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with Face-Centered Cubic Lattice Structure*

AFOSR.TR- 8 3- 101 by

Kurt Binder

Institut fir Festkbrperforschung, Kernforschungsanlace Ji!lich,
D-5170 Jilich, Postfach 1913, West-Germany

and

Joel L. Lebowitz and Mohan K. 
Phani+

Department of Mathematics and Physics,
Rutgers University, New Brunswick, N.J. 08903, USA

and

Malvin H. Kalos

Courant Institute of Mathematical Science, New York University,
251 Mercer Street, New York, N.Y. 10012, USA

Abstract:

We describe the results of Monte Carlo computations of the

coherent phase diagram (in the temperature-composition plane) of

ordering binary alloys on a face-centered cubic lattice. Results

on long- and short-range order parameters as well as ordering

energies are also given. We consider the system with nearest

neighbor interaction in the grand-canonical ensemble (equivalent

to an Ising antiferromagnet in a magnetic field) as well as in

the canonical ensemble (fixed composition). The close agreement

between both approaches serves as a severe test of the good accuracy

,'btained, and so does the fact that differences between results for

lattices with 2048 sites and with 16384 sites are found to be negli-

ciblv smAll. Results with next-nearest nei.ohbor interaction are also

given, and for both models a comparison with other available

predictions is made, particularly with the cluster-variation

method. While the latter is found to be quite accurate at stoi-
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chiometric composition, it appears to do less well in the

more general case. The tetrahedral approximation of the

cluster variation method predicts a topology of the phase

diagram, in the case of nearest-neighbor interaction different

from the computer simulations. Some consequences for the

interpretation of the behavior of copper-gcd alloys are

indicated.
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1. Introduction

We have investigated the behavior of ordering binary alloys

such as the copper-gold system on a rigid face-centered cubic

(fcc) lattice, within the framework of the Ising-model for binary

alloys (AB) where one assumes pairwise interactions between the

atoms. Let us denote the local concentration at lattice site

i by ci: ci=O if it is occupied by an A-atom, ci=1 if it is

occupied by a B-atom, and denote the interaction energy of

AA BB ABAA-, BB- and AS pairs as v vj and vii, respectively. Dis-

regarding vacancies or any other lattice defects the energy

of the system is then given by

V (1 (-c)(-c.)v' +(c (1-c )+c.(I-c )V AB+ SC (1i~i i j i i i i ] i i ci j ij}

the sums in Eq. (1) are taken over all pairs of neighbors once.

As is well known, for the ordering behavior of this system it

is only the ordering energy (vj+vj- 2vjB) which matters, and

AA BB ASnot the three energies vi. , v. 1 v. separately /l/. This fact

is utilized by transforming Eq. (1) to the equivalent problem

of an Ising magnet in a magnetic field: a "spin uD" ("spin down")

at a site i, Si=+1 (-1) can be identified with an A(B) atom at that

site, by using Si=l- 2 c±. The Ising hamiltonian is then expressed
.AA BB AB

in terms of a spin-spin interaction J i=-(v A+v.B- 2v. AB/4 and
ij 3.) 1) 3.

a magnetic fieldv)+ where and7 i(4i) vj-j) 7 A- B A B

are the chemical potentials of the A and B atoms:

- I J SS Hz S. . (2)
iti j ii i *

Clearly, for general ranae cf the interaction Jij the description

of the orderinq behavior of the model described by Eo. .' is a
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formidable problem. Hence we restrict the range of the inter-

action Jij to nearest and next nearest neiqhbors on the lattice,

as is usually assumed /2-4/. Denoting nearest neighbor and next-

nearest neighbor pairs by <nn> and <nnn>, respectively, we have

= -J t S.S. + aJ i SiS j - H z Si (3)
<nn> 1  <nnn> i

where the parameter -a measures the relative strength of the next-

nearest neighbor interaction. This choice of a model is also

reasonable if one tries to fit real alloys, like the copper-

gold system, in terms of a pairwise interaction model, Eq.

(1) /5,6/. There is, however, at present no general agreement on

whether this model (with parameters J,a smoothly depending on

the relative composition cB of the alloy, cB being the thermal

average <ci>T) is appropriate, or whether one needs a

model with interactions between nearest neighbor pairs, triplets

or quadruplets of atoms /7,8/. It might even be necessary to use

explicitly the long-range interaction due to the conduction

electrons of the metallic alloy /9/. In our opinion a consid-

erable part of this uncertainty about an appropriate

model for the ordering behavior of alloys is due to the fact

that the properties of these models are not known with the

precision needed to distinguish among them. As a step

in this direction, the present paper nresents a study of

the model, Eq. (3), making use of the well-known Monte Carlo

computer simulation method /10/. The phase diagram of this model

system in the T-a plane at equal concentrations of A and B

atoms (corresponding to H=0) has already been reported /11/.

