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Abstract

In recent years much progress has been reported in the fabrication of
multilayer reflectors for x-ray and XUV radiation (IA - 600A).

The characteristic optical properties of materials at these
wavelengths (dielectric constants are complex and approach unity), allow
one to obtain solutions to Maxwell's equations for a quasi-periodic
reflector whose layers may contain arbitrary index gradients.

This solution can be formulated as a difference equation that
propagates the amplitude reflectance across each layer pair. The
difference equation resenmbles the Airy sumation for single layers, but
has a simpler Ricatti form.

Pram the difference equation one can derive design criteria for
maximization of multilayer reflectivity. These criteria provide guidance
in the selection of appropriate multilayer materials, and have been used
to derive approximate scaling laws for multilayer reflecting properties.

The difference equation forms the basis for a non-perturbative
analysis of miltilayer reflectivity in the presence of randun thickness
errors (including the residual loss in reflectivity that remains when
reflectance monitoring is used to campensate for thickness errors during
multilayer fabrication). Under certain circumstances, the difference
equation can be used to analyze the effect of interfacial roughness on
sultilayer reflectivity. Accurate closed-form solutions to such
stochastic problems can be found by neglecting higher order powers in the
inccherent component of multilayer reflectivity.

. 51 R T Ay o c | O DT S




The reflecting properties of x~ray multilayers may contain

qualitative signatures that correspond to these different kinds of
structural defects. ‘1

Our theoretical results indicate that significant constraints on
efficiency and field of view are involved in using multilayers to extend
optical tachnology to the x-ray regime. Exanples discussed include
microscopes cperating at short x~ray wavelengtha (1A - 2R), where
multilayers can provide a useful level of spectral selectivity, and
resonant cavities for projected x-ray lasers (SOA - 200k}, where the
copling of the intracavity field to the amplifier can be strongly
increased if the cavity configuration is based on two multilayers

that are tuned to reflect at normal incidence.
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Chapter I  Introduction

Section I-1 - Literature Review

part A) X-Ray Multilayer Reflectors

In recent years much progress has been reported in the fabrication of
reflecting multilayers having period lengths in the 1007 regime (Haelbich
and Kunz, 1976; BHaelbich, Segmuller, and Spiller, 1979; Barbee and
Keith, 1979; Spiller et al., 1980; Barbee, 1981; Spiller, 1982b; Underwood
and Barbee, 1982). Such devices may be regarded either as
short-wavelength multilayer coatings, or as artificial crystals having
large spacings between the diffracting "planes”. (There are few true
crystals having spacings larger than about 12’&.)

These devices should prove useful for the gpectral region below
~ 600A (Spiller, 1972, 1976). In this part of the spectrum all materials
have complex dielectric constants that depart only slightly from unity;
i.e. materials are absorbing and are incapable of providing a high
single-surface reflectivity.

In this work we present a theoretical analysis of the reflecting

properties of x-ray multilayers. In the present chapter we review the
field, and also discuss related topics (and associated terminology) fram
other fields, such as x-ray diffraction theory.

1-1-1




1-1-2

r According to Barbee (1982), the first attempts to fabricate x-ray

sultilayers (generally unsuccessful) were made by Koeppe (1929) and ‘
Deubner (1930).

More recently, Dinklage (1967) succeeded in fabricating
iron/magnesium reflectors having a reasonably stable reflecting power
(room temperature half-life about one year). Dinklage has not reported an
absolute reflectivity for these structures.

spiller (1972, 1976) recognized that in an absorbing multilayer it is
not necessarily desirable to minimize the absorption of both the high and
the low index layers. By making the thickness of a strongly absorbing
high index layer substantially thinner than one quarter-wave, one
decreases the absorption of the layer more rapidly than one does the
reflectivity, allowing in principle for a more than compensating increase
in the total number of reflecting layers. Larger total reflectivities are
then cbtained when a dense, high Z material is used in high index layers
that are alternated with low absorption spacing layers.

Haelbich and Kunz (1976) achieved 1.28 peak reflectivity at 150A (15°
incidence to the normal) fram a 9 layer structure of gold and carbon that
was designed according to the above considerations. Carbon was chogen as
a spacer material because of its low absorption, and because it does not
diffuse readily with metals.

Baelbich, Segmuller, and Spiller ({1979) used a rhenium/tungsten alloy
(ReW) as a high index layer and carbon as a low index layer to obtain 9.5¢

peak reflectivity (15° angle of incidence) with 7 layers at 200A. The Rew |
alloy was found to provide smoother layers than did other high density

{
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saterials such as gold.

In these early efforts, the mmber of participsting layers that the
structures could contain was limited by an inability to precisely control
the layer thicknesses, and a0 avoid the accumulation of dephasing due to
random errors (Baelbich and Kunz, 1976; Baelbich, Segmuller, and
Spiller, 1979). In order to reach absorption-limited reflectivities,
x~-ray multilayers must contain a larger mumber of layer pairs than are
required in optical multilayers, because at x-ray wavelengths the
interaction of an individual unit oell with the incident beam is weak.
(As a rule of thumb, a mltilayer should contain more than (600A /A )
pairs of layers in order to achieve absorption-limited reflectivity at
normal incidence; see sec. II-3.)

In the above experiments, the deposited materials were transferred to
the substrates by vacuum evaporation. Barbee and Reith (1979), and
Barbee (1982), report the fabrication of tungsten/carbon multilayers with
periods as short as 1Si using a vacuum sputtering technique.
Sophisticated deposition apparatus and procedures appear to be the key to
their achievement of high quality diffracting structures.

Spiller et al. (1980) report the implementation of an in-situ
reflectance monitoring technique in which the interference oscillations of
a reflected x-ray probe beam are monitored during multilayer fabrication.
such a system directly monitors the phasing between the partially
deposited upper layer and the preceeding stack (in contrast to the usual
crystal oscillator which monitors the (mass) thickness of the upper layer
alone). In essence, the reflectance monitoring technique allows the
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reflection component fram the upper layer to be brought into phase with
the preceeding stack, despite any thickness errors that this stack may
contain.

At present Spiller's group at IBM and Barbee's group at Stanford may
be regarded as the dominant centers for research in this field., X-tay
multilayers have also recently been fabricated by Soviet researchers using
laser evaporation of the materials to be deposited (Gaponov et al., 198l1).

The most commonly used materials in multilayers to date are carbon
for the low index layer and tungsten or rheniun/tungsten alloy for the
high index layer. The cpticsl constants of rhenium (2 = 75) and tungsten
(Z = 74) are generally comparable, so the naminal performance of the two
materials should be similar in the absence of defects. We will generally
use tungsten/carbon multilayers when presenting numerical examples. 1In
doing 80 we use preliminary versions of the optical constants data in
Henke et al, (1982), generously provided to us by the authors.

vinogradov and Zeldovich (1977) present an analytic treatment of
reflection from periodic »-ray multilayers. They use (normal incidence)
coupled wvave equations whose unknowns are the envelope functions of
high-frequency electramagnetic field oscillations. (The "carrier
frequency” is taken to be the spatial periodicity of the miltilayer
structure.) Such coupled-wave equations apply to multilayer reflectivity
when the coupling constant is weak, as it is in the x-ray case.
vinogradov and Zeldovich obtain expressions for the reflectivity of a
pericdic miltilayer containing an arbitrary number of layers. They also
determine the condition which optimizes the ratio in thickness of the two

U]




different layers, and finally they derive what is in effect a hybrid
optimization condition that gives the optimum total thickness of the
period, when the thickness ratio is also optimized. (The two relations
together thus implicitly give a refractive correction to Bragg's law.)
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part B) Crystal Diffraction

In many respects, reflection from x-ray multilayers is similar to
diffraction fram crystals in the Bragg mode (atomic planes parallel to the
crystal surface); this is particularly true in the case of periodic
multilayers.

Most crystals have period lengths (or "d-spacings”™) that are a few
angstroms or less between adjacent diffracting planes, 80 that the longest
wavelength that can be reflected from most crystals is less than ten
angstrams. (The longest wavelength that can be reflected is approximately
twice the period length, which is referred to as the "2d-spacing®. The
basic period of a crystal (as a physical entity) is usually referred to as
the "unit cell”.)

The optical constants of materials in the soft x-ray region
(SA - 125A) and the extreme vacuum ultraviolet (125A - 600A) have a
qualitative similarity to the optical constants of materials at
conventicnal x-ray wavelengths (O.SR to Si) .

In the high frequency (but non-relativistic) regime where the
radiation-induced electron ocscillations are limited primarily by electron

inertia rather than by coupling with the atom ("free—electron regime*®),
the real part of the index of refraction (less unity) scales as . ' '
while the imaginary part scales as A* (Beitler, 1954, p.208), so that at
short x-ray wavelengths absorption becomes small compared to dispersion.

since the real part of the index of refraction is less than one for
electramagnetic frequencies above the plasma frequency, “total external

reflection® of x-rays can occur when the angle of incidence to a single




reflecting surface is less than the critical angle given by

;‘ - m radians, with n the index of refraction of the
substrate (James, 1965, p.171). X-ray reflectivities that approach unity
can therefore be obtained at glancing angles (typically ~ 89° to the
normal) when absorption is small. Total external reflection of short
wavelength x-rays can therefore be quite efficient.

In the soft x-ray region the imaginary part of the index of
refraction can became comparable in magnitude to the real part (less
unity). The effective number of free electrons per atom (known as the
*atomic scattering factor®™) must then be treated as a complex quantity
whose dependence an wavelength is irregular due to atomic resonances.
(However, it appears fram the data in (Henke, et al., 1982) that for most
materials the imaginary part of the index scales very broadly as )“ in
the soft x-ray region.)

The most rigorous theory of diffraction fram crystals is generally
considered to be the dynamical theory of Bwald and von Laue (Batterman and
Cole, 1964; James, 1965, p.413). In the BEwald - von Laue theory the
physical structure of the crystal is represented by a complex dielectric
constant that is spatially periodic, and that has as interaction with
radiation given by Maxwell's material equations.

The dynamical theory can be used to treat multiple reflection
processes in which an incident beam interacts resonantly with more than
one set of atomic planes at once, but in the most common case only one

pair of structural spatial frequency components (positive and negative),

plus a DC component, are considered to be active at ane time.




From a fully classical point of view, the polarizability can be taken
to be proportional to a local electron density, but under a semiclassical
model the polarizability must be calculated quantum mechanically. At
short wavelengths where the dipole approximation breaks down, the
dielectric constant will therefore depend on the scattering angle. This
effect is snall if the 2d-spacing is larger than an individual atom.

When the surface of a thick crystal is cut parallel to the
diffracting planes, the reflectivity predicted by the Bwald - won Lauve
thoery is the same as that cbtained with the earlier theory of Darwin and
Prins (James, 1965, p.429). In essence, the Darwin-prins solution is
obtained by requiring that the change in the forward and
backward-traveling amplitudes, as each cell is traversed, be consistent
with the cell reflectance and transmittance.
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part C) Thin Pilm Formalisms

Kogelnik (1976) has derived (fram coupled wave equations) a
differential equation that propagates the amplitude reflectance through a
quasi-pericdic structure. This differential equation is similar to the
difference equation with which we treat x-ray multilayer reflectivity in
Chapter 1I.

We derive our difference equation fram a characteristic matrix
solution for the fields within the unit cell of an x-ray multilayer; this
unit cell may contain an arbitrary one-dimensional index gradient. Such a
solution exists (in principle) for any medium in which the index of
refraction varies only in one dimension (Born and Wolf, 1976, p.51). The
characteristic matrix solution for hamogeneous layers is commonly used in
optical thin-film calculations,

Although this work centers on the analysis of structures with a
one-dimensional index varjation, we summarize in Chapter IV the results of
a preliminary analysis we have made of the effect of interfacial roughness
on miltilayer reflectivity.

This analysis i{s based on that of Eastman (1978), who showed that a
one-dimensional formalism can be used to treat interfacial roughness when
the roughness has a sufficiently gradual variation within the layers.
Eastman’s methods have been sumnarized and extended by Carniglia (1981).

Shellan et al. (1978) use a coupled wave formalism to make a
perturbation treatment of the effect of random thickness errors in
dielectric multilayers. Our non-perturbative analysis of randam thickness
errors in x~ray multilayers is presented in sec. 1I-5.
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Section I-2 ~ Outline of Text

This work contains four chapters, each of which {s divided into
sections, and parts of sections. The present chapter reviews the field,
Chapter 1I presents our theoretical analysis of x-ray multilayer
reflectors, Chapter III uses this theory to discuss applications for x-ray
multilayers, and Chapter IV summarizes our results.

The text uses a common enumeration system to number pages, equations,
figures and tables. As an example, the first equation of section 1 in
Chapter II is rnumbered "eq. II-1-1", the second is eq. II1-1-2, and 80 on
through the final equation of the section (eq. II1-1-25). The first
equation of the next section is then egq. II-2-1, and 80 forth. The same
system is used to number pages, figures, and tables.

In sec. I1-1 we introduce the basic formalimm for our treatment of
reflection fram x-ray multilayers. Like the Bwald - von Laue theory of
diffraction fram crystals, we begin with a physical description of the
multilayer in terms of s spatially varying complex dielectric constant.
We assume, as {s natural for multilayers, that the dielectric constant
varies only in one dimension. This assuxption has an analogy with the
Bwald - von Lave theory, in that we, in effect, neglect a portion of that
set of spatial frequencies which are alsc neglected in the
Ewald - von Lave theory when anly one reflection is regarded as being
active (see above); for example, in the case of a pericdic multilayer, we,
in effect, meglect any spatial frequencies that are not parallel to the

active pair of spetial frequencies (assiumed to be normal to the

BTty
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substrate).

However, unlike the dynamical theory, we & not require that the
multilayer be periodic; in effect we allow each of the active spatial
frequencies to be replaced by a narrow continuum of spatial frequencies.

Our formalism does not introduce such a continuum explicitly, but
instead makes direct use of the structural pr.perties of the discrete
cells. This i{s acoomplished with a difference equation that propagates
the amplitude reflectance fram cell to cell (derived in sec. 1I-1).

In sec. I1-2 we consider the reflectivity of ideal, defect-free
multilayers; our main interest is in the optimization of the layer
thicknesses and materials.

Sec. 1I-3 considers the angular and spectral scaling of the
reflection properties of tungsten/carbon multilayers,

Sec. II-4 considers the possible utility of aperiodic reflector
designs, with particular emphasis on the layer by layer optimization
scheme of Carniglia and Apfel (19680). The in-situ reflectance monitoring
technique reported by Spiller et al. (1980) lends itself naturally to this
kind of design procedure,

Sec. 11-5 considers the effect of randam errors in the layer
thicknesses. We make the problem tractable by neglecting higher powers in
a qguantity that may be regarded as the incoherent reflectivity of the
degraded structure. In this way the analysis is able to treat a full
range of error magnitudes, fram those which cause only a slight decrease
in reflectivity, to those large enough to substantially degrade the

reflectivity.
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Spiller et al. (1980) have verified experimentally that in-situ
reflectance monitoring strongly reduces the degradation in reflectivity
caused by thickness errors. We model this effect quantitatively in
sec. 1I-6. However, due to the camplicated interaction involved in the
monitoring process, the results of sec. II1-6 should probably not be
regarded as strongly quantitative predictions.

In the first section of Chapter III we discuss points of general
relevance concerning the application of x-ray multilayers. In sec. III-2
we discuss the possibility of using x-ray multilayers to form cavity
mirrors for projected x-ray lasers ( )\ ~ 1003). Sec. 111-3 considers the
utility of multilayer coatings in short wavelength x-ray microscopes
(A~ 1A).

The first section of Chapter IV sumarizes the results of the
preceding chapters. Sec. IV-2 discusses possible avenues for future
research, and also sumnarizes a preliminary investigation of the effect of
interfacial roughness on multilayer reflectivity. In terms of the above
discussion, the analysis of sec. IV-2 may be said to permit the continuum
of spatial frequencies in the multilayer structure to have a narrow extent
in the ron-normal direction.




Chapter II Theoretical Analysis of Multilayer Reflection

Section II-1 - Analytic Formalism

Part A) Introduction

We have seen in the preceeding chapter that the dynamical theory of
x-ray diffraction is based on the assumption of a spatially-varying, complex
dielectric constant which has an interaction with radiation defined by
Maxwell's material equations. Despite the seemingly ad-hoc nature of this
assumption, the dynamical theory is generally considered to be the most
rigorous theory of x-ray diffraction, and has been found to yield fairly
reliable results with crystalline structures having angstram periodicities
{Batterman and Cole 1964).

Because such assumptions permit the use of classical techniques of
electromagnetic theory, we will also use them in our treatment of x-ray
multilayer reflectors. However, in our case the effective dielectric
constant need not be assumed to be periodic, but must, on the other hand, be
assumed to be a purely one-dimensional function varying only in the
direction perpendicular to the multilayer surface,

Our formalism will tie in closely with traditional methods of thin-film
optics. It will be applicable to a broader range of problems involving

x-ray multilayers than are other x-ray formalisms, and will provide analytic
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solutions in the x-ray regime to problems that require cumberscame mumerical
calculations if traditional thin-film methods are used.

Our formalism will contain the structural properties of the different
cells explicitly, whereas the Bwald-von Laue or coupled-wave formalisms are
based on the Fourier components of the diffracting structures. Pourier
components are somewhat inconvenient to use when analyzing aperiodic
multilayers.,

An additional advantage of our formalism is that it proceeds via a
well-characterized series of assumptions from standard results of
electromagnetic theory. For this reason our solutions include certain
higher-order terms that must be included in order to cbtain even a
lowest-order analysis of certain problems of interest. Such problems
include the determination of the layer thicknesses in multilayers made by
in-situ reflectance monitoring (sec. I1-4) and the determination of the
effect on reflectivity of random thickness errors in multilayer structures

(sec. II-5).
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Part B) Notation, Preliminary Results, and Characterization of
Approximations

The core of our farmalism is an analytic solution for the
electramagnetic fields inside the unit cell of an x-ray multilayer
that has an arbitrary gradient structure. In the optical regime, such a

solution cannot be obtained analytically with arbitrary gradients (see

below); we are able to obtain analytic solutions in the x-ray case by
treating the decrement in the dielectric constant as a small guantity.

It has been shown (Born and Wolf, 1975, p.51) that when the dielectric
constant has a purely one-dimemensional spatial variation along a direction

2, Maxwell's partial differential equations can be separated into ordinary

differential equations involving variables U(z) and V(z), where U and V are

defined in terms of the electramagnetic fields through the relations
H, = U(Z)e”“ siney (][-1-1)
E,Y = -V (z)eiko Siﬂey
for the P case and
ik si
E, = U(xe' sinB y (1-1-2)
Hy = V(z)eik' sinBy

for the S case. (We define the P case to be that in which the magnetic
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field H points along the x-axis, and the § case to be that in which the E
field points along x.)

Here the parameter k i Gefined by

k = 2% (2-1-3)

with A the vacuum wavelength. © is the vacuum angle of incidence to the
normal. In most cases we will follow the usual optics convention where
angles of incidence are specified to the normal.

The exponents in the y oscillation factors have been put in a
trigonometric form that enables them to be fit to boundary conditions that
are independent of x and that apply in planes of constant z, i.e. our
solutions are appropriate to a Bragg geametry in which the y-z plane is the
plane of incidence (See fig. II-1-}).

The P case is somewhat more interesting than the S case, and is
disscussed in somewhat less detail by Born and Wolf (1975, p.54). Por this
reason we will briefly describe the steps by which the solutions for the
fields in P polarization are put into characteristic matrix form.

As is shown by Born and Wolf, the amplitudes U and V satisfy the

ordinary differential equations

3
U d(inew) %"— + k:' (e(:)-:.in’e)u =0

dz? B dz

z

(X-1-4)

4.
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- —di__ U
V=T Tew e (x-1-5)

in the P case.

We consider next the unit oell of an x-ray multilayer reflector that
extends from z=z, to z=z, (withz, < 2,). As indicated in
£ig. II-1-1 we will define the direction of increasing z to be towards the
substrate from the incident side. Let Uy (2),V, (2); U, (2),V; (2) be two
sets of solutions for the transverse fields B‘ and E y that satisfy

U; (zt) =0, V; (11) =1
(n-1-6)

U2 (zl) = 1: V‘, (zl) =0

Then following well-known procedures for linear ordinary differential
equations, we have the following unique relation connecting general fields

at z, with those at 2, :

(-Ey(Z&)) _ Vx (zz) V‘ (28) -E’ (z‘)
ug (2) U, (2 )\ H, ()

H, (z,)

(x-1-7)

[ T
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(The minus signs in the field vectors are a result of the definitions in
eq. 11~-1-1). This linear relation cbtains because eqs. 1I-1-4,5 are
hamogeneous.

The determinant of the above matrix must be ane according to the same
mathematical arguments as are used in the S case by Born and Wolf (1975, P.56). !
(Note that their supplemental physical arguments concerning conservation of

energy cannot be applied in the case of an absorbing structure).

Since the determinant is unity we can write the following inverse to

eq. I1-1-7: \
i’
-E, (z,) U, (z,) -V, (2,) -E, (z)) j
Hy (2,) - U, (2,) V, (z)) \ H, (2 ]
(1-1-3)
or, in more usual form: 1
Ey (2‘) uz, (Z‘) V‘_ (z) Ey (z&)
M, (2)) U (z) v, (2)/ \H.(2)
(n-1-3)

This is what Born and Wolf call the characteristic matrix solution for the
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fields in a stratified medium; in the case of a unit cell in an x-ray
reflector it expresses the fields on the incident side of the cell in terms
of those an the substrate side. In order to more conveniently treat
reflection at non-normal angles of incidence we will refer to a slightly
@ifferent matrix as the charcteristic matrix (eq. II-1-14 below). 1In this
way we will automatically incorporate in our equations certain well-known
rules of thin-film optics that reduce the case of off-normal-incidence
reflection to the normal incidence case (Baumeister, 1962).

We will subscript all quantitities that appear on the right side of the
characteristic matrix equation with the common subscript K. Thus the fields
at the substrate interface of a particular cell in a multilayer will have
the same subscripts as the structural parameters of the cell, while the
subscripts of the fields at the incident interface will be larger by one.

Generally, we will use the indicial label K to refer to an arbitrary
cell in a multilayer, and the label J to refer to the last or total number
of cells. Thus, K is equal to 1 at the substrate and rises to J+1 at the
upper interface (see fig. II-1-1). (Note that given the matrix inversion
performed between eqs. II-1-7 and B8, we have chosen to have K increase in

the direction of decreasing z.)
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B3. I1I-1-4 can easily be transformed into a Schrodinger equation by
eliminating the JU/d2  term. Since the Schrodinger squation can only
be solved analytically in a few isolated cases (Williams, 1982), eg. II-1-4
cannot be solved analytically in the case of an arbitrary gradient.

However, in Appendix 1, we show how straightforward perturbation
technigues can be used to solve egs. II-1-4,5 under the assumption that the

parameter A , defined by

a(z)e 4 (e(2)-1) (z-1-10)

is snall compared to ane. Since A may be thought of as the unit decrement

to the index of refraction, this perturbation solution is appropriate to the
x-ray regime where the indicies of refraction of all materials approach
unity.

The cell structure is considered to be specified by the function A (2)
in the range z, é z éz&.

Without loss of generality we can position the z=0 origin at the

midpoint of the cell. We then specify the cell thickness in terms of a

dimensionless Bragg detuning parameter ¢ :

?romr -k cos O (2,-2,) (p-1-11)

=mx - k.cosed

with 4 the oell thickness.
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In eq. 1I1-1-11, ® is the order of diffraction. Under the
approximations to which we will work (see below), a resonance in mth order
may unambiguously be defined as the situation in which @ is small.

A single unit cell can be treated with a perturbation approach because
the interaction of the single cell with the incident x-ray beam must be
weak.

We will generally be interested in multilayers operating sufficiently
near resonance that the reflectivity of the total structure is significantly
higher than the reflectivity of the individual cells. For this reason it
will generally not be appropriate to treat the entire structure using a
perturbation approach.

