
S A D -A 3 8 L E A S F A V O R A B L F E S P O N S E O F I N E L A S T 
IC S T R U C T U R E S U ) N E 

W 1/6 M"LES TMXCO UNIV ALBUQUERQUE BUREAU OF ENSINEERING RESEARCH
CI F C CHANG ET AL MAR 83 CE-63(83)AFOSR 8993-

mCSSFEE OR hhE3-26 FOR-h-06 hEE011NEEEEL . ~hE

MOEELhhh~hE



.61. 0 28I

1.81111.25 111111.4 1111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL H F AN[AK[,. A



AFOSR-TR- 322

THE UNIVERSITY OF NEW MEXICO
COLLEGE OF ENGINEERING

BUREAU OF
ENGINEERING
RESEARCH

>-- LEAST FAVORABLE RESPONSE OF INELASTIC STRUCTURES

by

Luj Fashin Craig Chang L)~~
Thomas L. Paez ELECTE

.Frederick Ju S OEC 2 3j I
Technical Report CE-63(83)AFOSR-993-1 D

March 1983 A
Work performed under
Contract No. 81-0086.gfr --i1--00o
Approved for Public Release; Distribution Unlimited.

83 12 22 020



Qualified requestors may obtain additional copies from

the Defense Technical Information Service.

Reproduction, translation, publication, use and disposal

in whole or in part by or for the United States Government

is permitted.

. -

- - .a~--_



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("ien DaetaEntered).

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
RE R GBEFORE COMPLETING FORM

*RPOXYfIrR. 8 3 -12 26 12. GOVT ACC ESSION NO. 3. REZCIPIENT*$ CATALOG NME

-D-7413 w o--2
4. TITLE (and Subtitle) S. TYPE OF REPORT a PERIOD COVERED

LEAST FAVORABLE RESPONSE OFINELASTIC STRUCTURES INTERIM

6. PERFORMING OG. REPORT HUMER

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMSER( )
FASHIN CRAIG CHANG AFOSR-81-O086
THOMAS L PAEZ

FREDERICK JU
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

UNIVERSITY OF NEW MEXICO AREA & WORK UNIT NUMBERS

BUREAU OF ENGINEERING RESEARCH 61102F
ALBUQUERQUE, NM 87131 2307/C2

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

March 1983
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA I r. NUMERoF PAGES

BOLLING AFB, DC 20332 
3 R

14. MONITORING AGENCY NAME & AODRESS(if different from Controlling Office) IS. SECURITY CLASS. (at this report)

Unclassified

15a, DECLASSIFICATION/ OOWNGRAOING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for Public Release; Distribution Unlimited.

7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, it different ftro Report)

1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reerie aide if neceeary and identily by block nombar)

shock inelastic structures peak response
vibration least favorable response energy dissipation

testing least favorable input

20. A7TRACT (Continue on reverse side it neceeary and Identify by block numiber)

'\In the design of a structural system, a test input is sought to
conservatively represent an ensemble of measured field inputs. When a structur
gurvivesthd test i-Pt; it fs AsSumed that it would survive the field inputs.
The method of shock response spectra is a technique for specifying conservative
test inputs, but it has some disadvantages. In this investigation a technique
is developed for the specification of test inputs. It is based on the method
of least favorable response, and it overcomes some of the shortcomings of the
method of shock resoonse spectra. Numerical Lxamnles shnw that the nresent

DD , ,ORMA3 1473 EDFRS Lq~qu,,isqj3MV4 in practical appl ications. _
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Ent~d)

Ia



LEAST FAVORABLE RESPONSE OF INELASTIC STRUCTURES

by

Fashin Craig Chang

Thomas L. Paez

Frederick Ju

The University of New Mexico

(Department of Civil Engineering
and

Department of Mechanical Engineering)

Technical Report CE-63(83)AFOSR-993-1

,-r i

March 1983



ACKNOWLEDGEMENT

The authors wish to acknowledge the support of the Air Force

office of Scientific Research in this study. The work was

performed under AFOSR contract number 81-0086.

t't
ib

i'!~ e-. ,j .

i i



ABSTRACT

In the design of a structural system, a test input is sought

to conservatively represent an ensemble of measured field

inputs. When a structure survives the test input, it is assumed

that it would survive the field inputs. The method of shock

response spectra is a technique for specifying conservative test

inputs, but it has some disadvantages. In this investigation a

technique is developed for the specification of test inputs. It

is based on the method of least favorable response, and it over-

comes some of the shortcomings of the method of shock response

spectra. Numerical examples show that the present technique can

be used in practical applications.
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1.0 Introduction

In the design of a structural system the engineer attempts

to provide a plan for a structure that will survive one or more

input excitations. To do this the engineer must have some means

for analyzing structural response, and for judging whether the

system can survive an excitation or a class of excitations. Most

realistic situations involve environments that are random, and in

such cases design techniques are sought to specify structures

with preestablished probabilities of failure.

Short duration, strong motion excitations excite extreme

responses, and structural failure can occur due to peak response;

consequently it is desirable to know what maximum response can be

caused in a structural system by a dynamic load. For reasons of

conservatism and design safety, it is desirable to establish a

procedure for computing a bound on the maximum structural

response caused by a shock input. Buildings designed to survive

an upper bound on the peak response should respond satisfactorily

to the actual input.

