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ABSTRACT

This report consists of the first part of a general theory purporting to

describe the mathematical structure of the elementary particles, starting from

no preassumed knowledge, but deriving it instead from first principles along

the line suggested by Dirac in the 1930's. In particular, quantum mechanics

is shown to arise as a consequence of relativity theory and of the theory of

generalized curves. In the first part the geometric structure (i.e. the

nuclear field' is derived, and one obtains a slightly modified form of the

Yukawa potential along with a cylindrical perturbation describing the spin

effects. This report gives full details of the results announced in the two

previous reports, MRC Technical Summary Report #2067, which appeared in Proc.

Ioffe Conf. Imperial College, London (1980) and MRC Technical Summary Report

#2317 appearing in J.O.T.A., Sept. 1983.
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SIGNIFICANCE AND EXPLANATION

According to Dirac the two fundamental problems that science faces are:

the problem of matter and the problem of life. The present work is a

contribution tovard the analysis of the first problem, in the sense that the

true nature of the elementary particles, their fields, masses, interactions,

couplings and transformations can be derived from the basic mathematical

structures found to be physically relevant, by a step by step analysis of the

intrinsic objects pertaining to these structures. Not only are general

results obtained but also numerical ones that compare favourably with the

experimental data. The relevance of any progress in this direction needs

hardly to be stressed.

Accen 4 ~I o Xn

.V.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



THE MATHEMATICAL STRUCTURE OF ELEMENTARY PARTICLES

P. Nowosad*

CHAPTER I

THE MATHEMATICAL FRAMEWORK

1.1 THE CONSTRUCTIVE APPROACH

The search for mathematical structures in the background

of physical phenomena rests on the postulatq that an appropriate

mathematical description is possible, in some manner.

It is a logical sequel to this assumption that the appro-

priate mathematical structures underlying physical phenomena

ought to contain, in germinal form, the essential features need-

ed for the description of the fundamental physical entities and

processes.

This information ought to be retrievable through the

analysis of the essential objects of these mathematical structures,

namely its intrinsic objects.

These objects are given, as a rule, as critical points of

basic functionals associated with these structures. In this

connection, singularities in general must be expected to play a

fundamental role.

Of course, more complex processes are then described by

various kinds of appropriate superpositions of the intrinsic

objects.

The analysis of the intrinsic objects and their superposi-

tions to build more complex objects is what we call constructive

approach.

This is the basic method of analysis to be employed in

this work.

*Instituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110,

22460 Rio de Janeiro, Brazil

Sponsored by the United States Army under Contract No. DAAG29-80-c-0041.
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A mathematical analysis of physical phenomena requires iden-

fications between the physical and the mathematical objects. This

assignment is, a priori, bound to the choice of mathematical

structures involved. The value of these choices is measured in

terms of the end results and by the new understanding they bring,

the object of any theory being to get closer and closer to the

physical facts.

These considerations are taken in due regard along this

work.

1.2 INTRINSIC OBJECTS

Our starting structure is a 4-dimensional differentiable

manifold V4  on which we shall take as physically relevant the

ij
family of Lorentzian metrics g i.e. pseudo-riemannian metrics

of signature (-1,1,1,1).

To eacb such metric are associated, in particular, the

invariants

(I.1) ds2 g ij dx dx j

(1.2) )2 gi j j
3. 1xx

and the Laplace-Beltrami operator

(1.3) A2  -- 11 . Igll/2 giJ . f!
where g = det gij"

We also define the operators (p.55 110)

Grad Cp = g"i -Sa9,on scalar fields, and

dtv f i , 1 / _x i  I11/
a =g

d ' i v f - I 2if ig- .. .l/2.
•gl/ , 

i
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(r = -- on vector fields.

Other invariants and operators can also be defined on

higher-order objects.

When we take as objects curves on V 4 with a given metric,

the basic functional is the integral of ds2  along curves, and the

intrinsic objects i.e. the critical points of this functional are

the geodesics. The field of Physics relating to these objects is

Classical Physics in its primary form of study of point motions.

Instead if we take as basic objects functions on V4  (with

a given metric) the naturally associated functional is the integral

of (Vq) 2  over some open domain of V4  and the intrinsic objects

are the solutions of the wave equation A2 = 0. The corresponding

field of Physics is Wave Mechanics, that is, the study of 5-dimen-

sional wave motions. And so on. The enclosed table summarizes

these statements.

objects basic functional intrinsic objects field of Physics

curves ds 2  geodesics Classical

Solutions of wave

functions 2 equation Wave
Mechanics

In principle one can go further on, for instance, constructing

non-commutative field theories along this same line of reasoning,

involving higher-order tensor fields.
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1.3 CURVES OF INTRINSIC OBJECTS

The motion of a point (i.e. a curve on (V4 ,g)) is described

in kynematics as a succession of states of motion each of which

corresponds to a geodesic in V4 . Therefore the motion of a point,

i.e. a general curve on (V4 ,g) may be thought of as a curve on

the space of geodesics, its concrete representation being their

envelope. The deviation from geodesic motion serves then to de-

fine the presence of external forces. #

Similarly a differentiable function f on V4 may be

described, at least locally, as an envelope function to a succes-

sion of solutions of the wave equation. Indeed choose a time refe-

rence axis system t on V4  and consider the corresponding

space-like sections Zt: t = const. The Cauchy problem A2 P = 0,

with C = = _-- f is locally solvable for each

t and therefore f may be thought of as a curve to.-.t on the

space of solutions of the wave equation, of which it is actually

the envelope. Of course this representation is tied to the par-

ticular choice of space sections, i.e. to the particular observer.

Curves of intrinsic objects are therefore the next natural

objects to be considered.

The question now is: what class of curves to consider?

1.4 GENERALIZED CURVES

L.C. Young showed in 1933 that the problems of the Calculus

of Variations always have a solution (under minimal assumptions,

cf. p.178 [15]) provided we enlarge the usual space of classical

curves, to the space of generalized curves, that he introduced



exactly for this purpose.

For example, on the set of absolutely continuous curves in

the plane (x(t),y(t)), 0 S t ! 1, with end-points (0,0) and

(1,0) we have the strict inequality
~I

f (I+y2) )Cj1 + I111-11 i]dt > kIldt z 1,

and since the infimum is 1 (a minimizing sequence is given by

saw-tooth like curves with alternating slopes h1 and with height

tending to zero) it is not attained in the given set. Therefore

the minimization problem for the given functional does not have

a classical solution, yet it has a generalized one.

1.4.1 A generalized curve is simply a curve given by a Lipschitz-

ian vector-valued function x(t), 0 5 t i 1, plus, for almost

every t, a non-negative measure pt on the set of unit vectors

Odentify it to the unit sphere) such that i) the measure of each

Borel set of the sphere is a uniformly bounded and measurable

function of t, and ii) for almost every t the mean-value vector,

with respect to the corresponding measure, coincides with x(t).

In the above example the solution is the generalized curve

given by x(t) = t, y(t) 0 0, 0 9 t ! 1, plus the measures that

assign, for any t, the weights 1//2 to the unit vectors forming

angles of *450 with the positive x-axis, and zero to all others.

The definition above results from the following construc-

tion. If we fix a given compact set K in R , which is the
closure of its interior say, then any piecewise C 1 curve y

lying in K, given in parametric form by x(t), 0 S t 5 1, can

be thought of as a continuous linear functional on the space of

continuous functions f on KXS (S the unit sphere in Rn)
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with the sup-norm, defined by
1

i.L4) y(f) = 0o C ((t), i Mt )

(at the points where 1I (t)l = 0 the integrand is set equal to

zero).

Two curves y, y are identified if y(f) = (f) for all

fVS.

Since1
ft 5.

Iy(f)l maxlfl I, (t)Idt

and

Iy( )l = F Ii(t)ldt =

where f 1 is the function f(,-) B 1, we see that the norm

of y is its length t(y).

1.4.2 A generalized curve is then defined as a weak-* sequential

limit of classical curves Yn' i.e. as those linear functionals

g defined by the condition that

g(f) = lim yn(f) exists for all f E c(KxS).

As the unit ball of the space dual to C(KXS) is weak-*

sequentially compact, this definition guarantees the existence of

a weak-* converging subsequence out of any bounded minimizing se-

quence, whose limit is thus a generalized curve, and which need

not be a classical curve, as shown in the earlier example.

The fundamental result of L.C. Young (Representation Theorem

p.171 [15]) is that this and the previous definition are equival-

ent, via the Riesz representation theorem.

In particular, from tho first definition, the associated

linear functional of the second one is found through
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(15) g(f) = f f(x(t),v)pt(dv))dt, f E C(KxS),

which is clearly well defined and continuous thanks to condition

i) in 1.4.1.

Using (1.5) one can check that at the generalized curve

described earlier as the solution of the given example, the in-

fimum 1 is indeed attained.

In a time-oriented spacetime manifold (V4 1g), timelike

curves represent states of motion of a spatial point Q in three-

dimensional space-sections, defined by a given observer. To each

direction at a point P in V 4 we can associate locally and

biuniquely a single geodesic which, when it is time-like or

isotropic (i.e. causal), and, say, positively time oriented,

represents the free motion of Q along the spatial projection

of that direction. We can thus think of the given measure on the

unit sphere at P as a measure on the geodesics through P.

When this measure has support on the (positively time oriented)

causal geodesics only, the corresponding generalized curve can be

thought of as representing a (weighted) statistical superposition

of all possible causal geodesic motions of the base point Q,

which then actually performs the mean average motion.

Generalized motions occur, in particular, when the condi-

tions of the physical problem described place restrictions on the

class of allowed classical motions, leaving as only alternative

its statistical superposition. (A classical example is the motion

of a relativistic particle cf. p. 35 [7)).

1.4.3 REMARKS ON STOCHASTICITY AND HIDDEN MOTIONS

The basic laws of classical point motion can be phrased in



terms of the Calculus of Variations. In view of the results of

L.C. Young and in order not to unduly restrict the range of the

phenomena covered, a priori, we see that the natural place to

start looking for solutions is in the set of generalized curves.

This indicates that, in principle, even classical problems (v.g.

example (1.5)) may lead to stochastic solutions, so that, con-

trarily to widely held belief, probability and indeterminism are

not an exclusive characteristic of Quantum Mechanics. Indeed

they belong, in principle, in all fields of Physicsi, having t .s

with the Lagrangian character of the laws governing motions x

than with the nature of the objects that perform the motion.

An important example in the realm of point motion is

afforded by dynamical friction: a point moving under the presence

of dynamical friction may be thought of as indefinitely alternat-

ing between instantaneous free motion and instantaneous rest,

both with say equal probabilities. One can Get a good feeling of

a situation similar to this in trying to hold a car still up a

hill in gear, by pressing the clutch conveniently. The curve of

the resulting state of motion, in its ideal limit, is precisely

the infinitesimal zig-zag generalized curve of the example given

before, in (t,x) space.

A generalized non-classical curve provides an example of an

extreme form of indeterminism: it has precise space location and

absolute randomness in momentum space. It also provides an example

of hidden motions building up an otherwise apparently classical

motion.

In our opinion L.C. Young's results clarify the whole issue

of indeterminism and hidden-variablos: under this new light, and

at least in the present context,- these are no longer philosophical
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questions but strict mathematical facts derived from the Lagrangian

structure involved. His results also freed us from the burden

caused by overly pessimistic interpretations of indeterminism. On

the contrary, they actually show Nature has at its disposal new,

unsuspected, degrees of freedom, while retaining the essential part

of its classical character, namely spatial localization.

In closing, it is noteworthy to call attention to the fact

that the idea behind the concept of weak-* topology, namely the

description of objects solely on account of their effects on others,

corresponds to the same idea that led Heisenberg to describe the

observables via Matrix Mechanics, i.e. solely in terms of measurable

data resulting from possible experiments performed on the observa-

bles. It is remarkable but not totally surprising that, in

L.C. Young's context, the stochastic nature results as a mathematical

consequence.

1.4.4 CONCLUSION

From now on we shall agree that the motions in our spaces

are to be described by generalized curves of intrinsic objects,

of which the averaged envelope object, curve or function, is what

is observed.

The concept of generalized curve i, the general case will

be that given by our first Definition 1.4.1. This pressuposes a

normed topology on the set of intrinsic objects. Our next task

will be to find out the appropriate way to do this in the case of

waves.

We now go back to the study of waves on (V4 ,G).

S.]
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1.5 MONOCHROMATIC WAVES

The solutions of the wave equation obviously constitute a

linear space. More precisely, the germ of solutions of the wave

equation in a neighbourhood of a point form a linear space. (To

start, most of our analysis is to be done locally.)

The algebra generated by a single solution of A 2 qp = 0

consists of solutions of this equation again if and only if C

satisfies in addition (V)2 = 0. This follows easily from the

formula

(l 6) 2Af( ) = f' A2  + 2'(v )2

valid for f twice differentiable, if e is (essentially) real-

valued, or f analytic if ep is complex-valued.

The solutions of the pair of equations

(17) A = 0 (the wave equation),

(VP)2  0 (the eikonal),

are called monochromatic waves. They represent pure light waves.

We will denote the set of monochromatic waves by M.

An algebra all of whose elements are monochromatic waves

will be called a monochromatic algebra.

1.6 QUANTUM TRANSITIONS

From the identity

-itp ieP- 2(1.8) e A2 2

we obtain, if A = ,

(1.9) (vP) 2 -e-ic% eUP.

!
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Consequently by applying the A-apping v-. exp(ip) = , our

linear space of solutions of the wave equation goes into a multi-

plicative group, whereas the Lagrangian (VCP) 2 goes into

If the epts are real the e~'s are bounded and we can

embed the above group in the Banach algebra under the sup norm

that it generates under pointwise operations and completion. To

distinguish between them we call the original linear space phase

space g and the newly introduced algebra, the algebra of wave

states C or simply algebra of states.

It is easy to see that the critical points associated with

the integrand -A 2 / arb those for which A2  = 0, i.e.

exactly those whose phase function satisfy the wave equation.

These intrinsic states will be called elementary states.

The new representation has two advantages over the original

one. It is richer in structure, and in elements, as g is mapped

into a subset of the set of invertible elements 0 of G, and so

by taking logarithm pointwise, on the elements of 0, we obtain

an enlargement of 9 by possibly multivalued functions.

The second advantage, that actually justifies the whole

construction, is that the integrand of the Lagrangian expressed in

the form -62*/* , when integrated, exhibits jumps across the

boundary bo. To illustrate this, we first give an example in

Minkowski space.

1.6.1 AN EXAMPLE

Consider c to be the algebra of almost-periodic functions

in IR i.e. the algebra under the sup norm and under the point-

wise operations, generated by the exponentials eik-x k E R 4



Clearly all such plane waves are elementary states in

Minkowski space, and therefore the algebra they generate is the

natural one to consider according to the rules given in 1.1.

The mean value integral

(1.10) f lim IfdV,

n

where dV = dxldx2dx3dx 4  and K is a sequence of cubes of
n

side n centered at the origin say, and IKn1 its volume, is

well defined in C1. In particular the wave operator A 2  restricted

to those elements of G whose first and second derivatives belong

in Q again, is symmetric with respect to the scalar product

induced by f because then integration by parts with zero boundary

terms holds for f. On the elementary states of this subset con-

sider the basic functional

_W A2*
(I. 11)() = "

In particular if e i k x we have X(e i k x ) = k 2  and

ik o .x 2
if w = e is a plane monochromatic wave, k = 0.o

Assume kO  0. Consider the continuous curve in G

(1.12) *t =  ,((1-t)+tw)), 0oi t _.. I,

connecting the states *, = * and = e ikIx where k = k+k O .

All *t are elementary states because these form a multi-

plicative group and because any analytic function of a monochromatic

state is again elementary.

Let us examine the behavior of \(*). Setting c = y -

then as long as 0 ! c < 1 or equivalently 0 1 t < we may

write
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.t 2't _CA2 * + €A2*1
tiij = -t = - I -*(1 +e -.

= -.{ (-2 + C 2 *1)( 1 - ew + €2,2*2

(k2 + k 2 w)(1 - Cw + € 2 ....

2 2_k5)  )n n
= k 2 + (k - (i)n1 n  w

n=l

k2

because if nk 0  0 then e ±kOx = O.
2 1

Hence (*/) -(4') = k 2  for 0 : t < 1

Similarly starting at the other end i.e. interchanging the

roles of 4 and * w goes into w -1  and t into l-t, we

get

2 1
(1.14) X(*t) = X(4r1) = kl1 for t S 1.

If k'k °  0 we have

2 2 2
kI1 =k + 2k.k k

Hence on this continuous curve of elementary states in

the basic functional X = f(pt)2, t _ , (et phase function

of *t), has two constant distinct values, exhibiting a jump at

t Clearly the state *'i/2 =  4(l+w) E 60, because

iko.x
1+w = 1+e = 0 along the planes k 0 .x = (2n+l)n, n =

1.6.2 QUANTIZATION OF THE BASIC FUNCTIONAL

We now give the general analysis of the quantum behavior

exemplified above.