As an alternative, we could, of course, obtain the characteristic
matrix solution for the entire structure by multiplying the matrix solutions
for the individual cells together. This standard procedure is based on the
continuity of the transverse field camponents across the cell interfaces
Such a procedure may be thought of as a numerical integration of
eqs. 11-1-4,5 with the thickness of each unit cell serving as the step size

(thus the requirement that the change introduced by each unit cell be
small).

Rather than multiplying the individual cell matricies together to £ind
the overall solution, we will, instead, derive from the individual cell
solution a difference equation that propagates the smplitude reflectivity
fram cell to cell. The known (and usually negligable) reflectivity of the
substrate then serves as a boundary condition from which to determine the

reflectivity of the entire structure,
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The derivations of the matrix solution and difference equation are
presented in Appendicies 1 and 2; before presenting these results we will

first characterize more precisely the spproximations used. 1

In terms of our notation, the usual theories of x-ray diffraction
generally include only first order terms in the decrement A and the
detuning parameter @ . Neglect of high orders in A is generally well
jJustified in the x-ray regime.

Neglect of higher orders in @ is justified when the structure is
periodic and operating near resonance (near enough that the reflectivity of ;

the overall structure is significantly higher than that of the individual

cell).
This may be seen by the following argument. The number of cells

participating in the reflection can be at most of order 1/A due to

extinction of the beam. Here A may be considered to be an average of the

decrement over typical values for the cell. (If extinction were due only to

absorption, we could consider anly the imaginary part of A here, but at
shorter wavelengths, depletion by back reflection is also significant.)
Success in obtaining high reflectivity will depend on the total phase
detuning in the stack of participating cells; this detuning will be of order
¢/A since @ is essentially the detuning per cell. For operation near |
resonance, the total detuning cannot be large compared to one radian, 82
that in cases of greatest interest, /4 &£ 1. Given that & K1, &°

expansion that is first order in @ as well as in A is adequate.

Bigher order terms are necessary to treat two kinds of aperiodic:ities.
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The first are aperiodicities of a stochastic nature; in such cases a

random error in @ at one point in the structure might be canceled out by
that at another, so that larger RMS detunings within the individual cells
can be tolerated than is possible in the periodic case. Specifically, since
we would expect the total RMS phase error fram the J cells that participate ;
in the reflection to be of order ﬁ[<¢‘>] % , which is of crder
[<¢z> / A ] ,‘ . We would expect that in the cases of greatest interest:

" { a (X-1-12) .

In fact, we will see in sec. 1I-5 that if the expectation value of @ is
equal to its unperturbed value (i.e. its value in the pericdic case), the
lowest order effect of random errors in @ on the reflectivity is through
terms of order PZ.

The second kind of multilayer structure whose performance is strongly
dependent on higher order terms is that which results when in-situ
reflectance monitoring is used. In such multilayers the @ value for the
Kth pair of layers is intended to be that value which maximizes the
reflectivity Ry, , of the entire stack of cells 1 .,. K (see sec. II-4).

Determination of this @ value smounts to setting a derivative of
intensity reflectance with respect to ?K equal to zero, We will see in
sec. 11-4 that the lowest order terms in such a derivative are of order &

(i.e. A' rather than Ao ). Terms of order unity are missing becaase
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the lowest arder effect of a change in Py having magnitude S?K is to
multiply the reflected amplitude by exp(-2i S,K) leaving the {ntensity
reflectance unchanged. To obtain terms of order A in a differentiation
with respect to @ , terms of order ¢ A must be included initially.

In order to treat both kinds of aperiodicity, our analysis will include
all orders in the parameter ¢ , and also terms of order @-4A .

As in the traditional x-ray diffraction theories, we will include only
first order terms in A . Such an approximation breaks down at grazing
angles of incidence. As the angle approaches the surface the path traversed
through each cell increases for two reasons; first because the x-ray photons
traverse the cell at more oblique angles, and second because the cell
thicknesses have to be increased as the angle decreases in order to maintain
a resonant reflection from the multilayer. These two factors imply a

quadratic increase in extinction per layer with angle; therefore when

(-1;---9)2 < lal (L-1-13)

a regime has been reached in which the beam has a strong interaction within
one single cell, and our formalism is no longer valid.

Our formalism will depart from the common practice in x-ray diffraction
theory in that we will include the trigonametrical factors that are

necessary for the theory to be applied near normal incidence.
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In the remainder of the text we will follow the standard practice of
using primes and double primes to denote real and imaginary parts,

respectively.
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Part C) Characteristic Matrix Solution for the X-Ray Regime

In Appendix 1 we show that subject to the approximations discussed
above, the solution for the P polarization field amplitudes Ug,3¢Y,2 is

£at (-1)"cos tc-p, (0" sinte¢ )\ [ £«
O i(omsinte=v) (1) eost, +p, M,
(1-1-14)
where
k P(®)
Y, = .r.os 5 }dz A(z)cos(2k cos 6z)
ceil
k P(o
- ;” 9)] dz A (2)sin (zlz.cosO:) ts P~ My

cell

k
My E c,,' /dlé (z)

cell

cos 20 P Polarization

P(e) = {

1 S Polarization (n-1-15)

-
.
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By. II-1-14 represents a straightforward perturbation sclution to
eq. I1-1-4; terms of cxder Az are neglected, and the vacur (i.¢. & = 0)
solution for U is substituted into all terms that are first order in A.
Bq. II-1~4 then becames a driven harmonic oscillator @atim.

In eq. 11-1-14, £ and N are the field camponents that are normal to
the k-vector in vacuum; from fig., I1I-1-2 we see that these are defined by

E = -~ ’/cue

(1-1-16)
=
N oK
(Again we mote that @ is the vacuum angle of incidence). Thus if we follow
the usual sign convention of thin-film optics in which the smplitude
reflectivity ® is real and positive if the reflected n’ is in phase with

the incident E, (for P polarization), we see fram fig. II-1-2:

£ = (14p) A
(E-1-17)
N = (1-¢)A

where A is some K-dependent field smplitude.
We show in Appendix 1 that ¢q. II-1-14 is also valid for the case of
§ polarization (in which E is polaiized along the x-axis) if we define

(1-1-18)

£ t E,
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COORDINATE SYSTEM FOR
CHARACTERISTIC MATRIX SOLUTION

In all tigures p is real and positive. Field vectors are shown as solid
arrows, propagation directions as dotied arrows.

e Figure a shows S polarization at normal incidence.

e Figure b shows P polarization at normal incidence. The
coordinate system of fig. a has been rotated 90°
relative to the field vectors.

o Figure c shows S polarization at non-normal incidence.

o Figure d shows P polarization at non-normal incidence.

X348

Caption for
Figure 11-1-2
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COORDINATE SYSTEM FOR
CHARACTERISTIC MATRIX SOLUTION
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N & H /o (X-1-19)

Our use of a single matrix solution for both polarizations is analogous
to the use of what Baumeister (1962) calls "effective® multilayer
parameters; both amount to reduction procedures for simplifying off-normal

incidence calculations.
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Part D) Difference Bquation for Amplitude Reflectance

As discussed in sec. I1-1-B above, we choose to convert the matrix
solution for the unit cell to a difference equation in ?‘ before proceeding
to consider the reflectivity of the multilayer as a whole.

The derivation in Appendix 2 follows a well-known procedure, except
that in the course of the derivation we make truncated expansions consistent
with the approximations discussed in sec. I1-1-B above.

In brief, eq. II-1-17 is substituted into eq. II-1-14, and the
amplitude A is cancelled fram the resulting pair of equations. Terms of
order Ag are then neglected.

The resulting equation that propagates the amplitude reflectivity R
across the Kth cell is:

Y . . )ity /2
Rers ™ ® “‘Q“ -1)"e "‘(n‘,-h)* -1)"e? (in,+p,) Q',

(p-1-20)

BEg. 11-1-20 is analogous to the well-known Airy recursion formula that
is used to propagate the reflectivity fram single-layer to single-layer in
optical multilayers.

In fact, if we now employ a phenamenological Airy argument based on the
usual sumation of partial reflection and transmission camponents within the
single-cell, we can physically interpret eq. I1I-1-20 by comparing it with
the result of the Airy summation.

The Airy summation argument is summarized in fig. II-1-3; the
phenamenclogical derivation of the partial reflection and transmission
camponents has been amitted, but arguments that are essentially the same are

!
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e T

BELT I, o O i




II-1-21

used in the Darwin-Prins theory of x-ray diffraction (see James, 1965, p.62).
As shown in the figure, the first term on the right side of eg. 1I-1-20
represents a double transmission through cell K with an intermediate
reflection fram the stack of preceeding cells K-1, K-2, ... 1. The second
term represents a reflection fram cell K back into the direction of the
incident medium. The third term represents a multiple reflection process
consisting of reflection fram the preceeding stack of cells, reflection back
towards the substrate fram cell K, and finally a second reflection fram the
preceeding stack back into the direction of the incident medium. BRigher
order multiple reflections are of order A® and are neglected.

The comparison thus implies (as can be shown rigorously fram the matrix
solution of eq. 1I1-1-14) that the reflectance of the Kth cell is
(-1)" (i, = p, )e** from the incident side and (-4)™(iv 4 p_ e fram
the substrate side, and that the transmittance of the cell is -g~'t»

The analogy between eq. II-1-20 and the single-layer Airy formula can
be formalized in another way if the cell is centroesymmetric, i.e., if it
contains a central plane of symmetry. In this case the method of equivalent
parameters can be employed (Herpin 1947, Knittl 1976). If the cell is
centrosymmetric, the parameter p defined in eq. II-1-15 is zero, and
eq. II-1-14 becomes, to first order in @ and A

Exas -4 ity = 7y) &K

L' Tiltet ) -1 N

(B-1-21)

————————
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PROPAGATION EQUATION FOR AMPLITUDE
REFLECTANCE

Py
e ™ e At
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The amplitude recursion equation ls:
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Figure 11-1-3
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in the simplest case where m=l. If this matrix equation is compared to the
usual (non x-ray) characteristic matrix solution for single homogenecus layers

(Born and Wolf, 1975, p.58) with 6 = 0:

Exes cos Pe - t sin B, Ev
Wit -ing Sin P, cos By a,
(B-1-22)

we see that the two matricies can be formally equated if we make the

identifications

§ ' Jti-rp? (R-1-23)
n, = Ly
t~r

n, and P, are known as the equivalent parameters of the unit cell.
(Ng is the equivalent index and P; the equivalent phase thickness of the
cell). There is a straightforward analogy between the unit cell of an x-ray
reflector and a single hamogeneous layer that has an index of refraction

Ml TR nte nds

RU A

Y

e e,
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Ne and a phase thickness B, . Similarly, a reflector with J cells
corresponds to a stack of J equivalent layers, which is, in effect, a single
layer having index n, and phase thickness J Pe « This coalescence of the
J equivalent layers into one is permissible because the internal equivalent
layers have no interaction with one another (since their refractive inmdicies

. are equal). The equivalent parameters can therefore be considered to
1 incorporate implicitly the effect of multiple reflections within the
structure.

Bq. II-1-20 is also analogous to the propagation equation that Kogelnik
derives (1976) from standard coupled wave equations. This may be seen by

setting
ig_ AK (.'f.!..
et "R B + 0 JK’)
d 42 (1-1'24)
= =& &8
dK * o(dx‘)
80 as to obtain the differential equation
.“'_‘: w - 2itg-(ir=-P)-(ir+P)R?+0(4%)+0(9 8)+0(e?)
(R-1-25)
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where we have indicated that the neglected term of order -%%— is also of
order ¢? v 94, and A". In treating stochastic problems, a difference
equation has the important advantage over differential equations of having
terms whose statistical properties can be determined quite easily; this is
because the terms of the difference equation have a one-to-one
correspondence with the properties of the individual cells.

Since the layer thicknesses are proportional to the order of
diffraction m, the absorption is least in first order (for given wavelength
and angle), and the first order reflectivity is therefore the largest.

Thus, although our formalism includes all orders of diffraction, our

discussion will generally involve only the first order case.

T N i e,
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Section I1-2 ~ Defect-Free Multilayers

Part A) Reflectivity of Periodic Multilayers

The simplest case that can be treated with the formalism developed in
the previous section is that of a perfectly periodic multilayer reflector.
Pericdic x-ray multilayers have been treated by several authors in recent
years (Vinogradov and Zeldovich 1977, Lee 1981, and Underwood and Barbee
1981). Periodic x-ray multilayers are quite analogous in their diffracting
properties to crystals cut in the Bragg geametry.

We will present brief derivations of the reflecting properties of
periadic »~ray multilayers; the derivations will tend to be gquite sketchy
except where previous work has been extended.

As discussed in sec. 11-1-B, periodic multilayers can be treated with
an analysis that is first order in ¢ and A . Eg. 1I-1-20 becames

Qg”' eu-zitKQx-(iYK-Px) '(irk"Px) ng (1-2‘1)

The reflectivity of the periodic multilayer increases almost
monotonically as more unit cells are added, until a steady-state regime is

reached. In the steady-state regime, we can set
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50 that eg. II-2-1 becames a quadratic equation to be solved for R The two

solutions are

R = -—é:*—i*r— (1-2-3)

where two roots result from the sign ambiguity in the quantity

s =% [ (2-2-4)

We now discuss the sign choice that must be made here. The sign choice
that we establish will be applicable in most of the remaining calculations
of the text. The few exceptions will be explicitly identified.

The parameter § has already appeared in eq. II-1-23; in eq. 1I-2-4 we
make the ambiguity in sign explicit, and generalize the definition ¢to include
the non-centrosymmetric case.

In order for the equivalent phase parameter to imply exponential

attenuation instead of exponential amplification, we must choose that root

in eq. 11-1-23 which causes the imaginary part of § to be positive. In the
remainder of the text, the square roots that accur in expressions of the
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form ot~ pt* will by definition be chosen to be on the branch
corresponding to positive imaginary parts.

We will now show that under this convention it is the upper sign rather
than the lower sign that must be used in eq 1I-2-4 as well as in
eq. 1I-1-23.

If we multiply the two possible solutions together (i.e. the two
solutions corresponding to different evaluations of the sign ambiguity in

eq. 11-2-4), we find

‘e = (ilt'-r‘-J‘-t),(}lt‘-r’-p -t) = _Y4ip
WY r-ip v-ip T Tr=ip

(x-2-5)

50 that if we represent the true physical solution with an unsubscripted e:

2 [23-¢ zg $S-t\ [ x+ip  x-ip) _ _ 8+t  _reip
R Y-ip v-ip)\r-ip  Fs-t 5-t Tr-ip

(1-2-6)
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In crder to have R 1, we require

Re (V3) = T:? Re (£5°) < o (1-2-3)

We will show later in this section that at the wavelength of peak

reflectivity,

§ =24 (1-2-9)

with 4 >0 and with the upper and lower sign in eq. II-2-9 representing the
same sign ambiguity as in eq. 1I-2-4.
Thus, from eq. II-1-15, we require at peak reflectivity

 #d < o0 (n-2-10)

for R <1, with u" defined to be the imaginary part of the parameter u

(defined in eq. II-1-15).
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Since all materials absorb in the x-ray :oghle,/.' >0, so that in
ogs. 11-2-4,10 we must choose the upper sign when the multilayer cperates at
the Bragg condition,

Purther, we will show later {n this section that the imaginary part of
§ can never change sign from its value at the Bragg condition. Therefore,
we will always choocse the root in the definit‘on of § to be the root with
the positive imaginary part.

In this case we have

- -3¢t __viip Y
\ T-ip -t (I 2-11)

and also the useful result

R} e -k et (1-2-12)

(This is eg. II-2-6 with the ambiguity in the sign of § now resolved).

TIron —
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In Appendix 3 we solve oq. II-2-1 in the case of periodic multilayers
that & not contain sufficiently many layer pairs to reach the steady-state

regime. ‘The solution (integration of eg. 1I1-1-25 with constant coefficients)
is

R (1- 2130378

1- Q: (:: .'re) el?‘l.‘bl)

where Q..is the steady-state reflectivity given by eq. 1I-2-11. When the

(n-2-13)

multilayer is centrosymmetric (as in the bilayer case of fig. 11-2-1),

21§ (JT=-1)
R (1-e ) (n-2-1)

1 - Qol ezi‘ (J-1)

R; <

The resemblance of eq. 11-2-14 to an Airy sumation is readily
understood in terms of the equivalent index analogy (sec. II-1-D}.

The most important centrosymmetric case is that of the bilayer
structure shown in fig. II-2-1. This figure incorporates the ideal
assumptions of perfectly sharp interfaces. Under this assumption the
structural parameters defined in eq. 11-1-15 become

o= ©

2
- ; 1
v, = (A“ A‘) ‘"‘Pu,u sec O |

M= x,AL* P""( A“" AL) SGC‘B

Pur ™ k cos © dy w (n-2-15)
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The parameter p“‘“ . the phase thickness of the high index layer, will
be used 30 often that we will establish a convention in which the subscript H is
made implicit. The symbol B, will thus by definition be the phase
thickness of the Kth high index layer.

The high index layer will be by definition that layer with the larger
absorption; generally the real part of the decrement of the high index layer
will also be larger in magnitude than the real decrement of the low index

layer.

r 'igﬁ EM "I E.Eﬂ‘! Askier, . -
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Part B) Structural Optimization of Periodic Multilayers

We now turn fram the calculation of reflectivity to the associated
optimization problem, i.e. the problem of determining the particular
structure that optimizes the performance of a multilayer. Here we will
mostly be concerned with maximizing the peak reflectivity of the structure.
This would be particularly appropriate in such applications as the design of
cavity mirrors for potential x-ray lasers; in other applications one might
vltimately prefer more complicated criteria.

The reflectivity of a multilayer mirror operating near resonance can
for practical purposes always be considered to be an increasing function of
the number of layer pairs in the structure; thus in order to maximize the
reflectivity one would want to deposit sufficiently many layer pairs that
the multilayer operates in the steady-state regime. (In same cases the
reflectivity is found to undergo very small oscillations about the
steady-state reflectivity as the number of layer pairs approaches the regime
where radiation no longer reaches the substrate).

Further, in many applications polarization effects can be neglected.
This includes applications at normal incidence (x-ray laser mirrors,
normal-incidence microscopy), grazing incidence applications (all
high-energy applications), reflections taking place near 45 degrees (where
the P reflectivity is zero), and most of the applications that involve
synchrotron radiation (which is linearly polarized).

- . by oo
bask s, M e B b 0 o " 2 . . - o, , R
e h s S A e

s R
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In such cases we maximize the reflectivity by maximizing the magnitude
squared of eq. 11-2-11.

We first consider the problem of choosing the optimum unit oell
thickness for the multilayer, which from eq. 1I-1~11 s equivalent to
finding an optimum value for the parameter § .

The well-known requirement for maximizing the reflectivity of a
dielectric multilayer (i.e. a multilayer with real A (z)) , is that the unit
cell thickness be chosen in accordance with Bragg's law, as corrected for
dispersion. By this criterion the optical thickness of the unit cell should
be one half-wavelength, 0 that

/Jz Re (1 +A(2) cos 6 (z) = -;‘:- (n-2-16)

Period

Here O (2) is the angle of refraction at a particular depth in the
structure; this is defined by

(1+ a(2) sinB (z) =sinb (2-2-17)

i o WY it e e
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Then

de (1+ 8 (2))cos B (z) = fiz/b&ld(z)'ﬁn‘e =f“(“’a’ :s‘:’

Period Period Period
(2-2-18)
8o
14
.zh = dcosO + fdz —":\—”i%’ (L-2-19)
Period
or from eg. 1I-1-11:
- 2%deosb 2n ¢ ’
?“r“"“‘ " b ).coJGJJZA(z) =M
Period (m-2-20)

This x-ray version of the dispersion-corrected Bragg's law does not
correctly produce the position of maximum reflectivity in the case where A
i{s complex. The mppropriate condition in this case was first found in the

PO > VR
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context of diffraction fram centrosymmetric crystals by Miller (1935).

We will briefly present a simpler derivation that applies in the
non-centrosymnetric case as well, and that provides physical insight into
the arigin of the absorption correction to Bragg's law.

Since R= Q‘Q..veannythat if

*®
Re[ L d8Y - 4 92 _ 1 4o _ 1 4R
ZRQ(? ‘V) TR " dv R dv 0

(x-2-21)

where v is same structural paramet r of the multilayer, then the
reflectivity is maximized with respect to v. In this section we will use a
dot to represent 4 /dv.

In the present case we optimize with respect to the parameter ® , so
that £ = ) to first order in @ according to eqg. II-1-15. (As discussed
above, in the case of periodic multilayers we need only work to within first

order in the parameter @ , and can neglect terms of order 9 A.)
Also,

yep = =0 4+0(e-8) (n-2-22)

N TR IS

Py




R R e

= L -2-
§ s (x-2-23)
and
t
¢ = -1t 4 . % (R-2-24)
T—IP
Since
Re (5") Re (5)
Re [+) = £
(8) ISI’ lslz
(§-2-25)
our condition for maximizing R is that
Re (§) = © (3-2-2¢6)

s R NPy o=
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If we compare eq. II-1-23 with eq. 1I-2-26, we see that our correction
to Bragg's law is a requirement that the real part of the equivalent phase
thickness of the cell be X. The difference here from the usual requirement
that the real part of the optical phase thickness be T is due to the
presence of multiple reflections.

This may be seen by manipulating eq. 1I1-2-11 to obtain

§ = -t-g(Y-ip) (n-2-27)

eiPc & _e.l‘ x _e-it (1-'?(r_‘.r))

r (1-2-28)

g -et + ¢ (ir+p)

to within order A .

The term - @~ 't represents the phase oscillation involved in transmission
through the cell., The term 4 Q(‘N P) _alwo contributes to the overall
phase oscillation across the cell (which is cl" ; this term represents a multiple
reflection process consisting of transmission through the cell, reflection
from all succeeding cells, and reflection back into the initial direction.
(Higher-order multiple reflections are of order A’). A phase change occurs

during the multiple reflections, and if n is complex, the overall




oscillation of the field across the cell is shifted.

Por brevity's sake we have described the calculation of this effect as
a correction for absorption; however we note that the imaginary part of A
causes a shift in the position of peak reflectivity through its effect on
the phase of ? , rather than by any extinction mechanism (see below).

We can convert the resonance condition of eq. 11-2-26 to a
camputationally more useful form as follows. The requirement that Re(§ )=0
can only be satisfied if §* isa negative real number. We show in
Appendix 4 that when § is chosen to make 8* real, S is autamatically
made negative. This implies a result stated above, that the imaginary part
of § can never change sign from its sign at the Bragg condition. Such a
sign change would require the existance of a @ value at which 32 was both
real and positive.

For Im($%) to be zero, we must have from eq. II-2-4

t't” = v'r"+ pp” (1-2-29)

(x-2-30)
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To first order in A , we can evaluate og. II-1-15 (the defining equations
for the ameters in our solution f 8 arcoes
par o Pope ) ot O, arcos(di,) .
In terms of & wavelength or &-spacing shift away fram the uncorrected

Bragg value defined by 2 d oS 3.‘ A , we can set

A2 . -n-%d— (1 -2-31)

To convert the phase shift to an angular shift, we have from

. II-1-11
oo = ~ —’E%S%fl (n-2-32)
vhere
6, = arcos (224d) (3-2-53)
We can set
4(c0s 6) - 88sinG, - f&_e'm % (D-2-34)
cos 6, cos 6,
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2
Terms of order A6 cos 9. have been included in eq. I1~2-34 because the
linear term becomes very small near normal incidence.

Solving for A8 gives

ab = [tan’e’ +-—2—i=-*-_ - tan 6, (B-2-35)

which has physical solutions 30 long as the radicand is non-negative, or, to

a good approximation, so long as 6.) /3’2»&' . At 90. ’_Z_M . the true
x

angle of maximoe reflectivity @ is at 0°.
2!’0::!

