will rw show that under this cnvention it is the upper sign rather

than the lower sign that must be used in eq 11-2-4 as well as in

eq. 11-1-23.

If we multiply the two possible molutions together (i.e. the two

solutions corresponding to different evaluations of the sign ambiguity in

eq. 11-2-4), we find

r-ilp r-i

(1-2-5)

so that if we represent the true physical solution with an unsubscripted :

+= S:rt rt "-' t , ' > , - - -- L -

or

2 Re( )

2 Re(A
+,
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In crder to have R < I. we require

Re (t ) < 0 (1-2-8)

We will show later in this sectian that at the wavelength of peak

reflectivity,

4 i d U(Z- )

with d > 0 and with the upper and lower sign in eq. 11-2-9 representing the

same sign wibiguity as in eq. 11-2-4.

Thus, from eq. 11-1-15, we require at peak reflectivity

At d, < 0 (x-2-wo)

for R <1, with At* defined to be the imaginary part of the parameter AA

(defined in eq. 11-1-15).
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Since all materials absorb in the x-ray regime, ,A" > 0, so that in

eqs. 11-2-4,10 we must choose the uer sign when the multilayer operates at

the Bragg oandition.

Further, we will show later in this section that the imaginary part of

can never dhange sign from its value at the Bragg codition. Therefore,

we will always dioee the root in the definit'lon of to be the root with

the positive imaginary part.

In this case we have

= r-ip -

and also the useful result

h2 wip i t

(This is eq. 11-2-6 with the unbiguity in the sign of now~ resolved).
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In Appendix 3 we solve sq. 11-2-1 in the case of periodic multilayers

that d& tot contain sufficiently many layer pairs to reach the steady-state

regime. The solution (integration of eq. 11-1-25 with constant coefficients)

is

where tis the steady-state reflectivity given by sq. 11-2-11. When the

multilayer is centrosyuetric (as in the bilayer case of fig. 11-2-1),

e = S Z -(l 14
I mt eli s ( - 1t )

The resemblance of eq. 17-2-14 to an Airy smtion is readily

understood in terms of the equivalent index analogy (sec. I-1-D).

The most imprtant entrosymmetric case is that of the bilayer

structure shown in fig. 11-2-1. This figure incorporates the ideal

assmptions of perfectly sharp interfaces. Under this assmPtion the

structural paeraeters defined in sq. 11-1-15 beome

r,-€A. - A S) , K.. s et

IL,,, &. P) K A A n -ec.

M k LosB 9~(--5
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The parameter P., K• the phas thickness of the high index layer, will

be used so often that we will establish a onvention In which the subscript H is

wade implicit. The symbol will thus by definition be the phase

thickness of the Kth high index layer.

The high index layer will be by definition that layer with the larger

absorption; generally the real part of the decrement of the high index layer

will also be larger in magnitude than the real decrement of the low index

layer.

L~
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Part 5) Structural Optimization of Periodic Yfltilayers

we now turn from the calculation of reflectivity to the associated

optimization problem, i.e. the problem of determining the particula

structure that optimizes the performance of a multilayer. Here we will

mostly be concerned with maximizing the peak reflectivity of the structure.

This would be particularly appropriate in such applications as the design of

cavity mirrors for potential x-ray lasers; in other applications one might

ultimately prefer more cowplicated criteria.

The reflectivity of a multilayer mirror operating near resonance can

for practical jurposes always be considered to be an increasing function of

the number of layer pairs in the structure; thus in order to maximize the

reflectivity one would want to deposit sufficiently many layer pairs that

the multilayer operates in the steady-state regime. (In sae cases the

reflectivity is found to undergo very wnall oscillations about the

steady-state reflectivity as the number of layer pairs approaches the regime

where radiation no longer reaches the substrate).

Further, in many applications polarization effects can be neglected.

This includes applications at normal incidence (x-ray laser mirrors,

normal-incidence microscopy), grazing incidence applications (all

high-energy applications), reflections taking place near 45 degrees (where

the P reflectivity is zero), and most of the applications that involve

synchrotron radiation (which is linearly polarized).

!I
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In such cases we maximize the reflectivity by maximizing the magnitude

squared of eq. 11-2-nl.

We first consider the problem of choosing the optimu unit Call

thickness for the mwltilayer, which from eq. ii-i-U is equivalent to

finding an optimnu value for the parameter I .

The wmll-known requirement for maximizing the reflectivity of a

dielectric multilayer (i.e. a ieltilayer with real A (z)) , is that the unit

cell thickness be dosen in accordance with Bragg's low, as oorrected for

dispersion. By this criterio the optical thickness of the unit cell should

be one half-wavelength, so that

(i Re + WAz) cos e z - __C (Z-)-6)
IJ z

Parod

Here * (z) is the angle of refraction at a particular depth in the

structure; this is defined by

( + A (2)) Silt (Z) 3 inG(- I)

i



if-

Then

'(I)

ids(LAIz))csBiz} • z W4aA'( )-Sin' Jdz(w, * - )-

Period Period Period

( 2-z-18)

-Co= ose fdz (I() (1-2-19)
f Cos 9

P.r;oJ

or fro eq. Z1-1l1:

period (-1- 2,o)

This x-ray version of the dispersioz-corrected Bragg's law does not

correctly produce the position of maximum reflectivity in the case where A

is €omplex. The appropriate condition in this case was first found in the
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context at diffraction from cntrosymnetric crystals by Miller (1935).

We will briefly present a simpler derivation that applies in the

non-centrosymtric case as well, and that provides physical insight into

the arigin of the absorption correction to Bragg's law.

Since - " we can say that if

dv e A-4 - 0
dV dv 4V R v

where v is some structural paramet, r of the multilayer, then the

reflectivity is maximized with respect to v. In this section we will use a

dot to represent d /dv.

In the present case we optimize with respect to the pareter t , so

that i a I to first order in ? according to eq. 11-1-15. (As discussed

above, in the case of periodic multilayers we need only work to within first

order in the parweter , and can neglect terms of order " A.)

Also,

+ . .06 ,, t 0 + 0 orZ." -2)
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s0 that

i = (3-2-23)
S

and

3

Since

Re~f Re (3') = Re (S)

(3-2-z5)

our mnditian for mximizing R is that

Re (3) 0
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If to compare eq. ZI-1-23 with eq. 11-2-26, we see that our correction

to Bragg's law is a requirement that the real part of the equivalent phase

thickness of the cell be 1L. The difference here from the usual requirnent

that the real part of the optical phase thickness be XK is due to the

presence of multiple reflections.

This may be seen by manipulating eq. 11-2-11 to obtain

S- - - (r-p) (1- 2-27)

so that

-- te"  -e w -e (L-itcr-ip)

-e i  + (ir + p)

to within order A

The term -ft It represents the phase oscillation involved in transMission

through the call. The term + e ( Y,+p) also contributes to the overall

phase oscillation across the cell (which is 4 ip )I this term represents a multiple

reflection process consisting of transmission through the cell, reflection

from all succeeding cells, and reflection back into the initial direction.

(Higher-order mltiple reflections are of order A*). A phase change occurs

during the mltiple reflections, and if n is omnplex, the overall
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oscillation of the field across the call is shifted.

For brevity's sake we hive described the calculation of this effect as

a orrection for absorption; however we note that the imaginary part of A

causes a shift in the position of peak reflectivity through its effect on

the phase of? , rather than by any extinction mechanism (see below).

We can convert the resonance condition of eq. 11-2-26 to a

ciputationally more useful form as follows. The requirement that Re (3 )-0

can only be satisfied if 63 is a negative real number. We show in

Appendix 4 that when A is dosen to make real, 32 is automatically

made negative. This implies a result stated above, that the imaginary part

of S can never change sign from its sign at the Bragg condition. Such a

sign change wuld require the existance of a q value at which was both

real and positive.

For Im to be zero, we must have from eq. 11-2-4

r + P p(--9

Topt r r"+ p p= ' ,, X'.04A
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ft first order in A , we can evaluate eq. 11-1-15 (the defining equations

for the piaraftters In our solution fe or * ) at & 9 9 1ca u' .

In terms of a wavelength or 0-spacing shift away fram the unorrected

Bragg value aefinei by Zd COS X we can set

o, = ,A .. -~L(--1
?art

To cnvert the pase shift to an angular shift1 , we have from

eq. 11-1-11

= - ZA(COSO)(--2
opt COS

where

a ATCOS ( .d33

We can set

Ca
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Terms of cedr 4 1cos have been included in eq. 11-2-34 because the

linear term becomes very wiall near normal incidence.

Solving for Ae gives

/tAn' 90+ ' - ta ( 23)4X

which has physical sOlutions s0 long as the radicand is norn-negative, or, to
a good approximation, so long as 6, IJ% At e.-ft2 .,- , the true

angle of maximwr reflectivity a is at o.

Away fron the normal incidence regime (i.e e p i* )i

Ae,. tt A r- "(I-_ -36

In eq. 11-2-36 the first term on the right is the dispersion orrection arnd

the second is the absorption crrection.

We show in Appendix S that the absorption orrection must always be

smaller than the dispersion correction except in regions of very strong

anomalous dispersion, but there are many cases in which the two are

conparable in magnitude.

kiwi_

,-. .-..- ,-_,... - -... . .
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In fiq. 11-2-2 we show plotted the ratio of absorption correction to

net orrection in a particular example; Specifically, the ratio plotted is

( 12-37)e5 - 95

with 1z the true Bragg angle as corrected for both absorption and

dispersion, and S& the Bragg angle as corrected by eq. 11-2-20 for

dispersion only. This example exhibits the comnest case in which the

absorption and dispersion corrections are in opposite directions. (Note

that in this figure the incidence angle is measured relative to the

surface.)

Fig. 11-2-2 shows three regimes in which the relative effect of

absorption is fairly large.

First, near normal incidence, eq. 11-1-1 shows that the correspondence

between angular shifts and shifts in phase thickness becies strongly

non-linear due to the osine factor. In the normal incidence regime, a

relatively small absorption correction to the phase thickness can therefore

cause a large decrease in the total angular shift. Both the angular

absorption correction and the angular dispersion correction become large in

absolute terms as the angle of incidence approaches 06.

The plot shows two other regions at which the relative importance of

the absorption correction beccres strong; at wavelengths just above the

carbon-K edge, and at short wavelengths. In each case the absorption

correction becomes strong because multiple reflections beozne strong, and

multiple reflections are strong precisely where the absorption imposes A
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COMPARISON OF ABSORPTION CORRECTION
TO DISPERSION CORRECTION

1.0-
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ad = io A
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weaker limit n the reflectivity. (In a oment we will consider the

limiting case where the absorption gs to zero).

This is why the term "absorption correction" must not be taken too

literally; as discussed above, the imaginary part of A shifts the resonance

angle through the mechanism of phase changes that cc= daring multiple

reflections, rather than by any mechanism Involving extinction of the

fields.

In the limit of zero absorption, the steady-state reflectivity of the

structure approaches unity throughout the high reflectance zone (often

called the stop-band). Acording to the above analysis, in the limit of low

absorption the reflectivity approaches closest to one at an angle quite far

from the center of the stop-band, because with low absorption multiple

reflections be=e quite strong, which in turn causes the ratio defined in

eq. 11-2-37 to become quite large. Rowever with very low absorption the

reflectivity at 01 6eparts only slightly further from unity than the

reflectivity at 1, and indeed the reflectivity throughout the stopband is

almost costant.

In ontrast, in the soft x-ray regime where absorption is fairly

substantial, peak reflectivities generally do not approach very close to one

and the absorption correction manifests itself as a distinct shift in the

position of peak reflectivity (see fig. 11-2-3).
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once the call thickness of the structure is chosen so as to optimize

the refletivity, one may wish to optimize the structure in other degrees of

freedon; for exmple in the usual case of a bilayer reflector one would like

to optimize the ratio in thickness of the two types of layers.

In order to maximize the reflectivity at the Bragg angle, (which we

will refer to as maximization of peak reflectivity), we use the steady-State

version of eq. 11-2-1

-,it -(ir-p)- (iy+) Z 0 (1-2-38)

Dividing by ' and differentiating with respect to sce* secondary structural

parameter (any parameter other than ?) we obtain

zi +(,--P) + (+',p) P)

( - ip)4- (rv+ie) -! = 0 (1-2-i9)

+Y+i

Room'~*~
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From eq. I-2-I we have

('-P)*-(T+~ . (-( t) -(A -) -25 (1E-2-40)

To maximize the peak reflectivity we require that Re( - )O; further,

since we are operating at peak reflectivity, 3 is pure imaginary, so that

Im(2 )

Thus if we take the imaginary part of eq. 11-2-39 we obtain, using

eq. 11-2-11, the condition for maximizing the peak reflectivity

Im ~ ( [a-i~ + t) +±±.Lst) 0•r- ip 'r+ ip

(1-2-41)

If, as in the case of a bilayer reflector, the cell is centrosylmetric

in such a way that is zero along with p, eq. 11-2-41 achieves the siple

form:

-(3-2-42)
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We no acnsider optimization with respect to the parameter P usd in

characterizing a bilayer reflector (eq. 11-2-15). The terms of eq. 11-2-41

are of order a . so that to obtain optimization accurate overall to first

order in A, ve need only differentiate with respect to P in *zeroth" order

for our optimization.

For the soe reason, ve can consider optimization of to yield an

optimum ratio of high-index layer thickness to lok-index layer thickess

given by

- (d + f,- k cos d

(1-2-43)

Upon carrying out the differentiation in eq. 11-2-42 ve obtain the

optimization ondition first obtained by Vinogradov and Zeldovich (1977)

Eq. 11-2-44 is valid for either polarization at any angle of incidence.

I



11-2-25

We mention that cne should aoid being mislead by the discussion

following eq. 23b in Vinogradov and Zeldovich (1977), which night suggest

that eq. 11-2-44 can be treated as a primary optimization coiditian.

sq. 11-2-44 is a seoond&ry optimizatien €onditicn that obtains only if the

total cell thickness has alm been optimized.

Eq. 11-2-44 is a tranendental equation with no analytic solution, but

in Appendix 6 we exhibit a fast nmerical procedure that can be used to

solve it. The initial analytic seed that is used in this procedure my well

be accurate wiugh for most purposes.

In Appendix 7 we show that the peak reflectivity (i.e. the relectivity

at the Bragg cmditicn) is given by:

2RpZ + ( ' " pp'-r" 2

-2 -4_ (r'r" m2 v'' "( rl%-t+-V PO

[ In2 + p12 + z (r'p"- r"p')] "t

(1--45
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Part C) Optimum Materials Choices

Sq. 11-2-45 in cnjunction with the fast algorithm of Appendix 6 makes

it possible to vry rapidly calculate the mxumi reflectivity obtainable

from a given pair of materials reflecting at a particular x-ray wavelength.

It therefore bectes possible to have a computer program search

efficiently through all possible pairs of multilayer materials and so

determine the optimum reflectivity attainable at the particular wavelength

under consideration.

Fig. 11-2-4 and table 11-2-1 show the results of such a materials

search at each of 125 wavelengths in the soft x-ray region fram 6.2A to

124A. A and AL. were calculated using atamic scattering factors compiled

by Henke et al. (1982).

The calculated reflectivities of the optimum materials pairs are shown

plotted in red. For coparison, fig. 11-2-5 shows the reflectivity

obtainable from the usual materials choice of tungsten and carbon. The

reflectivity of the new materials ombinations are surprisingly high,

particularly at the longer wavelengths. In general the high reflectivities

are a consequence of atmaic resonances; the anomalous dispersion in the

spectral vicinities of such resonances cause layers made with the elements

to yield high reflectivities, primarily because their unit decrents have

anomalously ull imaginary parts.

1ig. 1-2-4 also shows plotted in green the optimum fraction of the

unit ell thickness that should be occupied by the high index layer.

NOW................
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Figure 11-2-4 (color illustration) is bound

at the back of the text.