In general let 5 be a Danach algebra of continuous complex-

valued functions on a Lorentz manifold (V4 ,g), containing the
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constant functions, closed under complex-conjugation, with the

algebraic operations defined pointwise and the sup-norm, and

containing a dense subset G 2  of twice-differentiable functions

which are mapped by the Laplace-Beltrami operator A2 again

into G. Assume further that f E a is invertible with inverse

f-I in G again if and only if inf If(x)j > 0. The set of
V4

invertible elements is denoted by 0.

Furthermore assume a positive linear functional, denoted

by f, is defined on a, allowing the usual rules of integra-

tion by parts, with no boundary terms.

These conditions are fullfilled by the Banach algebra of

almost periodic functions on Minkowski space, of the previous

example, with f defined by the mean-value integral in (1.10),

and also by the algebra of weakly amost periodic functions

(see Cl, [2j, C53, [61).

Consider as before the functional X: G 2 n n C defined

by

(1.15) x() = -

The critical points of X are those u such that

VUA 2 u Vu 2

(1.16) div ( 02) = 0 i.e. - -
uu =0

If the linear functional is strictly positive, i.e.

{tCP{2 = 0 ff T = 0, (1.15) and (1.16) are to hold in a,

otherwise in the sense of the inner product space defined by

on G. This also applies to the subsequent formulas. (The first

situation holds for the almost-periodic functions, the second for

the weak ones.)

By (1.16) the set C of critical points of ) is clearly

a subgroup of 0.
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The monochromatic functions of Q are, as before, those

w E G 2  such that

2
(1.17) A 2w = 0, (Vw) = 0,

and their set is denoted M, again.

By virtue of (1.6) f(w) E N again if f is an analytic

function on a neighbourhood of the set of values taken by w on

V4. Since by (1.16) m 0 0 C C, we have that uf(w) E C if w E M

and f(w) E 0.

The spectrum a(v), for any v E G, is defined by

a(v) = fz E C I v-ze 0 ] and therefore, by a previously assumed

property, is the closure of the set of values v(x) taken by v

on V4. It is obviously a compact non-void subset of C.

0 has either one or else infinitely many maximal connected

components, of which 0o is the one containing the identity e

(e(x) S 1).

Two elements f, h belong in the same component of 0,

iff fh'l E 0 o Further f E 0\00 iff its spectrum C(f) sepa-

rates 0 and w.

The logarithm function, as a mapping from 5 into a again,

is defined only on 00 (p.15 [11]).

With these preliminaries we can now show that the quantum

jumps arise as a generalized form of the standard argument principle.

1.6.3 THEOREM. Let u E C, w E % n 0 • Denote by

HI , 9...,Hn,.... the bounded maximal connected components of the

complement of a(w).

Then there exist fixed numbers qiV i=l,2,..., depending

on u and w only, such that for any function f(z) analytic

in a neighbourhood of a(w) and with no zeros in a(w), we have

~.1



-16-

(1.18) X(uf(w)) = X(U ( i- Pi)qi

where Ni, Pi are the number of zeros and poles, respectively, of

f in Hi, i=1,2,...

In particular choosin a i E Hi, the qi are given by

(I. 9) qi 2 l_u . VW(11)q u2 w.Ui , i=1,2, ....

In the special case of the previous pxample, when

ik'x iko'x 2
u = e w e V ko = 0, ko'k 0, and the spectrum

a(w) = S1  (s i = unit circle), (1.18) becomes

(1.20) -X(eik 'x f(e .)) = k 2 + 2(ko.k)(N-P),

where N and P are the number of zeros and poles, respectively,

of f inside the unit disk. One can then see in (1.20) what

happens when one follows along the curve of analytic functions

ft(z) = (l-t) + tz, used in that example, or for that matter,

any analytic curve joining I and z.

Proof of (1.18) Let f = f(w), with f(z) as in the hypothesis.

Direct computation gives, using (1.17)

A 2 uf A 2 u Vu Vf
(1.21) u 2

which, integrated, yields

(1.22) X(uf) - X(u) = 2 Y R- u

In particular this shows that qi in (1.19) are well-defined.

From (1.22) one gets directly

(1.23) X(ufh) - X(u) = X(uf) - X(u)J + CX(uh) - (u

(1.24) X(uf-1 ) _ X(u) = -[X(uf) -X),
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whore f = f(w), h = h(w), here and in the sequel.

Now if f E f0o then 2 f E G and -- = V n f, which

substituted in (1.22) gives, upon integration,

X(uf) (u) 2 • V On f

ju=-2 f div Lu =0
f u

by (1.16). Hence X(uf) = X(u) if f E 0
0

If now f, h belong in the same component of C we can

write uh = ufohf-1 and since hf'1 E Oo' the previous result

yields

(1.25) X(uh) = X(uf).

This shows that X(uf(w)) is locally constant in 0 as

f varies in the set of analytic functions.

Let now f(z) = z-C with E Hi. Then z-C can be

changed analytically into z-c i withoug leaving Hi, which

means that w-Ce and w-ai e are in the same connected component

of 0. Therefore by (1.25), (1.22) and (1.19)

(1.26) X(u(w-Se)) - X(u) = qi'

and by (1.24)

(1.27) X(u(w-ge)- ) - X(u) = "qi

Instead if belongs in the unbounded component of the

complement of a(w), we may let -+ withoug crossing a(w),

so that

(1.28) X(u(w-' e)) - X(u) = 2 Vu VW

=!g4= - -= O.e

lim 2 vu V w 0.
u w-I
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N P
Therefore if f(z) co U (z-ai) U , c 0i=l J=l 0

aibj a 0(w), (1.18) follows from (1.23), (1.26), (1.27) and

(1.28).

In the general case, if f(z) is a holomorphic function in

a neighbourhood of a(w), without zeros in a(w), we can find a

rational function r(z) such that

If(z)-r(z)l < min jf(z)j in a(w),

cy(w)

by Runge's theorem (p.256 [13]). Then r(z) has no zeros in 0(w)

too, and r(w) and f(w) are in the same component of (, so

that (1.18) holds for f(w) too. The proof is complete.

COMMENTS

1. The quantization formula (1.18) tells us how the basic

functional changes when we perturb the elementary state u into

uf(w), with f analytic near and on a(w). Changes occur only

when zeros or poles of f(z) reach and eventually cross the bound-

ary of a(w), and these changes are integer multiples of fixed

quanta qi, each one attached to the hole H. whose boundary is

reached and crossed (while u, w remain fixed).

2. Let T denote the linear operator h t-uh, h E G, u E 0.u
-1

The very simple analysis above hinges on the fact that T A Tu -

- TA2 u/u is a derivation on the germ a(w) of functions of w

which are analytic in a neighbourhood of a(w), cf. (1.21), and

it could have been performed abstractly without further mention

to the special case under consideration.

The general abstract theory relative to the functional X

of the form (1.15) is presented in [9], and it essentially shows,

when specialized to 2 nd order differential operators like A2 ,
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that the condition w E M is not only sufficient but also neces-

sary in order for the quantum behavior of X to occur.

1.7 RELATIONS WITH CLASSICAL GAUGE THEORY

The set of linear mappings Tf. 1  of C1 defined by

hi-& fh, f E f, h E r, is a group which maps each connected

component of 0 onto another one. In terms of functions on V4

it changes locally the scale of the functions, i.e. the ratio of

the values of any function at two distinct points is changed in a

given proportion, and is therefore called a gauge transformation

of the first kind (p.234 f 12)). Under this transformation we

have that

-l Vf
(1.29) A2 - T 1 A2 Tf = A2 + 2 i- V 2 •

On the other hand we can write

(1.30) A2 = -v'V,

where V* = -div is the operator from vector fields into scalars

adjoint to the operator V = grad from scalar fields into vector

fields, with respect to the hermitean form f ii.qPijgjl/2 dv.

Similarly (qAi)dV= fq(xi'*i)dV, so that (A)= A-

(As before the dot means scalar product in the metric of V4 ).

Therefore if Vi-. v + Vf thenf

(1.31) V 7 -t.(7 + (V + Vf) [-div + (1-f .)I(V + •

If we assume that

(1.32) N -

that is to say jf(x)I s 1, which means f is a phase factor i.e.
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f is a section of a circle bundle over V 4  (p.4 [3 J), then

(1.31) yields

(1.32) + .. )*(7 + ) (-div +-A -L- " V 2, 62 " 7f
2 f VH - -- + (f 2

Vf A2f

= -[A 2 + 2 *7 + -f-
-1;

= A2 Tf

Consequently if f is a phase factor on V 4  then under

the gauge transformation of the first kind h -- f 1 h, the change

of A 2  into Tf A 2 Tf can be completely described by the trans-

formation

yr(1.33) v--- + f--

in view of (1.29), (1.30), (1.31) and (1.32).

Now if A is a vector field on V 4  the transformation

V-V+A is called a gauge transformation of the second kind

(p.232,238 [12] ). In electromagnetism A is called electromag-

netic vector potential and the antisymmetric tensor F = curl A

is the electromagnetic field tensor. The Maxwell equations are

then equivalent to the requirement that F be a critical point of

the function f FPVF (p.6 [8]). The electromagnetic vector

potential A above is restricted by the Lorentz condition

(1.34) div A = 0.

In summary, when f is a phase factor, the gauge transfor-

mations of 1s t and 2n d kind are equivalent, and give rise to the

electromagnetic vector potential V f

The Lorentz condition (1.34) becomes div R = 0, which is

simply our previous condition that f be an elementary state, i.e.



a critical point of X(f) given by (1.15).

VfWhen Y canot be written globally as a gradient vcp,

f is said to be a non-integrable phase factor (p.12 [14], p.11 8

3)], p.6 2 r4)) When f belongs to our algebra G, this is equi-

valent to saying that f does not have a logarithm in S, which

means that f E (2\0o

In any case, however, F = curl ! is always identically

Vfzeo ecus - can be written locally as grad Log f, where

Log is a pointwise locally defined logarithm determination.

1.7.1 CHOICE OF GAUGE

Consider now all connected components 2 of 2. Any such
ct

component can be made into 0 by a gauge-transformation of the

first kinds it suffices to take f E 0 and consider h- f'1h.I

(This is clearly a diffeomorphism of 0). This choice of such a

component to play the role of the principal one is what is called

a choice of gauge. In principle different observers may be in

different gauges (thanks to their past history, for instance) and

it is an experimental task that they first determine what their

(relative) gauges are before they start comparing experiments.

In other words, there is no preferred component fL , the concept

of principal component being a relative one.

Thanks to our previous analysis, that says that the V

operator of one becomes the V + 1- operator of the other, we can

interpret the difference of gauges as being perfectly equivalent

to the presence of the electromagnetic vector potential L f inf

the second observer's referential. However as the electromagnetic

tensor F s 0, this is an instance of the Bohm-Aharonov phenomenon:

non-null effects associated with identically zero electro'rgnetic

l J
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tensor fields. That there are non-null effects is checked by our

previous analysis of the functional X(uf(w)), where u is any

elementary state and f, besides being a phase factor, is also

monochromatic. In this case X, which is locally constant,

depends on which fL f belongs to, that is to say, on the choice

of gauge. (Notice that for plane waves u = e i k x
, X(u) = -k 2

gives minus the square rest mass of the wave.)

1.7.2 ALTERNATIVE INTERPRETATIONS

According to the two ways of interpreting a linear opera-

tion (as a mapping on the vector space or as change of referential

frames) we have two possibilities.

Indeed let w E M and let ft(w) t E 0,1], with ft(z)

analytic in a neighbourhood of 0(w), be a continuous curve on C.

Earlier we considered for any u E C, the curve of elementary

states uft(w) and described in (1.18) the behavior of X(uft(w))

along this curve. In particular we considered uft(w) as a per-

turbation, or excitation, of u evolving in time.

We can also regard

(1.35) u - Tf (w)u

as a continuous curve of gauge transformations of I kind acting

on a fixed elementary state u, which, when ft crosses a,

determines a change of gauge. When that happens ft cannot be a

phase factor for all t obviously, so that no electromagnetic

interpretation can be given all along the evolution in t. How-

ever if, say, the initial states f and f are phase factors

(i.e. Ifol 1f1  a 1), this change of gauge is equivalent to

the appearance of a (non-trivial) electromagnetic vector potential
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between the initial and final states of u.

In any of these interpretations a non-null effect is

detected by a Jump in X as given by (1.18)t this quantum tran-

sition is interpreted in the first case as an excitation of the

state u, and in the second case as a change of gauge of u ma-

terialized by the appearance of the corresponding electromagnetic

vector potential.

- S
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CHAPTER II

LIGHT QUANTA

2.1 SINGULAR SETS AND LIGHT QUANTA

We have seen in the previous chapter that quantum transi-

tions of the basic functional X occur at the elementary states

uf(w), where 1(w), an analytic function of the monochromatic

wave w, is no longer invertible.

Let N(f) denote the set of points in V4 where f(w)

is not invertible.

On N(f) the corresponding phase function has logarithmic

singularity. As this set is responsible for the possible jump of

X(uf(w)), we may assign to this singularity the role of carrier

of the energy difference. (Here we interpret -x as

square rest mass, by analogy with the case of plane waves).

For instance in Example 1.6.1 the 4-planes ko.x = (2n+l)rT

n = 0,±l,±2,... carry this energy difference.

It is possible to exhibit monochromatic waves such that

N(f) is a single 4-plane in Minkowski space. Indeed let g Le a

non-periodic, almost periodic function of a single real variable.

The auto-correlation function

(2.1) f(x) = (g(x+y)dy

is again almost periodic (p.32, [6]) and satisfies

(2.2) f(O) > if(x)q x ..

This follows from Schwarz's inequality in (2.1)
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If(x)l a figI2 = f(o).

If equality holds for x0 j 0 then necessarily g(xo+Y) = +g(y)

for all y in the present case, and this implies periodicity of g.

A second example is given by any almost periodic function

whose Fourier coefficients are all positive and among whose ex-

ponents Xn  there are at least three which are linearly independent

over the integers. In this case (p.63 [6]) one has, pointwise

f(x) =Z An e n
n

This implies

If(x)l s E An = f(O).n

if xo 0 0 and If(x 0 )1 = f(O), then JI An ei n ol = Z An holds

ix n x o n n

iff the complex numbers e are all equalwhich requires, in

particular, that any three exponents X be linearly dependent

over the integers.

Take any such function f of class C2 and k o0 E R ,

2 14k 0 p 0, k 0 = 0. Then V(x) t= f(O) - f(ko.x), x E R , is a

monochromatic wave whose singular set N(T) is precisely the plane

ko.x = 0.

Clearly in this case we may think of radiation being pro-

pagated with the speed of light along a moving 3-plane carrying a

quantum of energy.

These types of moving singularities can be properly iden-

tified as light quanta.

Our next task is to find out all possible dimensions of

singular sets N(f) of monochromatic functions.

a
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2.2 DIMENSIONALITY OF SINGULAR SETS

Recall that a C2 real or complex-valued function f on

(V4 ,g) is a monochromatic wave, in symbols f E f, if it sa-

tisfies

(2.3) A2 T = 0

for any entire function ep.

2
In the first case all C functions of f and, in the

second case, all analytic or anti-analytic functions of f belong

in M again.

If f is real, smooth and 7f 0, N(f) is locally

three-dimensional. If it is complex and Re f and Im f are

functionally independent, N(f) is two-dimensional.

Yet the (Newtonian) picture of a photon as an isolated

point like singularity moving with the speed of light, requires

a one-dimensional singular set N(f).

Can we achieve this by going over to hypercomplex valued

functions, for example quaternion valued ones?

The answer to this basic question is no as we shall now

show.

2.2.1 HYPERCOMPLEX FUNCTIONS

A system S of hypercomplex numbers or, in modern language,

a finite-dimensional linear algebra over R (or C), is a finite-

dimensional vector space over R (or r) on which multiplication

of any ordered pair of elements is defined, taking into S again,

being distributive with respect to vector addition (pp. 10,22 [4],

p.5 [3]).

-a
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If el,e 2 ,...,e n  form a basis of this vector space we get

n
(2.4) ejej = E Yijk ek

k=1

with Yijk E R (or C). The constants yiJk are called the

constants of the multiplication table of S, with respect to the

given basis.

They are arbitrary and once given, define the multiplication

according to (2.4) thanks to the distributivity with respect to

addition.

The product in S is associative if and only if ei(ejek)=

= (eiej)ek for all i,j,k = 1,...,n and this imposes conditions

on the Yijk (p.92 [4]).

In addition S has a principal unit u, i.e. an element

such that ux = xu = x for all x, if and only if there are

numbers al,...,an such that E = jk (jk=l,...,n).

(p.8 [3]).

In general S need not be commutative.

However the algebra generated by a single S-valued function

f on V4  is always commutative provided S is associative

(P.9 [33).

Since our analysis of the quantum transitions in the

previous chapter applied to commutative monochromatic algebras

with unit, we therefore assume that S is associative and has a

principal unit.

