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NOTATION

Aj-I/2 Coefficient of a tridiagonal system of eq, ations

Bjl/2 Coefficient of a tridiagonal system of equations

CJ-1/2 Coefficient of a tridiagonal system of equations

C Numerical constant in the k-s model = 0.09
p

c Coefficient of pressure =p/2Po°2
p N/2pU 

0

C1  Numerical constant in the k-c model = 1.44

C2  Numerical constant in the k-E model = 1.90

C 3  Numerical constant in the k-s model = 4.44

DJ-1/2 Coefficient of a tridiagonal system of equations

f(r ,6) Factor used to reduce the turbulent outer mixing length viscosity

h Scale factors of the natural coordinate system

i

K The total number of streamline points

k Turbulent kinetic energy

L Length of the body

£ Mixing length

n Distance measured normal to the mean streamlines

P Production of turbulent kinetic energyi

PE Production of turbulent kinetic energy dissipation

p Mean pressure

p' Correction to the pressure to satisfy the streamline kinematic

relation

p Total corrected pressure - p + p
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PO Upstream pressure

R Radius of curvature of a streamline

Re Reynolds number of the flow -pU 0L/V

r Radial position of a streamline

r max Maximum radius of the body

r Radial position of the surface of the body

s Distance measured along a streamline

U Total mean velocity

U' Correction to the mean velocity
,

U Total mean corrected velocity = U + U'

U Potential flow velocity on the displacement body

U 0Upstream velocity

ut Turbulent velocity in the s-direction

u Mean velocity in the x.-direction

ur  Mean radial velocity

u Mean axial velocityx

u Friction velocity - Tw/
w

-e Turbulent velocity in the n-direction

w Turbulent velocity in the 0-direction

x Coordinate measured along the axis of the body

xb Beginning x-station of the partially parabolic k-c integrations

x Final x-station of the numerical integration
e
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th
x i x-station of the numerical integration

th cartesian coordinate

y+ Normal law of the wall distance

*
Y+ Critical law of the wall distance for the k-e model

a Angle of streamline with the x-axis

0' Correction to a to satisfy the streamline kinematic relation

a Total corrected angle aL + a'

y Intermittency factor

AA. Control area for U, k, and c equationsJ

AA Control area for the a equations

6 Boundary layer thickness = position where the velocity is 99.5% of
the potential flow velocity

6Displacement body

£Turbulent kinetic energy dissipation

* Distance measured in the 0-direction

0 Azimuthal angle

K von Karman constant = 0.40

V Molecular viscosity

v Total effective viscosity = V + V T
e

SInner viscosity used in the Huang/Wang boundary layer program

TOuter viscosity used in the Huang/Wang boundary layer program0

VT Turbulent eddy viscosity
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V T MRTurbulent eddy viscosity in the viscous sublayer

i Curvilinear coordinate of the natural coordinate system

p Constant f luid density

a k Turbulent Prandtl number used in the k equation - 1.0

a Turbulent Prandtl number used in the E equation -1.30

T Wall shear stress
W

'p Stream function

'P. ~th sraln rdnme
IPT ue streamline grid number
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.1 ABSTRACT

A numerical methoe for calculating tur-

bulent axisymmetric flows at the stern and
in the wake of bodies of revolution is

presented. A partially parabolic marching
technique in a streamline coordinate system

is used together with the k-E turbulence model.
In the viscous sublayer region, the velocity

is calculated using a mixing length argument
instead of the wall function method. The
numerical procedure starts at a station on the

body where the boundary layer is thin and is
pursued several body lengths downstream into the
wake. The numerical solution is obtained by
marching downstream and iteratively solving for
each flow variable. The axial and normal cor-
rections to the pressure are calculated by solving

a kinematic compatibility equation for the position
of the streamlines. The boundary conditions for
the pressure are set by calculating the potential

flow about an equivalent displacement body. The
numerical marching scheme is repeated, restarting
at the initial station, until convergence is
achieved. Comparisons are made between the numer-
ical results and the experimental data for four
different bodies.

ADMINISTRATIVE INFORMATION

The work described in this report was funded by the Naval Sea Systems Command

(NAVSEA Code 05R24) Special Focus Program on Ship and Submarine Drag and Wake Pre-

dictions, and was performed under Program Element 61153N, Task Area SR0230101, and

DTNSRDC Work Unit 1542-101.

1. INTRODUCTION

The present study presents a numerical scheme for calculating steady, axisym-

metric, turbulent, incompressible flow about bodies of revolution. To fully describe

the steady flow past a body requires a solution of the elliptic Navier-Stokes

equations. Since this is a difficult task for complicated turbulent motion, the

turbulence must be modeled. As a minimum criterion, the turbulence model must

9- " " " " ' ' ' " " " ' -f " " " i ° " " " " " " " _ " ° " " " i" _ " _ _ ' " " - * " _



describe turbulent motion effects on the time averaged or mean flow. The present

numerical scheme uses the turbulent kinetic energy and turbulent kinetic energy

dissipation (k-E) model together with the mean axisymmetric Navier-Stokes equations.

Even with a turbulent model, sophisticated and time consuming numerical methods

,,'i are needed to solve the resulting elliptical Navier-Stokes equations. However,

under certain conditions (partially parabolic flow conditions) certain diffusive

terms are small. Neglecting these terms, and using a known pressure field, the

mean steady equations become parabolic. Simpler marching techniques can then be
employed which require less computer time to calculate the solution.

PARTIALLY PARABOLIC FLOW METHOD

= 9.

General Discussion

The partially parabolic flow conditions are:

1. There is a predominant direction of flow;

.- 2. The diffusion of momentum, k and c along this direction can be

' " neglected; and

3. Pressure is the main carrier of downstream effects to the

upstream flow.

A simple example below illustrates the key points of the partially parabolic

flow assumptions. For two-dimensional, steady, incompressible, laminar flow, the

equations for the velocity components u and v and the normalized pressure p are

"-'3 a av-:u) ax + N) u (1.1)

(ax

/2 v2L(v) = a + v av+av' (1.3)

22
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where the first order operation L is the advection operator. Assuming that the

partially parabolic flow conditions are valid and that the predominant direction

of the flow is along the x-axis, then the momentum Equations (1.2) and (1.3) can be

approximated by

2
L(u) - + v (1.4)

ax 2

L(v) - + V a2v (1.5)
Dy ay2

The system of equations, given by (1.4) and (1.5), is parabolic if the pressure

field is known. The downstream flow field can then be calculated from the u and v

boundary conditions. However, pressure is also unknown; an equation for p can be

obtained by eliminating the diffusive terms in Equations (1.4) and (1.5), and using

the continuity Equation (1.2). The result is

+ L(u) + -L(v) (1.6)

ax2 L ax ay

which is a Poisson equation. To obtain the solution for the pressure, boundary

conditions must be given on the entire outer boundary of the flow domain, and the

solution depends on upstream and downstream flow fields. It is directly through

the pressure solution that downstream effects are communicated to the upstream.

The partially parabolic flow assumptions have been applied to internal and

external flows. Briley (1974), 1 Patankar et al. (1974),2 and Roberts and Forester

(1979)3 have applied the assumptions successfully to solve for high Reynolds number

flows in ducts and pipes. For external flows, the assumptions have been used to
4

solve for two-dimensional flows by Markatos and Wills (1980), for axisymmetric flow
4.,

*A complete listing of references is given on page III.

3
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5problems by Muraoka (1980), and for three-dimensional flow past surface ships by

Abdelmeguid et al. (1978)6 and Muraoka (1978).7 For external flows, the agreement

with experimental data is not as satisfactory as it is for internal flows. The

principle disagreement between calculated and experimental results for external

flows occurs in the stern/wake region of the flow. In this region the flow is

often near separation, and in regions where the flow separates, the partially para-

bolic flow equations cannot adequately describe the motion.

Discrepancies between experiments and numerical results, however, may also be

attributable to other sources. Among these are the choice of the predominant

direction, the manner in which the pressure is calculated, and the approximations

used in the turbulence model.

Predominate Direction of Flow

To apply the partially parabolic flow assumptions, a direction must be speci-

fied along which the diffusion is small compared with the other terms in the

equations. Among the possibilities for this direction are the axis of the body

(Abdelmeguid et al. 19786 and Muraoka 1978, 7 1980 5), the direction parallel to the

surface of the body (Pratap and Spalding 1975 8), the external potential flow
1 4

direction (Briley, 19741), and the mean flow direction (Markatos and Wills, 19804).

With each choice of the predominant direction, parabolic equations are obtained

for momentum, k and E, but each choice results in a different approximation to

the turbulent diffusive mechanism.

The choice of the axis of the body may not be appropriate for bodies with a

steep turn at the stern. In such a case, in the stern region, the direction of the

flow is sizably different from the direction of the axis, and there would be a non-

negligible contribution of diffusion in the axis direction. The selection of the

direction parallel to the surface of the body, suitable for the flow near the body,

becomes a poorer approximation to the flow direction as the distance away from the

body increases. An additional difficulty with this choice is that, at the tail of

the body, the flow is oriented at a nonzero angle, while in the wake the flow is

along the axis of the body. This can lead to a singularity of the coordinate system.

The choice of the external potential flow direction for external partially parabolic
'S

schemes is proper for the external regions of the flow but can be a poor approxima-

tion to the flow direction near the body.

4
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In the present study, the predominant flow direction is the mean flow direction.

The major advantage of this choice over the others for use in a partially parabolic

method is that the direction of the mean flow coincides with the same direction

that the diffusion is neglected in. As long as the Reynolds number remains large

and the flow does not separate, the diffusion along the mean flow direction is

small. Additional advantages of this selection are: there is no singularity at the

- tail of the coordinate system, and the surface of the body lies along a coordinate

line. The disadvantage of this choice is that additional equations are needed to

* specify the positions of the streamlines.