Some results at general composition have also been presented

very briefly /12/ for -he case 3-O with computations done in



the crand-canonical ensemble (H fixed as an independent variable).

Here we present more extensive results of this latter work,

supplementing it with computations done at other lattice sizes,

computations in the canonical ensemble (cB fixed as independent

variable), and preliminary results for a+O. It turns out that

even the nearest neighbor case (a = 0, H + 0) is of great

complexity: thanks to a large body of work /12-27/ the

ground states of this model are quite well understood, but for

nonzero temperature the approximation schemes

available so far give greatly varying results /18-23/.

As we shall see below, none of these schemes is completely

satisfactory.

In Section 2 we give a description of the different

computational procedures for the quantities of interest (order

parameters, ordering energies,phase diagram). In Section 3

our results for a=O are presented and compared to other

predictions /17-23/. Section 4 presents our results for a=-0.25

and compares them to the cluster variatio (CV) predictions /4/,

while Section 5 summarizes our conclusions.
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2. The Monte Carlo Method

We consider a system of N=4L 3 spins on an fcc £attice

with periodic boundary conditions. For the study of ordering

phenomena, L has to be chosen such that the periodic boundary

condition is compatible with the ordered structures expected.

Fig. 1 shows some of the orderings which have been identified

as ground-state orderings for our model /2,3/, translating

them into the spin representation. While the AB structure of

CuAuI-type as well as the A3B structure of Cu 3Au-type (which

both occur for a > 0) fit the periodic boundary condition

for any L, both the A2B2 structure and the A3B structure of Al 3Ti

type (which occur for a<O) fit the periodic boundary condition

only for even L. For odd L this structure would necessarily require

an interface ("domain wall"), which would disturb the results. Hence

L=8 and L=16 (N=16384) were chosen to study these structures, and

to make sure that finite size effects are already negligible

(early work /24/ using L=5, i.e. N=500 and very short "observation

times" could not study reliably the phase transitions, due to

finite size- and finite time-effects). Finally, for the A2B-

structure, L has to be a multiple of 3 in order to avoid domain

effects, as is obvious from Fig. le, and hence L=15 (i.e., N=13500)

was chosen for studying that structure.

Similar considerations are possible for other structures

which occur in the ground state /2,3/, such as the A5B,A4B

and A5B3 structures. However, no attempt was made to study

these structures at finite temperatures in the simulations:

in the temperature regime of interest here (kBT/IJI > 0.3)

even the A2B structure was never found tc be stable, and we
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expect a similar situation for these other more complicated

structures, as will be discussed below.

In the case of c+O the occurrence of long period super-

structures (such as the CuAuII structure) is possible, and

in other problems of Ising models with competing interactions

such incommensurate structures have in fact been identified

/25-27/. Since the periodic boundary condition is inconsistent

with such structures for any finite L, the analysis of this

case by Monte Carlo methods is rather delicate /25/. We do

not consider this possibility here, since both in

the theoretical models /25-27/ and in the experiments on the

copper-gold system /28/ the regime of stability of the in-

commensurate phase in the phase diagram is very small.

The microscopic state of the system is specified by the

configuration X,X={Sl,S 2,...ISN}. When the system is at

equilibrium, the probability of a configuration X is

1

P eq(X) = exp[-X(X)/kBT], Z = exp[-K(X)/kBT] , (4)

where kB is Boltzmann's constant and T the temperature of the

system, 1(X) being given by Eq. (3). Starting from an initial

configuration XO (the choice of which is discussed below), one

lets the configuration of the system evolve according to the

following algorithm /10/: using pseudorandom numbers one generates

a random change of the configuration X'. In the case of the

grand-canonical ensemble { magnetic field in Eq. (3) is held

fixed, concentration CB is allowed to fluctuate} this transition

is taken to be the flip Si*-S i of a randomly chosen spin.
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In the case of the canonical ensemble, a nearest neighbor

AB-pair is chosen at random and interchanged. This "Kawasaki

dynamics" /29/ conserves the concentration cB of the system.

As is well known, both ensembles should yield results equivalent

to each other in the thermodynamic limit N--. Since we work

with finite N it is important to see that the

results do not depend on the ensemble chosen, at least within

reasonable error limits.