Avay from the rormal incidence regime (i.e. 8, 3> x ,
’ o N s
AD = Poys = M _ r.r-rjf (X-2-36)
Xtan 6, MtanB,  _u mtano,

In eq. 1I-2-36 the first term on the right is the dispersion correction and

the second is the absorption correction.
We show in Appendix 5 that the absorption correction must always be

smaller than the dispersion correction except in regions of very strong

ancamalous dispersion, but there are many cases in which the two are

camparable in magnitude.
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In fiq. I1-2-2 we show plotted the ratio of absorption correction to
net correction in a particular example; specifically, the ratio plotted is

__9.‘_-_21._ (1,2_37)

with O, the true Bragg angle as corrected for both absorption and
dispersion, and 9‘ the Bragg angle as corrected by eq. 11-2-20 for
dispersion only. This example exhibits the commonest case in which the
absorption and dispersion corrections are in opposite directions. (Note
that in this figure the incidence angle is measured relative to the
surface.)

Fig. 11-2-2 shows three regimes in which the relative effect of
absorption is fairly large.

First, near normal incidence, eq. II-1-11 shows that the correspondence
between angular shifts and shifts in phase thickness becames strongly
non-linear due to the cosine factor. In the normal incidence regime, a
relatively small absorption correction to the phase thickness can therefore
cause a large decrease in the total angular shift. Both the angular
absorption correction and the angular dispersion correction become large in
absolute terms as the angle of incidence approaches 0°.

The plot shows two other regions at which the relative importance of
the absorption correction becames strong; at wavelengths just above the
carbon-K edge, and at short wavelengths. In each case the absorption
correction becomes strong because multiple reflections became strong, and

multiple reflections are strong precisely where the absorption imposes a
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COMPARISON OF ABSORPTION CORRECTION
TO DISPERSION CORRECTION

10r
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:a =100 A
is variable
muL 8
A dg:d,
8. Ratio of d, to d . chosen
to maximize R at sach ).
06—
6 -6,
6 -6,
[ XX od
f B
{ A
02 |4
|
g i
A=eh Aeaa A= |
ool t 11 1 | ]
0° 10° 0° $0° 70° °0°
ANGLE OF PEAK REFLECTIVITY
(to suriace)
X360

Figure 11-2-2

k/é e AU o




I1-2~20

weaker limit on the reflectivity. (In a moment we will consider the
limiting case where the absorption goes to zero).

This is why the term "absorption correction” must not be taken too
literally; as discussed above, the imaginary part of A shifts the resonance
angle through the mechanism of phase changes that occur during multiple
reflections, rather than by any mechanism involving extinction of the
fields,

In the limit of zero absorption, the steady-state reflectivity of the
structure approaches unity throughout the high reflectance zone (cften
called the stop-band). According to the above analysis, in the limit of low
absorption the reflectivity approaches closest to ane at an angle quite far
from the center of the stop-band, because with low absorption multiple
reflections became quite strong, which in turn causes the ratio defined in
eq. II-2-37 to became quite large. Rowever with very low absorption the
reflectivity at B; departs only slightly further fram unity than the
reflectivity at 8,, and indeed the reflectivity throughout the stopband is
almost constant.

In contrast, in the soft x-ray regime where absorption is fairly
substantial, peak reflectivities generally do not approach very close to one

and the absorption correction manifests itself as a distinct shift in the

position of peak reflectivity (see fig. 1I-2-3).

PR L
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Once the cell thickness of the structure is chosen 80 as to optimize
the reflectivity, one may wish to optimize the structure in other degrees of
freedom; for example in the usual case of a bilayer reflector one would like
to optimize the ratio in thickness of the two types of layers.

In arder to maximize the reflectivity at the Bragg angle, (which we
will refer to as maximization of peak reflectivity), we use the steady-state

version of eq. I1-2-1

-2itg-(ir=p) - (ivep)p* = © (x-2-38)

Dividing by ¢ and differentiating with respect to same secondary structural

parameter (any parameter other than ¢ ) we obtain

28+ (v-ip)g + (v+ip) K

+(r-iy)§-(v+ip)-§; =0 (X-2-39)
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From eg. 1I-2-11 we have

(r-ip-(reip = £ (-(Set)=(s-t) =25 (@-2-40)

~o|-o:

To maximize the peak reflectivity we require that Re(—:-)-o; further,

e e

since we are operating at peak reflectivity, § is pure imaginary, so that
m(z2 § -%—)-O.

Thus if we take the imaginary part of eq. II-2-39 we obtain, using
eq. 11-2-11, the condition for maximizing the peak reflectivity

: _ T-ip THip oo
Im [Zt =i (S+t) + —_—"*"P (s t)] = 0
(XI-2-41)

1f, as in the case of a bilayer reflector, the cell is centrosymmetric

in such a way that p is zero along with p, eq. II-2-41 achieves the simple

form:

IM[é- t -{-] =0 (Z-2-42)




I11-2-24

We row &\sider optimization with respect to the parameter P used in
characterizing a bilayer reflector (eq. 1I-2-15). The terms of eq. II-2-41
are of arder A , so that to obtain optimization accurate overall to first
order in A, we need only differentiate with respect to P in "zeroth” order
for our optimization.

Por the same reason, we can consider optimization of P to yield an
optimum ratio of high-index layer thickness to low-index layer thickness

given by

8 k cos© d, = 9
r-p ‘!.COSG. (d,+ J ) - k.cosed“ d

[

(1-2-43)

Upon carrying out the differentiation in eq. 1I-2-42 we obtain the
optimization condition first obtained by Vinogradov and Zeldovich (1977)

»
x O
tan B = B+ —t— (p-2-44)
opt Opt 8, - b

By. 11-2-44 is valid for either polarization at any angle of incidence.
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We mention that one should avoid being mislead by the discussion
following eq. 23b in Vinogradov and Zeldovich (1977), which might suggest
that eg. II-2-44 can be treated as a primary optimization condition.

Bg. 11-2-44 is a secondury optimization condition that obtains only if the
total cell thickness has also been optimized.

Bg. I1-2-44 is a trancendental equation with no analytic solution, but
in Appendix 6 we exhibit a fast numerical procedure that can be used to
solve it. The initial analytic seed that is used in this procedure may well
be accurate enough for most purposes.

In Appendix 7 we show that the peak reflectivity (i.e. the relectivity
at the Bragg ocondition) is given by:

2 v2

R peas = [zﬂ”‘+ rteptort o op

-2 /;‘" -(r'r"¢ P;P:;)Z*/‘MZ( r'?+ P:z_r'z_ruz)]

-1
x [ Iri* + 1p1%+ 2 (vrp- r”P’)]

(2-2-45)

SRR
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Part C) Optimun Materials Choices

By. I1-2-45 in conjunction with the fast algoritim of Appendix 6 makes
it possible to very rapidly calculate the maximum reflectivity obtainable
from a given pair of materials reflecting at a particular x-ray wavelength.

It therefore becames possible to have a computer program search
efficiently through all possible pairs of multilayer materials and so
determine the optimum reflectivity attainable at the particular wavelength
under consideration,

Fig. II1-2-4 and table 1I-2-1 ghow the results of such a materials
search at each of 125 wavelengths in the moft x-ray region fram 6.2A to
124A. A” and 4 were calculated using atamic scattering factors compiled
by Henke et al. (1982).

The calculated reflectivities of the optimum materials pairs are shown
plotted in red. For comparison, fig. 11-2-5 shows the reflectivity
obtainable fram the usual materials choice of tungsten and carbon. The
reflectivity of the new materials combinations are surprisingly high,
particularly at the longer wavelengths. 1In general the high reflectivities
are 8 consequence of atamic resonances; the anamalous dispersion in the
spectral vicinities of such resonances cause layers made with the elements
to yield high reflectivities, primarily because their unit decrements have
anamalously small imaginary parts.

Fig. 11-2-4 also shows plotted in green the optimum fraction of the

unit cell thickness that should be occupied by the high index layer.
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Figure 11-2-4 (color illustration) is bound
at the back of the text.
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Optimum X-Ray Multilayer Parameters

MINIMUM 2 ALLOWED 1S 5

R N GAMMA ELEMENT - B ELEMENT - L

{ AT ) ( DB )
( NORMAL ) (se=em=-)
(INCIDENCE) (DR + DL)

.8447 9.9 .3568 RHODIUM SILICON
1932 15.4 .3627 REODIUM STRONTIDM
.1992 15.8 .3785 REODIUM STRONTIUM
<7897 16.8 .3850 RHODIUM STRONTIUM
.7758 18.0 .3862 REODIUM STRONTIUM
- 7667 19.1 .3869 RBODIUM ETRONTIUM
7505 19.9 +378% RUTHENIUM STRONTIUM
. 7382 20.9 «3800 RUTHENIUM STRONTIUM
. 7280 21.9 .3814 RUTHERIUM STRONTIUM
L1 23.0 .3829 RUTHENIUM STRONTIUM
<7165 23.6 .36899 SILVER STRONTIUM
1176 2¢.8 . 4049 SILVER STRONTIUM
.6966 26.4 4099 SILVER BTRONTIUM
.6693 27.7 4205 SILVER STRONTIUM
.6313 29.1 4344 SILVER STRONTIUM
.6218 42.6 .3573 RUTHENIUM BORON
6210 45. 4 «3503 RUTHENIUM BORON
6201 48.2 <3456 RUTHENIUM BORON
.6208 51.3 .3388 RUTHENIUM BOROKR
.6239 54.5 . 3320 RUTHENIUM BORON
.6287 $7.7 .3261 RUTHENIUM BORON
.6341 60.9 .3204 RUTHENIUM BORON
.6414 63.8 .3148 RUTHENIUM BORON
.6504 66.2 .3100 RUTHENIUM BORON
6774 79.9 3797 LANTHUNUM BORON
<7211 75.3 .390% LANTHUNUM BORON
.8200 52.4 .4033 LANTHUNUM BORON
.5446 99.7 .4933 CALCIUM LANTHUNUM
.5097 108.6 4924 LANTHUNUM CALCIUM
.4932 73.8 «3703 RUTHENIUM CALCIUM
.4879 78.6 .3668 RUTHENIUM CALCIUM
.4827 83.6 3634 RUTHENIUM CALCIUM
.4778 89.0 .3598 RUTHENIUM CALCIDM
.4732 94.8 3563 RUTHENIUM CALCIUM
84676 101.4 »3521 RUTHENIUM CALCIUM
4687 361.0 3011 RUTHENIUM CARBON
.4707 172.1 .2958 RUTHENIUM CARBON
.4797 155.5 .2204 COBALT CARBON
4943 176.9 .262) CHROMIUM CARBON
.5109 183.2 .2610 CHROMIDM CARBON
.5291 188.5% 2596 CHROMIUM CARBON

Jable 11-2-1
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MINIMUM 2 ALLOWED 1S 5 i
WAVE- i
LENGTR R L) GANMA ELDMENT = B ELEMENT - L %
{ AT ) (DB )
( WORMAL ) (~=ece-. ,
(INCIDENCE) (DR ¢ DL)
46.05 .5530 191.8% 2581 CEROMIUM CARBON
44.95 -5830 185.3 +2568 CHROMIUM CARBON
43.88 .6625 158.3 «2556 CHROMIUM CARBON
42.83 .4987 1%7.2 <3122 CHROMIUM CALCIUM
41.81 .5072 163.9 <3126 CHROMIUM CALCIUM
40.61 5159 170.6 3129 CHROMIUM CALCIUM
39.84 <5256 177.5 <3134 CHROMIUM CALCIUM
38.89 .5358 183.8 3137 CHROMIUM CALCIUM
37.96 5489 188.9 .3l CHROMIUM CALCIUM
37.05 5663 191.6 +3145 CHROMIUM CALCIUM
36.17 -5924 188.9 +3149 CHROMIUM CALCIUM
35.30 -4174 164.9 <3257 COBALT SCANDIUM
34.46 -4302 171.0 <3260 COBALT SCANDIUM
33.64 .4458 176.3 +3263 COBALT SCANDIUM
32.84 <4645 180.1 -3267 COBALT SCANDIUM
32.05 .4904 180.2 .3271 COBALT SCANDIUM
31.29 «5392 198.7 .3790 CHROMIUM SCANDIUM
30.54 <3595 18l.5 .3653 NICKEL BARIUM
29.81 +3708 198.1 .3596 NICKEL TITANIUM
;:-:g -g:g; igg.i .3599 NICKEL TITARIUM
. . . -4967 CHROMIUM CADMIUM
27.73 +5053 164.3 <3745 COBALT TITANIUM
27.07 .3960 274.1 .3485 NICREL MAGNES.UM
26.42 .4058 291.0 .3473 NICKEL MAGNESIUM
25.79 4153 308.9 .3462 NICKEL MAGNESIUM
25.17 «4254 328.1 <3451 RICKEL MAGNESIUM
24.57 4750 209.3 3992 NICKEL VANADIUM
23.99 .4443 370.2 <3429 WICKEL MAGNESIUM
23.4) .4537 393.6 <3418 NICKEL MAGNESIUM
22.85 <4625 418.3 «3409 WICKEL MAGNESIUM
22.31 .4978 216.3 <4319 WI1CKEL TELLURIUM
21.78 «7359 250.8 .4003 TELLURIUM MAGNESIUM
21.26 .4885 504.9 .3377 NICKEL MAGNESIUM
20.75 .5824 $22.0 .4019 CRROMIUM MAGNESIUM
20.25 .5038 575.0 +3356 NICKEL MAGNESIUM
19.77 -5109 614.5 »3346 NICKEL MAGNESIUM
19.30 -.5173 657.9 +3336 NICKEL MAGNESIUM
18.84 .5236 707.6 .3322 WICKEL MAGNESIUM
18.39 .5291 761.8 .3308 NICKEL MAGNESIUN
17.95 5321 820.4 .3302 RICKEL MAGNESIUM
17.82 .6007 800.3 .3609 IRON MAGNESIUM
17.10 .5338 969.6 .3286 NICKEL MAGNESIUM
16.69 .5320 1061.5 <3276 NICKEL MAGNESIUM
16.30 .5295 1126.9 .3140 COPPER MAGNESIUM
15.91 6136 1244.9 397 BARIUM MAGNESIUM
15.53 .5446 986.2 .1821 RHENIUM MAGNESIUM
15.16 5549 1046.9 .1807 RHENIUM MAGNESIUM
14.79 .5648 1111.2 1795 RHENIUM MAGNESIUM
14.44 .574) 1179.1 .1782 RHENIUM MAGNESIUM
14.10 5839 1251.4 .1770 RHENIUM MAGNESIUM
13.76 5935 1328.6 «1757 RHENIUM MAGNESIUM
13.4) .6027 1410.4 1745 RHEN1UM MAGNESIUM
13.11 «6117 1496.3 .173¢ RHEN1UM MAGRESIUM
12.80 .6208 1507.6 1722 RHENIUM MAGNESIUM

Table 11-2-1
(continued)




WAVE-
LENGTH

12.49
12.19
11.90
11.62
11.34
11.07
10.81
10.55
10.30
10.05
9.81
9.58
9.35
9.13
8.91
8.70
8.49
8.29
8.09
7.89
7.1
7.52
7.34
7.17
7.00
6.83
‘.67
6.51
6.35
6.20

.6298
.6386
.6475
«6565
6650
.6731
6816
.6896
.6978
.7059
.7148
<7652
.6502
.6581
.6659
.6733
.6802
.6869
«6941
.6991
. 7077
7166
.7252
.7338
. 7420
. 7500
.7578
7652
.71724
<7795

(
(
(

N
AT

RORMAL )
INCIDENCE)

1685.}
1787.5
1895.0
2010.0
2132.0
2260.9
2398.4
2543.6
2695.9
2854.0
3008.6
5512.9
2747.2
2932.2
3134.8
3352.0
3584.7
3840.5
3472.8
4427.4
4862.6
5156.5
5469.1
5802.7
6157.1
6535.3
6941.6
7374.8
7836.9
8327.0

GAMMA

(-------

(DB + DL)

1711
«1700
.1690
-1680
<1671
«1661
.1651
«1642
1632
.1623
.1614
4435
-1900
.1888
1875
.1863
.1852
.1840
1934
.1815%
.2011
.2003
.1996
.1988
.1981
<1973
1965
.1958
<1950
-1943

MINIMUM T ALLOWED 1S 5

ELEMENT -

B ELEMENT - L

REENIUM MAGNESIUM
RHENIUM MAGNESIUM
REENIUM MAGNESIUM
RHENIUM MAGNESIUM
REENIUM MAGNESIUM
RHENIUM MAGNESIUM
REENIUM MAGNESIUM
RHENIUM MAGNESIUM
RHENIUM MAGNESIUM
RHENIUM MAGNESIUM
RHENIUM MAGNESIUM
BORON MAGNESIUM
RHENIUM BORON
RHENIUM BORON
RHENIUM BORON
RHENIUM BORON
RHENIUM BORON
RHENIUM BORON
RHENIUM ALUMINUM
REENIUM BORON
RUTHENIUM BORON
RUTHENIUM BORON
RUTHENIUM BORON
RUTHENIUM BORON
RUTHENIUM BORON
RUTHENIUM BORON
RUTHENIUM BORON
RUTHENIUM BORON
RUTHEN1UM BORON
RUTHEN1UM BORON
Table 11-2-1

(Continued)
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11-2-32

Adjacent pairs of dotted lines in the figure demarcate the regions in
which same one pair of materials has proved to be optimmm; atamic resonances
cause the curves to be highly discontinuous across these lines. Pig. 1I-2-4
shows plotted in blue the bench-mark value N that the number of layer pairs
J should exceed in order to approach the steady-state regime. N is
calculated at normal incidence; the rumber of layer pairs required scales as
cos® @ for fixed A (see sec. 1I-3). In order to have the layers remain
of practical thickness (say at least a few Angstroms), it is desirable to go
to reflection angles away from normal incidence if the wavelength falls
below about 30A. Even for wavelengths as long as 508, we would expect the
reflectivities to be degraded significantly fram the displayed values at
angles near normal incidence (see chapter III).

There are of course many other qualifications to be made about the
results of this optimization study, The optical constants are presumably
less reliable in the regions of strong anamalous dispersion tnat commonly
occur in the elemental selections of table II-2-1; this is particularly true
in the case of elements that are somewhat esoteric. In fact, optimization
searches such as this will tend automatically to have a statistical bias in
favor of erroneous data points in which the error happens to result in a
higher calculated performance,

Purther, no effort was made to assess the individual suitability or
joint compatibility of the chosen materials in terms of either layer or
interfacial quality and stability; even freedom fram chemical reactivity was

not considered. The only requirements on the elaments examined were that

they be ron-radicactive and have melting points greater than 270°C (that of
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bismuth). In addition beryllium was excluded for its toxicity; unlike other
toxic elements, beryllium would have been frequently selected by the search
program had it been included, due to its low atamic number.

However, most of the materials selections in table II-2-] seem at least
to be fairly reasonable, with the exception of two fairly common selections
for the low index layers, calcium and strontium, which might be difficult to
fabricate in thin high quality layers of the kind required in x-ray
multilayers (Spiller 1982a).

In sumary, the results of this materials search should be treated as
suggestive until the materials selections can actually be tried. For this
reason most of the text will deal with the more cormon materials choice of
tungsten and carbon.

We have also carried out a multilayer materials search using a modified
optimization program that seeks to maximize integrated reflectivity (or
collection molid angle), rather than peak reflectivity. In the revised
program we have aodified the output routines in order to have printed out a
number of possible materials pairs for each wavelength.

An abbreviated tabulation of these new results is given in Appendix l6.




Section 11-3 - Scaling of Multilayer Reflection Properties

In this section we consider the approximate angular and spectral
scaling of the reflection properties of tungsten-carbon multilayers. Our
intention will be to determine simple dependencies that will be accurate to
within a factor of two or so throughout the soft x-ray region.

Fig. II-2~5 shows the maximum reflectivity attainable fram tungsten and
carbon as a function of wavelength. The results are for S polarization; in
the case of P polarization the reflectivity of an individual unit cell, and
80, approximately, the reflectivity of the entire structure, is reduced by a
factor cos?2 6 (see egs. II-1-15 and 11-3-1).

Fig. 1I1-3-1 shows the p values used to obtain the reflectivities in
fig. I1-2-5. (Fig II-3-1 is essentially a plot of the solution to
eg. 1I-2-44 based on the data in (Henke, et al. 1982)). The optimum thicknesses
of the high index tungsten layers became small in regions of low absorption,

i.e. P is small at short wavelengths and at wavelengths just above the

carbon-K edge. In fact, Spiller (1976) has shown that, in principle, unit
reflectivities can be obtained in the limit of no absorption in the low
index layers (but with finite absorption in the high index material) if the

high index layers are made infinitely thin.
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SCALING OF OPTIMUM THICKNESS
RATIO PARAMETER
(Tungsten-Carbon Multilayer)
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The reflectivity of the tungsten-carbon combination is usually fairly
small. When the reflectivity is mmall, the fourth term on the right~-hand
side of eq. II-2-1 is small because it represents the effect of multiple
reflections. When eg. II-2-1 s linearized by neglecting this term, it has
the steady-state solution R ¥ -T/2t , 0o

. Iv|* (1-3-1)
= n_s-
4((o-u)HPe u?

This Lorentzian intensity profile was first found by Henke (1982a). If
we neglect the ?:term in the denaminator of our solution for multilayer
reflectivity outside the steady-state regime (eq. 11~2-14), we obtain
another result of Henke's (1982b):

-2id (J’-x))

= P (1~ e (r-3-2)

Bres

From these approximate expressions we can derive simplified formulas
for multilayer properties, whose wavelength and angular scaling is then
relatively easy to determine.

For example fram eq. II-3-1 we see that the FWHM of the reflection

profile in radian units is approximately

2 u" (1-3-3)

n
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Also, according to eg. 1I-3-2 the number of layer pairs N required for
eq. 1I1~2-14 to approach the Darwin-Prins limit of eg. 11-2-11 is
approximately (S').‘. Further, since eq. 1I-3-2 applies under the condition
that O is small, from eq. I11-3-1 we see that the parameter r can be
considered to be gmall campared to the parameter t, to the extent that
eq. 1I-3-1 is applicable. 1In that case, the number of layer pairs N
required in the multilayers is given approximately by

-1
N = [Im l(?-,u)z-'fz ]
g 1/u" (0-3-4)

We can determine the approximate wavelength scaling of the optical
constants of tungsten and carbon from the semilog plots of figs. 11-3-2,
which are based on a preliminary version of the data in (Henke, et
al, 1982).

We find

.85

3 . ofq 3.5 . =6
(A<A<114X) & = ([271020 )N ) +ille6x1o"IN )

] [ ] ~ -f 2 . . -f, “
(eh<h<44d) o, = (220 IN; ) 1i(20010 INg)

(i<ra<iuh) & = ([61210"IN;)+i([4.0410™] N
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The first quantity dependent on these indicies that we will consider is
the optimum thickness ratio P. Since Im( Ac ) tends to be small campared
toIm( A ), we can consider P." to be less than or of order unity,

and to a rough approximation, can set

3
tan B = Po,t —p;—" (1-3-6)

Eq. II-2-44 then becames for a tungsten-carbon multilayer:

v 3
XA, Bove
—— 22 - = - _7
&,- b % P~ P 3 (x-3-17)
Then
3 ”
B, = _SRrs8, (1-3-8)
ot An - A,
w [
and for A < 44R, we have from eq. 11-3-5
3 . 24
P = 2061 10°A (@-3-9)

1-3:20""A

g g




Now, to a fair approximation, we can set the A that occurs in the
dencminator of eq. II-3-9 equal to an "average" wavelength within the range
of validity of the equation. If we use as an average the geametric mean of

the range extrema, A = /6-44 = 153. we have fram eq. 11~3-9

Bo = 01527 (1-3-10)

In a similar way, we find that for A > &dh:

0.5 -
B, = 009 A (3-3-11)

However, it turns out that because of the approximations made in
arriving at the \ > 44A result, it is more accurate to renormalize the
exponent in this scaling law to correspond to the exponent of the short
wavelength scaling law of eq. II-3-10; this egualization of exponents also
has the advantage of leading to a simpler result.

Using N = Jfed-114 = 703,

pm - 0.0% ,\”(X)'o'z - 0.0¢ A" (m-3-12)

Dl S B S e .




