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ABSTRACT

<;BA numerical metho¢ for calculating tur-
bulent axisymmetric flows at the stern and
in the wake of bodies of revolution is
presented. A partially parabolic marching
technique in a streamline coordinate system
is used together with the k-€£ turbulence model.
In the viscous sublayer region, the velocity
is calculated using a mixing length argument
instead of the wall function method. The
numerical procedure starts at a station on the
body where the boundary layer is thin and is
pursued several body lengths downstream into the
wake. The numerical solution is obtained by
marching downstream and iteratively solving for
each flow variable. The axial and normal cor-
rections to the pressure are calculated by solving
a kinematic compatibility equation for the position
of the streamlines. The boundary conditions for
the pressure are set by calculating the potential
flow about an equivalent displacement body. The
numer ical marching scheme is repeated, restarting
at the initial station, until convergence is
achieved. Comparisons are made between the numer-
ical results and the experimental data for four
different bodies.f;\\

ADMINISTRATIVE INFORMATION

Celaneys MRS %ot MR (L ua el RN A .J

The work described in this report was funded by the Naval Sea Systems Command
(NAVSEA Code 05R24) Special Focus Program on Ship and Submarine Drag and Wake Pre-
dictions, and was performed under Program Element 61153N, Task Area SR0230101, and
DTNSRDC Work Unit 1542-101,

1. INTRODUCTION
The present study presents a numerical scheme for calculating steady, axisym-
metric, turbulent, incompressible flow about bodies of revolution. To fully describe
the steady flow past a body requires a solution of the elliptic Navier-Stokes
equations. Since this is a difficult task for complicated turbulent motion, the

turbulence must be modeled. As a minimum criterion, the turbulence model must
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describe turbulent motion effects on the time averaged or mean flow. The present

numerical scheme uses the turbulent kinetic energy and turbulent kinetic energy

dissipation (k-€£) model together with the mean axisymmetric Navier-Stokes equations. -

Even with a turbulent model, sophisticated and time consuming numerical methods
are needed to solve the resulting elliptical Navier-Stokes equations. However,
under certain conditions (partially parabolic flow conditions) certain diffusive
terms are small. Neglecting these terms, and using a known pressure field, the
mean steady equations become parabolic. Simpler marching techniques can then be

employed which require less computer time to calculate the solution.

PARTIALLY PARABOLIC FLOW METHOD
General Discussion
The partially parabolic flow conditions are:
1. There is a predominant direction of flow;
2. The diffusion of momentum, k and € along this direction can be
neglected; and
3. Pressure is the main carrier of downstream effects to the
upstream flow.
A simple example below 1llustrates the key points of the partially parabolic
flow assumptions. For two-dimensional, steady, incompressible, laminar flow, the

equations for the velocity components u and v and the normalized pressure p are

du , v _
2 2
L(u) = - %B + v <§—3-+ E—E) (1.2)
X 2 2
ax dy
. 2 2
Lw) = - &4y (L v+ ;) (1.3)
y Ix ay
2
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.
- where the first order operation L is the advection operator. Assuming that the
X8 partially parabolic flow conditions are valid and that the predominant direction
N
» of the flow is along the x-axis, then the momentum Equations (1.2) and (1.3) can be
Ny approximated by
%
E:: . 3p 82u
R L(u) = - + Vv — (1.4)
o 9x 3 2
g y
S 1
[ |
\7:7 2 [
> L(v) = - gP- TN (1.5)
4. y 3 2
e y
NS
pLE:
- The system of equations, given by (l.4) and (1.5), is parabolic if the pressure
jﬂj field is known. The downstream flow field can then be calculated from the u and v
A
Ry boundary conditions. However, pressure is also unknown; an equation for p can be
?‘2 obtained by eliminating the diffusive terms in Equations (l.4) and (l1.5), and using
the continuity Equation (1.1). The result is
T
= 2 2
i 8°p , 3P _ _ [BL(u) . BL(V)] (L.6)
) 2 2 X dy ' '
9x y
’f; which is a Poisson equation. To obtain the solution for the pressure, boundary
‘3‘: conditions must be given on the entire outer boundary of the flow domain, and the
solution depends on upstream and downstream flow fields. It is directly through
SN the pressure solution that downstream effects are communicated to the upstream.
g
I The partially parabolic flow assumptions have been applied to internal and
~ %
*x: ¢ external flows. Briley (1974),l Patankar et al. (1974),2 and Roberts and Forester
I (1979)3 have applied the assumptions successfully to solve for high Reynolds number
l.
ﬁ;- flows in ducts and pipes. For external flows, the assumptions have been used to
4
;5' solve for two-dimensional flows by Markatos and Wills (1980), for axisymmetric flow
A
N
o *A complete listing of references is given on page lll.
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problems by Muraoka (1980),S and for three-dimensional flow past surface ships by
Abdelmeguid et al. (1978)6 and Muraoka (1978).7 For external flows, the agreement
with experimental data is not as satisfactory as it is for internal flows. The
principle disagreement between calculated and experimental results for external
flows occurs in the stern/wake region of the flow. In this region the flow is
often near separation, and in regions where the flow separates, the partially para-
bolic flow equations cannot adequately describe the motion.

Discrepancies between experiments and numerical results, however, may also be
attributable to other sources. Among these are the choice of the predominant
direction, the manner in which the pressure is calculated, and the approximations

used in the turbulence model.

Predominate Direction of Flow

To apply the partially parabolic flow assumptions, a direction must be speci-
fied along which the diffuéion is small compared with the other terms in the
equations. Among the possibilities for this direction are the axis of the body
(Abdelmeguid et al. 19786 and Muraoka 1978,7 19805), the direction parallel to the
surface of the body (Pratap and Spalding 19758), the external potential flow
direction (Briley, 19741), and the mean flow direction (Markatos and Wills, 19804).
With each choice of the predominant direction, parabolic equations are obtained
for momentum, k and €, but each choice results in a different approximation to
the turbulent diffusive mechanism.

The choice of the axis of the body may not be appropriate for bodies with a
steep turn at the stern. In such a case, in the stern region, the direction of the
flow is sizably different from the direction of the axis, and there would be a non-
negligible contribution of diffusion in the axis direction. The selection of the
direction parallel to the surface of the body, suitable for the flow near the body,
becomes a poorer approximation to the flow direction as the distance away from the
body increases. An additional difficulty with this choice is that, at the tail of
the body, the flow is oriented at a nonzero angle, while in the wake the flow is
along the axis of the body. This can lead to a singularity of the coordinate system.
The choice of the external potential flow direction for external partially parabolic
schemes is proper for the external regions of the flow but can be a poor approxima-

tion to the flow direction near the body.
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In the present study, the predominant flow direction is the mean flow direction.

The major advantage of this choice over the others for use in a partially parabolic

method is that the direction of the mean flow coincides with the same direction

that the diffusion is neglected in. As long as the Reynolds number remains large

and the flow does not separate, the diffusion along the mean flow direction is

small. Additional advantages of this selection are: there is no singularity at the

tail of the coordinate system, and the surface of the body lies along a coordinate

line. The disadvantage of this choice is that additional equations are needed to

specify the positions of the streamlines.

Pressure Field

The analysis leading to Equation (l.6) shows that the pressure satisfies an

elliptic differential equation. Instead of solving an equation of the form (l.6),

the partially parabolic scheme employs the continuity equation to solve for the

pressure field. Returning to the example of two-dimensional, incompressible, steady,
laminar flow, let u* and v* represent the solution to Equations (l.4) and (1.5) for
a given pressure field p*. In general, u* and v* will not satisfy the continuity
Equation (1.1), and therefore, u*, v*, and p* must be corrected so that the continu-

ity equation is satisfied. If the corrections to the velocity and pressure are

Pulll UL W DU | WL EPVUIUR SR AR, D

denoted by primes, then the corrected u, v, and p fields are given by:

*

u=u +u'

* J
v=v +v' (1.7)

*
p=p +p'

where u’ and v' must be related by the equation

* *
Ju’ av' _ [3u v
9x + dy _(Bx + ay ) (1.8)

Using Equations (1.4) and (1.5), u' and v' can be expressed in terms of the deriv-

atives of p':
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o e (2)
9x
(1.9)
I )3
v g(BY)
and inserting (1.9) into (1.8) leads to
2 2 * *
_of 9’ p’ -dg o p' _ _(%u_, 3v_
; 25" axz + N 3p" X 5 A + 5y (1.10)
9x dy y

The functions f and g in Equation (1.9) must be determined numerically. The
solution to Equation (1.10) together with the forms of f and g determine the cor-
rected flow field.

Many partially parabolic schemes have solved the pressure correction equation
by assuming that p' is independent of the predominant direction of the flow. For
external flows, the derivatives of the pressure with respect to the predominant
direction is set equal to the value of the derivative in this direction at the edge
of the boundary layer (Patankar and Spalding, 1975).9 In this way, a fast conver-
gent scheme can be obtained. However, treating of the x and y derivatives of the
pressure as independent of one another restricts the downstream influence of the
pressure. This can also lead to poor results in the thick boundary layer region
of the flow where the longitudinal and normal pressure variations can be large.

In the presént numerical scheme, the derivatives of the pressure are not assumed
to be independent. This slows down the convergence, but it leads to a more accurate
calculation of the flow field. The full details of the present numerical scheme

are presented in the Numerical Procedure Section.
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o . For external flow problems, the pressure must be specified on an outer
boundary away from the body. Far away from the surface of the body, the'pressure
tgt; is equal to the free-stream pressure. This boundary condition has been used by

ook Markatos and Wills (1980)4 for two-dimensional flows. The difficulty with using

. this boundary condition is that special care must be taken to avoid pressure oscil-
lations that can develop in the outer regions of the flow.

. As an alternative to using this boundary condition, the potential flow solution
can be used to set the pressure on a surface away from the body. Outside the

. boundary layer region, viscous effects are negligible and the flow equations are
given by the inviscid equations. For three-dimensional flows Abdelmeguid et al.
(1978)6 and Muraoka (1978)7 have applied the potential flow solution past a surface
ship to set the outer boundary condition for pressure. 1In this paper, the method
of using the potential flow to set the boundary condition is extended by using the
potential flow past a displacement body (Lighthill, 1958).10 The displacement body
concept is that the actual body is thickened so that outside the viscous flow region,
the streamline positions calculated from the potential flow about the displacement
body match the streamline positions calculated from the viscous flow about the
actual body. Therefore, the iteratively calculated displacement body positions
and the potential flow about this displacement body are important calculations in

the numerical procedure.

TURBULENCE MODEL
The turbulence model used in this study is the k-€ model (Launder and Spalding,
1974).11 This turbulence model is a two-equation model, characterized by partial
differential equations for k and for €. The interaction of the turbulence with
the mean flow is specified through an eddy viscosity which is a function of k and €.
The k-€ model has gained acceptance over mixing length models and the k-£ model
lacks much of the arbitrariness of mixing length arguments. However, there is a
drawback to the use of the k-€ equations, that is: the k-¢ model is not valid in
the viscous region of the turbulent flow. There have been two approaches to

circumvent this difficulty: (1) modify the k-€ equations near the body so that
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they are valid throughout the entire flow region (low Reynolds number model method,
Jones and Launder, 1971,12 197313); and (2) instead of solving in the viscous sub-
layer region, specify how the velocity varies in this region (wall function method;
Launder and Spalding 197411). The first method is numerically time consuming and
the second method does not calculate the flow in a region where the velocity has its
greatest variation.

As an alternative to these two methods, the present study specifies the eddy
viscosity near to the body by a mixing length model and then calculates the velocity
in this region. In this manner the problem of time consuming calculations is avoid-
ed while the velocity is calculated in the viscous sublayer region.

Another difficulty with solving the k-€ model has been found by Hanjalic and
Launder (198014). With partially parabolic schemes, the k-t£ equations have been
solved by neglecting both the diffusion of k and € in the predominant direction and
the generation of k and € due to mean shear in the predominant direction. Hanjalic
and Launder (198014) retained the generation terms and found considerable improve-
ment in the consistency of the numerical results with the experimental data. These
mean shear generation terms will be retained in the k-£ equations used in the

present method.

SUMMARY

In summary, the present numerical scheme contains the following features not
included in most partially parabolic schemes using the k-€ turbulence model.