LK1< ___w-
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Optimum X-Ray Multilayer Parameters

MINIMUM Z ALLOWED IS 5

WAVE-
LENGTH R N GMMA ELEENT - N ELEMENT - L

( AT ) ( DR )
NORMAL ) ------

(INCIDENCE) (DR + DL)

124.00 .8447 9.9 .3568 RHODIUM SILICON
121.04 .7932 15.4 .3627 RHODIUM STRONTIUM
118.15 .7992 15.8 .3785 RHODIUM STRONTIUM
115.33 .7697 16.6 .3850 RHODIUM STRONTIUM
112.58 .7758 18.0 .3862 RRODIUM STRONTIUM
109.69 .7667 19.1 .3869 RHODIUM STRONTIUM
107.27 .7505 19.9 .3785 RUTHENIUM STRONTIUM
104.11 .7392 20.9 .3800 RUTHENIUM STRONTIUM
102.21 .7280 21.9 .3814 RUTHENIUM STRONTIUM
99.77 .7171 23.0 .3829 RUTHENIUM STRONTIUM
97.39 .7165 23.6 .3699 SILVER STRONTIUM
95.06 .7176 24.8 .4049 SILVER STRONTIUM
92.79 .6966 26.4 .4099 SILVER STRONTIDM
90.58 .6693 27.7 .4205 SILVER STRONTI3M
88.42 .6313 29.1 .4344 SILVER STRONTIUM
66.31 .6218 42.6 .3573 RUTHENIUM BORON
84.25 .6210 45.4 .3503 RUTHENIUM BORON
$2.23 .6201 48,2 .3456 RUTHENIUM BORON
80.27 .6206 51.3 .3388 RUTHENIUM BORON
78.36 .6239 54.5 .3320 RUTHENIUM BORON
76.49 .6287 57.7 .3261 RUTHENIUM BORON
14.66 .6341 60.9 .3204 RUTHENIUM BORON
72.38 .6414 63.8 .3148 RUTHENIUM BORON
71.14 .6504 S6.2 .3100 RUTHENIUM BORON
69.44 .6774 79.9 .3797 LANTHUNUM BORON
67.78 .7211 75.3 .3905 LKNTHUNUM BORON
46.16 .3200 52.4 .4033 LANTHUNUM BORON
64.S9 .5446 99.7 .4933 CALCIUM LANTHWJM
63.04 .5097 108.6 .4924 LANTHUNUM CALCIUM

63.54 .4932 73.8 .3703 RUTHENIUM CALCIUM

60.07 .4379 78.6 .3668 RUTHENIUM CALCIUM

33.64 .4327 33.6 .3634 RUTHENIUM CALCIUM

57.24 .4778 89.0 .3598 RUTHENIUM CALCIUM

S5.07 .4732 94.8 .3563 RUTHENIUM CALCIUM

S4.54 .4676 101.4 .3521 RUTHENIUM CALCIUM

53.23 .4687 161.0 .3011 RUTHENIUM CARBON

51.96 .4707 172.1 .2958 RUTHENIUM CARBON

30.72 .47M7 155.5 .2204 COBALT CARBON
49.51 .4943 175.9 .2623 CHROMIUM CARBON
43.33 .5109 133.2 .2610 CHROMIUM C1i4iO%
47.13 .3291 168.5 .2596 CHROMIUM CARBON

Table 11-2-1

6A M-
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MINIMUM I ALLOWED 15 5

WAVE-
LENGTH R N GAIQIA ELEMENT - ZLEENT - L

(AT ) (DR)
( NORMAL ) (- -.. )
(INCIDENCE) (DI + DL)

46.05 .5530 191.5 .2581 CER014IUM CARBON
44.95 .5830 169.3 .2568 CHROMIUM CARBON
43.38 .6625 158.3 .2556 CHROMIUM CARBON
42.93 .4987 157.2 .3122 CHROMIUM CALCIUM
41.81 .5072 163.9 .3126 CHROMIUM CALCIUM
40.81 .5159 170.6 .3129 CHROMIUM CALCIUM
39.34 .5256 177.5 .3134 CHROMIUM CALCIUM
36.S9 5359 193.8 .3137 CHROMIUM CALCIUM
37.96 .5499 188.9 .3141 CHROMIUM CALCIUM
37.05 .5663 191.6 .3145 CHROI!4UM CALCIUM
36.17 .5924 188.9 .3149 CHROMIUM CALCIUM
35.30 .4174 164.9 .3257 COBALT SCANDIUM
34.46 .4302 171.0 .3260 COBALT SCANDIUM
33.64 .4458 176.3 .3263 COBALT SCANDIUM
32.94 .4645 190.1 .3267 COBALT SCANDIUM
32.05 .4904 190.2 .3271 COBALT SCANDIUM
31.29 .5392 196.7 .3790 CHROMIUM SCANDIUM
30.54 .3595 161.5 .3653 NICKEL BARIUM
29.81 .3708 198.1 .3596 NICKEL TITANIUM
29.10 .3969 200.5 .3599 NICKEL TITANIUM
28.41 .5022 144.4 .4967 CHROMIUM CADMIUM
27.73 .5053 194.3 .3745 COBALT TITANIUM
27.07 .3960 274.1 .3485 NICKEL MAGNES.UM
26.42 .4058 291.0 .3473 NICKEL MAGNESIUM
25.79 .4153 308.9 .3462 NICKEL MAGNESIUM
25.17 .4254 328.1 .3451 NICKEL MAGNESIUM
24.57 .4750 209.3 .3992 NICKEL VANADIUM
23.99 .4443 370.2 .3429 NICKEL MAGNESIUM
23.41 .4537 393.6 .3418 NICKEL MAGNESIUM
22.95 .4625 418.3 .3409 NICKEL MAGNESIUM
22.31 .4978 216.3 .4319 NICKEL TELLURIUM
21.78 .7359 250.9 .4003 TELLURIUM MAGNESIUM
21.26 .4885 504.9 .3377 NICKEL MAGNESIUM
20.75 .5824 522.0 .4019 CHROMIUM MAGNESIUM
20.25 .S038 575.0 .3356 NICKEL MAGNESIUM
19.77 .S109 614.5 .3346 NICKEL MAGNESIUM
19.30 05173 657.9 .3336 NICKEL MAGNESIUM
19.84 5236 707.6 .3322 NICKEL MAGNESIUM
13.39 .5291 761.0 .3308 NICKEL MAGNESIUM
17.95 .5321 820.4 .3302 NICKEL MAGNESIUM
17.52 .6007 800.3 .3609 IRON MAGNESIUM
17.10 .5338 969.6 .3296 NICKEL MAGNESIUM
16.69 5320 1061.5 .3276 NICKEL MAGNESIUM
16.30 .5295 1126.9 .3140 COPPER MAGNESIUM
15.91 .6136 1244.9 .3971 BARIUM MAGNESIUM
15.53 .5446 966.2 .1821 RHENIUM MAGNESIUM
15.16 .5549 1046.9 .1807 RHENIUM MAGNESIUM
14.79 .5640 111.2 .1795 RHENIUM MAGNESIUM
14.44 05743 1179.1 .1782 RHENIUM MAGNESIUM
14.10 .539 1251.4 .1770 RHENIUM MAGNESIUM
13.76 .S935 1326.6 .1757 RHENIUM MAGNESIUM
13.43 .6027 1410.4 .1745 RHENIUM MAGNESIUM
13.11 .6117 1496.3 .1734 RHENIUM MAGNESIUM
12.90 .6208 1597.6 .1722 RHENIUM MAGNESIUM

able 1-2-1

(continued
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MINIMUM Z ALLOWED IS S

WAVE-
LENGTH R GAMMA XLEENT - 3 ELDI NT - L

( AT ) ( DB )NORMAL) (- )
(INCIDENCE) (DH + DL)

12.49 .6298 1685.1 .1711 RBENIUM MAGNESIUM
12.19 .6386 1797.5 .1700 RHENIUM MAGNESIUM
11.90 .6475 1995.0 .1690 RZENIUM MAGNESIUM
11.62 .6565 2010.0 .1680 RHENIUM MAGNESIUM
11.34 .6650 2132.0 .1671 RHENIUM MAGNESIUM
11.07 .6731 2260.9 .1661 RHENIUM MAGNESIUM
10.81 .6816 2398.4 .1651 RHENIUM MAGNESIUM
10.55 .6896 2543.6 .1642 RHENIUM MAGNESIUM
10.30 .6978 2695.9 .1632 RHENIUM MAGNESIUM
10.05 .7059 2854.0 .1623 RHENIUM MAGNESIUM
9.81 .7149 3008.6 .1614 RHENIUM MAGNESIUM
9.58 .7652 5512.9 .4435 BORON MAGNESIUM
9.35 .6502 2747.2 .1900 RHENIUM BORON
9.13 .6591 2932.2 .1888 RHENIUM BORON
8.91 .6659 3134.8 .1875 RHENIUM BORON
3.70 .6733 3352.0 .1863 RHENIUM BORON
0.49 .6802 3584.7 .1852 RHENIUM BORON
8.29 .6869 3840.5 .1840 RHENIUM BORON
3.09 .6941 3472.8 .1934 RHENIUM ALUMIwJM
7.99 .6991 4427.4 .1815 RHENIUM BORON
7.71 .7077 4862.6 .2011 RUTHENIUM BORON
7.52 .7166 5156.5 .2003 RUTHENIUM BORON
7.34 .7252 5469.1 .1996 RUTHENIUM BORON
7.17 .7338 5802.7 .1988 RUTHENIUM BORON
7.00 .7420 6157.1 .1981 RUTHENIUM BORON
6.83 .7500 6535.3 .1973 RUTHENIUM BORON
6.67 .7578 6941.6 .1965 RUTHENIUM BORON
6.51 .7652 7374.8 .1958 RUTHENIUM BORON
6.35 .7724 7836.9 .1950 RUTHENIUM BORON
6.20 .7795 3327.3 .1943 RUTHENIUM BORON

Table 11-2-1

(Continued)
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Adjacent pairs cf dotted lines in the figure dearoate the regions in

which some one pair of materials has proved to be optimu; atomic resonances

cause the curves to be highly discontinuous across these lines. Fig. 11-2-4

shows plotted in blue the bench-mark value N that the number of layer pairs

J should exceed in order to approach the steady-state regime. N is

calculated at normal incidence; the number of layer pairs required scales as

coca 9 for fixed X (see sec. 11-3). " In order to have the layers remain

of practical thickness (say at least a few Angstroms), it is desirable to go

to reflection angles way fram normal incidence if the wavelength falls

below about 30i. Zven for wavelengths as long as 5O&, we would expect the

reflectivities to be degraded significantly from the displayed values at

angles near normal incidence (see chapter III).

There are of course many other qualifications to be made about the

results of this optimization study. The optical constants are presumably

less reliable in the regions of strong anomalous dispersion that camonly

occur in the elemental selections of table 11-2-1; this is particularly true

in the case of elements that are somewhat esoteric. In fact, optimization

searches such as this will tend automatically to have a statistical bias in

favor of erroneous data points in which the error happens to result in a

higher calculated performance.

Further, no effort was made to assess the individual suitability or

joint ompatibility of the chosen materials in terms of either layer or

interfacial quality and stability; even freedom from chemical reactivity was

not considered. The only requirements on the elements examined were that

they be n-radioactive and have melting points greater than 270C (that of
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bismuth). In ddition beryllium w excluded for its toxicity; unlike other

toxic elements, beryllium would have been frequently selected by the search

program had it been included, due to its low atomic number.

However, mot of the materials selections in table 11-2-1 seem at least

to be fairly reasonable, with the exception of tw fairly coma selections

for the low index layers, calcium and strontium, which might be difficult to

fabricate in thin high quality layers of the kind required in 3-ray

multilayers (Spiller 1982a).

In summary, the results of this materials search should be treated as

suggestive until the materials selections can actually be tried. For this

reason most of the text will deal with the more omtwi materials choice of

tungsten and carbon.

We have also carried out a multilayer materials search using a modified

optimization program that seeks to maximize integrated reflectivity (or

collection solid angle), rather than peak reflectivity. In the revised

program we have wodified the output routines in order to have printed out a

number of possible materials pairs for each wavelength.

An abbreviated tabulation of these new results is given in Appendix 16.
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Section 11-3 - Scaling of M.ltilayer Reflection Properties

In this section we consider the approcimate angular and spectral

scaling of the reflection properties of tung3ten-carbon nultilayers. Our

intention will be to determine siple dependencies that will be accurate to

within a factor of two or so throughout the soft x-ray region.

Fig. 11-2-5 shows the maximm reflectivity attainable from tungsten and

carbon as a function of wavelength. The results are for S polarization; in

the case of P polarization the reflectivity of an individual unit cell, and

so, approximately, the reflectivity of the entire structure, is reduced by a

factor cos 2 G (see eqs. 11-1-15 and U1-3-1).

Fig. 11-3-1 shows the P values used to obtain the reflectivities in

fig. 11-2-5. (Fig 11-3-1 is essentially a plot of the solution to

eq. 11-2-44 based on the data in (Henke, et al. 1982)). The optimwm thicknesses

of the high index tungsten layers became small in regions of low absorption,

i.e. P is small at short wavelengths and at wavelengths just above the

carbon-K edge. In fact, Spiller (1976) has shown that, in rinciple, unit

reflectivities can be obtained in the limit of no absorption in the low

index layers (but with finite absorption in the high index material) if the

high index layers are made infinitely thin.
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The reflectivity of the tungsten-carbon cobination is usually fairly

small. When the reflectivity is wall, the fourth term on the right-hand

side of q. 11-2-1 is Mwall because it represents the effect of ultiple

reflections. When eq. 11-2-i is linearized by neglecting this term, it has

the steady-state slutiorn E - i/a-t , or

This Lorentzian intensity profile was first found by Ienke (1982a). If

we neglect the ? term in the denominator of our solution for ultilayer

reflectivity outside the steady-state regime (eq. 11-2-14), we obtain

another result of Henke's (1982b):

• - ( - e"C3-' )) x- 3-z)

From these approximate expressions we can derive simplified formulas

for multilayer properties, whose wavelength and angular scaling is then

relatively easy to determine.

For exafle from eq. 11-3-1 we see that the FAM of the reflection

profile in radian units is approximately

S JA
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Also, acording to sq. 11-3-2 the aumber of layer pairs N required for

eq. 11-2-14 to approach the Darwin-Prins limit of eq. 11-2-11 is

approximately($) " . Further, since eq. 11-3-2 applies under the condition

that " is small, fram eq. 11-3-i we see that the parameter r can be

considered to be small compared to the parameter t, to the extent that

eq. 11-3-1 is applicable. In that case, the number of layer pairs N

required in the mltilayers is given approximately by

w1" I Lt I(-AA)'- T

We can determine the approximate wavelength scaling of the optical

constants of tungsten and carbon from the semilog plots of figs. 11-3-2,

which are based on a preliminary version of the data in (Henke, et

al. 1982).

We find

W X< 1 i) U2((.7~5)' 1  * 6.6 x11 '' ~)

(6;<k. 44.) $)i([2.01dlK6

(1--5)

-____ .. .
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WAVELENGTH SCALING OF
UNIT DECREMENT - TUNGSTEN AND CARBON

10-1 10.1
Real Part - Imaginary

Tungsten 10-2 Part-

102 Tungsten

10.2
1-.4 1-

10.1 10.2

Real Part - Imaginary
Carbon 10- Part-

10.2 Carbon

A c  
A. 10-4

10-31 10-5

10..,, 10 4  . . ... . ... ...

1 10 100 1000 1 10 100 1000

WAVELENGTH (A) WAVELENGTH (A)

pc :2.0 gm/cm2

P 15.0 gm/cm
2

Results are from a preliminary version of a compilation
by Henke (1982a).

X345
Figure 11-3-2



I-3-6

The first quantity dependent on these indicies that we vil ornsider is

the optimum thickness ratio P. Sinoe Ia( A ) tends to be mall ¢aqared

to ( A ), we can onsider t*ot to be less than orooder uity,

and to a rough approximation, can et

psort  (1-3- 6)

Eq. 11-2-44 then becmes for a tungsten-carbon nultilayer:

Then

w c

and for X < 44A, we have from eq. 11-3-5

P - 1 3 A s -3-
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Now, to a fair approximation, we can set the ) that ocurs in the

denominator of eq. 11-3-9 equal to an *averagew wavelength vithin the range

of validity of the equation. If we use as an average the geaetric mean of

the range extrema, A - - iS, we have from eq. 11-3-9

P Et 0.1is A 07(1-.3- JD)

In a similar way, we find that for X > 44A:

Poe .0 (1-3-)

However, it turns out that because of the approximations made in

arriving at the X > 44A result, it is more accurate to renormalize the

exponent in this scaling law to correspond to the exponent of the short

wavelength scaling law of eq. II-3-10; this equalization of exponents aaso

has the advantage of leading to a sinpler result.

Using % - 1 - 70,

, m 0.0~ D~i o '~ f"

Por 0.0tl
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Thus, our overall result for the range 6Z < < 114X is

.< 44 A)

It 0.04 (A>44;)

This power-law fit is plotted in fig. ri-3-1. As the figure shows, the

dependence of on X is not very strong. For many purposes, it is

sufficiently accurate to take port m 1.



With this approximation, we now consider the approximate scaling of the

sultilayer resolution and required number of layer pairs N. Me first

consider the dependence of these two quantities on d-spacing.

If we take Poo 1, we have from eq. 11-2-15

2EA- - 3ec'a
(1-3-14)

&r Sec 9 6.6 x 10-6 A ' ec9
w

Taking 16-114 30A, we can, to a fairly good approximation, set

a 6.6 Xo" AL O '*'") sec
(i-3-15)

- 4.0 x A see

We note that eq. I-3-15 essentially states that the spatially averaged
a

imaginary part of the index of refraction scales as X. Thus, the

well-known scaling law for the hard x-ray regime, which states that the

absorption coefficient A a "* scales as X3 , is not applicable in the
A

soft x-ray regime. The results in (Henke, et al., 1982) indicate that the

imaginary parts of the refractive indicies of mct materials scale very

toughly as ? in the soft x-ray regime.
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Now if we denote the ?i9 resolution of the multilayer in p*ase units

as q .we have after incorporating the aqproximately quadratic

wavelength scaling into eq 11-3-3

$qV . nf -, oti 'Ao se. ,c'e ro 10: '( ()
d (2-d -(h )

Since

,1 = x wi J.dd- x (1-(-3-17)

we have that the spectral resolution scales as

F =-f = FM.sW M0'((I-3-1,)

From sq. 11-3-4, the number of layer pairs N required to achieve

maximum reflectivity is given by

MFa .S x o0 OL -3 - q)
/¢ i" ".5s1-_
N w (4 )cb
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Thus, S / and N are aproc iuately independent of X and 0 for a

given d. In general, properties of smltilayer reflection tend to depend

more strongly on the spacing d than on A or 0.

We now onsider the scaling of the angular resolution £ whose

relation to S W is

2Lj
£19,. - sn8 SG, (z-3-20)

If P N 1, we can use eq. 11-3-16

'  " 2S _ _0in r,.dis) (1-3-,Z)
FW$# S sO t eMr

In crystallographic terminology, SPeO is essentially a

rocking-curve width, and the scaling of rocking curve width with e given by

eq. 11-3-21 is similar to the dependence one would expect to find in

crystals. (Unpure, for example, fig. 13 in (Burek, 1976) with fig. 11-3-3 of

this work. The point-by-point calculation in fig. 11-3-3 is a numerical

solution for the angular Pt'@M of the magnitude squared of eq. 11-2-11.)
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ANGULAR WIDTH OF REFLECTION PROFILE
VERSUS ANGLE OF INCIDENCE

(Tungsten-Carbon Multilayer) u 6
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nowver, crystals are available only with fixed 2&-spacings; the set of

crystal 2d-spacings available in the soft x-ray regime Is particularly

limited. It is therefore of interest to onnsider the effect of a variation

In 2d-spacing with wavelength held constant; this structural variation

represents a degree of freedm not allowed in crystalline reflection.

by setting in eq.I-3-21

i U = c s (1-3-22)

we have

5 X i ' A (1-3-23)emm E .+. x o Jin.9o

This scaling law implies a large acceptance angle in the limits

-- > 0 and 6 -->90. ( . 11-3-23 has a singularity at the limit

points; our theory does not apply In the grazing regime, and eq. 11-3-23

must be odified to apply in the normal incidence regime).

