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~A comparison of the optical transform versus the hardware Fourier

~transform was made for two input functions: a rectangular aperture and

',' a six-pointed star design. The optical transforms were modified using

. . sharp and smooth lowpass as well as highpass filters. The results were

i compared against those obtained using the array processor hardware at

".: the Brooks Air Force Base, School of Aerospace Medicine. The "ringing" -

~observed in the lowpass filtered results of the array processor was

simlated by the optical methods, However, certain asymetries in the

"-hardware rnginr data were not observed optically, A discussion of the

) ringing and how to eliminate it is also presented.
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I. INTRODUCTION

The main purpose of this research is to compare the Fourier transform

and its inverse filtered Fourier transform obtained with the Digital Image

Processing (DIP) hardware system located at the School of Aerospace

Medicine, Brooks Air Force Base, San Antonio, Texas against the optical

version of the transforms obtained at the Virginia Tech coherent optics

laboratory. The Air Force test patterns consisted of a rectangular aper-

'.1 ture and a six-pointed star design. They were both recorded on 35 mm

transparencies, and provided to us by Dr. Ralph G. Allen, Director of

the Laser Effects Branch (Division of Radiation Sciences). The DIP

system consisted of: an Analogic array processor on-line to an Aydin

monitor and a PDP-11-32 mini-computer system. Both the rectangular

aperture and six-pointed star design were digitized (512x512) pixels and

entered into the Analogic array processor which performed the hardware

Fourier transform (HFT). This UPT was then operated on with lowpass and

highpass Modulation Transfer Functions (MTF); next the inverse hardware

Fourier transform (I7F ) was performed. The Aydin monitor was used to

display the MYT and the IHFT. The results were photographs of the Aydin

monitor screen d~splays and recorded on 35 mm transparencies. It is this

set of transparencies including: the original input .designs (rectanuglar

aperture and six-pointed star); the HFT and IHFT that we wished to compare

against their optical equivalents. In some cases we were able to duplicate

the hardware results using optical methods. In those instances where

differences in the two methods were observed we have recorded the

differences with explanations for them.
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It is important to test the DIP system Fourier transform capabilities

against the optical (traditional) methods. The DIP system could be very

useful for on-line filtering (Modulation Transfer Manipulation) of images

and rapid analysis.

II. OPTICAL FOURIER TRANSFORMS: OFT

A two dimensionalFourier transom can be performed using a convergent

1lens and coherent illumination of the input pattern . Various optical

set-ups can be implemented to carry our the OFT. For this experiment we

2have chosen a converging beam approach rather than the classical 2-f

3configuration . Both methods are equivalent for our purposes as is shown

in ref. (2). Figures (1, 2) show the converging beam schematic used to

obtain the OFT. The high and lowpass spatial frequency filters were

located on glass microscope slides as either a black dot (highpass) or a

black annulus (lowpass) and positioned in the Fourier transform plane via

micrometers with X-Y movements. Since the exact MTF cut-off frequencies

used in the IEFT are unknown for the transparencies provided to us, we

have tried various optical pass filters in order to simulate these results.

A. Rectangular aperture Fourier transform theory

1,2The analytic treatment of the OFT can be outlined as follows

Given a rectangular aperture whose amplitude transmittance is given by

x y=~ .y rect (1=0-)  rect (-) (i)

x y

.> /., -,. -..:?... - -.. .- .--?,,.: .. .. ..- --.-.-- ;,- . .--i-. ? . - i. . -. .. ---2-- ,
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where

1 IxI Ixo I 1

rect (x) rect(x o) =

0 elsewhere 0 elsewhere

- and similarly for rect (yo ). Lx, Ly represent the aperture widths in the

x 0 and y directions, respectively. Assume that the pupil function

P(X yo) - 1 since X2 + o2 < where a = radius of the lens; also that

the amplitude illumination is unity (i. e. A-l). Then in the Fresnel

approximation the field distribution in the Fourier transform plane

g2 (xf, yf) is given 
by:

A exp [i 1(x2 + fy

g2 (xf, yf) 
id d

-m-
k 2 2

-exp fi . (xf + yf)l F~t(co ' yo)]

iif

where A E 1 (amplitude transmittance),

P E 1 (pupil function)

f - d (input plane is assumed to be next to the backside of the lens;

f x d). f is the focal length of the lens.