1. A streamline coordinate system is used so that the diffusive terms in the
flow equations are neglected in the actual mean flow direction;

2. The longitudinal and normal variation of the pressure field are not treated
as independent quantities;

3. The displacement body concept is used to calculate the external boundary
condition for the pressure;

4. A mixing length argument is employed to specify the eddy viscosity in the
viscous sublayer region; and

5. The generation terms of k and € due to longitudinal mean shear are retained

in the k-g£ equations.
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tions.

experimental data.

NATURAL COORDINATE SYSTEM

The flow equations are

one in which one coordinate
to the streamline (Liepmann
the normal directions is in

Differential distances

the azimuthal direction are

any quantity are given by

The Equation Section discusses:

and their boundary conditions.

the numerical scheme are given.

Section) can be applied in the streamline direction.

where 0 is the azimuthal angle and r is the radial position.

the geometry of the streamline coordinate system,

the theoretical framework of the k-€ turbulence model, and the time averaged equa-

Also, the final coordinate system is established together with the equations

In the Numerical Procedure Section, the details of

Finally, in the Numerical Results Section, results

for four bodies of revolution are presented together with their comparisons with

2. EQUATIONS

expressed in the natural coordinate system so that the

second partially parabolic flow condition (see the Partially Parabolic Flow Method

A natural coordinate system is
lies along the streamline and the other two are normal
and Roshko, 1957).15 Assuming axisymmetric flow, one of
the azimuthal direction.

in the streamline direction, the normal direction, and

denoted as (ds, dn, dz). If the curvilinear coordinates

for this coordinate system are denoted by (El, 52, 8) and the corresponding scale
factors by (hl, hz, r), then the differential distances are given by

ds = h1 d Sl
on = h2 d Ez (2.1
6z = r d 6

The derivatives of

51
=

2
3%,
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?{' In the relation (2.2), the derivative with respect to 8 is set equal to zero because
f: there is no variation of the flow in the azimuthal direction for axisymmetric flow.
T In the natural coordinate system the distance along the axis of symmetry, x,

;E the radial position, r, and the scale factors, hl and h2, must be determined in

;3 terms of El and 52. As shown in Figure 1 and using Equation (2.1), the derivatives

of x and r in the streamline direction are

n
- 9x  _
N Y hl cos 0O (2.3a)
1
£
?3 ar
-, %==— = h, sin a (2.3b)
X 13 1
- 1
:k where o is the angle between the streamline and the x-axis direction. Similarly,
%: using Figure 1 and Equation (2.1) the derivatives of x and r in the n direction are
' given by
L 9x
= = -h, sin a (2.3c)
, 13 2
.., 2
:f EI__, h, cos a (2.3d)
> 9E, 2
2
3
' An equation fcr the scale factors can be obtained by first differentiating
. Equaticn (2.3a) with respect to €2 and then differentiating Equation (2.3c) with
- respect to El. Performing these operations, the resulting left-hand sides are the
T same and therefore the right-hand sides are equal.' The result is:
-
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1 do. 2 do. ]
——cts & - h, sin a7+ = = == sin o - h, sin a 77 (2.4a) y
352 1 352 3El 2 8&1 N
>
A second equation for the scale factors can be obtained by applying the same differ- ;
entiations to Equations (2.3b) and (2.3d), respectively, and the resulting equation Q
is .;
R
d3h dh g

30 2 o0

—— sina+ h, cos a5 = - zF—co8 0 - h, sin 0 57 (2.4b)
352 1 BEZ 8&1 2 651

A simpler equation can be obtained for the scale factors by multiplying
Equation (2.4a) by - sin o and multiplying Equation (2.4b) by cos o and adding the

two resulting equations, which yields:

o0

13

dh
(2.5a)

2
h LY .
1 3E| ;

(3]

Similarly, multiplying Equation (2.4a) by cos & and multiplying Equation (2.4b) by

sin 0 and adding the two resulting equations gives the result

B S L (2.5b)

Equation (2.5b) can be pﬁt into a more familiar form by dividing Equation (2.5b)
through by hlhz’ Using Equation (2.2) the result is
ahl _

5= - (2.6)

{H
o | b

1
by

where R is the radius of curvature of the streamlines. Equations (2.3) and (2.5)

determine the positions and the scale factors in the natural coordinate system.
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REYNOLDS EQUATIONS IN THE NATURAL COORDINATE SYSTEM AND
TURBULENT EDDY VISCOSITY

The time averaged, steady, axisymmetric, incompressible continuity and momentum
equations will now be given in the natural coordinate system for the mean flow
fields. In this coordinate system, the variable s denotes the distance measured
along the time-averaged streamline and n denotes the variable measured normal to
this streamline direction. Using the results of the Natural Coordinate System

Section the continuity and momentum equations are expressed as

hr 3 (rth) = 2.7)
2
3 L3 _ 13 o L3
v s p 9s r n (r u'v') r 9 (ru'™)
272,01 9r 1 30 w'’ ar
' [} - oL - L+ w__ or
+ (vt r s + U s + r ds
+2u'v' 8—°‘+2 82U+ B—(B—U+U%>
YV 3 2 3n \3n ' 3s
9s
au 1 ah2 or
' - - <+ =
os h an s
2
14 e 30 1 2?r
- <8n U 83) [2 s T Bn]
2
ah 2
2 (2 -l
'zvh_z (an> 'Zvrz 3s
2 (2.8)
12
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da_ 1 %p L 9 13 =
v ds p 9n _r on (ev'™) - r 9s (ru'v
_%a 42,2 12 dr Tt (l. or 1 Qg)
¥s ( V') +w o + 2 u'v . S + U 3s
L 2 3 f(u My wo oy (o
dsdn ds hl 9s an h2 ds

h2 ds s an as hl 3s s
v 9 dr Jdr 4+ 2V U ahl th + 2 U or th (2.9)
r2 ds 9dn hlh2 dn  3s h,r dn Os o

In the above equations, U is the total time averaged velocity and its direction
coincides with the direction of the mean streamlines. The variable a is the angle
between the mean streamline and the direction of the x-axis, p is the mean pressure,
p is the constant density of the fluid, Vv is the molecular viscosity, and r is the
radial position from the x-axis. The velocities u', v', and w' are the turbulent
velocities measured in the s-direction, in the n-direction, and in the 6-direction,
respectively. A bar above the product of two turbulent velocities indicates that
the time average of the product is taken. These time averaged product terms are the
Reynolds stress terms, which are the stress on the mean flow due to the turbulent
motion. The continuity Equation (2.7) states that the mass contained between two
streamlines, which is r U h2 A£2 =r U An, is conserved. Equation (2.8) states that
the advection of U in the streamline direction is given by the sum of the pressure
gradient, the turbulent Reynolds stresses, and the molecular viscous forces in the

streamline direction. Equation (2.9) gives the balance of the centrifugal force

with the normal pressure gradient and the normal turbulent and molecular viscous

o forces.
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To solve Equations (2.8) and (2.9), additional equations are needed to describe
the Reynolds stress terms. These terms are related to the mean shear through an
eddy viscosity Vo In cartesian coordinates, the Reynolds stresses, - u!

assumed to be given by

where the subscript on the variables indicates the direction of the flow: (1) is
along the x-axis, (2) is along the y-axis, and (3) is along the z-axis. Transformed g

to the (s,n) coordinate system the Reynolds stresses in Equation (2.10) are given

The last two terms are zero in Equation (2.11) since they are related to the vari-

ation of the

1
{ uj, are
2 Bui du,
ug uj + 3 aijk vT ij + §;i> (2.10)

- u'v' T %%-+U %% \
2/3k - wr? = 2v, g_tsj
2/3% - v - ‘ZET 55 ©0 ( (2.11)
23 - w? = oy U 2L

-u'w' = - v'w' =0

/

mean flow in the B-direction.
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Combining Equations (2.8) and (2.9) with Equation (2.11), the momentum equations
are written

gy __ 1 3,1 3 [v ra_v] L1 2 [v Ua_a]
T 9n e r

2v
S 2] (L LW [2v @.___ezu_l]
r e U e ds

3s ds r 3s s r 9s
1 ar)? 3a [ou .. 90
- Zx)eU [F 3_8] - 2\)e -5—5- [E +U a—S] (2.12)
20 _ _ 1 93p 1 3 3
v ds p 9n M r 9n [Zve 9s (rU)]
19 au 3 u_ o ar
T s [“’ea“’ Ve 35 | T 2V 2 3 3s

(s34

18] 90 1l odr
" e [E*U'a_s] (; 3s

The variable Ve is the total effective viscosity, given by the sum of the molecular

+
(=il

U
-Eg) (2.13)

viscosity and the turbulent viscosity:

ve =v + v (2.14)

Once vT is specified, a complete system of equations 1s obtained for the variables

X, I, hl, h2, U, a, and p. The turbulent viscosity will be given by the k-e turbu-
lent model.
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THE k-£ TURBULENT MODEL

The k-€ turbulent model assumes that the interaction of the turbulence on the
mean flow can be described by an eddy viscosity that is a function of the turbulent
kinetic energy k and the rate of turbulent kinetic energy dissipation €. In car-

tesian coordinates, k and € are defined as

A [] ]
ul 2 + u2 2 + u3 2
k = 5 (2.15)
and

Bui du! aui du!

e=20 —+ =L —+—1 (2.16)
ox, 9x X, 9%
h| i i i

where the summation over the indices i and j from 1 to 3 is implied in Equation
(2.16). Since Vr is a function of k and €, it can be shown by dimensional analysis
that it is a function of the single variable kz/e. It is assumed further that the

function is linear and Vo is given by

v = P (2.17)

Equations must be supplied to describe the behavior of k and €. The k equation
is derived by considering the exact turbulent kinetic energy budget which is.given

by Tennekes and Lumley (1972)16 in cartesian coordinates as

du! du!
u, —é—-k S ul p' +1/2uf uf u' - yu!' A SR
j 9x Ix, o ] i i7j i |\ ox, 9x,
J J J 1
Bui du,
-ul u’ — 4+ 1| -¢ (2.18)
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where summation is implied over the indices. The left-hand side of (2.18) is the
advection of k by the mean flow. The first three terms on the right-hand side are
transport terms: the transport of k by the turbulent pressure gradient, by the
turbulent velocity fluctuations, and by the turbulent deformation field. The fourth
term on the right-hand side is the production of k and the fifth term is the rate

of dissipat}on of k. The transport terms are parameterized by assuming that the

three bracket terms in Equation (2.18) are proportional to the gradient of k:

1 aui 3u1 \)T ak
- — - ' —— B —— ———
5 uj p' +1/2 ui ui u5 N ( axj + 5;% 5 xj | (2.19)

-k B AN &

where Oy is a constant. The Reynolds stress terms -u} u; in Equation (2.18) are

i3
given by Equation (2,.10). Combining these relations, the k equation is given by
\Y du du du ]
U " 3 [c—T | * "T[axi * ] P (2.20) .5
3 ] L 3 1 3 i

The € equation is derived by forcing it to take the same form as the k equation
(see Launder and Spalding, 1974)11. It is given by

CHPE S a WY W

Y du du du
o g L | R =2 = L AREE
3 3 € 3 3 i b

where Cl’ C2, and o are additional constants that must be specified. The constants
Cu, Cl’ C2, ok, and ce used to give the best results for boundary layer and wake
flows are given by Hanjalic and Launder (1980)14:

\

WA Kt MRS & & s & E_R

C = 0.09
C, = 1.44

C, =19 \ (2.22)

[P DV R S S |

o, = 1.0

0-, = 1030
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In the (s,n) coordinate system, the k and € equations are expressed as

=
La ]
5|

vV
T ak
[O'_ hl T x] + P -¢ (2.23)

=

and

pde 13 ¥ 2e] , 1 3 [Yr . e
Ks h,r 09s o] 9s hr on | o 1 0
2 € e
2
£ €
+ Cl E P - C2 r (2.24)

where the production P of turbulent kinetic energy is given by
2 2
- ou oa au
P“’T[an“’as] +2"T[as]

v 2
T |3 2 , |8 or
+ 2 ;E- [EE'(rU)] + 2 " [r 5;] (2.25%)