In this case S is isomorphic to a subalgebra of the

algebra Mn of nXn matrices over R (or C) through the

correspondenco

aae I +...+ anen Ta E Mn
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which associates with an element a E S the matrix of the linear

operation xt ax on S, with respect to the basis (e1,...,on)

(Thin. 2, p.96 £3)). Ta is given explicitly by

n

(Ta) = Z aiYijk  (Jk=l,...,n).
jk i=l

S may contain zero-divisors i.e. non-invertible elements

other than zero. An element a is non-invertible if and only if

det Ta = 0, which means at least one of the eigenvalues X i of

Ta is zero.

If therefore f is an S-valued function on V 4 then N(f),

defined as the set of points x of V4 where f(x) is not in-

vertible, is the set of points where at least one of the (possibly

complex) eigenvalues Xi of Tf is zero. If the Xi's are local-

ly smooth functions, N(f) will be locally the (finite) union of

the sets N(%i), each of which is at least two-dimensional.

Hence so will be N(f).

This shows that we cannot obtain lower dimensional singular

sets N(f) by going over to hypercomplex-valued functions. There-

fore the Newtonian picture cannot hold in the simple form proposed.

2.2.2 MONOCHROMATIC HYPERCOMPLEX FUNCTIONS

We shall say that an S-valued function f is locally

smooth if its components fi and its eigenvalues X i can be

chosen locally as smooth functions on V4 .

Clearly the condition

0 = A2 f = e A 2f +...+ en A 2fn

implies that each A2 fi = 0.



n

As the entries of Tf are given by E fiYijk , j,k =

= l,...,n, and the yfs are constant, this implies that all the

entries of Tf satisfy this equation again.

The hypothesis that f E M means that any entire function

e of f with real (or complex) coefficients, satisfies

L 2 (f) = 0. Combining this with the previous remark and with the

known fact that

tr Tq~f

we get

(2.5) 0 = A2 z (xi) = ' (xjh 2xi+
i i

Let np be the number of distinct eigenvalues of Tf at

the point P E V4 . By taking p() = Xp/p, p = 1,2,...,2np, in

turn in (2.5), we obtain 2np linear homogeneous equations with

a confluent Vandermonde coefficient matrix

1 ...... 1 0 ........... 0

II

X2n-Pl 2n -1 (n,,2np-2 (2 )2np-2

1 p **** 1 P_ n~~i~ ..

at the point P.

(k ) - ( .k ))
The unknowns are the sums E A2x)i E( i

1,e2u.n p where X are the original eigenvalues grouped

by the condition X(k) = x at P, i = l,...,k = i,...,n

(so called X(P)-groups).

Since the above system has non-zero determinant (p.322 [9])

we get the 2np conditions holding at P
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(k) = o, E (xk))2 ,E A2 x i  0 ,
i

k 1 ,.°.,np.

Simple eigenvalues therefore satisfy A2X = 0, (VX)2 =0

i.e. X E M. So do obviously the multiple eigenvalues of a group

of eigenvalues that are coincident in an open set and remain

distinct from the others in that set. More general. situations

arise as limiting combinations of both of these cases.

We may therefore conclude that, generically speaking, the

eigenvalues of an S-valued monochromatic function should again be

monochromatic. This therefore implies that

n
(2.6) N(f) = U N(X1 ), with X E th, i=l,...,n.

izii=1

As a consequence the analysis of singular sets of mono-

chromatic hypercomplex-valued functions reduces to the analysis

of those of real or complex-valued monochromatic functions.

2.2.3 DIVISION ALGEBRAS

We will now show that N(f) reduces to a single set N(k),

X real or complex, for all possible S-valued functions if and

only if S is a division algebra over R or C, i.e. S is

either R, C or H, where H denotes the quaternions (with

real coefficients).

To show this we need the following facts. Any linear

associative algebra has a uniquely determined maximal nilpotent

ideal (its radical R) and is isomorphic to the sum of R with

the semisimple algebra S/R (p.125 [4], p.158 [17]). Each semi-

- !
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simple algebra is the direct sum of simple algebras, and Cartan's

fundamental theorem says that the simple algebras over R are

just the matrix algebras Mm(IR), Mm(C) and Mm(H), and over C

Just Mm(c), up to isomorphisms (p.56 13)). In particular from

this follows that the only real division algebras, i.e. real al-

gebras with no zero divisors, are R, C and fi, and the only

complex one is C itself.

To prove the above claim we first remark that

1. If a E S is invertible then so is a+r for any r E R,

and vice-versa, because (l-r')-1 exists if r'E R and

is given by 1 + rf+...+ r'n and therefore so does

(a+r)"1 = (l+a-lrIl a- l .

2. If p(x) is a polynomial in the indeterminate x, then

p(a+r) = p(a) + r' r'E R,

and so also for any analytic function f.

3. Take any basis of S formed by a basis el,.°..e p  of R

and a basis ep+l,...,en of a linear space C complementary

to R in S. Since R is an ideal, we have eie3 E R

if not both i,J are >p. This means in particular that

if i,j,k > p then ekeiej has the same last n-p coef-

cients that it would have if we had disregarded in the

product eiej its coefficients w;ith respect to el..,e p

in the given basis (by induction this extends to any number

of factors). Therefore if we define a new product in C

given by the original multiplication table restricted to

indices i,J - p, leaving the vector addition unchanged,

C is then a concrete representation of S/R (p.153 r17)o



Furthermore if p is a polynomial, if a E C and r E R

then

(*) np(a+r) = p(a),

where y is the projection on C along R and is the

same polynomial p but computed on the element a E C with

the restricted multiplication table defined above.

Let therefore q be a smooth monochromatic S-valued func-

tion on (V4 ,g). Decomposing it according to the subspaces C

and R we get q = a+r with smooth functions a E C, r E R.

We claim that a is a monochromatic C-valued function under the

restricted multiplication table.

Indeed by hypothesis A2 p(a+r) = 0 for any polynomial p,

and this holds if and only if each of the coefficients of p(a+r)

with respect to the basis el,...,en satisfies the same equation.

But this then implies, in particular, b 2 Tp(a+r) = 0 and by (*)

A 2p(a) = 0, which proves the claim.

Combining 1., 2. and 3. we have

N(p(a+r)) = N(p(a)) N( TT p(a)) =N((a))

for polynomials and so for analytic functions too.

This means that passing from S into C (with the

restricted multiplication) preserves the monochromatic functions

and their singular sets.

Since C with the new multiplication is semi-simple, the

claim in 2.2.3 now follows from the fact that it is then a direct

sum of the matrix algebras given by Cartan's results.

In the case of division algebras,as R, C C 01, it suffices that we obtainthe general form for the quaternI
the general form for the quaternion valued monochromatic functions,

.... -'"' - ' -- - ,-- -- V - a " I - . . ..
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because the real or complex ones are then obtained by restriction

(and complexification). Further the knowledge of N(X) for real

and complex monochromatic X's gives N(f) for general hyper-

complex functions f, according to (2.6).

2.3 MONOCHROMATIC QUATERNION-VALUED FUNCTIONS

Let us introduce the quaternionic units il, i2 , i3  given

by the multiplication rules

i = i3  i2 i3 = itI ,  i3i I = i 2

i i k = i kt J ,  k J,

= -1, J,k = 1,2,3.

We shall also introduce the notation (q,t) E ft to mean

that P E M, * E M and further vc v* 0 0, which is the re-

quirement that any algebraic combination of e, * belong in M

again. It will also be assumed that c and * are functionally

independent, to rule out trivial cases.

We then have the following theorem

2.3.1 THEOREM. Any monochromatic quaternion valued function F

on (V4 ,g) is determined by a triple of real valued functions

(qp,f,p) such that

(q,f+ip) E M,

in the form

F = f + PCilG(C,) + i 2 H(cp) + i 3P(,)],

where G, H, P are real valued functions satisfying

G2 + H2 + P2 a .
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More precisely, J i 1iG + i2H + i3P may be described as a

section of a sphere-bundle on V 4  (see also p.258 [11]).

Proof Let F = f + ilg + i2h + i3p be a smooth quaternion-

valued function E M with g2 h2 + 2 o.

The condition A 2 = 0 requires

(2.7) A 2 f = 2 g A 2 h = A 2 p = 0.

Since

(F2 ()2 ()2 (h2 ()2
(VF) = (Vf) - (Vg)- (Vh)- (VP) +2i 1vf.vg+ 2i 2 vf'vh+ 2i 3 Vf'Vp,

the condtion (VF)2 = 0 implies

(2.8) (vf) 2 = (vg) 2 + (vh)2 + (vp)2

(2.9) vf'vg = Vf'7h = Vf'Vp = 0.

The eigenvalues of a quaternion, namely the real or complex

such that f + i1 g + i2h + i3p - X is not invertible, or equiva-
letlsuh ht f_)2 2 h2 2

lently, such that (fX)+ g + h + p = 0, are obviously given

by X. =fi iP, where

(2.10) P = g2+h2+p > 0.

From our previous analysis X+ M I, which implies, in addition to

(2.7),

(2.11) A2P = 0,

2 2(2.12) (f) (VP)

(2.13) Vf-Vp = 0,

as one obtains by specializing (2.7), (2.8) and (2.9) to the

complex case.

.1-
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We now consider the algebra over the reals generated by F

(we have to restrict the coefficients to R because H is a

division algebra over R, but over C it is not).

The analytic functions in the complex plane generated by

polynomials with real coefficients are those whose domain is sym-

metric about the real axis and which satisfy f(z) = *U) (called

intrinsic functions on C by Rinehart P.5 E16J). If §(x+iy) =

= u(xy) + iv(x,y) is an intrinsic entire function, and u and

v its real and complex part, respectively, then, if x0 , x , x2 ,

x 3  are real,

(2.14) §(xoi x1+i 2 x2+i 3x 3 ) = U(x ,q) + Jv(X ,q),

/-2 2-2
where q = x1 +X2 +X 3 and

j = i1 xl/q + i2 x2/q + i3 x3 /q.

This follows directly from the observation that in

X + ilx 1 + i2 x2 + i3 x3 = x° + Jq the powers of J behave like

those of i, i.e. 2 -1, .3 = _J,..., plus the fact that the

coefficients in the power series of § are real. (This is also

shown in general by Rinehart (Thm.7.1 p.14 C161) as a consoquence

of the fact that the intrinsic functions over H may be character-

ized as those that are invariant under the automorphisms or anti-

isomorphisms of H.)

Using (2.14) we get

(2.15) 4(f+ilg+i2 h+i3p) = u(fp) + v(f,p)(ilG+i 2H+i3P),

where we have set

(2.16) G = g/p, H = h/p, P = p/p.

We now show that
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(2.17) AG= = A2P = 0

and

(2.18) (vG52 + (H) 2 + (VP)2 = 0.

First notice that, in view of (2.9) and (2.13),

(2.19) Vf'vG = vfVII = vf'vP = 0.

Now A 2 §(F) 0 implies

6 = 62 (vH) = A2 (vP) = 0

Further Vv = V xvf + v yvp and so

A2 v = div Vv = vxA2f + vyA2P +

2 2+ v (Vf) + 2v vf-Vp + vy (VP)

= (v x+vyy)(7f)2 = 

where we used (2.7), (2.11), (2.13), (2.12) and the fact that v

is harmonic in (x,y).

Therefore

(2.20) 0 = A2 (vG) = vA2G + 2wv-vG + GA2v

= vA G + 2v Vf'vG + 2v Vp'vG
2 x y

= VA G + 2v Vp-VG,
2 y

by (2.19).

Since v is at our disposal this equation implies that

A2G = Vp-VG = 0. Indeed take the intrinsic function §(x+iy) =

eX(x+iy) = e x cos Xy + i e x sin Xy, X E IR. Then v = e' x sul XY

and (2.20) becomes

(A2G)sin Xp = -2X(Vp'VG)cos Xp.

Since p 0 we can choose X 0 so that cos Xp = 1,

mom
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which gives Vp-VG =-0, and then sin %p = 1 which gives 62 G 0.

Similarly for H and Pt so that (2.17) is proved, together with

(2.21) Vp*VG - VpoVH = Vp.VP = 0.

To prove (2.18) we first apply (2.8) to the function in

(2.15), obtaining

(2.22) (VU) = (v(vG))2 + (v(vH))2 + (V(vP))2 .

Now in view of (2.13) and (2.12)
2 2(,f

(Vu)2 = (uxVf + uyVP) 2  (u2 + u2) .y y

Similarly
2 2, 2 G2 (7

(V(vG))2 = v (VG) + 2vVv.VG + G(Vv) 2

v2 (VG)2 + G2(v 2 + v2)(7f)

because VvYVG = 0 in view of (2.19) and (2.21).

Analogous expressions hold for H and P so that, since

2 2 2 2Ux + uy = vx + Vy by the Cauchy-Riemann equations, (2.22) becomes

(u+Uy)(Vf) 2 = v 2 (vG) 2 + (vH)2+(VP) 2] + (u2+U2)(Vf)2

xyx y

because G2 + H + P 1. This gives (2.18).

We now show that there is a real valued function such

that G, H and P are functions of e. For this purpose we will

show that necessarily

(2.23) (vG)2 = (vH)2 = (VP)2 = 0,

(2.24) vG.vH = VGeVP = VH'VP = 0,

everywhere.

First we note that the group of automorphisms and anti-

S
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automorphisms offlf, which are precisely the rotations that leave

the real unit unchanged, possibly combined with reflections,

preserve (2.7), (2.8), (2.9) and (2.10) and so also (2.11), (2.12)

2 2 2
and (2.13) as well as the condition G + 11 + P = 1. Further

the intrinsic functions on H are invariant under this group.

Therefore we may always apply a (constant) rotation on the

space of il, i2, i3  to make G,HP 0 at a particular point

p E V 4. Then it is clear that the new G, H, P will satisfy

(2.23) and (2.24) if and only if so did the old ones. Suppose

therefore that G,H,P 0 at p.

2 2 1/2
Since P = (1-G -H ) > 0 at p, and so in a neighbour-

hood of p, and A 2 P = 0, we get by differentiation

2(1-G2-H 2)(-A2G2-A 2H) = (v(G 2+H 
2 ))2

i.e.

2(G 2+H 2-1)2GA2
G + 2(vG) 2 + 2HA 2H + 2(vH) 23 =

= 4G2 (VG) 2 + 4H 2(VH) 2 + 8HGVH'VG.

Using (2.7) and simplifying

(2.25) (1-G 2 )( v H) 2 + (1-H 2 )(vG)2 - -2HGVH.VG.

Now if VH and vG are space-like, Schwarz's inequality

IVH.vGt I IVHI.IVGI applies. Therefore taking absolute values in

(2.25) we get, since (vil) and (VG)2 have same sign and

1-G 2 > 0, 1-H 2 > 0,

(1_G2)VlI, + (1-11 )Ivo 2 I, 21HGj-IvHII;Gl

i.e.

(2.26) (l-G 2 ) 1VII 2 - 211GI.IVI.IvGI + (1-112 ) VG1 2 1 0.

The determinant of the matrix of this quadratic form in

- - - -- -i-a
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(IVGI,Ivul) is (i-G2)(,-H 2 ) - H2G2 = 1 - G - H2 = P2 > 0 and

its trace is

2 - G2 _ H2 = 1 + p2 > 1,

so its eigenvalues are positive. This implies in (2.26) that

lVH = IVGI = 0, i.e., (vH)2  (VG)2 = 0 and so also (vp) 2 = 0

by (2.18) and VH'vG = 0 by (2.25). Interchanging the roles of

G, H, P in (2.25) we get now the remaining equations in (2.24).

Therefore (2.23) and (2.24) hold whe9 two of the vectors

vG, vH, VP are space-like, since this property is preserved under

the small rotation that may be needed to make G,H,P 0 at a

given p E V4.

We need consider therefore only the case when just one of

them is space-like, say vH, one is time-like, say VP, and the

third one vG is time-like or isotropic. Now the small rotation

that may be necessary to make G,H,P 0 at a given p E V4, may

change the character of VG if it is isotropic. If it becomes

space-like, we are back in the previous case, so we need consider

only the remaining case.

Clearly then the subspace determined by VG and VH cuts

the light-cone and so we may rotate VH and VG by the above

procedure till VH touches the light cone, at the point p,

while leaving P and VP unchanged. Since vH becomes isotropic,

VG must then get space-like so as to compensate (VP)2 in (2.18).

Therefore by continuity, shortly before VH touches the light-cone

both VH and vG will be space-like and since P 0, this then

reduces the problem to the previous case. This proves (2.23) ond

(2.24) hold everywhere.

To complete the proof we only need observe that any two real

isotropic vectors which are orthogonal in (V4,g) are necessarily
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paralel. Hence if VH 0 0, necessarily VP = PVH, VG = XVH,

with p, X real functions, and therefore P = P(H), G = G(H)

locally, as claimed. In view of (2.19), (2.21) and (2.23),

(H, f+iP) E IT and this ends the proof of Theorem 2.3.1.

2.3.1 MAXIMAL MONOCHROMATIC ALGEBRAS

A monochromatic algebra is called maximal monochromatic

if it is not a proper subalgebra of a monochromatic algebra.