The large acceptance angles at the two extremes can be explained

physically by the following arguments. (In fact, we will see that a certainu

symetry exists between the two regions).
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First, in the grazing rgime, sq. 11-1-11 lxplie$ a linar relationship

between the avelength and the angle 4 to the surfae a m 10- 9). If we

set for the grazing regime

- d sift = so IM (1-3-zi)

then the linearity is reflected explicitly in the relation

i -= (1-3-25)

Further, the width of the high-reflectivity stopband in phase units is

of order A1 "4 ; this is because Nl is the number of layer pairs

participating in the reflection process. Thus the resolution of the

multilayer is governed by the familiar rule

A N (1-3-26)

Nso that

S&i

At + .. , " , ,,++ ,. .;. .+
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The absorption within each cll is given by the product ot the

absorption coefficient with the path length through the cell, so that the

scaling of the absorption per cell with angle must be of the forn

# #

Y d A (
Cows C=8Z (e--r8

U

Here A represents the spatially averaged inaginary part of the index

of refraction.

Since the absorption per cell is approximately the reciprocal of the

number of effective layer pairs N,

N -- (x-3-zq)
t"

and so we have

d X 3 0
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Therefore SX/A and VWN both rise as >0, but IA X

rises more rapidly.

As discussed in sc. 11-i-B, our formalism is invalid if

< (1-3-31)

In the near-grazing regime where our formalism is still valid, the

dominant factor in the scaling of multilayer reflection properties is the

quadratic dependence of the absorption per cell on 4. The dependence is

quadratic because as 4 is decreased, the photon path becmes more oblique,

and also d must be increased.

While N depends quadratically on angle in the regime near grazing

incidence, it becones almost independent of angle as the normal incidence

regime is aproached, because the paths traversed through the layers becae

insensitive to angular variations.

For e < 45 , we can therefore set

- ., A (1-.3-3Z)

N!

.............................un.--



11-3-17

Similarly, in the normal Incidence regime the lirear dependene at X

an D disappars from sq. 11-1-11

(Cos t 6 e (1-3-33)
x- C r.03 9

assuming that we are outside the regime very near normal incidence

(i.e. outside the regime ). ForG 45 w can set

tan e - e so that

__ o Se (-3-4)

Using

-- .-_ --_._A(1-3-33)

we therefore have

ii
se (Ix-3- 36)

0M
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which is the limiting fom of eq. 11-3-23.

Thus, the near-independence of path length an angle near the normal

incidence regime inplies a slower change in pase thickness with angle of

incidence, leading to the large S9 x  predicted by eq. 11-3-23 or

eq. 11-3-36.

Within the normal incidence regime itself, i.e. when 9 . so that

eq. 11-3-33 no longer holds, we can set

(cos - (e) (1-3-37)

so that

T'R (1- 3 -3M

or mre specifically

;w N FM F
A6

x 0.11 ) (degrees)
'A)

( 3-5 3 )

Li
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Thus, €ollection angles of oeder 15S can be obtained at wavelengths

around IO0. Nultilayers my therefore make it possible to achieve the high

resolutions that are pyotentially possible at x-ray wavelengths given large

numerical apertures; for this purpose tam et al. (1982) have constructed an

x-ray microscope based on a Schwartichild configuration that is presently

undergoing testing at the Brookhaven storage ring.

At shorter x-ray wavelengths, the ) factor in the nwuerator of

eq. 11-3-23 in effect precludes single-substrate reflecting devices from

having large collection angles. Further, the necessity of having layer

thicknesses of at least a few angstroms precludes operation in the normal

incidence regime; in order to obtain fields of view that are as large as

possible it is therefore necessary to operate at quite small angles to the

substrate surfaces (typically of order a few degrees or so). A device

designed along these lines will be discussed in chapter III.

- - - . ..- •
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Section 11- - Non-Periodic Nultilayer Designs

In the optical regime, the familiar quarterwave stack is the most

common reflective coating, but more ='plicated designs are often used.

In addition to periodic designs based on a thickness ratio other than

quarterwave, such non-quarterwave multilayer designs include structures that

are not periodic.

Non-periodic designs are resorted to for a variety of reasons, such as

to increase bandwidth over the quarterwave value, or to introduce relative

phase changes between different polarizations. We will restrict ourselves

to the question of whether or not aperiodic x-ray multilayer designs can be

used to reduce the effect of absorption and so increase the reflectivity.

Other design objectives will be left for future research; however we

note that in the soft x-ray regime there is a fixed budget of layers that

are permitted in a design due to absorption, and often this fixed number of

layers is inadequate to produce a high reflectivity at a single wavelength

even in the absence of other design constraints. Techniques for modifying

periodic designs that require large increases in the number of layers used

might not be appropriate in the x-ray regime.
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Carniglia and Apfel (1 80) have deeloped aperiodic multilayer designs

that yield higher reflectivity in the presence of absorption than con

periodic multilayers containing the awe number of layers. We will consider

whether such gains are possible in the x-ray regime.

Our first result in this connection is obtained in Appendix 8. There

we apply our difference equation in the case of a periodic reflector that

has been optimized according to the formulas of sec. 11-2-S, and prove that

if the reflector contains a sufficient number of layer pairs, its

reflectivity will be an extremum with respect to an arbitrary variation in

structure (the variation used need not leave the structure periodic). A

periodic ultilayer coating having an optimized structure therefore provides

at least a local extreamu in the reflectivity.

Limited numerical studies suggest that this local extremum reflectivity

is in fact a global maximutm. Our most detailed set of numerical results is

shown graphically in fig. 11-4-1. Curve 1 shows attainable reflectivity

versus number of layer pairs when all 23 layer thicknesses are treated as

independent degrees of freed=. Curve 2 shows reflectivity versus J when

the reflector is periodic; in this curve the o egrees of freedw in the

basic period are reoptimized at each 3 value. Curve 3 shows the

reflectivity of a periodic multilayer that has been optimized as discussed

in sec. 11-2-B to have maximum reflectivity in the steady-state limit. All

curves are obtained using the non x-ray characteristic matrix solution of

eq. 11-2-22 with a canned optimization routine.

Si
. .. .. .. . . .. . .. .. . . . . . . .. ..." . Ji
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COMPARISON OF OPTIMIZATION SCHEMES

50 1. R(J) of aperiodic designs optimized at each J

2. R(J) of periodic designs optimized at each J
3. R(J) of a periodic design optimized at J -.

40

cc 30

L)ZI
-U.20-
LU

10.

0 10 20 30 40

NUMBER OF CELLS, J

X136 Figure 11-4-2



11-4-4

In the steady-state limit all three curves onverge. Even when the

number of layer pairs is somewhat less than l/Im(S), the highest

reflectivity that can be obtained from an aperiodic design is not very much

larger than that obtained from an optimized periodic design. However,

though the difference in R between the periodic and aperiodic designs is

small, the set of parameters p ,a in the multilayers of curve 1 are in

qeneral quite different from the constant values for these parameters in

curve 3, even in the limit of J ' o (but not in the joint limit j -,3 .,

One ould like to test these conclusions as ooprehensively as

possible, but multi-dimensional optimization is very expensive.

Carniglia and Apfel have solved a simplified version of the

2J-dimensional optimization problem for visible MR reflectors. They show

how to calculate the particular thicknesses for the top pair of layers in a

bilayer stack that will maximize the total reflectivity of the multilayer,

given that the preceeding layer pairs have already been optimized in this

way.

They hypothesize that such a two-by-two optimization is fully general;

in other words that no increase in total reflectivity can be obtained b'

simultaneously changing the thicknesses of any preoeeding layers when a

given pair of layers is being optimized using their algoritm.

Carniglia and Apfel's mathuuatical calculations are not applicable in

the x-ray regime since they assume that in the preceeding stack of layer

pairs, (1-004C .1.
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Nonetheless, their basic cncept is of interest in the x-ray regime

because mirrors made by the in-situ reflectance mnitoring (ISRK) technique

discussed in Chapter I will have a related property. If, during a

deposition session like that shown in fig. 9 of Spiller (1982b), one cuts off

the depositions of successive high index layers at successive reflectance

maxima, the cp value for each layer pair will automatically be optimized

under an optimization scheme like Carniglia and Apfel's. The thickness

ratio parameters 8,, may be chosen by a different criterion, but the total

thickness with which each pair of layers is terminated will be the thickness

which maximizes the total reflectivity of the entire stack.

In Appendix 9 it is shown that in the x-ray regime the optimx ,

given an aWlitude reflectance from the stack of preceeding layers,

satisfies the condition:

In{ Et, (t -P( e;,". e";' % 4/- • e '" ] am I

In Appendix 9 we show that the solution for p, is

To A (v,, V. ) - v,-i [ .P, -- vv vo-9

where 9Z etl

I vAN * & J e ;V06

r.

6,VV1C
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Bert, as in usc. 11-2- , we will asum that the beam can be tretad as

linearly (S) polarized. The qualitative onclusions drawn in this sectio

apply also in the case of unpolarized radiation. The key results in

eqs. 11-4-1,2,8 and 9 apply to both polarizations.

The optical constants used in eqs. 11-4-1,2 art those of the ISMq

monitoring wavelength, which might be different from those at which the

coating is used, for exawqle if the cating is mant to operate near normal

incidence.

AS K beomes large, the multilayer produced by 1SK becomes periodic,

with vL approaching the Darvin-Prins solution; in loest order eq. 11-4-1

becomes in S polarization

is__ t = 0 (1-4-3)
on " AtA IA +) tan 0 O

If we now make the rough approximation that

6. - (x-4-4)

We get

(A"_A < ,,' * f3- A) = o (1-4-5)
+ +

L tart"
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This yields the correct Bragg condition

'I 0 (1-'-')

given that the optimization condition on ( of sec. II-2-B is also

satisfied, so that the sum of the first and last terms in eq. 11-4-5 vanish.

However, 6 0 is only a rough aproximation, so that in general the

Bragg condition will not be satisfied under the two-by-t optimization

produced with ISM.

Thus, in the x-ray regime the hypothesis of Carniglia and Apfel does

not hold, and a 2x2 optimization scheme based on an L-H unit cell does not

yield a fully optimized reflector; as a non-optimality in the Bragg

condition the error may be considered to be equivalent to a small shift in

or e • As a wmall X% or e shift, this non-optimality is not in itself

crucial since it can be compensated for by an intentional small shift

between the monitoring X or 1 and the X or e of the coating's intended

application.

However, a similar problem arises when we consider a two-by-two

optimization scheme for the Pit.

In general the P, in an ISRM multilayer could be chosen in a variety

of ways. ro example, all 9 could be setS eual to the P of an

optimized periodic multilayer.

. a..
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Alternatively, One culd terminate deposition of the lw in dx layers

at reflectance minima. This turns out to produce P. lue that are

numerically quite close to opti n.

Finally, one could choose each in accordance with a 2x2

optimization schafe, choosing each 5 successively to maximize the

reflectance of the stack of cells 1 ... K, as suggested by the discussion in

(Spiller, 1976).

As shown in Appendix 9, each P, under such an optimization scheme is

given by

1/1P(e)

2, : A7* I-It + 9 (#. Ip, w ,,s ')" (v, A v t

wher. A a s n (f,,v,,., VW))

A A U A - V4 (1,-4-)

ZV
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which is the solution to the condition

) -i M L(PI P'" __ _L_

U-0

In the stead -state regime, eq. 11-4-9 becimes in lowest order (for S

polar izat ion)

A -A U(n Un .;sJ
(I -4 -10)

As before, this will not be onsistent with the results of sec. 11-2-B,

unless we make the crude approximation A r- 0 . Thus, except to a rough
L

approximation, the 2x2 optimization scheme converges to a non-optimal value

of P as well as a nan-optimal value of T .

We can see an analogy with the periodic case by adding eq. 11-4-3 to

eq. 11-4-10. We obtain In lowest order:

- + A " -"+) - 0 (z-4,0
"t 0 P ot

> + . +4 .. '0.. . . --
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Rare it has not been maijed that A t

We showd above that under an MW scheme, non-negligible absorption

and refraction in the low index layer cause the first term in the above

Condition to be n(X-zero. The sm of the second and third terms in the

above condition cannot then be zero; and since such a cancellation is also

the requirament for an optimized P, we can consider the non-satisfaction of

the Bra" condition to have in turn prevented the 2x2 optimization scheme

from converging to the correct thickness ratio.

This is similar to the situation we found when treating the

optimization of periodic uitilayers in sec. XI-2-B, where we noted that our

condition for optimizing P in a periodic multilayer applies only if the

generalized Bragg condition Re(,$)=0 is satisfied.

In the usual case that absorption and dispersion in the low index layer

Is wnall, the numerical consequences of these norr-opt umal ities is only

moderate, since the accuracy of eq. 11-4-4 increases as the index decreament

in the low index layer goes to zero. & 67.6k, 6 a reflector vith 3.200

would have a reflectance of .19 if designed by the 2x2 procedure, ocvared

with a .22 reflectance from the optimum periodic design, for a AR/ of IS%.

Further, the P values and the monitoring conditions can be chosen in

such a wy as to m pensate for this reflectivity loss. For examile, if the

monitoring and application ivelengths were the same one could introduce a

shift between the monitoring angle and the application angle that would

cancel the difference between eq. 11-4-2 and eq. 11-2-30; one could then

choose the under one of the alternative schees described above.
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The main advantage of the IM technique lies in its potential for

strongly reducing the effect of rand= thickness errors, rather than in its

use as a method for selecting the target thicknesses.

IJ



Section 11-5 - affect of Ac'umulating Random Thickness 3rroeg an

Multilayer Reflectivity

Part A) Introduction

X-ray mltilayers mast contain a large ,nuer of layer pairs since

the reflectivity of individual layers Is very small. The magnitude of

uncorrected thickness errors in the multilayers must therefore be kept to

a small fraction of a layer thickness in order to prevent a large

cumulative dephasing from developing between the top and bottom of the

stack. Because the layers thewselves are ony of order ten angstroms in

thickness, the tolerance on randm errors in the layers is extrmely

tight.

The two fabrication methods described in Chapter I can be regarded as

alternative approaches to solving this problem.

Barbee's vacuum sputtering technique (Barbee, 1982) achieves precise

control of the layer thicknesses through the use of sophisticated

deposition procedures and ratus; these include use of a magnetron

sputtering source to prevent high energy ion bombardment of the substrate

surface, precise control of the deposition voltage, and use of a

multi-angle preparatory pre-deposition onto the substrate surface.

The second fabrication method is Spiller's in-situ reflectance

monitoring technique (IS M), which serves to eliminate the accumulation of

dephasing fror any thickness errors that may be present. The intensity of
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the IRM probe shows an interference oscillation as the thickness of the

top layer increases this oscillation Is essentially determined by the

absolute differenoe in phase between the upper surface of the top layer

and the stack of preceeding layers. The maxima in the peak intensities

occur when the double-psss phase thickness of the upper pair of layers is

approx Imately one wavelength; the precise single-pass phase thickness that

is required is given by eq. 11-4-2.

Eq. 11-4-2 obtains even when the reflectivity of the preceeding

stack is non-optimal due to thickness errors. Under ISI, the target

thickness for the upper layer of the final unit oell (aimed at by

monitoring the ISM probe intensity), is that thickness given by

eq. 11-4-2 which puts the top interfaoe of the layer into phase with the

preceeding layers, thereby oatensating in large part for any errors in

those layers.

ultilayers of the first kind are subject to what we will call

accunulating thickness errors, while those fabricated by ISM are subject

to what we will call ron-aocumulating thickness errors. He will analyze

the effect of acmulating errors in part B, and will discuss our solution

in part C. Non-accimulating errors will be discussed in sec. 11-6.
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Part 5) Analysis of Accumulating Thickness arrocs

Thickness errors of an ao-umlating type have been treated

theoretically by Shellan et al. (1978), and have also been discussed briefly by

Baumeister (1981). Shellan presents alicit closed-form solutions for

the reflectivity, but sae of his aproximations are not appropriate to

the x-ray case.

Shellan treats non-absorbing multilayers using coupled wave equations

that contain perturbation terms to represent the effect of thickness

errors. Shellan's oupled wave equations are of a form that apply to

dielectric structures operating at the dielectric Bran condition. The

advantage here is more than the avoidance of omplex indicies of

refraction; if the nminal phase thickness of the unit cell is both pare

real and equal to X , the coupled wave solutions simlify oonsiderably.

Shellan's analysis assumes a mall coupling constant per cell, as is

necessary when a large number of layers must participate in the

reflectio; in this feature his analysis is apropriate to the 2,-ray

regime. In the limit that the perturbation terms are small, Shellan

solves rigorously for the expectation value of the reflectance. Be also

obtains an expression for the reflectivity in the presence of larger

errors, In the cas of structures which contain sufficiently few layers

that their overall reflectivity is mall ompared to one; to do this he

uses %&at he =lls an 'undepleted incident wave' aproximation. In the

context of x-ray diffraction, such structures might be said to be

operating in the 'Fourier transform regime'.
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X-ray reflectors necessarily have a mall coupling constant because

the x-ray indicies of refraction of all materials are close to moe.

nowever, in the x-ray case a significant fraction of the Copling between

the structure and the radiation field is de to absorption. Also, while

the reflectivity of x-ray ultilayers can be quite severely limited by

absorption (leading to a situation where a relatively small number of

layers participate in the reflection process), it is nonetheless usually a

poor approximation to apply the undepleted incident wave aproximation to

x-ray multilayers.

It is also of particular interest in the x-ray case to be able to

consider cperation off the Bragg condition, since x-ray mltilayers have

very narrow bandwidths.

Another consideration in the x-ray case is that while resent

technology permits the fabrication of imltilayers having 2d spacings of

JIOA and structures of fairly good quality, the soft x-ray spectrum can be

considered to extend to normal incidence wavelengths that are shorter than

this by an order of magnitude; in addition sae experiments have been

carried out in higher orders, which are in a sense equivalent to still

shotrter 2d-spacings. We will se below that the tolerance on accumiulating

thickness errors has an approximately quadratic scaling with 28-spacing.

We therefore consider it desirable to be able to analyze the effect

of thickness errors that are large enough in cmparison with the layer

thicknesses to substantially degrade the reflectivity, in this case a

perturbation treatment is inapprqpiate.

• S



For these reasons we have developed a new approach to treat the

affect at random thickness rrors an ultilayer reflection. Our approach

renders the problem of thickness errors tractable by using an

approximation that applies rigorously in both the limit of large errors

and the limit of small errors. The apprexization also tends to be quite

accurate in the intermediate region.

Our analysis is based on a deomposition of the amplitude

reflectivity into what are essentially coherent and incoherent parts (see

eq. II-S-10 below).

Our key approximation is to neglect cubic and higher powers of the

incoherent reflectivity. It is essentially this approximation that allows

steady-state solutions for the overall reflectivity to be found

analytically (see eqs. 11-5-35 and 41).