A structural input excitation used in an analysis or physi-

cal test is considered conservative if it excites a more severe

response in a structure than the individual inputs it is meant to

represent. Therefore, when measured environments representing a

real shock source are available, and it is necessary to design a

structure to survive that source, a conservative input represent-

ing the measured shock is sought.

The method of shock response spectra provides a technique

for the analysis and design of structures subjected to short

duration shock excitations. The method of shock response spectra

is used to establish a test input that can represent an ensemble

of inputs conservatively, in the sense that the peak response

excited by the test input is greater than the peak response

1



excited by any of the underlying measured inputs. References 1

through 5 provide reviews and some recent applications of the

method of shock response spectra in structural analysis and

design.

The method of shock response spectra attempts to represent

an ensemble of shock signals in a conservative way and bounds the

effects of a collection of shocks in a peak response sense.

Since shocks are usually considered random, and a shock test

specified using the method of shock response spectra depends on

an ensemble of measured shocks, the shock test has only some

non-unit probability of being conservative. In general, this

probability is unknown.

The method of least favorable response was established by

Drenick and Shinozuka in References 6 and 7. Its applicability

was extended to use in analytical and physical testing by Witte

and Wolf in Reference 8. The method of least favorable response

provides an alternate method for the specification of test

inputs. The technique allows the engineer to specify a test

input based on an ensemble of measured shock inputs. The test

input will cause a response in a linear structure that is a bound

on the response excited by the underlying measured inputs.

Therefore, this method is equivalent, in concept, to the method

of shock response spectra. Reference 9 compares the methods of

least favorable response and shock response spectra and shows

that the former has some considerable advantages over the latter.

There are many other methods available for the specification

of shock tests. Any analytical technique which permits the defi-

nition of a structural response bound based on an underlying

ensemble of inputs can be used to establish a shock test specifi-

cation method. Papers by Youssef and Popplewell (References 10,

11, 12) and Papoulis (Reference 13) show how some bounds can be

2



established, and these approaches could be used as the basis for

shock test specifications.

One of the main disadvantages of the methods discussed above

is that shock environments are often represented using test

inputs that are different in character from the original shocks.

This problem is discussed in detail by Baca in Reference 14. He

shows that this problem can lead to overconservative tests,

especially in the case of the method of shock response spectra

where simple waveform test inputs can be used.

Another disadvantage is that the techniques discussed above

are mainly for use with linear structures. Of course, the tech-

niques are used in connection with failure analysis of struc-

tures, but the theoretical developments are usually concerned

with linear equations. One exception occurs with the method of

shock response spectra; a few papers concerned with test specifi-

cation for nonlinear structures have been written. (See, for

example, References 15, 16, 17.)

Beyond the two problems mentioned above, it is certa'nly

clear that not all failures are related simply to the peak

response of a structure. Damage may accumulate in a structure

due to vibratory cycling in the response, and this may lead to

failure. For example, References 18 and 19 refer to the accumu-

lation of damage in this manner. And Reference 20 summarizes the

results of experiments on concrete that demonstrate how the accu-

mulation of damage is related to the energy dissipated in a test

specimen.

In view of these problem areas, it is desirablb to develop a

technique for the specification of test inputs for the analysis

and design of structures that 1) yields inputs similar in form to

the underlying measured inputs, 2) accounts for the potential for

nonlinear response in a structure, and 3) can be used when fail-

ure is related to peak response or accumulation of damage.

3
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The objective of this study is to establish a method for the

specification of a test input based on an ensemble of measured

inputs. The input will have the three properties listed in the

previous paragraph. The approach is based on the method of least

favorable response; therefore, the linear theory of least favor-

able response is reviewd in the following section. Next, the

peak reponse of bilinear hysteretic single-degree-of-freedom

(SDF) structures is investigated. The peak value of energy dis-

sipated in a structural system is then studied. linally, a

method is established for specifying a test input that will cause

maximum displacement response or maximum energy dissipation in a

structure.

4



2.0 The Linear Theory of Least Favorable Response

The method of least favorable response provides a means for

defining an upper bound on the response of a linear structure

excited by a sequence of shock inputs. Consider a linear dynami-

cal structure. When it is excited by a single input, the

response at a point on the structure can always be expressed

using the convolution integral. This is

y(t) = L h(t - T) X(T)dT (2-1)

where x(t) is the input excitation, y(t) is the response, and

h(t) is the system impulse response function. If the system

response starts at time zero, then it is assumed that the ini-

tial conditions are zero velocity and displacement.