The importance of maximal monochromatic algebras in our

context is obvious, in particular with respect to the question of

singular sets.

The main result in this respect is

2.3.2 THEOREM. The maximal monochromatic C2 algebras in (V4 ,g)

are precisely those generated by a single pair (cp,f+ip) E t,

with q), f, p real, and are constituted by C 2-functions of the

form

(2.27) (f,p,CP) + '(fPP)(ilG( ) + i 2 H(cp) + i 3 P()J

in the quaternionic case, and

(2.28) (f,P,P) + in(f,Pc),

in the complex case, where, for each fixed CP, + in is an

intrinsic analytic or (anti-analytic) function of f + ip, the

2 2 2 2
C -dependence on C is arbitrary and G + H + P 1, with

G HP E C2 real, but otherwise arbitrary. In the complex case,

non-intrinsic functions are allowed.
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Proof.

1. We first prove that the most general quaternion-valued mono-

chromatic 2  function of a pair (cp,f+ip) E M, has the

form (2.27). Indeed let F(f,,CP) E 1h be a C quaternion valued

function.
By Theorem 2.3.1 it has the expression F = + r1(i1r2 () +

2 2 2 r r real valued.

+ i 3r 3(s)] with (1, +i8) E f, rI + + r 3  1 1,

By assumption C, q" and 0 are functions of (f,p,cp). Since

+ iT E h and E ht, it suffices therefore that we analyze the

problem for these particular functions, and thii reduces the problem

to the case when F is a-real or complex-valued function of the

pair (cpf+ip) E M.

In this case, using the properties of this pair, we get

from vF=Fvcp + FfVf + F V, (VF) 2 = (F2 + F 2XVf)2

As f is independent on e then (Vf)2 j 0, as remarked

2 2' 2 F 2 (Ff+iFp)(Ff-iF)=0
earlier. Therefore necessarily Ff + FP = 0

i.e. F must be an analytic or anti-analytic function of f + ip.

No additional restriction is placed on F as a function of p.

The condition A2 F = 0 is then automatically satisfied

because
2F = F A2 + F A2 fAp + Af+ 2F Vvp +
2P P

2
+ 2F Vc'qvf + 2FfVf'VP + F (vq,) +

+ F (vp) 2 + Fff(vf)
2 =

PP

= (Fff + F p)(Vf)2 = 0,

as F is harmonic in (f,p).

Therefore C(f,p,cp) and n(f,P,(P) satisfy the stated con-

ditions, and so do the riIs. Since ri are real-valued they are

M1M ,Z=



therefore constant as functions of f+ip, i.e. depend on CP only,

as claimed.

The complex case is obtained by specializing H P E 0,

G = 1, and, by complexification, non-intrinsic functions are

obtained.

2. It is easy to check that (2.27) belongs in the real algebra

generated by c and f+iP (or by p and f-ip if it is

anti-analytic in f+ip). Similarly (2.28) belongs in the complex

algebra generated by p and f+ip (or by p and f-ip, as

before). The same applies trivially to functions of p only.

3. We prove now the maximality property. In any of the two

cases above let a monochromatic algebra contain (CP,f+ip) E 1h

and a third function F. By Theorem 2.3.1 this function is given

in terms of a pair (pf+ip) E fl. If the function is trivial, it

is expressible as a function o (cp,f+iP) too. If not, it depends

non-trivially on at least one of c, f+i5. In that case since the

functions lie in a monochromatic algebra, the corresponding v

and/or q(7+ip) must be ortoghonal to both v7 and V(f+ip).

(Notice the later commute with vF, in the scalar product).

If VYcpV = 0 locally, then necessarily = (c), as both

are real monochromatic and so lies in the algebra of c.

If V(f+ip)'v(f+ip) = 0 and 7(7+i5)'7p = 0 then we have

V(Y+ip') = a(x)vep + $(x)v(f+ip) with a., 8 complex functions on

V 4 , by the lemma below. This implies that f + i5 E M is

(locally) a function of (f,P,p) and so by Theorem 2.31 and item

2., belongs in the algebra generated by (CP,f+iP).

The theorem is proved once we show the
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2.3.3 Lemma. If two isotropic vectors v., v2 are orthogonal

to a real isotropic vector v3  in Minkowski space then either

vlt v2 , v 3  or v1 , v2 , v 3 are linearly dependent. If v2  is

orthogonal to v 1 then the first case holds.

Proof. We may assume the real vector is (1,1,0,0), the signature

being (-1,1,1,1). Since linear combinations of vl, v2 with v3

preserves their stated properties we can make the first components

of Vl, V 2  into zero by adding a convenient multiple of v 3 . But

then since they are orthogonal to the real vector also their second

components are zero. So they are of the form (0,0,a,b) (OOc,d),

2+2 2+2
and by isotropy a +b = c +d= 0 i.e. b = ±ia, d = *ic. Hence

they are multiples of (O,0,l,±i) and (0,O,l,±i). For any choice

of sign either these vectors are equal or one is equal to the

complex-conjugate of the other. They can be orthogonal only in

the first case. The result follows.

Clearly the result holds pointwise in a (V4,g) because we

can always make gij = diag(-l,l,l,l) at a fixed point p.

2.3.4 REMARKS. 1. In view of Theorem 2.3.2 all functions of

f+iP in the same algebra must be simultaneously analytic or anti-

analytic in the same connected regions. For simplicity we refer

to them as analytic, bearing in mind these two possibilities.

2. It is clear that (CP,f+ip) E M implies that also (cp,f-i 0 ) E ?h.

However since the analytic functions in f-iP are precisely

the anti-analytic functions in f+ip and vice-versa, we will not

consider those two pairs as distinct, because they generate the

same maximal monochromatic algebras, according to Theorem 2.3.2.

!S
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2.4 GENERAL FORM OF SINGULAR SETS. PHYSICAL IDENTIFICATIONS

According to the above results the most general form for

singular sets N of monochromatic complex or quaternionic func-

tions is given by the equations

= o
(2.29)

p= o, (,f+io) E M.

Although N is locally at least 2-dimensional we have now

the possiblity to locate a higher-order zero on a bicharacteristic

line.

For instance the singular set of p'(f+ip) is the union of

the 2-dimensional set f = p = 0 and the 3-dimensional set Cp = 0,

2and, since (Vqp) 0, their intersection f = p = = 0 is a

bicharacteristic line carrying an isolated zero of higher-order.

The corresponding phase function has a higher order singularity

located at a single point in three space, moving with the speed of

* light along the singular line f = p = 0, acompanied by the

wave front singularity ep = 0.

2.4.1 PHOTON, NODAL LINES, MONOPOLES

We shall see later on that a typical case in cartesian

coordinates (x,y,z,t) in R 4 is given by f+ip = y+iz and

= f(r)-t, where r = (x2+y2+z2)/ and f is a monotonic

function of the radius r.

In this case, for the function

(2.30) (y+iz)(f(r)-t))
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the singular set consists of a spherical wave front in 3-space

moving with the speed of light and cutting the singular x axis

y = z = 0 at a single point in the positive semi-axis x k 0,

where therefore lies a higher order singularity.

This higher order singular point, piloting a lower order

singular spherical wave, along a lower order singular line is now

liable to represent the photon, conceived as a moving point sin-

gularity carrying energy, in agreement with the experimentally

observed corpuscular behavior of the photon (One can experimental-

ly detect the arrival of a single photon at a metallic plate, and

obtain indirect pictures of its trajectory in cloud chambers).

On the other hand the weaker singularity carried by the

spherical wave front f(r)-t = 0 is responsible for the diffraction

patterns in the typical slit experiments, according to Huyghens t

law of propagation of singularities (eikonal equation), and so

accounts for the experimentally observed wave nature of the photon.

In this way, the purely analytical characterization of the

maximal monochromatic algebras leads us, unequivocally, to the

correct conclusions as regards the physical nature of the photon

and expresses its dual wave-corpuscular nature as a simple mathe-

matical fact.

The line y = z = 0 in 3-space carries a singularity too

but this is a standing one, independent on time, and therefore its

presence is detected through different effects.

Actually this line is a so called nodal line of the wave

function 1 s y+iz (p.67 [5], [7)) or a dislocation line of the

planes of constant phase of T (Ul) , 110]).

Around this line occur vortices of the flux vnT of the

phase function (when the circulation of this flux around the nodal

.A.
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line is non-zero), described in detail by Hirschfelder ([7]). Al-

ternatively Dirac found these nodal lines when considering singu-

larities of' wave functions, upon imposing the only requirement

that the complex-valued function T (in our example equal to

y+iz) be single-valued and smooth, but not necessarily with

single-valued argument, and then quantized them in terms of the

winding number of the vector field (Re Y, Im T) along a closed

curve around the line. He then found that one could remove the

non-O circulation by means of a gauge transformation of the second

kind, and that the electromagnetic vector potential associated

with this transformation (cf. 1.7.1, Chapter I) was precisely the

same electromagnetic potential produced by a string of magnetic

dipoles starting at a given point and going to infinity. W~hen

removed, after the gauge transformation, remains only the electro-

magnetic potential produced by a magnetic monopole at the initial

point. He then equated the effect of the circulation around the

nodal line in the original gauge to the effect of a monopole in

the new gauge.

His quantization by the winding number is actually just a

special case of our general quantization theorem in Chapter I,

and his gauge interpretation is thus a concrete examplification

of the meaning of the analysis given in 1.7.1.

We shall explain in detail the results of Dirac regarding

strings of manetic dipoles and monopoles in Chapter VII where we

shall need to make specific computations with them.

We can however advance that the effect of the time in-

dependent nodal line is thus a purely magnetic one. This fits

well with the strictly complex character of the monochromatic

wave f+iP that defines the nodal line (f = p = 0).
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2.4.2 NEUTRINO, SCREW NODAL LINES

The variety of types of singular sets defined by (2.29)

is very great, as exemplified by Nye and Berry (1103).

Besides the singular set that we previously identified with

the photon (spherical wave front plus a nodal line) there is also

the remarkable singular set of the monochromatic wave constructed

out of CP = f(r)-t and f+iP = y+iz in R 4 , by the following

sum

(2.31) ce iWf(r) - (y+iz), e > 0.

Its singular set is given. by

y = £ cos w[f(r)-t]

(2.32)

z = c sin w Cf(r)-t]

which represents an helicoidal line lying on the cylinder y2+z2 2

and moving with (variable) speed of light along its tangent direction

at each of its points. (For commodity the reader may assume

f(r) = r just to get a better visualization: the sp-ed is then

constant and the helicoid has constant step.)

Taking y-iz instead, we get a screw motion with opposite

handedness.

The singular set is thus a moving screw in 3-space that can

be right or left handed, and may carry the energy associated with

a quantum jump, as shown in Chapter I.

It seems therefore that a monochromatic wave like this can

represent appropriately a right or left-handed neutrino, concretely

identified with its singular set.

It has then quite distinct properties from those associated
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with a photon. For it is given by an infinitely long moving right

or left-handed helicoidal line in 3-space while the photon is given

by a point piloting a spherical wave.

In particular if the singular screw line (2.32) is asso-

ciated with an elementary state u and carries energy E in the

manner described in Chapter I (Theorem 1.6.3), it also carries the

angular momentum c2 EW/c 2 directed along the x-axis, (in the given

referential). Hence the neutrino carries angular momentum while

the photon does not.

On the other hand, according to this description, the neu-

trino should not have (primary) diffraction patterns as the photon

does, which would explain why it is so difficult to detect.

The infinitely long screw line seems to agree, in principle,

with the experimentally estimated fact that the neutrino has an

extremely long absorption path, of the order of 100 light years in

ordinary condensed media (p.58 [8]) or 1000 light years in water

(pp.295,298 [2]).

2.5 SPINOR AND TWISTOR DESCRIPTION

2.5.1 SPINORS

If (x,x ,x 2 ,x3 ) is a vector in Minkowski space we may

associate with it the 2x2 hermitean matrix

X X1 x2 +ix3

(2.33) x = (xo xl 2 x3 _

s ih4This is obvicly a linear isomorphism of D 4 with the

, .



(real) space of 2X2 hermitean matrices. Direct computation shows

then that when the vector is acted upon by a proper Lorentz +rans-

formation L, the associated hermitean matrix undergoes multipli-

cation by a 2X2 complex unimodular matrix on the left and by its

transpose conjugate on the right. The unimodular matrix is unique-

ly determined by L, except for sign of course. This correspondence

gives an isomorphism between the group SL(2,C) of 2X2 unimodular

complex matrices and the twofold universal covering of the connected

subgroup of the Lorentz group 0(1,3).

2A spin vector is then defined as an element of C 2 , which

is acted upon by the unimodular matrix associated with L, while

L acts on R4.

A spin vector field on (v4 ,g) is defined locally by taking

a smooth moving orthonormal frame, i.e., such that on each point

2 1)2 2 2 32
the metric has the standard form (dx°) - (dx) - (dx) - (dx )2

and assigning, in a smooth way, a spin vector at each point of the

corresponding Minkowskian tangent space.

Since in the correspondence (2.33) we have

0 2 2_(x2)2 - 2  1 etX
(2.34) (x°)2  (xl)2  2 (x3) 2  det X

then any (real) isotropic vector corresponds to an hermitean matrix
A

given by the tensor product of a spin vector w with its complex

conjugate IA' (the vector is then called future-pointing), or
-A'

with -w (the vector is called past-pointing), (A,A'=I,2).

The spin vector w A  is determined by the vector, up to a

factor e i , 8 real, obviously. This extra degree of freedom

relates to a possible polarization of the objects involved (see

11] , p.152 E13]).

I -
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Clearly complex isotropic vectors are given by the tensor
A A'

product w A of spin vectors.

2.5.2 Finally we remark that two isotropic vectors are orthogonal

if and only if either their first or their second associated spin

vectors are parallel.

Indeed let, in matrix form,

•b f

Using polarization of bilinear forms and (2.34), we get

Ui v 1 "~ivi( +ii-

iv. = [ (u'+v1 ) (uiv i ) - (ul-vi) (ui-vi)]

S (a) (cd) (e)(g,h)

- d e t [ ~ :(a c ) - ( ) ~ h

b \ f

= (af-be)(ch-dg).

Hence u v. = 0 iff either af = be or ch= dg, as

claimed.

2.5.3 TWISTORS AND MAXIMAL MONOCHROMATIC ALGEBRAS

Consider the generators (cP,f+iP) E M of a maximal mono-

chromatic algebra.

The vector fields Vp and V(f+iP) are, respectively,

real and complex isotropic fields, mutually orthogonal on (V4 ,g).

By the previous analysis Vcp is given by a spin vector field X A

in the spinor form

A-A' A-A')

(2.35) V= w ( or _W-)
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and, since 7(f+io) is isotropic and orthogonal to V ,

(2.36) v(f+ip) = W AAI (or IA@A),

A
where A is another spin vector field.

Consequently the pair (vcp, V(f+ip)) of vector fields is

completely determined by the ordered pair of spin vector fields

(2.37) (W OTA),

but we have a fourfold map here since we have altogether 4 differ-

ent ways of building the vector fields according to (2.35) and

(2.36), out of the ordered pair (2.37). (See in this connection

p.4 5 [14].)

The correspondence (2.33), extended to complex vectors x,

shows that the second choice in (2.35) reverses vp from, say, a

future-pointing into a past-pointing isotropic vector while in

(2.36) it chooses the complex-conjugate V(f-io) instead of v(f+iP),

reversing the roles of analytic and anti-analytic functions, which

means inversion of handedness.

Choosing locally a given time orientation and a given handed-

ness, corresponds to a particular choice of the assignements in

(2.35) and (2.36).

The ordered pair (2.37) of spin vectors at a point in

(V4 ,g) is called a (local) twistor and the corresponding field a

(local) twister field (pp. 373,374 E15]).

From the twister field we determine the real and complex

vector fields by (2.35) and (2.36) and (2.33), which, upon inte-

gration yield an (equivalent) pair (cp,f#i,).

-a
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This means we can completely characterize a maximal mono-

chromatic algebra (and consequently the light quanta it represents)

in terms of a twistor field with divergence free associated vector

fields. (The new representation is even richer as it has built in

an extra degree of freedom, namely, polarization, due to the factor

e'l mentioned before.)

This result, showing that what we have identified as light

quanta are indeed given by twistor fields, consubstantiates the

belief of Penrose that twistors are the appropriate tool to describe

zero rest mass particles and to effect the connection of classical

general relativity with quantum mechanics (p.4 03 [151).

2.5.4 CLASSICAL INTERPRETATION, HELICITY AND SPIN

Penrose's definition of t-,istors in Minkowski space (p.278

[15]) starts with the fact that if a zero rest mass particle has

momentum pa and angular momentum M ab (= _..ba) (a,b = 0,1,2,3)

with respect to some origin then, say, in spinor form

(2.38) PAA' = A IA't

(.9MAA'BB' (A-B A'B' AB (A'-B')>'(2.39) = iW ) T ic T .

where Z W A ( AT A ') is a twistor. (Here brackets mean symmetrization

AB 0 1
and C = (- ) is the spinor index raising operator.) As before,

the twistor is only defined up to a phase change e , e real.