In both cases one computes the energy change 6um -A(') - ()

resulting from the configurational change. The "transition probability" /10/

W=exp(-6U/k BT)/[l+exp(-6U/k BT)] is then compared to a random

number n, chosen uniformly from the interval [0,1]. If W > n

the transition is performed; otherwise the old configuration

is counted once more for the averaging, the attempted X' is

rejectedand another transition is tried.

This algorithm is known /10/ to lead to the thermal

equilibrium distribution, Eq. (4), in the limit where the

number of states generated tends to infinity. In practice, one

hopes to achieve accurate results when this number lies in the range from a few

hundred to a few thousand Monte Carlo steps/site (MCS). To acccmplish

this aim, it is important to choose the initial states X.

appropriately. For runs using the grand-canonical ensemble,

it is most convenient to use the fully ordered states (Fig. 1)

as the initial condition. Although the ground-state is known

to be highly degenerate for a-O /12-17/, it is known that at

T>O only the most symmetric structures contribute /30/. Thus

for a-0 only the structures of Fig. la,c,e were used, while

for on-0.25 we used the struct-ares of :7io. 1b,d. As
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we shall see below, the transition from the ordered phases to

the disordered one are of first order. Consequently, one has

to pay attention to the occurrence of hysteresis: the limit

of stability of the various ordered phases is not identical

with the location of the first-order phase transition, but rather

locates the regime where the lifetime of metastable states becomes

short due to nucleation processes. Hence we also used states

with a random or a ferromagnetic spin configuration as appropriate

initial states for the disordered phase. As it is more

difficult to create order out of disorder than vice versa, ne

finds even more pronounced metastability effects when one

approaches the first-order transition from the disordered

But by a careful analysis of the relaxation of the metasta_-

states on both sides of the transition one can locate the phase

boundary with reasonable accuracy /31/. This will become apparent

from the detailed examples shown in Section 3.

For runs using the canonical ensemble, where the concentra-

tion c is kept at that of the initial state, the fully ordered

configurations can be used as initial states only for the

respective stoichiometric compositions. Non-stoichiometric

initially ordered states could be produced by randomly changing

the appropriate fraction of A-atoms into B-atoms (or vice versa)

in such a fully ordered state. Most of our runs in the

canonical ensemble were started from a random initial configuration.

We conclude this section by summarizing the definitions of

the order parameters which we compute, paying attention to the

appropriate translation from one ensemble to the other. Labelling

the four sublattices of the unit cell. of the fcc lattice as

It
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indicated in Fig. 1, we introduce the sublattice magnetizations

me

m = (1/N) E <S.> v=1,2,3,4 (5)

iEv

where < > is computed by taking time averages over one or more

monte Carlo runs /10/. Then the order parameter components of the

AB-structure (Fig. la) are expressed in terms of the m as

-(3) -(2) 2.-(3).,_ - 2 -m. (6)mAB "m+m 2 m3 -m 4 mm -m m+ 3 mAB M +M 3 (6

while the order parameter components of the A3B-structure (Fig. Ic)

are

-" I (2 ). + M e ( 3 )=M -M + -M M - (4 ) _ M M +
mA 3 M m2 m3 -m4 ' 'A3 B. 1 2-3'4 mAA3B -"2 3 4' mA3B m1 2 3+4 (7)

Noting that ci=(l-Si)/2, the average magnetization m,

m=m 1+m2 +m3 +m4 , (8)

is related to the average concentration cB of B atoms in the alloy

by

cB = (1-m)/2 (9)

The order parameter [ (Eqs. (6),(7)} is related to the standard

long-range order parameter /i/ ip by

= .- (10)

Short range-crder in :-ie c-and-canonical ensemble is described
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in t-erms of the correlation functions (R being the distance

betweon sites i,j -)n the lattice]

(R) = <Si S +AA) 
- m 2

(

This quantity is related to the standard Cowley short range order

parameters a(R) /1,32/ by

(' ) = g(-*)/(1-m 2 )  (12)

In this paper, we only consider a Mac(A) for R a nearest-

neiahbor distance.