With further approximations we find solutions for the reflectivity

outside the steady-state regime (this analysis is carried out in Appendix

10; the results are shown in eqs. 11-5-42 and 45).

While we use a number of approximations in the derivation, it is the

neglect of higher order powers in the incoherent reflectivity that is the

key approximation in two senses. First, this is the approximation to

which our results are nmerically most sensitive. Second, the other

approximations that we use are akin to our key approximation in that they

allow our results to be correct in both the limits of large and mall

thickness errors. However, the other approximations generally relate to

specific algebraic equations arising in the derivation.



we viii use a particular x-ray multilayer as an umaple while

presenting cur analysis, n-ely a tungsterl-arbon ultilayer reflecting

67.6A radiation (I-K at nomal incidence. fhe layer thicknesses in the

absence of thickness errors, d6 - 7.6i, 6 a 26.Si, are &sen in

accordanoe with the optimization cmditions of ac. 11-2-D. In our

examples we will generally take 3 a 200, which is a sufficiently large

number of layer pairs to place the structure in the steady-stae regime.

Following Shellan, we have tested the accuracy of our vethod using a

monte Carlo simulation, in which a omputer program is used to generate a

large number of simulated nltilayer stacks ontaining random errors, and

to ¢ipare their iean reflectivity with the analytical prediction.

We have found that the analysis gives accurate results over a full

range of R3 error heights, so long as the undegraded reflectance of the

structure under consideration does not approach too closely to one.

ML- -A
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We will calculate the mean reflectivity of multilayers that ontain

unoorrelated errors in the thicknesses dV of the different calls. We

will assoe that the rminal multilyer structure is periodic, and that

the statistical properties of the errors are the sase in all layers. If

d is the uman thickness, then let

d It

* d + Ad. (i-S-i)

where

~<Adx> I: 0

(1-5-2)

<(Ad) > 

we will treat the varian~e a' as a known quantity. if each cell consists

of an L layer and an I layer, each of which has independent errors with

vari nes <A0 > and <AH'> , then due to the independence,

0"  < 4 <AL> < >. and

L C ) os 2
(z s-3



where from eq. 11-2-i

1 ME < > + o o Amp

it Ad1A

With these definitions eq. 11-1-20 becomes in first order

IL
re',, e-p•-•(sr-p)- (irp) e (3-5-5)

we note that in eq. 11-5-5, r, p, and w are treated as independent of

4 ; this approximation is accurate to within terms of order q.& "  As

discussed in sec. 11-1-B, we can neglect terms of order q)p A a d &I in

analyzing stochastic problems like the present one, but we must retain

high orders in the parameter q .

The fact that we can directly incorporate eq. 11-5-4 into eq. I-5-5

L die to an advantage of the difference equation formalism; namely that

the formalism directly inocrporates the physical properties of the

individual cells.

The fact that our equatimis use the properties of the different cells

explicitly has another useful ocnsequence. ecause p is determined by

the properties of the cells K-1, K-2, ... , but not by those of cell K
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(see sc. wfe-I), can write for arbitrary functions f and g,

(z-s-6)

and in particular,

ei -1;A9

The first expectatian value in eq. 11-5-7 is the characteristic function

of the variable - 2 A q, (Papoulis, 1965, p.159). Any probability

distribution with knoWn characteristic function can be used in the

analysis to follow. For sinplicity we will assuzme Gaussian statistics; as

we will see, the final results are vtry insensitive to the exact choioe of

distribution function.

Then using

which holds for a Gaussian random variable with zero mean, we take the

A-
I -I



egpectation value of eq. 11-S-S, and got

I (g-s-q)

IHow, we define the variable through the relation

I , . < > + ,c-.o

therefore represents the randon or rn-aeterministic part of the

reflectivity. Since the phase of i is Completely randz, we ay also

regard it as the inoherent con ent of the reflected beam.

Since

< > - < . I< , C. >

<9, e >  xs-

how.



eq. 11-5-9 beccoes

< ,.,>" • •<p> - (rt-p)

- (r+ p) <e- t ir p)< >

In order to solve this equation, we mst obtain < >

Subtracting eq. 11-5-12 fran eq. lI-S-S.

[ -2 ;<,> -,'6 ,. -e2 ,, e-,(A,'?] (

e. j;< e• - <
Z• rp <t a >

Of ( P~) <~ (. U-5-13)

Next we square eq. 11-S-13, neg1ecting terms of order q. A and .

We find

e e < > , ,)

(can~t-awed oft Ist Palo
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-4;<t) 4(A ) 

+ Il 9 1 e c e Su ;4

(it-S°£ .

Def ining

I - < t >- (T- p)<.> -- s)

wecan nbine the second and the seowd to last terms on the right of

eq. 11-5-14 to obtain

e. e 4. e e -- Z. I••9a e• 7] .>

*2 e-4; <" - - -4;<t> &qa>
+4-4 a t -4 ga-;t -(q

>

4 e e >):~cr~)e-e

The rror in this substitution is of order i. A.

[ , -.
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Taking expectation values, and using < > = 0, we get:

-4;-(i< *t(*,)

we vill first find steady-state solutions to oqs. 11-5-12,17. In

order to operate in the steady-state limit, a mltilayer must ontain a

number of layers sufficient to extinguish the incident beam before it

reaches the substrate. In addition, the statistical properties of the

thickness errors must be independent of K. In general, extinction may

result from a combination of absorption, dephasing due to detuning from

Bragg resonance, dephasing due to thickness errors, and depletion by

back-reflection.

In the soft x-ray regime, absorption is a samewhat more important

extinction mechanism than depletion by back-reflection, so that, following

the discussion of sec. 11-3, we may consider a multilayer to operate in

the steady-state regime if

following the discussion of sec. 11-1-9, we can consider the total

phase error contained within the structure of a multilayer operating in

the steady-state hlt to be of order ita > /AsA) assuing that



the thickness errors accumulate in a random walk fashion.

When <T'> 4C: A, , the errors -may be treated as a smll

perturbation an the ideal periodic structure, and may be oonsidered to

cause only a mall drop in reflectivity. This will be shown more

rigorously below).

On the other hand, if < At > I> A . the errors cause a substantial

drop in reflectivity, and can no longer sinly be treated as a

perturbation.

in the soft x-ray regime, the ondition <& > < is

considerably more restrictive than the condition <&4?A> 4C . When

<tAs> approaches 9me, the different layer pairs can no longer interact

coherently and the reflectivity becxmes very small, assuming that the

structure has a small coupling constant. (In our 67.6h example with

<q >set to l, the Monte Carlo simulation progrm described below shows

that R - 0.0027). The assumption <AT> < I is therefore an

assumption that the structure maintains some resonant reflectivity; it is

a generalization of a standard assuaptin in crystal diffraction theory,

which in our notation states that q (< .

In the analysis that follows, we will not need to assume that

<A > << A, but will assume that <A 'L << 1 , or More

specifically that terms of order AT are negligable. If in cases of

greatest interest, < A > - A" , then terms of order A. i are

numerically comparable to terms of order q A.



The distinction should be born in mind when folloing the discussion

in (Shellan, 1978), whose perturbation treament in essence makes the

assumtion that <A h? >« < s
We should note that the above arguments are aonewtat oversimplified

in that they only consider extinction of the bean due to error-induced

dephasing and absorption. We will see below how these citeria are

generalized.

Neglecting terms of order A , we can set

< e IL> ~ < ' ~ - -

z
= I- Zs-

independent of the probability distribution satisfied by the rand=

errors.

Eq. 11-5-17 then beoes (neglecting termus of order p- A andA

II

>M-<
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The key approximation used in the present analysis is based on the

double inequality

The right hand inequality is fairly strong in the soft x-ray regime, where

the absorption-limited reflectivity is typically of order 20%. The right

hand inequality is particularly strong when <44> >> A , since the

multilayer reflectivity is then severely degraded by the random thickness

errors.

On the other hand, the left hand inequality becoes very strong when

<L i)<( 4 , since in the limit that the errors are mall, < >

approaches e (see eq. 11-5-10).

Since both inequalities are always in force to a certain extent, one

can generally assume that <jI I> is wall compared to one (see

fig. II-5-1 which shows <If 1> plotted as a function of ). We will

therefore ass"me that terms which are cubic or higher in are

ocsqletely negligable.

It is this neqlect of cubic terms in that renders the problem of

random thickness errors tractable over a broad range of error magnitudes.

These cubic terms are particularly mall in the limits

<A y> < AL" Cr < ?a> A . Our analysis is therefore most

nsitivq to the approximations we have made at values of 0 in the

WMIMF!
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intermediate region. In our 67. example, <A ->j a * at o - 1.22A; we

vil use 5' - ii when presenting nm rical examples.

Our key approximation has been found to be quite acurate for

muitilayers operating in the soft x-ray regime, as the numerical examples

presented below will show.

If we neglect terms of ceder in eq. 11-5-20, we get

(~:.~>- I'> t t (4ir- 9 <A,?'>) <lIf. 4t<h9 1 ><Ih

(At a - 1A in our 67.61 examle, the neglected cubic terms have about

0.04 of the magnitude of the third term on the right in eq. 11-5-22).

When radiation no longer reaches the substrate,

I1 I
> > > ,( > >othat eq. 11-5-22 has the solution

< ' . - 2zs-

k; < j



In the steady-state this solution can be substituted into the last

term at sq. 11-5-12, which then becomes

.&;(t) .&<Avg>
<i>. • C - (<e-p)

or, neglecting terms of order . and

< > z ( <t P

This equation reduces to a cubic polynoial in <t>

We note that the substitution of eq. 11-5-23 into the last term of

eq. 11-5-12 tends to be quite accurate in the soft x-ray regime, for three

reasons. First, ((ir + p) I is generally somewhat less than

I; <+ *> , so that our approxnation is made in one of the less

sensitive terms of eq. 11-5-12. Second, the factor < > in the fourth
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a
term is mall omiared to the factor < q > In the third term, except when

<A9'> 4 , in which aoe both the third and fourth terms a the

equation become mall ompared to the econA term. In our 67.61 ew le

the last term of eq. 11-5-12 is 0.22 of the magnitude of the seaod term

on the right-hand side at O" a 11. Finally, the cubic terms in that

are neglected in eq. 11-5-23 tend to be quite mall as discussed above.

Using similar approximations, eq. 11-5-25 can no be converted from a

cubic equation to a quadratic equation with very little loss in accuracy.

In the soft x-ray regime < > is fairly wall even when the errors are

mall, making the second to last term of eq. 11-5-12 small. Tbe last term

of eq. 11-5-12 tends to be stehnat small for reasons discussed in the

preceeding paragraph. The steady-state solution of eq. 11-5-12 when these

tw terms are neglected is

< > = . /(1-5-26)
1~~ *<g/<t>

(Pram this one can derive the expression

Ai'pI ;r /4

(1l-5-z7)
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which is quite useful fce rough estimations). The arguent ued in

deriving sq. 11-2-26 can be considered to be mewhat analogous to

Shellan's "undepleted incident wave" approximation.

sq. 11-5-26 is least accurate when <A o) <( A, since the

neglected second to last term of sq. 11-5-12 can then approach the same

order of magnitude as the second term.

Eq. 11-5-26 can be normalized to give the correct r 0 value by

re-writing it as

+

where the xnLerator is the Solution to sq. 11-5-5 when C" 0, nmely

eq. 11-2-U1.

The following considerations permit a further inprovement in the

accuracy of sq. 11-5-26 when ( is mall. If cr is mall, the factor!

in the denoinator of eq. 11-5-23 can be set equal to S (given by

eq. 1-2-27), since the left tand inequality in eq. 11-5-21 becoes very

strong, permitting r. glect of terms of cder(<Aq'>/A). zq. 11-5-24

then becmes

<f>i2e<t> £CA9"> m (rp-(rP<

q> (;r-p)< - (ir+ p) <

JL >

+ )<
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wherew have not -*&*Z A q > -jS Ln the Ust tam,

since w are for the nment consldering > to be

Small.

If w define < * (9 >'. , andneglect terms ofc der

S<eyg> (AV), eq. 11-5-29 beowws

which with the use of eq. 11-2-1 reduces to

(This may be regarded as a second-order perturbation solution to

eq. 11-5-9.) riting

S <0 <Aira> t 0q>
S &_-i<t>-Aim
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we can rewrite eq. 11-5-31 as

,Zia

so that It no has the orrect limiting behavior when t" is mall.

z;s. 11-5-26,33 are plotted in fig. 11-5-2 for the case of or 67.6A

example.

Substituting eq. 11-5-33 into the last term of eq. 11-5-25 (note that

this last term is twst significant at mall U-, where eq. 11-5-33 is

designed to be most accurate), we obtain the quadratic

a~ 0

<Q> 
-5--p) .• ~~~~4 <<)+< ) (,t >

-t <e> (<t>- +< > (r ipo~) 0
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SUCCESSIVE APPROXIMATIONS FOR <P>
TUNGSTEN-CARBON MULTILAYER
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whose solution, after vaipulation, is found to be

+-)-[ > (a-.[" ] [<t>,<Ay>])- if

(' -s- 35 )

This is our final solution for <j > in the steady-state regime; it is

platted in fig. 11-5-2.

... ... . . . . .. " " ' ... . . . .. " ..-" . . .. . "- -- -Ib i i ,t' 'i , ,,,'Y '
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Since

<K.> + R< >e

-~ ~ ~ I 12~>4~eZ> i't1

we e to find I > In the st ady.state in ocder to find <

Taking the magnitude squared of eq. 11-5-13, and neglecting terms of

order Ot.A and 2 gives

1  ( - -a a

(1-5-31)J'
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We have neglected terms of order(Aq), and have used sq. 1-5-15.

The final term on the rigbt of eq. 11-5-37 is of order and we

wii neglect it for the reasons discussed above.

Taking expectation values:

1.'> <I< . I'> - 46" < I +a4 < , > I< e,>12

(1-5-38)

In the steady-state

II> = < I> < <q iZ> (-S-3 )

so that

<1 1> = > < >l I:--,.

L-



Ve -*glect of abic terms is a poorer appruizmation here than it ws

in the steps between eqs. 11-5-20 and 23, since in the latter ose the

cubic terms were neglected only in less sensitive terms of eq. ZI-5-12.

In our 67.6A example at a - iK, the V terms neglected in

eq. 11-5-37 total about 0.06 of the magnitude of the terms kept.

From eq. 11-5-36 our steady-state soluticn for < R > is thus

<R> = 11> I #.-

with I<t>ftobtained from eq. 11-5-35.
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We now wish to determine 4 R > outside the steady-state rqae,

i.e. for the rsea of a multilayer containing sufficiently few layers that

a significant portion of the incident bem is transmitted into the

substrate.

The aalysis for the finite-K regime is presented in Appendix 10.

Using approximations that are similar in spirit to those used in the

steady-state analysis, we find that the reflectivity of a multilayer

containing J-1 cells is

i < °> -i.- .C "'> - 2" <"(> ""

a-5-42)

where

<.t>., ,> ,

zere < .> is the steady-state solution of eq. 11-5-35. The subscript

an , indicates that eq. 11-5-15 is to be evaluated in the steady-state.

In the special case of a bilayer reflector
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- -zp~ -3., a a:-i I-S-44)
<I.>) <•9> ' e

Our slution for <I I 3 1 > outside the steakt-state regime is

4,

S- )e...

-4AC'-,f± -4(:-i)
+ ""I

(1-5-45)

Here £ is given by eq. 11-5-15.

< R > is no given by eq. 11-5-36.

i5
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In order to test the overall accuracy of the different approximations

used in deriving our solution, we have written a Mante-Carlo prorm to

directly simulate the effect of randam thickness errors.

The reflectivities of the simulated stacks are computed using the

characteristic matrix method. The exact (non x-ray) characteristic matrix

solution of eq. 11-1-22 is used, rather than the x-ray approximation of

eq. 11-1-14. A Gaussian randm number generator is used to obtain the

thickness errors.

Fig. 11-5-3 oumqares our solution to the Monte Carlo results. The

tested values of CT include the parabolic portions of the curves in the

small - O* perturbation regime, where A R/R << 1 , and extend into the

large - 0r regime where the drop in R fron its uidegraded value is quite

substantial.

By varying the sample size and studying the observed scatter in the

Monte Carlo results, we estimate the accuracy of the results the to the

finite samle size (usually 2000 simulated stacks) to be about 2 .0005.

The theoretical curves for A A / X in fig. 11-5-3 were obtained by

numerically finding the half-m points of < R>. This procedure

implicitly makes the assoption that the half-width (in wavelength) of the

expected reflectivity is equal to the expection value of the half-width of

reflectivity.

This is a reasonable assumption to make in order to obtain a rough

idea of the behavior of A A/A i further one can make arguments showing

explicitly that the assumption should be accurate if t" is mall. However

it would be very expensive to test this assimption using a Monte Carlo

ENRON
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EFFECT OF RANDOM THICKNESS ERRORS
ON MULTILAYER REFLECTIVITY
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simulation; we have not done so, so the A h/ curves in fig. 11-5-3

should only be regarded as approxcimate.

One would expect our solution for < R: > to becae less accurate as

the undegraded reflectivity of the structure under consideration becomes

large, because in that case neither inequality in eq. 11-5-21 will hold

strongly at intermediate values of (.

The 6i to 125A range covered by Henke's oompilation of scattering

factors (Henke, et al. 1982) Might be considered to represent the full

extent of the soft x-ray regime. According to fig. 11-2-5, the largest

soft x-ray reflectivities that can be attained with tungsten-carbon

multilayers are at short wavelengths and at wavelengths just above the

carbon-K edge.

Figs. 11-5-4 and 5 compare our solution with the results of Monte

Carlo simulations in each of these cases. The agreement is quite close;

therefore our analysis can be expected to accurately model the effect of

random thickness errors in tungster-carbon multilayers operating at any

wavelength in the soft x-ray region, since reflectivities in the region

will not be significantly higher than in the two cases considered in

figs. 11-5-4,5.

The 61 case cannot easily be simulated at normal incidence because

the nuwber of layer pairs required would be impractically large, making

the cost in amputer time prohibitive. On the other hand, the Monte Carlo

program does not implement algorithfs for off-normal incidence

calculations.
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EFFECT OF RANDOM THICKNESS ERRORS
TUNGSTEN-CARBON MULTILAYER ) 44A

0.6
Theoretical Curves

Monte Carlo Simulations
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J = 2000

Z' ,.Ts0- - -  Curves for AX,) A re
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RMS THICKNESS ERROR PER UNIT CELL (A)

Plots are for a Tungsten-Carbon multilayer
reflecting44A radiation at normal Incidence.
dw -- 3.7 ., de 18.4A.