Now assume that the structure has positive viscous damping

and the input can be Fourier transformed. Then the response has

a Fourier transform, and the input and response Fourier trans-

forms are given by

X(W) = fx(t) e-iwt dt (2-2)
-M

Y(w) = y(t) e- iwt dt (2-3)

These functions possess inverse Fourier transforms and these are

given by

x(t) . X() eiwt dw (2-4)

y Ti y(w) ei t dw (2-5)

1 Lm
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The convolution integral in Equation (2-1) can be Fourier trans-

formed. The result is

Y() = H(W) X(W) (2-6)

where H(w) is the Fourier transform of the impulse response func-

tion. That is

H(w) = r h(t) e'i t dt (2-7)
L

The inverse Fourier transform of this function is

h(t) = H(w) e' dw (2-8)

When Equation (2-6) is used in Equation (2-5), a frequency

domain exprssion is obtained for the structural response. This

is

y(t) H(w) X(w) e ' t dw (2-9)

The objective is to bound the maximum value in the absolute value

of the response; therefore, the absolute value is taken in Equa-

tion (2-9). This yields

= .y(t)I =-I f H(w) X(w) eiwt dwI (2-10)

An inequality of calculus can be used to show that when the

absolute value signs are taken inside the integral on the right,

above, the absolute value of the response is bounded, as follows.

fytf < 2n (w)HX(w)I dw =1 (2-11)

6



The expression on the right is a constant, independent of

time; this constant is denoted I. Since the absolute value of

the response is equal to or less than I, this implies that the

maximum value in the absolute value of the response is equal to

or less than I. Let

y = max fy(t)I, (2-12)

then

Y < I (2-13)

The quantity, I, is known as the least favorable response (LFR)

of the system, corresponding to the input with Fourier transform

given by Equation (2-2). The LFR forms a bound on all the peak

responses of the system whose frequency response function is H(W)

where the input has Fourier transform modulus bounded by VX(w)I.
A test input is known as a least favorable input (LFI) if it

produces a response whose absolute maximum is equal to I.

Let XT(t) denote a test input with Fourier transform

XT(w). This input excites a response yT(t), in the system of

interest, whose Fourier transform is YT(w) = H()XT(w). A

bound on the absolute maximum of the test response is given by

m fYT(t)l IXT()IIH(w) I dw (2-14)

The Fourier transforms of the test input, XT(w), and the fre-

quency response function can be expressed in their polar forms.

iOT(w)
XT(w) = IXT(w)I e (2-15)

H(w) = IH(w)l ei(W ) (2-16)

7



When the expressions are used in Equation 2-9, the response func-

tion yT(t) is given by

Yr(w) e i(OT(w) + OM - wt) dw (2-17)YT(t) =i IXT(w)iI() (-7

At time t 0, the above expression can be made equal to I, the

LFR, by taking

eT(c) = -O(W) (2-18)

and

XT() = IX(w) 1 (2-19)

In this case the test response at time zero is

1 =X ix(w)HlH(w)l dw = I (2-20)YT (O) L -

This shows that the test response can be made equal to the LFR by

choosing the Fourier transform modulus of the test input equal to

the Fourier transform modulus of the actual input, and by choos-

ing the complex phase of the test input equal to minus the phase

of the frequency response function. The effect of this choice of

phase is to cause the response Fourier components to add con-

structively at time t = 0.

In view of Equations 2-18 and 2-19 the Fourier transform of

the test input is given by

XT(w) = IX(w)l e-io(c) (2-21)

This function can be inverse Fourier transformed to obtain a time

domain espression for the test input. This input is the LFt.

8



xT(t) I . f XT(w) eiWt dw (2-22)

This input could be used in a physical test of the

structure. Since the response it excites is equal to or greater

than the response excited by the input X(t), the test input

produces a conservative test, in the peak response sense. If a

structure survives xT(t), then it would also survive x(t).

The procedure outlined above provides a means for computing

the LFR and specifying a shock test based on one measured input,

x(t). The procedure can be modified to define an LFR and shock

test input when several measured inputs are available. Let

xj(t), j=l,...n, be a sequence of measured shock signals from

one or more shock sources, and assume that a structure of

interest will be subjected to one or more shocks from each source

in the field. Then an LFR based on the sequence of inputs can be

constructed as follows. Compute the Fourier transform of each

shock and denote the results Xj(w), j=l,...n. Compute the

complex modulus of each Fourier transformed signal, IXj(W)I,
j=1,...n. Let Xe(w) define the envelope of the Fourier

transformed moduli; then Xe(M) is

Xe (w) = max fX(W) (2-23)

The LFR based on the sequence of inputs is given by

asI f Xe(W ) JH(w)l dw (2-24)

This is a bound on the peak response excited by the inputs,

xj(t),j=l,...n, individually, since Xe(w) bounds the Fourier

transform moduli of the individual inputs.

9



A test input which will excite the LFR, at time t = 0, is

given by

XT(t) =- / X(w) I elWt dw (2-25)

This input could be used in a physical test of-the structure. It

is conservative with respect to each of the individual inputs in

a peak response sense.

The method of least favorable response has a few features

that make it practically important. First, it generates test

inputs and responses that are convservative with respect to a

collection of underlying inputs and the responses they excite.

Second, it generates test inputs that have the same oscillatory

quality as the underlying inputs. Third, it preserves the power

of the underlying input by matching Xe(w) to the moduli of the

Fourier transforms of the underlying inputs and simply rearrang-

ing the phase of the response.

10
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3.0 A Displacement Response Bound for Bilinear Hysteretic Systems

It was shown in Section 2.0 that for a linear system the

least favorable response (LFR) can be obtained from Equation

2-14. The LFR is a bound on the individual responses excited by

a sequence of inputs. The least favorable input (LFI) given in

Equation 2-25 is a test input which generates the LFR in a linear

system. In this section a technique is developed to compute the

LFR of a nonlinear single-degree-of-freedom (SDF) structure.