Finally we consider the energy U, which in the grand-

canonical ensemble is defined as follows

U < I >/N uU -mH; (13)int

this quantity is related to the usual ordering energy /2/

AU = 1(2 v-vA3-v)1 [C (1-c)+c (1-c )]/N as

AU = (Uint + J(O)] , (14)

- where J(O) = I J ij/N. We note from Eqs. (11)-(14) that the

ordering energy can be expressed in terms of the Cowley short

range order parameters as

AU = 4 cB(1-cB)[J(O)- I J. .(R)/N] (15)
i*j1)
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In the case of only nearest neighbor interaction on the fcc

lattice, Eq. (15) reduces to au=2 4cB (1-C B)J(1-01).
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3. Results for the Nearest-Neiahbor Interaction (a=O)

Figs. 2-4 show typical examples of "raw data" of the Monte

Carlo computation. Most of the data were obtained in the grand-

canonical (GC) ensemble, N=16384. It turned out that away from

the transitions it was sufficient to average over 180 MCS/site,

after cmitting the initial 60 MCS/site of the simulation to get

rid of the influence of the initial condition, while close to

the transition averages were taken over 900 MCS/site. Runs

using the canonical (C) ensemble were performed at the compositions

cB=O.2 2 5, 0.250, 0.265, 0.275, 0.30, 0.35, 0.40, 0.475 and 0.50,

respectively. Identifying the corresponding field from the grand-

canonical m vs. H-curve and Eq. (9), the energies and order

parameters of the C and GC ensemble could be compared. Figs. 2-4

show that very good agreement between these two types of calcula-

tion was in fact obtained. In addition, data taken for different

N agree with each other well.

From Figs. 2-4 we note that the magnetization varies linearly

with the field in the disordered phase ( and therefore so does the order

parameter m A3B=m/2 in this range). In the regime with long-range

order, however, the magnetization deviates from this simple linear

law, and at the first-order transitions (occurring at one of the

three critical fields Hc1 , H", or Hc2, respectively) one can

clearly identify the jump of the magnetization, Amum+-m_,

where m+ (m)=lim+ m(H).Since there is no one-phase equilibrium+ -H +(H c)

state with m..nm<n+, it is clear that states in this interval are

two-phase mixtures, and hence one obtains the boundaries of the

two-phase regions in the T-c phase diagram from using m,m in

Eq. (9). The critical fields are estimated by performing runs
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with different initial conditions and searching for relaxation

of m,!tastable states, as mentioned in the previous section.

Figjs. 2,3 include a few examples of points where the A 3B ordering

was found initially metastable while longer runs revealed a

clear-cut relaxation towards the disordered phase.

Data as displayed in Figs. 2-4 have been taken at k BT/!JJ1

0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.5, 1.6, 1.7, 1.75, 1.8, 1.85,

1.9, and 2.0, respectively, and thus the phase boundaries are

constructed both in the T-c B representation (Fig. 5a) and in

the T-H representation (Fig. 5b). We think that the relative

accuracy of our estimates for the critical fields H, H" (which

merge at H ci for T-.0) is of the order of a few percent, i.e. the

size of the circles in Fig. 5. The accuracy of the phase boundaries

in the T-c B plane is better by about a factor of 2, because the

"susceptibility" X:_am/(aH/1IJ) is small. Note also (Fig. 2),

that a small error in the location of the critical fields does

not affect the magnitude of the jump of the magnetization very

much, since (close to the respective critical fields) the m vs. h-

curves are nearly parallel in the disordered phase and the A 3B phase.

Therefore we think that meaningful estimates for the width of the

two-phase regions have been obtained.

Fig. 6 shows the temperature variation of various quantities

at fixed field. The estimated transition temperatures (taken

from Fig. 5) are included. It is seen that pronounced super-

heating of the ordered phase (and supercooling of the disordered

phase) occurs, when the transition temperature is low. This meta-

stability is expected from the shape of the phase boundaries in

Fig. 5, of course, since varyina the temperature at either f±xed
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field or fixed composition one cuts the phase boundary typically

at rather small angles. This is also the reason why in this case

the computations in the canonical ensemble are convenient for

locating the transition only for compositions near stoichiometry.

Due to these hysteresis phenomena, no attempt 4,6.kS

to estimate the width of the two-phase region from the runs in

the canonical ensemble. But apart from this latter ambiguity,

both calculations give the same phase boundary, as is seen in

Fig. 7 where we compare our results to the phase diagram

predicted by the cluster variation (CV) method /20,22/. It is

seen that the CV method overestimates the transition temperatures

in the stoichiometric cases only by a few percent, while it is

very inaccurate for intermediate compositions. In addition, it

seems to underestimate somewhat the widths of the two-phase

regions. An interesting feature, however, which is correctly

predicted by the CV method is that the maximum transition

temperature of the A3B phase does not occur at the stoichiometric

composition cB=1/ 4 but rather for cB 7 0.265. It should also be

noted, that simpler approximations (like the Bragg-Williams

approximation, Bethe- and quasichemical approximations /18,19,21/)