Pressure Field

The analysis leading to Equation (1.6) shows that the pressure satisfies an

elliptic differential equation. Instead of solving an equation of the form (1.6),

the partially parabolic scheme employs the continuity equation to solve for the

pressure field. Returning to the example of two-dimensional, incompressible, steady,

laminar flow, let u and v represent the solution to Equations (1.4) and (1.5) for

a given pressure field p . In general, u and v will not satisfy the continuity

Equation (1.1), and therefore, u*, v and p must be corrected so that the continu-

ity equation is satisfied. If the corrections to the velocity and pressure are

denoted by primes, then the corrected u, v, and p fields are given by:

u = U + u'

v = v + v' (1.7)

p = p + p'

where u? and v' must be related by the equation

9u, -+ - - -3 -Dv (1.8)ax ay = x + y /

Using Equations (1.4) and (1.5), u' and v' can be expressed in terms of the deriv-

atives of p"

U, 5



~u' f (3P',

3x

(1.9)

v g y

and inserting (1.9) into (1.8) leads to

'

3f _ _- + y (1.0 O)
D n J2L x2 3 2L 92 I (1.10)
ax ay

The functions f and g in Equation (1.9) must be determined numerically. The

solution to Equation (1.10) together with the forms of f and g determine the cor-

rected flow field.

Many partially parabolic schemes have solved the pressure correction equation

by assuming that p' is independent of the predominant direction of the flow. For

external flows, the derivatives of the pressure with respect to the predominant

direction is set equal to the value of the derivative in this direction at the edge

of the boundary layer (Patankar and Spalding, 1975). In this way, a fast conver-

gent scheme can be obtained. However, treating of the x and y derivatives of the

"' pressure as independent of one another restricts the downstream influence of the

- pressure. This can also lead to poor results in the thick boundary layer region

of the flow where the longitudinal and normal pressure variations can be large.

9 ,In the present numerical scheme, the derivatives of the pressure are not assumed

to be independent. This slows down the convergence, but it leads to a more accurate

calculation of the flow field. The full details of the present numerical scheme

% are presented in the Numerical Procedure Section.

6
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For external flow problems, the pressure must be specified on an outer

boundary away from the body. Far away from the surface of the body, the pressure

is equal to the free-stream pressure. This boundary condition has been used by

Markatos and Wills (1980)4 for two-dimensional flows. The difficulty with using

-this boundary condition is that special care must be taken to avoid pressure oscil-

lations that can develop in the outer regions of the flow.

As an alternative to using this boundary condition, the potential flow solution

can be used to set the pressure on a surface away from the body. Outside the

boundary layer region, viscous effects are negligible and the flow equations are

given by the inviscid equations. For three-dimensional flows Abdelmeguid et al.

.. (1978)6 and Muraoka (1978)7 have applied the potential flow solution past a surface

ship to set the outer boundary condition for pressure. In this paper, the method

of using the potential flow to set the boundary condition is extended by using the

potential flow past a displacement body (Lighthill, 1958).10 The displacement body

concept is that the actual body is thickened so that outside the viscous flow region,

4., the streamline positions calculated from the potential flow about the displacement

body match the streamline positions calculated from the viscous flow about the

actual body. Therefore, the iteratively calculated displacement body positions

and the potential flow about this displacement body are important calculations in

the numerical procedure.

TURBULENCE MODEL

The turbulence model used in this study is the k-c model (Launder and Spalding,

1974). This turbulence model is a two-equation model, characterized by partial

differential equations for k and for E. The interaction of the turbulence with

the mean flow is specified through an eddy viscosity which is a function of k and c.

The k-E model has gained acceptance over mixing length models and the k-6 model

lacks much of the arbitrariness of mixing length arguments. However, there is a

drawback to the use of the k-6 equations, that is: the k-c model is not valid in

the viscous region of the turbulent flow. There have been two approaches to

circumvent this difficulty: (1) modify the k-c equations near the body so that

4'-L
-N7



they are valid throughout the entire flow region (low Reynolds number model method,
12 13

Jones and Launder, 1971, 1973 ); and (2) instead of solving in the viscous sub-

layer region, specify how the velocity varies in this region (wall function method;

11
Launder and Spalding 1974 ). The first method is numerically time consuming and

the second method does not calculate the flow in a region where the velocity has its

greatest variation.

As an alternative to these two methods, the present study specifies the eddy

viscosity near to the body by a mixing length model and then calculates the velocity

in this region. In this manner the problem of time consuming calculations is avoid-

ed while the velocity is calculated in the viscous sublayer region.

Another difficulty with solving the k-E model has been found by Hanjalic and

14Launder (1980 ). With partially parabolic schemes, the k-s equations have been

solved by neglecting both the diffusion of k and £ in the predominant direction and

the generation of k and £ due to mean shear in the predominant direction. Hanjalic
14

and Launder (1980 ) retained the generation terms and found considerable improve-

ment in the consistency of the numerical results with the experimental data. These

mean shear generation terms will be retained in the k-s equations used in the

present method.

SUMMARY

In summary, the present numerical scheme contains the following features not

included in most partially parabolic schemes using the k-s turbulence model.

i. A streamline coordinate system is used so that the diffusive terms in the

flow equations are neglected in the actual mean flow direction;

2. The longitudinal and normal variation of the pressure field are not treated

as independent quantities;

3. The displacement body concept is used to calculate the external boundary

condition for the pressure;

4. A mixing length argument is employed to specify the eddy viscosity in the

viscous sublayer region; and

5. The generation terms of k and E due to longitudinal mean shear are retained

in the k-s equations.

8



The Equation Section discusses: the geometry of the streamline coordinate system,

the theoretical framework of the k-c turbulence model, and the time averaged equa-

tions. Also, the final coordinate system is established together with the equations

and their boundary conditions. In the Numerical Procedure Section, the details of

the numerical scheme are given. Finally, in the Numerical Results Section, results

- for four bodies of revolution are presented together with their comparisons with

experimental data.

i '2. EQUATIONS

NATURAL COORDINATE 
SYSTEM

The flow equations are expressed in the natural coordinate system so that the

second partially parabolic flow condition (see the Partially Parabolic Flow Method

Section) can be applied in the streamline direction. A natural coordinate system is

one in which one coordinate lies along the streamline and the other two are normal

to the streamline (Liepmann and Roshko, 1957).15 Assuming axisymmetric flow, one of

the normal directions is in the azimuthal direction.

Differential distances in the streamline direction, the normal direction, and

the azimuthal direction are denoted as (ds, dn, dz). If the curvilinear coordinates

for this coordinate system are denoted by ('I' 2' ) and the corresponding scale

factors by (hl, h2, r), then the differential distances are given by

3s = hI d I

an = h2 d E2 (2.1)

az = r d

where 0 is the azimuthal angle and r is the radial position. The derivatives of

any quantity are given by

3 1
as h1 3E

3 1 a (2.2)

3n h2 ' 2

3z r 8 0

9
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In the relation (2.2), the derivative with respect to 0 is set equal to zero because

there is no variation of the flow in the azimuthal direction for axisymmetric flow.

In the natural coordinate system the distance along the axis of symmetry, x,

the radial position, r, and the scale factors, h and h2, must be determined in1 29
terms of and t2 " As shown in Figure 1 and using Equation (2.1), the derivatives

of x and r in the streamline direction are

ax

D h Cos a (2.3a)

3r h sin a (2.3b)

where a is the angle between the streamline and the x-axis direction. Similarly,

using Figure 1 and Equation (2.1) the derivatives of x and r in the n direction are

given by

32 -h 2 sin a (2.3c)

Dr

h cos a (2.3d)

An equation for the scale factors can be obtained by first differentiating

Equaticn (2.3a) with respect to 2 and then differentiating Equation (2.3c) with

respect to i Performing these operations, the resulting left-hand sides are the

same and therefore the right-hand sides are equal. The result is:

10 H
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h I as t h2  si (2.4a) 

A second equation for the scale factors can be obtained by applying the same differ-

entiations to Equations (2.3b) and (2.3d), respectively, and the resulting equation

is

h 3h
sin a+h cos+ h - - cos a- h sin a (2.4b)

A simpler equation can be obtained for the scale factors by multiplying

Equation (2.4a) by - sin OL and multiplying Equation (2.4b) by cos a and adding the

two resulting equations, which yields:

* ah
ha Da 2 (2.5a)

Similarly, multiplying Equation (2.4a) by cos a and multiplying Equation (2.4b) by

sin a and adding the two resulting equations gives the result

ahacI
S- h 2 (2.5b)

3E 2 2  -I

Equation (2.5b) can be put into a more familiar form by dividing Equation (2.5b)

through by hlh 2 . Using Equation (2.2) the result is

*1 ah

I 3h _ a I c
h n a 5 R 

(2.6)

where R is the radius of curvature of the streamlines. Equations (2.3) and (2.5) .1

determine the positions and the scale factors in the natural coordinate system.

111
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REYNOLDS EQUATIONS IN THE NATURAL COORDINATE SYSTEM AND

TURBULENT EDDY VISCOSITY

The time averaged, steady, axisymmetric, incompressible continuity and momentum

equations will now be given in the natural coordinate system for the mean flow

fields. In this coordinate system, the variable s denotes the distance measured

along the time-averaged streamline and n denotes the variable measured normal to

this streamline direction. Using the results of tht Natural Coordinate System

Section the continuity and momentum equations are expressed as

I

hIr s (rUh2) = 0 (2.7)
2

SU I p 1 r (r u'v') r (ru'2)

9

(u2 2 1 Dr 1 DU w'- Dr
+ (u' -v' ) - +- -+--

r U Ds r s

3 2U QU U 3a)
+ 2 v + 2 - +

3h
u (1 2 + r( 2 Dn +s

-v +U 12 --- r n
'h2 -s Ds -2 r \s

- 2v- h (i 2

2v 2v U~
r (2.8)

12



U 2 3a 1 1 (rv 2) - - (ru'v')-as P an r an r as

".- (u,2_v 2 ) +w 2  3+r u'v' (I r 1 U
-s (r as U as)

a2 U ah\ 1' h 2+ u a u a (U 212
3sn -- s h s/ an h s /

2 v r U +L 2v Dh I au
r s 'an as hs

+ h a2 ss aS s

U ar ar + 2v Ur h2___ - +2 Ua 2(2.9)
Vr2 as an + hh2 an as h r an as

In the above equations, U is the total time averaged velocity and its direction

coincides with the direction of the mean streamlines. The variable a is the angle

between the mean streamline and the direction of the x-axis, p is the mean pressure,

p is the constant density of the fluid, v is the molecular viscosity, and r is the

radial position from the x-axis. The velocities u', v', and w' are the turbulent

velocities measured in the s-direction, in the n-direction, and in the e-direction,

respectively. A bar above the product of two turbulent velocities indicates that

the time average of the product is taken. These time averaged product terms are the

Reynolds stress terms, which are the stress on the mean flow due to the turbulent

motion. The continuity Equation (2.7) states that the mass contained between two

streamlines, which is r U h2 AE2 = r U An, is conserved. Equation (2.8) states that

the advection of U in the streamline direction is given by the sum of the pressure

gradient, the turbulent Reynolds stresses, and the molecular viscous forces in the

streamline direction. Equation (2.9) gives the balance of the centrifugal force

with the normal pressure gradient and the normal turbulent and molecular viscous

forces.