The capacity to generate the LFR of an SDF structure is

important since it can be used by the designer to establish a

bound on the displacement response of a multi-degree-of-freedom

(MOF) structure in its fundamental mode. In many practical cases

the fundamental mode of response contributes most significantly

to the overall response. Beyond this, the results of this inves-

tigation may prove useful for application in the definition of

inputs at several characteristic frequencies, simultaneously.

The technique to be considered is based on the method of

least favorable response. The LFI is an input characterized in

terms of the complex modulus and phase of its Fourier transform.

The modulus of the Fourier transform of an LFI reflects an enve-

lope on the moduli of the Fourier transforms of the underlying

inputs. When the shock sources represented in the ensemble of

inputs are very similar, then the moduli of the Fourier trans-

forms of the inputs are very similar and the envelope very nearly

matches these. The complex phase functions of the Fourier trans-

forms of actual inputs are random, at least in part. And the

complex phase of the Fourier transform of the LFI is chosen to

cause the components of the response to superpose constructively

at time t = 0. The phase is chosen as minus the complex phase of

the frequency response function of the structure under

consideration.

11



In this investigation it is assumed that the bilinear hys-

teretic structure possesses an LFR and an LFI which generates

that response. It is assumed that the LFI of the bilinear system

has the same general form as the LFI of the linear system. The

parameters of this LFI must be determined.

Consider a base excited, linear SOF system. The frequency

response function for the system is given by

H(w) = 1 -- < < M (3-)
(wn 2 - w2) + 2 i4 Wnw

where wn is the natural frequency of the system and ; is the

damping factor of the system. This function can be interpreted

in terms of its real and imaginary parts or its complex modulus

and phase. The phase of the frequency response function is

1 -2Cw n

= tan- 2  2n ' "* < w < - (3-2)
Wn - W

This is plotted in Figure 3.1 as a function of circular fre-

quency, w. Note that *(w) is an odd function and varies rapidly

in the vicinity of wn and slowly elsewhere.

It is assumed in this study that the complex phase of the

Fourier transform of the LFI of a bilinear hysteretic system is

given by

N)= tan- I  2  2e<e" <  ( - (3-3)
we w

12
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where we is the characteristic frequency and Ce is the char-

acteristic damping factor. These parameters are chosen to maxi-

mize the response of the bilinear system. The parameters must be

determined.

For a specific bilinear hysteretic system and ensemble of

inputs, the parameters in the phase of the Fourier transform of

the LFI can be determined by searching the peak response values

as a function of we and ;e to obtain a maximum. The response

of a bilinear hysteretic SOF system is governed by the equation

y + 1 +1 R(y) = " (3-4)
n m

where c and wn are the damping factor and small displacement
I,

natural frequency of the system, m is the SOF system mass, xo

is the base motion input excitation of the system, R(y) is the

bilinear hysteretic restoring force function. The restoring

force is a function with an infinite number of realizations.

When y is small, R(y) is a linear function of y with stiffness

k. When the yield displacement, D, is surpassed, then permanent

set accumulates in the system and the stiffness reduces to ky.

When the velocity reverses sign the stiffness increases to k and

oscillations occur about a new equilibrium displacement (reflect-

ing the permanent set) until yielding occurs again, etc. Figure

3-2 shows a potential realization of the spring restoring force

function for a bilinear hysteretic system. Equation 3-4 can be

solved using a numerical procedure. For example, the numerical

procedure given in Reference 21 can be used to solve Equation

3-4.

Let xj(t), j=l,...n be an ensemble of measured inputs from

one or more shock sources to which a structure will be exposed.

The LFR and LFI of a bilinear hysteretic structure corresponding

to these inputs are defined as follows. Compute the Fourier

transforms of the inputs and denote these Xj(w), j=l,...n.

14
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Then compute the complex moduli of the inputs and find the

envelope of the moduli. This is

X (w) = maxxj(w) -- < w < - (3-5)

This is the modulus of the Fourier transform of the LFI. The

form of the complex phase of the LFI is 'liven in Equation 3-3.

When specific values of we and ;e are used in Equation 3-3,

an input whose Fourier transform has the form of the LFI can be

established. This is

XT(w) = Xe(w) expL tan "1  
- < w < - (3-6)

A time domain test input can be established by inverse Fourier

transforming this function. The result is

1 -t

x XT(w) e dw, - < t (3-7)xT(t ) = T-f XT

This function of time can be used as input in Equation 3-4 and

the response can be computed numerically and denoted

yT(t,we,Ce). Dependence of the response function on the

parameters of the input is emphasized by inclusion of these

parameters as arguments in the response expression.

The peak value, in time, of the response is

max - (3-8)Y(w, ' =e ma IYT(t~we~e) I(38
The peak response can be maximized with respect to we and e

by solving for the values of we and Ce which satisfy the

following equations.

16



ay ay
- 0 o, - 0 (3-9)
awe Te

Denote the solution to these equations we* and ;e*" Use of

these values in Equations 3-7 yields the LFI. Evaluation of

Equation 3-8 at we = w* and e = ;e* yields the LFR.

Equations 3-9 can be solved in any of a number of ways. In

the present investigation they are solved using a simple search

procedure.