Figure 11-5-4
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EFFECT OF RANDOM THICKNESS ERRORS
TUNGSTEN-CARBON MULTILAYER )=6A

0.6 0.15
---- Theoretical Curves

j z 1000
t \ Monte Carlo Simulations

j 160 0 J =150
U J 60
* J = 25

0.-0.10 '
.4

2- 0.5<
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RMVS THICKNESS ERROR PER UNIT CELL (A)

Plots are for a Tungsten-Carbon multilayer
reflecting 6.0 A radiation at 850 from
the normal. dw 5.2A, de4 32.3A.

X354 Figure 11-5-5
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According to eq. 11-2-15, the mltilayer parameters -r p and

scale as sec a e . Thus, the effect of a non-normal angle of incidece

can be simulated by mutiplying A and A by this factor. In this way

fig. 11-5-4 simulates reflection of 6i radiation from a 2d&75 ltilayer

at an angle e a rcos( 6i / 751) a 85.

The errors introduced with this technique are of order A and y" ,

and so belong to the class of approximations made in sec. 11-1. Since

these errors include none of the statistical approximations made in the

present section, the Monte Carlo results can be considered to be a

reasonable test of the statistical assziptions at A a 6A.

(Of course, one can sinply regard fig. 11-5-4 as being based on an

artificial exanple designed to test our result under conditions of high

reflectivity).
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Part C) Discussion of Solution

We now discuss the general behavior of cur result.

Fram the approximate result of eq. 11-5-27, we see that (to the

extent that multiple reflections can be neglected), the dephasing <At >

has an effect on the reflectivity that is roughly similar to the effect of

* i.e. that is similar to the effect of absorption.

In sec. 11-2-C we saw that the bandidth of an undegrsded multilayer
U

was of order 2 * The similarity between the effect of thickness errors

and an increase in absorption therefore causes the dependence of A

on o to be approximately parabolic (i.e. linear in <4 >), as shown in

figs. 11-5-3,5.

In the large Cr region where extinction is d&e primarily to dephasing

resulting fram thickness errors (i.e. in the region <A qi> >> As" ),

the effective nmber of layers participating in the ocherent reflection

process is of order <A 4? > , because absorption inposes only a minor

constraint on the number of layers involved. The coherent reflectivity in

this region should therefore have the approximate form:

j-2, 5 i- 46

which is indeed the limiting behavior of eq. 1-5-35.

Thus, the oherent part of the reflectivity I<Q> I falls off
approximately as (0-4 in the limit of large errors.

2.,
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In this limit the incherent amponent <I > falls of more

slowly, as V (9ee fig. 11-5-1). In the limit of very large errors

(i.e. in the region < A t> > where our formalim is no longer

valid), the incoherent reflectivity can be expected to enter a regime in

which the reflections from the individual cells -d purely inonherently;

in this case the dependence on (r vii be determined by the effect of the

thickness errors on the reflectivity of individual unit cells.

However, in the regime of interest to us (where 4A it> I ), the

incoherent beam can be considered to be generated by "packets' of unit

cells; the packets are groups of unit cells which have been displaced from

their expected phase positions by the accumulation of thickness errors,

vith the rmber of unit cells within one packet (this number is

(< iP > )"- ) being such that the cells in the packet still maintain

strong coherent interaction with one another. (Thus, by definition the

reflectivity of a packet is < >

Since (. ")- is the total number of layers in the structure,

eq. 11-5-40 represents the incoherent sum of the reflectivities of the

packets; i.e. < > is given by the number of packets in the

structure multiplied by < 9> •

The incoherent reflectivity will be largest when there is an

accwuulation of about one radian of dephasing across the effective

thickness of the mltilayer, so that the size of a packet is omparable to

the effective mltilayer thickness; this occurs when

> AN (1-5-47)
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If 07 increases beyond this point, the incoherent reflectivity begins

slowly to decrease, and the onherent reflectivity begins a wry rapid

decrease.

Therefore, using eq. 11-3-1.5, we can establish the following

tolerance on thickness errors that the nultilayer must satisfy in order to

have high overall reflectivity:

< > <' 5 2 C

or

<' .3 - dc )d
(A) - A)

Thus, there is a variation in sensitivity to thickness errors

wiounting to approximately tw orders of magnitude across the soft x-ray

region.

Fron eq. 11-5-43 above, we see that this same criterion can be used

to daracterize the effect of thickness errors on m.ultilayers operating

outside the steady-state regime, except that the fractional fall-off of

the reflectivity with Cr is alaer when a < ( C -M ) this is because

the steady-state regime is reached more rapidly vith large tr due to an

increase in the iaginary part of the parimeter D defined in eq. 11-5-43.
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D may be regarded as a goneralited extinction parameter that

Inoorporates the effect of aboorption, dephasing &ie to detuning frmi the

Bragg condition, and dephasing &ae to thickness errors.

*1l
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Section 11-6: Non-Accumulating Pandom Thickness Errors

Part A) Introduction

In section I-5 we have analyzed reflection from nominally periodic

multilayers that contain accumulating thickness errors. In such

multilayers, the target thicknesses for the layers are constant,

pre-determined quantities, so any errors made in meting these target

thicknesses will accumulate randmaly, resulting in a degradation of

reflectivity through the accumulation of dephasing.

On the other hand, when x-ray multilayers are fabricated with ISM,

the target thickness for each high index layer beames that thickness

which will bring reflection from the layer into phase with reflection from

the preceeding stack; thereby eliminating the accumulation of d-phasing.

Spiller et al. (1980) have verified experimentally that ISRM

substantially increases the number of layers that can successfully be

fabricated in an x-ray multilayer. While the tolerance on thickness

errors is considerably less severe when ISRM is introduced, it is still

quite stringent (n an absolute scale) oqared to the tolerances which

govern optical maltilayers.

In this section we analyze the effect of non-accumulating thickness

errors. We will find that with this kind of error, the reflectivity loss

is &ae to a degradation in the structure of individual unit cells.

Because of this degradation the single-cell reflectivity is reduced by a



Debye-Waller factor; the effact of the errors will also turn out to be

similar to that of interlayer diffusion.

In many ways the analysis of non-acemulating errors is a scre

difficult problem than that of accumulating thickness errors.

First, multilayers fabricated with IS4 are not periodic. Second,

with ISR4 there is a oamplicated interaction between a hwvian operator and

the mltilayer's structure and reflectivity. Third, the wavelength and

angle at which the coating is used may not be the same as the wavelength

and angle at which the IS34 is performed (see sec. 11-4).

Fourth, the error magnitudes of greatest interest in the present case

are larger than those of interest in the case of accumulating errors. The

a priori assumption of a Gaussian distribution is therefore less

reasonable with non-accumulating errors, since the errors may not be woall

ompared to the layer thicknesses. (For exanple, when the errors are

large a Gaussian distribution will isply the existence of layers with

negative thickness.) Further, in contrast to the accumulating case, in the

present case the reflectivity loss is sensitive to the detailed shape of

the probability distribution.

Finally, when IS3 is used we cannot make the usual kind of

superposition to treat reflection of unpolarized radiation; the radiation

can only be treated as polarized under certain special conditions.

It will only be possible to arrive at fully analytic solutions to the

problem of non-accwuulating errors under certain special conditions.

Nonetheless, the comlexity of the numerical computations that must be

mad in the general case will be reduced to a level similar to that

L., • , . . .. ,_ , _ ..... .. ... ., --", ' , ' , -- ,
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involved in carrying out the two-by-two optimization procedure described

in sec. 11-4 (eqs. 11-1-20, 4-2, and 4-8).

In particular, the analysis will eliminate the need for expensive

Monte Carlo simulations, which in the present case are particularly

coplicated for the reasons listed above. In the steady-state, the

required coputation reduces to the solution of at most two coupled

algebraic equations, which can (to a fairly good approximation) be solved

analytically.

We will use two methods to analyze the problem of non-accumulating

errors. The first method will be mathematically quite rigorous as long as

certain special conditions obtain. The second method will be more

phenomenological, but can be expected to be applicable under a broader

range of circumstances than the first method.

Despite the omplexity of the problem, we will in each case try to

keep the asswiptions as simple as possible. The purpose of our analysis

is to explore the kinds of behavior that may be encountered in practice,

rather than to make strongly quantitative predictions; detailed modeling

will be warranted as experimental work in the field becones more

extensive.

Mach of cur boo methods will be based on a stronger version of the

key approximation used in the accumulating case, namely that the parameter

efired in eq. 11-S-10 is small oonyared to one. In the

ncn-accumulating case we will show below that it is permissible to neglect

quadratic as well as cubic powers of

A



Sine " <( < < it will be possible to set

(Clearly this is not a good approximation for the first few layers.) We

will find that in this one feature the problem of non-accwulating

thickness errors is simpler to analyze than that of aocmulating thickness

errors.

both methods of analysis will asswie for sinplicity that the

thickness errors obey Gaussian statistics that are independent of K. The

analysis can without significant modification be applied to more

co plicated distributions. Such distributions might, for exanple, keep

the layer thicknesses always positive, or make the WS errors inversely

proportional to the ISM4 signal modulation.

3oth methods of analysis will asswle that a set of target

parameters have been obtained in saw way (for exaple, by one of the

methods discussed in sec. 11-4). We note that even though P, is

noinally the phase thickness of the high index layer, . can, as shown

in sq. 11-2-43, be regarded merely as a division parameter. As such, it

can be considered to determine the desired thickness of the low index

layer, rather than that of the high index layer, via the relation

ffE it- R x- A, . The reflectivity will be much less

sensitive to the thickness ratio than to the total cell
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thickness X - qon

The final , value for each Cll will, in the abserce of errors in

the Ith high index layer, automatically satisfy eq. 11-4-2 due to the use

of the ISM technique; this will be true independent of any errors in the

preceeding layers.

The first, more rigorous analysis will make the following two

assmuptions in addition to those made above.

First, it will assume that errors occur only when fabricating the low

index layers (L layers). This is reasonable because in many cases the

oscillations that the IS3M signal will undergo when the L layers are being

deposited will be considerably weaker than the oscillations that occur

when the high index layers (H layers) are being deposited; this will in

turn lead to amiller errors during the H depositions. The L layer signal

oscillations will be particularly weak when multilayers having 2d-spacings

considerably shorter than the carbon-K edge are fabricated, and it is in

such short spacing multilayers that thickness errors have their greatest

effect. Boever, we should note that in many cases one might chose the

XiS~ wavelength to be one which causes a strong contrast during L

depositions (Spiller, 1982b).

Another factor that will tend to reduce the magnitude of the errors

made in fabricatirig H layers is that their depositions will be truncated

at reflectance maxima; these are omparatively well-defined positions on

the ISRM trace.
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Depending an the algorithm used to determine the t the desired L

truncations may not be as easy for the operator to relate the I

trace, resulting in larger errors d&ring L depositions.

In uadition to assuing that the high index errors are negligible,

the first method of analysis will assue that the ISM3 probe be can be

treated as polarized. This vill be strictly valid only if the probe angle

is near grazing incidence, near 450 incidence, or near normal incidence.

(As a practical matter it is doubtful that the probe 9 can be made less

than 15" or so).

The agond method of analysis will not need to assume either a

polarized probe beam or to assume negligable errors in the R layers; it

will, however, be less accurate and less rigorous than the first method.
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Part a) First method of analysis

If there are no errors in the H layers, w can write the phase

thickness of the Kth low index Iayer as

*+

4 Xlcosa 0
<a

where , 2 X/A WS8 , and the thickness error 44 is a randar.

variable with mean (7 that is assayed to obey Gaussian statistics that are

independent of K. . is the desired phase thickness of the Ith low

index layer.

We note that eq. 11-6-2 will not obtain if there are errors in the H

layers, since an error in the K-lst 9 layer will cause a f term with

subscript K-i to be present in PA, I , due to the automatic error

cempensatim achieved with I18I.

in the rmaitder of this section, we will for sinplicity's sake

srpress the K subscript an all mtilayer parameters.

At this point we also introduce the following quantities:

E sete sec'e
L L

N L

AL(1-6 sS

,. .=3 .. . . . . . . .. . . . . ... .



Onthegroundsthat f isml, nowet t > In

sq. n-4-2 (and so w also met
< it > 11 < R 0' am> a j<>l < • ""  and Vt gf V< ).

Under the asswition of no errors in the 9 layers, 4p vll still be

given by eq. 11-4-2 despite the presence of rando= errors in the L layers.

Ij. 11-4-2 will now depend an these errors only through the first i

term and through the A& tem in the parmeter t .

Since the distinction betwen R and I is a higher order effect, the

substitution

< -I A"' > < < > 12e- I< A">

where <s> A , wil not effect our result except to

order.. "

Then from eq. 11-4-2 we can set

9 =  <4> +  " O( -A.;) (-6-5)

where

<,> -1<0> + V - Ota( ;.1<nVl)

(co~tf-med oR next paej)
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S(3- 6-6 £D~t;.Ucd)

We note that if is the the defect-free o value for the Kth cell,

> must be scaled from the wvelength and angle of the coating's

fabrication to the wavelength and angle of the coating's application, if

the boo are different (i.e. one must set

<),> <%>. (,.03s 9 )). itwill
then also be necessary to propagate < > using eq. 11-1-20 in two

separate sequences; the first under the fabrication conditions and the

seconed under the application conditions, with the scaled values of < 4 >

used in the seond sequence. Eq. 11-6-5 will then still hold for the

second sequence, but the error term of order q. A. will be different.

Next we determine < > and <t>. We have

<* . -- q .,

1 Y--7
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Similarly

<,> - i -'- g " =,#

where again both < t > and < > are € dependent.

In Appendix 9 we show that the propagation equation for

(eq. 11-1-20) has the form

-,t

S~~(,1 0- + -;P 0.

e~~~~ ~ ~ -3tP (J 3nep inp "-

in the bilayer case. To derive eq. 11-6-9 we have used the definitions in

eq. 11-1-15 to recalculate the quantities in eq. 11-2-15 under a

non-centrosymmetric gemetry (L layer an substrate side, 8 layer an

incident side), and have retained terms of order A , which are

neglected in eq. 11-2-3.



Assu ing Gaussian statisticx, w have fram eq. 11-6- a 5 6

-;<t> <e; - 2;0

-e eT

e- ;<* (")

(Here we have used the same identity as is used in eq. 11-5-8, which can

be shown to hold even when the random variable in the exponent is

multiplied by a complex oefficient).

We can nw set the expectation value of the first term on the right

of eq. 11-6-9 equal to

-z <t >e> (1-6(- 11)

In order to calculate the expectation value of the remaiing terms in

the equation, we must determine the quantities:

< S;R . 'P, e-;t >

<sR;F e;A, e;t >

<sinp, e e"-3 >
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Begilnnng with the first quantity in sq. 11-6-12, we expand sin

Into exponentials, and first miculate

i < • 0 •" , e >X6

Using eqs. 11-6-2,7, and 8, we can set

At <P> < t <>- -

(3-6-14)

so that under Gaussian statistics

< eP. ' e >- e e e+

Through similar steps the ruaining quantities in eq. 11-6-12 are

readily obtained. Neglecting quadratic and higher terms in , and

neglecting terms of order As , w obtain for the expectation value of

eq. 11-6-9

. ... / •
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P e) e-iC > re-;<O>e '> -; )

Z e " ; ', > (e"'D - "

P(e) -3ict> a r<O,> £;(> *e > ft e< >(e a, i*,, e'< >)]

1-6-161

We can now propagate < > through the stack using eqs. 11-6-6,7,8

an16. Since << I wecanmet <F,>=I<e>1z t o o i n

intensity reflectance. This is as far as we can proceed towards a fully

analytic solution outside the steady-state regime. In the steady-state

regime, eqs. 11-6-6 and 16 reduce to two coupled algebraic equations, which

can be rapidly solved by an Iterative procedure in which < I > , < t >,

and <P.> are initially set equal to their defect-free values.
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Part C) Second method of analysis

A oaiarison of sq. 11-6-16 with sq. 11-6-9 shows three MS in which

non-accumulating errors manifest thtuelvest first, in the difference between

the expectation values of the parameters t, p. and t, and the defect-free

values of these parameters; seond, in the difference between ? and its

expectation value; and third, in a direct way through the presence of the

Debye-Waller factors exp(-Z< ;,> ).

In our second analysis we will treat the first of these effects as

negligible. In essence we will assume that the ISMI technique keeps the

total phase thickness of each cell a onstant; in other words, we assume

that each H layer thickness is made by the ISM4 technique to ornpensate

for any OPD error present in the preceeding L layer. (Mo within order

I, we can also set the optical path difference equal to the physical

path difference. After the expectation value is taken, the error in such

a substitution will always be found to be of order A <.F > ).

with the seond method of analysis we can treat the possibility of

errors in the H layers as well. In order to do sn, we go to a

quasi-centrosymmetric de osition in which the cell interfaces lie

within the low index layers. (The decxqsiticn reduces to that shown in

fig. 11-2-1 in the absence of errors). We define these fictitious

interfaces to occur at the same physical heights above the substrate as

would the midpoints of the low index layers in the absence of errors; thus

the interfaces that divide the cells &b not change Positions in the

presence of errors.
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The errors do cause shifts In the the positions of the j1"yical

interfaces that separate the 3 and L layers. We will seasure these shifts

relative to the defect-free positions of the physical interfaces.

Finally, we will asswe that these shifts of the physical layer

interfaces can be treated as uncorrelated Gaussian randCn variables. This

is suggested by the Debye-Waller factors in eq. U-6-16, which, as we will

see, represent degradations in the reflectivity of individual interfaces

due to displacements whose magnitudes have a Gaussian distribution.

However, we should note that this assuWtion is not strictly consistent

with the results of part B. For sinplicity we will also neglect terms of

order 4p L in our second analysis. The algebraic details of the

derivation are given in Appendix 11.

There we show that

<h.jL = e >

> e e'

01- 6 -- 1)

where

(1o6- ifC os9 0

E M.