13
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To solve Equations (2.8) and (2.9), additional equations are needed to describe

the Reynolds stress terms. These terms are related to the mean shear through an

eddy viscosity VT. In cartesian coordinates, the Reynolds stresses, - u' u, are

assumed to be given by

2__ 3u Th9.- u' u', = ~ 1(.0

3 ij T Dx x.
vx 1/

where the subscript on the variables indicates the direction of the flow: (1) is

along the x-axis, (2) is along the y-axis, and (3) is along the z-axis. Transformed

to the (s,n) coordinate system the Reynolds stresses in Equation (2.10) are given

by

V-- lu U 3CL

- u'v'v -T n+U-

T 9n (is

2/3k u'2 2V DU
T s

2 -2vT
2/3k v '  (r,U) (2.11)r 9s

2 U Dr

2/3k - w' = 2v U 3r
T r

- U'W' = - V'W' = 0

The last two terms are zero in Equation (2.11) since they are related to the vari-

ation of the mean flow in the e-direction.

14
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* Combining Equations (2.8) and (2.9) with Equation (2.11), the momentum equations

are written

U] r2 ri +i 1 3~U' ) 2  DU 2v 9 r,ui
r )s L2erasi r as U a sj Ve a s _r as

-2,) U [I r - 2v U~ U L~ 1 (2.12)e s je as I.an as

_ 2 aa 1 R a 2v (rU)]p an r a n 1 eas

I a rv au Urv-a 2 V _3 ar
r as e an e ] as 2e 2  an a

2v 2V U [ +TJ ] (0- _ + ) (2.13)

*The variable V is the total effective viscosity, given by the sum of the molecular

viscosity and the turbulent viscosity:

V -V + VT (2.14)

Once v is specified, a complete system of equations is obtained for the variables

x, r, h., h 2, U, a±, and p. The turbulent viscosity will be given by the k-E turbu-

lent model.

15
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THE k-e TURBULENT MODEL

The k-c turbulent model assumes that the interaction of the turbulence on the

mean flow can be described by an eddy viscosity that is a function of the turbulent

kinetic energy k and the rate of turbulent kinetic energy dissipation c. In car-

-* . tesian coordinates, k and C are defined as

'2 '2 '2
u I  + u2 + u3

k 2 (2.15)

and

r u! au! 1/a' au!
£ = 2v 1+ -- I] + .. (2.16)Iax. ax ;X. ax.

where the summation over the indices i and j from I to 3 is implied in Equation

(2.16). Since VT is a function of k and E, it can be shown by dimensional analysis

that it is a function of the single variable k /6. It is assumed further that the

function is linear and VT is given by

C k2

VT p (2.17)

Equations must be supplied to describe the behavior of k and c. The k equation

is derived by considering the exact turbulent kinetic energy budget which is given
16

by Tennekes and Lumley (1972) in cartesian coordinates as

I . u'.U-\uI
u kx x u-- p r + 1/2 u! ' u!! a ,

31 ax P ] 1 a-x. DX i

au au.-t - i (2.18)

16
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where summation is implied over the indices. The left-hand side of (2.18) is the

advection of k by the mean flow. The first three terms on the right-hand side are

transport terms: the transport of k by the turbulent pressure gradient, by the

turbulent velocity fluctuations, and by the turbulent deformation field. The fourth

term on the right-hand side is the production of k and the fifth term is the rate

of dissipation of k. The transport terms are parameterized by assuming that the

three bracket terms in Equation (2.18) are proportional to the gradient of k:

[1 au u _VT 3k

-u py + 1/2 W7y -V u au + N ~) k - (2.19)

where ak is a constant. The Reynolds stress terms -u! ui in Equation (2.18) are

given by Equation (2.10). Combining these relations, the k equation is given by

'T - - -ui + +u- I 'ui (2.20)
jx axj ax I O xT[ax ax ax

The c equation is derived by forcing it to take the same form as the k equation

(see Launder and Spalding, 1974)11. It is given by

* E a V 8 a 1  8 aSu au 1 U

uj -- __ T +uCv + ui C CC2 e2/k (2.21)
-jax Ma [) ax + C"T k a ~ i x 2

4 .

where C1, C2, and aE are additional constants that must be specified. The constants

C ,' C1, C2, ak, and a used to give the best results for boundary layer and waker:. 14
. flows are given by Hanjalic and Launder (1980)

C - 0.09

C - 1.44

C - 1.90 (2.22)
2

k = 1.0

- 1.30

17



In the (sn) coordinate system, the k and E equations are expressed as

Us hr as a 3s + h r 2k + P -ak (2.23)

and

__ 9 [Thr V
U a6 1 a 2r_ a +I T h

KS h 2r as - +s hr an a hI ran

g 2

+ C 6 P  C (2.24)
I1k 2 k

where the production P of turbulent kinetic energy is given by

Tan as] T asJ

+ 2- Tn +  (rU) 2 + 2 (2.25)
7r. 2 Las r as1

In the viscous sublayer region, Equations (2.23) and (2.24) do not adequately

describe the variations of k and E. One approach to remedy this problem is to add

additional terms to Equations (2.23) and (2.24) to describe the behavior of k and E

12 13
near the body (Jones and Launder, 1972 , 1973 ). This approach has not been used

often since the extra terms greatly increase the computational time needed to cal-

culate the flow field. Another approach has been-used to solve the flow equations

starting at a point above the viscous sublayer region, using the law of the wall to
11

obtain the lower boundary conditions for U, k, and E (Launder 
and Spalding, 1974).

The distance above the wall is characterized by

18



- (yy 0 )(2. 26a)
Y+ V

and

=*Vr / (2.26b)

,..'

where y is a point above the body, y0 is the coordinate of the surface, and T is

the shear stress at yo. At a sufficiently large value of y+, given by y+ , it is

assumed that the production of turbulent kinetic energy P is equal to the rate of

dissipation of turbulent kinetic energy E. With P = e, the velocity field U, the

turbulent kinetic energy k, and the rate of dissipation e are given at y+ f y+ as

Uinu* U " ny+ + 5.24] (2.28a)

k- u * IVC (2.28b)

3

-(y-y) (2.28c)

where K is the von Karman constant (K-0.40). The procedure is to determine K at

y + by solving Equation (2.23) in the region between y+ - 0 and y+= y+, assuming

that the diffusion of k is zero. The value of C in Equation (2.23) is set equal to

the average energy dissipation rate in the region y+ = 0 to Y+ = Y+ by integrating

Equation (2.28c). Once k is known at y+ , u, U, and 6 can be determined at y

from Equations (2.28a, b, c). These values of U, k, and e serve as the lower

boundary conditions for the flow equations.

An alternate procedure to the two methods discussed above is to specify the

viscosity in the region between y+ = 0 to y+ - y+ by a mixing length, eddy vis-

cosity. This is the approach used in the present study. A mixing length, eddy

19
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viscosity, denoted by v (whose form will be given later), is assumed in the
Tm *

region between the wall and y+ . Using this eddy viscosity, T can be calculated.
, w ,

The value of k at y is determined using Equation (2.28b), while c at y+ is given

by Equation (2.17) as

C k2

V at y+ =y+ (2.29)
,.T- mk

With these boundary conditions, the k and E equations are solved in the region

y+ > y+. Using Equation (2.29) as the value of 6 at y+ ensures that the eddy

viscosity calculated from the mixing length argument matches the eddy viscosity

calculated from the k-E equations. This procedure provides a continuous variation

of the eddy viscosity.

-. THE PARTIALLY PARABOLIC ASSUMPTIONS AND THE HANJALIC AND LAUNDER

CORRECTION TO THE k-e MODEL

The partially parabolic flow assumptions given in the Partially Parabolic Flow

Method Section will be applied to the momentum Equations (2.12) and (2.13), and the

k-c Equations (2.23) and (2.24). The predominant direction in which the diffusion

terms are neglected is taken to be along the mean streamline direction. Neglecting

all s deriirtive terms in the diffusion terms of Eq, ations (2.12) and (2.13), the

momentum equations are approximated by

U3U - + 1 3 r 3U (2.30)
s p - 3 s r - [e

and
4 -

a''. U2 T I %p.
U- (2.31)

3s p n
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Patel et al. (1973)1 7 have shown that the terms neglected in Equations (2.30) and
18(2.31) are small for axisymmetric flows. Using integral methods, Dyne (1978) has

solved Equations (2.30) and (2.31) and has obtained good agreement with experimental

data.

Equation (2.30) states that the momentum calculated along the streamline

direction is increased by the pressure force and removed by the normal Reynolds

stresses. Equation (2.31) states that the centrifugal force is exactly balanced by

the normal variations of the pressure.