17



4.0 An Energy Dissipation Bound for Bilinear Hysteretic

Structures

Failure in structural systems is often related to execution

of an extreme displacement response, and this potential is

usually exploited in test specification techniques. However,

other sources may contribute to the potential for failure. In

many situations the accumulation of damage may lead to failure,

even when the input and response are of short duration. In fact,

the true criterion of failure depends in a complex way on both

the damage accumulated in a system and the peak response it

executes. In veiw of this, it is a matter of interest to specify

test inputs that maximize accumulated damage when used to excite

structures.

Many studies have considered the accumulation of structural

damage. (See, for example, References 20, 22, and 23.) But

there exists no universal measure of structural damage. It can

safely be stated that the accumulation of damage is reflected by

diminished strength or resistance in a structure. The experi-

mental investigation in Reference 20 has shown that the energy

dissipated by a structural material sample due to load cycling is

related to the residual strength of the sample. Therefore, the

amount of energy dissipated in a structural system can be related

to structural damage.

In this section a method for specifying a test input based

on an ensemble of measured inputs is established. The test input

is characterized by the fact that it excites in a bilinear hys-

teretic system a response whose energy dissipated bounds the

energy dissipated in the response excited by any of the inputs in

the underlying ensemble. The test input has the same form as

that used in the previous section. That is, the modulus of its

Fourier transform envelops the moduli of the Fourier transforms

of the inputs in the ensemble, and the phase of its Fourier

transform is chosen to maximize the energy dissipated.

18



The system under investigation is governed by Equation 3-4

(repeated here for convenience).

if I 1 I1

y + 2c wn y + - R(y) = -xo (4-1)
n m

This system dissipates energy in two ways. It dissipates energy

in the viscous damper, and it dissipates energy in the bilinear

hysteretic spring. The total energy dissipated in the system can

be expressed

ET = ED + Es  (4-2)

where ED is the energy dissipated in the damper and Es is the

energy dissipated in the spring.

When the system response remains linear, no energy is dissi-

pated in the spring and the entire energy dissipation in the sys-

tem occurs in the damper. This is clearly so since a linear

elastic spring does not dissipate energy. Beyond this, the

amount of energy dissipated in the damper is independent of the

phase of the input. This can be shown as follows. Note that the

energy dissipated in the viscous damper is

E= y(_f ) cy dy (4-3)

where y(--) and y(-) are the displacements at minus and plus

infinity, and c is the system damping. This integral can be

transformed to yield

E = cy2 dt (4-4)
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Now since the system response considered here is linear, the dis-

placement can be expressed using Equation 2-9 and the velocity

response can be written using either of the following

expressions:

y(t) = _ iw H(,,) X() e i t dw (4-5a)

f7nc o ih H*(e) X*(th) t r y dy

Both of the above expressions are correct since y(t) is a real
I I

function. When the term '2 in Equation 4-4 is written as y I y

and Equations 4-5a and b are used, then Equation 4-4 becomes

ED= - 2 d dw2  w1w12 HW)(w 2)X(wl)X*(w2)(2-fr) - w

-e (Wj-W 2)t (4-6)

The dummy variables wI and w2 have been used to avoid

confusion in the two expressions for y(t). Now the order of

integration can be changed in Equation 4-6, moving the t integral

to the inside. Then

E _() c  _ dwI f dw2 H(w ) H* w2) X(wl) X(w2)D (2) 2 f'(4-7)

• ei ( 1 ) dt

It may be recognized that the inner integral is a delta function
with value 27r and argument wi - w2 . Therefore, Equation 4-7

can be rewritten

;CO

E dw1  dw2 H(w,)H (w2) X (wl) X*(w2) 6( I -2
)

(4-8)
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where 6(t - c4 is the Dirac delta function with argument

Wl- w2. The w2 integral can be evaluated to obtain

E c , 2x( 2 (4-9)
D IH(I)1 i)Id

This integral depends only on the complex magnitude of the

Fourier transform of the input, and not its phase. Therefore,

the energy dissipated in the linear response of a structural

system is independent of the phase of the input.

It can be concluded from the above analysis that an LFI

based on energy dissipated does not exist for linear systems.

This does not imply that an energy based LFI is nonexistent for

inelastic systems. But if a dissipated energy LFI does exist for

bilinear hysteretic systems, it is not clear whether it should be

related to energy dissipated in both the damper and inelastic

spring, or to energy dissipated in the spring alone.

The answer is related to the actual damage mechanism of the

physical system. In this investigation damage is assumed to

occur due to the motion in both the damper and the hysteretic

spring. Therefore, an LFI maximizing the total energy dissipated

is sought.

The total energy dissipated in the system is

Es = [ y cy + R(y)]dy (4-10)y(--)

This quantity can be evaluated numerically during the response

computation in the following way. When an input x0 (t) is speci-

fied, Equation 4-1 can be solved numerically, marching out the

solution in time. In the solution process values for y, y
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and y and R[y(t)] are known at each time step. A change of

variables can be executed and Equation 4-10 can be rewritten

ET =f cy(t) + R[y(t)] y(t) dt (4-11)

This quantity can be incrementally computed using the results

available at the end of each time step. This procedure yields

the energy dissipated in the system.