The Fourier transform of the transmittance function t(xo,y o
) is given

-3-
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by

Fhere y LLy sine (L f) sinc (Lf) (3)

x f yf
where: fx fy

are the spatial frequencies, some of which will be passed via the

previously mentioned low and highpass filters. We now get that the

Fourier transform of the rectangular aperture is given by

k 2 2exp[i yf (xf + yf)]
2 £2(Xf, Yf) if L Ly sinc (Lxf sinc (L f y) (4)

The photograph representing this Fourier transform is, however, a

square-law detector. That is,it records the intensity distribution of

(4) given by:

22L L x L yS- L 2  2 xXf 2 yf
.xf, Yf) "..Y.sA.c.Z." -) sinc - -)c

S2e2 sc XXf Xf (5)

B. Star Aperture Fourier transform theory

The six-pointed star can be treated as a two dimensional triangle

function. That is, by using the following Fourier transform properties:

(a) Rotation: f(r, e + 6) - F(w, + eO0)

(b) Distributive: F { f1 (x,y) + f 2 (x,y)} F{fI(x,y)} + F{f 2(x,Y)}

-4-
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(c) Scaling: f(ax, by) 4-+ 1 fx

.

(d) Translation: f(x-xo, y-yo) 4-' F(fx, f ) exp [-i2w(f x + f yo)]O
0 0y x 0 yO0

The triangle function tri(x), tri(y) is defined as:

tri x) -
0 elsewhere

tri (Y) - - [y[ ly[ I<
elsewhere

Equation (2) for the Fourier transform and its associated conditions

for the pupil function, unit amplitude and f-d can be applied to the two-

dimensional triangle function where now we let t(x 0 y o ) be the amplitude

transmittance.

t(x,yo ) =tri (xo) tri (Y.) (6)

then the Fourier transform becomes

k 2 2
A exp [i ?(xf + Yf)] F {t(X (7)

g2 (xf'Yf) = ixf

where:

F (t(Xoyo)} m sinc2 (f x sinc2 (f ) (8)

-5-
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xf
and again: f y

are the spatial frequencies. f = focal length of the converging lens;

X - wavelength of Helium-Neon laser; xf and yf are coordinate positions

in the Fourier transform plane. Since we measure (photograph) the

intensity distribution of g2(xfyf) we can neglect the quadratic phase

factor that appears in eq (2) and (7). The resulting intensity for the

triangle function becomes

2 2 2I rj(xfsyf) {Sinc (f Sinc (fy)} (9)

C. Lowpass filter "ringing"

It is noticed that considerable amount of "ringing" and some

blurring of inverse Fourier transform images occurs when sharp lowpass

frequency cut-off filters are used. This effect is seen in the resLlts

of the Analogic array processor IHFT images. We too were able to

simulate this "ringing" with our sharp lowpass optical filters. A

sharp lowpass filter (SLPF) can be represented by a transfer function

H(uv) in the Fourier transform plane, where

1 r(u,v) < r0= oV (10)
0 r(uv) > r

r is the radius of the rectangle function. The complete function is0

obtained by rotating the rect function about its axis. This generates an

"ideal" lowpass filter with sharp edges. The radius of the filter is

-6-
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given by

r -u
2 +o2 I11

This circle super-imposed on the Fourier transform plane (concentric

with it) provides the interior zone for passing the low frequencies. As

r is increased higher frequencies are passed; eventually r is so large

that all frequencies pass.

The "ringing" phenomenon can be discussed in terms of the convolution

theorem. In the frequency plane we have that

G(u,v) -H(u,v) F (u,v) (12)

where:

H(u,v )- transfer function and F(u,v) - Fourier transform of the input

function f(x,y). Using the convolution theorem one gets

S g(x,y) = h(x,y) * f(x,y) (13)

where

g(x,y) = output function and h(x,y) " inverse Fourier transform of a

the transfer function. Since the transfer function is the rectangle

function its inverse is the sinc function. Therefore, the convolution of

this sinc function with f(x,y) will yield a series of rings depending on

-7-
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i the radius of h(u,v). The number of rings produced is inversely proportional

to the radius of H(u,v). For lowpass filtering more ringing occurs as the

radius gets smaller. When the radius of H(u,v) is large enough to include

all the high frequencies the ringing disappears; but so does the lowpass

filtering effect.