fail even more dramatically than the CV method, as they predict

not only a wrong topology of the phase diagram, but cannot even

locate the transition temperatures in the stoichiometric cases

with reasonable accuracy (see /12/). On the other hand, the method

of Wu and Tahir-Kheli /6/ (which refers to a model including

2nd and 3rd nearest neighbor interaction) predicts all transitions

to the disordered phase to be of second order; even poorer are

the real-space renormalization results /23/ which fail to yield

the ordering of the AB phase, and predict the transition of the

AB phase tc be c- sezond order. As e result, no analytic method

'-C
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is presently capable to predict a satisfactory phase diagram

for this model, and an extension of the methods of Refs. 6,

22 and 23 seems to be called for.

While the CV method predicts a triple point at nonzero

temperature Tt. below which one can observe transitions from

the A3B structure to the AB structure, we have tentatively

extrapolated our results (Fig. 5) such that Tt=O. Some

justification of this extrapolation is found when one considers

the ground-state energy as function of composition (Fig. 8a)

or field (Fig. 8b). It turns out that the variation with

composition is much more complicated to understand than the

behavior as function of the field. While for a - 0+ the ground

state is a two phase mixture of pure A and A3B phases for

1 1 1O < c8 < , and of A3B,AB phases for T < c B B , several

other phases occur for a 0 0 /2,3/. One first has a transition to a

(nonstoichiometric) A5 B phase; but the location of this transition is

uncertain. At cB=1/ 6 one starts to have a three-phase mixture,

containing the A5B,A4B and A3B phases. In view of this situation,

it is interesting to note that the outer boundary of the two-

phase region between the disordered and the A3B phase seems to

extrapolate towards cB=l/6(Fig. 5). For 1 < c < 1 a two-

phase mixture between A3B and A2B is predicted, while for CB>1/ 3

a two-phase mixture between A2B and A5B 3 should occur which has

a transition (at a so far unknown concentration) to a pure non-

stoichiometric A5B3 phase.

Unfortunately, we have not been able to establish the

connection between these ground-state phases and the behavior

seen at nonzero te- erature. In .arlicular, startinc the
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vstem in tthe A B structure revealed that this structure was
*2

not stable (and not even metastable) down to kBT/ J m 0.3,

and we expect that it will not be stable at any nonzero

temperature.

The reason for the different instability of the various
ordered phases is seen more clearly in Fig. 8b, which shows that

the AB and A3B structures are ground state arrangements for ex-

tended intervals of the field, while A5B3 and A2B are groundstates

only just at the critical field HcI/jJI=4, and A4B as well as A5B

are groundstates only right at the critical field Hc 2/IJl=12. On

the other hand, just at the critical field the system is so de-

generate that it has a finite entropy. Using boundary conditions

which do not favor a particular ordering leads to a disordered

system /12,17/. This fact can be most easily seen from the following

simple argument /12/. Consider two neighboring cells of the A3B

structure (Fig. 9a) , and focus attention upon the spin in the center

of the plane joining the cells. Four of its bonds to nearest neigh-

bors are energetically favorable (drawn dash-dotted) while the other eight are

unfavorable (drawn broken). Therefore at the critical field Hci

this spin can be overturned with no energy cost. Since there are
no bonds between spins on the same sublattice, we have two degenerate

states for eve.E spin on this sublattice if we keep the spin con-

figuration of the three other sublattices fixed. As a result we
would have one sublattice of down spins, two sublattices of up spins

and one sublattice disordered, i.e. a ground-state entropy of

So(£n2)/4 and magnetization mo=-/4 (cB.3/8) at the critical field.

Of course, this picture of perfect order on three sublattices and
perfect disorder on the fourth is too simple (yielding however a

lower bound on S0). What we rather expect to
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happen is a disordering of all sublattices, where short-range

correlations are created. Consider as an example a group of

eight cells (Fig. 9b) where four such loose spins, which are

nearest neighbors on their sublattice, have been turned around:

now it is a spin of the other sublattice in the "antiferro-

magnetic" plane which is loose and can be turned around. A

similar degeneracy exists for spins in the "ferromagnetic"

planes of the A3B structure (Fig. 9c). It is not clear to what

extent the above simple estimates of S0 and m0 are modified by

this more complicated disorder. The Monte-Carlo results at T+0

for H=Hcl are extremely close to m=1/4, however; thus the

extrapolation of the phase boundaries between the disordered

phase and the two-phase regime ending at the point T=O, cB= 3/8

may have some significance. We did not attempt to extrapolate

the phase boundaries between the ordered phases and the two-

phase regimes, however. Studying the low-temperature behavior

by Monte Carlo methods is rather delicate, as the convergence

may be strongly slowed down for T 0 0, and metastable states

can hardly be distinguished from stable ones.