In the viscous sublayer region, Equations (2.23) and (2.24) do not adequately
describe the variations of k and €. One approach to remedy this problem is to add
additional terms to Equations (2.23) and (2.24) to describe the behavior of k and €
near the body (Jones and Launder, 197212, l97313). This approach has not been used
often since the extra terms greatly increase the computational time needed to cal-

culate the flow field. Another approach has been-used to solve the flow equations

starting at a point above the viscous sublayer region, using the law of the wall to
Y obtain the lower boundary conditions for U, k, and € (Launder and Spalding, 1974).ll

¥
f: The distance above the wall is characterized by

o 18
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(Y‘yo) U,
e (2.26a)
and
u, = VTw/p (2.26b)
where y is a point above the body, Yo is the coordinate of the surface, and Tw is
*
the shear stress at Yo At a sufficiently large value of Yo given by y _, it is
assumed that the production of turbulent kinetic energy P is equal to the rate of
dissipation of turbulent kinetic energy €. With P = g, the velocity field U, the
*
turbulent kinetic energy k, and the rate of dissipation € are given at Yy =y, as
1 *
U=u, -E 2ny+ + 5.24 (2.28a)
2
k = u, /Jq (2.28b)
3
Y
(2.28¢c)

€= k(y-y,)

where K is the von Karman constant («x=0.40). The procedure is to determine k at

* *
N by solving Equation (2,23) in the region between y, =0 and ¥, = ¥, » assuming

that the diffusion of k is zero. The value of € in Equation (2.23) is set equal to

the average energy dissipation rate in the region Y. = 0 to Yy =Y,

*
by integrating
* *
Equation (2.28c). Once k is known at Yy 0 Ugo U, and € can be determined at Yy
from Equations (2.28a, b, c). These values of U, k, and € serve as the lower
boundary conditions for the flow equations.
An alternate procedure to the two methods discussed above is to specify the

*
viscosity in the region between Y, = 0 to Yy =Y by a mixing length, eddy vis-

+
cosity. This 1is the appréﬁch used ‘in the present study. A mixing length, eddy

19
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viscosity, denoted by Vo (whose form will be given later), is assumed in the
mi

*

region between the wall and Yy . Using this eddy viscosity, Tw can be calculated.
* *

The value of k at y, is determined using Equation (2.28b), while € at ' is given

by Equation (2.17) as

u _ *
Y at y, =y, (2.29)

With these boundary conditions, the k and € equations are solved in the region
* *

Yy 2 Yy o Using Equation (2.29) as the value of € at y, ensures that the eddy

viscosity calculated from the mixing length argument matches the eddy viscosity

calculated from the k-t£ equations. This procedure provides a continuous variation

of the eddy viscosity.

THE PARTIALLY PARABOLIC ASSUMPTIONS AND THE HANJALIC AND LAUNDER
CORRECTION TO THE k-& MODEL

The partially parabolic flow assumptions given in the Partially Parabolic Flow
Method Section will be applied to the momentum Equations (2.12) and (2.13), and the
k-€ Equations (2.23) and (2.24). The predominant direction in which the diffusion
terms are neglected is taken to be along the mean streamline direction. Neglecting
all s derivative terms in the diffusion termes of Equations (2.12) and (2.13), the

momentum equations are approximated by

3u 1 dp , 1 3 3U
v ds p 3s tr [ve T an ] (2.30)
and
23 _ 1 3p
U s -5 n (2.31)
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Patel et al, (1973)l7 have shown that the terms neglected in Equations (2.30) and

g — <
"o

(2.31) are small for axisymmetric flows. Using integral methods, Dyne (1978)18 has
solved Equations (2.30) and (2.31) and has obtained good agreement with experimental
data.

Equation (2.30) states that the momentum calculated along the streamline

direction is increased by the pressure force and removed by the normal Reynolds

AN

stresses. Equation (2.31) states that the centrifugal force is exactly balanced by
the normal variations of the pressure.

The partially parabolic flow assumptions are also applied to the k and ¢

» ;".‘.'. Ty Ty te e

S equations. Neglecting the turbulent diffusive terms in Equations (2.23) and (2.24)

f: in the s-direction, the k and € equations are approximated by :
g ; ,:
. ok 1 9 T ok

o U3s “hr on [c T | *P-¢ (2.32) ;
R 1 k

." \) 2 hE
P ee . 1 3 |T Je € £ '
: Y3 " Hr m [oe byt Bn] hx PGk (2.33) :

Using the partially parabolic flow assumptions Abdelmeguid et al. (1978)6 and
Muraoka (1978)7 have neglected all production terms containing derivatives in the

predominant direction. In the (s,n) coordinate system, with this approximation

, !
- 9U

) = = .34

- P Vr [an] (2.34)

X Hanjalic and Launder (1980)14, however, have recommended the retention of the -
- (3U/3s) terms to emphasize the role of irrotational deformations in promoting ;
. energy transfer. Keeping the 3U/ds terms in P and using Relations (2.11), P is

L approximated by

' £
3 sul? 277, v :
N = ov - 1é_ it oY .
N P VT [Bn] (u'“-v s (2.35) !
~ R
u -
3 N
. 21
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The difference in the Reynolds stresses appearing in Equation (2.35) is ex-

pressed in terms of the turbulent kinetic energy by (see Hanjalic and Launder,
4
1980)l :

(u'?v'?) = —;- K (2.36)

Equations (2.35) and (2.36) are used for the production term in Equation (2.32),
For the € Equation (2.33), Hanjalic and Launder (1980)14 recommend the form for the

production of €, Pe’ as

2 ——
e U 7 7. 3
P =C %V <8n) - Cy (') 5 (2.37)
where
C, = 4.44 (2.38)

Combining Equations (2.32), (2.33), (2.35), (2.36), and (2.37), the final k and ¢

equations become

Y 2
B 13 (Yo ook (39) " .1, 2
v ds hzr on (Uk hl r 3n> + Vg Bn) 3 k s € (2.39)
and :
v 2 2
e . 1 o (Vr, 2 ey () g e £
u ds hlr n <GE hl 3 > + Cl K VT 8n> C3 € 3s C2 k (2.40)
with the constants given in Equations (2.22) and (2.38).
1
1
]
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THE (x,y) COORDINATE SYSTEM

The 10 unknown flow variables are x, r, h., h , U, a, p, k, €, and Vv, or v

1 2 T T

in the viscous sublayer region. The equations describing their behavior are (2.?5),
(2.3d), (2.5a), (2.5b), (2.7), (2.30), (2.31), (2.39), (2.40), and (2.17). To inte-
grate these equations, the curvilinear coordinates Sl and €2 must be specified.

The coordinate El should be chosen so that it is the arc-length of some known stream-
line. The choice for 52 can be obtained from the continuity Equation (2.7). This

equation implies that rUh, is a function of only Ez, which is written

2

rUh, = 2&- (2.41)

The function Yy is the streamfunction and £, should be set equal to y (Patankar and
2

Spalding, 1967).19 Setting 52 = y and solving Equation (2.41) for h2 gives the
relation
1 ,
h2 =0 (2.42)

For numerical calculations, it is advantageous to make one final coordinate
transformation of the equations in order to replace El by the x-axis. The trans-
formation of the equations to the (x,y) coordinate system can be obtained by con-
sidering the variation of a function f whose variables are x and y. The differential

of f is given by
ag = (3£) ax + (a_qJ) dy (2.43)

Using Equations (2.2), (2.3), (2.42), and (2.43) the derivatives of f with respect

to s and n are given by:

§§ = cos O (%&) (2.44)
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and

%f? =U (ﬁ) - sina (%‘f;) (2.45)

<

the Equations (for the radial position) (2.3b) and (2.3d), using Equations (2.44)
and (2.45), become

ar
3 - tan o (2.46a)

and

or _ 1
9y rU cos o (2.46b)

Since Y is a coordinate, the conservation of mass is automatically satisfied. 1In
place of a conservation of mass equation, a kinematic relation can be obtained for
the (x,y) coordinate system by differentiating Equation (2.46a) by v and differenti-
ating Equation (2.46b) by x and subtracting the two resulting equations. The result
is

3 1 _ 3
3x (rU cos oc) = 3y (tan @) (2.46c)

which expresses that the radial position of the streamline calculated in the x-
direction from Equation (2.46a) matches the radial position of the streamline calcu-
lated in the normal direction from Equation (2.46b). The equations for U, &, k, and
€ are obtained as above by applying Equations (2.44) and (2.45) to Equations (2.30),
(2.31), (2.39), and (2.40). These are given by
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o~ U cos ag—g

o
+u o [rZ v, U 3_U] (2.46d)

y x

A/

“"- v;‘n' X
} Y
_ AR A N Rk

R -
al

S A N

2 s 3_[r] - a[p}= _23
U™ cos o % sin a % [] rU []_ - (2.46e)

g

s
a O. .
s a'.s "l a

‘o rv
Ucosag—: sinaa__[ e Bk]_sina_E)__ eUB_}g

3
}
[
lo;
|
0]
5
o
-3}
=
+
[en]
|<v
[
[ens
=

. . 2
au U au _
. + \)T {r U —3\P - sin o —Bx] ~ 1/3 k cos a T € (2.46f)

Y . [ ,
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e rv r’v
o U cos o 3= sina 3 |_e sin 0 = _sino 3 eUB_e_
> 3 T dx | o 9 r | 9x o Ay
;. € €
& rv r2v
. -u I sin 0t-§-E + U S Su de ,
i Yy | o 9x oy o 3y
2t € € “d
. c 2 .
: + Cl E \)T [ U a—w sin o B—J
2
2 3y £
5 -1/3 C3 € cos O »— - C2 X (2.46g)
fc~
;i In Equations (2.46f) and (2.46g) the variations of hl in the n-direction have been

neglected since they are given by (30/3s) in Equation (2.7), and this term is taken

to be small compared to the normal variations of k and €. Outside the viscous sub-

-t
P

Y
.

*
layer (y+>y+ ) Vp is given by

5

k2
; \)T =Y C]J 'S (2.46h)
” where Y is an intermittency factor used to reduce the turbulent eddy viscosity out-

side the boundary layer region. The factor is given by

- r-r N
Y 1 for —=— < 0.1 g
< = 4 L

Y . rfro (2.461) i
.j‘ r_ro 3 for 3 > 0.1 .
J 1+ 5.5 3 )
h N
c. N
% where r is the radial position of the body (10 = 0 in the wake) and § is the ]

*
boundary layer thickness. In the viscous sublayer region (y+§y+ ) the mixing length

20

eddy viscosity is the one used by Wang and Huang (1979) in the viscous sublayer

region as follows:
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= g2 (T U U ,
vaz =% (r )[ru 5y - sin @ 8xj| (2.463)

where

u r
2 = «r_2fn (§_0> {l—exp l:—ro %n <5—6—*—v—r—0>]} (2.46Kk)

Once the boundary conditions are specified, the system of equations listed
under Equation (2.46) are solved for r, u, o, p, k, €, and Vp-
THE ROUNDARY CONDITIONS

The solution to the equations listed under (2.46) is calculated in a domain in
(x,y) space. This domain begins at Xps which is an x-station on the body where the
boundary layer is thin, and ends at an x-station in the wake, xe,’such that xe/L =
4.0, where L is the length of the body. At x, all flow variables must be given so

b
that the boundary conditions at x = x, are

} at x = x (z.47a)

27




At Xg the pressure is the only variable that is specified so that

P =P, at x = X, (2.47b)

The lower Y boundary is the streamline that lies along the body's surface and along
r = 0 in the wake. This streamline is set as Yy = 0. The boundary conditions on

the body (y=0) are

LN

U=0 L ¥y = 0 and

a = o x/L < 1.0 (2.47¢)
3p - 3p _ 32] -
el [r U W sin o Tx O)

where r, is the radial position of the body's surface and o is the angle of the
surface with respect to the x-axis. The pressure boundary condition in Equation
(2.47¢) is obtained by setting U = 0 in Equation (2.46e). The boundary conditions
for k and € are not given at Y = 0. These boundary conditions are given outside
the viscous sublayer region by Equations (2,27) and (2.29) on a streamline such

*

*
Between Y = 0 and ¥, =y, the eddy viscosity is given by (2.46j).