The partially parabolic flow assumptions are also applied to the k and E

equations. Neglecting the turbulent diffusive terms in Equations (2.23) and (2.24)

in the s-direction, the k and C equations are approximated by

U -s I a "T hl r ln + P - (2.32)
as h Ir an Lakl an

U- a " hl r -LE + C -k P-C - (2.33)
as h r an ia 1 ani 1k 2 k

Using the partially parabolic flow assumptions Abdelmeguid et al. (1978) 6 and
7

Muraoka (1978) have neglected all production terms containing derivatives in the

predominant direction. In the (s,n) coordinate system, with this approximation

2
P = VT (2.34)

Hanjalic and Launder (1980) 1 4 , however, have recommended the retention of the

(aU/as) terms to emphasize the role of irrotational deformations in promoting

energy transfer. Keeping the aU/as terms in P and using Relations (2.11), P is

approximated by

P-T V _a (u, 2_v, 2) U (.5' 2 ' u(2.35)
T 2Das

21
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The difference in the Reynolds stresses appearing in Equation (2.35) is ex-

pressed in terms of the turbulent kinetic energy by (see Hanjalic and Launder,

1980)14

(u,2_v,2) =-Ik (2.36)32

Equations (2.35) and (2.36) are used for the production term in Equation (2.32).

For the E Equation (2.33), Hanjalic and Launder (1980) 14 recommend the form for the

production of e, Pg, as

P ;C1 '°TTn C3(u,2_v,2) _U
PC: ( -% ) (2.37)

where

C3 = 4.44 (2.38)

Combining Equations (2.32), (2.33), (2.35), (2.36), and (2.37), the final k and e

equations become

U2 hr an ( h r 'k) + VT 1 nn - k - (2.39)
as h2 r nGk I a n 3

and

a = 1 a ( iT C -+ C s (2.40)as hr an an C3 'as hr 1 Ln c r V 1kT a s C 2 k

with the constants given in Equations (2.22) and (2.38).
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THE (x,w) COORDINATE SYSTEM

The 10 unknown flow variables are x, r, hi, h2, U, a, p, k, , and v T or v T

in the viscous sublayer region. The equations describing their behavior are (2.3c),

(2.3d), (2.5a), (2.5b), (2.7), (2.30), (2.31), (2.39), (2.40), and (2.17). To inte-

grate these equations, the curvilinear coordinates E and E2 must be specified.

The coordinate 1 should be chosen so that it is the arc-length of some known stream-

line. The choice for E2 can be obtained from the continuity Equation (2.7). This
22

equation implies that rUh 2 is a function of only E2' which is written

rUh2 = % (2.41)

The function yp is the streamfunction and 62 should be set equal to T (Patankar and
19

Spalding, 1967). Setting &2 - p and solving Equation (2.41) for h2 gives the

relation

1
h 2 - r- (2.42)

For numerical calculations, it is advantageous to make one final coordinate

transformation of the equations in order to replace I by the x-axis. The trans-

formation of the equations to the (x,y) coordinate system can be obtained by con-

sidering the variation of a function f whose variables are x and p. The differential

of f is given by

df f dx + (2) dip (2.43)

Using Equations (2.2), (2.3), (2.42), and (2.43) the derivatives of f with respect

to s and n are given by:

=Cos C L (2.44)
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and

3n U Q - sin a (3x) (2.45)

the Equations (for the radial position) (2.3b) and (2.3d), using Equations (2.44)

and (2.45), become

ar
x -tan a (2.46a)

and

r
- rU cos a (2.46b)

Since y is a coordinate, the conservation of mass is automatically satisfied. In

place of a conservation of mass equation, a kinematic relation can be obtained for

the (x,ip) coordinate system by differentiating Equation (2.46a) by Y and differenti-

ating Equation (2.46b) by x and subtracting the two resulting equations. The result

is

x (rU o --- (tan a) (2.46c)

which expresses that the radial position of the streamline calculated in the x-
direction from Equation (2.46a) matches the radial position of the streamline calcu-

lated in the normal direction from Equation (2.46b). The equations for U, a, k, and

C are obtained as above by applying Equations (2.44) and (2.45) to Equations (2.30),

(2.31), (2.39), and (2.40). These are given by

N2
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[ ' U ~C o s - x o s - x + rtx r V s i n o t 2 xx

."

3xst~= r ;x re axJ

sina x v U - u- Lv sin a(

+ U - j 2v U .pj (2.46d)

2 aaF1F1 pU cos a - sin p n (2.46e)

'p.

U Cos k _ sina e aea lk1 sin a ' [r% k

- r x ILak a~x r ax c P

rv [r~v
a e d_]__" 2

-U- I sin a-k+ u Lku]3x a k X k

+lT /U - csin -x I (2.46f)

2.5
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P.1

rr2 v
3x s x GE xin CL a e C sin Ocet,

scst i sit t + U _UU

U ex r dx r L--

- sincx. +U L r ~

+ C1  T  r U - sin c -x
1 k VT Dy au u

2au 2
-l/3 axcoscx-C - (2.46g)

In Equations (2.46f) and (2.46g) the variations of h in the n-direction have been
I

neglected since they are given by (a/as) in Equation (2.7), and this term is taken

to be small compared to the normal variations of k and E. Outside the viscous sub-

layer (y+>y+ VT is given by

k 
2

V T = Y C -C (2.46h)

" where y is an intermittency factor used to reduce the turbulent eddy viscosity out-

side the boundary layer region. The factor is given by

r-r
/ 0

I for < 0.1

y r (2.46i)

for 0 > 0.1

where r is the radial position of the body ( = 0 in the wake) and 6 is the
0

boundary layer thickness. In the viscous sublayer region (y+*y+ the mixing length
20

eddy viscosity is the one used by Wang and Huang (1979) in the viscous sublayer

region as follows:

26



•~ r
I

V T mx zrU-- sin ct LU(2.46j)
m( r 

where

I u. rw
9= Kr Zn r l-exp r n JjJ (2.46k)

0 (r 0) 0 2 rj

Once the boundary conditions are specified, the system of equations listed

under Equation (2.46) are solved for r, u, a, p, k, 6, and vT"

THE BOUNDARY CONDITIONS

The solution to the equations listed under (2.46) is calculated in a domain in

(x,y) space. This domain begins at Xb, which is an x-station on the body where the
boundary layer is thin, and ends at an x-station in the wake, x , such that x /L =

4.0, where L is the length of the body. At xb all flow variables must be given so

that the boundary conditions at x xb are

r =r

U = U b

a= a b

P Pb at x= xb (z.47a)

k kb

E: = b

V V
T =Tb

27

4.2



At xe the pressure is the only variable that is specified so that

P = Pe at x = x (2.47b)

The lower ip boundary is the streamline that lies along the body's surface and along

r = 0 in the wake. This streamline is set as IP 0. The boundary conditions on

the body (4p0) are

r= r
0

U =0 W = 0 and

a = a x/L < 1.0 (2.47c)
0

- -r U -p- sin c 1 0
Ln I P alJ3

where r is the radial position of the body's surface and a is the angle of the
0 0

surface with respect to the x-axis. The pressure boundary condition in Equation

(2.47c) is obtained by setting U = 0 in Equation (2.46e). The boundary conditions

for k and E are not given at ip = 0. These boundary conditions are given outside

the viscous sublayer region by Equations (2.27) and (2.29) on a streamline such

that y+ = y+ Between tp = 0 and y+ = y+ the eddy viscosity is given by (2.46j).

In the wake the boundary conditions on p = 0 are

r= 0

--- 0

= 0= 0 q=0 and

=x/L> (2.47d)

3k

- = 0

=0

which express the axisymmetric symmetry of the flow. For the outer boundary con-

ditions, a streamline is selected such that it lies entirely outside the turbulent
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boundary layer and turbulent wake region of the flow. This streamline is denoted

by iT and the boundary conditions on this term are

TI
Uo= I-PT-P°

or OT 2)

4' = IT (2.47e)

P- PT

where U is the far upstream constant velocity and p is the far upstream constant

pressure.

The boundary conditions at x = xb will be given from the numerical solution

of the thin boundary layer equation obtained from the Wang/Huang (1979)20 boundary

layer program. The pressure boundary conditions at xb , xe, and 
1lT will be specified

21
by a potential flow calculation (Hess and Smith, 1966) about the equivalent dis-

placement body. The boundary conditions specified by Equation (2.47) are exactly

those needed for partially parabolic flows, namely pressure given over the entire

flow domain and U, k, and 6 given on the beginning station and on the outer and

bottom boundaries.

3. NUMERICAL PROCEDURE

THE (x,y) GRID

Initially, the solution to the boundary layer equations for the axisymmetric
20

body is obtained from the Wang/Huang (1979) boundary layer program. This program

uses constant pressure profiles, given from a displacement body potential flow

calculation, and a mixing length eddy viscosity. This viscosity is given by

VT = T vT forvT .VT
i m T i o

=  (3.1)

tT f(ro,6) 0.0168 Ue , for 3T. 1> )T
o o

0 i 0
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where V is the inner viscosity and vT is the outer viscosity. The inner viscosity

is given by Equation (2.46j). In the outer viscosity formula, U is the potential
* e

flow velocity on the displacement body, 6 is the calculated displacement body thick-

ness, 6 is the boundary layer thickness, and f(r ,6) is a multiplicative factor used

by the program to reduce the outer viscosity in the thick boundary layer region,

given by

( 1for 6 < 0.2r

J (3.2)
f(r 06) = +6)2 2

rfor > 0.2r

3.33 62

The flow field obtained from the Wang/Huang (1979)20 program is examined and a

x-station, Xb, is selected where the boundary layer is thin (f(r ,)=l). The veloc-
b9 0

ity profiles obtained from the calculation serve as the boundary conditions in

Equation (2.4 7a). The dissipation at xb is obtained by assuming P = c and k is

obtained by assuming VT is given by Equation (3.1) at xb and solving for k from

Equation (2.46h).

The output at xb is given at J-1 radial stations. The corresponding stream-

lines for this flow data are calculated by integrating the definition of Y in (x,r)

coordinates:

r rU cos ci

(3.3)
= - rU sin a}

setting the streamline on the surface of the body as y = 0. These streamlines are

denoted as (T,1, Y2, ..., j), where yl = 0. In addition to the output at Xb, the

velocity field at x/L = 1.0 is examined. Using Equation (3.3), the corresponding

streamlines are calculated at x/L = 1.0. An outer streamline number, yT' is

obtained by multiplying 1.5 times the maximum of the streamline numbers obtained
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at xb and x/L = 1.0. The flow calculated on y = 'T' therefore, should be entirely

above the turbulent region. The data at xb is extended from TJ to 1T by adding 6

more streamline numbers, assuming that r, U, a, and p are given by the displacement

body, potential flow solution. The streamlines (yi, 12' ... IK ) , where K corre-

sponds to the outer streamline number, serve as the T grid stations. It is empha-

sized that these are streamline numbers and the positions of these numbers must be

calculated from Equation (2.46a) or (2.46b).