~ ,~. I -
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mere a and 0 are the standard dwiations of the errors In the L and

a layers, and to, p aid are the ftfect-fre* values of the

paZmeters t. POO and P . Eept for the nonr-entrosyrmetric geometry

and the non-zero errors in the R layers, our result is equivalent to

eq. 11-6-16 with the expectation values of the parameters q * to and Pe

set equal to their defect-free values, and with terms of order y-

neglected.

wealsofindthat, tOanRarmitim, <II > ithe

steady-state is given by

<i~i> *IP 1 e

sn < > -4ccw p. 0 <4> Re(<p>) (1 + 2>

+2 3 ;n 2 < C ' e'. e <;> < >)1

4 ,.-'-J9)

where

4 (Al- e

" - - - -<
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(This assuMes, for purposes c illustration, that 4 s 4 U $ . See

below) . Thus,

a<1'" - Q -- A <( ± (X-6-zu)

as asswmed earlier. In our 67.6h standard example (see sec. 11-5), with

no errors in the H layers, < I > reaches its largest value in the

steady-state regime with U* > SA; in this regime <I0.0> - 0.0o4.

The physical reason for the small size of <I I A > is discussed below.

In the second analysis, the polarization of the ISRM probe enters

indirectly via the defect-independent parameters q . These parameters

are obtained by making a defect-free pcopagation of <o > using

eq. 11-6-9, with eq. 11-4-2 (in S or P polarization) used to determine

The y, parameters are polarization dependent, and so eq. 11-4-2 will

not apply to an unpolarized ISRM beam except under special conditions.

However, since only the defect-free case need be considered at this point,

it would be =otputationally quite rapid to determine the 9 values by

numerical optimization.

As an alternative, since our approach in this second analysis is

saewhat phenomenological, we will consider it adequate to determine each

9 value using a weighted average,

R Rs-~ooa Ia s * I-S.P (J-l-'zz)
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ith 4t and q give by q. 11-4-2 in each of the two

polarizations. In the defect-free clculation and q MJSt be

propagated using eq. 11-6-17 in separate sequences, but in each sequence

the value used musst be that given by eq. 11-6-22.

If necessary the resulting q values can then be scaled to the

wavelength and angle of the oating's application; < ? > can then be

re-propgated in each polarization, and the final intensity reflectanoes

averaged.

,4
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Part D) Discussion

As in section 11-5 we have used a Monte Carlo simulation to test the

accuracy of our theoretical treatment. In order to be able to compare

both methods of analysis, we have only considered cases that satisfy the

restricted conditions under which our first method of analysis can be

applied (see part A above).

Our Monte Carlo simulation program has no off-normal incidence

capability, so we have used a normal incidence ISHM geometry in our

simulations.

As discussed in sec. UI-S-C, the non-normal incidence case can be

reduced to the normal incidence case by using a sec" e scaling of A

and A , as long as the ISRM beam can be treated as polarized. (See

part A above. The error involved in assuming a seck 9 scaling should not

involve the statistical kinds of approximations made in this section.)

Heowever, we note that in the non-accumulating case, the unpolarized

reflectivity can oly be treated as the mean of the reflectivities of the

orthogonal polarizations wder the simple model of part C.

We have also chosen to have the Monte Carlo program prohibit layers

with negative thickness; when the Gaussian random nmber generator forces

such a thickness, the thickness is met to zero instead.

Our theory culd model this restriction by using the appropriate

non-caussian probability distribution for the errors, but we have

intentionally left this discrepancy unresolved since the discrepancy is

somewhat representative of the kind of oversinplification that modeling of

this corlex proble m st necessarily have.

-..
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Fig. 11-6-1 shows the expectation of R plotted over a range of

values fram zero to - <d>/3 . Mven at v- a dL>/ 3 the

fraction of layers under a Gaussian distribution that will have negative

thickness is fairly mull.) The solid curve is calculated by the method of

part B, the dashed curve by the method of part C.

The Monte Carlo results in fig. 11-6-1 have been obtained using the

exact, non x-ray characteristic matrix solution of eq. 11-1-22. The H

layer truncations were determined by numerical solution for the

reflectance maximum at each I value, in each simulated stack.

Prior to constructing the simulated stacks that contain thickness

errors, the program constructs a defect-free stack that is optimized in a

two-by-two fashion (see sec. 11-4), with the optimization performed

numerically. The purpose of this initial optimization is to obtain the

defect-free P. division parameters, which determine the target L layer

truncations. As discussed above, our equations can be used with a set of

p division parameters obtained by any method.

As discussed in part A, one could easily justify adopting a more

complicated model for both the Monte Carlo simulation and the theoretical

analysis, but in this preliminary work we have used only the minimal set

of assuptions discussed awve.

As the figure shows, the agreenent between the two methods of

analyses and the Monte Carlo simulations is quite good, with the first

analysis being somewhat more accurate than the second. We estimate the

error due to the finite sample size to be about 1 .001. The two

theoretical calculations disagree at 0 * 0 due to neglect of terms of

. ... .. <1



EFFECT OF NON-ACCUMULATING
THICKNESS ERRORS

(Tungsten-Carbon Multilayer made with ISRM)

LLR~k

0.3

----- Theoretical Curves
Monte Carlo Simulations

0 J = 200
o j = 75

z

0.0. . . .

RMS ERROR IN LOW INDEX LAYER (A)
Plots ares for amw/C multilayor rsf lecting 67.6 A radiation
at normal incidence. d.= 7.6 A. d, a2.5 A.

XW Figure 11-6-1



11--22

ordery. A in the method of part C.

Both analyses depart scnewhat fram the simulations at large C

values, perhaps because of the positive layer thickness amstraint that we

have placed in the simulation program. We should mention at this point

that at large 0 values, the second method of analysis will not always

track the more rigorous solution of sq. 11-6-16 as closely as it does in

our standard 67.6A example; in fact it is even possible in sae cases for

the second solution to predict an increase in reflectivity as c0

increases. This can occur only when the nominal 3 layer thickness is

sufficiently small and C0 sufficiently large that, under the simple model

of part C, the H thickness can frequently beciame negative. The simple

model can then also predict an increase in single-cell reflectivity as a

increases, without an increase in absorption, leading to an increased

reflectivity for the stack as a whole.

In cotrast to the similar situation that occurs with the L layers,

it would not be valid to correct for this effect by going to a

non-Gaussian distribution, since the effect is an artifact intrinsic to

the system of cell decmposition that we use in our in our second method

of analysis.

Bowever, we have always found the second solution to be accurate in

the region of mall and moderate a values.
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We ro proceed to discuss our solution in pdysical terms. In order

to do so we take our less rigorous solution in eq. 11-6-17, and let the

total number of layers J (and therefore the relevant values of R) becone

sufficiently large that the multilayer operates in the steady-state regime

and becses periodic.

We also assume smewhat arbitrarily for purposes of discussion that

the errors in the high and low index layers have equal 36 magnitudes.

We then obtain from eq. 11-6-17

(1-6-23

(This my be regarded as an approximate analytic solution to the two

coupled algebraic equations that our first method of analysis reduces to

in the stead -state. We also note that it Is not messary to assume

equal L and H errors in order to arrive at an analytic steady-state

solution.)

sq. ZI-6-23 is simply a standard Darvin-Prins solution (see

eq. 11-2-11) with the single cell reflectivity ir, degraded by a

Debye-Waller factor.
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ft an extent the preseric of & Debye-Wller factor iS not surprising.

In x-ray diffraction such factors result when the phase position of a

scatterer is randomly displaced according to a Gaussian distribution

(usually due to thermal notion, see ues, 1965, p.193). The Debye-Waller

factor may be regarded either as the Fourier transform of a Gaussian

distribution, or as the expectation of a complex exponential whose

amplitude obeys Gaussian statistics.

The central principle of x-ray diffraction states that when

extinction can be ignored, the amlitude reflected from a sample will be

the Fourier transform of the diffracting structure. (This is of course

the basis by which x-ray diffraction is used to determine the structure of

quasi-periodic objects.)

In the present case extinction and multiple reflections cannot be

neglected except within individual unit cells; thus only the unit cell

reflectivity in eq. 11-6-23 is multiplied by a Debye-Waller factor.

However, there is a more subtle feature present in our result, in

that eq. 11-6-23 has the standard Darwin-Prins form. This lmplies that

the total interaction of the different cells in the sultilayer is no

different from the interaction that the corresponding set of *averaged"

oells uwuld have in the absence of errors; this is true despite the

presence of extinction and multiple reflections, which must be considered

in the structure as a whole.

This point can be clarified by onsidering the similarity between

non-accmulating thickness errors and interlayer diffusion. We will

continue to consider only the simple case where the multilayer has equal L

L s, "- _ .
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and B layer errors (or diffusion profiles), is periodic, and operates in

the steady-state. (We should also note that interlayer diffusion has been

analyzed by Underwood and Barbee (1982); their treatment is discussed

briefly in sec. IV-l).

According to sq. 11-1-15, the parameters r and A are essentially

(truncated) Fourier transform cmponents of the structural profile

(z).

If we model the diffusion process as a convolution of the

sharp-interface (z) function with sme smoothening function, then r

and AA will be multiplied by the appropriate FoPrier transform copnents

of the smoothening function. (Since r and "A are actually truncated

Fourier components, the preoeeding argument is somewhat oversimplified,

but in Appendix 12 we show that the result is still correct). Since , is

the DC owporent ol the transform, it is unchanged by diffusion if the

diffusion profile is correctly normalized. Thus, neither interlayer

diffusion nor non-accwuulating errors will change the (average)

transmittance of the cell.

However, If the diffusion profile in the sae normalized Gaussian

function as the Gaussian probability distribution used in our analysis of

non-accumulating errors, the diffusion will cause r to be multiplied by

the sam Debye-Waller factor that appears in sq. 11-6-23.

Application of the Darwin-Prins solution of eq. 11-2-11 to the

diffusion problem then yields a solution identical to that in eq. 11-6-23

for non-accumulating errors. The two solutions remain identical when

generalized to allow for unequal AM errors or diffusion profiles in the
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li-I and D-L interfaces.

This identity of results implies that the randomly varying unit cells

in the stack interact together in the same my as do a corresponding set

of cells having an averaged (or diffused) structure.

This behavior is a consequence of the small magnitude of . This

can be seen by considering the step in the analysis where we take the

expectation value of eq. 11-6-9 while neglecting ; since is

neglected < > is propagated only by the averaged or expectation values

of the cell structure. Under the simple model of part C, the averaging is

represented by the Debye-Waller factors.

Thus, as long as the multilayer contains at least a few layers, it

need not really be treated as a random structure except to the trivial

extent of diffusing the cell structure. (This is only true within the

simple model of part C, of course). In a sense the ISRM technique may be

said to surpress the randomness by eliminating the accumulation of

dephasing.

Physically, is small in the non-acc.mlating case because the

coponents reflected from the different interfaces are unorrelated with

one mother, and so, in fact, add together only incoherently.

Since incoherent reflection is inherent.y a weak process in the x-ray

regime, the overall component is small; thus in eq. 11-6-19 <II >

Is of the order of the intensity reflectance of each Cell maltiplied by

the total number of cells (rather than by the square of the total number

of cells as would be the case with coherent reflection).
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In contrast, in the case of accumulating errors the displaoinents are

well-orrelated from one interfaoe to the next, with the correlation

between displacments vanishing only between one "packet" and the next

(see sec. II-S). The packet as a whole will radiate in a primarily

inooherent way; however within the packet the cells interact coherently,

making the overall inooherent reflectivity ' cnsiderably larger

than in the rxni-accumulating case.

In the accumulating case < > and are therefore strongly

intermnected, and so there is no sinple, non-stochastic analogue for

accumulating random thickness errors; in contrast, as we have seen there

is a straightforward analogy between non-accumulating thickness errors and

interlayer diffusion.

The scaling of accumulating and non-accumulating errors with

2d-spacing is also different. In order for the Debye-Waller factor to

depart significantly from one

or

Cr< 0.1 x (2d)

£i

!.
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This my be Cared to the orrespnding result in eq. 11-5-2 for

accumulating errors. In each fomula r should be regarded as the total

URG error per cell, rather than per layer.



Chapter III Applications of X-Ray Multilayer Coatings

Section I1-1 - General Considerations

Part A) Introduction

In this chapter we discuss possible applications for x-ray multilayers

in ters of the theory developed in dapter 11. We will concentrate on two

applications that are of current interest at the Laboratory for Laser

Energetics of the University of Rochester; however, we will first discuss

some points of general relevance concerning the performance of multilayers

in the x-ray region.

In sec. 111-2 we will then discuss the possibility of using

multilayers to form cavity mirrors for projected x-ray lasers (wavelength

of order IDA). In sec. 111-3 we will discuss the use of multilayers in

short wvelength x-ray microscopy (wavelength of order LA).

111-1-1

.... ........ ....... .\ ... . ... - . *1
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Part B) General Constraints on Multilayer Performance

The results of Iss. 11-2 and 3 show that the reflecting performance

of x-ray multilayers is strongly limited by absorption and by the weak

interaction of the layer materials with the incident beam.

Acording to figs. 11-2-4 and 5, absorption will limit the

reflectivities of vultilayers to at most 0.8, and much poorer

reflectivities will De typical in most of the soft x-ray spectrum unless

new materials ombinations prove feasible.

In sec. 11-3 we have shown that x-ray multilayers have a very narrow

bandwidth as a result of the weak coupling between the structure and the

radiation. This makes very difficult the development of x-ray optical

components that are achromatic or wide-field. (However, the spectral

selectivity of x-ray multilayers may be useful in certain applications, see

below).

Eq. 11-3-39 suggests that centered optical systems of moderately high

aperture can be devised for the long wavelength region around 100A. The

strongest drawback to such systems may be the limitation that absorption

will impose on the total number of reflecting surfaces.

As the wavelength falls below about 100A, either the angle of

incidence to the surface or the 2d-spacing spacing lzst be reduced;

according to eq. 11-3-21 the aperture and field-of-view of a coated x-ray

optical element must then decrease.

As the wavelength is decreased still further, the necessity of

maintaining layer thicknesses of at least a few angstroms will require that

the mltilayers operate very far fran normal incidence; according to



eq. 11-3-23 the largest possible f ields of view will then be obtained at

angles as close as possible to the surface.

The geometrical aberrations in such highly decentered systws will

then imupose additional constraints an field of view.
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So far we have only discussed the limitations on performance that are

ijmosed by materials properties. ftperimntal observation shos that the

reflectivities of sultilayers fabricated with present technology are

usually somewhat lower than those of an ideal structure, although

uncertainty in the optical constants makes such a conclusion difficult to

establish unambiguously. Fairly good agreement with theory can be obtained

when the theory makes provision for defect& in the multilayer structure

(Ielbich, Segmuller, and Spiller, 1979; Barbee, 19B2).

We now discuss published experimental results in order to gauge their

inplicaticns for practical devices.

Mltilayer reflectivity generally drops off rapidly when the

2d-spacing is reduced below 40 or 50. The measured performnoe also

generally comes closer to the defect-free value under short wavelength

(-1.5i) illumination at glancing angles, than otherwise.

To date there have only been tentative attenits to oapare the

observed degradation to theoretical models, and only the simplest

degredation =Mdel has been considered. Haelbic,, Semuller, and

Spiller (1979); and Barbee (1982), have each attefpted to del their

experimental results with an expression of the form

R(oi= .

L6xtr Cos 9

AA"-m- .
rda
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Multiplication of the entire mltilayer reflectivity by such a

Debye-Waller factor (rather than the individual interfacial reflectivity as

in sec. 11-6), has been shown by Eastman (1978) to correspond to what he

calls the identical film model of roughness, in which mane particular

roughness profile (generally that of the substrate) is replicated

identically in all succeeding layers.

The problem of miltilayer roughness is potentially a very omplicated

one, since there is an enormous range of possible statistical magnitudes

and correlations for the roughness, with varied correlations being possible

both within each layer, and across the different layers. Further, the

analysis of roughness will in general require the solution of a

three-dimensional electromagnetic problem.

We will describe our own initial investigation of multilayer roughness

in the section of chapter IV that deals with future work; the simple,

limiting case models that we analyze there may prove useful in planning the

kind of detailed experimental investigation of the reflecting performance

of nuitilayers that will be necessary to characterize their structures in

detail. In chapter IV we briefly describe certain characteristic

signatures in multilayer reflecting properties that defects of different

kinds (including various kinds of roughness) will produce. However, the

experimental results published to date appear to permit only limited

interpretation.

varbee (1982) has fit the Debye-Waller factor of eq. III-1-1 to

several measurements of peak reflectivity made in first order at 1.54A with

multilayers having a variety of 2d-spacings. (See his fig. 7. Note that

--



in this figure, the solid curve is an interpolation between experimental

points, rather than a theoretical calculation.) Barbee has used four data

points in his fit to eq. 111-1-i, and has obtained a final *5 error of

t St. (The best-fit value of 0' was 3.15i). The experimentally observed

fall-off is slightly sharper than that predicted by eq. 711-1-i. (We

should note that Barbee's multilayers probably do not ontain enough layers

to operate in steady-state).

Unfortunately, the sensitivity of multilayer reflectivity to any of

the various degradation mechanisms onsidered in chapter II will have a

dependence an 2d-spacing that is similar to that of eq. 111-1-i.

For example, multilayer reflectivity in the presence of either

interlayer diffusion, non-accumulating thickness errors, or the kind of

roughness that we term "smoothening films' (see chapter IV) will, in the

stead -state, be approximately given by (here reproduced from eq. 11-6-23)

L >  2.

to - • - t

where ln Cr CW /

Sq. 111-1-2 has the same similarity in shape to eq. 111-1-1 that the

Darwin-Prins solution of eq. 11-2-11 bears to our approximate solution in

eq. 11-3-i. Thus, it will usually be difficult to experimentally

distinguish the two kinds of structural defects by varying the 2&-spacir) ,

, ,
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particularly with a small number of data points, and with the Debye-Waller

coefficient serving as an adjustable parmeter.

Other kinds of multilayer defects will also resemble the dependence of

eq. 11-1-i, at least qualitatively.

For exanple, we find fram eqs. 11-5-27 and 3-15 that accumulating

errors will have a dependence on 2d-spacing of the aproximate form:

R(d) =R Idea O (- 1-3)

where A is independent of the spacing.

This function will have a slightly sharper fall-off than eq. 111-1-1

in the soft x-ray regime, but will have a slightly more-rounded toe.

Accumulating errors will produce a greater change in bandwidth than will

non-accumulating errors.