Thus, our overall result for the range 6A < A\ < 114A is

. 0. 15 (NS 44 A)
/5°rt = A X , (n-3-413)
0.04 (A > 444)

This power-law fit is plotted in fig. II-3-1. As the figure shows, the
dependence of Po,«. on A is not very strong. Por many purposes, it is

sufficiently accurate to take Po,c E],
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With this approximation, we now consider the approximate scaling of the
multilayer resolution and required number of layer pairs N. We first
consider the dependence of these two guantities on d-spacing.

If we take P." = 1, we have from eq. 1I-2-15

= [nA:+ 1-( A:" A:)] - sec*6
(1-3-14)

= A: sec’0 & g6 x10° AP seto

[ 4
Taking A = 16-114 = 30A, we can, to a fairly good approximation, set

-o.u') secge

& 66x10° At (A
(n-3-15)

- 40x10° )\ secs

We note that eg. II-3-15 essentially states that the spatially averaged
imaginary part of the index of refraction scales as )\‘ . Thus, the
well-known scaling law for the hm;d »-ray regime, which states that the
absorption coefficient o = -f—;'-g scales as A’ , is not applicable in the
soft x-ray regime. The results in (Henke, et al., 1982) indicate that the

imaginary parts of the refractive indicies of most materials scale very

3
roughly a8 A in the soft x-ray regime.
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Now if we denote the FWHM resolution of the multilayer in phase units

as SQ”“

wavelength scaling into eq II-3-3

« we have after incorporating the approximately gquadratic

- - 2
S = 24" = 20110 °A sec’s = :.an.w‘(zd(-)
PN A)
(1-3-16)
Since
6
do = 2Zdes® g\ L9 (I-3-17)
A A
we have that the spectral resolution scales as
S )‘rmm skun -6 2
= = 2.5 x10 (ZJX) (X-3-18)
A T (A)

From eq. II-3-4, the number of layer pairs N required to achieve

maximum reflectivity is given by

2
N (L) E --———-""“1 (1-3-19)
(zd“-,)
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Thus, $A /A and N are approximately independent of A and 6 for a
given 4. In general, properties of multilayer reflection tend to depend
more strongly on the spacing d thanon A or 6 .

We now consider the scaling of the angular resolution 89"" q “Whose
relation to §¢ is
Fwi N
5S¢ = 224 5656 (m-3-20)
N P

¥ -3
IfPon 1, we can use eq. II-3-16

2
$6 E 25 210" L2d)

FwiM T © (in radians) (2-3-21)

In crystallographic terminology, “m.. is essentially a
rocking-curve width, and the scaling of rocking curve width with 8 given by
eq. 11-3-21 is similar to the dependence one would expect to find in
crystals. (Compare, for example, fig. 13 in (Burek, 1976) with fig. II-3-3 of
this work. The point-by-point oalculation in fig. 1I-3-3 is a numerical

solution for the angular FWHM of the magnitude squared of eq. 1I-2-11.)

— B -




ANGULAR WIDTH (FWHM in minutes)

I1-3-12

ANGULAR WIDTH OF REFLECTION PROFILE
VERSUS ANGLE OF INCIDENCE
(Tungsten-Carbon Multilayer)
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However, crystals are gvailable only with fixed 2d-spacings; the set of
crystal 24-spacings available in the soft x-ray regime is particularly
limited. It is therefore of interest to consider the effect of a variation
in 24-spacing with wavelength held constant; this structural variation
represents a degree of freedom not allowed in crystalline reflection.

By setting in eg.1-3-21

A
2J - cos B (1’3’22)
[}
we have
2
$6 £ s51x30° —é-&-— (x-3-23)
FuHM : 1 Sin 28

8

This scaling law implies a large acceptance angle in the limits
6 =>0" and 6 =>90°. (Bq. 11-3-23 has a singularity at the limit
points; our theory does not apply in the grazing regime, and eg. 11-3-23
must be modified to apply in the normal incidence regime).

The large acceptance angles at the two extremes can be explained

physically by the following arguments. (In fact, we will see that a certain

symmetry exists between the two regions).

MLENR R O
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First, in the grazing regime, eq. II-1-11 implies a linear relationship

between the wavelength and the angle § to the surface ( § ® 20-0). 1f w
set for the grazing regime

S\ _2dsinb g0 _ tan6se w 3& (1-3-24)
) N %

then the linearity is reflected explicitly in the relation

1N K11 (1-3-25)
A §

Further, the width of the high-reflectivity stopband in phase units is
of order A/™'; this is because A is the number of layer pairs
participating in the reflection process. Thus the resolution of the
multilayer is governed by the familiar rule

(B -3-26)

(x-3-27)

.

o=~ o s> namm—




R o ———p

The absorption within each cell is given by the product of the
absorption coefficient with the path length through the cell, 80 that the
scaling of the absorption per cell with angle must be of the form

4xn  d A A
A . wse -——-——-cosge — ;‘ (1'3-28)

[ 4
Rere A represents the spatially averaged imaginary part of the index

of refraction.
Since the absorption per cell is approximately the reciprocal of the

nunber of effective layer pairs N,

2
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Therefore S\ /A and $f o Othrise as § =30, but 3A/A
rises more rapidly.

As discussed in sec. I11-1-B, our formalism is invalid if

¢ < |[a] (X-3-31)

In the near~grazing regime where our formalism is still valid, the
dominant factor in the scaling of multilayer reflection properties is the
quadratic dependence of the absorption per cell on §{. The dependence is
quadratic because as § is decreased, the photon path becames more ocblique,
and also d must be increased.

while N depends quadratically on angle in the regime near grazing
incidence, it becames almost independent of angle as the normal incidence

regime is approached, because the paths traversed through the layers became

insensitive to angular variations,

For 6 < 45", we can therefore set

v

~ A (X-3-3z2)

4
N

it
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Similarly, in the normal incidence regime the linear dependence of A
on 8 Qdisappears; fram eg. 1I-1-11

S - S(cos 8)

I-3-33)
Y 03D tan 6 $6 (

assuming that we are outside the regime very near normal incidence

(i.e. outside the regime 6 < /,a' )o Pox @ < 45" we can set
tan & ~ O =0 that

-‘—A"- ~ 856 (2-3-34)
Using
SN Ly 2-3-35)
x N A (
we therefore have
”
§6 ~ -—2— (x-23-3¢)
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which is the limiting form of eg. 11-3-23,

Thus, the near-independence of path length on angle near the normal
incidence regime implies a slower change in phase thickness with angle of
incidence, leading to the large 89"“ predicted by eg. 1I-3-23 or
eq. 1I-3-36.

Within the normal incidence regime itself, i.e. when 6 < [fu”’ so that
eq. 11-3~33 no longer holds, we can set

A (cos 6) 2
N Sc::se ~ (50) (1-3-37)
s0 that
§6 ~ [N (1-3-38)

or more specifically

) 3 " "
$0 =2 |——— =2 o) a2 |2 S3.0010 A+ (vadians)
Fuum A x X (A)

& 0.4\ , (degreas)
(4)

(x-8-39)
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Thus, collection angles of order 45° can be obtained at wesvelengths

8 around 100R. Multilayers may therefore make it possible to achieve the high
resolutions that are potentially possible at x-ray wavelengths given large
numerical apertures; for this purpose Lovas et al. (1982) have constructed an

— e

x-ray microscope based on s Schwartzchild configuration that is presently
undergoing testing at the Brookhaven storage ring.

At shorter x-ray wavelengths, the X'  factor in the mumerator of
eg. 1I-3-23 in effect precludes single-substrate reflecting devices fram .
having large collection angles. PFurther, the necessity of having layer
thicknesses of at least a few angstrams precludes operation in the normal :
incidence regime; in order to cbtain fields of view that are as large as

possible it is therefore necessary to cperate at quite small angles to the i
substrate surfaces (typically of order a few degrees or s0). A device
designed along these lines will be discussed in chapter III.

=T - e e me e e
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Section 11-6 - Non-Periodic NMultilayer Designs

In the optical regime, the familiar quarterwave stack is the most
comon reflective coating, but more complicated designs are often used.

In addition to periodic designs based on a thickness ratio other than
quarterwave, such non-quarterwave multilayer designs include structures that
are not periodic.

Non-periodic designs are resorted to for a variety of reasons, such as
to increase bandwidth over the quarterwave value, or to introduce relative
phase changes between different polarizations. We will restrict ourselves
to the question of whether or not aperiodic x-ray multilayer designs can be
used to reduce the effect of absorption and 8o increase the reflectivity.

Other design objectives will be left for future research; however we
note that in the soft x-ray regime there is a fixed budget of layers that
are permitted in a design due to absorption, and often this fixed number of
layers is inadequate to produce a high reflectivity at a single wavelength
even in the absence of other design constraints. Techniques for modifying
periodic designs that require large increases in the mumber of layers used

might not be appropriate in the x-ray regime.




| e e

' Carniglia and Apfel (1980) have developed aperiodic multilayer designs
' that yield higher reflectivity in the presence of absorption than can
periodic multilayers containing the same number of layers. We will consider
whether such gains are possible in the x-ray regime.

Our first result in this connection is obtained in Appendix 8. There
we apply our difference equation in the case of a periodic reflector that
has been optimized according to the formulas of sec. 1I1-2-B, and prove that
if the reflector contains a sufficient number of layer pairs, its

reflectivity will be an extremum with respect to an arbitrary variation in

structure (the variation used need not leave the structure periodic). A

periodic multilayer coating having an optimized structure therefore provides

at least a local extremun in the reflectivity.

Limited numerical studies suggest that this local extremum reflectivity
is in fact a global maximum, Our most detailed set of numerical results is
shown graphically in fig. II-4-1. Curve 1 shows attainable reflectivity
versus number of layer pairs when all 2J layer thicknesses are treated as
independent degrees of freedam. Curve 2 shows reflectivity versus J when
the reflector is periodic; in this curve the two degrees of freedom in the

basic period are recptimized at each J value. Curve 3 ghows the
reflectivity of a periodic multilayer that has been optimized as discussed
in sec. 11-2-B to have maximum reflectivity in the steady-state limit. All

curves are obtained using the non x-ray characteristic matrix solution of

eq. 11-2-22 with a canned optimization routine.

R J

18 0 v 0 - T Lo Y. L h ekl e



I1-4-3

COMPARISON OF OPTIMIZATION SCHEMES

50 ] 1. R(J) of aperiodic designs optimized at each J
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In the steady-state limit all three curves converge. Even when the
nuwber of layer pairs is somewhat less than 1/Im(§), the highest
reflectivity that can be obtained fram an aperiodic design is not very much
larger than that cbtained fram an optimized periodic design. However,
though the difference in R between the periodic and aperiodic designs is
small, the set of parameters P‘ » P, in the miltilayers of curve 1 are in
qeneral quite different fram the constant values for these parameters in

curve 3, even in the limit of J = oo (but not in the joint limit J wdp oo,
K =P eo),

One would like to test these conclusions as comprehensively as
possible, but multi~dimensional optimization is very expensive.

Carniglia and Apfel have solved a simplified version of the
2J-dimensional optimization problem for visible HR reflectors. They show
how to calculate the particular thicknesses for the top pair of layers in a
bilayer stack that will maximize the total reflectivity of the multilayer,
given that the preceeding layer pairs have already been optimized in this
way.

They hypothesize that such a two-by-two optimization is fully general;
in other words that no increase in total reflectivity can be obtained by
simultanecusly changing the thicknesses of any preceeding layers when a
given pair of layers is being optimized using their algorithm.

Carniglia and Apfel's mathematical calculations are not applicable in

the x-ray regime since they assume that in the preceeding stack of layer
pairs, (4-R)<Kd.
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Nonetheless, their basic concept is of interest in the x-ray regime
because mirrors made by the in-situ reflectance monitoring (ISRM) technique
discussed in Chapter I will have a related property. If, during a
deposition session like that shown in fig. 9 of Spiller (1982b), one cuts off

the depositions of successive high index layers at successive reflectance

maxima, the @ value for each layer pair will autamatically be optimized
under an optimization scheme like Carniglia and Apfel's. The thickness
ratio parameters S, may be chosen by a different criterion, but the total
thickness with which each pair of layers is terminated will be the thickness
which maximizes the total reflectivity of the entire stack.

In Appendix 9 it is shown that in the »-ray regime the optimum P,
given an awplitude reflectance o  fram the stack of preceeding layers,

satisfies the condition:

Im{ An[x*g?)(?u eidn &M% 1/9‘2“" e"":)]} - 0

(1-4-1)
In Appendix 9 we show that the solution for q. is

b1 u 4 (%, ®, V) - arcsin | [ 4E ""V']
Pu= T MtV KV, ) Tere 1+ R- 2R cos (v,) |P(6)]

-y

2
where R = IQ.' e

o & lRa| ™ (1-4-2)

A.. IAu| e''s

G
£(v,, G'Vz) = V"-arcfan[::a tJsz]
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Bere, as in sec. 11-2-B, we will assume that the beat can be treated as
linearly (S) polarized. The qualitative conclusions drawn in this section
apply also in the case of unpolarized radiation. The key results in
eqs. 11-4~1,2,8 and 9 apply to both polarizations.

The optical constants used in egs. II-4~1,2 are those of the ISRM
monitoring wavelength, which mignt be different fram those at which the
coating is used, for example if the coating is meant to cperate near normal
incidence.

As K becames large, the multilayer produced by ISR becames periodic,
with R approaching the Darwin-Prins solution; in lowest order eg. II-4-1

becames in S polarization

i$ t
I had = - -
"{A"[“ (A“-AL) (A“- A) tan B, ]} ° (1-4-3)

I1f we now make the rough approximation that
A ¥ O A-~-AE A (x-4-4)
" 1 [}

we get

2ArPATA) Lo (@-4-5)

L4 U4 ’
(a,- 8)+3+

tmp
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This yields the correct Bragg condition

§ = 0 (X-4-¢6)

given that the optimization condition on P of sec. II-2-B is also
satisfied, so that the sum of the first and last terms in eq. II-4-5 vanish.

However, A‘E 0 is only s rough approximation, so that in general the
Bragg condition will not be satisfied under the two-by-two optimization
produced with ISRM.

Thus, in the x~ray regime the hypothesis of Carniglia and Apfel does
not hold, and a 2x2 optimization scheme based on an L-H unit cell does not
yield a fully optimized reflector; as a non-optimality in the Bragg
condition the error may be considered to be equivalent to a small shift in
Aor ©. As a small A or O shift, this non-optimality is not in itself
crucial since it can be campensated for by an intentional small shift
between the monitoring A or @ and the A\ or © of the coating's intended
application.

Bowever, a similar problem arises when we consider a two-by-two
optimization scheme for the P“.

In general the P“ in an ISRM multilayer could be chosen in a variety
of ways. for exanple, all B could be set equal to the p of an

optimized periodic multilayer.

W SV
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Alternatively, one could terminate deposition of the low index layers
at reflectance minima. This turns out to produce P“ values that are
numerically quite close to optimm,

Pinally, one could choose each P. in accordance with a 2x2
optimization scheme, choosing each P. successively to maximize the
reflectance of the stack of cells 1 ... K, as suggested by the discussion in
(Spiller, 1976).

As shown in Appendix 9, each B, under such an optimization scheme is
given by

] . 1/1p(0)]
P T {l ¥ aresin [ {18, 8 1* (40 R™ 2R o1 (2V,))

(2a][k + PBI/ia I* (14> 2R cos (V) A)]’ ¢ (VQ,R,V‘)}

where A= sin(§(V,,R,V)),

a-as [a-a]e (1-4-8)
] [ 3 L] [ 3




I1-4-9

which is the solution to the condition

A P 1 _Pw® -2 1
I"‘{Ag* z “."'T. -7 (8- A‘)(e“ezp”_ o .-z:&)}

(x-4-9)

In the steady-state regime, eqg. II-4-9 becames in lowest order (for S
polarization)

Im{AL-O- 2o (s t;P)-(;;j?-:S)} =0

“ [

(1-4-10)

As before, this will not be consistent with the results of sec. 11-2-B,
unless we make the crude approximation A‘ & O . Thus, except to a rough
approximation, the 2x2 optimization scheme converges to a non-optimal value
of p as well as a non-optimal value of @ .

We can see an analogy with the periodic case by adding eq. I1-4-3 to
eq. II-4-10. We obtain in lowest order:

’ [ 4 [ 4
(8- £)-

—- = 0 (§-4-11)




I1-4-10

Bere it has not been assumed that A“D.

We showed adove that under sn ISRM scheme, non-negligible absorption
and refraction in the low index layer cause the first term in the above
oondition to be non-zero. The sum of the second and third terms in the
above condition cannot then be zero; and since such a cancellation is also
the requirement for an optimized p » We can consider the non-satisfaction of
the Bragg condition to have in turn prevented the 2x2 optimization scheme
fram converging to the correct thickness ratio.

This is similar to the situation we found when treating the
optimization of periodic multilayers in sec. II-2-B, where we noted that our
condition for optimizing P in a periodic multilayer applies only if the
generalized Bragg condition Re(§)=0 is satisfied.

In the usual case that absorption and dispersion in the low index layer
is small, the rumerical consequences of these non—optimalities is only
moderate, since the accuracy of eq. I1I~4~4 increases as the index decrement
in the low index layer goes to zero. A 67.6R, 6 = 0° reflector with J=200
would have a reflectance of .19 if designed by the 2x2 procedure, campared
with a .22 reflectance fram the optimm periodic design, for a AR/R of 15%.

Further, the P“ values and the monitoring conditions can be chosen in
such a vay as to compensate for this reflectivity loss. For example, if the
monitoring and application wavelengths were the same one could introduce a
shift between the monitoring angle and the application angle that would
cancel the difference between e3. II-4-2 and eg. 1I-2-30; ome could then
chooge the P. under cne of the alternative schemes described above.
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The main advantage of the ISRM technique lies in its potential for ’
strongly reducing the effect of random thickness errors, rather than in its
use as a method for selecting the target thicinesses.
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Section II-5 - Effect of Accumulating Randam Thickness Errocs on
Multilayer Reflectivity %

part A) Introduction

X~ray multilayers must contain a large mwmber of layer pairs since
the reflectivity of individual layers is very small. The magnitude of
uncorrected thickness errors in the multilayers must therefore be kept to
a small fraction of a layer thickness in order to prevent a large
cunulative dephasing fram developing between the top and bottam of the

eyt

stack. Because the layers themselves are only of order ten angstroms in
thickness, the tolerance on random errors in the layers is extremely
tight.

The two fabrication methods described in Chapter 1 can be regarded as
alternative approaches to solving this problem.

Barbee's vacuum sputtering technique (Barbee, 1982) achieves precise
control of the layer thicknesses through the use of sophisticated
deposition procedures and apparatus; these include use of a magnetron
sputtering source to prevent high energy ion bombardment of the substrate
surface, precise control of the deposition voltage, and use of a
sulti-angle preparatory pre-deposition onto the substrate surface.

The second fabrication method is Spiller's in-situ reflectance

manitoring technique (ISRM), which serves to eliminate the accumulation of
dephasing frar any thickness errors that may be present. The intensity of

EPUE- St Y Ve
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TS U,

the IRSM probe shows an interference oscillation as the thickness of the
top layer increases; this ocscillation is essentially determined by the 1

absolute difference in phase between the upper surface of the top layer
and the stack of preceeding layers. The maxima in the peak intensities
occur when the double-pass phase thickness of the upper pair of layers is

approximately one wavelength; the precise single~pass phase thickness that !
is required is given by eq. 11-4-2.

Eq. 11-4-2 cbtains even when the reflectivity R of the preceeding
stack is non~optimal due to thickness errors. Under ISRM, the target
thickness for the ypper layer of the final unit ocell (aimed at by
monitoring the ISRM probe intensity), is that thickness given by
eq. II-4-2 vhich puts the top interface of the layer into phase with the
preceeding layers, thereby campensating in large part for any errors in
those layers.

Multilayers of the first kind are subject to what we will call
accumulating thickness errors, while those fabricated by ISRM are subject
to what we will call non-accumulating thickness errors. We will analyze
the effect of accumulating errors in part B, and will discuss our solution
in part C. Nonaccumulating errors will be discussed in sec. II-6.
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Part B) Analysis of Accumulating Thickness Errocs

Thickness errors of an accumulating type have been treatsd
theoretically by Shellan et al. (1978), and have also been discussed briefly by
Baumeister (1981). Shellan presents explicit closed-form solutions for
the reflectivity, but some of his approximations are not appropriate to
the x-ray case.

Shellan treats non-absorbing multilayers using coupled wave equations
that contain perturbation terms to represent the effect of thickness
errors. Shellan's coupled wave equations are of a form that apply to
dielectric structures operating at the dielectric Bragg condition. The
advantage here is more than the avoidance of complex indicies of
refraction; if the nominal phase thickness of the unit oell is both pure
real and equal to %, the coupled wave solutions simplify considerably.

Shellan's analysis assumes a small coupling constant per cell, as is
necessary vhen a large number of layers must participate in the
reflection; in this feature his analysis is appropriate to the x-ray
regime. In the limit that the perturbation terms are small, Shellan
solves rigorously for the expectation value of the reflectance. Be also
obtains an expression for the reflectivity in the presence of larger
errors, in the case of structures which contain sufficiently few layers
that their overall reflectivity is small campared to one; to do this he
uses what he calls an 'undepleted incident wave' approximation. In the
context of x-ray diffraction, such structures might be said to be

operating in the 'Fourier transform regime’.
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X-ray reflectors necessarily have a small coupling constant because
the wx-ray indicies of refraction of all materials are close to one.
Bowever, in the x-ray case a significant fraction of the coupling between
the structure and the radiation field {s due to absorption. Also, while
the reflectivity of x-ray multilayers can be quite severely limited by
absorption (leading to a situation where a relatively small number of
layers participate in the reflection process), it is nonetheless usually a i
poor approximation to apply the undepleted incident wave approximation to
x-ray multilayers.

It is also of particular interest in the x-ray case to be able to

consider operation off the Bragg condition, since x-ray multilayers have

very narrow bandwidths.

Another consideration in the x~ray case is that while present
technology permits the fabrication of multilayers having 2d spacings of
100A and structures of fairly good gquality, the soft x-ray spectrum can be
considered to extend to normal incidence wavelengths that are shorter than
this by an order of magnitude; in addition some experiments have been

carried out in higher orders, which are in a sense equivalent to still

shorter 24-spacings. We will see below that the tolerance on accunulating
thickness errors has an spproximately quadratic scaling with 2&-spacing.
We therefore consider it desirable to be able to analyze the effect
of thickness errors that are large enough in comparison with the layer
thicknesses to substantially degrade the reflectivity; in this case a

perturbation treatment is inappropriate.
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For these reasons we have developed a new approach to treat the
effect of random thickness errors on multilayer reflection. Our approach
renders the problem of thickness errors tractable by using an
approximation that applies rigorously in both the limit of large errors
and the limit of small errors. The approximation also tends to be quite
accurate in the intermediate region.

Our analysis is based on a decamposition of the smplitude
reflectivity into vhat are essentially coherent and incoherent parts (see
eq. I11-5-10 below).

Our key approximation is to meglect cubic and higher powers of the
incoherent reflectivity. It is essentially this approximation that allows
steady-state solutions for the overall reflectivity to be found
analytically (see eqs. I1I-5-35 and 41).

With further approximations we find solutions for the reflectivity
outside the steady-state regime (this analysis is carried out in Appendix
10; the results are shown in egs. II-5~42 and 45).

While we use a number of approximations in the derivation, it is the
neglect of higher order i:ouers in the incoherent reflectivity that is the
key approximation in two senses. First, this is the approximation to
which our results are numerically most sensitive. Second, the other
approximations that we use are akin to our key spproximation in that they
allow our results to be correct in both the limits of large and small

thickness errors. Bowever, the other approximations generally relate to

specific algebraic equations arising in the derivation.

Py s s
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We will use a particular x-ray multilayer as an example while
presenting cur analysis, namely a tungsten—carbon multilayer reflecting
67.6A radiation (B-K_) at rormal incidence. The layer thicknesses in the
absence of thickness errors, dw - 1.6.A. 4 "™ 26.5.A. are chosen in
accordance with the optimization conditions of sec. 1I-2-B. In our
exanples we will generally take J = 200, which is a sufficiently large
nutber of layer pairs to place the structure in the steady-state regime.