+ +
In the wake the boundary conditions on Y = 0 are

that Yy, =9

r =20 W
U _
vy 0
a =0 Y = 0 and
3p _ . r <L > 1 (2.474d)
ay
ok _
i 0
3E _
Eyi 0

which express the axisymmetric symmetry of the flow. For the outer boundary con-

ditions, a streamline is selected such that it lies entirely outside the turbulent
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boundary layer and turbulent wake region of the flow. This streamline is denoted

by wT and the boundary conditions on this term are

)

Pn-P
U=U 1 - _1;32_
PU, /2
Lw = Yy (2.47e)
P = Pp
k=e=20

where Uo is the far upstream constant velocity and P, is the far upstream constant
pressure.
pd

b
of the thin boundary layer equation obtained from the Wang/Huang (1979)20 boundary

The boundary conditions at x = will be given from the numerical solution

layer program. The pressure boundary conditions at Xy Xgo and Vo will be specified

by a potential flow calculation (Hess and Smith, 1966)21 about the equivalent dis-
placement body. The boundary conditions specified by Equation (2.47) are exactly
those needed for partially parabolic flows, namely pressure given over the entire
flow domain and U, k, and € given on the beginning station and on the outer and
bottom boundaries.
3. NUMERICAL PROCEDURE

THE (x,y) GRID

Initially, the solution to the boundary layer equations for the axisymmetric
body is obtained from the Wang/Huang (1979)20 boundary layer program. This program
uses constant pressure profiles, given from a displacement body potential flow

calculation, and a mixing length eddy viscosity. This viscosity is given by

(3.1)

*
= f(ro,d) 0.0168 Ue § , for vTi_i

29




where VT is the inner viscosity and vT is the outer viscosity. The inner viscosity
i o

is given by Equation (2.46j). In the outer viscosity formula, Ue is the potential

*
flow velocity on the displacement body, § 1is the calculated displacement body thick-
ness, § is the boundary layer thickness, and f(ro,d) is a multiplicative factor used

by the program to reduce the outer viscosity in the thick boundary layer region,

given by

1 for § <« O.Zro
(3.2)
f(ro,d) - (r0+6)2 I
2° for § > 0.2r_
3.33 §

The flow field obtained from the Wang/Huang (1979)20 program is examined and a
x-station, Xy is selected where the boundary layer is thin (f(ro,6)=l). The veloc-
ity profiles obtained from the calculation serve as the boundary conditions in
Equation (2.47a). The dissipation at Xy is obtained by assuming P = € and k is
obtained by assuming Vv

Equation (2.46h).

is given by Equation (3.1) at x, and solving for k from

T b

The output at Xy is given at J-1 radial stations. The corresponding stream-
lines for this flow data are calculated by integrating the definition of ¥ in (x,r)

coordinates:

§£-= rU cos a
ar
(3.3)
EE-= - rU sin o
9X

setting the streamline on the surface of the body as ¥ = 0. These streamlines are
denoted as (wl, Wos evs wJ), where v, = 0. 1In addition to the output at Xy the
velocity field at x/L = 1.0 is examined. Using Equation (3.3), the corresponding
streamlines are calculated at x/L = 1.0. An outer streamline number, Vs is

obtained by multiplying 1.5 times the maximum of the streamline numbers obtained

30
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at Xy and x/L = 1.0. The flow calculated on y = wT, therefore, should be entirely

Y O

. ""

above the turbulent region. The data at Xy is extended from wj to wT by adding 6
more streamline numbers, assuming that r, U, o, and p are given by the displacement
body, potential flow solution. The streamlines (wl, wz, ooy WK), where K corre-

sponds to the outer streamline number, serve as the Yy grid stations. It is empha-

sized that these are streamline numbers and the positions of these numbers must be
calculated from Equation (2.46a) or (2.46b).

The x-stations are selected beginning at x, and ending at X such that there

b
are many x-stations in the stern and near-wake region. 1In this way, a full resolu-

tion of the thick boundary layer and wake region is obtained.

Most of the variables are not evaluated at the grid points, but they were -

v e

LR REY Al W

placed at staggered positions to give a better representation for the numerical N

M & o4

calculations. If a typical grid point is denoted as (xl, wj), then the flow vari- i

i+1/2 i+l/2 a i i+1/2 i+l/2 - i+1/2 and v i+1/2
3 » U3+1/2 0 %5 0 Pyar/2 0 Sye1/2 0 Sjer/2 0 Ti+1/2°

The i+l1/2 superscript indicates that the variable is evaluated at (xi+xi+l/2)/2 and
the j+1/2 subscript indicates that the position is at (wj+wj+l)/2. In addi%ion, all -]
the variables are given on wl = (0 and wK. As an example, the U field at (x1+x

i+1/2 i+1/2 i+l/2 i+l/2 U i+1/2

i+1 '
2 i
- is given by (Ul . U3/2 , US/Z y eees UK-l/Z > Uy . !
is illustrated in Figure 2. ",

ables are given as r U

e R -
LI VAR VR W W S

D
Iy

The grid geometry

Ry

d THE FINITE VOLUME NUMERICAL TECHNIQUE

S
o7

The solution to the equations under (2.46) is obtained by marching the equations

[ - .'0. .I.

downstream in x. Given the flow conditions at Xy = xb; r, U, k, €, and vT are

5/2 and for o is solved for at Xye With these solutions, r, U, k,

are obtained at x7/2 and o at Xy and so on to the final station, Xy The

solved for at x

€, and vT

solution method for the downstream values of U, a, k, and € is the finite volume

i+l
numerical technique (Patankar and Spalding, 1979).9 The values of U at x' /2 are

- +1
calculated dividing the flow domain from xi 1/2 to xi /2

[

- YOAORERC ML)

into K-1 areas, AAj, and
integrating Equation (2.46d) in each AAj. The control areas AAj are defined as
(see Figure 2)

x31-1/2 < ix1+1/:z

A, = (3.4)

A

by SV Sy
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The details of the integration procedure are given in Appendix A. The result, at

i+1/2
each x-station, x / » is a tridiagonal system of equations for U.i;}éz (see Equa-

]
tion (A.6)) which is solved by the double sweep method presented in Appendix B. The
solutions for k and £ are arrived at by the same method except that the lower control
*
areas begin at the first streamline where Yy >y, - For smaller values of Yo

Ve = Vp given by Equation (2.46j). The value of u, is calculated from the defini-

mi
tion of Tw’ as follows:
2 _ ' U U
u, = p— = [\)T (rU 30 sin o 3—);>] (3.5)
py=20
To solve for the downstream values of o at xi, the flow domain from xi_l to xi
is divided into K areas AA.:;i (see Figure 2);
. xi—l < x < xi
AAi1= -7
0<vy 5_(wl+w2)/2
xl—l < x f.xl
i
AA'T = for j = 2, ... K-1 (3.6)
-1+ .+ U,
iT ) eyt R
|~ 2 LT3
il < x < xt
art o=
K j (W, +¥.)
K-1 'K < <
{—-——2 SV W

and Equation (2.46e) is integrated in each AA!i. The downstream values of r are
1
obtained by integrating Equation (2.46b) along x = xi+ /2. The details of the k,

€, o, and r equation integrations are also given in Appendix A.
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.. PRESSURE FIELD CALCULATIONS

The downstream solutions U 1+1/2 and o 1 depend on the pressure field.
j+1/2 3 20

Initially, the pressure profiles are given from the Wang/Huang (1979)°" boundary

.'.

- layer program. However, the downstream values of U and o do not satisfy the kine-

. ¢ .
D e
]

matic streamline relation in Equation (2.46c). Therefore, corrections are added to

the U, a, and p values in such a manner that Equation (2.46¢c) is satisfied. These

:g corrections are added to the downstream values of U and o and the upstream values of
[ p as follows:
b
»} i ‘
* i+1/2 _ o it+l/2 y 1+1/2

e Y4172 T Usrz2 Va2
¥
oy *
o o, 1. a.i + a'i ? (3.7)
N J 3 b
o~ * §-1/2 i-1/2 , 1-1/2
i Pis1/2 Pi+1/2 ¥ Py1/2
e where the primed fields are the corrections and the starred fields are the new
-, corrected values.
if It is the upstream values of pressure that are corrected which is consistent
:ﬁ with the partialiy parabolic flow assumption that p communicates downstream inform-
y ation to the upstream. Using the finite volume numerical technique to solve
- Equation (2.46¢c), with the control areas given by Equation (3.4) and with the cor-
"
¥ rected starred fields of Equation (3.7), the integration of Equation (2.46) in the
sf AA. becomes
" J
o - * *
S 23712y (can (oF Y-tan {af 1)
1 ] i-1
” 1+1/2,  1+1/2 * 141/2 x4 %

= (y.- .8
N (s wj_l)/ [(rj Ty /2] Us_1/p  cos [(aj +aj_1)/2] L (3.8)
- i-1/2,  i-1/2 i-1/2 i-1,  i-1
.. - - O, 2
s (v, wj_l)/ [r, 0 )/2] Uj_1y2 cos [(o, j-1 )/2)
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D The starred variables in Equation (3.8) are expanded in terms of Equation (3.7) and
{ 3
’ to first-order quantities in Equation (3.8) are given by:

o * 3 .
S tan [a; ] = tan [o 1] + q] i/cosz[ajl]
.‘\ j
- ki K4 i, i L
cos [(ocj o) )/2] = cos [(ocj +0LJ._1)/2] (3.9
. 2
. * i+1/2 i+1/2 i+1/2 i+1/2
. i/U = - '
e ) P I LT Y I LNV PRACI
‘-:z:: Finally, U! 1+1/2 and o' i are related to p! i-1/2 and p! 1-1/2 by expanding the
o > Y3-1/2 j j-1/2 j-1/2
‘::f solution equations for U.i+1/2 (A.6) and for a.i (A.10) in power serves for U! 1+1/2,
i , i , i-1/2 j-1/2 J j-1/2
e aj , and pj-1/2 :

 i+1/2 _ U , i-1/2,,U U i

j-1/2 Fio1/2 Py-1/2  /B4-1/72%B5-1/2%C5-1/2)

(3.10)

o~ i o, i-1/2 . o, i-1/2
o! = B, p. +
= j i Pj+1/2 ¢ Pj-1/2
oY Inserting Equations (3.9) and (3.10) into (3.8), a tridiagonal system of equations
b are obtained for the correction to the pressure field at xi-l/z:
o P , i-1/2 P , i-1/2 | P , i-1/2 _ P
Aj-1/2 P3-3/2 T Bii2 Pirz %oz Pivyz T Pyeus2 (3.11)
".-\'
N The boundary conditions for Equation (3.11) are that :
o W
5 > (3.12)
y q:\: ' '
s gp-:rUgP——sinOL—P— =90
) 3y on Bw 9
2 ¥=0 y=0
2o
i,
oo 34
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Solving Equation (3.11) for p' and using Equation (3.10), the corrected values
for U, o, and p are obtained.

NUMERICAL MARCHING PROCEDURE

The equations under (2.46) are solved by marching downstream in x. Given the

upstream conditions at xi-1 and xi-l/Z, the downstream flow is calculated at xi and
x1+l/2. Once these flow conditions are obtained the flow is calculated at xi+l and
xi+3/2, and so on until xH‘l/‘2 =X, The numerical marching procedure is outlined
below:

1. Given the upstream values of the flow at xi-l and xi_llz, Ui‘H'/2 is

obtained by solving Equation (A.6) and ui is obtained by solving
Equation (A.10).

2. The upstream values of p, pi-l/Z’ are corrected by solving Equation
(3.11). Using the new pressure field, the corrected downstream values
of U and o are calculated from Equation (3.10).

ri+l/2

3. The downstream values of r, , are calculated from Equation (A.1ll).

4, The value of u, is obtained from Equation (3.5), Vv is calculated

T
using Equation (2.46j), k and € are obtained by sol?ing Equation (A.16)
with the boundary condition Equations (2.27) and (2.29), and Vo is
given by Equation (2.46h). '

5. Steps 1 through 4 are repeated until the flow fields converge.

, i+1
6. Steps 1 through 5 are repeated at the next downstream stations, x*

and xi+3/2, until the final x-station is reached.
7. Beginning at X, steps 1 through 6 are repeated until all variables
converge,
8. A new displacement body is calculated and steps 1 through 7 are
repeated until final convergence of the flow field.
The maximum number of iterations at a station (Step 5) is set as 5. The new
displacement body (Step 8) is calculated by matching the mass flow of the turbulent

flow from r tor, (the radial position of wK) to the mass flow calculated from the

*
pressure field's potential flow from § to Ty as follows:
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j +8 p Uo»/l-cp r cos O dr = .[ pUr cos o dr (3.13)
o T
where
(P-po)
c = 2 (3.14)
P 2
DUO

With a new displacement body, new boundary conditions for p are established by
recalculating the potential flow about the displacement body. The new pressure

field is given as:

i+l/2 - 1i+1/2

- i+1/2 — i+1/2
Piv172 = Pyy1/2

+ (py Py

) (3.15)

where p is the pressure field from the previous iteration (old displacement body).