Eqs. 111-1-1,2 and 3 are compared in fig. III-l-1; in each equation

the 0 value has been chosen to make the degradations equal to 0.5 at a

ccuim d-spacing (d.,. ). The optical constants used in eq. 111-1-2 are

those of tungsten and carbon at X ? 1.66A (comparable to Barbee's

wavelength of 1. Sd).

The near coincidence of these curves slhcs the difficulty in trying to

use the dependence of reflectivity on 2d-spacing to determine the nature of

the structural defects in ailtilayers.
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To date there has been one direct experimental indication that

roughness has a detectable effect on multilayer reflectivity; Spiller et

&l. (1980) have found that the measured reflectivity of a 55 layer

gold-palladium/carbon multilayer is increased if the detector aperture is

increased, indicating that the reflected beam contains scattered radiation.

We might mention that at short x-ray wavelengths, the onset of

reflectivity loss predicted by eq. 111-1-2 will become somewhat sharper

than the onset at longer wavelengths. The presence of structural defects

satisfying this equation might then explain why moderate 2d-spacing

multilayers tend to have short wavelength reflectivities that are closer to

the defect-free values than are the reflectivities at longer wavelengths.

Haelbich, Segmuller, and Spiller (1979) have made use of a

multildimensional optimization code that numerically determines the

particular thicknesses for each of the layers in a multilayer, and the

particular complex indicies of refraction, that will produce the best

agreement with a measurement of reflectivity versus e under monochromatic

illumination. A Debye-Waller oefficient then forms a final degree of

freedom. The agreement achi 'ved is moderately good (see their fig. 3), but

with no many free parameters, it is difficult to judge how reliable a test

this is of the assumed degradation model.

In chapter IV we will discuss briefly the kinds of measurements with

which one might characterize the structural defects in multilayers. For

the moment we draw one important conclusion from existing experimental

work, namely that x-ray multilayers can be expected to show a rapid loss in

reflectivity when the 2d-spacing drops below about 40i.
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Such a degradation is not surprising. Acoprding to eq. 11-6-25, an

Interfacial gradient with a characteristic depth of order 4A will cause a

factor of beo reflectivity loss in a multilayer having a 28-spacing of 40A.

One might consider such a fall-off in reflectivity to be essentially

inevitable, since an interface cannot be sharp on a sub-atomic scale.

While this may prove to be crrect as a practical matter, we might

note that there are x-ray crystallographic arguments which suggest that the

ultimate limit iuposed by atomic structure on 2d-spacing is actually much

smaller. Under a classical atomic wodel, the gradient in the atomic

electron density distribution causes a fall-off in the atomic scattering

factor; this fall-off is usually measured in terms of the quantity

sin 8/ A (see James, 1965, chapter Il, for a discussion of these

concepts). The fall-off typically becomes pronounced when

sin G/A -A.A " (i.e. 2d * ).
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Section 111-2 - Cavity Mirrors for X-Ray Lasers

Part A) Multilayer-Coated Cavity Mirrors

There has been considerable interest in recent years in the

possibility of achieving Optical wplification at x-ray wavelengths

(Forsyth, et al., 1976; Kaynant and Elton, 1976). In most scihemes, the

amplifying region is a plasma formed at or near the focus of a high power

visible pimp laser (where characteristic tuperatures are in the range of 1

key). Such an x-ray a'lifier could form the basis for a true x-ray laser

if a cavity of adequate quality could be canstructed.

Much of the x-ray laser research conducted to date at the Laboratory

for Laser 2ergetics (LLE) has concentrated on a scheme based on three-body

recombination (Mhagavatula and Yaakobi, 1978, Conturie, 1982).

In these experiments, a pulse from the pzmp laser (duration typically

1 nanosecond) Is focussed through a slit of width - 2 0 0 Am (or past a

half-plane) onto a target having a Z of order 10 (the target is typically

located - 200 AA m below the slit). The laser-produced plasma undergoes a

jet-like expansion back into the direction of the incident bean, where it

is cooled through collision with a cold plama formed in the slit.

It has been established experimentally that population inversions

oocur In the rapidly cooled plasma, most probably through the mechanism of

three-body recombination (Conturie, 1982).

The most extensively studied inversion is one that has been observed

an the n-4 to n-3 transition In helium-like aluminum (wavelength - 1301),

but inversion has also been observed from a nuwber of low-to-moderate Z

targets, and an a number of x-ray transitions (including in particular the
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BOA 3-2 transition in hydrogen-like flourine).

For a frequency-tripled dsYag pap laser ( * .35, ), crturie

(1982) has tentatively identified 9 i Z < 13 as the region of best

performanoe, which will tend to limit transition wavelengths to the region

above SA.

For this reason our discussion will Initially oncentrate an the

possibility of using multilayers to form cavity mirrors for the IOOA

regime.

According to fig. II-2-5, the reflectivity of a tuigsten-carbon

multilayer at such wavelengths will be of order 0.1. As shon in

fig. 11-2-4, we might hope to achieve higher reflectivities with rew

materials combinations, but it is clear that in the soft x-ray region,

multilayers cannot achieve the reflectivities of virtually unity that are

possible in the visible.

Nowever, even with a reflectivity of 0.1, it is possible to get above

the threshold for true lasing, and so lurove the herenoe of the emitted

radiation, if the gain in the aWlifier can be raised above 10, so that

each 90% loss n reflection will be compensated for by a pass through the

anplifie~r (fig. 111-2-1).

The key to the two-mirror configuration shn in the figure is that

the multilayer structures have ben tuned to reflect Precisely at normal

incidence (i.e. their structures are optimized aocording to the results of

sWc. 1-2-9), so that each single losy reflection is upqensated for by a

pass through the a lifier.

* r.. ...
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According to eqs. 11-3-20 and 1-21, the absolute tolerance an

systenmatic error in the unit call thickness 6 that is iaposed by the need

to have adequate reflectivity at normal incidence is

d 0
Sd( 6 •- 5- 1.3 P d,;))

If these tolerances are not met, so that the multilayer resonance

angle is not sufficiently near 9 a 0", one might turn to a cavity

configuration like that shown in fig. 111-2-2a, where a grazing reflection

is aloyed to return the beam to the second mirror.

lkwever, there are raw two lossy, near normal-incidence reflections

required for every pass through the uiplifier, so that a higher gain is

required than is needed with the two mirror cavity.

Further, because of the sywetry that exists betwen the grazing

regie and the normal incidence regime (see sec. 11-3), e can sho that

when the ultilayer's detuning error is sufficient to rule out the

configuration of fig. 111-2-1, the grazing reflection will then likely

oocur at to large an angle for efficient reflection.

Aording to eq. 11-3-39, the half-angular width Of the multilayer

ref 3ectnm profile at normal incdenme is

F7A



OTHER CAVITY CONFIGURATIONS
ra .

gain -100

N - 1.0 (grazing)

A. Cavity formed from non-optimal multilayers

Ping should contai. at least
M mirrors, where

I/ gain - 100 / w3 i n
N / 2(1 - Rt(n))512 Mn2

Rletractive Index of mirror
mnaterial Is n.

The limiting a is given by

acaity1101 0a ap

S. Rting cavity formed from grazing reflectors

Figure 111-2-2
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assming I N 1, AL << t " is Is also the approximate half-width

of the region about normal incidence within which SOP 9* Is

pproocimawtely omsnt. The critical angle (no longer a sharply 6efined

cutoff at long wavelengths) is given by 4 where .a.A* Is the

index of the bulk reflector. In order that the two-mirror schowe of

fig. 111-2-1 be ruled out while the schame of fig. 1I-2-2a be still

worthwhile,

Z -

or

zven in the soft x-ray regime where absorption Is quite significant,

it will generally be Possible to t*chnically satisfy eq. 111-2-S.

'*1 uonetheless, it is clear that in addition to Sqplying a greater loss per

cavity transit, the Inoorporation of a grazing reflection as in

fig. I-2-2a will not greatly reduce the fabrication requirmuent of

eq. 111-2-1, because it will not In general be possible to satisfy the

Inequality of eq. 111-2-5 in a strong way.
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Par the abe reams w ccnsidar the st prcaising mvity

configuratien for an x-ray laser in the 100A regime to be ane based an

norml incidenoe mutilayers.

- .. ~4dhJ
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Part 2) Ring Cavity

The degradation mhanims disaussed in see. III-1 imply that the

cavity wnfiguration of fig. 111-2-1 will becume inadequate fcc transition

wavelengths shorter than about 4A.

At short wavelengths one might attempt to cnfigure the aultilayers in

a polygonal ring in order to increase the 28-spacing, but the resulting

exponentiation of the reflection loss will imply a low overall throughput

(the ideal single-pass resonant reflectivity from multilayers can be at

most 0.8 in the soft x-ray regime).

Nowver, as the angle of incidence against a specular reflecting

surface goes to zero, the reflectivity can approach unity.

On this basis, Bremer and Kaihols (1980) have devised a ring cavity in

which a large number of grazing reflections from polished substrates are

used to return the beam to the amplifier (fig. I1-2-2b). They have shown

that if the ring contains sufficiently many mirrors, the fraction of the

beam returned to the amlifier approaches the limiting value

A55

Q S 6 jA'j (.-2-6)

where no * 1 + A is the index of the mirror material.

In Appendix 13, we shc that in order to approach the limiting

throughput, the ring mst contain at least K reflectors, where

M7
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(We note that N is often substantially larger than the number of

mirrors that would be required simply to put the incidence angle at the

critical angle). The fall-off in R as the number of mirrors is decreased

below M &/I is very rapid.

We also show in Appendix 13 that a general formula for the throughput

in S polarization when M > M is

-4u, a' =z8

- Ina-i

Eq. M1I-2-8 can differ substantially from eq. 111-2-6 in the ultrasoft

x-ray regime.

Using eq. 111-2-6, and the limited set of x-ray optical constants that

were then available, Bremer and Raihola (1980) identified two

wavelength-reflector Combinations where moderately high performance might

be expected; these are polystyrene at A = 67.6i (9, = 0.04), and

magnesium at X - 2.A (Q, a 0.3).

They reported that even performanoes such as these appeared generally

to be limited to isolated wmvelength-matrial. combinations. Further, a

literature review reveals that the particular optical constants

measurements %hich form the basis for the 67.6A polystyrene reflector

have essentially been retracted by the spectrosc pist who made the

measurements (Lukirskii et al., 1965, initial results reported in Lukirskii

et al., 1964).
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In addition, application f sq. 111-2-7 to the 2.21A Mg reflector

indicates that the ring will require aGproximately 240 reflections. Even

if one avoided the resulting alignment problem by using a cylinder rather

than a polygon, the minimum allowable size of each facet (dictated either

by the amplifier length or by damage considerations) would probably inply a

cavity circumference greater than one meter. Thus, one would have to add

to the formidable difficulty of achieving aWplification at short

wavelengths, the need to maintain the inversion for even longer than the

nanosecond &rations that are contuiplated in the lOOA regime.

For these reasons we initially considered the ring cavity to be

considerably less promising than the wmltilayer configuration of

fig. IZZ-2-1.

However, we have recently conducted a materials search using the

recent conpilation of optical constants made by Henke et al. (1982). The

results are shown in table I1-2-11 in the longer part of the soft x-ray

spectrum the search program has identified cavity materials that yield

nominal throughputs of up to 0.4.

While these are not as high as the reflectivities that are obtained in

a search for multilayer materials (fig. 11-2-4), they are certainly high

enough to make the ring cavity look quite interesting for transition

0

wavelengths above - 65A.
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Optimum Materials for Ring Cavity

Q

(A) (S Pol) M(1/2) N(Crlt) Element

124.000 .3641025953573 7.51 7.29 RJIODIUM
221.040 .3921299229287 7.47 7.54 RHODIUM
116.151 .4182819668938 7.44 7.80 RIHODIUM
115.331 .3955354172620 7.98 8.11 RHODIUM
112.578 .3566595935351 8.71 8.40 RHODIUM
109.891 .3291879913218 9.32 8.67 RHODIUM
107.269 .2850703515461 10.24 3.96 IHODIUM
104.707 .2522392515925 10.S3 9.05 RUTHENIUM
102.208 .2264432242987 11.57 9.31 RUTHENIUM
99.768 .2023748964901 12.34 9.58 RUTHENIUM
97.387 .2029227829216 12.62 9.80 SILVER
95.062 .2125785074919 12.94 10.22 SILVER
92.793 .1775126130385 14.24 10.64 SILVER
90.578 .1483135039153 15.53 11.05 SILVER
86.416 .1163074612112 17.19 11.51 SILVER
36.306 .0890465894562 17.98 11.28 RUTHEN-
84.246 .0740252495011 19.06 11.59 RUTHEN
82.235 .0629664087553 20.16 11.90 RUTHEN
90.272 .0540046097159 24.38 14.03 INDIUM
78.356 .0584580751483 25.19 14.71 INDIUM
76.485 .0628288060968 26.04 15.42 INDIUY
74.660 .0444836744491 28.99 16.13 INDIUF
72.878 .0299965650159 32.04 16.65 INDIUM
71.138 .0353809877597 30.37 16.36 LANTHUNUM
69.440 .0449242525942 30.39 17.00 LANTHUNUM
67.782 .0558698077888 30.42 17.66 LANTHUNUM
66.165 .0717400426828 30.31 18.42 ,ANTHUNUM
64.585 .0750066570867 31.28 19.18 LANTHUNUM
63.044 .0416450779567 36.13 19.99 LANTHUW M
61.539 .0219788948089 41.04 20.71 LANTHUNUM
60.070 .0140820920987 57.01 27.26 CARBON
58.636 .0133696653412 59.19 28.14 CARBON
57.236 .0124442741563 61.66 29.08 CARBON
55.870 .0113654363679 64.43 30.08 CARBON
54.537 .0101470675794 67.71 31.22 CARBON
53.235 .0087420769778 71.40 32.40 CARBON
51.964 .0070910928000 76.14 33.81 CARBON
50.724 .0053461688895 82.02 35.42 CARBON
49.513 .0035967330555 69.62 37.32 CARBON
48.331 .0019793132260 100.91 39.78 CARBON
47.177 .0006449053022 119.27 43.09 CARBON
46.051 .0000561201248 154.61 48.82 CARBON
44.952 .0000249689810 72.20 21.49 CHROMIUM
43.879 .0000234809166 74.10 22.01 CHROMIUM
42.632 .0000226497750 75.92 22.53 CHROMIUM
41.809 .0000213902624 77.90 23.08 CH ROM IUM
40.811 .0000199946934 79.99 23.64 CHROM3UM
39.837 .0000185326460 82.25 24.24 CHROMIUM
38.986 .0000173651901 84.41 24.82 CHROMIUM
37.958 .0000160923393 86.77 25.44 CHROMIUM
37.052 .0000147254590 69.27 26.08 CHROMIUM
36.168 .0000133237546 91.91 26.75 CHROMIUM
35.304 .0000121280221 94.63 27.44 CHROMIUM

Table 111-2-2
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Optimum Materials for Ring Cavity

Q
S()(S Pal) N(/2) M(Crit) Elem~ent

34.462 .0000106690404 97.59 26.15 CHROIUM
33.639 .0000094204381 100.67 26.90 CHROMIUM
32.636 .0000081644422 103.95 29.61 CHROMIUM
32.052 .0000069109225 107.46 30.48 CHRO141I
31.287 .0000058342894 111.31 31.35 CHROMIUM
30.540 .0000051698340 114.91 32.22 CHROMIUM
29.811 .0000043060991 119.01 33.13 CHROMIUM
29.100 .0000035484615 123.49 34.12 CER14T314
28.405 .0000D02021731 128.31 35.15 CHROMIUM
21.727 .0000022382416 111.57 30.14 COBALT
27.065 .0000021347739 114.56 30.92 COBALT
26.419 .0000020114377 117.72 31.72 COBALT
25.789 .0000018689708 121.06 32.55 COBALT
25.173 .0000021463589 209.34 57.12 BERYLLIUM
24.572 .0000026706443 212.73 58.56 BERLLIU14
23.986 .0000032701119 216.26 60.03 BERYLLIUM
23.413 .0000041001999 219.67 61.54 BERYLLIUM
22.854 .0000050253768 223.28 63.09 BERYLLIUM
22.309 .0000060673091 227.08 64.68 BERYLLIUM
21.776 .0000077398673 230.37 66.31 BERYLLIUM
21.257 .0000096400645 233.91 61.98 BERYLLIUM
20.749 .0000117805326 237.66 69.69 BERYLLIUM
20.254 .0000146593254 241.24 71.45 BERYLLIUM
19.770 .0000179611181 245.01 73.25 BERYLLIUM
19.299 .0000220340768 248.78 75.09 BERYLLIUM
18.838 .0000284884506 251.93 76.98 BERYLLIUM
18.388 .0000361553334 255.28 78.92 BERYLLIUM
17.949 .0000418610502 259.80 80.91 BERYLLIUM
17.521 .0000486134398 264.33 82.94 BERYLLIUM
17.103 .0000606588480 267.92 85.03 BERYLLIUM
16.694 .0000727212247 272.05 87.17 BERYLLIUM
16.296 .0000881710569 276.03 69.36 BERYLLIUM
15.907 .0001078347626 279.88 91.61 BERYLLIUM
15.527 .0001306616291 283.85 93.91 BERYLLIUM
15.157 .0001593946264 287.71 s6.26 BERYLLIUM
14.795 .0001917968792 291.78 9j.68 BERYLLIUM
14.442 .0002272059188 296.11 101.15 BERYLLIUM
14.097 .0002694053500 300.41 103.69 BERYLLIUM
13.760 .0003208726122 304.64 106.29 BERYLLIUM
13.432 .0003774263806 309.10 108.95 BERYLLIUM
13.121 .0004432890668 313.57 111.68 BERYLLIUM
12.798 .0005249066838 317.87 114.47 BERYLLIUM
12.493 .0006232975746 322.08 117.34 BERYLLIUM
12.195 .0007324482448 326.50 120.27 BERYLLIUM
11.904 .0008701721502 330.63 123.28 BERYLLIUM
11.620 .00I0350574823 334.66 126.36 BERYLLIUM
11.342 .0012161348034 338.98 129.51 BERYLLIUM
11.071 .0014132805211 343.52 132.74 BERYLLIUM
10.607 .0016628845464 347.69 136.06 BERYLLIUM
10.549 .0019342937161 352.12 139.45 BERYLLIUM
10.297 .0022503197159 356.49 142.92 BERYLLIUM
10.052 .0025908233891 361 12 146.48 BERYLLIUM
9.812 .0029804056776 365.73 150.13 BERYLLIUM
9,S77 .0034261007700 370.30 153.86 BERYLLIUM

Table 111-2-1

(continued)
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Optimum Materials for Ring Cavity

() (S Pal) N(O/2) r(Cilt) Element

9.349 .0039327952120 374.87 1S7.69 BERYLLIUM
9.126 .0044725S29306 379.69 161.61 BERYLLIUM
6.908 .0051194666344 384.24 165.63 BERYLLIUM
8.695 .005S052046274 309.06 169.74 BERYLLIUM
8.488 .0065269399242 394.14 173.95 BERYLLIUM
8.285 .0073827709902 399.95 178.27 BERYLLIUM
8.087 .0083597341S3I 403.63 182.69 BERYLLIUM
7.894 .009353345641 408.61 107.22 BERYLLIUM

7.706 .0105721968466 413.3S 191.86 BERYLLIUM

7.522 .0118135474950 418.36 196.61 BERYLLIUM
7.342 .0132696703243 423.46 201.43 BERYLLIUM
7.167 .0147163189309 423.35 206.47 BERYLLIUM
6.996 .0163986744697 433.27 211.57 BERYLLIUM
6.629 .0182406833019 438.19 216.80 BERYLLIUM
6.666 .0203216321951 442.93 222.16 BERYLLIUM
6.S07 .0224733434753 447.97 227.65 BERYLLIUM
6.3S2 .0248780019589 452.85 233.29 BERYLLIUM
6.200 .0274467481236 457.63 239.04 BERYLLIUM

Table 111-2-1

(continued)
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part C) Damage

7te high temperature enviroment of the plasma amlifier suggests that

damage my be a significant problem for x-ray laser cavities.