The vector pa is an eigenvector of

1 pb cd
(2.40) 2 eabcd M sp a

(Here eabcd is antisymmetric in all indices and c0123 = 1.)

I0
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The eigenvalue s is the helicity of the particle and Isi

its spin. It is also given by

(2.41) 2s _Z Z , rA

where, by definition, Z ( A") is the complex conjugate of

Z and the above expression their scalar product.

If ZaZ = 0 and Zj 0 there is a single line Z of

ab apoints with respect to which M = 0, and it is parallel to p:.

therefore isotropic. If Xa is another null twistor (i.e. such

that kXR = 0) and Xa o 0, with associated isotropic line X,

then X and Z meet if and only if XZa = 0 (P.350 [12]). The

isotropic line Z, which describes the twistor Za up to a factor,

is thus completely characterized by the congruence constituted of

isotropic lines that meet Z, i.e. by the family

(2.42) (x lx = 0, = 03.

If ZC1 L 0 we can again describe Za by the congruence

of isotropic lines that satisfy (2.42), but now there is no iso-

tropic line associated with ZC, and the lines associated with X

twist about one another (right-handedly when s > 0, left-handedly

when s < 0) and never quite meet. A complete analytical description

is given on P.351 [12] and a nice pictorial description is given on

p.291 115]. The computation is given for Z = (C,0,1,0),

e real 0, which is the generic case up to a general Poincar6

transformation.
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CHAPTER III

MASSIVE QUANTA

3.1 REPRESENTATION OF MASSIVE QUANTA

The trajectory y of a massive quanta is, by definition,

a time-like path. A single time-like trajectory cannot carry an

isolated singularity of a distributional solution of the wave equa-

tion A2f = 0. (p. 639 [3]).

Therefore we cannot expect to represent massive quanta in

a way similar to the way we represent light quanta, namely by

means of the singular set of an elementary state.

Nevertheless it is clear that we can describe a time-like

curve as the locus of a generalized curve constructed out of

families of bicharacteristic curves. This fact will provide us

with the appropriate way to achieve the representation of massive

quanta.

For that consider two distinct maximal monochromatic algebras

h and h' in (V4 ,g). Let S and S' denote all possible sin-

gular sets of functions in h and h' , respectively.

Let y be a time-like continuous curve on a two-dimensional

submanifold spanned by bicharacteristic curves which are the loci

of isolated higher-order singularities lying in elements of S

and S'.

The curve y can then be locally approximated in the C0

topology by continuous broken lines $(n) each of whose segments

S(n)- are segments of the above bicharacteristics.
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If we restrict y to a compact set K, which is the closure

of an open set in V 4. then since all causal curves lying in K

are uniformly Lipschitz continuous, the C 0 -converging sequence

0(n) _ Y in K will be uniformly bounded in length, hence in norm.

Therefore a subsequence will be weak-* convergent to a generalized

curve having y as its geometrical locus.

As there are only two possible directions v, v' at each

point of y we end up with a probability measure with two values

p, p' associated with these directions, at each point of y.

Let y be given by x = x(T), - real.

This generalized curve in V4  induces in turn, a generalized

curve r on h U h' C C, as follows. Let f E h, f' E be

the monochromatic states whose singular set define the higher-order

singularity on the bicharacteristic curves through x(r) E Y,

mentioned before. r is then defined as the mapping

(3.1) ' - (f,,p; f p',)

where p = p(x(T)), p' = p'(x(T)) are the probabilities original-

ly associated with v and v'.

This generalized curve is thus a statistical superposition

of elementary states describing light-quanta, and whose higher-

order singular set intersect along Y, and thus yield a singularity

moving with speed less than the speed of light. This singularity

represents thus a massive quanta.

In summary the presence of a massive quanta in (V4 ,g) is

described by means of two distinct maximal monochromatic algebras.

The envelope state 4 of this generalized curve is then

defined by the equations
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(3.2) *1tt + = P~'t

(3-3 V§ t=T =(Pvf~ + t) f t)I

provided such a solution exists.

If we had originally an elementary state u superposed

to the f's, the envelope state u§ would be defined instead by

U§I= =Puft + P'uft, =
UltT = put + t=

= (pv(uft) + P'V(uf;))

However since u 0 these equations are equivalent to the previous

one as one sees expanding the grrdient.

We can think that, just as the locus y is what is seen

on the average of the generalized curve, so * is what is seen

on tne average as the result of the statistical superposition of

the light quanta in r (compare with the description in §4.7

p.120 [43).

Each separate curve

(3.4) T f T E_ h ,

(3-5) ,T V' h',

defines a classical state, according to 1.3, and, when p and p'

independ on T, the generalized curve r may be thought of as

a statistical superposition of these classical states with pro-

babilities p and p' . These are theu the hidden classical states

building up the observed state $ = p* + p'l'.
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3.2 QUANTUM-M-ChANICAL POTENTIAL

Assume now that we have an elementary state u, with vu

defining a time-like geodesic flow and that f is constant along

any of the corresponding geodesics (i.e. I is a stationary state

with respect to the time defined by Vu).

Take local Gaussian coordinates so that u - u(t) and

ds 2 = dt2 - j dxidxj (i,j = 1,2,3).

As u is elementary we have

0= div Vu ut

imtioe. u = ce .

From A = u (7u = -m u ,

Vu'Vf= 0

2§= -A2I 0

and A 2 (u0) = IA2 u + 27u*vi + uA2# ,

we get

(3.6) (A 2 + m =+ Q)u 0,

where

(3.7) Q = ----

(Here 2 is the Laplace-Beltrami operator corresponding to the

metric J in the space sections t = const.)

Equation (3.6) shows therefore that the envelope function

ut satisfies a Klein-Gordon equation with the quantum-mechanical

potential Q (p.50 [2], C1], [5]).

&OAN
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3.3 EXAMPLE

For example consider for simplicity two-dimensional Minkowski

space (t,x), and on it a generalized curve with the t-axis as

locus, and the measures p = p' = 1/2 attached to the unit vectors

I/vr2(I, ) and I/,,(l,-i) .

Take

fT(t,x) = ei(tT) - 1,

f4(t,x) = e- i(tT+x) - i

which are curves of monochromatic states, that have zeros on the

t-axis at the time t = T.

Their envelope function is

§(t,x) = ix -

Indeed 4 satisfies (3.2) by construction, and satisfies (3.3)

because V§ It=T = (O,-ie ix), which agrees with

V - (ei(t-T-x) + e-i(t'T+x) - 2) = (-P-ix sin(t-T), -ieixcos(t-T),

when we put t = T.

The envelope function has a line of zeros on the t-axis

(the other zeros could be removed by eliminating periodicity by

the procedure shown in 2.1, Chapter II).

The original family of monochromatic functions represent

a light quanta moving forward and backward, respectively, both

located at x = 0. Their statistical superposition produces the

envelope state f which has a standing singularity at x = 0 and

represents therefore a stationary massive quanta at the origin.

The corresponding quantum-mechanical potential is

Q l/(l-e ix

FQ
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More concrete examples will arise naturally along our

analysis. Nevertheless, despite its simplicity, this example is

typical.

3.4 COMMENTS 1. It is clear that just as forces arise as con-

sequence of non-geodesic motion in point motion, so the quantum-

mechanical forces, as expressed by the potential Q, arise in the

envelope procedure because by construction this procedure preserves

the value of the functions and their gradients, but not necessarily

their second derivatives.

2. The analysis in this chapter, although simple, illustrates

the usefulness of the constructive approach. In particular it

clarifies the meaning of statistical superpositions as a natural

consequence of L.C. Young's result on the need of generalized

curves, via the envelope procedure, and explains, in principle,

the origin of quantum-mechanical forces.

3.5 DISTINCTION OF MAXIMAL MONOCHROMATIC ALGEBRAS

LEMMA. The maximal monochromatic algebras h and h', with

generators (f, p+if) and (f, +i*) respectively, are distinct

if and only if

(3.8) Vf.V7 € 0.

Proof Indeed if vf*v7 a 0 then necessarily f is a function of

and therefore

vfs(c+i) = 0,

besides vf v(e+i*) = 0.

But then Lemma 2.3.3 tells us that either Vf, V(q,+i*),
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V($+ij) or Vf, V(cp+i*), V(5-ij) are linearly dependent. In

any case c + i is a function of (f, ep + i*) and since so is 17

the two algebras are the same (here again we are including the

possibility of having to consider analytic functions in one and

anti-analytic in the other).

Conversely assume the algebras are not distinct. Then by

Theorem 2.3.2 7 is a function of (f, C + i*), analytic or anti-

analytic in Cp + i*, and so VfVf a 0.
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CHAPTER IV

EIEMENTARY GEOMETRIES

4.1 FORMULATION OF THE PROBLEM

We are now ready to start our attack on the fundamental

problem of identification of the nature of particles.

As mentioned in the introduction, the presence of a particle

in the differentiable manifold V 4  is characterized by the fact

that light quanta can be emitted and can be absorbed (by the

particle).

According to our analysis in Chapter II, light quanta are

described by maximal monochromatic algebras with respect to some

Lorentz metric in V 4. As emission and absorption corrmpond to

distinct algebras, we see that the presence of a particle in V4

is characterized by a Lorentz metric g in V4 and at least two

monochromatic pairs (f,qp+i*), (i, +i ).

This same conclusion is reached if we look for Lorentz

metrics on V 4 which admit massive quanta.

If we assume that the metric is given, we have to solve

the set of non-linear partial differential equations that define

the pair (f,cp+i*) E M. From the very way our problem is formulat-

ed however, it is natural to assume instead that the generators

(f,cp+i ) E Ih and (7,p+ij) E rn are known and that the metric is

to be determined. We then get a system of non f near partial

differential equations in the gii'S.

In this way we obtain the following fundamental result

6L
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4.2 THEOREM. A Lorentzian space (V4 ,g) admits two distinct

maximal monochromatic algebras if and onlX if it is the riemannian

product of two two-dimensional geometries, one definite and the

other indefinite.

If it admits more than two such algebras, it actually admits

infinitely many and is locally Minkowaki.

In any of these cases, the complex monochromatic generators

of any two maximal monochromatic algebras can be taken as common.

Specifically there are coordinate charts such that

(4.1) ds2 = a -(X11x4 )(dx1)2-(dx 4)2 + (a2)2+(dx3)23.

Geometries of this form will be called elementary geometries.

This result has far-reaching consequences that we now

describe.

4.3 CONSEQUENCES

4.3.1. Locally Minkowski spaces are spaces devoid of masses and

fields and therefore represent the vacuum in the given differentiable

manifold.

4.3.2. If (V4 ,g) carries a particle, it cannot carry another

one, otherwise the space would admit more than two distinct maximal

monochromatic algebras, and by the theorem, would be locally

Minkowski, hence vacuous.

This result therefore establishes a (kind of) correspondence

between non-flat metrics of the form (4.1) and particles (while the

flat metricscorrespond to the vacuum).

In other words, a particle (up to'what we have found until

now) is a geometry of a special kind.



4.3.3. B3y the previous item wo can only describe classically a

one-particle universe or the vacuum, at a time. Thus in order to

describe simultaneously more than one particle in the given dif-

ferentiable manifold we must resort to a non-classical procedure.

Just as before we had to use generalized curves to represent

massive quanta out of light quanta, now we must consider a gene-

ralized Lorentz manifold, defined as a statistical distribution

on the set of elementary geometries in V 4, each corresponding to

a particle present in V4and to the vaccum.

As before, we define the corresponding average metric and

agree that this is the metric observed. The real picture consists

however of the statistical superposition of the hidden elementary

Wometries, that combine through averaging to give the observed

Lorentz geometry. This generalized metric construction is thus a

simpler version of the many-world picture.

4.3.4. Although we can figure out what a generalized metric

should be, the problem of how to construct it explicitly is highly

non-trivial and corresponds essentially to the complete mathematical

description of the interaction between particles. This involves

conceptual and technical difficulties that we are not yet ready to

tackle, at this stage. Luckily, approximate analyses are possible

after we get more information on the structure of the elementary

particles themselves, that is to say, on one-particle universes.

After tha~t, this problem can then be reconsidered.

4.3.5. However some further considerations are convenient here.

Recall that Einstein's equation G (X 0 can be recovered as the

extremal of Hilbert's Lagrangian L ItH, where R is the scalar

curvature of the unknown metric g ,j integrated between two space
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sections E, E' of V4 with given initial and final (induced)

metrics (pp. 485,491 [2]). This still holds true if the Lagrangian

of an electromagnetic field, namely FPVF Pv, is added to L

(p. 504 C2], p.24 [t3) in which case the equation becomes G TC0

Assuming that topologically V4 = EXR, one can introduce

the superspace 9 on E, consisting of all positive definite

metrics on Z and put an appropriate metric on 9 (de Witt metric,

p.2 12 [i]). One can then consider a curve on S and associate

to this curve a Lorentz metric in EXR, in such a way that the

induced 3-dimensional sections of this metric are the elements of

the curve (p.224 [l). Furthermore this allows one to express the

scalar curvature R in V4 , appearing in Hilbert's Lagrangian,

in terms of the intrinsic and extrinsic curvatures of the elements

of the given curve and so to formulate Einstein's equation entirely

in terms of curves in 8

When the solution is an ordinary curve this analysis is

called classical geometrodynamics. In our case, however, we must

restrict the 3-geometries to be spatial sections of the elementary

geometries (4.1). Therefore if more than one particle is present,

no classical solution exists. However a generalized curve built

out of spatial sections of the elementary geometries (4.1) may

solve the corresponding variational problem, and this is at the

root of quantum geometrodynamics. In fact the envelope procedure,

that defines the average classical curve resulting from a generaliz-

ed curve, corresponds to first quantization in the case of light

waves, and to second quantization in the present case.

In this case, however, two new difficulties arise. First

the given LaGrangian involves second derivatives of the unknown

giji Second, to define statistical supcrposition of geometries
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we must find out how do they look in a common chart, to start.

The first problem is bypassed by the Palatini device (pp.491-502 C2],

p. 4 5 [3)) in the case of classical solutions; what happens when the

solution is a generalized curve remains to be seen. The really

difficult problem is the second one, because it reflects the real

issue at stake, namely, the mathematical description of the

interaction between the particles.

4.3.6. PRESERVATION OF ANALITICITY

Suppose we build a massive quanta, in the way described

in Chapter III, out of functions in the two given maximal mono-

chromatic algebras h, W' By the theorem they may be taken with

a common complex generator. If the given functions in h, h'

are both analytic, or both anti-analytic, in the complex generator,

then so will be their envelope, because the envelope procedure

preserves first derivatives and linear relations, and so also the

Cauchy-Riemann equations. This fact will have importan conse-

quences.

4.3.7. TWISTOR DESCRIPTION OF PARTICLES AND MASSIVE QUANTA

Consider the generators (f cp+i*) and (7,Cp+i*) of the

two distinct monochromatic algebras h, I'.

A-A'
Let the spinor representation of Vf and 7f be WAi ,

say, and " A , say, respectively. Since v(+i*) is a strictly

complex isotropic vector orthogonal to both Vf and Vi then,

by 2.5.2, necessarily it has the spinor representation

A- A'
Y'W TT

(or Ty AMA' its complex-conjugate), with y a scalar field.

Therefore (Vfviv(e+i*)) is described by the twistor

plus a scalar - field
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The twistor fields associated to the monochromatic algebras

h and h' are, respectively,

Zo = (WATTA,)

and =AyW

according to (2.36).

Computing explicitly with respect to the basis where

ijg = diag(a,-a,-L,-), i,j = 0,1,2,3, we get

WA = al/4 e.9 TA = al/4 e2 ' y = 1/2,

2
where el, e2 are the unit vectors in C

As a consequence

Z8Z = YY =2 Re(WA TA ) =r2x

In Chapter V we will consider the case when a N 1 and

= sech VX(x°+xl). In that case 2s t= is constant

everywhere and s 1 1, so we can speak of helicity and spin.

Further the scalar field y = sech .X(x0 +xl ) is known as soon

as the parameter k is given, and this characterizes the kind of

particle under consideration. In this case therefore the two

monochromatic algebras h and h' are completqly characterized

by the single twistor field (w AT ) plus the numerical

parameter ). In other words the elementary geometry associated

to the particle, and so also its massive quanta, is characterized

by a single twistor field, just as the light quanta were in 2.5.3.

Therefore in this respect, i.e., in terms of their classi-

fication by twistor fields, light quanta, massive quanta and the

elementary particles themselves are on an equal footing. Yet we

know that they are all quito distinct objects, and that the given

L __ '
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twistor fields are used in different ways to build them.

This result may explain why many methods of dealing with

quanta, light or massive, and with elementary particles,work

just as if they all were objects of the same kind.

4.3.8. Finally we remark that the twistor representation shows

that there may be an interaction between the independent spaces

entering in the riemannian product (4.1). Indeed if T is substituted

by ei T and w by ei W, e and $ real constants, we know

that 7f and Vf do not change but v(p+i*) goes into

v(ei(0"8)(p+i*)). This represents a rotation by an angle s-e of

the original axes in (x 2,x 3 ) space. Hence the polarization of

the isotropic real vectors may produce rotation of the (x 2 x3 )

plane, and vice-versa.