In correcting the upstream pressure field (Step 2) an under-relaxation factor

has been used to quicken the convergence. If pjii}éz is the uncorrected pressure
field and 5311}22 is the corrected pressure field obtained by solving Equation

(3.11), then tte new pressure field pjil}éz is given by

i-1/2 — i-1/2
= 1-1/2 _ Pya1/z Py
Pit1/2 2

)

(3.16)

With Equation (3.16), it requires about 20 total sweeps to obtain a solution that

converges to 1% accuracy.

NUMERICAL DIFFICULTIES
Calculations were performed on a Burroughs B7000:168. The number of iterations

needed to achieve a convergent solution depended on the complexity of the body

geometry. For Afterbody 5 (see the Numerical Results Section), with 37 x-stations
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and 34 streamline numbers, 23 iterations were required with 13 minutes of processor
time. For Model A, however, only 9 iterations were needed with 6 minutes of pro-
cessor time, using the same number of x and Yy stations. The region of the flow field
where the slowest convergence occurred was the region near the body where the angle
of the surface with respect to y is at its maximum. In this region, the flow
rapidly diverges away from the body. As will be seen in the Numerical Results
Section, the flow about Afterbody 5 is near separation while the flow about Model A
is not. The maximum angle the program could handle was 40° in the stern region.
Above this value, small regions of reverse flow were seen to develop, as indicated
by the values of the streamline angle o turning negative. After this occurred, no
convergent solution was obtained. If geparation occurs, it is no longer advanta-
geous to integrate along the streamlines since in the separated region the values
of the streamlines become negative (assuming that the body lies along the y=0
streamline). In this case, downstream values of the flow are needed to obtain an
accurate numerical solution, and the streamwise turbulent diffusion cannot be

neglected in comparison with the normal turbulent diffusion terms.

4, NUMERICAL RESULTS

Using the numerical procedure developed in Section 3, calculations were per-
formed for four bodies for which experimental data were available. These are
designated as Afterbody 1 (Huang et al., 1979),22 Afterbody 5 (Huang et al.,
1980),23 Model A, and Model B (Lyon, 193224 and 193425). Table 1 lists the following
geometric and flow parameters for each body: the length of the body L, the max-
imum radius of the body LI the upstream flow velocity Uo’ and the upstream
Reynolds number Re. The aft body geometries, together with four streamline
positions, the displacement body, 6* and the boundary layer thickness, §, are
presented in Figures 3 through 6. In these figures, the streamline numbers are
normalized with respect to LUO2 and they correspond to (outer) streamline grid
numbers 10, 22, 30, and 34. The aft body geometries for Afterbody 1 (Figure 3) and
Afterbody 5 (Figure 4) are characterized by parallel middle bodies with inflected
sterns. The aft body geometries for Model A (Figure 5) and Model B (Figure 6) have

constantly decreasing radii, with the curvature of the surface remaining convex.

37
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TABLE 1 - FLOW AND BODY GEOMETRY PARAMETERS

N L

':j Tmax Ueo Re

oy (m) {m) (n/s)

. Afterbody 1 | 3.066 | 0.1398 | 30.48 | 6.60 x 10°

. Afterbody 5 | 2.910 | 0.1397 | 45.72 | 9.30 x 10° ‘
. -
2 Model A 1.778 | 0.1778 | 17.88 | 2.09 x 10°

Model B 1.778 | 0.1778 | 17.88 | 2.05 x 10° .

The numerical results display a thickening of the turbulent region in the stern/wake

regions of the flows. The displacement bodies diverge significantly from the

physical bodies near the stern and continue into the wake with slowly decreasing

2 radii. 1In Figures 3 and 4, the computed displacement body and boundary layer

: *
:} thickness are compared to the values of § and § obtained from the data of Huang

) * 1
& et al., (1979),22 (1980)23. For both bodies, the computed § and § lie slightly )

below the experimental results in the stern/wake region, but overall the agreement
with the experiments is good.

Figures 7 through 28 present a detailed comparison of the computed flow field
to experimental results. In all of these figures y+* wag set equal to 50. The
distributions of the frictional velocity u, and the wall-pressure coefficient cp are
shown in Figures 7 through 10 for the four bodies. The computed pressure distri-
bution for Afterbody 1 (Figure 7) has a large trough at the inflected stern. At

o
L
L
L
u
!
L
§
L
L
L
1

this region of the body, the surface and the streamlines near the surface have a
f marked change in curvature. As the streamlines change curvature from convex to
o concave, the pressure gradient changes from adverse to favorable. Following the
concave part of the stern, the streamline curvature becomes convex again, with a
corresponding rise in the pressure on the wall. The computed wall shear stress,
given by pu*z, drops rapidly in the adverse pressure gradient region of the flow.
Accompanying the sharp drop in the wall pressure, the wall shear stress rises
j steeply. With the final change of curvature of the streamlines at the tail, u, drops

dramatically to zero. The computed pressure distribution agrees well with the
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experimental data, having a maximum percentage difference of 1% of the total head

2 .
on /2. However, the computed u, distribution reaches a smaller value than the |
experimental data, being 25% under the experimental result at x/L = 0.97. (For the

pressure field, the percent difference between the computed pressure field, Peo

mp’
and the experimental pressure field, pexp’ will be given by 100 X |pexp - pcompll

2
on . For the velocity field the percentage difference between the computed
velocity, Ucomp’ and the experimental velocity, Uext’ will be given by 100 x erxp -
Ucomplluo' For all other variables, the percentage difference will be the local
d
ifference between the computed (¢comp) and the experimental (¢exp) given by

100 % 9, 0 = O onol /180,01

The computed u, and cP distributions for Afterbody 5 (Figure 8) display the

comp

LA A S SN S Wi MM N 4 AEmmaAza_ s s -

same type of behavior as exhibited for Afterbody 1. For Afterbody 5, the agreement
with the experimental data is good for both the wall frictional velocity and the

wall pressure coefficient. As is evident by the steep drop in u, in the adverse

i

pressure gradient region of the flow, the flow about this body is very near to
separation at x/L = 0.93.

The computed u, and wall cp for flow past Model A are given in Figure 9. As
opposed to Afterbodies 1 and 5, the stern of Model A is not inflected. Therefore,
over the aft region of the body, the pressure gradient remains adverse up to the
tail of the body and u, steadily decreases to zero. The computed wall-pressure
distribution lies slightly above the experimental results, with a maximum difference
between the computed and experimental pressure distributions of less than 37 at
x/L = 0.95.

The shape of Model B is characterized by a sharply sloping stern region. The
values of the surface angles near 90° at the stern caused some numerical difficulty
for the computer code. To obtain the computed flow field, only a few x-stations
were placed near the tail of the body. Despite the limited number of points, good
agreement of the computed wall pressure with the experimental data is obtained,
with a maximum difference of less than 4% occurring at x/L = 0.95 (Figure 10). The
sharp decrease in u, indicates that the flow is nearing separation as the body

sharply turns downward at the tail.
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Figures 11 through 16 present detailed comparisons of the computed velocity
fields to the experimental results for the four bodies. In Figure 11, the computed
velocity profiles show remarkable agreement with the experimental data for Afterbody
1 up to the tail of the body. The computed velocities near the tail and in the
wake are also in good agreement with the experimental results (Figure 12). The
largest discrepancy occurs immediately behind the body (x/L=1.0076), where the
computed axial velocity is 87 less than the experimental value at r = 0. The cause
of this large difference is not known. Farther into the wake, the agreement with
the experiment is very good, as is evident by the profiles at x/L = 1.1820.

Computed and experimental velocity profiles for Afterbody 5 are presented in
Figures 13 and 14. Since no measurements were made past the body, comparisons
cannot be made for the wake velocity profiles. For x-stations on the body, the
overall agreement with the experimental data is good. At x/L = 0.8727 (Figure 13),
the computed radial velocity is 5% under the experimental results, and the computed
axial velocity is 3% under the experimental data. Near the tail, at x/L = 0,9512
and x/L = 0.9874, (Figure 14), the computed axial velocities are slightly greater
than the experimental profiles (2%).

Figures 15 and 16 present the total velocity profile results at several x-
stations for the flows past Models A and B. The consistency of the computed velocity
fields with the experimental velocities is very good with a maximum difference of
less than 2%.

Extensive measurements of the pressure field were made for the flows past
Afterbody 1 (Huang et al., 1979)22 and Afterbody 5 (Huang et al., 1980).23 Compar-
isons of the computed to the experimental pressure fields for the two bodies are
given in Figures 17 through 20. The computed pressure profiles and the experimental
pressure fields for Afterbody 1 (Figures 17 and 18) are within 1.5%; for Afterbody 5
(Figures 19 and 20) the results differ by 2%. At all the x-stations plotted, the -

computed pressure profiles agree very well with the experimental results above the

boundary-layer region. This indicates that the displacement body concept has
correctly determined the influence of the turbulent flow on the external inviscid
flow.
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The results of the turbulent kinetic energy calculations for Afterbody 1 and
Afterbody 5, together with experimental results, are given at several x-siations
in Figures 21 through 24. For x-stations on the bodies, the agreement of the
computed k with the experimental data is good. These results are encouraging and
indicate the use of the inner mixing length with the k~€£ model gives a good
approximation to the turbulent field. 1In the wake, the value of k on the centerline
is its average from r = 0 to r = 0.28. The agreement in the wake for Afterbody 1
(Figure 22) is poor, with the computed k field 25% under the experimental value at
x/L = 1.1820. Because of this large difference, further testing of the boundary
conditions of the k-€ equations is needed in the wake.

The normal Reynolds stress profiles, - GT;T, are presented at several x-stations
for Afterbody 1 and Afterbody 5 in Figures 25 through 28. The agreement of the
computed results to the experimental data is fair in the thinner boundary layer
regions and becomes poorer in the thick boundary layer/wake region of the flow.

For x-stations lying on the body, the computed normal Reynolds stresses are smaller
than the experimental profiles, while in the wake the computed values are greater
than the experimental values.

Figures 29 through 36 present a comparison of the partially parabolic, k-t
calculations to the Wang/Huang20 mixing length, boundary layer calculations for the
f{§ four bodies. Experimental data are also plotted in the figures. For Afterbody 1
(Figure 29), the u, and c_ distributions are in general agreement up to x/L = 0.95.
The Wang/Huangzo calculatgons do not predict as steep a drop in u, at the concave
part of the body as do the k-¢£ calculations. In addition, there is no trough at
the stern in the Wang/Huang20 pressure distribution. The velocity profiles computed
for Afterbody 1 (Figure 30) from the two programs are consistent with the partially
parabolic calculation agreeing slightly better with the experimental profiles at
x/L = 0.9460. For Afterbody 5, the partially parabolic, k-¢ calculations correctly
predict the steep drop in u, and the pressure trough near the stern (Figure 31).

The velocity profile comparisons for Afterbody 5 (Figure 32) demonstrate again the
agreement of the two computer codes (within 2%), with the Wang/Huangzo axial velocity

profile agreeing slightly better with the experimental results at x/L = 0.9874.
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The calculations for u, and Cp for Model A (Figure 33) demonstrate that the calcu-

lations agree up to the tail of the body. At the tail, the partially pafabolic u,
distribution drops rapidly to zero as opposed to the Wang/Huang20 boundary layer
code which shows a slight upturn. Both pressure distributions turn downward at the
tail, with the partially parabolic pressure distribution reaching a slightly higher
maximum. The computed velocity profiles for Model A (Figure 34) are again consis-
tent. The comparisons of u,, cp, and velocity for Model B (Figures 35 and 36) show
the same behavior as demonstrated for Model A.