Fig. 10 presents an example for the results on order

parameters obtained in the present study. While the Cowley

short range order parameter -0 1 increases monotonically with

concentration cB up to cBa 1/2 at high temperatures,

it develops a minimum at lower temperatures

around c B=3/8 . This behavior also reflects the fact that in

the vicinity of this concentration there is much less ordering

tendency, as noted above from ground-state considerations. At

lower temperatures and stoichiometric compositions a, soon

reaches its saturation values (A., stru.cture: =-I1/3, AB str%.c-
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ture: a 1=-1/3), while it varies linearly with cB in the two-

phase regions. At the stoichiometric compositions, the tem-

perature variation of the order parameters is found to be

neither very sensitive to the model nor the approximation,

as Fig. 10 shows, and even experimental data for the Au 3Cu-

system /33/ are in rough agreement with the calculation. How-

ever, from the phase diagram of the present model (Fig. 5)

it is already clear that it cannot represent the

experimental Au3Cu system. Thus we suggest that one can check

both the accuracy of a model as well as the accuracy of

approximations when one studies off-stoichiometric compositions.

Fig. 11 shows the concentration dependence of ordering

energy and long range order parameter. It is seen that the

ordering energy changes very little throughout the ordered

regime and even above the maximum transition temperature it

is close to the variation in the ground state. This is again

a reflection of the fact that both energy differences and

entropy differences between the various ordered phases are

very small, and hence the entropy of the phases needs to be

calculated very accurately, if one wants to make reliable

predictions about the ordering behavior of this model system.

This is probably the reason why many approximate methods give

such unreliable results.

At low temperatures, the long range order parameter of the

A3B structure has its maximum at the stoichiometric composition,

but at higher temperatures it occurs at cB = 0.26 rather

than at cB=0.2 5 , consistent with our finding that the maximum

transition temperature cf this phase occurs at C.U0.265 'Fic. 7).
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We find that the transition to the disordered phase occurs

typically when the long range order parameter has decreased

to roughly 0.6 to 0.7. This may perhaps be understood

as coming from "frustration". The system can not maintain

itself in a state of long range order - there are too many

opportunities for spins to flip. This results in a complete

break-down of the ordered state and thus in a first order

transition.
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4. Results for a Next-Nearest Neighbor Alloy (a=-0.25)

Recently Sanchez and de Fontaine /4/ applied the CV method

to obtain the temperature-composition phase diagram of the alloy

at a=-0.25. This was our motivation to perform canonical ensemble Monte

Carlo calculations at cB=O. 2 5 and cB=O. 50. We find the transitions

to be of first order, in agreement with the CV prediction, and

estimate k T /!JI=1.116 + 0.002 (c =0.25), while the CV resultB c B

is kBTc/IJI=1.17 /4/. A similar deviation of only a few

percent occurs for cB=O.5 where we get kBTc/IJI=1. 4 31 + 0.004,

while the CV result is /4/ k T /IJI=1.50. Thus again the CV
B c

method is quite reliable for the stoichiometric compositions.

Preliminary results at CB=O.33 indicate that the CV

method is less reliable at non-stoichiometric compositions also

in this case.

Since a fairly complicated phase diagram has been

predicted (Fig. 12), a more complete investigation of this

system by Monte Carlo methods would be desirable, but this is

beyond the scope of the present investigation.
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We have given a detailed description of the Monte Carlo

method for the study of alloy phase diagrams, order parameters

etc., and described results for the face-centered cubic lattice

with nearest neighbor interaction in detail. We have found

that the phase diagram obtained from approximate analytic

methods are generally not very reliable. Only the cluster

variation method with tetrahedral clusters has yielded both

transition temperatures and order parameters reliably (i.e.,

within an error of at most a few percent), for stoichiometric

compositions. Other approximate methods used so far are quite

inaccurate even then. The present results are therefore a

challenge to develop better theoretical methods for the

calculations of phase diagram of these "frustrated-type"

systems. Further work on the cluster variation method with

higher order clusters also seems very desirable. Needless to

say we have only considered a very simple model, which is not

expected to represent faithfully any real alloy system - but

more complicated realistic interactions are not likely to

make the currently available approximation methods any more

reliable. The methods are insufficient in our case because

the treatment of configurational entropy of the alloy is too

crude, and this fact will likely also be true in the more

complicated cases. Computer simulation methods do appear to

yield numerically accurate information on both short and long

range order parameters and the phase diagram, but they are

expensive to use because of the large amounts of computer time

required; and the computations have to be repeated for each set
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of parameters. Nevertheless, in future work we hope to apply

the same methods to more complicated models whicn are closer

to real systems. As a first step in this direction we have

given a few results for an alloy with a next-nearest neigh-

bor interaction.