We now proceed to the proof of the theorem.

4.4 PROOF OF THE THEOREM

1. Let (f,rP+i*) and (f,p+i;) he two distinct monochromatic

pairs. This means, in particular, that

(4.2) (Vf)2 = o, Vf , 0,

(4.3) (veP) 2 = (v*)2 = 0 o

(4.4) vfvcp = 0,

(4.5) Vf.V* = 0,

(4.6) VC.V, = 0,
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with similar equations holding for 1, , *. Furthermore V 0,

by Lemma 3.5.

In view of these relations we can choose local coordinates

defined by

( .7) ~J xI - 2 = 3  4 ' .(47 x "t Xxx f
From (4.2) applied to f and f we get l = g44 .0.

From the remaining relations we get similarly

912 = 13 = 23= 0

g22 = 03 * a o,

so that g.J has the expression

0 0 0 a

(4.8) j= 0 a 0 b

90 0 a C
a b c 0

Here

a= VfVf 0

b =
(4.9) C

V-2
CL (V) -- (V*) 2  0

We may assume, without loss of generality, that a > O, > 0.

(This simply amounts to the choice of the canonical form

Using the notation r= rpi, we get from (4.3)ax

0= 2q (ap, 2 + cc 3  2~p ~

(4.10) V4 + bP2 + cV3) + a(4 3
=2* (a*, + bt 2 + * + 0.( 2 + * 2)

...... + 0"3 2 3FT :....
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From (4.4) and (4.5) we get

(4.11) vcp.V f = aCP + bcp2 + cCp3 = 0,

(4.12) 'v*f = a* 1 + b* 2 + c*= 0.

Hence (4.10) gives, as a 0,

2 2 2 2(4.13) q'2 + ='3  *2 + 3

Finally from (4.6) follows

(4.14) v 'vo = a(CP1 4 + 41 4) + b(p 4 * 2 + *4C2)

+ c( 4 * 3 + *4CP 3 ) + M(2*2 + 'P3 * 3 )

=0,

which becomes, after rearrangement,

(aCl + bCP2 + cCP3) + C4 (a*3 + b* 2 + c* 3 ) +

+ M(C2*2 + CP3 $3 ) = 0.

In view of (4.11) and (4.12) this gives

L (4 15 ) C2 *2 + q3 *3 = 0 '

The solutions of (4.13) and (4.15) are the Cauchy-Riemann

equations

C 3= **2' 2 = *3

We may choose one of the determinations, say

(4.16) C2 = *30 3 = "$2

In particular

(4.16)' 433 + CP22 = 33 + *22 = 0.

M a ca = SO EONE
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2. Since Ijgl/2 : Idet gijll/2 = I, the Laplace-Beltrami

equation A2§ = 0 in these coordinates has the expression

(4.17) 4-= b 1 a + b343+I
+ 1e b + c_..+ o - + 0 w2 + ) - O.

Replacing 0 by x , x2 2, x 3  x4  gives, respectively

(4.18) 64(1) = 0,

(4.19) 2(l) + = o, 0

(4.20) (). b4(i-) = 0,

(4.21) m) 0 + * .

Now we remark that in (4.17) the coefficient of , upon

expansion, is just the right-hand side of (4.21), hence it vanishes.

If 4 =c then it satisfies (4.11), and so, using (4.18) and (4.21),

(4.17) becomes

(4.22) 1 1 1 b +2'P41 + I2 2 + T2 a2 (V + 4 42 + "3 3 + C3 a 3
c+ lia- = 0.

But

1 b c " l b c
T41 + W 2 a ' 4 P43 (i +  "2 Pi +-.a

- CP -a2 4 () 2 4 3 4 ()

* P2 2( 4 + rP.3 B3(1J

in view of (4.11), (4.18), (4.19) and (4.20).

In view of this and of (4.16)', (4.22) becomes

(4.23) 2 B(;) + 3 b3( a 0.
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Similarly for *

(4.24) *2 B2() *3 23() = o.

But (4.23) and (4.24) are a homogeneous linear system in

and with determinant - 2 3 = 2 2

- - 0, by (4.16) and (4.13). Hence necessarily

(4.25) 2 a) = '3(j)

i.e. a = a(x ,x 4) as claimed.

In particular (4.19) and (4.20) become

(4.26) W4kd = 0,. or using (4.18),

4 (j) = 04(j)

3. Introduce now the new set of coordinates

(4.127) l 4 -2 3 4 xi( .27 = x = f, P 3 f,= *,= = ,

which amounts to the interchange of the roles of the given mono-

chromatic pairs.

We have

0 0 0 1

(4.28) Cq1  CP 2  CP3 C

(xP *1 *2 *3 *4

1 0 0 0

The metric in the new coordinates takes the form
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(4.29) ij !Li a -x 6pq

o 0 0 a 0 o a

o 0()  a 0 b
=2 2 E

0. 0 (,...,, ) 4 00

a aq4 a*4  0 a b c

where use is made of (4.11), (4.12) and (4.15).

From (4.27) it is clear that a a(xI,x4 ) _4l([).
8 bxi 21

Notice also that T--- ---- gives, by (4.27)

&x A' (4.27

Writing B = , the equations (4.18) and (4.26) become

therefore

0 i~e. * 2 2 ) 0,
2 ) 0,

0() - 0 i.e. 0,CL (CP- 2 +CP

0 0 0 ~ *40.

From these equations follows

(4.3o) P41 = *41= 0.

Writing (4.11) in the form

b 0
a 2 + ,3

applying b and using (4.26) and (4.30) we get

a24 + EaC 34 = 0.

Doing the same with (4.12) and collectine the two results

we get

!a
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(4.31) b (24 + c C34 = o,

b *24 + c *24 = 0.

This last equation becomes, in view of (4.16)

(4.32) c CP2 4 - b C34 = 0.

Now if b2 + c 2 0 in a neighbourhood of a given point,

the metric (4.8) has the required form in that neighbourhood

because (4.18) and (4.21) yield a = a(xx). Otherwise if there

2 2
is a neighbourhood of that point where b + c > 0

(4.31) and (4.32) imply

P24 = P34 = *24 = *34 = 0

there, which, together with (4.30) show that CP4 and *4 are
4

functions of x alone. Hence, in particular, c splits into a

sum of a function h(x 4 ) and a function of (xl,x2 ,x3 ). Intro-

ducing C - h(x4) instead of cp, which does not change the

properties of the original monochromatic pair, we obtain C4 = 0

for the new C. By the analogous procedure we obtain *4 = 0.

Hence in (4.29) the metric becomes

( 4 . 3 2 ) i j = o o 0

a 0 0 0

with a = a(7,Cl ), and by (4.18) and (4.21) as applied to this

case, B = 0( 2, 3). Henco in any case the metric can be put in

the form claimed.
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1 144. From the symmetry of (4.32) with respect to x and x

se see that both (f,cP+i*) and (?,p+i#) generate maximal mono-

chromatir algebras, and these algebras are distinct by Lemma 3.5.

This same lemma tells us that (?, +i*) and (?,$+iV) generate

the same maximal monochromatic algebra. Hence, without loss of

generality, the complex generators may be taken to be common.

5. If the metric has the form (4.32) it is seen directly that

(xl,x2+ix3 ) and (x 4,x 2+ix 3 ) generate distinct maximal mono-

chromatic algebras.

6. Assume now that there is a third independent maximal mono-

chromatic algebra with generators (f,$+i*).

According to the previous steps we may assume that

b = c =0 in the expression (4.8) of gii.

Letting if S wi and introducing f in place of x

(i.e. of f) in (4.7) we obtain

1 000 0 0 0 a\ 10 0 w

;iJ= 0 1 0 0 0 CL 0 0 0 1 w2
(4.33) 0 0 1 0 0 0 a 0 1 w 3

0 01 0 0w O 0) 001w0 w a 0 0 0/ 0 0

0 0 0 w 0 0 a

00 0 0 0 3

w4 w2 w, 0 6 a 0

where use is made of

( )2 2
(4.34) (Vf) = 2aw1w4 + C(w2+w3) = 0,
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as computed in the metric (4.8).

In the new coordinates xi = xI , = x , 3 x

-4x f, we have

1 2 3-
w w2  w3 b 4

4 14 w4 w4 w4

From the analogue of (4.25), namely

BA a 6b = 0,
2 3 a

we get

B2 (aw 4 ) _- 3 (aw4 ) - 0,

i.e., in view of (4.25),

(4.35) w42 =w43 =0.

Had we substituted f in place of x I instead, we would

have gotten analogously

(4.36) w 12 w = 0,

2 3
i.e. w I and w4  independ on x , x and w 2 9 w3  independ on
1 4

X1, X4.

From the analogue of (4.21) we now get

1
i.e., as a independs on x

w2 Law3 = 0,

and, in view of (4.35), (4.36) and (4.25), this becomes

(4.37) "22 + w33 = 0.
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On. the other hand, in the metric g j

A2 f= 2aw1 4 + L(w 2 2 +w3 3 ) = 0

implies now

(4.38) W14 = o.

From (4.34), as (, w2, w3  independ on xI  x 4we gt

by differentiation

al(awlw4 ) = B4(awlw4 ) = 0,

2 x3
and since awlw 4  also independs on x , x we see that

(4.39) 2awlw4 = K, K constant.

Hence from (4.34)

-K
(4.40) -K

w +W2+3

From (4.35), (4.36), (4.38) and (4.37) we have that

w = W(x2 ,x3) + p(xl) + q(x 4),

with w harmonic in x2,3.

Since w. = p' (x') and w4 = q'(x 4 ), (4.39) yields

(4.41) a =K
2p' (x 1 )q, (x 4 )

Let X(x2 +ix3 ) be an analytic function having w as its

real part. Then the change of coordinates

x2 - Re X , 3--Im Y,

x -- p(xl), x4#---.q(x4

makes gij a constant matrix, in view of (4.40) and (4.41), which

proves the metric is locally Minkowski.
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7. In the Minkowski case let gij = diag(1,1,1,-l). Take the

real and the complex orthogonal isotropic vectors

k° = (0,o,,1), kc = (3i,,0).

Let *L be a proper Lorentz transformation.

Then f(x) = (Lk 0 ).x and CP+i* = (LkC)'x are generators

of maximal monochromatic algebras, for whichever L one chooses.

As Lk describes the light cone when L varies, this gives us

infinitely many distinct monochromatic algebras, by Lemma 3.5.

The theorem is proved.
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CHAPTER V

PARTICLES

5.1 INTRODUCTION

geometric
In this chapter we complete thedescription of particles

by exhibiting the metric of the corresponding elementary geometry

4in a concrete referential in R , namely

2/ "2.I r-roI
(5.0) ds 2 = r - (1-e )dt 2 + dy 2 + dz 2 .

e -i

Here x,y,z are cartesian coordinates, r = (x2+y2+z2l/2

t is time and p > 0, r0 > 0 are constants.

We start by assuming that, due to its elementary character,

the energy-momentum tensor associated with the elementary geometry

describing a particle should be that of a pure electromagnetic

field. It is only when the metrics of various particles are super-

posed that more general energy-momentum tensors arise. (In this

connection see the considerations on pp.45, 4 6 [7] and on p.107 CIO.)

In that case, since elementary geometries are locally the

riemannian product of two 2-dimensional geometries, we are. pre-

cisely under the hypothesis of [1], and therefore the metric is a

Bertotti-Robinson metric, which means each of the two-geometries

has constant curvature.

Further natural assumptions are used to arrive at the final

form of the metric above, and will be explained along the analysis.

In principle other explicit geometries are possible if different

assumptions are made.
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5.2 PURE ELECTROMAG14ETIC FIELD

Introducing in (4.1) the new coordinates x1 = r(Xl X4

= ), the metric of an elementary geometry acquires

the diagonal form ©-1
a0

-1
( 5.1) jj = -

--10 -a

We assume a = a(X ,x 4 ) > 0, = Vlx2 ,x 3 ) > 0.

We now compute the. energy-momentum tensor T' J defined by

(5.2) Tij= Gi + A gii

where A is a cosmological constant and G' J  is Einstein's

tensor

(5.3) G R J - R gi.

Here Ri j  is Ricci's tensor and R = g" R the scalar

curvature, where

R k - k k h
i =k it " + r itkh - ih rLk

r 1 gil + "

i " 'i x

Using Dingle's formulae (p.70 [8J) one obtains

Gi =O, i J,

G11 G44 a (,22 , )log -1

G2 2 =G 3 3 -- - a (2 )log a "1 .
2 1 ~ 4 g
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Hence T Gj + A yields

%(b 2 a )log CL'I A
2~ 2 3l

-a (,2 - )log a-+A

(5.4) T -a 2 -

(b2 _ 2 )log a- 1 +A

Q 2 2 )log -I+A"0 2 +3

By assumption there should exist a vector potential A.

such that the antisymmetric electromagnetic tensor

(5.5) Fij = aiAj - 3jAi -

satisfies

i 1 F1 k  I t, k 5i(5.6) Tj T (- kF j + 7 FVF j)

In particular this implies

i(5.6)' T 0.

One identifies F with the usual quantities in 3-space

by taking an orthonormal tetrad Xia)' (a=1,2,3,4)), i.e. four

vectors such that

gjj Xa) (b)=

and forming the matrix
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o H, -H2  E

H2  -H 1  0 E3

-E1  -E 2  -E3 0

(EIE 2 ,E 3 ) is then the electric field and (Hl1 H2,H 3) the

magnetic field with respect to the given basis.

Similarly from the expression of the 4-current vector
I

(57 1 IT1~jj/2 iv

we obtain the charge density J(4 ) = J % MO and the current

density J(a) - J ) j)' a - 1,'2,3, in that basis.

Now (5.6)t combined with (5.4) plus separation of variables

yields the equations

a -I
(5.8) - (a 2 2 +a 3 3 )log a = -A - q,

(5.9) - a (B 1 1-a4 4 )log a 1  -A + q,

where q is some constant.

In this case

(5.10) Ti q 110• 1

The general solution of (5.6) with T given by (5.10) and

Fj antisymmetric is

ii
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(5 . \sin @ o

(5.11) F / (T ~ -sin e , e real, q 2 0.\0
Cos 0

This corresponds to the canonical form of a non-null field

when q > 0 (p.481 [9], [1]).

At this point we have two alternatives. We may follow

Rainich (pp.131, 132 [10]) and set e = 0 or TT. In this case

taking an orthonormal tetrad with vectors along the axes X1 , X2

X3 , X4  the magnetic field H. is zero and the only non-zero com-

ponent of the electric field is E 1 . This means no magnetic only

electric charge exists. Instead in case e - or 2-, only

H would be non-zero.

Or else we may make the assumption that the particle may

behave in any of the extreme ways (e = O, - electric charge only

TT 3n
or 0 = ;, --- -magnetic charge only) and as a statistical super-

position of both, presenting one or the other aspect according to

the kind of stimulus imposed.

This interpretation is more in accordance with our method

of analysis as explained in Chapter I. In fact the first alter-

native is related to the idea that electric and magnetic charges,

as objects, are independent on the geometry and perhaps produce it,

whereas our approach shows that, at this scale, they are just a

feature of the geometry itself, not independent objects. In

this connection it is instructive to read section 8 p. 13 in 17].

In this chapter we will only consider the case of pure

electric charge (e = O,r) postponing the case of pure magnetic

field to Chapter X.

First let us remark from (5.10) that
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vvT - q[-(v v1+v 4v4) + v2v2 + v3 v31

. q[-vivi + 2(v 2 v 2 +V3V3 )j.

Since v2v 2 +v3v 3 = -[(v2) 2  (v3 )  2 O, the energy-

momentum tensor T is non-negative on causal vectors, i.e. on
i

those satisfying vivi 0, as it should.

Setting 0 = 0, TT in (5.11) we get

Q 1
(5.12) 1 /8Tq 0 ,-q 0.o

0 0

The 4-current is then

(5.13) 0 * ( 4(.),o,o,-l()) = 0,

as a = M(x ,X3 ) .

Regardless of the particular expression of a = a(XlX 4

there is always a vector potential satisfying (5.5) for the

electromagnetic tensor

a-1
0(5.12)1 rij, =0 0 C

o0

It suffices to take for instance

(5.14) Ai = - (ooo, f IdX1)

because then

aIA 4 - 14 A, = &-I

and the other terms not involving both indices 1t4 are zero.
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Therefore conditions (5.8) and (5.9) with q 0 are

necessary and sufficient in order for the elementary geometry to

correspond to a pure electromagnetic field.

As remarked earlier, conditions (5.8) and (5.9) mean that
t h e ~~~- d e i n t m t i 1 ( d 2 3 2

the definite metric (%C(d) + (dX)] has constant curvature

l[ 12 _ 4 2
-(A+q) and the indefinite metric a-l(dxl) - (dX )2) has

constant curvature q - A. These are the Bertotti-Robinson metrics.