Wile an accurate assessment of the damage threshold can only be made

experimentally, there is reason to believe that the limitation imposed by

damage may be less severe than one might expect, at leat in the ountext of

the IL recombination laser experiments described in part A.

In the first place, in these experiments amplification does not occur

precisely in the focal region. If fig. 111-2-1 is oriented with the

mirrors at left and right, and if the pump beam is brought from the top to

a left-right line focus on a target at bottom, then the region of highest

time-averaged gain will be formed near the cooling slit, whose axis will be

parallel to the optical axis. The cooling slit will, in turn, be

positioned - 200Am above the target. The time-averaged high gain region

will have a width of - 200M.m and a length approimately equal to that of

the line focus. (This time-averaged description is samewhat

oversimplified; onturie's simulations (1962) show that the region of high

instantaneous gain travels outward with the velocity of the expanding

plama.)

Thus, the mirrors could be shielded from the hot plasma formed at the

focal line, and need ee only the relatively onld plasma in the aplifying

region near the slit. Conturie's experiments show that the particulate

blot-off would not flow isotropically through the slit, but would instead

flow preferentially in the direction of the puqp laser (Conturie, 1982).

,, - .. ,." ' "•:., ,:i..' .-,'4. ,
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The x-rays emitted by the uiplifier are then likely to be the

principal agent of da age in the mirrors. Ven though most of the a-ray

radiation emitted by the plauta may be flourescent (arising from a =sober

of x-ray transitiors), it io the stimlated msission which is mt likely

to cause damage, because it will be conoentrated an a narrow area of the

mirrors. Stimulated emission into the oherent spatial modes of the

flat-mirror cavity of fig. 111-2-1 will undergo virtually no diffraction

spreading at the mirrors, because the cavity length can be no more than a

few centimeters if oherent oscillation is to be established during the

-1 nsec 64ration of the gain. (This assumes, somewhat arbitrarily for

purposes of illustration, that the gain duration is of the order of the

pwp pulse duration).

For purposes of a rough estimatian we will oasider the maximum

permissible beam energy to be determined by thermal loading on the mirrors.

Tungsten has a thermal conductivity K a 1.78 Watt/am -*K and a heat

capacity C a 0.132 Joule/gM -*K (Bechtel, 1975). The therwial properties of

graphite are typically K a 1.29 Watt/cm -OR, C a 0.712 Joule/go -OK (

Handbok of Tables for Applied and Engineering Science, 1973).

The distance that heat can propagate in a time t is of order

J t (r-a- V

which (assuming bulk densities) works out to about 3000D in a nanosecond
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for either tungsten r carbon.

Using sq. 11-3-19, we have that the approicimate total thickness of the

multilayer stack Is

D.5 
JO'S

D. ; U Nd.; ; .; 0 (I-Z-zo)

W) 44)2d

Thus, the heated region will not be a great deal thicker than the

multilayer stack, so that we can use the thermal properties of the

multilayer materials themselves in order to estimate the heat rise.

The melting points of bulk tungsten and carbon are each about 3500 K.

Given a heated volume 30001 deep with a cross-sectional area 200Am across

(that of the collimated laser beam), we can estimate that the maximm
-$

energy allowed in the beam is - 8.10 Joules.

Conturie's simulations indicate that Inversion occurs at electron

densities of - 10" am's (Oonturie, 1982); this corresponds to an ion-1

density of - 10 9 'M for Z - 10. We also assume that reombination

could bring as many as It of theme ions into inversion across the 4-3

transition. At the %pper limit in which coherent emission aounts for all

de-excitation of the q~er level, the total output from a cylindrical

anplifier 2 0 0 MN in diumeter and 1 an long would then be - 2,10"* Joules.
-$

Thus, output at the estimated drue limit of 9.10 Joules could be

regarded as a quite respectable performance in an initial daonstration

experiment.
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Of ourse, even for refractory materials like tungsten and carbon, the

above metho of dmage estimation my be unrealistic. P1r example, the

separation betmen photon absorption sites is nly about 20A under the

above conditions, so that a large number of photoelectrons will be

generated in the multilayer stack. (However, based on a crude comparison

with the x-ray exposure characteristics of photoresist, one can estimate

that the lifetime of these photoelectrons will likely be of ocder

femtoseconds, so that the instantaneous density of secondary electrons will

be substantially reduced).

It my be possible to raise the damage threshold somewhat by using

curved mirrors to expand the beam. Given the short wavelength, the cavity

would have to have a borderline-unstable, near-concentric geometry, in

order to produce a narrow diffracting waist at the center of the amplifier.

Further, since only a fairly mall numiber of reflections are likely to be

possible during the - I nsec gain duration, the intensity distribution on

the mirrors will likely resemble the initial ASE distribution for a

significant portion of the shot; therefore the effective illuminated area

would likely be little larger than that illuminated by AE despite the

curvature.

According to Slaymaker (1978), the far-field M angular spread of

the ASE will be approximately equal to the aspect ratio of the avWlifier.

We might estimate that if the mirrors are in the mid-field at - 1 am from

the ends of an -I am uiplifier, the ASE illuminated area at the mirrors

might be a few times the aperture area. A curved mirror cavity might then

succeed in increasing the damage threshold to an extent.
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Sime each shot will anly irradiate a mall portion of the mirror

surface, it will also be possible, if noeessary, to use the multilayers in

a quasi-one-shot sode in which sost of the surface is masked off during

each shot.

We might mention at this point that if future devices operating

substantially above lasing threshold should exceed the threshold fec mirror

damage, it may be possible to devise target configurations that distribute

the laser radiation over largr area of the mirrors.

For example, if one rotated the onoling slit 90" out of the plane of

fig. 111-2-1, and spsoed a number of such slits beneath the cavity axis in

a grating-like fashion, then vith an apropriate focussing system to

generate a focal line beneath each slit, one would form an anplifier that

was segmented along the cavity axis, but wanded in the perpendicular

direction.

For the above reasons, we feel that there is reason to be optimistic

about the question ot damage in umltilayer cavity mirrors, but of course

the uncertainties are such that the Issue can only be settled

exper lentally.

- - ~ 'ii
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Section 111-3 - Plultilayer Coatings for Short Wavelength X-ray

Kicrosopy

Part A) Introduction

In this section we consider the possibility of using x-ray multilayers

to form spectrally selective coatings for a short-wavelength x-ray

microscope. To our knowledge this Idea was first concieved at Lawrence

Livermore Laboratory, but has not been discussed quantitatively in the

literature.

The microscope configuration considered is that Invented by

Kirkpatrick and Baez (see fig. 111-3-1, after fig. 8 of Franks, 1977) and

is one of the first x-ray optical systems ever developed (Kirkpatrick and

Baez, 1948). This oafiguration is used at LiE to image the x-ray mission

from laser fusion targets. We will discuss our own investigation of

possible applications for multilayer coatings in the LIE system.

At present, each of the spherical substrates in the system (radii of

curvature about 3600 am) is coated with a single nickel layer, which is

illuminated at a grazing (subcritical) angle to the surface & . At mall

, the spherical substrates are effectively cylindrical because the

curvature transverse to the beam posseses virtually no power.

In the longitudinal meridian, hoever, the substrate can be shown to

have a focal iength R. /2 (Kirkpatrick and Baez, 1948). Thus, two

spherical substrates with crossed orientations can provide the analogue of

a thin lens. One my also regard the second element as correcting for an

extreme astigatism.

Ai....
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In the configuration in use at L1IC, & Is about 0.8, the wrking

distance is about 20 cm, and the magnification is about 5.

Since the individual substrates are operating very far off-axis

(89.2"), the geometric&1 performance of the overall systm is very poor by

conventional standards. For a 5 A resolution at a 20cm rking distance,

spherical aberration limits the aperture to about 60 4 m when -0.8,

and ome limits the field of view to about 200,sm (Bpkins, 1981). This

field of view is very small, but is about the size of a laser fusion

target.

The aberrations become less severe if 4 is increased; however at a

given wavelength, a single layer cannot reflect radiation at angles larger

than critical. At an angle of 0.8' to the surface, the shortest wavelength

that the present nickle coating can reflect is about 2.si.

In this section we discuss the possibility of converting the single

layer coating to a spectrally selective multilayer coating in order to

bring the operating wavelength dwn to to the 1.5A regime, while

maintaining the angle of incidence at about 0.8".

The spectral selectivity can be very useful in laser fusion diagnostic

applications. For exotple, the spectral selectivity permits discrimination

between the x-rays emitted in the core of a laser fusion target, and those

gmitted by elements in the target's shell. (At short wavelengths, mst of

the X-rays are emitted into isolated spectral lines having

species-dependent wavelengths, rather than into continuum). The spectral

selectivity could also be used to discriminate between x-rays emitted by

the primary target and those emitted by a backlighting source (Richardson,

11. '~
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1931).

With multilayer oastings and short wvelength Illulnation, ioe can

operate the microse at angles CE up to a few degrees from the surface

before the required 26-spacing becos imprectically mull.

Nowver, eq. 11-3-23 shows that the acceptance angle or field of view

of the coating will decrease as the angle to the surface is increased. We

may regard a single layer coating as a limiting version of a multilayer, so

eq. 11-3-23 inplies that the acceptance angle of a multilayer coating must

neoessarily be maller than that of the single layer. As I is increased,

the limitation iqposed an field of view by the oating will eventually

become equal to that Imposed by cma; at this point ee begins to trade off

field of view for increased collection aperture and resolution (the

spherical aberration ctinues to inprove as ; is increased).

In the present application, we wish to maintain the field of view at

the - 15OUm limit imposed b geooetrical aberrations in the single layer

system; this requires that 4 remain at 0.8, which, it turns out, is the

angle at which the acceptance angle of a tungsten-carbon multilayer be~cr

approximately equal to the angular field allowed by oms (see below).

In future system, it might be worthwhile to exploit the trade-off

between meting acceptance angle and increased collection aerture. by

having the ystm operate at an angle of 2 or no; such a system could be

used to obtain high resolution, narrow field images of the all ompressed

core of a laser fusion target. Further, if the hard i-ray emission fro., a

sorce were broad-bmnd, it would be possible to use a larger system
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without decreasing the field of viw.

The alignment and fabrication tolerances in the larger s ystus
would be more stringent than those in the a O.8" system discussed here,

however.

The maximm angle at which a single layer coating can reflect is given

by (Bilderback, 1982)

at1. 6 X10'3 * 7 A* Ksi

which at * 20 g9/cm and X - 1.66A gives 0 - 0.7. Since the present

system is designed to operate at an angle of 0.8%, the principle advantage

gained with multilayer oatings over high density oatings in our

application is that multilayers are spectrally selective.



Part B) Calculation of Performance

Fig. 111-3-2 shows the calculated spectral and angular selectivity of

tungsteVcarbon mltilayer coatings designed to onnvert the LUZ

Kirkpatrick-Baez microscope from operation at a minimu wavelength of 2.SA

to operation at 1.66A (Ni-Kc). The calculations use A -l.66A. which is

the wavelength of low temperature Ni-K, mission. The actual line used

would be the Be-like resonance line, which would have a slightly different

wavelength.

The thicknesses dosen for the coating are d w - a f 40.OA in the
Sc

front mirror (2d - 1601), and d - d M 41.SA for the rear mirror

(2d - 1661).

it might ultimately be worthwhile to reoptinize the thickness ratio

slightly; however, large changes in the ratio would cause a decrease in

performance. A multilayer with a substantially thinner W layer wuld have

higher reflectivity, but only at the expense of quite severely restricting

the field of view. A substantial increase in the W thickness could

increase the field of view, but only at the expense of rapidly &grading

the double mirror reflectivity. A mall change in the thickness ratio fron

d -d c would cause only small changes in the performance of the coating.

Fig. 111-3-2 also assues that different coatings are used on the two

mirrors of the Kirkpatrick-Baez pair; this ompensates for the difference

in angle of incidence that results from the different distances of the two

mirrors from the target.

''-I
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Only about 4 layer pairs are required to approach the

absorption-li ited peak reflectivity. Comparison of this value with

eq. 11-3-19 shows that the soft x-ray approximations of mec. 11-3 are

becoming inaccurate at the present short wavelength.

In fact, the niber of layers participating in the reflection is

becoming sufficiently small that inaccuracy in the basic x-ray formalism

derived from eq. 11-1-20 is beccing noticeable.

We have found that our formalism is still accurate to about It in its

calculation of peak reflectivity, but beomes increasingly inaccurate in

the wings; in addition the calculated position of the reflectance peak is

off by about 15. For these reasons we have performed the final

calculations in this section numerically, with the x-ray formulas used n2y

to determine trial values for the parameters. The numerical calculations

are carried out with the non x-ray characteristic matrix solution of

eq. 11-1-22.

The calculations use densities measured by Barbee (1981) of 15 gml-&

and 2 gm/caj for the tungsten and carbon layers, respectively. The real

index of refraction used for tungsten is based an anomalous dispersion data

obtained by Drentano and Baxter, an quoted in Table MVfl of Jwes (1965).

The real index for carbon was calculated with the free electron model. The

imaginary indicies for tungsten and carbon are based on data obtained by

lenke et al. (1982).

The optical constants used are

A -4.JZ aO m4.14a10
w

C€ :-.41 * a 1 .31,1O
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Despite the Wnal number of layer pairs required at the canter of

field, we have chosen to use 35 pairs in the system. Even with 35 pairs,

there is still a faint residual ringing in the image outside the ± 150Mm

field. (This is a consequence of extinction being due to depletion by

back-reflection, rather than by absorption).

The wrst drawback to the coating is probably the limitation that its

finite acceptance angle izposes on the microscope's field of view. This

limitation is probably tolerable; the angular 1WS4 of double reflectance

for an ideal coating is 0.08 degrees at A .1.66k, which, as indicated,

leads to a ± 150 micron field of view at a working distance of 21cm; this

represents only a slight decrease from the field of view allowed by

aberrations. Bowever, the narrow field leaves little margin for error in

designing and fabricating the mating.

The angular boundaries of the zone of high double reflectance from the

multilayer are reasonably sharp, even though the zone is somewhat

asymmetric. (lecause of the asymetry, the angle of peak reflectivity has

been decentered from the optical axis). The wavelength response of the

cating is fairly broad. Neglecting dispersion, the nominal wavelength

range (IWH of the double reflectance curve) is from 1.51 to i.s. (With

dispersion included the range becaes 1.55i to 1.75A.)

The tolerance an the layer thicknesses, as far as maintaining high

reflectivity for an an-axis point is concerned, is acaratively mild,

about 4A. However, despite the relatively wide range of layer

thicknesses that can provide high on-axis reflectivity, there is little

margin for error in the alignment of the zone of high reflectance with the

*1i ..i
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optical axis (assuming a quasi-mrnoahtctic source). Therefore it vd Id

be preferable to be able to accurately calibrate the deosition systm in

an effort to obtain layer thicknesses a rso=ate to about 3A.

The 9iM separation between the two mirrors iqplies a difference in

incidence angle of 0.03 degrees. Fortunately this is somewhat saller than

the 0.08 degree 1WH4 of the coating. However, because of the need to

center the high reflectance zones of both coatings accurately, one would

prefer that the two oatings be made with slightly different 2d-spacings.

To consider the effect of fabrication error, suppose that the layer

thicknesses are 39A instead of 40A, and that the same oating is used on

both mirrors. One then finds that the optical axis intersects the

half-maximurn of the double reflectance curve, so that roughly speaking only

half of the field will be imaged (i.e. the angular half-width of the field

is zero). If the second oating is independently optimized, and has the

desired layer thicknesses of 41.5i, the angular half-width in the

previously an-imuaged direction beames 0.025 degrees (given the same lA

systematic error in the layers of the front mirror). If the intended

thicknesses of the layers of the sod coating are 41.5A, but they instead

have an error equal to that in the first coating (so that their thickness

is 40.5A), the engular width bewaes 0.021 degrees. If the layers of the

second oating have the same errors in the osite direction (i.e. a

thickness of 42.Sh), the half-width beomes 0.03 degrees. (As mentioned

above, with no errors in the independently Specified catings, the

half-width is 0.04 degrees.)

...
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Thus, the use of a different target thickness in the rear costing will

definitely reduce the sensitivity to error.

The coatings should be relatively insensitive to other kinds of

defects in structure, due to the large 2d-spacings.

From the 36m radius of curvature, the 60 micron aperture, and the

working distance of 21am, one can calculate that that the variation in

angle of incidence across the aperture due to curvature of the mirrors is

0.0075 degrees. (The main variation is due to displaoement in the

longitudinal direction).

Thus, the narrow 0.08" bandwidth of the onatings will not reduce the

aperture of the system.

iU
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