When an ensemble of measured inputs is given by xj (t),

j=l,...n, let the form of the LFI be defined by Equation 3-7,

where its Fourier transform is given in Equation 3-6. Xe(w) is

defined in Equation 3-5, and *(w) is defined in Equation 3-3.

When specific values of we and e are used to generate the

test input in Equation 3-7, and this input is used to excite the

system in Equation 4-1, a specific response is executed. The

system dissipates energy and this can be determined using Equa-

tion 4-11. Denote the dissipated energy ET(we, e)- The

energy dissipated is maximized with respect to we and e by

solving for the values of we and e which satisfy the

equations

T , T 0 (4-12)

e e

Denote the solution to these equations we* and ;e*. Use

of these values in Equation 3-7 yields the LFI related to energy

dissipation. Evaluation of the expression ET(we, ;e) at

we = We* and e = ;e* yields the LFR in terms of energy

dissipated.
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5.0 Numerical Examples

In the previous sections methods for the approximate deter-

mination of the least favorable input (LFI) and least favorable

response (LFR) of a bilinear hysteretic system were developed. A

computer program has been written to execute the computations

required to determine the LFI and LFR. The computer program is

named LFIR and a listing of the program is provided in the Appen-

dix. Some numerical examples are solved in this section using

the computer program.

Two types of problems are solved. First, the LFI and the

response it excites are determined for a single input applied to

a single structural system. This is done using both the peak

displacement and energy criteria. Second, the parameters of the

complex phase of the LFI are determined for a sequence of

increasingly severe inputs. This problem is solved for three

bilinear hysteretic systems using both the peak displacement and

energy criteria.

The type of input used in all cases is an oscillatory random

input with decaying exponential amplitude. The input is denoted

xo(t) and its specific form is given by

N
Xo(t) = e't 1=c cos (wjt - *j), 0 < t < T (5-1)xt)=e j=1 J .

a is the amplitude decay rate of the input; N is the number of

components in the input; cj, J=1,...N, are the input ampli-

tudes; wj, j=I,...N, are the frequencies where the input has

power; *j, j=1,...N, are mutually independent, uniform random

variables disributed on the internal (-w,7r). The input is an

approximately normally distributed, nonstationary random process.
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5.1 Example One
Consider the response of a bilinear hysteretic SDF struc-

ture, whose parameters are given in Table 5.1, to the shock input

whose parameters are given in Table 5.2. The input is shown in

Table 5.1 Bilinear Hysteretic System Parameters

m = 1.0 mass c = 1.256 damping

k = (2w)2  stiffness D = 0.0813 yield displacement

ky = 0.5 yield stiffness wn 2w natural frequency

Table 5.2 Shock Input Parameters

N =30 a = 0.628

Cj= 2.0 j=1,...30

wj = 0.1 + 0.238(j-1) j=i,...30

Figure 5.1; the response to the input is shown in Figure 5.2.

Since the yield displacement is 0.0813, the response is clearly

in the plastic region, in this example. The peak response caused
by the actual input is 0.1651.

The LFI and LFR were computed using program LFIR. The param-

eters of the complex phase of the Fourier transform of the input

were found to be we = 5.056 and Ce = 0.109.

The modulus of the Fourier transform of the input is shown

in Figure 5.3. The LFI, computed using Equation 3-7, is shown in

Figure 5.3. The LFI, computed using Equation 3-7, is shown in

Figure 5.4. The response excited by this input is shown in Fig-

ure 5.5. This time history shows that the LFI is 0.3012.

The LFI and LFR were also computed using the energy dissipa-

tion criterion. The energy dissipated during the response to the

actual input is 0.1214. The parameters of the complex phase of
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the Fourier transform of the LFI are we = 6.283 and e :

0.092. The LFI computed using Equation 3-7 is shown in Figure

5.6. The response excited by the LFI is shown in Figure 5.7.

The energy dissipated during the response to the LFI is the LFR

and this has magnitude 0.1871.

This example demonstrates the process used in finding the

LFI and LFR of a bilinear hysteretic structure when a single

input is considered.

5.2 Example Two

In this numerical example several problem sequences are

solved. In order for the techniques developed in this study to

be useful in the practical specification of tests, it is neces-

sary to express the results in a form that is easy to use. Spe-

cifically, when the engineer needs to test an equipment item, it

is desirable to specify a test sequence where he can run a few

tests on the equipment item, and use the results to specify the

LFI. The results of this numerical example will show that such a

sequence can be defined.

In the first part of this example, the bilinear hysteretic

structure whose parameters are given in Table 5.1 is subjected to

a sequence of 16 inputs. The inputs all have the same form,

Equation 5-1, and only one of the input parameters is varied;

this is the amplitude. The input parameters are listed in Table

5.3, and the amplitudes for all the inputs are given. Cij is

the amplitude of the jth frequency component of the ith

input.

Table 5.3. Shock Input Parameters

N = 30 0.628

-j 0.1 + 0.238(j - 1) j = 1,...30

cij 0.2(i - 1) + 1 j = 1,...30, i = 1,...16

30

A!



C-)
'I)
U,

4.,

o 0
* .7-

I..

4-)

L

C-.)

~Ij

U,
U)

0

L

LaJ

E

4 'a

0

U)
'a

-J

L.

0~1

4..)

0 * 0
* 0

C~%J * 0

31



'C

co,

4-

4.)