Following Shellan, we have tested the accuracy of our method using a
Monte Carlo simulation, in which a computer program is used to generate a
large number of simulated multilayer stacks containing random errors, and
to compare their mean reflectivity with the analytical prediction.

We have found that the analysis gives accurate results over a full
range of RMS error heights, 80 long as the undegraded reflectance of the
structure under consideration does not approach too closely to one.




We will calculate the mean reflectivity of multilayers that contain
uncorrelated errors in the thicknesses d o Of the different cells. We
will assume that the nominal multilayer structure is periodic, and that
the statistical properties of the errors are the same in all layers. If
d is the mean thickness, then let

d, = d + ad, (2-5-1)

where

<4d > =0
(2-5-2)

<(ad)y> & ot

We will treat the variance O as a known quantity. If each cell consists
of an L layer and an H layer, each of which has independent errors with
variances <AL'> and (AH’) , then due to the independence,

ot= <ALD>+ <aH>, ana

' 3
<AQ'> = % costo (<al*> + <oH >)
[ ]

ln.'crl

= cos’e

&&
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where from ¢q. 11-1-11

2rd

¢KE <¢> ¢ A,‘= R“Tm6+A9‘
2x4d,
<g> 4+ —— b o

With these definitions eg. 11-1-20 becames in first order

-2iC<t> -ziog
f . . 2
Q."g e e el' (lY’P)'(ITOP)Q‘ (1-5-5)

We rote that in eq. 1I-5-5, r, p, and « are treated as independent of

@ : this approximation is accurate to within terms of order ¢- & . As
discussed in sec. 1I-1-B, we can neglect terms of order ¢- A and Az in
analyzing stochastic problems like the present one, but we must retain
high orders in the parameter ¢ .

The fact that we can directly incorporate eg. II-5-4 into eq. II-5-5
is die to an advantage of the difference equation formalism; namely that
the formalism directly incorporates the physical properties of the
individual cells.

The fact that our equations use the properties of the different cells
explicitly has another useful consequence. Because p‘ is determined by

the properties of the cells K-1, K-2, ... , but not by those of cell K

T o rat Gt o g
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(see sec. II-1-B), we can write for arbitrary functions £ and g,

<HlB8g)g(e)> = <f(aqg)> <g((>.)>

(x-5-¢)
and in particular,
-2ia -2i
< Thg> = <N o >
(x-5-7)

The first expectation value in eqg. II-5-7 is the characteristic function
of the variable - 2 AQ. (Papoulis, 1965, p.159). Any probability
distribution with known characteristic function can be used in the
analysis to follow. For simplicity we will assume Gaussian statistics; as
we will see, the final results are very insensitive to the exast choice of
distribution function.

Then using

- -2<ae>
<eu°'“> = e ' (%-5-7)

wvhich holds for a Gaussian randam variable with zero mean, we take the
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expectation value of eq. II-5-5, and get

-2i<t> -aqaq?
e i

<. - <p,> - lirep)-(irep) <l >
(3-5-9)
Now, we define the variable 'é through the relation
}
6, = <p>*% (3-5-10)

"é therefare represents the randam or non-deterministic part of the
reflectivity. Bince the phase of § is campletely randam, we may also
reqgard it as the incoherent camponent of the reflected beam.

Since




II-5-11
eq. 11-5-9 becomes
-sict> -3CAe™> '
(Q.“> = e e <p.> = (ir=p)

- lir+p)<e > - lirep)<F'>

(-5-42)

In order to solve this equation, we must ocbtain < 'é'a > .
[}
Subtracting eq. II-5-12 fram eq. 11-5-5,

_ -2i<e>  -disg -2iqe> -2¢oet>
] ® e e - e e Q.>

[ 22

«2:€t> -ziaql
+« € e

- Z(ifop) <9.> §.
(n-5-13)

- livep) (§)- <§>)

Next we square eq. 1I-5-13, neglecting terms of order ¢- & and b .
We find

¢

[ $23

-3 -4 -4 ~4:{t> -4 >
- [ela(t>elbq. . e 14 e -

. . t 2
~4i{t) 29 <-2{be9)>
-2e e e 7t ] <g,>

(continued on nest pege)
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3 . L 3

] <4i<t) -~4Caed>
PP Dk A 1

®

«2i<4) -2iag -2 A -2i . 3
+2[e . "][e w ."‘-e‘“,tu",]<e>'§
[ 3

-4livep) < > - 2¢irep)(p’-5, <§'>)
(B-5-34,
continued)

pefining

-

§, 8 - <t>-(r-ip)<p > (R-5-15)

we can cmbine the second and the second to last terms on the right of
eq. 11-5-14 to obtain

. . 2

“4i<t> ~didg  -4i<e> -~alagt> 4iCt> -2¢aq’> -Risg

? .[e e “ee e -2e e e 1{p >
[

ey
. 3
-4:<t> -4 -4iKt> =2ia -3<agq > -~
¢z[e' e ot o4 T o '}<Q>(’.
[ 3

R eui:,e-«aq >§s -2(ir0p)(§: - .e. <.§z >)

(p-5-136)

The error in this substitution is of order - 4.
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Taking expectation values, and using < § > =0, we get:

Y -4iC 0<aq"> 4> -acoe’s | -4it) -acagt
>=[e e VT, W gt gt <e,>

+ e-o.‘(s-)e-:“,')

<E>- z(sn,)<§_’>
(B-5-11)

We will first find steady-state solutions to egs. 11-5-12,17. In
order to operate in the steady-state limit, a multilayer mist contain a
number of layers sufficient to extinguish the incident beam before it
reaches the substrate. In addition, the statistical properties of the
thickness errors must be independent of XK. In general, extinction may
result from a combination of absorption, dephasing due to detuning from
Bragg resonance, dephasing due to thickness errors, and depletion by
back-reflection.

In the soft x-ray regime, absorption is a samewhat more important
extinction mechanisn than depletion by back-reflection, so that, following
the discussion of sec. 11-3, we may oconsider a multilayer to operate in

the steady-state regime if

-4
T > (&) (8-5-18)

rollowing the discussion of sec. 1I-1-B, we can consider the total

phase error contained within the structure of a multilayer operating in
¥,
the steady-state limit to be of order (<Aq’> / "), assuming that
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the thickness errors accumulate in a random walk fashion.

When <A§'> & u” , the errors may be treated as a wmall
perturbation on the ideal periodic structure, and may be considered to
cause only a small drop in reflectivity. (This will be shown more
rigorously below).

On the other hand, if <Aq;>» 4", the errors cause a substantial
drop in reflectivity, and can no longer simply be treated as a
perturbation.

In the soft x-ray regime, the condition (A,") (<4 s
considerably more restrictive than the condition <A7z> & 1. vhen
<Aq‘> approaches ¢ne, the different layer pairs can no longer interact
coherently and the reflectivity becomes very small, assuming that the
structure has a small coupling constant. (In our §7.6A example with
<Aq&> set to 1, the Monte Carlo simulation program described below shows
that R = 0.0027). The assumption <A9‘> & 1 is therefore an
assutption that the structure maintains some resonant reflectivity; it is

a generalization of a standard assumption in crystal diffraction theory,

which in our notation states that ¢ < 1§ .

In the analysis that follows, we will not need to assume that
<A9‘> & u”", tut vill assume that CA¢'> & 1, or more
specifically that terms of order A 9’ are negligable. If in cases of
greatest interest, (Af) ~ u" , then terms of order A Q’ are

numerically comparable to terms of order @ 4.
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P

The distinction should be born in mind when following the discussion

in (Shellan, 1978), whose perturbation treatment in essence makes the
assumption that < AQ‘> L lal.
We should note that the above arguments are somewhat oversimplified

in that they only consider extinction of the beam due to error-induced
dephasing and absorption. We will see below how these criteria are
generalized.

Neglecting terms of order A 9’ » We can set

Aqt
<elA’._> = <1' ;Aq'- —-z-—u- >

<oqe'>
i- -—~£—- (1-5-4%)

independent of the probability distribution satisfied by the randam
errors.,

2
Pg. II-5-17 then becomes (neglecting terms of order ¢+ A and A ):

CF* D= -4<Ag> < ¢ (104i5-3< D) <G>
[ 12 " [}

-2(ivep) <'é':> (2-5-20)
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The key approximation used in the present analysis is based on the
double inequality

<I'{>’I‘> < <Iqlz> < 1 (3-5-21)

The right hand inequality is fairly strong in the soft x-ray regime, where
the absorption-limited reflectivity is typically of order 208. The right
hand inequality is particularly strong when <A ¢’> D> u" , since the
multilayer reflectivity is then severely degraded by the randaom thickness
errors.

On the other hand, the left hand inequality becames very strong when
<A g*> & 4", since in the limit that the errors are small, < ¢ >
approaches p (see eq. I1-5-10).

Since both inequalities are always in force to a certain extent, one
can generally assume that <l'é'|‘> is small campared to one (see
fig. I1-5-1 which shows < I3 1"> plotted as a function of o). We will
therefore assume that terms which are cubic or higher in § are
canpletely negligable,

It is this neglect of cubic terms in § that renders the problem of
randam thickness errors tractable over a broad range of error magnitudes.

These cubic terms are particularly mmall in the limits
<a 9") K u'ox< Af') 3 u”. our analysis is therefore most
pensitive to the approximations we have made at values of O in the

PRy
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intermediate region. In our 67.6A example, CAq*> =4 at O = 1.22h; we
will use O = 1A when presenting rumerical examples.

Our key approximation has been found to be quite accurate for
multilayers operating in the soft x-ray regime, as the numerical examples
presented below will show.

If we neglect terns of order T’ in eq. II-5-20, we get

-2 - 2 .z 2 - 2 2 2
<R,.,> = <IR >+ (4i5,-8<aq >)<IQ.I >-4<b89 > e >

(2-5-22)

— e o

(At O = 1A in our 67.6A example, the neglected cubic terms have about

0.04 of the magnitude of the third term on the right in eq. II-5-22).
wWhen raliation no longer reaches the substrate,

<F: >= <> = <> 5o that &g, 11-5-22 has the solution

<A ><>

<gi> = - — - (x-5-13)
s *2<48¢ >
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In the steady-state this solution can be substituted into the last
term of eg. II-5~12, which then becomes

<2iCt) -1caqd>

<g>= e e <¢> = (ir-p)
2 a¢'
- (ir +p) <p> (1- oy
i<t>02<AQ>0(iro')<Q>
(X-5-24)
or, neglecting terms of arder 9. & and ¢,
<e>2(i<t> + <A¢’>) = = (ir-p)
. 2 <a¢*>
“(ivep) <> (1~ A
i<t> +2<49 >+(.’r+P)<Q>

(3-5-25)

This equation reduces to a cubic polynamial in <> .

We note that the substitution of eq. I1-5~23 into the last term of
eq. I1-5-12 tends to be quite accurate in the soft x-ray regime, for three
reasons. Pirst, {(iv + p)| is generally somewhat less than
|2i<¢>]| . s that cur approximation is made in one of the less

sensitive terms of eg. 1I1-5-12. Becond, the factor <'§'> in the fourth

P
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umhMlmd&ﬂnt&tor(Q)ztn:hetmtdum,cxceptvihen
<a¢> > u”, in vhich case both the third and fourth terns of the
equation became small campared to the second term. In our 67.6'& exxmple
the last term of eg. II-5-12 is 0.22 of the magnitude of the second term
on the right-hand side at o = 1A. Pinally, the cubic terms in § that
are neglected in eq. II-5-23 tend to be quite mmall as discussed above.

Using similar approximations, eq. II-5-25 can now be converted fram a
cubic equation to a quadratic equation with very little loss in accuracy.
In the soft x-ray regime <Q >a. is fairly small even when the errors are
small, making the second to last term of eq. 1I-5-12 small. The last term
of eg. I1-5-12 tends to be samewhat small for reasons discussed in the
preceeding paragraph. The steady-state solution of eq. II-5-12 when these
two terms are neglected is

[(f¢ip)/2<t>]

: (2-5-26)
7 -
1+ < '>/i<t>

<¢> =

(Prom this one can derive the expression

|reipl’/4
(o> -,u')z+ (< A,'>¢ u")"

2
|<e>| =

(X-5-27)
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which is quite useful for rough estimations). The argunent used in
deriving eq. 11-2-26 can be considered to be somewhat analogous to
Shellan's "undepleted incident wave™ approximation.

Eq. 11-5-26 is least accurate when <A g > <« 4", since the
neglected second to last term of eg. II-5-12 can then approach the same
order of magnitude as the second term.

Bq. II~5-26 can be normalized to give the correct O = 0 value by

re-writing it as

P

Al
1+ <292/,

<p> = (r-5-28)

where the rumerator is the solution to eq. I1-5-5 when O = 0, namely
eq. II-2-11.

The following considerations permit a further improvement in the
accuracy of eg. I1-5-26 when O is small. If O is small, the factord
in the denaminator of eq. II-5-23 can be set equal to § (given by
eq. 11-2-27), since the left hand inequality in eq. I1I-5-21 becames very
strong, permitting r. jlect of terms of uder(<A9‘>/.u')l. Bq. 11-5-24
then becames

2
<> (2i<e> +2<Bg™> = ~ (ir-p) - (ir+p) <pD

2

2 <bq > 2
= (irep)<e> = (ivep) T <e¢e>

(z-5-29)
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where we have set -5 2 <A9"> & -5 in the last tem,
since we are for the mament considering {(AQ‘>/4“’)‘ to be
small.

1f we define AQ ® oD~ P, ¢ and neglect terns of order
<8¢’>(8¢), eq. 11-5-29 becomes

2
a
Lp2i<t> +2<qu>903 =2(ir+plp ap - (irep) <_:> Ql
. i

(g-5-30)

which with the use of eq. II-2-1l reduces to

8-<t>))

<p> = e, (1-i<Aq>z>( YL

(8-5-34)

(This may be regarded as a second-order perturbation solution to
eq. 1I-5-9.) Writing

- { 2
1-i (357 ) <aet> = +0 [———“1’])
23 Ly §-<t> <a z> “

L 2
1ei( 25° ) M

(g-5-32)

PR o




11-8-23
we can rewrite egq. 11-5-31 as |
|
9. B2-5-3))
<e> T 5- < > (
1« ( : ) <a

8o that it now has the correct limiting behavior wvhen U is small. '
Eqs. II1-5-26,33 are plotted in fig. 11-5-2 for the case of our 6€7.6A
example.
Substituting eq. II-5-33 into the last term of eq. 11-5-25 (note that

this last term is most significant at mmall O, where eq. 11-5-33 is
designed to be most accurate), we obtain the quadratic

<ae’>

2
<e>(r-ip) [ 1- i(5+<t>

1."8 (t))<67>

i<t>+2<a¢’>-

+2<p> (<> -i<ag’>) s (reip) = 0
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SUCCESSIVE APPROXIMATIONS FOR <p>

TUNGSTEN-CARBON MULTILAYER

e
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Po
<p> =
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0.2 —~
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Plots are for a W/C multilayer reflecting 67.6A radiation
at normal incidence. d,, = 7.6A, d = 26.5A.
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Figure 11-5-2
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whose solution, after manipulation, i{s found to be

<ag’> (z- [—-—-—‘;f? ] [(t) +2i<A q‘>])-'.s

<*-ip)[< agt> (1‘—-“—’] [<c>~ ;<Aq‘>])- as}

| 2s*
r

2
x{(<t>-i<ag>)+[(<t>-i<ae®)

e

4
; T
(r*+ 8 [< a¢*> (z[ $ z:§>][<g>¢z;<a,‘>})-as]
<ae'> (1-["1?:)][(0 s i<A¢‘>])-is
(R-5-35)

This is our final solution for <p> in the steady-state regime; it is
plotted in fig. II-5-2.
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Since

<R> = <[<p>|? +2Re <9> )*|9|>

= [<p>1" ¢ <I51°> (1-5-36)

U
we need to £ind <1 § | > in the steady-state in order to find <R > .
Taking the magnitude squared of eq. II-5-13, and neglecting terms of
3
order ¢+ A and A gives

~ 12 - "_ 2 >\~ 2 2.2 2 1
lp | lQ‘l 4(Aq»“ -rln(s.))lp.l *4A¢f.|9ll +4AQ‘ |<Q->|

._ 2 . -t
¢8A9:Re (<9.> Q') + ZRe ((<A¢'>- AQ. °IAQ)<Q‘> e, )

-zR.((irfN(l?'%’ ? ~1>))

(X-5-37)
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We have neglected terms of order (Aq®), and have used og. II-5-1S.

The final term on the right of eoq. I1I-5~37 is of order ?’ , and we
will neglect it for the reasons discussed above,

Taking expectation values:

- 2 -~ 2 7 i~ 2 2 2
< 1> = <IF P> - 45, IR IT> + 4<aet> (< >

(X-5-38)
In the steady-state
.<|'Q"l l|’> = <|‘§“|’> = <|‘§|‘> (3-5-39)
so that
<ag’ 2
<|§|’> = --—_3;—>- |<9>| (x-5-40)
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The neglect of cubic terms is a poorer approximation here than it was

in the steps between ogs. 11-5~20 and 23, since in the latter case the
cubic terms were neglected only in less sensitive terms of eq. II-5-12.
In our 67.6A exanple at O = ﬁ. the ‘Q" terms neglected in
eq. II1-5-37 total about 0.06 of the magnitude of the terms kept.
Fran eg. II-5-36 our steady-state solution for <R > is thus

<At
<R> = <lpl*> | g+ ——.i.—> (1-5-43)
3

with l(e)lz cbtained from eqg. I1-5-35,
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We now wish to determine < R > cutside the steady-state regime,
i.e. for the case of a multilayer containing sufficiently few layers that
a significant portion of the incident beam is transmitted into the
substrate.

The analysis for the finite-K regime is presented in Appendix 10.
Using approximations that are similar in spirit to those used in the
steady-state analysis, we £find that the reflectivity of a multilayer

containing J-1 cells is

s <> (1- emm.”)
> = T
3 1-(,.,;P ) -iS e<ne> >z ROZE
Teip /| -i§v2<8q"> Y
(B-5-42)
where

2 i3, 0<AQ'>
- . Y - Y £y -
D E ’ (n(t)-t(Aq >)=(r vp)(_;s " " )

(2-5-43)

Bere < @ > is the steady-state solution of eq. II-5-35. The subscript
-

on 7, indicates that eg. II-5-15 is to be evaluated in the steady-state.

In the special case of a bilayer reflector
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<> (1- ez:u:r-s))

2ip[ -i5 v <aet> 2 2:i0(3-9) -5-
- e i “\<p Se (R-5-44)
'|3-92<AQ >

<p’> =

~ (2
Our solution for <| v, 1>  outside the steady-state regime is

2<A9’>|<Q:>|"

2
Llgl™> =
e.': I1 a.i(:r-a)bl’-

-e
a5-8," e3-05
-4(7- 2i(3-3)D -4(3-

- e J e ! - e J

x - ¥ - Re -” 'D

zs_y 3: +! /2

-4(3-1)0" -4(3-1)
e -e
+

ST
(x-5-45)

Here § s is given by eq. 11-5-15,

<R,> is now given by eq. 1I-5-36.
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In order to test the overall accuracy of the different approximations
used in deriving our solution, we have written a Monte~Carlo program to
directly simulate the effect of randam thickness errors.

The reflectivities of the simulated stacks are computed using the
characteristic matrix method. The exact (non x-~ray) characteristic matrix
solution of eq. II-1-22 is used, rather than the x-ray approximation of
eq. II-1-14. A Gaussian randam number generator is used to obtain the
thickness errors.

Fig. 1I~5-3 compares our solution to the Monte Carlo results, The
tested values of O include the parabolic portions of the curves in the
small - O perturbation regime, where AR/R &« 1 , and extend into the
large - 0" regime where the drop in R fram its undegraded value is quite
substantial.

By varying the sample size and studying the observed gcatter in the
Monte Carlo results, we estimate the accuracy of the results due to the
finite sample size (usually 2000 simulated stacks) to be about .0005.

The theoretical curves for AA /A in fig. II-5-3 were cbtained by
numerically finding the half-max points of <R 2> . This procedure
implicitly makes the assumption that the half-width (in wavelength) of the
expected reflectivity is equal to the expection value of the half-width of
reflectivity.

This is a reasonable assumption to make in order to obtain a rough
idea of the behavior of AA/A ¢+ further one can make arguments showing
explicitly that the assumption should be accurate if O is small. However

it would be very expensive to test this assumption using a Monte Carlo
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simulation; we have not done s0, 80 the AA/ )\ curves in fig. I1I-5-3
should only be regarded as approximate.

One would expect our solution for <R, > to became less accurate as
the undegraded reflectivity of the structure under consideration becames
large, because in that case neither inequality in eg. II-5-21 will hold
strongly at intermediate values of O,

The 6A to 1253 range covered by Benke's compilation of scattering
factors (Henke, et al. 1982) might be considered to represent the full
extent of the soft x-ray regime. According to fig. II-2-5, the largest
soft x-ray reflectivities that can be attained with tungsten-carbon
multilayers are at short wavelengths and at wavelengths just above the
carbon-K edge.

Figs. II-5-4 and 5 compare our solution with the results of Monte
Carlo simulations in each of these cases. The agreement is quite close;
therefore our analysis can be expected to accurately model the effect of
randan thickness errors in tungsten-carbon multilayers operating at any
wavelength in the soft x-ray region, since reflectivities in the region
will not be significantly higher than in the two cases considered in
figs. I11-5-4,5.

The 6A case cannot easily be simulated at normal incidence because
the number of layer pairs required would be impractically large, making
the cost in computer time prohibitive. On the other hand, the Monte Carlo
program does not implement algorithms for off-normal incidence

calculations.
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According to eq. 1I-2-15, the multilayer parameters v, prand u
scale as sec® 9 . Thus, the effect of a non-normal angle of incidence i
can be simulated by multiplying AL and An by this factor. In this way
f£ig. II-5-4 simulates reflection of 6A radiation fram a 24=75A multilayer 2

at an angle @ = arcos{ 6A / I5A ) = 85°.

The errors introduced with this technique are of order & and e- b,
and 80 belong to the class of approximations made in sec. II1-1. Since
these errors include none of the statistical approximations made in the
present section, the Monte Carlo results can be considered to be a
reasonable test of the statistical assumptions at A = 6A.

(Of course, one can simply regard fig. II~5-4 as being based on an

artificial example designed to test our result under conditions of high

reflectivity).
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Part C) Discussion of Solution

We now discuss the general behavior of our result.

Fram the approximate result of eq. 11-5-27, we see that (to the
extent that multiple reflections can be neglected), the dephasing < qu>
has an effect on the reflectivity that is roughly similar to the effect of
", f.e. that is similar to the effect of absorption.

In sec. II-2-C we saw that the bandwidth of an undegraded multilayer
was of order Z.a'. The similarity between the effect of thickness errors
and an increase in absorption therefore causes the dependence of AL/
on O to be approximately parabolic (i.e. linear in <Ag >}, as shown in
figs. I1-5-3,5.

In the large U region where extinction is due primarily to dephasing

resulting fram thickness errors (i.e. in the region <A1‘> > wu"y,
the effective number of layers participating in the coherent reflection
process is of oarder <A ?z. >.‘. because absorption imposes only a minor
constraint on the number of layers involved. The coherent reflectivity in

this region gshould therefore have the approximate form:

- z . z
2 l.‘ . ‘ |T'0|rl
|<Q>| ~ | <A¢> (reip)| = — z (B-5-4¢)
<d¢ >

vhich is indeed the limiting behavior of eq. II-5-35.
2
Thus, the coherent part of the reflectivity [<Q > | falls off

approximately as O ~4 in the limit of large errors.
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In this linit the incoherent component <|§ |"> falls off more H
2 (see fig. II-5-1). 1In the limit of very large errors
i (i.e. in the region <A ¢'> > 1 , where cur formalimm is no longer ¥
valid), the incoherent reflectivity can be expected to enter a regime in N

slowly, as O -

which the reflections fram the individual cells add purely incoherently;
in this case the dependence an ¢ will be determined by the effect of the
thickness errors on the reflectivity of individual unit cells,

Bowever, in the regime of interest to us (where < Aq‘> € 1), the
incoherent beam can be considered to be generated by "packets™ of unit ‘
cells; the packets are groups of unit cells which have been displaced fram ‘
their expected phase positions by the accunulation of thickness errors, l
with the number of unit cells within one packet (this rusmber is ‘
~ (< A,’))" ) being such that the cells in the packet still maintain
strong coherent interaction with one another. (Thus, by definition the
reflectivity of a packet is < e>).