We therefore have proved that the Bertotti-Robinson metrics

are the only ones admitting absorption and emission of quanta and

corresponding to a pure electromagnetic field.

A typical example is given by the following conformal

Minkowski space

(5.15) dr 2-dt2  2 r > .
r

2
Here d2 is the usual metric on the unit sphere, which is to be

thought of as isometrically immersed in a spatial section

t = const. of Minkowski space.

5.3 CONCRETE CHART IDENTIFICATION

The elementary geometries (5.1) were defined abstractly in

terms of monochromatic waves taken as sets of coordinates. We

now have to identify these coordinates globally in terms of

concrete referentials, with respect to which measurements can be

made by a given observer. (This is an instance of the chart-

fitting problem referred to in 4.3.5t here we are trying to fit

the geometries of the vacuum and of one particle.)
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To start with we must fix a choice of differentiable mani-

fold.

1. Recall that our final geometry will be a statistical

superposition of elementary geometries defined on a common dif-

ferentiable manifold. On this manifold the vacuum is represented

by locally Minkowski geometries. We choose Minkowski space as the

4
elementary geometry of the vacuum, hence R as background.

This is then thought of as the geometry of the vacuum la-

boratory frame, i.e. the one with respect to which the measurements

are assumed to be made.

2. Suppose now a single particle is brought into play,

say, at rest with respect to the vacuum laboratory frame. Consider

its geometry just by itself, not statistically superposed to the

vacuum geometry. Suppose the time-axis of the observer and of the

particle's geometry as given by X4  in (5.1), coincide. The two-

dimensional space (X2,X3 ) with respect to which the particle's

geometry has the form (5.1) provide a local foliation of the

4
spatial sections X = const. We assume that some leaf of this

foliation yields an isometric immersion of the definite geometry

'L-[(dX2)2 + (dX3)2 ]  into the above spatial section of Minkowski

space.

3. If we want the particles to have finite spatial extent,

we must require singularities of the geometry to have bounded

spatial sections because these singularities define the boundaries

of what one usually pictures as a particle.

4. Finally we require that the maximal monochromatic

algebras associated with the particle be sufficiently general so
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as to admit non-trivial regular analytic functions, for all our

constructions leading to tho description of' quanta were based on

this assumption.

These requirements imply that A + q = 0, i.e. that the

two-dimensional definite geometry be euclidean.

Indeed the representation of the (X2 ,X3) geometry of the

riemarnian product as an isometric immersion in R 3 requires the

corresponding image to be regular, otherwise upon product with

the remaining coordinate parametrizing the foliation one would

get an unbounded singularity, contradicting requirement 3. But

then Hilbert's theorem (p.4 4 6 13J) on non-existence of complete

regular surfaces of negative constant curvature isometrically

immersed in 1R excludes the case -(A+q) < 0.

On the other hand in case -(A+q) > 0, the geometry is

that of an euclidean 2-si'here. The only regular analytic func-

tions on a 2-sphere ar. the constant functions and this con-

tradicts requirement 4.

Hence A + q = 0, as claimed.

Furthermore, by a corollary to a theorem of Hartman-Nirenberg

(p.4 08, [3]) the complete regular surface is then a cylinder or a

plane. Now foliations of R3 by cylinders with closed directrix

curve necessarily have a singular straight line axis and this is

a singularity of the (X ,x 2,x3 ) geometry because all the leaves

would have to be isometric. This contradicts requirement 3.

Hence the foliation is by planes or plane-like cylinders.

By (5.8) log a is then harmonic in (X 2 ,X 3 ) so if we denote

by h(X2+iX 3 ) an analytic function having log Cj as its real

part then, with respect to the new coordinates



Y2 +iY 3 = f eh(z)dz, z = X2+iX3

the definite metric has the euclidean form

(5.16) (dy 2) 2+ (dY3)2

We can then identify the coordinates Y2 , Y3 with carte-

sian coordinates in the vacuum laboratory frame (say, by appeal-

ing to symmetry considerations). As the analytic change of co-

ordinates preserves the properties of the associated maximal mono-

chromatic algebras, we may as well assume that (X2 ,X3 ) themselves

are cartesian coordinates in R and that x S 1.

5.4 CHART IDENTIFICATION FOR THE INDEFINITE METRIC

Since q z 0 and, by 5.3, A + q = 0, the cosmological

constant satisfies

(5.17) A a o.

Setting X = JAI = q, for convenience, equation (5.9)

becomes

(5.18) (b _-1 )log a- -

We now assume that the geometry does not depend on the time

coordinate X , which means the particle is static in time. This

particular time axis, with respect to which it is static, may be

called the particlc natural time.

In this case the solution of (5.18) with a = a(X1 ) is

given by

(5.19) a = B sech 2 12X (X +C),

B, C constants.

-I -t
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Clearly B > 0, otherwise a- is negative, X becomes

a time-coordinate and the particle is transient, not static.

Without loss of generality we may take C = 0.

The metric for a (static) particle is then

(5.20) ds 2 B sech /1k Xl[(dx1 ) 2-(dX4 ) 2] + (dX2)2 + (dX3)2

with B > 0.

5.4.1 Now we must identify the remaining coordinate X1 with some

coordinate complementing the cartesian coordinates X2 X3  local-

ly in R3

1. In first place if singularities arise they will be

level surfaces of X1  in R3 , as the metric in (X2 ,X3 ) is

regular and the final metric is a product metric. By our earlier

requirement 2. in 5.3 these must be bounded, hence closed (coor-

dinate) surfaces.

1
For convenience let us change notation setting X =P,

x4  x2  x3
= t, x = y, x = z and letting x denote the third car-

tesian coordinate. In this case we rewrite (5.20) as

(5.21) ds2 = B sech2  B (dp2 dt 2 ) + dy2 + dz2

where now the upper 2 is an exponent, not an index.

2. The usual spherically-symmetric geometries (Schwarz-

schild, Reissner-Nordstr~m, etc.) are given in the form

(5.22) dr 2  2  2(52) p(r) q)(r)dt2 + r Mn2

The Eddington-Finkelstein coordinates for these geometries

(p.828 [9]) are esentially obtained by replacing r by

!I
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r* fdr

in which case (5.22) becomes

(5.23) q(r(r*))(dr*2 - dt 2) + r2 (r*)dO2 .

2
Although (5.21) lacks the term dx and is not spherically

symmetric, its indefinite part has an analogous expression to that

of (5.23). Combined with the considerations in 1. this suggests

that we take p = p(r) (hence the closed surfaces p = const.

are spheres), and that we define the function p(r) by the con-

dition that (5.21) acquires an expression analogous to (5.22) in

terms of r and t.

Setting p = p(r) and

(5.24) dx 2 + dy 2 + dz = dr 2 + r 2 d 2

we get in (5.22)

2 22 22(5.25) ds = CB(sech 2  P )P' 2+1]dr2 - B sech 2 ,. )-Bp dt ' +

r2 dm2 2dx2

Now apply the requirement above to get

(5.26) B(sech 2  P )p, 2 + 1 = 2
B sech .J2W p

Setting = sech 2 v2 p this becomes

(5.27) d -T *2 Vf'dr.

Now we show that necessarily B = 1.

Indeed assuming B 1, integration of (5.27) gives
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tanh"  1 i = ± (r-r o),

with r0  a constant of integration.

Solving for we get

(5.28) sech 2 / p = B

where r = tanh2  2 (r-ro).

Clearly 0 1 1. Since 0 £ S 1, we get from (5.28)

TI1,
1-71

i.e. B £ 1.

If B < I then for the values of r in the range

1 > i > B, we get = --i/B < 0. This means that for

r > r + -2-tanh'lr- there is no (real) p satisfying (5.28).

Hence in order for (5.26) to have a real solution p = p(r)

over the whole range (0,m) of r it is necessary that B = 1,

as claimed.

In this case (5.27) yields

dgL ±2,/- dr,
1-

i.e. in conjunction with (5.28),

(5.29) = sech 2 V - = -e ,2, r-r0 )

with r0 ; 0 a constant of integration.

For simplicity let us put

(5.30) = > 0 .

The metric (5.25) then becomes

1k
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(5.31) dsr )( ) )dt 2 +

1-0

2 2 dx 2

+ r Mdo

In order for t to retain its time character in (5.31) over*2P(r-ro)

the whole range (0,-) of r, the coefficient 1-e must

remain positive so that finally

dr 2  -2$ I r-r 0 2
(5.32) ds 2  d 2klrr - (l-e 0 )dt +

l-e

+ r 2 dO2 - dx 2.

Observe that, except for the correction term -dx2  that

changes spherical symmetry into cylindrical symmetry around the

x-axis, the elementary geometry (5.32) has the desired form (5.22).

This correction will be shown later to be responsible for the spin

and nuclear magnetic moment of the particle, so we will call the

x-axis through the origin, the spin-axis.

5.4.2 COMMENT. The representation (5.32) has the following use-

ful property. If a large number of particles with randomly dis-

tributed spin axis x lie in a given bounded region, then on any

observer far from the region, they will act as if they were spher-

ically symmetric, because the terms -dx2 will contribute to the

average metric a term of the form -p(dx2+dy 2+dz 2), with

1 > p > 0.

5.4.3 TRANSFORMATION FORMULAE

From (5.19) and (5.29) we get

-l 2-2Pj'1r-roj

(5.33) a = sech2 pp = l-e i.e.

tanh pp = *e -Plr-r 0
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Hence

(5.34) 
P = * +lo g . 4r -rol.

1-e 0

Similarly from

-ilr-rol - log tanh p

we get

(5.35) r = r0 +1 logtanh ppi .(r < r9

(5.36) r = ro - logtanh Pj (r 2 r0)

Finally

(5.37) x = *hr O +-1 sgn( 2 z21/2

5.5 GLOBAL GEOMETRICAL CORRESPONDENCE

5.5.1 It is clear that the set of coordinates (r,y,z) in IR3

are bona-fide coordinates only on the half-spaces x > 0 or

x < 0.

Consider the (P = 1 = 2 z = X3 )-space with the

variables represented as cartesian coordinates in R3 , and

p > 0.
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zY

Cl

ro

3- y

r 0

X

In the figure above the conoids C1  and C2 correspond

2 21 /2
to x =0 i.e. to r = (y +z in (5.36) and (5.35),

respectively.

From y +z 2 r combined with (5.35) and (5.36) we see

that the interior of the conoids C 1 and C 2  in the figure are

mapped, respectively, in the exterior and the interior of the

sphere of radius r0 in the x > 0 rogion of (x,y,z) space,
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(assuming we choose the + sign in (5.37)). The origin r = 0

corresponds to

1 log l+e(5.38) po =-~ o
l-e o

while r = r0  corresponds to p =o.

In (x,y,z) space C1 U C2 becomes the plane x = 0

whereas the plane p = 0 corresponds to r = . C1 becomes the

region C outside the circle of radius r0  in the (y,z)-plane1 2 2

and C2  its interior. The infinitely far disk p = , y +z 2 r O

becomes the half-sphere r = r 0 x > 0, and the whole region

interior to C1EC 2] becomes the half-space x > 0 outside

[inside] the sphere r = rO .

Observe that in (p,y,z) space the shell of the particle

(r=ro) is located at o.

The alternative choice of - sign in (5.37) covers the

other half x < 0 of (xyz)-space.

Therefore the mapping of the interior of the conoid C1

in the p > 0 region of (p,y,z)-space into (x,y,z) space as

defined by (5.37), is two-to-one. Similarly for the interior of

C2 , lying in p > 0.

Despite the fact that (5.34) gives us the choice of ±

sign for p, we cannot encompass the mapping of the above solid

conoids for both p > 0 and p < 0 continuously into (x,y,z)-

space, trying to make it one-to-one, say.

Indeed, consider the outside of the particle for instance.

In that region p-t with p given by (5.34) is an incoming

spherical wave for the + choice of sign and an outgoing one for

the - sign. No continuous local choice of coordinates in (x,y,z)-



-101-

space will change one into the other (as far as one single parti-

cle is considered) because an outgoing wave sent by an isolated

particle in R 4 remains outgoing forever.

5.5.2 CHARGE CONJUGATION

This physically obligatory dichotomy in the choice of *

signs in (5.34) classifies the particles (considered as geometries)

into two disjoint classes: the positively and the negatively

charged particles (see (5.47)). In particular the abstract

operator C of charge-conjugation is represented in (P,y,z,t)-space

by the concrete operation of reflection on the plane p = 0,

C
namely p -- -p.

So. in last instance, the duality of electric charges is

simply an expression of the duality existing in 1R3 between out-

going and incoming light waves sent by an (isolated) particle.

It is only when these intrinsic objects are used as coordinates

to represent the particle geometry that this dichotomy becomes

clear.

It is also clear now that the operators of parity inversion

T
(y,z)*--P--(zy), time-inversion t --- -t and charge conjugation

Cp----p are nll geometrical operations in the same (p,y,z,t)-

space. Their combinations acquire thus a purely geometrical

meaning.

The important fact that p-t represents incoming waves

for the positively charged geometries and, at the same time, out-

going waves for the negatively charged ones, will serve to resolve

the paradox of causality involved in the problem of interaction

of particles through (apparently) advanced potentials (p. CILI),

as we will see in Chapter X.
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5.6 SINGULARITIES

Although (5.32) is a useful representation of the particle

metric, it has one too many variables. In terms of the independent

coordinates (r,y,z,t) the metric (5.32) becomes

(5.39) ds2  dr2 +2]'~= -(1-e'O , dt2 +
2pjr-rol

e -1

2 2
+ dy + dz .

Clearly the sphere r = ro, which we shall call the shell

of the particle, is a singularity of the immersion.

As mentioned before (r,yz) are bona-fide coordinates only

for the semi-spaces x > 0 or x < 0. As we glue these two

charts along the plane x = 0, in the natural way, we obtain a

singularity of the so obtained geometry along this plane.

Indeed the element of volume induced by the elementary

geometry (539) in the space-sections t = const. is

1 drdydz which, for r ro, is well-behaved,
e - 1

whereas the set of unit vectors ey = = and e =y -5' eZ a'z r Br

is degenerate (i.e. linearly dependent) on x = 0.

In particular a unit vector e =- lying on the plane

z = 0 may be expressed as

Sy
0

rr

cos -e tg e.

ey

r

x e
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The squared norm of e x  in the metric (5.39) is then

2 =(e
2 Ir-r 0 1

cos2 + tg

and clearly 2 as , if r lies outside a neighbour-
x 2

hood of ro. Consequently, in order for continuous vector fields

defined in the vacuum background geometry to be continuous in the

metric (5.39) too, they must be tangent to the (y,z)-plane at x=O,

just as ey.ez and e r (rIo) w. (Hence this is also the case for the

gradient of the functions in the associated monochromatic algebras.)

From (5.39) we also see that as r 4 w the metric has the
asymptotic degenerate expression dy 2 + dz2  dt2, singling out

again the spin direction x, along which the speed of

light becomes infinite as r 4 w. These singularities, (plane

x = 0 and x-direction at ) reflect in part the remarkable

physical properties, related to nuclear magnetic moment and

ferromagnetism, associated with the spin, as we will see in

Chapter X.

COMMENT. These unusual types of singularities rather than being

unphysical, serve instead to explain the origin of some interaction

forces. Indeed if the elementary geometries of various particles

and of the vacuum are statistically superposed to produce an

average metric which is to be asymptotically euclidean, or as

close to it, at Lnfinity, then mutual 6rientation forces will

arise between the spin-axes of the various particles so as to

conform to this condition at infinity. As for the metric degene-

racy at infinity, a single particle will in fact be always

statistically superposed to the vacuum, so that the speed of light,

in the average metric,will in fact remain bounded as r 4 w.
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Recall that our elementary geometries will play, among geo-

metries, a role somehow similar to that played by the Dirac delta

among functions. It should not be surprising that they be singular

in many respects.

5.7 ELECTRIC CHARGE

Since the jacobian matrix of the mapping (py,z,t)

,-e.(r,y,zt) is diag(p',l,l,1), the electromagnetic tensor

(5.12)' becomes in the new coordinates, noting that q =

(5.40) Fij =f a'p' (.0')

From (5.19), (5.26) and (5.33) we have

(a-1p,)2 = 1-a-1 = e , i.e.
(54)-1, 4 Lnrjr ' r-re I

(5.41) alp = sgn(r-r)e , for r r 0e

with the choice of sign being the same as in (5.34).

We choose once and for all the minus sign in (5.40), i.e.

n = in (5.11), so that for r re, and for the + sign in

(5.34)

(5.40)' Fi r = r sgn(r-r )e o )

As in (5.14) the corresponding vector potential is

-plIr-r o
(5.42) Ai = A 0 (0,0,0,1).

Consider now the orthonormal tetrad determined by the

(ryzt)-axes
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(eo Ilrr ol-i/ 2 , 0,0,0),

x 2 =(O'lOO)

x )  = (o,o,l,O)
(3) -21PIr-r I1

"1 0'rl " / 2)

X( 4 ) = (o,o,o,[l-e

Clearly with respect to this orthonormal tetrad

E2= P( 2 4 ) =0, E = ,(4) = o,

H1 = F( 2 3 ) = 0, H2 = F(31 ) = 0, H3  (12) = 0,

and

= F( 1 , 4 ) = Fij '() X"(4 ) = ./*gTX sgn(r-ro).