In Figures 3 through 36, y+* was set equal to 50. To test the influence of

*
y, on the computed flow field, calculations were performed for Afterbody 5 with

Y, equal to 100, 300, and SOO; The results of these calculations are given in
Figures 37 through 48. The vy : 100 computation (Figures 37 through 40) shows
little change compared to the Yy = 50 calculation. Near the stern, there is a
slight increase in u, (Figure 37). The velocity profiles (Figure 38) and the pres-
sure profiles (Figure 39) have not moved noticeably, except for the decrease in
pressure at x/L = 0.9874. However, the turbulent kinetic energy profiles (Figure 40)
have marked dips near the body at x-stations near the stern.

The u, distribution, calculated for y+* = 300, has further increased near the
stern (Figure 41). 1In addition, the pressure at the wall near the stern has in-
creased, The velocity profiles (Figure 42) have slightly decreased from the pre-
vious case of y+* = 100. This decrease in velocity is due to the increase of
pressure near the stern, as evident in Figure 43. The turbulent kinetic energy at
the stern (Figure 44) begins to show erratic behavior as the matching point of the
k-¢£ equations and the mixing length is extended farther above the body.

As y+* is further increased to 500, the computed u, distribution lies above
the experimental results (Figure 45). Both the velocity profiles (Figure 46) and
the pressure profiles (Figure 47) show marked movement away from the experimental
values near the stern. The erratic behavior k experienced for the case of y+* = 300

*
is even more pronounced for = 500 (Figure 48). Since the object of the study

y

+
*

was not to determine what the optimal value of Y4 is, no definitive statement can

*
be made concerning the best value of y, to use. However, because of the oscilla-
*
tory behavior of the turbulent fields as N is increased, it is felt that the

* *
lower values of y, are preferable over the higher values of Yy o
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Finally, calculations were performed for flow past Afterbody 5 at Reynolds
numbers of 1 X 108 and 1 X 109. At these two high Reynolds numbers, the value of
Y, requireg to obtain a convergent*solution had to be increased above 50. For
Re = 1 x 10" the lowest value of Yy for which a solution could be obtained was
100, and for Re = 1 X 109, the minimum y+* was 625. The calculations for these two
Reynolds numbers were performed with the same number of x-grid stations as the case
of Re = 9.3 x 106, and the number of y-stations were increased to 40. Comparisons

of the u_ and cp distributions, calculated from the partially parabolic, k-¢ program,

*
to the distributions calculated from the Wang/Huang20 boundary layer program are
given in Figure 49 for Re = 1 X 108. Near the stern, the k-€ calculations predict

a 36% smaller value of u, than the mixing length theory (Figure 49). The two pres-
sure distributions agree well up to the concave region of the body, where the
partially parabolic pressure distribution has a trough. The velocity profile com-
parisons (Figure 50) for Re = 1 X 108 agree within 3%. The corresponding compari-
sons for the case of Re = 1 X 109 are given in Figures 51 and 52. The partially
parabolic, k-€ code again predicts a smaller u, and a pressure trough near the

stern (Figure 51). The velocity fields are again in agreement (Figure 52), with the
mixing-~length profile being 5% smaller near the stern (Figure 52). The values of

v, used for the higher Reynolds numbers repr:sent the minimum values attainable for
this particular code. The proper value of y, as a function of Reynolds number
still remains to be found. The partially parabolic, k-£-distributions at the high-
er Reynolds numbers (Figures 49 and 51) éontain some roughness. At these higher
Reynolds numbers, more x- and y-stations are needed to smooth these plots. However,
the number of grid points were matched to the Wang/Huang20 boundary layer program

to give a true comparison of the two computer codes.

5. CONCLUDING REMARKS
Overall, the agreement between the measured and calculated results is encour-
aging. For most of the flow field, the velocity, pressure, and k profiles are
correctly predicted. The pressure and surface-shear-stress distributions also agree
well with the experimental data. The major drawback to the present scheme is that
the total number of iterations needed for the flow calculations to converge is

very large when a large angle at the stern is present.

43

t’ L . I=

MY 4 TV

| L PR RPN

Pataates P & %

-y -L" RN

LT TR Y
. ‘s ‘s 't °s

M e

. TRRRR

Ao a 4 a4, o




RRARA R A AR S S 4 s 4 o TRLIIEIN T R =

LOrTS T

dx

BN
‘}: dr dn

3 T~V & y+dy

dr

-
y ds

Figure 1 - The Geometry of the Natural Coordinate System
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Figure 2 - The (x,y) Staggered Grid Geometry
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Figure 3 - The Aft Body Geometry, Four Streamline Positions, the Displacement Body &%,
and the Boundary Layer Thickness § for Afterbody 1
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EX APPENDIX A
_, The equations listed under (2.46) are integrated using the finite volume
‘i
p: method. 1In this approach, the values of the downstream flow variables are obtained
$"{ by integrating the equations over small control volumes, as shown in Figure 2, that
<
¥ extend from the bottom to the top of the flow domain. For each control volume,
7% linear interpolations of the variables are used to evaluate the integral. By way
"" of examples: if g represents a field variable given at the staggered grid points
o 1+1/2 i+1/2
- (x . wj+l/2) and denoted by gj+l/2 (as U, p, k, €, \)T), and f is a variable
I given on the grid points (x', wj) and denoted by fj (as o), then, for a control
‘5 volume extending from xi"]'/2 to xiﬂ'/2 and from wj 1 to wj, three typical integrals,
23 -
?_-: fg, fog/dx, and g 3f/3y are evaluated as:
LY
B
v i+l/2 ( i i
A X v f,74f, )
-~ +1 i-1 j j=1
A J’ J’ ] fg dxdy = (xi /2—x /2) (‘P.-\Pj_l) >
-2 L1172 J
- ¥3-1
N 1+1/2,  1-1/2
o (g. +g. )
= j-1/2 °j-1/2
3 (A.1)
- L2 .
:J', 3 (£.4£, )
o 3g o (0 -1 i+l/2__ i-1/2 A2
, Ii-l/Z _[ £ 3% 4%y = (Wy=¥y ) ) (85 172 “85_172 ) (A:2)
. X j-1
"‘ and
A xi+l/2 " /
SO 3 i+1/2 _i-1/2 i+1/2, 1-1/2 i .1
J’ j 3og ¥ anay = M2V o e D el e
o L1172 .
LI j-1
T
N 97
[~
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For the U momentum Equation (2.46), the control volumes extend from xi-l/2 to
x:I'+1/2 and from wj-l to wj. Denoting this area by AA,, in Equation (3.4), the

integral of each item in this equation is written as

I. =I,+1I,+1I, +I.+1

1= I3+ I, + I+ I (A.4)

In the following integrations, the superscript (n) on the downstream variables will
denote that the variable is evaluated from the previous station and that superscript
(n+l) is the present iteration. For n = 0, we set the zeroth iterate equal to the
upstream value of the variable, except for p, where the value of the initial guess
or the pressure result from the previous total sweep. The factor (1—613/2), which
is equal to 1 except at i = 3/2, where it is zero, is multiplied by some of the
integral terms below to indicate that these integrals are zero at i = 3/2. This is
done since these integrals require the two previous upstream stations. The eval-

uation of the individual terms in Equation (A.4) is

_ U _ 1+1/2(n) ,,, 1-1/2
I1 = J];A U cos O = dxdy = (wj—wj_l) [(Uj-1/2 +Uj—l/2 )/2]
h|
i(n) i(n) i+1/2 (n+l) i-1/2 .
cos [Otj + aj-l )Y/21] (Uj—l/Z _Uj-1/2 ) (A.53)
12 = -J];A cos Q %E dxdy = —(wj-wj_l) cos [(aji(n)+aji{n))/2]
]

(py2172 “Pj-1/2

RS DA AL SR A R A SRR S AT

Bt anthnsiciafints




Lo} /..' . n‘,'."
PO

Ay

g

- sin & 3 au]
13 J];A T % [rve sin a ™ dxdy =

3

(a-et,) v,y 1)y 1)y 95

) sin [aj -1

j-1

i+l/2(n) i+1/2(n) +r 1-1/2 i~1/2

3 i 3 IR

(r

i+1/2(n)

v R e e

([, L2 T2y 10y
J

i+1/2(a+l) _; i-1/2 1+1/2_ 1-1/2

[ (U, 5-1/2 j -1/2 )/ (x )1
1-1/2 i- 1/2 i-1/2 -1,
—[(rj J )/2] v ef- _1/2 S sin [(oz,j 1 )/2]
[(Uji;}éz_ujfziéz)/(x1-1/2_x1-3/2)]} (A.5¢)
_ sin a 8 2 U _
14 = J‘J’ - V ) a—q—)—]dxdw =
-(1-63/2 ){sin[(aji(n) ji{n)/zll[ j1+1/2(n) j111/2 j1-1/2)/4”
i+1/2(n) i+1/2(n) i+1/2(n)., i+1/2(n)
{[(rj +rj_1 )/2] Vej-1/2 Uj-l/Z
[(UjiI}éz<n)_Uij}gz(n+1)/2] _ [(rji-l/Z Ji—l/Z)/Z]
i-1/2 i-1/2 [(U 1-1/2 i-1/2 /21} (A.5d)

Vej-1/2 Y5-1/2 341/2 Y5172 )
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- (1-8

i+1/2(n)
[(Vey41/2

i+1/2(n+l)

32" (W 172

[CUs4172

i+l/2(n) i- 1/2

sin (ajiin)) [ (U,

[« )}

PN NIE SN, L \‘J‘ y “r.; 3 _-.‘ '.;-._-'.;;._-.,.-‘._“..v T T

...............

) g_‘l) [r\) sin ag ]dxdw

i+1/2(n) . 1-1/2 +1/2(m),  1-1/2
+U 5-1/2 )/2]{[( +rj )/21]

1—1/2+ i+1/2(n)

1-1/2
ej+1/2" Vej-1/2

i(n))
ej-1/2

+v +v )Y/4] sin (a

3

i+1/2(n+l)
j-1/2

1-1/2 i—1/2 .

+U 34172 ~Y-1/2 /2]

-U

i+1/2(n)

i-1/2 i+l/2(n)+ i-1/2
ej-1/2

)/2] [v ej-1/2"ej-372  Hej-3/2

+v )/4]

-1

i+l/2(n)

+U i+1/2(n+1) . i-1/2_ 1-1/2
j-1/2

j-3/2 “Uio172 "Yym3y2 /20 (A.5e)

3 l 2 aU
— ——Id =
JI U 5o |E Y U 5 xdy

0A,

1+1/2(n)
§-1/2

i-1/2

i(n) i-1
-1/2 +r

2
g /2]

2[(u +U )/2]{[(r

i+1/2(n) i-1/2

[ b, 41/2(n), i-1/2
Vej+1/2 " Vej+1/2 Vej-1/2

+\)ej_1/2)/4]

i+1/2(n)

i-1/2
(U312

j+l/2

i+1/2(n) i-1/2

+U j-1/2  Y95.172

+U )14} -

Y51
i+l

1+1/2(n+l)
j+1/2

i+1/2(n+1)

‘Uj-l/z

[(u )/ (y )]

1(n) {+1/2(n), 1i-1/2, i+l/2(n)

I(j 1 J )/2] [( ej-1/2 +\)ej_l/2+\)ej_3/2

i-1/2

tves-3/2

)/4] (A.5f cont.)
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! i+1/2(n) i-1/2,. . 1i+1/2(n) i-1/2
o (U Zy72  HYyyy2 *Uylaya ¥y ) /4]
-
% /2(n+1) . 1+1/2(n+1)
T i-1/2(n n
x Oy Uy 372 )/(wj-wj_l)} (A.5f)
‘: In these integrals, upstream differencing is used for all derivatives in x, and 16
S
iﬁ is evaluated so that this term is implicit. In the integrals in Equation (A.5), the
. U(n+l) terms are collected and a tridiagonal system of equations results:
o A Un+l) o i+1/2(n+1) + B U(ntl) i+1/2(n+1) + ¢ U@+l) o i+1/2 (n+1)
: j-1/2 j-3/2 j-1/2 j-1/2 j-1/2 j+1/2
_ - u(n+l) u(n+l) i+1/2 i-1/2(n)
=Bz YTy ®ylyyp Py ) (4.6)
i The coefficients in Equation (A.6) depend on the known upstream values and previous
v iterition values of the downstream values of U, &, r, k, €, and Vgr Equation (A.6)
is solved by the double sweep method presented in Appendix B, given the top and
uf bottom boundary condition for Ui+1/2(n+1).
.. For the normal momentum, Equation (2.46e), the control volumes extend from
xi-1 to xi, and from (wj_l+wj)/2 to (wj+wj+l)/2. The three integrals neqtled to be
g evaluated in Equation (2.46e) are written
\‘ =
2 3 =3, + 3, (A.7)
%'
S and if we denote a control volume for this equation by AAJ, Equation (3.6), the
3 integral is
- _ 2 da
T Jl —IIM' U cos O ax dxdlp [(wj“’l—wj"l)/Z]
- h|
3 i-1/2, . i-1/2 2 i-1, 1i(n) i(n+l) i-1
3 +U o +o 2] (o ~-a A.8a
101




!
K
4
i

:
[
| VORI NPT ) FLNLN ".,'1

3, = —jj ru 3 axay = - (elexThye M2 1512y 12112y,

] j=1/2 "Tj+1/2

' Y
Aa,

1-1/2(n) i-1/2(n)
(Pytry2 Pyoiy2 ) (4.8b)

and
I3 = ”AA. sin o 32 dxdy = [(9y,;-v;_1)/2] sin [ a1y 2) y
h| R
(qji(n)-qji"l(“)) (A.8¢) i
where ;
| 3
1(n) _ . i+1/2,  i+1/2, 1-1/2(n), 4-1/2(n) i
9 ®ya1/2 Pyc1/2 Ppa2 i1z O .9
i(n+l)

The terms in Equation (A.8) are collected and the equation for o ie written

for j = 2, 3, 4,...J as:

3

i(n+l) - a(n+l) o(ntl) i-1/2(n) o(n+l) i-1/2(n)
% A4 + By Pyer/2 v G Pi_1/2

(A.10)
The coefficients in Equation (A.10) depend on known quantities, and, because of the
nature of the integration, are independent of the downstream values of U.