Since (3§ ”)" is the total number of layers in the structure,
eq. I1-5-40 represents the incoherent sum of the reflectivities of the
packets; i.e. <Ip I1*> is given by the number of packets in the l
structure sultiplied by I<Q>Ia .

The incoherent reflectivity will be largest when there is an

accumilation of about one radian of dephasing across the effective
thickness of the multilayer, 80 that the size of a packet is camparable to
the effective multilayer thickness; this occurs when

L4

<a¢’> — w (X-5-47)
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If O increases beyond this point, the incoherent reflectivity begins
slowly to decrease, and the coherent seflectivity begins a very rapid

decrease,
Therefore, using eq. I11-3-15, we can establish the following \
tolerance on thickness errors that the multilayer must satisfy in order to l

have high overall reflectivity:

<a¢’> € W' = 4x10° (24, ) (2-5-48) !
3
or
. £ 3= 10.‘ (24, )z (R-5-49)
- ) )
Thus, there is a variation in sensitivity to thickness errors

apounting to approximately two orders of magnitude acroés the soft x-ray
region.

Pram eg. 11-5-43 above, we see that this same criterion can be used
to characterize the effect of thickness errors on multilayers operating
outside the steady-state regime, except that the fractional fall-off of
the reflectivity with O is slower when J < (M').‘: this is because
the steady-state regime is reached more rapidly with large O dve to an

increase in the imaginary part of the parameter D defined in eg. II1-5-43.
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o’ may be regarded as a generalized extinction parameter that
incorporates the effect of absorption, dephasing due to detuning fram the
Bragg condition, and dephasing due to thickness errors.
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Section I1-6: Non-Accumulating Randam Thickness Brrors

Part A) Introduction

In section II-S we have analyzed reflection from naminally periodic
multilayers that contain accumulating thickness errors. In such
multilayers, the target thicknesses for the layers are constant,
pre-determined quantities, 80 any errors made in meeting these target
thicknesses will accumulate randomly, resulting in a degradation of
reflectivity through the accumulation of dephasing.

On the other hand, when x-ray multilayers are fabricated with ISRM,
the target thickness for each high index layer becomes that thickness
which will bring reflection fram the layer into phase with reflection fram
the preceeding stack; thereby eliminating the accumulation of dephasing.

Spiller et al. (1980} have verified experimentally that ISRM
substantially increases the number of layers that can successfully be
fabricated in an x-ray multilayer. Wwhile the tolerance on thickness
errors is considerably less severe when ISRM is introduced, it is still
quite stringent (on an absolute scale) canpared to the tolerances which
govern optical multilayers.

In this section we analyze the effect of non—-accumulating thickness
errors. We will find that with this kind of error, the reflectivity loss
is due to a degradation in the structure of individual unit cells.

Because of this degradation the single-cell reflectivity is reduced by a
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Debye-Waller factor; the effect of the errors will also turn out to be
similar to that of interlayer diffusion.

In many ways the analysis of non-accumulating errors is a more
difficult problem than that of accumulating thickness errors.

First, multilayers fabricated with ISRM are not periodic. Second,
with ISRM there is a complicated interaction between a human operator and
the multilayer's structure and reflectivity. Third, the wavelength and
angle at which the coating {s used may not be the same as the wavelength
and angle at vhich the ISRM is performed (see sec. II-4).

Pourth, the error magnitudes of greatest interest in the present case
are larger than those of interest in the case of accunulating errors. The
a priori assumption of a Gaussian distribution is therefore less
reasonable with non~accunulating errors, since the errors may not be small
campared to the layer thicknesses. (For example, when the errors are
large a Gaussian distribution will imply the existance of layers with
negative thickness.) Purther, in contrast to the accumulating case, in the
present case the reflectivity loss is sensitive to the detailed shape of
the probability distribution.

Finally, when ISRM is used we cannot make the usual kind of
superposition to treat reflection of unpolarized radiation; the radiation
can only be treated as polarized under certain special conditions.

It will only be possible to arrive at fully snalytic solutions to the

problem of nonaccumulating errors under certain special conditions.
Nonetheless, the complexity of the mumerical oomputations that must be
made in the general case will be reduced to a level similar to that

e, N

T
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involved in carrying out the two-by-two optimization procedure described
in sec. II-4 (egs. II-1-20, 4-2, and 4-8).

In particular, the analysis will eliminate the need for expensive
Monte Carlo simulations, which in the present case are particularly
camplicated for the reasons listed above. In the steady-state, the
required computation reduces to the solution of at most two coupled
algebraic equations, which can (to a fairly good approximation) be solved
analytically.

We will use two methods to analyze the problem of non-accumulating
errors. The first method will be mathematically quite rigorous as long as
certain special conditions obtain., The second method will be more
phenamenological, but can be expected to be applicable under a broader
range of circumstances than the first method.

Despite the camplexity of the problem, we will in each case try to
keep the assumptions as simple as possible. The purpose of our analysis 1
is to explore the kinds of behavior that may be encountered in practice,
rather than to make strongly quantitative predictions; detailed modeling
will be warranted as experimental work in the field beccmes more

extensive,

Bach of our two methods will be based on a stronger version of the
key approximation used in the accumulating case, namely that the parameter
T defined in eq. II-5-10 is small compared to one. In the
non-accunulating case we will show below that it is permissible to neglect

quadratic as well as cubic powers of § .
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-~

Since § << 1 , it will be possible to set

R ¥ <po> (3-6-1)

(Clearly this is not a good approximation for the first few layers.) We
will find that in this one feature the problem of nonm-accumulating
thickness errors is simpler to analyze than that of accumulating thickness
errors.

Both methods of analysis will assume for simplicity that the
thickness errors obey Gaussian statistics that are independent of K. The
analysis can without significant modification be applied to more
camplicated distributions. BSuch distributions might, for example, keep
the layer thicknesses always positive, or make the RMS errors inversely
proportional to the ISRM signal modulation.

Both methods of analysis will assume that a set of target
parameters have been obtained in same way (for example, by one of the
methods discussed in sec. II-4). We note that even though p_ is
naminally the phase thickness of the high index layer, £, can, as shown
in eq. 11-2-43, be regarded merely as a division parameter. As such, it
can be considered to determine the desired thickness of the low index
layer, rather than that of the high index layer, via the relation
P‘.. & x -~ ,B". B x- p. . The reflectivity will be much less
sensitive to the thickness ratio than to the total cell

§
%
b




11-6~-5

thickness % =@ .

The final ., value for each cell will, in the absence of errors in
the Kth high index layer, autcmatically satisfy eq. II-4-2 due to the use
of the ISRM technique; this will be true independent of any errors in the
preceeding layers.

The first, more rigorous analysis will make the following two
assumptions in addition to those made above,

First, it will assume that errors occur only when fabricating the low
index layers (L layers). This is reasonable because in many cases the
oscillations that the ISRM signal will undergo when the L layers are being
deposited will be considerably weaker than the oscillations that occur
when the high index layers (H layers) are being deposited; this will in
turn lead to smaller errors during the R depositions. The L layer signal
oscillations will be particularly weak when multilayers having 28-spacings
considerably shorter than the carbon-K edge are fabricated, and it is in
such short spacing multilayers that thickness errors have their greatest
effect. Bowever, we should note that in many cases one might choose the
ISRM wavelength to be one which causes a strong contrast during L
depositions (Spiller, 1982b).

Another factor that will tend to reduce the magnitude of the errors
made in fabricatisg H layers is that their depositions will be truncated
at reflectance maxima; these are caomparatively well-defined positions on

the ISRM trace.

c A e s e
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Depending on the algoritism used to determine the B, the desired L
truncations may not be as easy for the operator to relate to the ISRM
trace, resulting in larger errors during L depositions.

In addition to assuming that the high index errors are negligible,
the first method of analysis will assume that the ISRM probe beam can be
treated as polarized. This will be strictly valid only if the probe angle )
is near grazing incidence, near 45° incidence, or near normal incidence. ‘
(As a practical matter it is doubtful that the probe © can be made less

than 15° or ®0}.
The second method of analysis will not need to assume either a 1

polarized probe beam or to assume negligable errors in the B layers; it #
will, however, be less accurate and less rigorous than the first method.

i
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Part B) First method of snalysis
If there are no errors in the B layers, we can write the phase
thickness of the Kth low index layer as

(B-6-2)

a2
4% ¢cos O 2

where f,_ £ 2r/A 056 f ¢ 8nd the thickness error f  is a randm
variable with mean O that is assumed to cbey Gaussian statistics that are
independent of K. }SL.“’ , 15 the desired phase thickness of the Kth low
index layer.

We note that eq. II-6-2 will not obtain if there are errors in the H
layers, since an error in the K-1st H layer will cause a f term with
subscript K-1 to be present in Ps.- . Gue to the autaomatic error
canpensation achieved with ISRM.

In the remainder of this section, we will for simplicity's sake
surpress the K subscript on all multilayer parameters.

At this point we also introduce the following quantities:

2 E A sec’d A = A sec’e
] [ ] - - [ [ 8
7e 3-8
- -~ - E re
R .® 1+3 RE 1+B

(2-6-3)




On the grounds that § 4s mmall, ve now set p & <p> in

og. I1-4-2 (and =0 W& :llo st

<R>E CReOE I <> wm vV EV_ ., 0
Under the assumption of no errors in the B layers, ®, will still be 4

given by eq. II-4-2 despite the presence of randam errors in the L layers.

Bg. II-4-2 will now depend on these errors only through the first '
term and through the 4" term in the parameter R .

Since the distinction between R and R is a higher order effect, the
substitution

2 aacu’>
|<e>1 et (B-6-4)

mn

R o= 1< <e* >

where < u> E X.Z“ - p“ ?3' , will not effect our result except to
order¢- A- § -
Then from eq. 1I-4-2 we can set

[

¢ = <¢> + ;-:- + 0(¢-A-§) (B-6-5)

where

2 . P
y , 1+l<p>] e
<¢>=3 <u>+ V‘p- avctan T tanV,
1-|<e>l'e

(continued on next page)
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- aresin
. “ c2¢u”,
1PO) [19)<oote <> < 21¢p>1 e ¥ 7 o zv“/

(2-4-4,continued)

We note that if qo is the the defect-free ¢ value for the Kth cell,
<¢> # ?, -

< @ > must be scaled from the wavelength and angle of the coating's
fabrication to the wavelength and angle of the coating's application, if
the two are different (i.e. one must set
<¢q> = <¢>- (A, cos6,) / (A;wsﬁ‘) )o It will
then also be necessary to propagate < ¢ > using eq. II-1-20 in two
separate sequences; the first under the fabrication conditions and the
second under the application conditions, with the scaled values of < ¢ >
used in the second sequence. Eg., II-6-5 will then still hold for the

second sequence, but the error term of order ¢ - A-§ will be different.

Next we determine < > and <t>. wWe have
" "¢ - B
.q../
= (%~ <q>'ﬂt°)'&-;-2-

(2-6-17)
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Similarly

LA n »
=(x-%p, -7 <p>)- £3'-i5"
' <e>- 27 -igz"
z 4 ibq (1-6-8)

where again both € ¢ > and <p~> are { dependent.
In Appendix 9 we show that the propagation equation for R

(eq. 11-1-20) has the form

-ie 't P(a)(z_;:np“e"'& * B sinp ')

- 36-’“' P(G)( Z_s:np.e"" + z‘sinﬁke.i") 9’

(p-6-9)

in the bilayer cmse. 7o derive oq. 1I1-6-9 we have used the definitions in
eq. II-1-15 to recalculate the quantities in eq. II-2~15 under a
non-centrosymmetric geametry (L layer on substrate side, H layer on

incident side), and have retained terms of order ¢- A, which are

neglected in eq. I1-2-15.

~~
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Assuming Gaussian statistics, we have fram eqs. I11-6-8 and 5-6

. . R S
<e-2|t S = e~2|<¢> < ei‘(q -Z»q ’>
“2i<t> . <s*> (“'1-4""’"-4"")
= e e 2 9 'q9 9 9

e~2§<f> + O(AS)

(Here we have used the same identity as is used in eq. 11-5-8, which can
be shown to hold even when the randam variable in the exponent is
multiplied by a complex coefficient).

We can now set the expectation value of the first term on the right
of eq. 11-6-9 equal to

2

<e¢>

In order to calculate the expectation value of the remaining terms in

the equation, we must determine the quantities:

<sinp &P e

<sinp e’ &>

i -9t
<sinp.e ‘e >

<sinp, ehes (X-4-12)
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Begiming with the first quantity in eq. I1-6-12, we expand sin B
into exponentials, and first calculate

i it

<e'* e-"‘ e > (X-6-13)

Using eqs. II-6-2,7, and 8, we can set

BB -t = <B> - B, <t>-2§ - Lif

.0

(B- 6-34)
80 that under Gaussian statistics
B SiB st <> - -i< -2<E > (4-i7")-
<eP"e ‘e > = e' P e'p"°e »e > 'q)+0(§)
(x-6-15)

Through similar steps the remaining quantities in eq. II-6-12 are
readily obtained. Neglecting quadratic and higher terms in § . and
neglecting terms of order a* » we obtain for the expectation value of

eq. I1-6-9
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-i - . - s -;
PiO) -i<e> [A_e Ao (e <P> o 26> _ P>y

+ 2 e;<’~> (e;h’f, e b ot <“>)]

s

pe) -3<¢t> 2T . . o - 3
- Te <?‘> [A.eﬁ.,o(e<p,>_e <ﬁ.>el<§ >)

+ E P> (i 28> ik )]

S

(T-6-16)

We can now propagate <g > through the stack using egs. 11-6-6,7.8
and 16. Since § <& 1 , we can set <RD = [<p>1* to cbtain the
intensity reflectance. This is as far as we can proceed towards a fully
analytic solution cutside the steady-state regime., 1In the steady-state
regime, egs. 11-6-6 and 16 reduce to two ocoupled algebraic equations, which
can be rapidly solved by an iterative proocedure in which <¢> , <t >,
and < p.> are initially set equal to their defect-free values.
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Part C) Second method of analysis

A comparison of eq. II~6-16 with eg. II-6-9 shows three Ways in which
non-accumulating errors manifest themselves: first, in the difference between
the expectation values of the parameters P, and t, and the defect-free
values of these parameters; second, in the difference between p and its
expectation value; and third, in a direct way through the presence of the
Debye-Waller factors exp(-2<§*> ).

In our second analysis we will treat the first of these effects as
negligible. In essence we will assume that the ISRM technique keeps the
total phase thickness of each cell a constant; in other words, we assume
that each H layer thickness is made by the ISRM technique to compensate
for any OPD error present in the preceeding I layer. (To within order
£ L, we can also set the optical path difference equal to the physical
path difference. After the expectation value is taken, the error in such
a substitution will always be found to be of order A <(’z > ).

With the second method of analysis we can treat the possibility of
errors in the H layers as well. In order to do 80, we go to a
quasi-centrosymmetric deconposition in which the cell interfaces lie
within the low index layers. (The decomposition reduces to that shown in
£ig. 11-2-1 in the absence of errors). We define these fictitious
interfaces to occur at the same physical heights above the substrate as
would the midpoints of the low index layers in the absence of errors; thus
the interfaces that divide the cells d not change positions in the

presence of errors.
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The errors & cause shifts in the the positions of the physical
interfaces that separate the H and L layers. We will measure these shifts
relative to the defect-free positions of the physical interfaces.

Pinally, we will assume that these shifts of the physical layer
interfaces can be treated as uncorrelated Gaussian random variables. This
is suggested by the Debye-Waller factors in eg. 11-6-16, which, as we will
see, represent degradations in the reflectivity of individual interfaces
due to displacements whose magnitudes have a Gaussian distribution.
However, we should note that this assumption {s not strictly consistent
with the results of part B. Por simplicity we will alsc neglect terms of
order ¢ - A in our second analysis. The algebraic details of the
derivation are given in Appendix 11.

There we show that

e e-z<st>)

E 3
q 2 : - > - -2<f >
T LTSI T g
(B-6-17)
wvhere
<gi> & IE e
;a A PO
(B-6-42)

’<§:> E % cosb o

i




I1-6-16

Bere 0 and O, are the standard deviations of the errors in the L and
N layers, and t_, pm‘ , and p“' are the defect-free values of the
parameters t, p" o and P, - Except for the non~centrosymmetric geametry
and the non-zero errors in the B layers, our mm is equivalent to
¢q. I1-6~16 with the expectation values of the parameters ¢ . t, and B
set equal to their defect-free values, and with terms of order ¢ - A
neglected.

We also find that, to an approximation, <|9 1> in the
steady-state is given by

- a3
<Igi> = o{x<_z‘>l<p>:‘ + e 20>,

-
[sinh 2<;z> ~4ca5p“ °<§&> Re (<9>) (1 +2 |<p>! )

- 1 2
s2sinh2<E > ws2p, e <5 ZRe(<p> )]}

x-6-49)
where

izl
q
Qs N (2-6-20)

4(u - e In(v,<p>))
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{This assumes, for purposes of f{llustration, that § = § E § . See
[ (]
below). Thus,

<FI ~a~a €1 (X-6-21)

as assumed earlier. In our 67.6A standard example (see sec. I1I-5), with
no errors in the H layers, <I§ 1> reaches its largest value in the
steady-state regime with O ?_ si: in this regime <I'§'I"> = 0.004.
The physical reason for the small size of <|§ |’> is discussed below.

In the second analysis, the polarization of the ISRM probe enters
indirectly via the defect-independent parameters e, These parameters
are cbtained by making a defect-free propagation of < > using
eq. 11-6-9, with eq. 1I-4~2 (in S or P polarization) used to determine
€,

The ?, paraneters are polarization dependent, and s0 eq. 1I1-4-2 will
not apply to an unpolarized ISRM beam except under special conditions.
However, since only the defect-free case need be considered at this point,
it would be computationally quite rapid to determine the ®, values by
numerical optimization,

As an alternative, since our approach in this second analysis is
somewhat phenamenological, we will consider it adequate to determine each

Q. value using a weighted average,

Rn-x,s ’;,.,- ¢ uu-n,v 'v,o,u

=
“'.',oll R
K-1,8 w-3,P (8-6-22)

o
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with @ and @, 9iven by eq. II-4-2 in each of the two
polarizations. In the defect~free calculation ¢ and ¢ - must be
propagated using eq. 1I-6-17 {n separate sequences, but in each sequence
the e, value used mus’. be that given by eq. 1I-6-22.

If necessary the resulting %, values can then be scaled to the
wavelength and angle of the coating's application; < p > can then be
re-propagated in each polarization, and the final intensity reflectances

averaged.

—
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Part D) Discussion

As in section II-5 we have used a Monte Carlo simulation to test the
accuracy of our theoretical treatment. In order to be able to campare
both methods of analysis, we have only considered cases that satisfy the
restricted conditions under which our first method of analysis can be
applied (see part A above).

Our Monte Carlo simulation program has no off-normal incidence
capability, so we have used a normal incidence ISRM geametry in our
simulations.

As discussed in sec. I1I-5-C, the non-normal incidence case can be
reduced to the normal incidence case by using a sec’ 6 scaling of &
and A‘ , &s long as the ISRM beam can be treated as polarized. (See
part A above. The error involved in assuming a sec’ @ scaling should not
involve the statistical kinds of approximations made in this section.)

However, we note that in the non~accumulating case, the unpolarized
reflectivity can only be treated as the mean of the reflectivities of the
orthogonal polarizations under the simple model of part C.

We have also chosen to have the Monte Carlo program prohibit layers
with negative thickness; when the Gaussian random rumber generator forces
such a thickness, the thickness is set to gzero instead.

Our theory could model this restriction by using the appropriate
non-Gaussian probability distribution for the errors, but we have
intentionally left this discrepancy unresolved since the discrepancy is

somewhat representative of the kind of oversimplification that modeling of

this camplex problem must necessarily have.
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Fig. 1I-6-1 shows the expectation of R plotted over a range of
values fram zero to ~ <d >/3 . (Bvenat o = <‘;>/3 ¢ the
fraction of layers under a Gaussian distribution that will have negative
thickness is fairly small.) The solid curve is calculated by the method of
part B, the dashed curve by the method of part C.

The Monte Carlo results in fig. II-6~1 have been obtained using the
exact, non x-ray characteristic matrix solution of eq. 11-1-22. The H
layer truncations were determined by rumerical solution for the
reflectance maximum at each K value, in each simulated stack.

Prior to constructing the simulated stacks that contain thickness
errors, the program constructs a defect-free stack that is optimized in a
two~-by-two fashion (see sec. I1-4), with the optimization performed
numerically. The purpose of this initial optimization is to obtain the
defect-free p“ division parameters, which determine the target L layer
truncations. As discussed above, our equations can be used with a set of

p. division parameters obtained by any method.

As discussed in part A, one could easily justify adopting a more
camplicated model for both the Monte Carlo simulation and the theoretical
analysis, but in this preliminary work we have used only the minimal set
of assumptions discussed above.

. As the figure shows, the agreement between the two methods of
analyses and the Monte Carlo simulations is quite good, with the first
analysis being samewhat more accurate than the second. We estimate the
error due to the finite sample size to be about ¥ .001. The two

theoretical calculations disagree at O = O due to neglect of terms of
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EFFECT OF NON-ACCUMULATING
THICKNESS ERRORS
(Tungsten-Carbon Multilayer made with ISRM)
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order - A in the method of part C.

Both analyses depart somewhat fram the simulations at large O
values, perhaps because of the positive layer thickness constraint that we
have placed in the simulation program. We should mention at this point
that at large O values, the second method of analysis will not always
track the more rigorous solution of eqg. I1-6-16 as closely as it does in
our standard 67.6A exanple; in fact it is even possible in some cases for
the second solution to predict an increase in reflectivity as O
increases. This can cccur anly when the nominal H layer thickness is
sufficiently amall and O sufficiently large that, under the simple model
of part C, the H thickness can frequently become negative. The simple
model can then also predict an increase in single~cell reflectivity as T
increases, without an increase in absorption, leading to an increased
reflectivity for the stack as a whole.

In contrast to the similar situation that occurs with the L layers,
it would not be valid to correct for this effect by going to a
non-Gaussian distribution, since the effect is an artifact intrinsic to
the system of cell decomposition that we use in our in our second method
of analysis,

Bowever, we have always found the second solution to be accurate in

the region of mmall and moderate O values.
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We now proceed to discuss our solution in physical terms. In order
to d 80 we take our less rigorous solution in eg. I1-6-17, and let the
total number of layers J (and therefore the relevant values of K) become
sufficiently large that the multilayer operates in the steady-state regime .
and becames periodic. !

We also assume somewhat arbitrarily for purposes of discussion that |
the errors in the high and low index layers have equal RMS magnitudes.

! We then obtain fram eq. 1I-6-17

R = l<9>|z =

! (@-4-23

(This may be regarded as an approximate analytic solution to the two
| coupled algebraic equations that our first method of analysis reduces to

in the steady-state. We also note that it is not necessary to assume
equal L and H errors in order to arrive at an analytic steady-state

solution.)
By. I1-6-23 is simply a standard Darwin-Prins solutiori (see

eq. 11-2-11) with the single cell reflectivity 1:' degraded by a
Debye-Waller factor.

WIS < o A . e B TR dvme. - Ve s O . - S i,_
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7o an extent the presence of a Debye-Waller factor is mot surprising.
In x-ray diffraction such factors result when the phase position of a
scatterer is randomly displaced according to a Gaussian distribution
(usually due to thermal motion, see James, 1965, p.193). The Debye-Waller
factor may be regarded either as the Fourier transform of a Gaussian
distribution, or as the expectation of a complex exponential whose
amplitude obeys Gaussian statistics.