The x-stations are selected beginning at xb and ending at x e, such that there

are many x-stations in the stern and near-wake region. In this way, a full resolu-

tion of the thick boundary layer and wake region is obtained.

Most of the variables are not evaluated at the grid points, but they were

placed at staggered positions to give a better representation for the numerical

calculations. If a typical grid point is denoted as (x , p.), then the flow vari-

abe r ie sr1+1/2 i+1/2 1 i+1/2 i+1/2 i+1/2 i+1/2
ables are given as rj I  Uj+1/2 , Pj+1/2 J+1/22' j+/22' and vTj+I/2"

i i+1/2The 1+1/2 superscript indicates that the variable is evaluated at (x +x )/2 and

the j+1/2 subscript indicates that the position is at (p +1P )/2. In addition, allj j+iO' i l
the variables are given on p1 = 0 and IK" As an example, the U field at (x +x )/2

b(Ui+/2 i+1/2 1+1/2 i+1/2 i+1/2
is given by , I , U5/ 2  , ... , The grid geometry

is illustrated in Figure 2.

THE FINITE VOLUME NUMERICAL TECHNIQUE

The solution to the equations under (2.46) is obtained by marching the equations

downstream in x. Given the flow conditions at xI = Xb; r, U, k, £, and vT are
solved for at x5/2 and for a is solved for at x2. With these solutions, r, U, k,

E, and vT are obtained at x7/ 2 and a at x3 and so on to the final station, xe. The

solution method for the downstream values of U, a, k, and c is the finite volume* 9 i+1/2

numerical technique (Patankar and Spalding, 1979).9 The values of U at x are
1-1/2 1+1/2

calculated dividing the flow domain from i to x into K-I areas, AA., and

integrating Equation (2.46d) in each AA.. The control areas jA. are defined as

(see Figure 2)
!! I ~xi-/ < X < Xi I 2 :

AA I (3.4)
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The details of the integration procedure are given in Appendix A. The result, at
i+1/2 i+1/2each x-station, x , is a tridiagonal system of equations for U j+1/2 (see Equa-

tion (A.6)) which is solved by the double sweep method presented in Appendix B. The

solutions for k and E are arrived at by the same method except that the lower control
,

areas begin at the first streamline where y+ > y+ For smaller values of y+,

VT = V T given by Equation (2.46j). The value of u, is calculated from the defini-
mX

tion of T, as follows:

u, 2 T w U U sin a 13 (3.5)

i i-I

To solve for the downstream values of a at x the flow domain from x to x

is divided into K areas AA!i (see Figure 2);J

• X < X < XAA"

A~1{
* 0 < 1 < (Ti+I2)/2

x i- I < x < x i

,A for j = 2, ... K-1 (3.6)
A~ j- I + IV < T j + 1Pj+l

2 -- 2

x < x < x

'AA

AAKi= ( K K_+K) < <

2 K

and Equation (2.46e) is integrated in each AA. i . The downstream values of r are
-3 i+l/2

obtained by integrating Equation (2.46b) along x = x The details of the k,

E, a, and r equation integrations are also given in Appendix A.
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PRESSURE FIELD CALCULATIONS

i+/2 iThe downstream solutions U and a depend on the pressure field.
J+1/2 120

Initially, the pressure profiles are given from the Wang/Huang (1979) boundary

layer program. However, the downstream values of U and a do not satisfy the kine-
matic streamline relation in Equation (2.46c). Therefore, corrections are added to

,* the U, a, and p values in such a manner that Equation (2.46c) is satisfied. These

corrections are added to the downstream values of U and a and the upstream values of

p as follows:

i+/2 i+/2 1U, i+1/2
Uj+1/2 Uj+i/2 + uj+l/2

". = j + (3.7)

p * 1-1/2 -1/2 1 -1/2

j+12 = j+1/2 + Pj+l/2

where the primed fields are the corrections and the starred fields are the new

corrected values.

It is the upstream values of pressure that are corrected which is consistent

with the partialiy parabolic flow assumption that p communicates downstream inform-

ation to the upstream. Using the finite volume numerical technique to solve

Equation (2.46c), with the control areas given by Equation (3.4) and with the cor-

rected starred fields of Equation (3.7), the integration of Equation (2.46) in the

AA. becomes

i+1/2 i-1/2 * i * i
(x -x (tan [a. ]-tan io- 1 )

• i+I/, i~i2)_ *i~i/2* i. * i= 1,r- +/2 i 1+1/2 )/2 ] UjI/2 cos [(a. +OCl )/2] (3.8)

[r jl i-J/2+rjii i-I/2 i J-1

1-1/ 1-/2 11/2i-I
(4 - 1 [r _r -/2)/ 2 ] U-/2 cos [(a. +a .- )/2]
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The starred variables in Equation (3.8) are expanded in terms of Equation (3.7) and

to first-order quantities in Equation (3.8) are given by:

• ii 2

tan [cxj ] tan [a i] + a' /cos2[j

• i-*i

+1/2 i+1/2 i+1/2 i+1/2 2
[i/U 2 ] = [i/Uj 1/2' - [u(U 2 /(U._,/ 2 )

1 / -/ /2 -1/2

Finally, U' i+1/2 rl at-d/2 to1-i/2be
Fay /2 and W are related top by expanding the

J 1+1/2 i J _1/

solution equations for U.1 1/2  (A.6) and for a. (A.10) in power serves for U!1i+1/2
, i-1/2. 3 1/2 J-1

,andpJ-1

U' i+/2 U i-1/2(U +BU Uj-1/2 -Fj-/2 P-1/2 " 1-/2 I /2+Cj-i/2 )

(3.10)
B. B ,i-l/2 + , i-1/2

j j+1/2 + C P 1 /2

Inserting Equations (3.9) and (3.10) into (3.8), a tridiagonal system of equations
i-I/ 2.

are obtained for the correction to the pressure field 
at x

AP  , i-1/2 P , i-1/2 P 1-1/2 P

j-1/2 Pj-3/2 + Bj-1/2 Pj-I/2 + Cj-i/2 Pj+1/2 = DJ- 1/2  (3.11)

The boundary conditions for Equation (3.11) are that

p'k = 0

(3.12)

-U s in a2L 0
n L 3x ]

JP=0 4)=O
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Solving Equation (3.11) for p' and using Equation (3.10), the corrected values

for U, a, and p are obtained.

NUMERICAL MARCHING PROCEDURE

ihe equations under (2.46) are solved by marching downstream in x. Given the
i-l i-l12 i

upstream conditions at x and x , the downstream flow is calculated at x and
1+1/2 i+lx . Once these flow conditions are obtained the flow is calculated at x and1+3/2 xi+1i2
x , and so on until x = x . The numerical marching procedure is outlined

below:

i. Given the upstream values of the flow at xi - and xI- /2 Ui+l/2 is

obtained by solving Equation (A.6) and a is obtained by solving

Equation (A.10).
1-1/22. The upstream values of p, p , are corrected by solving Equation

(3.11). Using the new pressure field, the corrected downstream values

of U and a are calculated from Equation (3.10).
1+1/23. The downstream values of r, r / , are calculated from Equation (A.11).

4. The value of u, is obtained from Equation (3.5), V T is calculated
mt

using Equation (2.46j), k and c are obtained by solving Equation (A.16)

with the boundary condition Equations (2.27) and (2.29), and VT is

given by Equation (2.46h).

5. Steps 1 through 4 are repeated until the flow fields converge.
i+l

6. Steps I through 5 are repeated at the next downstream stations, x
and x + until the final x-station is reached.

7. Beginning at Xb, steps I through 6 are repeated until all variables

converge.

8. A new displacement body is calculated and steps I through 7 are

repeated until final convergence of the flow field.

The maximum number of iterations at a station (Step 5) is set as 5. The new

displacement body (Step 8) is calculated by matching the mass flow of the turbulent

flow from r to rK (the radial position of K to the mass flow calculated from the
0 KK

pressure field's potential flow from 6 to rK as follows:

K
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rK rK

+ P p U V r cos a dr = pUr cos a dr (3.13)o p
r r

0 0

where

-.- (p-po)
c = 2 (3.14)

PU 02

With a new displacement body, new boundary conditions for p are established by

recalculating the potential flow about the displacement body. The new pressure

field is given as:

i+/2 - 1+1/2 i+1/2-ki+I (3.15)
~j+1/2 PJ+ 1/2  + (Pk /2)

where p is the pressure field from the previous iteration (old displacement body).

In correcting the upstream pressure field (Step 2) an under-relaxation factor

has been used to quicken the convergence. If p 1-/2 is the uncorrected pressure
field and Pj+I/2 is the corrected pressure field obtained by solving Equation

j~l/2i-1/2
(3.11), then tte new pressure field PJ+/2 is given by

J+1/

1 -1/2.- 1-1/2,

- i-1/2 (PJ+I/ 2 +I/ 2 3.6
Pj+I/2 2 (3.16)

With Equation (3.16), it requires about 20 total sweeps to obtain a solution that

converges to 1% accuracy.

NUMERICAL DIFFICULTIES

Calculations were performed on a Burroughs B7000:168. The number of iterations

needed to achieve a convergent solution depended on the complexity of the body

geometry. For Afterbody 5 (see the Numerical Results Section), with 37 x-stations
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and 34 streamline numbers, 23 iterations were required with 13 minutes of processor

time. For Model A, however, only 9 iterations were needed with 6 minutes of pro-

cessor time, using the same number of x and T stations. The region of the flow field

where the slowest convergence occurred was the region near the body where the angle

of the surface with respect to ip is at its maximum. In this region, the flow

rapidly diverges away from the body. As will be seen in the Numerical Results

Section, the flow about Afterbody 5 is near separation while the flow about Model A

is not. The maximum angle the program could handle was 40° in the stern region.