C).

to

co

4.)

0)
f (X

9v

co0
IU

. . .. . . . . . . ....

C>~

32,



The actual structural response to each input was computed.

Based on the responses the actual peak displacement responses

were determined. The ratio between each peak response and the

yield displacement was taken to establish the ductility ratio, U,

of each response. Next, the parameters of the complex phase of

the Fourier transform of the LFI (using peak displacement crite-

rion) were determined for each input. These parameters are

graphed versus the ductility ratio and are shown in Figures 5.8

(we parameter) and 5.9 ( e parameter).

The LFR was computed for each input. This quantity was

normalized by dividing by the actual maximum response, and is

graphed as a function of ductility ratio in Figure 5.10.

This entire process was repeated for two more yield stiff-

ness to elastic stiffness ratios. These are ky/k = 0.3 and

ky/k = 0.1. The results of these analyses are also shown in

Figures 5.8, 5.9, and 5.10.

All the results show the same general trends. Consider

first Fiqure 5.8. When the ductility ratio is low, the frequency

parameter changes little. As the ductility ratio increases, the

frequency parameter decreases. All the curves exhibit an erratic

behavior. The reason is that the inputs are random.

The plots in Figure 5.8 raise a question of interest. That

is, do the curves asymptotically approach limits? The answer is

probably yes, and each limit is related to the ratio between the

yield stiffness and the elastic stiffness. As the structural

response displaceent increases far beyond the yield limit, each

SDF system has a sp,-ing force versus displacement diagram that

resembles a linear system response with stiffness, ky. Since

the natural frequency of an SDF system, with mass m and stiffness

k, is A7mi, the parameter we must approximately approach the
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value, 'Yk/m, in the limit. And the ratio we/wn must

approach A-7.

An analysis was performed to establish a smooth curve for

each sequence of data in Figure 5.8. Each data sequence was
fitted to the mathematical model

e re k e-'U
e =  A - (5-2)

wn

where we/w n is the ordinate of the curve, U is the abscissa,

V is the asymptote, and A and y were evaluated using the

least squares method. The results of the analyses are given in

Table 5.4.

Table 5.4. Curve Parameters for Data in Figure 5.8

'y/k 0.5 0.3 0.1
A 1.125 0.995 0.966

y 0.572 0.226 0.112

The smooth curves are shown in Figure 5.11. The results

show that the curves are relatively close to one another over the

range of U values considered. This implies that the frequency

parameter, we, of the LFI can be chosen, approximately, even

when the yield stiffness to elastic stiffness ratio is not known

accurately.

Now consider Figure 5.9. Based on these curves a few state-

ments can be made. All the curves exhibit erratic variations.
The variations tend to be largest for the systems with the

largest ratios of yield stiffness to elastic stiffness. There is

no immediate explanation for this behavior. In any case, the
damping parameter, 4e in the LFI appears to remain small when
the damping in the actual system is small.
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Figure 5.10 shows that the ratio between the LFR and the

actual peak response displays a certain degree of unpredictable

variation. This variation is due to the fact that the inputs are

random. However, the ratio appears to be constant, on the aver-
age, and the average is about 1.4. This indicates that an LFR

about 40 percent greater than the actual peak response can usu-

ally be expected.

All the computations described above, in Example Two, were

repeated for the case where a maximum dissipated energy criterion

was used. As before, the structure whose parameters are listed

in Table 5.1 was subjected to several input sequences consisting

of 16 random inputs each. The inputs have the characteristics

listed in Table 5.3. The actual responses were computed along

with the parameters of the LFI, the LFI itself and the energy

dissipated LFR. The results are shown in Figures 5.12 through

5.14.

Figure 5.12 shows the variation of the LFI frequency param-

eter, we, with the ductility ratio of the actual input and

response. Figure 5.13 shows the variation of the LFI damping

parameter, ie, with the ductility ratio. Figure 5.14 shows the

variation of the dissipated energy LFR with the ductility ratio.

The results computed using ky/k = 0.5, ky/k = 0.3, and

ky/k = 0.1 are shown.

Figure 5.12 shows that the frequency parameter of the LFI

tends to remain constant with increasing ductility ratio. This

result is in contrast to that obtained using the peak displace-

ment response criterion. The three curves, representing differ-

ent yield stiffness to elastic stiffness ratios, always remain

near one. This indictates that the frequency parameter, we in

the LFI can be chosen as wn, regardless of the value of the

yield stiffness to elastic stiffness ratio.
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Note that the frequency parameter curves obtained using the

peak displacement criterion (Figure 8) are different from the

frequency parameter curves obtained using the energy dissipated

criterion. Therefore, the peak displacement based LFI is differ-

ent from the maximum energy dissipated based LFI. To test a

structure for its failure potential in the two modes, two separ-

ate tests must be run.

Figure 5.13 shows that the damping parameter in the LFI

differs little from the damping parameter in the actual system.

The variation is so small that the damping in the actual system

can be used as the damping parameter in the LFI.

Figure 5.14 shows that the dissipated energy LFR is always

greater than the energy dissipated in the actual response. The

ratio of the two quantities is not constant because of the input

randomness.

It was stated that the procedure outlined in this numerical

example would make it easy for the test engineer to find the LFI

for an equipment item. One procedure a test engineer might

follow is now presented.

