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From: Joseph A. Goguen, SRI International Distribution/

Re: End of FY Letter for contract N00014-82-C-0333, Availability CodesIAvail and/or

OBJ-I, a Study in Executable Algebraic Formal Specification D at Special
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I Progress

-Our most significant technical results are discussed under three headings: Implementation;

Applications and Examples; and Concepts and Foundations. We believe that we have demonstrated,
through an ample collection of published examples, the feasability and applicability of an ultra high level

programming language in which problems are described by writing equations, and are then solved by

regarding those equations as rules for reducing expressions to answers./' Iia44itionSe have explored

several issues that are significant to programming in general, including: (1) rapid prototyping; (2)

reusability in programming; (3) types and modularity; (4) error handling and recovery; (5) database views

and representations- (6) pattern matching; and (7) backtracking. A key to (2), (3) and (4) is the graceful

integration of code and specification using a new notion called views. Moreover, we have significantly

improved our experimental implementation of OBJ.

1.1 Implementation

Our UCI-Rutgers LISP implementation of OBJ has been extended by Prof. David Plaisted to OBJ-1,
running on DEC-20s under TOPS-20 and on DEC-10s under TENEX. This implementation hap a much

better user interface and many useful new features, including the following:

1. Interactive-Incremental program developement. When an error is detected by OBJ-1 while

reading in a program file, comments are inserted into the file, and the user may subsequently edit

that file, starting from the object where the errors were detected onward. When the editor (which is

EMACS) is exited, OBJ-1 tries again to execute these objects. The objects that were previously

accepted are left unchanged; however, there are commands to undo and edit any desired objects, or

even whole files. Together with a very informative parser, this greatly increases programmer
productivity by reducing the time required to find syntax errors, and by eliminating the need to

re-process objects upon which an object containing a corrected error depended.

2. Associative pattern matching. Binary operators can be declared ASSOCLUTIVE. The parser

does not then require full parenthesisation, and we get all the effects of an associativity equation.

Equations involving an associative operator permit a very general and simple form of pattern

matching and can be used as Odemonso for Al applications. An associative operation can, in

addition, be declared COMMUTATIVE. This is equivalent to adding a commutative equation. An

associative and commutative operator can also be declared IDEMPOTENT; this provides an

efficient way of computing set-theoretic expressions and opens up interesting theorem-proving
applications as explained below.

3. Backtracking is incorporated in a sim..e way that makes use of the error specification capabilities

of the language, specifically the NONPRIMITIVE attribute declared for an operator. Again, this

makes OBJ-1 a good candidate for Al applications (more on this below).

4. Hash addressing for selected terms is now possible, allowing big gains in efficiency by avoiding

unnecessary recomputations. This is accomplished by the SAVERUNS attribute, declared for a
given operator. (DISTIUIrl S7rENT A
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5. Built-in objects now include BOOLeans, NATurals, INTegers, and IDentifiers. In addition.
parameterized definition of tuples of any desired length is built-in.

6. Help and photo facilities are now provided. Photo allows a record of the interactive session to be
written on a separate file.

1.2 Applications and Examples

Applications and examples from rapid prototyping, parameterized programming, databases, and
artificial intelligence are summarized according to the main area intended, since these areas overlap a
good deal. The numbers in square brackets refer to papers listed in Section 3.

1. Rapid prototyping. Because OBJ-1 is executable, very high level, and has powerful
parameterization and modularity, it is ideal for quickly bringing up a working prototype of a system,
from which a final implementation can them be developed by stepwise refinement; see [51.

2. Parameterlzed programming. The parameterization mechanisms in OBJ make possible an
entirely new style of programming which promises dramatic gains in reusability of code and
programmer productivity. One can develop 'universally applicable' algorithms of a given kind (e.g.,
sorting) that can be easily instantiated for a given application; see [61 and [91. Explicitly providing
views showing how a given module satisfies a given specification greatly increases the power and
reliability of this style of programming; see f41.

3. Databases. Change of representation of data among different databases is a major practical
problem. So is providing different views of the same database to different of users. OBJ can be
used to give clear and elegant solutions to these two important problems; see 121.

4. Artificial Intelligence. Conditional rewrite rules are essentially the same thing as the rules used
in expert (rule based) systems. OBJ provides powerful ways of structuring such systems of rules, as
well as a precise mathematical theory of what they are supposed to do. Another way to describe
OBJ is that it is a language for constructing pattern directed inference systems. OBJ's pattern
matching is further enhanced by built-in options for declaring operations associative, commutative,
and/or idempotent; combining this with conditional rewrite rules yields quite powerful pattern
directed 'demons.' OBJ can also be used as a decision procedure for ground terms of an equational
theory, provided the equations satisfy some mild conditions when viewed as rewrite rules. Built-in
associativity, commutativity, idempotence permits a simple implementation of a decision procedure
for predicate calculus. Backtracking is also available via error conditions, thus allowing concise
formulation of many typical Al search problems.

1.3 Concepts and Foundations

Work on both mathematical foundations of the existing OBJ-1, and developement of ncw concepts and
ideas for future versions has been very active.

1. Foundations of equational and error deduction are given in 110), I1], and 113).
2. Foundations for software module implementation from algebraic specifications are given in

Ill.

3. Foundations for specification languages and their translations are given in [81.

-4. New Ideas on parameterization and subsorts with applications to databases and
polymorphism are presented in 121, 141 and 1141.
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2 Presentations

Presentations were made at the following conferences: Rapid Prototyping (Columbia MD) [5; Software
Factory Experiences (Capri, Italy) 161; 1982 ICALP (Aarhus, Denmark) [I); Application of Algebra to
Language Definition and Compilation (Fontainebleau, France) (10); Semantics of Programming Languages
(Bad Honnef, Germany) 181, (101; Database Semantics and Interfaces (Philadelphia PA) 121; Logics of
Programming (Pittsburgh PA) (81; Type Theory (Pittsburgh PA) 1141; and Reusability in Programming 141
(Newport RI).

In addition, lectures were given at the following places: Stanford University; Syracuse University;
University of British Columbia, Simon Fraser University; Edinburgh University; Manchester University;
Imperial College; Cambridge University; University of Barcelona; University of Milan; CNR, Cybernetics
Research Inst, Naples Italy; University of Pennsylvania; SRI; and Xerox Palo Alto Research Center.

Finally, a university course was taught in San Sebastian, Spain, by Meseguer.
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4 Participants

The following personnel participated in the project at SRI International: J. A. Goguen, J. Meseguer,
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