The central principle of x-ray diffraction states that when
extinction can be ignored, the amwplitude reflected from a sample will be
the Pourier transform of the diffracting structure. (This is of course
the basis by which x~ray diffraction is used to determine the structure of
quasi-periodic objects,)

In the present case extinction and multiple reflections cannot be
neglected except within individual unit cells; thus only the unit cell
reflectivity in eq. I1-6-23 is multiplied by a Debye-Waller factor.

However, there is a more subtle feature present in our result, in
that eq. I1-6-23 has the standard Darwin-Prins form. This implies that
the total interaction of the different cells in the multilayer is no
different from the interaction that the corresponding set of “averaged”
cells would have in the absence of errors; this is true despite the
presence of extinction and multiple reflections, which must be considered

in the structure as a whole.

This point can be clarified by considering the similarity between
nor~accumulating thickness errors and interlayer diffusion, We will

continve to consider only the simple case where the multilayer has equal L
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and B layer errors (or diffusion profiles), is periodic, and operates in
the steady-state. (We should also note that interlayer diffusion has been
analyzed by Underwood and Barbee (1982); their treatment is discussed
briefly in sec. IV-1).

According to eq. 1I-1-15, the parameters r and . are essentially
(truncated) Fourier transform components of the structural profile
b (=2).

If we model the diffusion process as a convolution of the
sharp-interface & (z2) function with some smoothening function, then r
and 4 will be multiplied by the appropriate Pourier transform components
of the smoothening function. (Since r and 4 are actually truncated
Pourier components, the preceeding argument is samewhat oversimplified,
but in Appendix 12 we show that the result is still correct). Since u is
the DC camponent of the transform, it {s unchanged by diffusion if the
diffusion profile is correctly normalized. Thus, neither interlayer
diffusion nor non-accumulating errors will change the (average)
transmittance of the cell.

Bowever, if the diffusion profile is the same normalized Gaussian
function as the Gaussian probability distribution used in our analysis of
non-accumulating errors, the diffusion will cause r to be multiplied by
the same Debye-Waller factor that appears in eg. II-6-23.

Application of the Darwin-Prins solution of eq. I1-2-1l1 to the
diffusion problem then yields a solution identical to that in eq. I1-6-23
for non-accunulating errors. The two solutions remain identical when

generalized to allow for unequal RMS errors or diffusion profiles in the
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1~H and B-1 interfaces.

This identity of results implies that the randomly varying unit cells
in the stack interact together in the same way as do a corresponding set
of cells having an averaged (or diffused) structure.

This behavior is a consequence of the amall magnitude of § . This
can be seen by considering the step in the analysis where we take the

expectation value of eq. II-6-9 while neglecting § ; since ‘§ is
neglected < Q > is propagated only by the averaged or expectation values

of the cell structure. Under the simple model of part C, the averaging is
represented by the Debye-Waller factors.

Thus, as long as the multilayer contains at least a few layers, it
need not really be treated as a randam structure except to the trivial

extent of diffusing the cell structure. (This is only true within the
sinmple model of part C, of course). In a sense the ISRM technique may be
said to surpress the randamness by eliminating the accumulation of
dephasing.

Physically, '§ is small in the non-accumulating case because the
camponents reflected fram the different interfaces are uncorrelated with
one another, and 80, in fact, add together only incoherently.

Bince incoherent reflection is inherent.y a weak process in the x-ray

2
regime, the overall § component is mmall; thus in eq. 1I-6-19 <Igl >

is of the order of the intensity reflectance of each cell multiplied by
the total number of cells (rather than by the square of the total number

of cells as would be the case with ooherent reflection).




11-6-27

In contrast, in the case of accumulating errors the displacements are
well-correlated fram one interface to the next, with the correlation
between displacements vanishing anly between one "packet” and the next
{see sec. II-5). The packet as a whole will radiate in a primarily
incoherent way; however within the packet the cells interact coberently,
making the overall incoherent reflectivity T considerably larger
than in the nomaccumulating case.

In the accunulating case < ¢ > and | are therefore strongly
interconnected, and 8o there is no simple, non-stochastic analogue for
accunulating random thickness errors; in contrast, as we have seen there
is a straightforward analogy between non-accumulating thickness errors and
interlayer diffusion.

The scaling of accumnulating and non-accumulating errors with
2d-spacing is also different. 1In order for the Debye-Waller factor to
depart significantly fram one

2(Fwec) > In2 (3-6-24)

or

o < 0.11x(24) (n-4-25)
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This may be compared to the corresponding result in eq. II-5-62 for
accumulating errors. In each formula O should be regarded as the total
RMS error per coell, rather than per layer.
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Chapter III Applications of X-Ray Multilayer Coatings

Section I11-1 - General Considerations

Part A) Introduction :

In this chapter we discuss possible applications for x-ray multilayers 1
in terms of the theory developed in chapter II. We will concentrate on two
applications that are of current interest at the Laboratory for Laser

Energetics of the University of Rochester; however, we will first discuss
same points of general relevance concerning the performance of multilayers
in the x-ray region.

In sec. III1-2 we will then discuss the possibility of using
multilayers to form cavity mirrors for projected x~ray lasers (wavelength

of order 100;\). In sec. 111-3 we will discuss the use of multilayers in

short wavelength x-ray microscopy (wavelength of order l;\) .

111-1-1
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Part B) General Constraints on Multilayer Performance

The results of secs. II-2 and 3 show that the reflecting performance
of x-ray multilayers is strongly limited by absorption and by the weak
interaction of the layer materials with the incident beam.

According to figs. II-2-4 and 5, absorption will limit the
reflectivities of multilayers to at most 0.8, and much poorer
reflectivities will ve typical in wost of the soft x-ray spectrum unless
new materials combinaltions prove feasible.

In sec. I1-3 we have shown that x-ray multilsyers have a very narrow
bandwidth as a result of the weak coupling between the structure and the
radiation. This makes very difficult the development of x-ray optical
camponents that are achramatic or wide-field. (However, the spectral

selectivity of x-ray multilayers may be useful in certain applications, see

below) .

Eq. I1-3-39 suggests that centered optical systems of moderately high

aperture can be devised for the long wavelength region around 100A. The
strongest drawback to such systems may be the limitation that absorption
will impose an the total number of reflecting surfaces.

As the wavelength falls below about 100A, either the angle of
incidence to the surface or the 2d-spacing spacing must be reduced;
according to eq. I1-3-21 the aperture and field-of-view of a coated x-ray
optical element must then decrease.

As the wavelength is decreased still further, the necessity of

maintaining layer thicknesses of at least a few angstrams will require that

the multilayers operate very far fram normal incidence; according to

——d

= VO
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; eg. II-3-23 the largest possible fields of view will then be cbtained at
angles as close as possible to the surface. :
The gecmetrical aberrations in such highly decentered systems will

then impose additional constraints on field of view,
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80 far we have only discussed the limitations on performance that are
imposed by materials properties. Experimental observation shows that the
reflectivities of multilayers fabricated with present technology are
usually samewhat lower than those of an ideal structure, although
uncertainty in the optical constants makes such a uxélusim difficult to
establish unambiguously. Pairly good agreement with theory can be cbtained
when the theory makes provision for defects in the multilayer structure
(Haelbich, Segmuller, and Spiller, 1979; Barbee, 1982).

We now discuss published experimental results in order to gauge their
implications for practical devices,

Multilayer reflectivity generally drops off rapidly when the
2d-spacing is reduced below 40 or SOA. The measured performance also
generally comes closer to the defect-free value under short wavelength
(~1.5A) illumination at glancing angles, than otherwise.

To date there have only been tentative attempts to compare the
observed degradation to theoretical models, and only the simplest
degredation model has been considered. Baelbich, Segmuller, and
Spiller (1979); and Barbee (1982), have each attempted to model their
experimental results with an expression of the form

2%
_z(z»w-cosa)
A

(m-1-1)
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Multiplication of the entire multilayer reflectivity by such a
Debye-Waller factor (rather than the individual interfacial reflectivity as
in sec. I1-6), has been shown by Eastman (1978) to correspond to what he
calls the identical film model of roughness, in which same particular
roughness profile (generally that of the substrate) is replicated
identically in all sucoeeding layers.

The problem of multilayer roughness is potentially a very complicated
one, since there is an enormous range of possible statistical magnitudes
and correlations for the roughness, with varied correlations being possible
both within each layer, and acroess the different layers. Further, the
analysis of roughness will in general require the solution of a
three-dimensional electramagnetic problem.

We will describe our own initial investigation of miltilayer roughness
in the section of chapter IV that deals with future work; the simple,
limiting case models that we analyze there may prove useful in planning the
kind of detailed experimental investigation of the reflecting performance
of multilayers that will be necessary to characterize their structures in
detail. In chapter IV we briefly describe certain characteristic
signatures in multilayer reflecting properties that defects of different
kinds (including various kinds of roughness) will produce. However, the
exper imental results published to date appear to permit only limited
interpretation.

parbee (1982) has fit the Debye-Waller factor of eq. III-1-1 to
several measurements of peak reflectivity made in first order at 1.54A with

multilayers having 8 variety of 2d-spacings. (See his fig. 7. Note that
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in this figure, the s0lid curve is an interpolation between experimental
points, rather than a theoretical calculation.) Barbee has used four data
points in his fit to eq. III-1-1, and has cbtained a final RS error of

158, (The best-fit value of U was 3.15i). The experimentally observed
fall-off is slightly sharper than that predicted by eq. III-1-1. (We
should note that Barbee's multilayers probably do not contain enough layers
to operate in steady-state).

Unfortunately, the sensitivity of multilayer reflectivity to any of
the various degradation mechanisms considered in chapter II will have a
dependence on 2d-spacing that is similar to that of eq. III-1-l.

For example, multilayer reflectivity in the presence of either
interlayer diffusion, nomraccumulating thickness errors, or the kind of
roughness that we term "smoothening films" (see chapter IV) will, in the
steady-state, be approximately given by (here reproduced from eg. II-6-23)

X 2
-2<§ >
Toe
R = (m-¢-2)
2 a2 -a<gt>
]to-r. e t‘

vhere }(;") = 2nocs®,/A.
Bg. 111-1-2 has the same similarity in shape to eq. I111-1-1 that the

Darvin-Prins solution of eq. II-2-11 bears to our approximate solution in
eq. 11-3-1. Thus, it will usually be difficult to exper imentally

distinguish the two kinds of structural defects by varying the 28~spacing,

SRS 5 - 4 - JRT o1
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particularly with a small number of data points, and with the Debye-Waller
coefficient serving as an adjustable parameter.

Other kinds of multilayer defects will also resemble the dependence of
eq. II-1-1, at least Qualitatively.

For example, we £ind from eqgs. 1I-5-27 and 3-15 that accumulating
errors will have a dependence on 2d-spacing of the approximate form:

1

I1deai ' A 2
(1- %)

R(d) = R (X-1-3)

where A is independent of the spacing.

This function will have a slightly sharper fall-off than eq. III-1-1
in the soft x-ray regime, but will have a slightly more-rounded toe.
Accumulating errors will produce a greater change in bandwidth than will
non-accunulating errors.

Egs. III-1-1,2 and 3 are campared in fig. III-1-1; in each equation
the U wvalue has been chosen to make the degradations equal to 0.5 at a
cammon &-spacing (d Norm ). The optical constants used in eg. 1I1I-1-2 are
those of tungsten and carton at A = 1.66A (comparable to Barbee's
wavelength of 1.54R).

The near coincidence of these curves shows the difficulty in trying to

use the dependence of reflectivity on 2d-spacing to determine the nature of

the structural defects in multilayers.

O YN
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SCALING OF REFLECTIVITY DEGRADATION
WITH 2d-SPACING
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Figure 111-1-1
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To date there has been one direct experimental indication that
roughness has a detectable effect on multilayer reflectivity; Spiller et
al. (1980) have found that the measured reflectivity of a 55 layer
gold-palladiun/carbon multilayer is increased if the detector aperture is
increased, indicating that the reflected beam contains scattered radiation.

We might mention that at short x-ray wavelengths, the onset of
reflectivity loss predicted by eq. 11I-1-2 will became somewhat sharper
than the onset at longer wavelengths. The presence of structural defects
satisfying this equation might then explain why moderate 2d-spacing
multilayers tend to have short wavelength reflectivities that are closer to
the defect-free values than are the reflectivities at longer wavelengths.

Haelbich, Segmuller, and Spiller (1979) have made use of a
multildimensional optimization code that numerically determines the
particular thicknesses for each of the layers in a multilayer, and the
particular complex indicies of refraction, that will produce the best
agreement with a measurement of reflectivity versus 8 under monochramatic
illumination. A Debye—Waller coefficient then forms a final degree of
freedam. The agreement achi»ved is moderately good (see their fig. 3), but
with so many free paramets:s, it is difficult to judge how reliable a test
this is of the assumed degradation model.

In chapter IV we will discuss briefly the kinds of measurements with
which ane might characterize the structural defects in multilayers. For
the mament we draw one important conclusion from existing experimental

work, namely that x-ray multilayers can be expected to show a rapid loss in

reflectivity vhen the 2d-spacing drops below about 40A.

o
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Such a degradation is not surprising. Acoording to eq. I1-6-25, an
interfacial gradient with a characteristic depth of order 4\ will cause a

factor of two reflectivity loss in a multilayer having a 28-spacing of 40A.
One might consider such a fall-off in reflectivity to be essentially
inevitable, since an interface cannot be sharp on a sub-atamic scale.
While this may prove to be correct as a practical matter, we might
note that there are x-ray crystallographic arguments which suggest that the
ultimate limit imposed by atamic structure on 2d-spacing is actually much
smaller. Under a classical atamic model, the gradient in the atomic
electron density distribution causes a fall-off in the atamic scattering
factor; this fall-off is usually measured in terms of the quantity
sin 6/ A (see James, 1965, chapter III, for a discussion of these

concepts). The fall-off typically becames pronounced when
sin 6/A ~ 0.52°" (i.e. 2a = 23).
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111-2-1
Section 11I-2 ~ Cavity Mirrors for X-Ray lLasers

Part A) Multilayer-Coated Cavity Mirrors

There has been considerable interest in recent years in the
possibility of achieving optical amplification at x-ray wavelengths
(Forsyth, et al., 1976; Waynant and Elton, 1976). In most schemes, the
amplifying region is a plasma formed at or near the focus of a high power
visible pump laser (where characteristic temperatures are in the range of 1
kev). Such an x-ray amplifier could form the basis for a true x-ray laser
if a cavity of adequate quality could be constructed.

Much of the x-ray laser research conducted to date at the Laboratory
for Laser Energetics (LLE) has concentrated on a scheme based on three-body
recambination (Bhagavatula and Yaakobi, 1978, Conturie, 1982).

In these experiments, a pulse fram the pump laser (duration typically
1 nanosecond) is focussed through a slit of width ~ 200 «m (or past a
half-plane) onto a target having a Z of order 10 (the target is typically
located ~ 200 um below the slit). The laser-produced plasma undergoes a
jet-like expansion back into the direction of the incident beam, where it
is cooled through collision with a cold plasma formed in the slit.

It has been established experimentally that population inversions
occur in the rapidly cooled plasma, most probably through the mechanism of
three-body recambination (Conturie, 1982).

The most extensively studied inversion is one that has been cbserved
on the n=d to r=3 transition in heliun-like aluminum (wvavelength ~ 1308) '
but inversion has also been observed from a mmber of low-to-moderate 2
targets, and on a numwber of x-ray transitions (including in particular the

PP o e T

DERERS “ha

R T T T

P ) A ot s




I11-2-2

B0A 3-2 transition in hydrogen-like flourine).

For a frequency-tripled Nd:Yag pump laser (A = .35.um ), Conturie
(1982) has tentatively identified 9 2 < 13 as the region of best
performance, which will tend to limit transition wavelengths to the region
above SOA.

For this reason our discussion will initially concentrate on the
possibility of using multilayers to form cavity mirrors for the 1007
regime.

According to fig. 11-2-5, the reflectivity of a tungsten-carbon
multilayer at such wavelengths will be of order 0.1. As shown in
fig. II~2-4, we might hope to achieve higher reflectivities with new
materials combinations, but it is clear that in the soft x-ray region,
multilayers cannot achieve the reflectivities of virtually unity that are
possible in the visible.

Rowever, even with a reflectivity of 0.1, it is possible to get above
the threshold for true lasing, and so improve the coherence of the emitted
radiation, {f the gain in the anplifier can be raised above 10, 80 that
each 908 loss on reflection will be campensated for by a pass through the
amplifier (fig. 111-2-1).

The key to the two-mirror configuration shown in the figure is that
the multilayer structures have been tuned to reflect precisely at normal
incidence (i.e. their structures are optimized according to the results of
sec. 11~2-B), »o that each single lossy reflection is coampensated for by a
pass through the swplifier.
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III-2-4

According to eqs. 11-3-20 and 1~11, the absolute tolerance on
systematic error in the unit cell thickness 4 that is imposed by the need
to have adequate reflectivity at normal incidence is

9

= N - -4 J
Sdu.“= x ° S¢ = 1340 (“(i)) (B-2-4)

Funm

If these tolerances are not met, 80 that the multilayer resonance
angle is not sufficiently near @ = 0°, one might turn to a cavity
configuration like that shown in fig. I1I-2-2a, where a grazing reflection
is employed to return the beam to the seocond mirror.

Bowever, there are now two lossy, near normal-incidence reflections
required for every pass through the splifier, so that a higher gain is
required than is needed with the two mirror cavity.

Purther, because of the symmetry that exists between the grazing
regime and the normal incidence regime (see sec. 1I-3), we can show that
when the multilayer's detuning error is sufficient to rule out the
configuration of fig. 111-2-1, the grazing reflection will then likely

oocur at too large an angle for efficient reflection.
According to eg. 11-3-39, the half-angular width of the maltilayer
reflectance profile at normal incidence is

(J-2-2)




OTHER CAVITY CONFIGURATIONS

gain ~ 100

R~ 1;0 '(érlzing)

A. Cavity formed from non-optimal multilayers

Ring should contai. at least
M mirrors, where

73 im (n)
2(1 - Re(n))>2 1n2

Refractive index of mirror
material is n.
The fimiting Q is given by

" "nd =\
Qcavity~10? Q = exp H”Re‘~ T ]

B. Ring cavity formed from grazing reflectors

/ gain ~ 100"

Figure 111-2-2
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assming p & 1, A << 4 . This is also the approximate half-width

of the region about normal incidence within which 86, v is
approximately constant. The critical angle (no longer a sharply Gefined
cutoff at lang wavelengths) is given by {_ = ’z[a’,l » where 1+ 4 is the
index of the bulk reflector. In order that the two-mirror scheme of

fig. I11-2-1 be ruled cut while the scheme of fig. 111-2-2a be still

wor thwhile,

> 28,
218, 2 2+ |- (M-2-4)
or
: 48,
la] 2 —= (H-2-5)

Even in the soft x-ray regime where absorption is quite significant,
it will generally be possible to technically satisfy eq. III-2-5.
Nonetheless, it is clear that in addition to implying a greater 1oes per
cavity transit, the incorporation of a grazing reflection as in
fig. 111-2-2a will not greatly reduce the fabrication requirement of
eq. III-2-1, because it will not in general be possible to satisfy the

inequality of eg. I11-2-5 in a strong way.
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For the above reasons we consider the most promising cavity
configuration for an x-ray laser {n the 1008 regime to be one based on
normal incidence multilayers.
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Part 3) Ring Cavity

The degradation mechanisms discussed in sec. 1II-1 imply that the
cavity configuration of fig. III-2-1 will become inadequate for transition
vavelengths shorter than about 40,

At stort wvavelengths one might attempt to configure the multilayers in
a polygonal ring in order to increase the 24-spacing, but the resulting
exponentiation of the reflection loss will imply a low overall throughput
(the ideal single-pass resonant reflectivity fram multilayers can be at
most 0.8 in the soft x-ray regime).

Bowever, as the angle of incidence against a specular reflecting
surface goes to zero, the reflectivity can approach unity.

On this basis, Bremer and Kaihola (1980) have devised a ring cavity in
which a large nunber of grazing reflections fram polished substrates are
used to return the beam to the amplifier (fig. III-2-2b). They have shown
that if the ring contains sufficiently many mirrors, the fraction of the
beam returned to the amplifier approaches the limiting value

Al
=

Q= e |4, % (-2-6)

vhere n = 1+ A. is the index of the mirror material.
In Appendix 13, we show that in order to approach the limiting

throughput, the ring must contain at least M A reflectors, where

M & 5 [—— (m-2-7)
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(We note that M i is often substantially larger than the mmber of
mirrors that would be required sinply to put the incidence angle at the
critical angle). The fall~off in R as the mumber of mirrors is decreased

below M, / is very rapid.

3
We also show in Appendix 13 that a general formula for the throughput
in S polarization when M > M,, is

can Re(j;l_:-——i)

2
Q’ - e |n. -1' (mM-2-8)

Eq. 111-2-8 can differ substantially from eq. 1I1I-2-6 in the ultrasoft
x~ray regime.

Using eq. III-2-6, and the limited set of x-ray optical constants that
were then available, Bremer and Raihola (1980) identified two
wavelength-reflector combinations where moderately high performance might
be expected; these are polystyrene at A = 67.6A (@, = 0.04), and
magnesium at A = 2.1A @, =0.3).

They reported that even performances such as these appeared generally
to be limited to isolated wavelength-material combinations. Purther, a
literature review reveals that the particular optical constants
measurements which form the basis for the 67.63 polystyrene reflector
have essentially been retracted by the spectroscopist who made the

measurements (Lukirskii et al., 1965, initial results reported in Lukirskii
et al., 1964).
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In addition, application of eq. I11-2-7 to the 2.1A Mg reflector
indicates that the ring will require approximately 240 reflections. PEven
if one avoided the resulting alignment problem by using a cylinder rather
than a polygon, the minimunm allowable size of each facet (dictated either
by the amplifier length or by damage considerations) would probably imply a
cavity circumference greater than ane meter. Thus, one would have to add
to the formidable difficulty of achieving amplification at short
wavelengths, the need to maintain the inversion for even longer than the
nancsecond durations that are contemplated in the 100A regime.

For these reasons we initially considered the ring cavity to be
considerably less pramising than the multilayer configuration of
fig. I111~-2-1.

Bowever, we have recently conducted a materials search using the
recent compilation of optical constants made by Benke et al. (1982). The
results are shown in table 11I-2-1; in the longer part of the soft x-ray
spectrun the search program has identified cavity materials that yield
nominal throughputs of up to 0.4.