Above this value, small regions of reverse flow were seen to develop, as indicated

by the values of the streamline angle a turning negative. After this occurred, no

convergent solution was obtained. If separation occurs, it is no longer advanta-

geous to integrate along the streamlines since in the separated region the values

of the streamlines become negative (assuming that the body lies along the p=0

streamline). In this case, downstream values of the flow are needed to obtain an

accurate numerical solution, and the streamwise turbulent diffusion cannot be

neglected in comparison with the normal turbulent diffusion terms.

4. NUMERICAL RESULTS

Using the numerical procedure developed in Section 3, calculations were per-

formed for four bodies for which experimental data were available. These are

designated as Afterbody 1 (Huang et al., 1979), 22 Afterbody 5 (Huang et al.,

1980),23 Model A, and Model B (Lyon, 193224 and 1934 25). Table 1 lists the following

geometric and flow parameters for each body: the length of the body L, the max-

imum radius of the body rma x, the upstream flow velocity Uo, and the upstream

Reynolds number Re. The aft body geometries, together with four streamline

positions, the displacement body, 6 and the boundary layer thickness, 6, are

presented in Figures 3 through 6. In these figures, the streamline numbers are
2normalized with respect to LU and they correspond to (outer) streamline grid

0
numbers 10, 22, 30, and 34. The aft body geometries for Afterbody 1 (Figure 3) and

Afterbody 5 (Figure 4) are characterized by parallel middle bodies with inflected

sterns. The aft body geometries for Model A (Figure 5) and Model B (Figure 6) have

constantly decreasing radii, with the curvature of the surface remaining convex.
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TABLE 1 - FLOW AND BODY GEOMETRY PARAMETERS

L r x  U. Re

(m) Im) (m/s)

Afterbody 1 3.066 0.1398 30.48 6.60 x 106

Afterbody 5 2.910 0.1397 45.72 9.30 x 106

Model A 1.778 0.1778 17.88 2.09 x 6

Model B 1.778 0.1778 17.88 2.05 x 106

The numerical results display a thickening of the turbulent region in the stern/wake

regions of the flows. The displacement bodies diverge significantly from the

physical bodies near the stern and continue into the wake with slowly decreasing

radii. In Figures 3 and 4, the computed displacement body and boundary layer

thickness are compared to the values of 6 and 6 obtained from the data of Huang

22 23*
et al., (1979), (1980) . For both bodies, the computed 6 and 6 lie slightly

below the experimental results in the stern/wake region, but overall the agreement

with the experiments is good.

Figures 7 through 28 present a detailed comparison of the computed flow field

to experimental results. In all of these figures y+ was set equal to 50. The

distributions of the frictional velocity u, and the wall-pressure coefficient c are
p

shown in Figures 7 through 10 for the four bodies. The computed pressure distri-

bution for Afterbody 1 (Figure 7) has a large trough at the inflected stern. At

this region of the body, the surface and the streamlines near the surface have a

marked change in curvature. As the streamlines change curvature from convex to

concave, the pressure gradient changes from adverse to favorable. Following the

concave part of the stern, the streamline curvature becomes convex again, with a

corresponding rise in the pressure on the wall. The computed wall shear stress,

2
given by pu, , drops rapidly in the adverse pressure gradient region of the flow.

Accompanying the sharp drop in the wall pressure, the wall shear stress rises

steeply. With the final change of curvature of the streamlines at the tail, u* drops

dramatically to zero. The computed pressure distribution agrees well with the
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experimental data, having a maximum percentage difference of 1% of the total head

pU 2/2. However, the computed u, distribution reaches a smaller value than the

experimental data, being 25% under the experimental result at x/L = 0.97. (For the

pressure field, the percent difference between the computed pressure field, pcomp'

and the experimental pressure field, p will be given by 100 x Ip - PoI /
*2 exp exp comp

PU 0. For the velocity field the percentage difference between the computed

velocity, Ucomp , and the experimental velocity, U ext will be given by 100 x -Uexp
U I ./U" For all other variables, the percentage difference will be the local
camp o

difference between the computed (co) and the experimental (p) given by
comp exp

100 X I~exp - ,comp ll~expl. )

The computed u, and c distributions for Afterbody 5 (Figure 8) display the

same type of behavior as exhibited for Afterbody 1. For Afterbody 5, the agreement

with the experimental data is good for both the wall frictional velocity and the

wall pressure coefficient. As is evident by the steep drop in u, in the adverse

pressure gradient region of the flow, the flow about this body is very near to

separation at x/L = 0.93.

The computed u, and wall c for flow past Model A are given in Figure 9. As

opposed to Afterbodies I and 5, the stern of Model A is not inflected. Therefore,
over the aft region of the body, the pressure gradient remains adverse up to the

tail of the body and u, steadily decreases to zero. The computed wall-pressure

distribution lies slightly above the experimental results, with a maximum difference

between the computed and experimental pressure distributions of less than 3% at

x/L = 0.95.

The shape of Model B is characterized by a sharply sloping stern region. The

values of the surface angles near 90* at the stern caused some numerical difficulty

for the computer code. To obtain the computed flow field, only a few x-stations

were placed near the tail of the body. Despite the limited number of points, good

agreement of the computed wall pressure with the experimental data is obtained,

with a maximum difference of less than 4% occurring at x/L = 0.95 (Figure 10). The

sharp decrease in u* indicates that the flow is nearing separation as the body

sharply turns downward at the tail.
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S.... Figures 11 through 16 present detailed comparisons of the computed velocity

fields to the experimental results for the four bodies. In Figure 11, the computed

velocity profiles show remarkable agreement with the experimental data for Afterbody

I up to the tail of the body. The computed velocities near the tail and in the

wake are also in good agreement with the experimental results (Figure 12). The

largest discrepancy occurs immediately behind the body (x/L=l.0076), where the

computed axial velocity is 8% less than the experimental value at r = 0. The cause

of this large difference is not known. Farther into the wake, the agreement with

the experiment is very good, as is evident by the profiles at x/L = 1.1820.

.* * Computed and experimental velocity profiles for Afterbody 5 are presented in

Figures 13 and 14. Since no measurements were made past the body, comparisons

cannot be made for the wake velocity profiles. For x-stations on the body, the

overall agreement with the experimental data is good. At x/L = 0.8727 (Figure 13),

the computed radial velocity is 5% under the experimental results, and the computed

V. axial velocity is 3% under the experimental data. Near the tail, at x/L = 0.9512

and x/L = 0.9874, (Figure 14), the computed axial velocities are slightly greater

than the experimental profiles (2%).

Figures 15 and 16 present the total velocity profile results at several x-

stations for the flows past Models A and B. The consistency of the computed velocity

fields with the experimental velocities is very good with a maximum difference of

less than 2%.

Extensive measurements of the pressure field were made for the flows past
Afterbody 1 (Huang et al., 1979)22and Afterbody 5 (Huang et al., 1980). Compar-

isons of the computed to the experimental pressure fields for the two bodies are

given in Figures 17 through 20. The computed pressure profiles and the experimental

pressure fields for Afterbody 1 (Figures 17 and 18) are within 1.5%; for Afterbody 5

(Figures 19 and 20) the results differ by 2%. At all the x-stations plotted, the

computed pressure profiles agree very well with the experimental results above the

boundary-layer region. This indicates that the displacement body concept has

correctly determined the influence of the turbulent flow on the external inviscid

flow.

40

. . .



The results of the turbulent kinetic energy calculations for Afterbody 1 and

Afterbody 5, together with experimental results, are given at several x-s caticns

in Figures 21 through 24. For x-stations on the bodies, the agreement of the

computed k with the experimental data is good. These results are encouraging and

indicate the use of the inner mixing length with the k-c model gives a good

approximation to the turbulent field. In the wake, the value of k on the centerline

is its average from r = 0 to r = 0.26. The agreement in the wake for Afterbody 1

(Figure 22) is poor, with the computed k field 25% under the experimental value at

x/L = 1.1820. Because of this large difference, further testing of the boundary

conditions of the k-E equations is needed in the wake.

The normal Reynolds stress profiles, - u'v', are presented at several x-stations

,-. - for Afterbody I and Afterbody 5 in Figures 25 through 28. The agreement of the

computed results to the experimental data is fair in the thinner boundary layer

regions and becomes poorer in the thick boundary layer/wake region of the flow.

For x-stations lying on the body, the computed normal Reynolds stresses are smaller

than the experimental profiles, while in the wake the computed values are greater

than the experimental values.

Figures 29 through 36 present a comparison of the partially parabolic, k-c:" '20

calculations to the Wang/Huang mixing length, boundary layer calculations for the

four bodies. Experimental data are also plotted in the figures. For Afterbody 1

(Figure 29), the u, and c distributions are in general agreement up to x/L = 0.95.20 p

The Wang/Huang 2 0 calculations do not predict as steep a drop in u* at the concave

" "i'°  part of the body as do the k-c calculations. In addition, there is no trough at

20
the stern in the Wang/Huang pressure distribution. The velocity profiles computed

for Afterbody I (Figure 30) from the two programs are consistent with the partially

parabolic calculation agreeing slightly better with the experimental profiles at

"-'- x/L = 0.9460. For Afterbody 5, the partially parabolic, k-c calculations correctly

predict the steep drop in u, and the pressure trough near the stern (Figure 31).

The velocity profile comparisons for Afterbody 5 (Figure 32) demonstrate again the

agreement of the two computer codes (within 2%), with the Wang/Huang2 0 axial velocity

profile agreeing slightly better with the experimental results at x/L = 0.9874.
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The calculations for u, and c for Model A (Figure 33) demonstrate that the calcu-
p

lations agree up to the tail of the body. At the tail, the partially parabolic u*
g0

distribution drops rapidly to zero as opposed to the Wang/Huang boundary layer

code which shows a slight upturn. Both pressure distributions turn downward at the

tail, with the partially parabolic pressure distribution reaching a slightly higher

maximum. The computed velocity profiles for Model A (Figure 34) are again consis-

tent. The comparisons of u,, c , and velocity for Model B (Figures 35 and 36) show

the same behavior as demonstrated for Model A.