Some conclusions which emerge from this study may stimulate

more experimental work on ordering alloys. We have found that

the behavior of stoichiometric alloys is rather insensitive

to the parameters of the model, and to the accuracy of the

approximations used. On the other hand, observing concentra-

tion dependences of long- and short range order parameters

(Figs. 10,12) would be much more sensitive tool for checking

whether a model faithfully represents a real system.

There have also been developed recently some rigorous

methods for describing the phase diagram of complex alloy

systems at low temperatures. 34,30 Unfortunately these methods

are restricted at the moment to very low temperatures and

require that the degeneracy of the ground state be finite.

As we have noted this is not the case at the "interesting"

values of the field and of the composition at least for the

model studied here. Fortunately this restriction may soon be

removed.

Acknowledgements

We wish to thank D. Mukamel and J. Slawny for very useful

discussions. J.L.L. would also like to thank Prof. N. Kuiper

for his hospitality at IHES where part cf this work was done.

We thank D. de For-.ine and R. Kikt,-hi _rt-el. -



References

/l/ For a review and general references, see D. de Fontaine,

in Solid State Physics, edited by H. Ehrenreich, F. Seitz

and D. Turnbull (Academic, New York, 1979), Vol. 34, p. 73.

/2/ M.J. Richards and J.W. Cahn, Acta Met. 19, 1263 (1971).

/3/ S.M. Allen and J.W. Cahn, Acta Met. 20, 423 (1972);

Scripta Met. 7, 1261 (1973).

/4/ J.M. Sanchez and D. de Fontaine, Phys. Rev. B21, 216 (1980).

/5/ P.:.. Clapp and S.C. Moss, Phys. Rev. 171, 754 (1968);

764 (1968); 172, 418 (1968).

/6/ D.-H. Wu and R.A. Tahir-Kheli, J. Phys. Soc. Japan 31,

641 (1971).

/7/ C.M. van Baal, physica 64, 571 (1973),

/8/ D. de Fontaine and R. Kikuchi, NBS Publication SP-496,

999 (1978).

/9/ R.C. Kittler and L.M. Falicov, Phys. Rev. B18, 2506 (1978);

B19, 291 (1979).

/10/ For a recent introduction to this method see K. Binder (ed.),

Monte Carlo Methods in Statistical Physics (Springer, Berlin-

Heidelberg-New York, 1979).

/11/ M.K. Phani, J.L. Lebowitz, M.H. Kalos and C.C. Tsai,

Phys. Rev. Lett. 42, 577 (1979); M.K. Phani, J.L. Lebowitz

and M.H. Kalos, Phys. Rev. B (1980).

/12/ K. Binder, Phys. Rev. Lett. (1980).

/13/ P.W. Anderson, Phys. Rev. 79, 705 (1950).



/14/ J.M. Luttinger, Phys. Rev. 8-1, 1015 (1951).

/115/ A. Danielian, Phys. Rev. Lett. 6, 670 (1961); Phys. Rev.

133A, 1344 (1964).

/16/ S. Alexander and P- Pincus, J. Phys. A13, 263 (1980).

/17/ 0.J. Heilmann, J. Phys. A13, 1803 (1980).

/18/ W. Shockley, J. Chem. Phys. 6, 130 (1938).

/19/ Y.Y. Li, J. Chem. Phys. 17, 447 (1949).

/20/ N.S. Golosov, L.E. Popov, and L.Y. Pudan, J. Chem. Solids

34, 1149 (1973); 34, 1159 (1973).

/21/ R. Kikuchi and H. Sato, Acta Met. 22, 1099 (1974).

/22/ R. Kikuchi, J. Chem. Phys. 60, 1071 (1974).

/23/ G.D. Mahan and F.H. Claro, Phys. Rev. B16, 1163 (1977).

/24/ L.D. Fosdick, Phys. Rev. 116, 565 (1959).

/25/ W. Selke and M.E. Fisher, Phys. Rev. B20, 257 (1979);

E.B. Rasmussen and S.J. Knak-Jensen, preprint.