While these are not as high as the reflectivities that are obtained in
8 search for miltilayer materials (fig. II-2-4), they are certainly high
enough to make the ring cavity look quite interesting for transition

wavelengths above -~ 65A.
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. Q
x (A) (s Pol) M(1/2)
124.000 «3641025953573 7.51
121.040 «3921299229287 7.47
116.151 .4182819668938 7.44
115.33) .3955354172620 7.98
112.578 +3566595935351 8.71
109.891 .3291879913218 9.32
107.268 -2850703515461 10.24
104.707 «2522392515925 10.83
102.208 +2264432242987 11.57
99.768 «2023748964901 12.34
97.387 «2029227829216 12,62
95.062 .2125785074919 12.94
92.793 «1775126130385 14.24
90.578 .1483135039153 15.53
88.416 .1163074612112 17.19
86.306 0890465894562 17.88
84.246 .0740252495011 19.06
82.235 .0629664087553 20,16
80.272 0540046097159 24.38
78.356 .0584580751483 25.19
76.485 .0628288060968 26.04
74.660 .0444836744491 28.89
72.878 .0299965650159 32.04
71.138 .0353809877597 30.37
69.440 0449242525942 30,39
67.782 .0558698077888 30.42
66.165 .0717400426828 30.31
64.585 «0750066570867 31.28
63.044 .0416450779567 36.13
61.539 .0219788948089 41.04
60.070 .0140820920987 $7.01
58.636 .0133696653412 59.19
$7.236 0124442741563 61.66
55.870 0113654363679 64.43
54.537 .0101470675794 67.71
53.235 .0087420769778 71.40
51.964 .0070910928000 76.14
$0.724 .0053461688895 82.02
49.513 0035967330555 89.62
46.331 .0018793132260 100.91
4.1 0006449053022 118.27
46.051 .0000561201248 154.61
44.952 0000249689810 72.20
43.879 .0000234809186 74.10
42.832 .0000226497750 15.92
41.809 .0000213902624 77.90
40.811 .0000199946934 79.99
39.837 0000185326460 82.25
3g.6886 .0000173651901 84.4)
37.958 .0000160923393 86.77
37.052 .0000147284590 89.27
36.168 0000133237546 1.9
35.304 .000012128022) 94.63

M(Crit)

7.29

7.54

7.80

8.1l

8.40

8.67

8.96

9.05

9.31

9.58

9.80
10.22
10.64
11.05
11.51
11,28
11.59
11.90
14.03
14.71
15.42
16.13
16.85
16.36
17.00
17.66
18.42
19.18
19.99%
20.71
27.26
28.14
29.08
30.08
31,22
32,40
33.61
35.42
37.32
39.78
43.09
48.82
21.49
22.01
22.53
23.08
23.64
24.24
24.82
25.44
26.08
26.75%
27.44

Optimum Materials for Ring Cavity

Element

RHODIUM
REODIUM
RHODIUM
REODIUM
RHODIUM
RHODIUM
RHODIUM
RUTHENIUM
RUTHENIUM
RUTHENIUM
SILVER
SILVER
SILVER
SILVER
SILVER
RUTHEN.
RUTHEN
RUTHEN
INDIUM
INDIUM
INDIDV
INDIUV
INDIUM
LANTHUNUM
LANTHUNUM
LANTHUNUM
LANTHUNUM
LANTHUNUM
LANTHUNUM
LANTHUNUM
CARBON
CARBON
CARBON
CARBON
CARBON
CARBON
CARBON
CARBON
CARBON
CARBON
CARBON
CARBON
CHROMIUM
CHROMI UM
CHROMIUM
CHROMIUM
CHROMIUM
CHROMIUM
CHROMIUM
CHROMIUM
CHROMIUM
CHROMIUM
CHROMIUM

Table 111-2-1
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Optimum Materials for Ring Cavity

L J
Q
r(A) (s Pot) M(1/2) M(Crit) Element
34.462 .0000106690404 97.59 28.15% CBROMIUM
33,639 .0000094204381 100.67 26.90 CHROMIUM
32.836 .0000081844422 103.95 29.6? CHROMIUM
32,052 .0000069705225 167.46 30.48 CHROMIUM ‘
31,287 .0000058342894 111.31 31.35 CHROMIUM !
30.540 .0000051698340 114.91 32.22 CHROMIUM |
29.811 0000043060991 115.01 33.13 CHROMIUM ;
29.100 .0000035484615 123.49 34.12 CRROMIUM
28.405 .0000028021737 128.37 35,15 CHROMIUM
27.7217 .0000022382416 111.57 30.14 COBALT
27.065 .0000021347739 114.56 30.92 COBALT ‘
26.419 .0000020114377 117.72 31.72 COBALT ;
25.789 .0000018689708 121.06 32.55 COBALT ‘
25.173 .0000021463589 209.34 §7.12 BERYLLIOM i
24.572 0000026708443 212.73 58,.%6 BERYLLIUM ;
23.986 .0000032707119 216.28 60.03 BERYLLIUM y
23.413 .0000041001599 219.67 61.54 BERYLLIUM f
22.854 .0000050253768 223.28 63.09 BERYLLIUM
22.309 .0000060673091 227.08 64.68 BERYLLIUM B
21.776 .0000077398673 230.137 66.31 BERYLLIUM ;
21.257 .0000096400645 233.91 6€7.98 BERYLLIUM o
20.749 .0000117805326 247.66 69.69 BERYLLIUM 5
20.254 0000146593254 241.24 71.45 BERYLLIUM l
19.770 .0000179611181 245.01 73.25 BERYLLIUM
19.299 .0000220340768 248.78 75.09 BERYLLIUM (
18.838 .0000284884506 251.93 96.98 BERYLLIUM
18.388 .0000361553334 255.28 78.92 BERYLLIUM
17.949 .0000418810502 259.80 £0.91 BERYLLIUM ‘
17.521 .0000486134398 264.33 82.94 BERYLLIUM f
17.103 .0000606588480 267.92 85.03 BERYLLIUM :
16.694 .0000727212247 272.05 87.17 BERYLLIUM
16.296 L00D0BB1710569 276.03 89.136 BERYLLIUM !
15.907 .0001078347626 279.88 91.61 BERYLLIUM |
15.527 .0DD1306676291 283.85 93.91 BERYLLIUM ;
15.157 .0001593946264 287.713 v6.26 BERYLLIUM ;
14.795 .0001917968792 291.78 9J.68 BERYLLIUM i
14.442 .0002272059188 296.11 101.15% BERYLLIUM
16.097 .0002694053500 300.41 103.69 BERYLLIUM
13.760 .0003208726122 304.64 106,29 BERYLLIUM
13.432 .0003774263806 309.10 108,95 BERYLLIUM
13.121 .00D4432890668 313.57 111.68 BERYLLIUM
12.798 .0005249066838 317.87 114.47 BERYLLIUM
12.493 .0006232975746 322.08 117.34 BERYLLIUM
12.185 L0007324482448 326.50 120.27 BERYLLIUM
11.904 .0008701721502 330.63 123.128 BERYLLIUM
11.620 .001D0350574823 334.68 126.36 BERYLLIUM
11.342 .0012161348034 338.98 129.51 BERYLLIUM
11.0Mm .0014132805211 343.52 132.74 BERYLLIUM
10.807 .0016628845464 347.69 136.06 BERYLLIUM
10.549 .0019342937161 352.12 139.45 BERYLLIUM
10.297 .0022503197159 356.49 142.92 BERYLLIUM
10.0%2 .002590823389) 361 12 146.48 SERYLLIUM
9.812 .0029804056776 365.73 150.13 BERYLLIUM
, 9.577 .0034261007700 370.30 153.86 BERYLLIUM

Table 111-2-1
(continued)
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Optimum Materials for Ring Cavity

. Q
2 (&) (S Pol) "(1/2) m{Crit] Element

9.349 .0039327952120 374.97 157.69 BERYLLIOM

9.126 .0044725829306 379.69 161.61 BERYLLIUM

8.908 .0051194666344 384.24 165.63 BERYLLIUM

1 8.695 .0058052048274 389.06 169.74 BERYLLIUM
8.488 .0065269399242 394.14 173.9% BERYLLIUM

8.285 .0073827789902 198,95 178.27 BERYLLIUM

8.087 .0083%597341518 403.63 182.69 BERYLLIUM

7.894 .0093833485641 408.61 187.22 BERYLLIUM

7.706 .0105721968466 413.35% 191.86 BERYLLIUM

7.522 .0116135474950 418.38 196.61 BERYLLIUM

‘ 7.342 .0121696703243 423.46 201.48 BERYLLIUM
! 7.167 L0147163189309 428.35 206.47 BERYLLIUM
X 6.996 .0163986744697 433.27 211.57 BERYLLIUM
: 6.629 .01082406833019 438.19 216.80 BERYLLIUM
t 6.666 .0203218321951 442,93 222.16 BERYLLIUM
i 6.507 .0224733434753 447,97 227.6% BERYLLIUM
\ 6.352 .0248780019589 452.85 233.28 BERYLLIUM
6.200 .0274467461236 457.83 239.04 BERYLLIUM

Table IIl-2-1
! (continued)
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Part C) Damage
The high temperature envirorment of the plasma amplifier suggests that

damage may be a significant problem for x-ray laser cavities.

While an accurate assessment of the damage threshold can only be made
exper imentally, there is reason to believe that the limitation imposed by
damage may be less severe than one might expect, at least in the context of
the LLE recambination laser experiments described in part A.

In the first place, in these experiments amplification does not occur
precisely in the focal region. 1If fig. IIl-2-1 is criented with the
mirrors at left and right, and if the purp beam is brought fram the top to
a left-right line focus on a target at bottam, then the region of highest
time~averaged gain will be formed near the cooling slit, whose axis will be
parallel to the optical axis. The ocooling slit will, in turn, be
positioned ~ 200 um above the target. The time-averaged high gain region
will have a width of ~ 200.um and a length approximately equal to that of
the line focus. (This time-averaged description is somewhat
oversimplified; Conturie's gimulations (1982) show that the region of high
instantanecus gain travels outward with the velocity of the expanding
plasma.)

Thus, the mirrors could be ghielded fram the hot plasma formed at the
focal line, and need see only the relatively cold plasma in the amplifying
region near the slit. Conturie's experiments show that the particulate
blow-off would not flow isotropically through the slit, but would instead
flow preferentially in the direction of the pump laser (Conturie, 1982}.
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The x-rays emitted by the amplifier are then likely to be the
principal agent of damage in the mirrors. Even though most of the x-ray
radiation emitted by the plasma may be flourescent (arising fram a mumber
of x-ray transitions), it is the stimulated emission which is most likely
to cause damage, because it will be concentrated on a narrow area of the
mirrors. Stimulated emission into the coherent spatial modes of the
flat-mirror cavity of fig. 111-2-1 will undergo virtually no diffraction
spreading at the mirrors, because the cavity length can be no more than a
few centimeters if coherent cscillation is to be established during the
~1 nsec duration of the gain. (This assumes, somewhat arbitrarily for
purposes of illustration, that the gain duration is of the order of the
punp pulse duration).

For purposes of a rough estimation we will consider the maximum
permissible beam energy to be determined by thermal loading on the mirrors.
Tungsten has a thermal conductivity K = 1,768 Watt/om =K and a heat
capacity C = 0.132 Joule/gm ~°K (Bechtel, 1975). The thermal properties of
graphite are typically K = 1.29 Watt/om -’K, C = 0.712 Joule/gn -°K (CRC
Handbook of Tables for Applied and Bxgineering Science, 1973).

The distance that heat can propagate in a time t is of order

ke (m-2-9)
S ~ °C

[ ]
vhich (assuming bulk densities) works out to about 3000A in a nanocsecond

R
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for either tungsten or carbon,

Using eg. II-3-19, we have that the approximate total thickness of the
msultilayer stack is

5
1,25 40
D = « N O ..
W Ndo = 245, (R-2-40)

Thus, the heated region will not be a great deal thicker than the
multilayer stack, 80 that we can use the thermal properties of the
multilayer materials themselves in order to estimate the heat rise.

The melting points of bulk tungsten and carbon are each about 3500 °K.
Given a heated volume 3000.'\ deep with a cross~sectional area 200um across
(that of the collimated laser beam), we can estimate that the maximam
energy allowed in the beam is ~ 8:10 © Joules.

Conturie's simulations indicate that inversion occurs at electron
densities of ~ 10*° on™’ (Conturie, 1982); this corresponds to an ion
density of ~ 10" an.’ for Z = 10. We also assume that recombination
could bring as many as 18 of these ions into inversion across the &-3
transition. At the upper limit in which coherent emission accounts for all
de-excitation of the upper level, the total output from a cylindrical
arplifier 200 um in diameter and 1 om long would then be ~ 2:10°  Joules.

Thus, output at the estimated dwnage linit of 8:10  Joules could be
regarded as a quite respectable performance in an initial demonstration

exper iment.
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Of course, even for refractory materials like tungsten and carbon, the
above method of damage estimation may be unrealistic. For example, the
separation between photon absorption sites i{s only about 20'A under the
above conditions, so that a large rumber of photoelectrons will be
generated in the multilayer stack. (However, based on a crude camparison
with the x~ray exposure characteristics of photoresist, one can estimate
that the lifetime of these photoelectrons will likely be of order
femtoseconds, 80 that the instantaneous density of secondary electrons will
be substantially reduced).

It may be possible to raise the dmmage threshold samewhat by using
curved mirrors to expand the beam. Given the short wavelength, the cavity
would have to have a borderline-unstable, near-concentric geametry, in
order to produce a narrow diffracting waist at the center of the amplifier.
Further, since only a fairly small number of reflections are likely to be
possible during the ~ 1 nsec gain duration, the intensity distribution on
the mirrors will likely resemble the initial ASE distribution for a
significant portion of the shot; therefore the effective illuminated area
would likely be little larger than that illuminated by ASE despite the
curvature.

According to Slaymaker (1978), the far-field FWHM angular spread of
the ASE will be approximately equal to the aspect ratio of the amplifier.
We might estimate that if the mirrors are in the mid-field at ~ 1 om fram
the ends of an ~1 om mplifiei‘, the ASE illuminated area at the mirrors
might be a few times the aperture area. A curved mirror cavity might then
succeed in increasing the damage threshold to an extent.
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Since each shot will only irradiate a small portion of the mirror
surface, it will also be possible, if necessary, to use the multilayers in
a quasi-one-shot mode in which most of the surface is masked off during
each shot.

We might mention at this point that {f future devices operating
substantially above lasing threshold should exceed the threshold for mirror
damage, it may be possible to devise target configurations that distribute ]
the laser radiation over a larger area of the mirrors.

For example, if one rotated the cooling slit 90° out of the plane of
fig. III1-2-1, and spaced a number of such slits beneath the cavity axis in

a grating-like fashion, then with an appropriate focussing system to
generate a focal line beneath each slit, one would form an amplifier that
was segmented along the cavity axis, but expanded in the perpendicular
direction.

Por the above reasons, we feel that there is reason to be optimistic
about the guestion of damage in multilayer cavity mirrors, but of course

the uncertainties are such that the issue can only be settled
exper imentally.
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Section III-3 - Multilayer Coatings for Short Wavelength X-ray
Microscopy

pPart A) Introduction :

In this section we consider the possibility of using x-ray multilayers
to form spectrally selective coatings for a short-wavelength »=ray
microscope. To ocur knowledge this idea was first concieved at Lawrence ﬂ
Livermore Laboratory, but has not been discussed quantitatively in the

I s

literature.
The microscope configuration considered is that invented by

oS

Kirkpatrick and Baez (see fig. III-3-1, after fig. 8 of Franks, 1977) and
is ane of the first x-ray optical systems ever developed (Kirkpatrick and

Baez, 1948). This configuration is used at LLE to image the x-ray emission
from laser fusion targets. We will discuss our own investigation of
possible applications for multilayer coatings in the LLE system.

At present, each of the spherical substrates in the system (radii of
curvature about 3600 om) is coated with a single nickel layer, which is
il1luminated at a grazing (subcritical) angle to the surface § . At small
§ the spherical substrates are effectively cylindrical because the
curvature transverse to the beam posseses virtually no power.

In the longitudinal meridian, however, the substrate can be shown to
have a focal length R-§ /2 (Kirkpatrick and Baez, 1948). Thus, two
spherical substrates with crossed orientations can provide the analogue of

a thin lens. One may also regard the second element as correcting for an

extreme astigmatimm.

-
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In the configuration in use at LLE, { is about 0.8°, the working
distance is about 20 cm, and the magnification is shout 5.

Since the individual substrates are cperating very far off-axis
(89.2%), the gecmetrical performance of the overall system is very poor by
conventional standards. Por a 5 am resolution at a 20cm working distance,
spherical aberration limits the aperture to about 60 um when § = 0.8',
and coma limits the field of view to about 200 «m (Hopkins, 1981). This
field of view is very small, but is about the size of a laser fusion
target.

The aberrations became less severe if { is increased; however at a
given wavelength, a single layer cannot reflect radiation at angles larger
than critical. At an angle of 0.8° to the surface, the shortest wavelength
that the present nickle coating can reflect is about 2.5A.

In this section we discuss the possibility of converting the single
layer ocoating to a spectrally selective multilayer coating in order to
bring the operating wavelength down to to the 1.5A reginme, while
maintaining the angle of incidence at about 0.8°.

The spectral selectivity can be very useful in laser fusion diagnostic
applications. For example, the spectral selectivity permits discrimination
between the x-rays emitted in the core of a laser fusion target, and those
emitted by elements in the target's shell. (At short wavelengths, most of
the »x-rays are emitted into isolated spectral lines having
species-dependent wavelengths, rather than into continuum). The spectral
selectivity could also be used to discriminate between x-rays emitted by
the primary target and those emitted by a backlighting source (Richardson,

ML, SO T
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1%81).

wWith multilayer coatings and short wavelength {llumination, one can
operate the microscope at angles of up to a few degrees from the surface
before the required 2d-spacing becomes fmpractically small,

Bowever, eq. I1-3-23 ghows that the acceptance angle or field of view
of the coating will decrease as the angle to the surface is increased. We
may regard a single layer coating as a limiting version of a multilayer, so
eq. I1-3-23 inplies that the acceptance angle of a multilayer coating must
necessarily be smaller than that of the single layer. As § is increased,
the limitation imposed on field of view by the coating will eventually
became equal to that imposed by coma; at this point one begins to trade off
field of view for increased collection aperture and resolution (the
spherical aberration continues to improve as § is increased).

In the present application, we wish to maintain the field of view at
the ~ 150.um limit imposed by gecmetrical aberrations in the single layer
system; this requires that { remain at 0.8°, which, it turns out, s the
angle at which the acceptance angle of a tungsten-carbon multilayer becores
approximately equal to the angular field allowed by coma (see below).

In future systems, it might be worthwhile to exploit the trade-off
between coating acceptance angle and increased collection aperture, by
having the system cperate at an angle of 2° or #0; such a system could be
used to cbtain high resolution, narrow field images of the smmall compresseld
core of a laser fusion target. Purther, if the hard x-ray emission from a
source were broad-band, it would be possible to use a larger { system

A AT T T = L e T
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without decreasing the field of view.

The aligrment and fabrication tolerances in the larger { systems
would be more stringent than those in the { = 0.8° system discussed here,
however .

The maximm angle at which a single layer coating can reflect is given
by (Bilderback, 1982)

-3
= {.6x 10 ’ . m-3-1
;C 9 (gnl/cn,) AU) ( )

which at ¢ = 20 gv/cn® and A = 1.66A gives { = 0.7°. Since the present
system is designed to operate at an angle of 0.8°, the principle advantage
gained with multilayer coatings over high density ooatings in our

application is that multilayers are spectrally selective.

et b D e -
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Part B) Calculation of Performance

Fig. III-3-2 shows the calculated spectral and angular selectivity of
tungsten/carbon smultilayer coatings designed to convert the LLE
Kirkpatrick-Baez microscope fram operation at a minimsm wavelength of 2.5A
to operation at 1.66A (Ni~K_). The calculations use A =1.66A, which is
the wavelength of low tenperature Ni-K « Snission. The actual line used
would be the HBe-like resonance line, which would have a slightly different
wavelength.

The thicknesses chosen for the coating are @ = d _ ~ 40.0A in the

front mirror (24 = 160;&). and dw =4, = u.si for the rear mirror

(28 = 166A).

It might ultimately be worthwhile to recptimize the thickness ratio
slightly; however, large changes in the ratio would cause a decrease in
performance. A multilayer with a substantially thinner W layer would have ]

; higher reflectivity, but only at the expense of quite severely restricting
the field of view. A substantial increase in the W thickness could

increase the field of view, but only at the expense of rapidly degrading

the duble mirror reflectivity. A small change in the thickness ratio from

d'-dc would cause anly small changes in the performance of the coating.
Pig. II1I-3~2 alwo assumes that different coatings are used on the two

mirrors of the Kirkpatrick-Baez pair; this compensates for the difference

in angle of incidence that results from the different distances of the two

mirrors from the target.
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Only about 4 layer pairs are required to approach the
absorption-limited peak reflectivity. Camparison of this value with

eq. 11-3-19 shows that the soft x-ray approximations of sec. I1-3 are
becaming inaccurate at the present short wavelength.

In fact, the number of layers participating in the reflection is
becaming sufficiently small that inaccuracy in the basic x»ray formalism
derived fram eq. I1I-1-20 is becoming noticeable.

We have found that our formalimm is still accurate to about 1% in its
calculation of peak reflectivity, but becames increasingly inaccurate in
the wings; in addition the calculated position of the reflectance peak is
off by about 15%. For these reasons we have performed the final
calculations in this section numerically, with the x-ray formulas used only
to determine trial values for the parameters. The numerical calculations
are carried out with the non x-ray characteristic matrix solution of
eg, Ir-1-22.

The calculations use densities measured by Barbee (1981) of 15 gm/cr’
and 2 gm/an’ for the tungsten and carbon layers, respectively. The real
index of refraction used for tungsten is based on anamalous dispersion data
obtained by Brentano and Baxter, as quoted in Table IV.ll of James (1965).
The real index for carbon was cslculated with the free electron model. The
imaginary indicies for tungsten and carbon are based on data obtained by
Benke et al. (1982).

The optical constants used are

-5 -4
A. = -4.J2340 < i4.1431D
(EL-»-2°

- Y 4
A = -Tasg0 i 198410
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Despite the small number of layer pairs required at the center of
field, we have chosen to use 35 pairs in the system. Even with 35 pairs,
there is still a faint residual ringing in the image outside the ¥ 150.um
field. (This is a consequence of extinction being due to depletion by
back-reflection, rather than by absorption).

The worst drawback to the coating is probably the limjtation that its
finite acceptance angle imposes on the microscope's field of view. This
limitation is probably tolerable; the angular FWHEM of double reflectance
for an ideal coating is 0.08 degrees at A =1.66A, which, as indicated,
leads to a 1150 micron field of view at a working distance of 2lom; this
represents only a slight decrease fram the field of view allowed by
aberrations. However, the narrow field leaves little margin for error in
designing and fabricating the coating.

The angular boundaries of the zone of high double reflectance fram the
multilayer are reasonably sharp, even though the zone is samewhat
asymmetric. (Because of the asymmetry, the angle of peak reflectivity has
been decentered fram the optical axis). The wavelength response of the
coating is fairly broad. Neglecting dispersion, the nominal wavelength
range (IWEM of the double reflectance curve) is from 1.53 to 1.8A. MWith
dispersion included the range becomes 1.55i to 1.753.)

The tolerance on the layer thicknesses, as far as maintaining high
reflectivity for sn oraxis point is concerned, is comparatively mild,
about * 4A. Bowever, despite the relatively wide range of layer
thicknesses that can provide high oraxis reflectivity, there is little

margin for error in the aligmment of the zone of high reflectance with the

e
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optical axis (assuming a quasi-monochramatic source). Therefore it would
be preferable to be able to accurately calibrate the deposition system in

an effort to cbtain layer thicknesses accurate to about IA.

The 9mm separation between the two mirrors implies a Aifference in
incidence angle of 0.03 degrees. Fortunately this is scmewhat smaller than
the 0.08 degree IMHM of the coating. HBowever, because of the need to
center the high reflectance zones of both coatings accurately, one would
prefer that the two coatings be made with slightly different 2d-spacings.

To consider the effect of fabrication error, suppose that the layer ‘4
thicknesses are 39A instead of 40A, and that the same coating is used on
both mirrors. One then finds that the optical axis intersects the
half-maximum of the double reflectance curve, so that roughly speaking only
half of the field will be imaged (i.e. the angular half-width of the field
is zero). If the second coating is independently optimized, and has the
desired layer thicknesses of 41.53. the angular half-width in the
previously un—imaged direction becomes 0,025 degrees (given the same 1A
systematic error in the layers of the front mirror). If the intended
thicknesses of the layers of the second coating are 41.5&. but they instead
have an error equal to that in the first coating (so that their thickness
is 40.5A), the angular width beccmes 0.021 degrees. If the layers of the

second coating have the same errors in the opposite direction (i.e. a
thickness of 42.5&). the half-width becomes 0.03 degrees. (As mentioned
above, with no errors in the independently specified coatings, the
half-width is 0.04 degrees.)
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Thus, the use of a different target thickness in the rear coating will
definitely reduce the sensitivity to error.

The coatings should be relatively insensitive to other kinds of
defects in structure, due to the large 2d-spacings.

Prom the 36m radius of curvature, the 60 micron aperture, and the
working distance of 2lcm, one can calculate that that the variation in
angle of incidence across the aperture due to curvature of the mirrors is
0.0075 degrees. (The main variation is due to displacement in the
longitudinal direction).

Thus, the narrow 0.08° bandwidth of the coatings will not reduce the
aperture of the system.
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