When an equipment item will be sujected to a class of field

inputs similar in character to the input of Equation 5-1, the

test engineer can specify an LFR test using a sequence of experi-

ments. First, the test item must be instrumented. Base input is

assumed, and the response at a critical point is monitored.

Using a low amplitude sine sweep (or equivalent method) the fun-

damental frequency must be determined. The frequency response

function near the fundamental frequency must be established, and

this information must be used to determine the damping factor in

the fundamental mode. For example, this can be inferred from the

half power bandwidth.
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Next, the yield point must be established. This can be done

using a sequence of experiments. In each experiment the actual

input is multiplied by a factor q. q is varied from a small

value (say 0.05) to the value 1.0. The structure is excited

using the modified input. The response at the point of interest

is monitored and the peak value is determined. The values of

peak response are plotted versus q. The curve generated using
this approach remains linear until yielding occurs. After yield-

ing, the slope of the curve diminishes. The value of q corres-

ponding to the yield point and the peak value of the response

where the yield displacement is realized can be determined from

the curve.

Now the test engineer applies the actual input to the equip-

ment item and observes the peak value of the response at the

point of interest. The ratio between this quantity and the peak

value of the response where yielding first occurs is the ductil-

ity ratio. This ductility ratio can be used to enter Figures 5.8

and 5.12 (or 5.11 and 5.12) to determine the frequency parameters

for the displacement and dissipated energy LFIs.

The test engineer determines the modulus of the Fourier

transform of the actual input, then uses this with frequency

parameter given above and the actual system damping factor to

establish the LFIs. The test input is computed using the above

information in Equations 3-6 and 3-7.

The technique described above can be used to establish the

LFI parameters for other classes of random inputs. The analysis

sequence is simply repeated using the other input in place of

Equation 5-1.
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6.0 Summary and Conclusion

The objective of this paper was to establish a method to

search for a test input that excites a conservative response in

an equipment item capable of inelastic response. A method for

specifying a conservative test input based on measured field

inputs was established. The criteria of peak displacement

response and energy dissipated were used.

The technique developed here was based on the linear theory

of least favorable response (LFR). It was assumed that when an

equipment item is subjected to a severe excitation, the response

may be inelastic. An equipment item executing inelastic response

displays a diminished stiffness. Therefore, the characteristic

frequency of an inelastic structure is lower than its fundamental

frequency. This study specified a method to search for the input

that causes the inelastic system response to be a maximum. The

input has the same form as the linear least favorable input

(LFI).

Equations 3-6 and 3-7 establish the form of the LFI. The
intensity of the actual shock input is accurately reflected in

the test since the LFI preserves the modulus of the Fourier

transform of the acutal input. Comparison of Figures 5.1 and 5.4

shows that the general character of the actual input is preserved

in the LFI.

The potential for inelastic response is accounted for in

this study since Equation 3-4 is assumed to govern the response

of the systems under consideration.

Example one demonstrates how the techniques developed in
this investigation can be applied in the definition of an actual

test input. Example two shows that the results can be general-

ized for easy application in the specification of test inputs.
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Some important results of this study are shown in Figures

5-8 and 5-12. These show the frequency parameter to be used in

specification of an LFI as a function of ductility ratio. The

numerical investigtions show that the frequency parameter is the

most important factor in the definition of the displa~ement

criterion LFI. Figures 5-8 permits the easy identification of

this parameter for test definition.

The damping which corresponds to the maximum displacement

response and maximum energy dissipated was also determined. The

damping variation is shown in Figures 5-9 and 5-13. It is con-

cluded from the computations that the change of damping does not

significantly affect the LFR. Hence, it is recommended that the

damping parameter in the LFI be defined as the damping in the

actual system.

The procedures developed in this study can be useful in

practical applications. Exampe Two showed that a procedure can

be developed to specify the parameters of an LFI, when only the

general form of the actual input and the ductility ratio of the

actual response are known. The procedure developed in Example

Two can be simplified even further. For example, note that the

LFI depends not on the form of the actual input, but rather on

the complex modulus of the Fourier transform of the input. In

view of this, the frequency parameters of the LFI can be written

as a function of the ductility ratio for an input whose Fourier

transform modulus has certain characteristics, such as "increas-

ing with frequency near wn," or "decreasing with frequency near

Wn," or "constant with frequency near wn." Using this

approach the parameters of an LFI would not be tied to a specific

input form, but rather to an input whose Fourier transform modu-

lus has a specific form. Other simplifications and generaliza-

tions may also be possible.
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The results obtained during this investigation are limited

by the assumptions of the study. Most important, only single-

degree-of-freedom, bilinear hysteretic systems were studied.

Further, random inputs were used, but the probabilistic character

of the response was not investigated. Only one form for the LFI

was used.

Future studies may seek to improve the present analyses in

several areas. For example, an alternate form for the LFI may be

sought; specifically, inputs which generate more severe responses

may be developed. Other forms of inelastic behavior may be con-

sidered. Probabilistic studies may be performed; these can be

used to predict the probability of conservatism of a shock test.

Most important, a shock test specification procedure which

explicitly accounts for the characteristics of inelastic multi-

degree-of-freedom systems must be pursued.
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