.. The equation for the downstream radial position of the streamlines Equation

i+1/2

(2.46b) 1is integrated along the x line. But, first this equation is multiplied

by r tc obtain the form:

3r2 - 2
) U cos a

L OARAIWMMS AL

VHatata
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1 i+1/2
ntegrating this equation from wj-l to wj along the x yields
1+1/2(n+1) _ i+1/2(n+1),2 1+1/2(n+1)
T {(rj )T+ 2 (le “’j-l)/[uj-llz
cos [(a, } (Mg 1(0)y/91) (A.11)
3 j-1
i+1/2(n+1)

Since the r position of

by summing Equation (A.1ll).
The k and € Equations (2.46f,

U cos OL-éE =
9x

and

U cos a §§
9x

Yy = 0 is known, the values of all rj are obtained

g) are solved simultaneously as follows:

sin o 3 Ve in a k| sina 3 T Ve U 9k
r ax |o, 2 Ix r ax O Y
3 |V k 9 ’Z“e ok
-UW rSinag‘; +U5~u—)—-6k— 3_15
2 2
U k U U
-0.33 03 € cos QO % + CuY c [%U T sin a 3&] - €
(A.12a)
sin a 9 Ve i de| _sina 3 T Ve v 2
T 3x o '™ % 3% r x| © Ay
€ €
I de ? r2"e d¢e
—Uw g-—sinaa—— +U3_W 5 -U-a—w
€ €
2 c¢.€ |
U au w|” _ "2
-0.33 Cu k cos o % + Clcu Yk [%U i sin a ax] m 4
(A.12b)
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The control volumes for Equations (A.12) are the same as those for the U equation.

The integrals are written for Equations (A.l2a and b) respectively as:

o
2 Ly =L, +Lg+L, +#L + L +L, +Lg (A.13a)
" My o= M, + My b M+ M+ M+ M+ M (A.13b)
i; A term in Equation (A.13) corresponds to a term in Equation (A.12) in the order that
.
- it is written. The procedure to determine L1 through L5 and Ml through MS is the .
" same as that performed to determine Il through 16 in Equation (A.5). The only
}
?%: difference is that since the U, a, and r equation integrations are performed before
?: the k and € equation integrations, the values of Ui+l/2(n+1), ai(n+l) and ri+l/2(n+l)
f? are known. These values are used to determine the coefficients in L1 through LS
B~ and Ml through MS' The Ve terms, however, are given from the previous iteration.
o
N The last three terms in Equations (A.13a) and (A.13b) are determined by taking
f;i downstream values of k, €, (RZ/E) and (ez/k). To determine the downstream values
& of the nonlinear terms (k2/€) and (EZ/k), a Taylor series in k and € are taken to
b4 first order:
\'-
3'33 + -1 -1 + -1/2
2 a2 62 | 2/6y1-1/2 | e 1-1/2 i 1/2_,1-1/2,
. 24— _ . i+
s _ (k2/€ )i 1/2 (ei+1/2_ei 1/2) - 2/5E /2 4 1/2
--"\
>
<y -
4 - (k2/82y1-1/2 ei+l/2 (A.14a)
in - - i+1/2__1-1/2
2 271012 o (2ot Y2 |\ oeegit/2 (112 /2y
- 2.4- - i+1/2
L (22 il 1 Y2y | ate/i) e /
o 2 4~
= - 2nHitl2 G2 (A.14b)
E:
N
i
2y
“
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. With these two approximations, the integral terms L6’ L7, L8’ M6’ M.,, and M8 are
? given by:
5 ) 3 141/2 (n+1)
L6 = - '”Av 0.33 C3 € cos oz-é-; dxdy = - (wj-wj_l) 0.33 C3 ej_l/z
. i(n+l),  i(n+l) 1+1/2(n#l) - 1-1/2
:,: ) cos [(OLj +aj-l )/2] (Uj—1/2 -Uj—l/2 ) (A.15a)
::; L7 = J’J' CUY (kz/e) (rU3u/dy-sin a E)U/Bx)2 dxdy =
Mo Av
3 i+1/2 i-1/2 i+1/2(n+1) i-1/2 | i+1/2(n+1)
2,2, 1-1/2_ i+1/2(n+l) i+1/2(n+l),  1+1/2(n+l) i+1/2(n+l)
< -2(k" /e )j—1/2 Ej-1/2 ] {[(rj +rj-1 )/2] Uj—l/z
i+1/2(n+l) .. i+1/2(n+l) i(ntl), i-1
....:‘ [(Uj+l/2 "Uj_3/2 /(wj+l-wj—l)] - 8in [(aj +aj )/2]
v 1+1/2(n+l) |, 4-1/2,,, 1+41/2 1-1/2..2
; W, 71/ Uy M -x )} (A.15b)
b
¢ - i+1/2 _i-1/2 141/204+1)
Lg = _f‘[Av edxdy = - (wj-wj_l)(x -x )e j-1/2 (A.15c)
£
&
’ 3U 141/2 (n+1)
« M6 = -J'J’Av 0.33 Cu k cos a % dxdy = —(wj-wj_l) 0.33 Cu kj-1/2
i(n+l),  i(n+l) 1+1/2(n+1) . 1-1/2
::, cos [(aj +aj_1 )/2](113_1/2 —Uj—1/2 ) (A.15d)
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M =J]. C, C v k(r U 3U/3y-sin o aU/Bx)2 dxdy =
7 Av Lou

xi+1/2_x1-1/2 i+1/2(n+l) K i+1/2 (n+l)

Wy¥3-00¢ ARV §-1/2
i+1/2(n+l) _ i+1/2(n+l) i+1/2(n+l) i+1/2(n+l)
_yy i+1/2(n+1) _ _ i(n+l) i-1 i+1/2(n+l)
Y5-3/2 [Wy417¥;51) = sin [y +a, /2] (U )
_Ujiiiéz/(xi+l/2—xi—l/2)}2 (A.15e)
and
M, = -J]. 2 _ i+1/2__i-1/2
8 Av C2 e“/k dxdy = -(wj—wj_l)(x -X )c2
i-1/2 _ i+1/2(n+l) 2,2, i-1/2 , i+l/2(n+l) '
[2(sx:/1<)j_1/2 €51/2 - (e/k )i1/2 %5172 ] (A.15f)
If all the ki+l/2(n+l) and Fi+1/2(n+1) terms are collected from Ll through L8 and
Ml through M8’ a tridiagonal matrix system results, and is given by:
K i+1/2(n+l) K i+1/2(n+l)
i-3/2 j=1/2
(n+l) (n+l)
Aj-1/2 + Bj_l/z
e i+1/2(n+l) ¢ i+1/2(n+l)
j-3/2 j-1/2
(A.16)
i i+l/2(n+l)
j+3/2
(n+l) - (n+1)
€5 1/2 Py-1/2
i+1/2(n+l)
€343/2
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! where Ajfﬁjé),

;{i Given the top and bottom boundary conditions described in the text, Equation (A.16)
‘:i is solved using the method presented in Appendix B.

;i

$1

(n+l)
j=1/2

(n+l)

3-1/2 are 2 X 2 matrices, and D (nt1)

B and C §-1/2

is a 1 x 2 matrix.
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APPENDIX B

In the numerical integration procedure, equations are encountered of the form

Bhhy+t6vn=9

. A.j Xj'l + Bj v, + Cj Vi1 = éj’ j=2,3,..., N-1 (B.1)
s Vi + B =d
AN —N-1 N!N N

where Aj’ Bj, and Cj are n, x, n matrices and gj is a column vector of length n, all
independent of the unknown column vectors, Xj's. To solve Equation (B.l), solutions
of the form (Carnaham, Luther, and Wilkes, 1969)26

vi=X; - By Gy vin (8.2)

are sought where Y4 is a column vector, Bi is an n, x, n matrix (both are to be

determined) and Bi-l is the matrix inverse of Bi' The product Bi-lci is the normal

matrix multiplication. Substitution of Equation (B.2) into (B.1l) gives the

recurrence relations for Yy and Bj:

Bi = Bi A Bi 1 i— (B.3)
-1
Yy o= By U ALY ) (B.4)
Rewriting the first equation of (B.l) as
v. =8, ta -87lc v (B.5)
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and comparing this to the case ¢ = 1 in Equation (B.2) results in:

Y, =87 4 (B.6)

Rewriting the Nth equation of (B.l) as

_ -1
By ¥y = dy - Ay Xyop * Ay Byol Oy Yy

and combining the v, terms yields:

N
+ [(B-a B Tc 170 @.-A ) = 7
Y NN "N-1 “N-1 SN Yyn-1) T Yy (B.7)

i = ' \ .
which holds if we set Vg1 = 0. Once theli s and Bi s are known, the vy s

determined from Equation (B.7) and XN-j for j > 1 from Equation (B.2).




~ SEENA/E R

R R RS )Y o

XS )

Qe

e e 8 @

RLATN

X

v

S A ol el Sal T T i M) ~‘ Ve SN T VNS T e Ty T Fadiir i ""T'A‘ PR A AR L Ve T e e A
-1

REFERENCES
1. Briley, W.R., "Numerical Method for Predicting Three-Dimensional Steady
Viscous Flows in Ducts,' Journal of Computational Physics, 14, pp. 8-28 (1974).

2. Patankar, S.V., V.S. Pratap, and D.B. Spalding, "Predictions of Laminar
Flow and Heat Transfer in Helically Coiled Pipes,'" Journal of Fluid Mechanics, 62,
pPpP. 539-551 (1974).

3. Roberts, D.W. and C.K. Forester, '"Parabolic Procedure for Flows in Ducts
with Arbitrary Cross Sections,"”" American Institute of Aeronautics and Astronautics
Journal, 17, pp. 33-40 (1979).

4., Markatos, N.C.G. and C.B. Wills, "Prediction of Viscous Flow Around a
Fully Submerged Appended Body," 13th Symposium on Naval Hydrodynamics, Tokyo, Japan,
pp. 631-647 (1980).

5. Muraoka, K., "Calculation of Thick Boundary Layer and Wake of Ships by a

Partially Parabolic Method," 13th Symposium on Naval Hydrodynamics, Tokyo, Japan,
pp. 601-614 (1980).

6. Abdelmeguid, A.M., N.C.G. Markatos, and D.B. Spalding, "A Method of
Predicting Three-Dimensional Turbulent Flows Around Ships' Hulls," International
Symposium on Ship Viscous Resistance, SSPA, Goteborg, Sweden (1978).

7. Muraoka, K., "Calculation of Viscous Flow Around Ship Stern," Transactions
of the West-Japan Society of Naval Architects, 58, pp. 235-257 (1978).