In Figures 3 through 36, y+ was set equal to 50. To test the influence of

Y+ on the computed flow field, calculations were performed for Afterbody 5 with

Y+ equal to 100, 300, and 500. The results of these calculations are given in

Figures 37 through 48. The y+ = 100 computation (Figures 37 through 40) shows
*

little change compared to the y+= 50 calculation. Near the stern, there is a

slight increase in u, (Figure 37). The velocity profiles (Figure 38) and the pres-

sure profiles (Figure 39) have not moved noticeably, except for the decrease in

pressure at x/L = 0.9874. However, the turbulent kinetic energy profiles (Figure 40)

have marked dips near the body at x-stations near the stern.

The u, distribution, calculated for y+ = 300, has further increased near the

stern (Figure 41). In addition, the pressure at the wall near the stern has in-
creased. The velocity profiles (Figure 42) have slightly decreased from the pre-

vious case of y+ = 100. This decrease in velocity is due to the increase of

pressure near the stern, as evident in Figure 43. The turbulent kinetic energy at

the stern (Figure 44) begins to show erratic behavior as the matching point of the

k-c equations and the mixing length is extended farther above the body.

As y+ is further increased to 500, the computed u distribution lies above

the experimental results (Figure 45). Both the velocity profiles (Figure 46) and

the pressure profiles (Figure 47) show marked movement away from the experimental

values near the stern. The erratic behavior k experienced for the case of y+ = 300

is even more pronounced for y+ = 500 (Figure 48). Since the object of the study

was not to determine what the optimal value of y+ is, no definitive statement can*

be made concerning the best value of y+ to use. However, because of the oscilla-

tory behavior of the turbulent fields as y+ is increased, it is felt that the

lower values of y+ are preferable over the higher values of y+
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Finally, calculations were performed for flow past Afterbody 5 at Reynolds

numbers of I x 10 and I x 10 . At these two high Reynolds numbers, the value of

Y+ required to obtain a convergent solution had to be increased above 50. For

Re 1 x 108 the lowest value of y+ for which a solution could be obtained was

100, and for Re = 1 X 109, the minimum y+ was 625. The calculations for these two

Reynolds numbers were performed with the same number of x-grid stations as the case

6of Re = 9.3 x 10 , and the number of y-stations were increased to 40. Comparisons
of the u, and c distributions, calculated from the partially parabolic, k-c program,

p 20
to the distributions calculated from the Wang/Huang boundary layer program are

x18given in Figure 49 for Re = I x 108. Near the stern, the k-c calculations predict

a 36% smaller value of u, than the mixing length theory (Figure 49). The two pres-

sure distributions agree well up to the concave region of the body, where the

partially parabolic pressure distribution has a trough. The velocity profile com-

parisons (Figure 50) for Re = 1 x 108 agree within 3%. The corresponding compari-

9sons for the case of Re = I X 10 are given in Figures 51 and 52. The partially

parabolic, k-s code again predicts a smaller u, and a pressure trough near the

stern (Figure 51). The velocity fields are again in agreement (Figure 52), with the

mixing-length profile being 5% smaller near the stern (Figure 52). The values of

Y+ used for the higher Reynolds numbers represent the minimum values attainable for

this particular code. The proper value of y+ as a function of Reynolds number

still remains to be found. The partially parabolic, k-c distributions at the high-

er Reynolds numbers (Figures 49 and 51) contain some roughness. At these higher

Reynolds numbers, more x- and W-stations are needed to smooth these plots. However,

20the number of grid points were matched to the Wang/Huang boundary layer program

to give a true comparison of the two computer codes.

5. CONCLUDING REMARKS

Overall, the agreement between the measured and calculated results is encour-

aging. For most of the flow field, the velocity, pressure, and k profiles are

correctly predicted. The pressure and surface-shear-stress distributions also agree

well with the experimental data. The major drawback to the present scheme is that

the total number of iterations needed for the flow calculations to converge is

very large when a large angle at the stern is present.
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Figure 1 - The Geometry of the Natural Coordinate System
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Figure 2 -The (x,*~) Staggered Grid Geometry
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Figure 3 -The Aft Body Geometry, Four Streamline Positions, the Displacement Body 6*,
and the Boundary Layer Thickness S for Afterbody 1
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APPENDIX A

The equations listed under (2.46) are integrated using the finite volume

method. In this approach, the values of the downstream flow variables are obtained

by integrating the equations over small control volumes, as shown in Figure 2, that

extend from the bottom to the top of the flow domain. For each control volume,

linear interpolations of the variables are used to evaluate the integral. By way

of examples: if g represents a field variable given at the staggered grid points

1+1/12 1+1/2
(x+, j+/2) and denoted by g.+1 /2 (as U, p, k, E, vT), and f is a variable

given on the grid points (xi, T ) and denoted by f (as a), then, for a control
!1 -1/2 1+1/2

volume extending from x to x and from W j-1 to yp, three typical integrals,

fg, f~g/3x, and g af/3T are evaluated as:

i+/2_ -/2 (f +f i

-- 1 /2  f fg dxd - (x x /2- 1  2

x j-1

(g i+1/2 i- 1/2
""'•2.(g-1/2 gj-1/2 "(A.1)

1+1/22

,xi, x f x - i+1/2 i-1/2 .

x1 1/2  f ax = -Ij 2 j-1/2-gj-I/ 2 ) (A.2)
. ."x Yj -1

and

i+1/2 / P
3.xf (i+1/2 1-1/2) i+1/2 1-1/2 ifi

9i" g 7x dxdWP = -x (g - 1 / 2 +gj-1/2 ) (f -f 1  (A.3)

•xi-9/27" x Tj _
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For the U momentum Equation (2.46), the control volumes extend from x to
x i+/2 and from iJ-1 to Tj. Denoting this area by AA in Equation (3.4), the

integral of each item in this equation is written as

1 2 + 3 + 14 + 5 + 16 (A.4)

In the following integrations, the superscript (n) on the downstream variables will

denote that the variable is evaluated from the previous station and that superscript

(n+l) is the present iteration. For n = 0, we set the zeroth iterate equal to the

upstream value of the variable, except for p, where the value of the initial guess

or the pressure result from the previous total sweep. The factor (1-61 3 / 2 ), which

is equal to I except at i = 3/2, where it is zero, is multiplied by some of the

integral terms below to indicate that these integrals are zero at i = 3/2. This is

done since these integrals require the two previous upstream stations. The eval-

uation of the individual terms in Equation (A.4) is

I I = U cos a 2- dxdi = (-l 1/2(n) -/2 )/2]

axdt = 1 (W- ) [(U~ 2  +U 1 2

cos [a + i(n)+ a i(n))/ 2 ] (U i+l/ 2 (n+l)-u i - l/2) (A.5a)
PJ- j-1/2 J-1/2

I f cos a dxdw = ( Cos [(ain)+ in)/2
2ax j-j- j-l

i+1/2- i-112(n)) 5
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sin ~ i v sin o - dxdy=

j9 (1-61,
2

) (4) - 1 ) sin [ i(n) Xin)/2

(r +1/2(n) 1 +1/2(n) +r1-1/2 +r1-1/2 )4
Cr~ J-1  +r +- 1  )4

1+1/2(n) r +1/2(n) )/1  1 +1/2(n) sin [(ct. i(n) 1 (n) )2

i+1/2(n+1) 1-1/2), 1+1/2 1-1/2
H(U.- 1  -U, Mx _x )]

1/2 -1/2 1-/ 1 1-

-[(r. i- +r 1-/2]1v -/ sin [( ct l +a. i1 V/2]
j j-1 e-/ l -

Huj-1/2 _uJ-1/2 M x W(.c

_f s ina9[2 U U]dd
I4 A r a i

i {i[ ~)+ ct ~)/1[ +/()+r 1/2+r 1/2)/4J)

i-1 ej-1/2 J-1/2

[(U1/2(n)~ 1 +1/2(n+1) /2] [(r i1/1-1/2 )/2]2
j+1/2 j-1/2 j j-i

V1-1/2 U1-1/2 [U1-1/2 U.1-1/2)/1(A )
ej-1/2 uJ-1/2 Huj+1/2 -12)2 (.d
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15 r'c ve sin a u]dxdlp

1 +1/2(n) 1-1/2 1+1/2(n) 1-1/2 ()

[(vej+i,2  +Vej+ 1 / 2 +ej- 1 / 2  +v j 1 2 )/4] sin (at

I~ji+1/2(n+1) +Ui+1/2(n+l) u1/2 -/2)]
+1/2~ J12J+1/2 -J-1/2

-[(r itl/2(n) +rj1-1/2 )/2] [v ..t1 2(n) 1-2+/2(n)+11/V/4]I

sin ( n)) [( +/()+ +/(~)u112-'i12/] (A.5e)

16 2J U-[v U- l xdip

2[U1+1/2(n) +U1-1/2 )/][( (n) +r1-1 )2

[( 1+1/2(n) +1 -1/2+' i+1/2(n) +V1-1/2 )4ej+1/2 +ej+1/ 2+Vej-1/2 +Vjl/ 2

1(U 1+1/2(n) +U1-1/2 +U1+1/2(n) +U1-1/2 )4J+1/2 J+1/2 J-1/2 J-/

HuJ+1/2 uJ-1/2 My 1j+1 )

iC (n) 1  
2
2 r 1+1/2(n) +1-112 1+1/2(n)

-Ir- +rj 1 )/21L[v j-1 /2  +Vej -1/2 +V ej-3/2

+v 3 /2)~4 (A.5f cont.)
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iu i+l/2(n).+ 1-1/2 + +1/2(n) i-1/2,,,
[uJ-1/2 -,- 1/2 -,- 3/2 -,- 3/2 jI

[ i;-1/2(n+l).,, i+A/2(n+l)H u J-1/2 +,U j-3/2 ) -Tj-1) (A. 5f)

In these integrals, upstream differencing is used for all derivatives in x, and I

6
is evaluated so that this term is implicit. In the integrals in Equation (A.5), the