/26/ R. Kretschmer and K. Binder, Z. Physik B34, 375 (1979)

/27/ Y. Saito, preprint.

/28/ M. Hansen, Constitution of Binary Alloys, McGraw Hill

Book Co., New York (1958).

/29/ K. Kawasaki, in Phase Transitions and Critical Phenomena,

ed. by C. Domb and M.S. Green (Academic, New York 1972),

Vol. 2, p.4 4 3.

/30/ J. Slawny, J. Stat. Phys. 20, 711 (1979).



/31/ For a more detailed discussion of this problem, see

D.P. Landau and K. Binder, Phys. Rev. B17, 2328 (1978).

/32/ J.M. Cowley, Phys. Rev. 77, 669 (1950).

/33/ D.T. Keatinq and B.E. Warren, J. Appl. Phys. 22, 286

(1951); see also S.C. Moss, J. Appi. Phys. 35, 3547 (1964).

/34/ -".A. Progov and Y. Sinai, Teor. Math. Fiz. 25, 358 (1975);

26, 61 (1976). W. Holsztynski and J. Slawny, Comm. Math.

Phys. 61, 177 (1978).

/35/ J. Slawny, private communication.



Fiqure Captions

Fig. 1: a) One cube of the fcc lattice shown for the AB

structure of CuAuI-type, A-atoms being represented

as "spin u-.", B-atoms as "spin down"; b) two cubes,

A2B 2 structure; c) one cube, A3B structure of Cu 3Au-

type; d) two cubes, A 3B structure of Al3Ti-type;

e) six cubes, A2B structure of Ni2 V-type. Numbers in

case a) indicate the sublattice labelling.

Fig. 2: Internal energy (upper part), order parameters

(middle part) and magnetization (lower part) of

the nearest-neighbor Ising antiferromagnet plotted

vs. field at kBT/IJI=1.5. Both data from canonical

(C) and grand canonical (GC) simulations are

included. Points with arrows denote states with

unstable ordering relaxing towards the disordered

phase. The estimates for the three critical fields

H' ,H", and H are also indicated.ci ci Hc

Fig. 3: Internal energy (upper part), order parameters (middle

part) and magnetization (lower part) of the nearest-

neighbor Ising antiferromagnet plotted vs. field at

kBT/IJI=1.7.

Fig. 4: Internal energy (upper part), order parameter mA B

(middle part) and magnetization (lower part) of

the nearest-neighbor Ising antiferromagnet plotted

vs. field at kBT/lJI=2.O.

Fig. 5: Phase diagram of the nearest-neighbor face-centered

cubic lattice in the temperature-composition plane

(upper part) and in the temperature-field plane.

Ordered structures are indicated. All transitions

are found to be of first order. Open circles represent

the estimates for the critical fields H'1 ,H 1" and H

mentioned in the text.



Fig. 6: Temperature variation of the magnetization (upper

part), order parameter A (middle part) andA 3B
internal energy (lower part) for various values

of the field. Broken curves indicate metastable

states.

Fig. 7: Temperature-composition phase diagram of the fcc

binary alloy with nearest-neighbor interaction.

Full curves are the prediction of the cluster

variation method in the tetrahedron approximation
/22/. Note that in the pairwise interaction model

all phase diagrams are symmetric around cB=1/ 2 ..

Fig. 8: Variation of the orderinq energy at T=O with

composition (a) /2,3/ or field (b). The various

ordered structures (or mixtures of them) are

indicated.

Fig. 9: Configurations of neighboring cells in the A3B

structure where spins become "loose" at the critical

field Hcl* For explanations cf. text.

Fia. 10: Variation of the Cowley short range order (SRO)

parameter a 1 with composition (upperpart) and plot

of O1 and long range order parameter (LRO) t vs.
temperature at c B=1/4 (lower part). Full curves are

the MC results, broken curves the CV method (Ref.

20), dash-dotted curve the Kittler-Falicov theory

(Ref. 9), open circles are experimental data for

AuCu 3 (Ref. 33).

Fig. 11: a) Ordering energy of the fcc nearest neighbor alloy

plotted vs. composition at two temperatures. b) Long

range order parameter plotted vs. composition at three

temperatures. Dots denote Monte Carlo results obtained

from GC calculations. Broken straight lines indicate

the two-phase regime.



Fig. 12: Phase diagram of the fcc next nearest neighbor

alloy (a=-O.25) according to the cluster variation

method /4/. Points denote present Monte Carlo

results for the transition temperatures at c,=1/4

and cB=I/2.

Bi
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