8. Pratap, V.S. and D.B. Spalding, "Numerical Computation of the Flow in
Curved Ducts,’ Aeronautical Quarterly, 26, pp. 219-228 (1975).

9. Patankar, S.V. and D.B, Spalding, "A Calculation Procedure for Heat, Mass,
and Momentum Transfer in Three-Dimensional Parabolic Flows," International Journal

of Heat and Mass Transfer, 15, pp. 1787-1806 (1972).

10. Lighthill, M.J., "On Displacement Thickness,' Journal of Fluid Mechanics,
4, pp. 383-392 (1958).

11. Launder, B.E. and D.B. Spalding, '"The Numerical Computation of Turbulent
Flows," Computer Methods in Applied Mechanics and Engineering, 3, pp. 269-289 (1974).

111

e e e e e s e e e e . .- o e
TS S RN AL T U e T g T L

+ W

. "‘l'-’

e

‘.'.' .. n."'

s

A, 0, 6 % 2 Ty



» 3 A .
[0 l'l.l"l‘.l

L ] ]
A A AP A

e Y

S
o
.".".'.. ...l‘l‘

¢

)

12, Jones, W.P. and B.E. Launder, '"The Prediction of Laminarization with a

2-Equation Model of Turbulence,” International Journal of Heat and Mass Transfer,
15, pp. 301-311 (1972).

13. Jones, W.P. and B.E. Launder, "Prediction of Low Reynolds-Number Phenomena
with a 2-Equation Model of Turbulence," International Journal of Heat and Mass

Transfer, 16, pp. 1119-1129 (1973).

14. Hanjalic, K. and B.E. Launder, "Sensitizing the Dissipation Equation to
Irrotational Strains," Journal of Fluids Engineering, 102, pp. 34-40 (1980).

15. Liepmann, H.W. and A. Roshko, Elements of Gasdynamics, John Wiley and Sons,
Inc., New York (1957).

16. Tennekes, H. and J.L. Lumley, A First Course in Turbulence, MIT Press,
Cambridge, Massachusetts (1972).

17. Patel, V.C., A Nakayama, and R. Damian, "An Experimental Study of the
Thick Turbulent Boundary Layer Near the Tail of a Body of Revolution," Iowa Institute
of Hydraulic Research Report No. 142 (1973).

18. Dyne, G., "A Streamline Curvature Method for Calculating the Viscous Flow
Around Bodies of Revolution," International Symposium on Ship Viscous Resistance,

SSPA, Gotenborg, Sweden (1978).

19. Patankar, S.V. and D.B. Spalding, "A Finite-Difference Procedure for
Solving the Equations of the Two-Dimensional Boundary Layer,'" International Journal
of Heat and Mass Transfer, 10, pp. 1389-1411 (1967).

20. Wang, H.T. and T.T. Huang, 'Calculation of Potential Flow/Boundary Layer
Interaction on Axisymmetric Bodies,' The American Society of Mechanical Engineers

Symposium on Turbulent Boundary Layers, Niagara Falls, New York, pp. 47-57 (1979).

21, Hess, J.L. and A.M.0. Smith, "Calculation of Potential Flow About Arbi-
trary Bodies,'" Progress in Aeronautical Sciences, 8, Pergamon Press, New York,

Chapter 1 (1966).

22. Huang, T.T., N. Santelli, and G. Belt, '"Stern Boundary-Layer Flow on

Axisymmetric Bodies," 12th Symposium on Naval Hydrodynamics, Washington, D.C.,
pp. 127-147 (1979).

112




................

CaaACHRE Bt S il it Sudll SRSk St A N
D A S '

23. Huang, T.T., N.C. Groves, and G. Belt, "Boundary Layer Flow on an Axisym-
metric Body with an Inflected Stern," DINSRDC Report 80/064 (1980).

24. Lyon, H.M., "The Effect of Turbulence on the Drag of Airship Models,"
Report and Memoranda No. 1511, Aeronautical Research Committee, London, England,
pp. 123-148 (1932).

25. Lyon, H.M., "A Study of the Flow in the Boundary Layer of Streamline
Bodies," Report and Memoranda No. 1622, Aeronautical Research Committee, London,
England, pp. 266-318 (1934).

26, Carnaham, B., H.A. Luther, and J.0. Wilkes, Applied Numerical Methods,
John Wiley and Sons, Inc., New York (1969).




INITIAL DISTRIBUTION

Copies Copies
. 1 WES 16 NAVSEA
o 1 SEA 033
s 1 U.S. ARMY TRAS R&D 1 SEA 03D
% Marine Trans Div 1 SEA O5R
1 SEA 05T
1 CHONR/ 438 Lee 1 SEA 32R
Y. 1 SEA 312
Zj 2 NRL 1 SEA 55
1 Code 2027 1 SEA 55N
. 1 Code 2629 1 SEA 55w
1 SEA 55W3
& 1 ONR/Boston 1 SEA 56X1
3 1 SEA 56X4
N 1 ONR/Chicago 1 SEA 62pP
) 3 SEA 996
L 1 ONR/New York
v 1 NAVFAC/032C
1 ONR/Pasadena
; 1 NADC
- 1 ONR/San Francisco
1 NAVENPREDRSCHFAC/
1 NORDA Tim Hogan
N 3 USNA 1 NAVSHIPYD PTSMH/Lib
N 1 Tech Lib
e 1 Nav Sys Eng Dept 1 NAVSHIPYD PHILA/Lib
e 1 B. Johnson ’
1 NAVSHIPYD NORVA/Lib
3 NAVPGSCOL
1 Lib 1 NAVSHIPYD CHASN/Lib
. 1 T. Sarpkaya
N 1 J. Miller 1 NAVSHIPYD LBEACH/Lib
1 NOSC/Lib 2 NAVSHIPYD MARE
1 Lib
. 1 NCsC/712 1 Code 250
4
"2 1 NCEL/131 1 NAVSHIPYD PUGET/Lib
o
1 NSWC, White Oak/Lib 1 NAVSHIPYD PEARL/Code 202.32
. 1 NSWC, Dahlgren/Lib 1 NAVSEC, NORVA/6660.03, Blount
“ 1 NUSC/Lib 12 DTIC
AFOSR/NAM

AFFOL/FYS, J. Olsen

T I T i A 0 S Y s T T mrR AT
FH W, G Y N S ‘\\J.‘L\‘_\'_-.L\Lx'. RSO RLS




.‘..‘..,.,;4’,....

by
3 -.l N .l

-

PO Al - - TN

BR Y o

-

P ala, h. N

PP

atal

»"D.l‘i."l.l

'tl-l.l'- St

-

Ph S el

)]

e
%

MARAD
1 Div of Ship R&D
1 Lib

NASA/HQ/Lib
NASA/Ames Res Ctr, Lib
NASA/Langley Res Ctr
1 Lib
1 D. Bushnell
NBS/Lib
NSF/Eng Lib
LC/Sci & Tech
DOT/Lib TAD-491.1
MMA
1 National Maritime Res Ctr
1 Lib
U of Bridgeport/E. Uram
Brown Univ/J.T.C. Liu
U of Cal/Dept Naval Arch, Berkeley
1l Lib
1 W. Webster
U of Cal., San Diego

1 A.T. Ellis
1 Scripps Inst Lib

1 Aero Lib

1 T.Y. Wu

1 A.J. Acosta
1 1. Sabersky
1 D. Coles

City College, Wave Hill/Pierson

Catholic U of Amer/Civil &
Mech Eng

Colorado State U/Eng Res Ctr

116

U of Connecticut/Scottron
Corneil U/Shen
Florida Atlantic U/Tech Lib
Harvard U
1 G. Carrier )
1 Gordon McKay Lib -4
U of Hawaii/Bretschneider a
U of Illinois/J. Robertson : i
f Iowa :

o -
1 Lib 1
1 L. Landweber
1
1

J. Kennedy
V.C. Patel

Johns Hopkins U/Lib :
Kansas State U/Nesmith
U of Kansas/Civil Eng Lib
Lehigh U/Fritz Eng Lab Lib
MIT
1 Lib
J.R. Kerwin -

1
1 P. Leehey
1 J.N. Newman

L 5w JA S PRIR

U of Minn/St. Anthony Falls
1 Lib
1 R. Arndt

(F . 0 9 2 ¢ =

U of Mich/NAME/Lib
U of Notre Dame/Eng Lib
New York U/Courant Inst/Lib

Penn State
1 B.R. Parkin
1 R.E. Henderson
1 ARL Lib
1 G.H. Hoffman



copies

Princeton U/Mellor
U of Rhode Island/F.M. White
SIT/Lib
U of Texas/Arl Lib
Utah State U/Jeppson
Southwest Res Inst

1 Applied Mech Rev

1 Abramson
Stanford U

1 Eng Lib

1 R. Street, Dept Civil Eng

1 sS.J. Kline, Dept Mech Eng
Stanford Res Inst/Lib
U of Virginia/Aero Eng Dept
U of Washington/Arl Tech Lib
VP1

1 Dept Mech Eng

1 J. Schetz, Dept Aero &

Ocean Eng

Webb Inst

1 Lib

1 Ward
Woods Hole/Ocean Eng
Worchester PI/Tech Lib
SNAME/Tech Lib
Bell Aerospace

Bethlehem Steel/Sparrows Point

Bethlehem Steel/New York/Lib

‘-‘,‘-' \v’.'\‘_'-..'a . \"'\‘:" ¥

Boeing Company/Seattle

1 Marine System

1 P. Rubbert
Bolt, Beranek & Newman/Lib
Exxon, NY/Design Div/Tank Dept
Exxon Math & System, Inc.
General Dynamics, EB/Boatwright
Flow Research
Gibbs & Cox/Tech Info
Grumman Aerospace Corp/Lib
Hydronautics

1 Lib

1 E. Miller

1 V. Johnson

1 C.C. Hsu
Lockheed, Sunnyvale/Waid
Lockheed, California/Lib
Lockheed, Georgia/Lib

McDonnell Douglas, Long Beach
1 T. Cebeci

Newport News Shipbuilding/Lib
Nielsen Eng & Res

Northrop Corp/Aircraft Div
Rand Corp

Rockwell International
1 B. Ujihara
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i:Z Copies Copies Code Name
s;n 1 Sperry Rand/Tech Lib 1 1544 S. Jessup
f‘. 1 1544 K.F. Lin
NS 1 SRA (S.J. Sh th
S ( amroth) 1 1560 M. Martin
1 Sun Shipbuilding/Chief Naval Arch 1 1561 G. Cox
- 1 Robert Taggert 1 1563 W.E. Smith
- 1 1564  J. Feldman
-~ 1 TRW Systems Group/Lib
4 1 1572 E. Zarnick
N 1 TRACOR
- 1 1606 T.C. Tai
A 1 United Technology/East Hartford, 1 1615 R.J. Furey
J}Q Conn
A 1 1802.1 H. Lugt
SN 1 Westinghouse Electric
ﬂﬁ 1 Gulino 1 1802.2 F. Frenkiel
— . 1 1840 J. Schot
>
Fa 1 1843 K. Rao
k;f Copies Code Name 1 19 M.M. Sevik
£ .M. Sev
1 1500 W.B. Morgan 1 1940 J.T. Shen
o 1 1504 V.J. Monacella 1 1942 B.E. Bowers
L 1 1942 T.M. Farabee
-~ 1507 D.S. Ciesl ki
N 1 0 estows 1 1942  F.E. Geib
&J 1 1508 R.S. Rothblum 1 1942 T.C. Mathews
o W.C. Li
1 152 n 10 5211.1 Reports Distribution
1 1521 P. Pien
: 1 1521 W. Day 1 522.1 Unclassified Lib (C)
1 1522 G. Dobay 1 522.2 Unclassified Lib (A)
. 1 1522 M. Wilson
) 1 154 J. McCarthy
- 1 154 P. Granville
s
s 1 1540.1 B. Yim
Sy
ivs 1 1560.2 R. Cumming
- 30 1542 T.T. Huang
K. 3 1542 N.C. Groves
e 1 1542  G.S. Belt
&5 1 1542  Y.T. Lee
.--] 1 1542  M.S. Chang
1 1544  T. Brockett
L 1 1544 R. Boswell
A 1 1544 E. Caster
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