U(n+l) terms are collected and a tridiagonal system of equations results:

A U(n+l) . i+l/2(n+l) U(n+l) U i+l/2(n+l) + U(n+l) . i+I/2(n+l)
J-1/2 j-3/2 j-1/2 j-1/2 j-1/2 j+1/2

Eu(n+l) + u(n+l) ,p 1+1/2 i-i/2(n))(.6

J-1/2 j-1/2 j-1/2 -PJ-I/2

The coe-fficients in Equation (A.6) depend on the known upstream values and previous

iterition values of the downstream values of U, a, r, k, e, and V e Equation (A.6)

is solved by the double sweep method presented in Appendix B, given the top and

bottom boundary condition for Ui+I/2(n l)

For the normal momentum, Equation (2.46e), the control volumes extend from
i- to x , and from (Ip. l+w )/2 to (1j+)J+l)/2. The three integrals needed to be

evaluated in Equation (2.46e) are written

j2 +  3 (A.7)

and if we denote a control volume for this equation by AAJ Equation (3.6), the

integral is

J AA cos a jx dxdW = )/2]

[(U 1-1/ 2 +U 1 1/2 )/2] Cos [(a)i-l+ai )/21 (a _aji i) (A.8a)

101

-:'" "- .... . . . . . . .. . . ..-/ -/ - ? " ;'; ,: ; ;: -.- .- - .~ -.. .. " - " - .." i". . . . . . .."_ -. . .- -- ->A. :- *-. * .. . , , ''' '" -"



-I

J2 rU dxdY = -(xi-xi-l)rj i-/2[(U1-1/2 +U 1-/2 )/2]

(p i-i/2 (n)- i-i1/2(n) (.b

J+1/2 -J-1/2 )(.b

and

= sin a dxdip =)/2 sin [( a i

: (qj (n)_qj i-i (n)) (A.8c)

where

i(n) ( 1+1/2 1+1/2 i-1/2(n)+ i-1/2(n))/4  (A.9)
qj J+l/2 +PJ- 112  P+1/2 +j 1 2/ ,

i(n+l)
The terms in Equation (A.8) are collected and the equation for a is written

for j - 2, 3, 4,...J as:

i(n+l) = a(n+l) + B(n+l) i-1/2(n) +c(n+l) i-1/2(n) (A.10)

jI ~J+1/2 j-/

The coefficients in Equation (A.10) depend on known quantities, and, because of the
nature of the integration, are independent of the downstream values of U.

The equation for the downstream radial position of the streamlines Equation
i+1/ 2

(2.46b) is integrated along the x line. But, first this equation is multiplied
by r to obtain the form:

-J3r 2  2
I Cos 2

0
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1+1/2
Integrating this equation from WJ-1 to 4) along the x yields

r. i+l /2 (n+l) . i+l/2(n+l))2 + 2 i+l/2 (n+l)'i J-1/

Cose" Ha i(n) +Ct i~n) )/2 ])

Since the r position of 4) = 0 is known, the values of all r i+l/2(n+l) are obtained

by summing Equation (A.11).

The k and e Equations (2.46f, g) are solved simultaneously as follows:

sin_ a [r ~e U-
rV ak ssnn ax~si~ aSr' k

ax r ax a

ar V ]r' 2k+ U -3 ,P-U- j - sinca a alp - -

-0.33 C3 E COS (I + Cy - U 2- sin e - E

(A. 12a)

and

r 1
36 sinci a 3 e 3E sinc a 3 eU

U Cos a Lx r x] r ax

e 
r a 2

-U- -sin c-+ U- - U-
F-p ax] F~ i

-0.33 C k cos a 2- + CC yk U 2x sin x k

(A. 12b)
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The control volumes for Equations (A.12) are the same as those for the U equation.

The integrals are written for Equations (A.12a and b) respectively as:

L1 = L2 + L3 + L4 + L5 + L6 + L7 + L8 (A.13a)

M1 M2 + M3 + M4 + M5 + M6 + M7 + M8 (A.13b)

A term in Equation (A.13) corresponds to a term in Equation (A.12) in the order that

it is written. The procedure to determine L1 through L5 and MI through M5 is the

same as that performed to determine I through 16 in Equation (A.5). The only

difference is that since the U, a, and r equation integrations are performed before
i+l/2(n+l) i(n+l) i+1/2(n+l)

the k and c equation integrations, the values of Ui, a and r

are known. These values are used to determine the coefficients in L1 through L5

* and M1 through M5. The Ve terms, however, are given from the previous iteration.

The last three terms in Equations (A.13a) and (A.13b) are determined by taking

downstream values of k, E, (k2/E) and (c2 /k). To determine the downstream values

of the nonlinear terms (k 2/) and (2 /k), a Taylor series in k and E are taken to

first order:

(k2 /1)i+1/2 = (k2/)i -l/2 + 2(k/')i
- /2 (ki+i/2_k1

- 1/2)

(k2 0 i-1/2 (_i+1/2_ci-i/2 2(k/')i-1/2 ki+1/2

S(k2 c2)i-1/2 ei+1/2 (A.14a)

2k+1/2 - (2 1i-/2 i-1 / 2 i+/2 i-/2
(C 21k)'+1/2 /k)' + 2(e/k) (s - )

(E 2 /k i -1/2 (k+1/2_ i-1/2 i(/) +1/2-s (/k2) i - /  (ki+/-k i - / ) = 2(s/k) i+1

2 2/k21-1/2 i+/2 (A.14b)
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With these two approximations, the integral terms L L L M M and Mare
6' 7' 8' 6' 7'

given by:

L =-T 0.33 C ecos a 2- ( )TOPI 0.33 C i+1/2(n+l)
6 f63 ax dJ-J J-1 3 J-1/2

Cs[(a~ i(n+l) + i(n+1) )/2] (U i+1/2(n+1) -u 1-1/2a
i -i J-1/2 J-1/2

JJ2 2L 7 fC y (k /c)(rUM/34p-sin a alU/x) dxd4p
AV

(4 xi+1/2_ 1-1/2 c +112nl 2kc 1-1/2 ki+1/2(n+l)

j-1/ J-1/2 J-12 J1/

-(k 21+ 1/2 nl) i+1/2(n+l) [(r -+/(l -r sin [(a(n+l)1) i1/2(nl
-1/2 j-1/2 j+1 'j-1/2j

iC1 1+1/2 1-1/2 1i1/221-1/2)
LUJ-/ -i Sdd j-/ M ~)x -x (A.15c)

8+/ 1-1/ ij-1 j12 -il

M = -II 0. 33 CP k cos a o - dxdip ( -4~) 0. 33 C k i+1/2(n+1)
6 ax jjpJ-1/2

cos[( (n+l)+ i(n+1) 12] (U ~ l i11/2) A1dCos(aji OLJ-1 )/2(UJ-1/2 _j-1/2 A1d
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M 7 =JJ CI C p y k(r U 3U/3y-sin at WU/x) 2dxdip
A v

Op 1p (x1+1/2 -X1-1/2 )1 +1/2(n+l) k. i+1/2(n+1)
-x j- ~I P j-1/2 J-1/2

{[(r i+1/2(nl) = r i+1/2 (n+1) )/2] U +1/2nl 2[(U i+1/2(n+1)
Sj-1 j-1 1/2

2 n j+1/2

-U 12 (n+l) /0) -1p ) - si [( i(n+l) + i1 ) /21 (Ui/2(n+l)

j-1/2N and
M2/ d -(q j 1 +1/2_ i-1/2 )

8 iTp C 2 kddpA Ww )(x - c

1-1/ i+/2(~l) 2 2 i-1/2 i+1/2(n+I)
12F/)-1/2 Ei-1/2(n1 / k -1/ k J-/ (A.15f)

If all the k i+/(~)and F i+/(~)terms are collected from L Ithro igh L8and

M1 through M, a tridiagonal matrix system results, and is given by:

%ki1/2(n+1)- i+1/2(n+1)

A (n+l) + k~, B. (n+1)*K1
K -/ i+1/2n+1)] i-i+1/2 (n+1)

j-3/ L~jI/ 2 (A.16)

k. +1/2(n+1)
k.+3/2 1

(nIl (n+]
L - = +1)n~l
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S(n+1) B (n+1) a _ (n+1) (n+/)
where A (I 2 ' -1/2 and Cj-1/2 are 2 x 2 matrices, and D (n+ ) is a I x 2 matrix.

Given the top and bottom boundary conditions described in the text, Equation (A.16)

is solved using the method presented in Appendix B.

.4

P1
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APPENDIX B

In the numerical integration procedure, equations are encountered of the form

B1 v +C 1 v 2  dl

A. v.-l + B v. + C. v = d.,j = 2, 3,..., N-i (B.1)
3j- j -J j -+1 1j

AN -N B Nv d N.

-N

where A., B., and C. are n, x, n matrices and d. is a column vector of length n, all
j J -j

independent of the unknown column vectors, v. 's. To solve Equation (B.1), solutions

of the form (Carnaham, Luther, and Wilkes, 
1969) 2 6

vi = Y i i C i VLi+l (B.2) ;

are sought where yi is a column vector, i is an n, x, n matrix (both are to be

-8 -1 -

determined) and -  is the matrix inverse of The product a C is the normal
V i i

matrix multiplication. Substitution of Equation (B.2) into (B.1) gives the

recurrence relations for yand :

= i - Ai i (B.3)

Yi =  i-  (di-Ai Xi) (B .4)

Rewriting the first equation of (B.1) as

v B d -B C (B5
1-l 1 - 1 12 (B.5)
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."

and comparing this to the case c - 1 in Equation (B.2) results in:

B

-I = -  dl (B.6)

Rewriting the Nt h equation of (B.I) as

B ~ =d -Ay.+AC-N VN -N - N -YN-I AN N-i N-i -N

and combining the vN terms yields:

v +[B-A C (dA N) A yN (B.7)
-N N N N-i N-1  -NN N-i1=

which holds if we set VN+l = 0. Once the Yi's and i.s are known, the v is

determined from Equation (B.7) and VN_j for j > i from Equation (B.2).
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