The magnetic field is null and the electric field is radial

and constant in absolute value, oriented positively outside the

shell and negatively inside it. On the shell of the particle the

total resultant electric field is zero, which -neans no self-force.

On the other hand the constant non-zero radial electric field

inside the particle indicates a wormhole topology is more appro-

priate (p.837 [9]). See also section 5.13.

Since IgI 1/2 = e we have from (5.40)'

I11/2 FiJ = gn(r-r°0) ( 0 0 .

K 1 000).
Hence by (5.7)

1 i i r'rol
= e VT X 6 (r)(O,O,O,-l),

i.e.

(5.44) Ji = - X (ooo,8o(r)),

0
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where 6 r (r) is Dirac's measure at r = ro.

Formula (5.44) gives us the classical picture of a homo-

geneously charged spherical shell, but with non-classical metric

and with zero self-force.

The electric charge enclosed in a region V3  of the spatial

section t = const. is given by

(5.45) Q J( 4 ) d 3 v,;V
3

where J(4) = Ji i4), and d 3v is the element of volume in

t = const. derived from the given metric. As the metric represen-

tation (5.39) is singular at r = r, we work with volume forms.

Thus
-4jLIr-r 0 1

(5.46) j(4 )d 3v =jiki4 e 2Prr 12drdydz=
1e

dd drdydz.= 1re J

Therefore integrating over any region V which contains

the particle we get for its charge, in the general case,

(5.47) Q = i gf r 2

with the choice of sign being the same as in (5.34).

5.8 INTRODUCTION OF UNITS

If we work in the C.G.S. system, Einstein's equations for

the gravitational field are

(5.48) R - R 8 + A 8 = T j
1 2 i c i i

where G = 6.67 x 10-8 cm3 g-1  -2  (p.34 3 [6]).

-I
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Here G is determined by the condition that in the Newtonian

approximation (lvi << c) with A - 0, (5.48) yield Poisson's

equation A = 4nGp and hence Nw..onls law of attraction

F' = -G_- (p.356 [61).
r

If we are dealing with the curvature of space produced by

fields of different nature, like for instance of electromagnetic

or nuclear origin, we must, a priori, allow for a different constant

in (5.4) (compare pp.191-192 [4], pp.123,203 [5]). We therefore

introduce a factor 1/K in (5.48) so that its right-hand side
8 TG T A"becomes 8nG o

Kc 4J

The factor K measures then the relative strength of the

curvature produced by the classical gravitational field of masses

with respect to that produced by the field in consideration.

Comparing the right-hand side of (5.48) (with the above factor)

with the left-hand side of (5.2) and using (5.10), we get

(5.49) I Kc 4TiXKc 4
i TG i 8TTG

Kc 1 /

so that expressions of the energy become multiplied by the scalar

factor

(5.50) 
2 Kc4

whereas the previous expressions for the electromagnetic tensor

FijI the 4-current vector J i the vector potential A i and the

total charge Q are multiplied by p. So in C.G.S. units

(5.51) Q c kc2  fT-- r"

Here the unknown parameters are X, K, ro e
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5.9 ENERGY OF THE FIELD

The energy of the field for an observer whose unit time-

like vector field is X is given by the integral of the energy-

momentum tensor T(X,X) evaluated at X, taken over the space

sections determined by X.

It is convenient for us to start with (p,z,y,t)-space where

the metric is given by

(5.52) ds 2 = a-l(dp 2 - dt2 ) + dy 2 + dz 2 ,

-1 2with a =sech /2), p.

We evaluate the energy in the rest frame of reference of

the particle, namely that given by the unit vector field

x = (Ooa,).

From (5.49)

(5-53) Tij X= 2 

so that T(XX) = aT44 = XO2 .

Therefore the total energy on any spatial section

t = const. is Eiven by

(5.54) E = XB2 V 3

where V3  is the volume of this section in the induced metric.

We now switch to (r,y,z,t)-space where this induced
-2p Ir-r o

metric is ij = diag(e _ , , 11 1) and we getii ag~e-214Ir-r0 1
l-e

, ,
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(5.55) v3 - 2 3l :,11/2 drdydz -

= 2 f" f e dydz)dr

2 +z 2 r-2 [ 2I1 r-ro 1/2

r2 e- I rrol
= 2rr r2 :0e /2dr.

= 2T foo l-e-21p Ir-rol 11/2dr

The factor 2 is due to the fact that we are integrating over

two charts (x > 0 and x < 0).

One gets explicitly

r2

(5.56) v, -0 8(R),

where

(5.57) R = .=IJ ro,

and
2

(5.58) 6(R) = 2R 2 + (on 2) 2 + T2 +

1.3..._ .2n-1) 1-e'(2n+l)R

Tr n=l 4.t~ nT (2n+1)3

To four significant digits in the coefficients

(5.58)' 0(R) = 2R 2 + 2.6o47 - 1.2732 e - 0.0236 e 3R

- 0.0038 e-SR - 0.0012 e "7 R + el

0 9 e < 0.00136

Combining (5.54), (5.55) and (5.56) we get

(5.54)t E 8--)-
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Identifying the energy of the electromagnetic field to the

rest mass m 0 of the particle we get therefore

"r Kc 2
(5.59) mo 0 a

with R given by (5.57).

5.10 MASS OF THE ASSOCIATED MASSIVE QUANTA

The Laplace-Beltrami operator corresponding to the metric

(5.52) is

(5.60) A2 a(b- ) + + 2

where t

As shown in Chapter IV the monochromatic algebras h and

2
h' associated with this elementary geometry are given by C func-

tions of X- X4 and XI + X respectively, analytic in
X2

S+ iX3  For definitness we reserve h, h' to denote those

analytic and i, i' to denote the anti-analytic ones.

As seen in 4.3.6, the massive quanta described by the enve-

lope space e-C] generated by h and h' and h', resp.]

2
are again analytic [anti-analytic] in X + iX3 . Consequently

a2 acting on e or F reduces to a(a2_a2) Hence the elementary

states in e or are solutions of the string equation, i.e.

linear combinations of functions of X - X and X1 + X4 analytic

rresp. anti-analytic] in x2 + ix3. In other words the subspace

of elementary states in e Ce coincides with the linear spann

of h and h' th and R', resp.].

!



5.10.1 STATIONARY STATES

If we look for time-periodic solutions of A2* a 0 in e

of the form

= xl x 2 +ix 3 )eimX 4 m E R,

we get
22

(5.61) 1 2 = -m2 (P

i.e.

(5.62) =p Ae i' X  + Be-iI X 1  C sin(mx +ym),

where A, B, C and ym are analytic functions of X2 + IX3.

If we look at * in the concrete referential (rqyzt) we

see that in order for it to be smooth at the origin r a 0 we

must impose the boundary condition

(5.63) io 0, ioe.

at X p log l+e for a positively charged
0 0 64- l-e °

particle, and at X " P for a negative one.

At r :m we impose the boundary condition (to be justi-

fied later)

(5.64) 09r+ = 0, i.e.,

Ix1 = 0,

which implies in (5.62) that ym = 0 (mod .)v i.e. that

p= C sin mX
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Together with tho other boundary condition (5.63), this

yields cos m Po = 0, which implies mp = (2n+l) Z-

n = 091,2,... i.e.

(5.65) m = (n * ) + o n = 0,1,2,...
2p0

If we set X4 = ct in the expression eimX 4 , so that this

t is expressed in time units (seconds), we get eimct, which
Et

compared with the usual expression e i yields E = Iicm. Con-

sequently the energy levels of the stationa'y elementary states in

C are given by

(5.66) E (n + !)'hc-T (n + P n = 0,,.
000

In particular the mass m' of the associated massive

quanta, corresponding to the unit jump of the energy levels is

M 1 he h 1

c o 0

i.e. using (5.30) and (5.38)

J0 C

S(5.67) m' 0 h o ~ g

log e1-e "1r°

5.11 BOUND STATES AND THE BOUNDARY CONDITION AT INFINITY

From (5.62) we have

cp = (A+B)cos mX1 + i(A-B)sin mX

For large r we get from (5.34)

Xo =P 
P P -

so that
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jr-ro-rr
(5.68) T A+B + im(A-B) "1 e as r

If A and B are analytic functions of X +iX 3  or order

less than one or of order one and type less than ., then

(A-B)e orO E L2 (R). In order for C to belong in L2 (R3 )

it is then necessary and sufficient that f IA+B1 2 dX2dX3 = O

i.e. that A+B n 0, which is equivalent to (5.64).

In other words, under the above assumptions on A and B,

the boundary condition q)r 0 0 is a necessary and sufficient

condition in order for the elementary stationary states in e or

E to belong in L2 (,Z3 ) i.e. for them to correspond to bound

states of the particle, with respect to the vacuum backgrond metric.

In particular it also implies that the bound states in e

and el are antisymmetric functions of p and that the charge

conjugation operator C preserves the bound states of same energy

level.

We remark that the almost periodic functions

*im(x +x4) E h and eim( - X + X 4 E n" produce, by linear super-

position, the stationary states e sin(n+)moIX I which

are again almost periodic and represent massive quanta of the

particle, Just as in Example 3.3. These in turn are transformed

in concrete (r,y,z,t)-space into stationary bound states, i.e.

into time-periodic and Lebesgue square-integrable functions in the

R 3 space section of background space.

This change of structure (valid only for the subspace ge-

nerated by the above stationary states) from almost-periodic

functions into R 3 square-integrable ones, is accomplished by the

requirement of zero boundary condition in concrete space or,

equivalently, by tho requirement of antisymmetry in p in iso-
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tropic (p.,t)-space.

5.12 COMMENTS

The stationary states are given by

i(n+-)m X-
(5.69) e sin(n+-)m'X1 , n = 0,1,2,..., a

(5.70) 
X = 1 log --+ r nr 0

2P I r-37

As functions of r they are symmetric about r = r0 in

the intervals [O,r0  and Ero,2r01 and oscillate infinitely

often near r = r0  singling out again the shell of the particle

as a singular region.

For r > 2r0  they oscillate only a finite number of times
ro 0 - - r fo al m +1 m

and become asymptotic to me - e 0, for all m = (n+)mo,

as r 4 m. In particular the asymptotic bound states

me o-1 e-4r (y ± iz) are equal, except for the numerical value

of the coefficients, to the eigenfunctions of the hydrogen at-om

corresponding to the parameters N = 2, t = *1 on p.2 2 9 [12],

r
. r

namely (y iz)e

Here r is the radius of the first Bohr orbit so that

8 -1- 12 1
I/2r o 0 . 10 cm * As we will see, for the electron M 1012 cml"

As remarked in 5.11 the states (5.69) arise as statistical

superpositions, at each instant of time, of an outgoing and an

incoming spherical (monochromatic) light wave. If multiplied,

or added to (y * iz), say, they yield standing massive quanta.



5.13 WORMOLE TOPOLOGY

Since the metric and the functions in h and h' are

symmetric about r = r in the intervals rO,2r ] Ot we may as well

represent the region [O,r 0 as a second copy of the region

Cro,2ro] and therefore consider only the solid conoid C1  in 5.5,

in the p > 0 region. If we change the topology of R3 by

excluding from it the open ball of radius r0  and consider another

copy of the remaining region having the sphere r = r0  in common

with the first copy, we can now map the conoid C1  in the region

p < 0 into the second copy.

- .

In this new topology our functions are defined for all real

values of p, the stationary states are antisymmetric in p. and

the non-zero radial constant electric field is continuous everywhere.

The electric charge is then represented by the topological effect

of the trapping of electric lines of force by the hole (p.1200, C9)).

Further we may think the second copy as continued into the

first until the sphere r = 2r0  is reached and consider this added

region as the interior of the shell as seen by an observer in the

second copy. And vice-versa. Yet since the Jacobian p' in these

two copies have opposite signs, the electric vector field must be

taken as reversed (according to (5.40) and sequel).
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We could call the copy p < 0 the anti-space of the copy

p > 0, for observers in p < 0 see the particle with a negative

charge, and vice-versa. This is of course only a mathematical

construct, but gives a place where to situate anti-matter.

Similarly we call the sphere r = 2r the anti-center of the

particle (for it is the center of the corresponding anti-particle).

5.14 DETERMINATION OF THE PARAMETERS

We recollect the relevant formulae

(5.51) Q = e = c ;2r o 2
KC a-o

(5.7) mo T = 2 R

h J2_
(5.67) o c log coth -

where

(5.71) R = ro =r 0

hence

2 R2

(5.72) Xr 0 = 2-

and 0(R) is given by (5.58).

We explicit K in (5.51), using (5.72)

eK G 2e2G 1
(5.73) K = 4 4 =- V 2 2

c Xr 0  c r 0 R

and then use it in (5.59), obtaining
2(

O 2Y e 2 3R) i.e.,0o = C 2 r o0 R 3

(5.74) mr - 2 a R
Ifl0 ~ 8 .c 2 R3
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Next we multiply (5.67) by r0 and use (5.71) to get

(5.rs)00 h R(5.7m5) mr R
0 0 0 log coth R2

From (5.75) and (5.74) we get

mo0 1 Is2  . G _).
(5.76) mlo cothR.

0 R

Finally

R 16 m0  R
(5.77) log cothra 1 -Wo - 0- (R)

e 2  1
where =137.03 is the fine structure constant.

For a given ratio m/mi there is one and just one root

R = R(mo/m') of (5.77). Indeed we have from (5.55) and (5.56),

setting s = r/rof

T2 1 2 a__ _ _' _ _

___._2r ________ ds

This shows S(R)/R is monotonically decreasing with R a 0,

from a at R = 0 to 0 as R -# +w. Hence R4 /3(R) increases

monotonically from 0 to +a for R 2 0. On the other hand

log coth R decreases monotonically from +w at R = 0 to 0 at

R = 4-mo

This shows that, for a given ratio m/mo, there is just

one solution of (5.77), and that R is a decreasing function of

this ratio.

From (5.75) we then have
h R 1

(5.78) °log coth R "- 0

whereas ) and K are then given by (5.72) and (5.73), respect-

ively.
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5.14 PROTON

For the proton m = 1.672614 x 10-2 4g and for its quanta

(pion %4 2y)t m' = 2.40616 x 10-2g,
0 0 g

Hence m /m 6.95138 so that (5.77) becomes

log coth R R4

2 15,241.44

The root of this equation was computed with double precision

using the expression (5.58)' first with e A .0014 and then with

e = 0, and then taking as upper bound the upper bound of the

numerical results for the first case and as lower bound, the lower

bound of the second case. This assures that the root of the above

equation lies in

(5.79) 0.12822 < R < 0.12826.

However for reasons to be explained in Chapter VI we take

for R the value

(5.80) R = 0.128172 0.1282,

in which case

(5.80)' log coth = 2.7488936.

Since h = 6.626197 x 10- 27 gcm 2 /see and

c = 2.997925 X 1010 cm/sec, (5.78) gives

(5.81) ro = 0.4283 x 1o "13 cm.

From (5.72) we get

= 4.478 x 1024 cm
- 2

and from (5.73)
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K = 1.264 x 10
-3 9

where we used the values

e = 4.803 X 1O"10 (gcM3)l/2/sec

G = 6.673 x 10-8 cm
3/g sec 2

We see that the computed value for the radius r0  of the

proton agrees well with the estimated value for the hard core of

a nucleon (~ 0.5 x il1 3 cm) (p.59, r2]).

5.16 ELECTRON

From the decay of the muon

*e + V+ V,

and from the fact that no other particle decays into the electron

emitting two light quanta, we may take it for granted that the

pair V + !i plays the role of the electron quanta.

Since the ratio of the mass of the negative muon to the mass

of the electron is 206.77 we have, for the electron,

m'/m = 206.77-1 = 205.77.0 0

Therefore (5.77) becomes
R R4

log coth 2 = I0.6556 -R)

Repeating the same procedure as for the proton, we obtain

(5.82) 0.74077 < R < 0.74086.

Again, for reasons to be explained in Chapter VI, we take

(5.83) R = 0.732985,

for which
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( ) R
(5.84) log coth = 1.047198.

2

As m o = 9.10956 x 10 - 2 8 g the above ratio gives
mID

m/ = 1.8745 X 10- 25 g, so that from (5.78) we get
0

(5.85) ro = 8.2532 x 10- 13 cm.

As before, (5.72) and (5.73) yield now

X = 3.944 x 1023 cm - 2

K 1.0415 x 10-4 3 .

The above computed radius r for the electron is about0

three times as large as the classical electron radius conventional-

ly defined as e2 /moc2  2.818 x 10 - 3 cm. Anyway, contrarily to

the nucleons, electrons are a very soft particle for they behave

as if they were point-like (p.23, [2]). This behavior makes un-

practicable the experimental determination of its radius. This

matter will be further analyzed and explained in Chapter X.

The cosmological constants X have the appropriate order

of magnitude and so also the coupling constants I/K (see [5]).

4 j
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