D. Elimination of "ringing"

It is possible to lessen or remove the ringing in lowpass filtering.

The method is basically one of smoothing the edges of the lowpass filter.

Special filters can be constructed for this purpose. We shall give three

examples of such filters.

(1) Butterworth loypass filter (BLPF)

H(u,v) 1 2n
1 + [r(u,v)/ro] (14)

0

where the order of the transfer function H(u,v) is given by n; r is the0

cut-off frequency. By rotating the H(u,v) function about its axis one gets

the three-dimensional form.

(2) Exponential lowpass filter (ELPF),

H(u,v) exp - [r(u,v)/ro n  (15)

where n controls the rate of decay.

-8-
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(3) Trapezoidal lowpass filter (TLPF)

'5,' 1 r(u,v) < r

H(uV) r [r(u,v)-rl] r < r(uv) < r((ro0'r I1) 0

0 r(u,v) > r

The three examples given above (BLPF, ELPF and the TLPF) are, in effect,

smoothing the edge of the lowpass filter by allowing a small portion of

the higher frequencies to pass. This help to eliminate both the ringing

and blurring.

.%-9
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III. EXPERIMENTAL RESULTS

Shown in figures (3 - 8) are the results of the comparison between

the hardware Analogic array processor Fourier transforms and those

obtained using optical Fourier transform methods. In order to better

compare the two methods the 35 mm Air Force transparancies (negatives)

were converted into positives as ours were before printing the hardcopy

photographs. In this way the backgrounds for both cases is the same (i.e.

dark).

Figure (3) shows the Air Force results obtained for the square aperture

input using the Analogic array processor. Figure (3b) is the HFT (hard-

ware Fourier transform) of the square aperture in (3a). This result is

consistent with its optical counterpart OFT (optical Fourier transform)

as shown in fig. (4b) for the square aperture input (4a). Only a slight

scale size difference is observed due to the smaller square used in (4a).

The slightly smaller square was used in the optical set-up in order to

utilize the center of the lens and thereby eliminate possible aberrations.

Figure (3c) shows the IHFT (inverse hardware Fourier transform) of the

lowpass filtered Fourier transform shown in (3d). The optical comparison

is shown respectively in figure (4c) and (4d). Some differences are

observed in these two methods and are as follows: (1) more internal

"ringing" is shown in IHFT (3c) than the 1OFT (4a). This could be due to

the fact that when photographing (4c) the optical lOFT the film quickly

saturates in intensity at the center, thereby giving the "ringing" less

contrast. However, in the IHFT the displayed results were presented in

the logarithmic scale thereby enhancing the "ringing". Visually we observed

the same "ringing" phenomenon. The asymmetry is the "ringing" shown

in figure (3c) IHFT was, however, not observed. We believe this could be

-10-
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* due either to a hardware or software problem. Another possibility is

when the square aperture was digitized for input to the Analogic array

processor it is possible the illumination of the 35 mm transparency was not

uniform.

The IOFT (inverse optical Fourier transform) of the highpass filter

*shown in fig (5d) is presented in (5c). Again "ringing" and harmonic

mode oscillations of the "ringing" are observed in the optical case. The

hardware IHFT filter shown in fig (5a) is for the highpass filter in (5b).

Although some edge "ringing" is observed we do not see the same interior

mode "ringing" observed optically. We believe that either fig (5a) is not

the actual lEFT of (5b) or the exposure of (5a) was not presented on a

logarithmic scale as was done for fig (3c) in the lowpass IHFT.

The six-pointed star aperture and its hardware Fourier transform are

shown in fig (6a) and (6b) respectively. The lowpass IHFT of the star is

shown in fig (6c). Again one observed the "ringing" as well as some

asymmetry in the "ringing" in the inner-most rings. The optical results

to compare against the star are shown in fig (7). In this case a clear

cut-out of a hexagon was used to simulate the star shwon in fig (6a). This

hexagon fig (7a) via the Fourier theorems (discussed earlier) should

replicate to a good approximation fig (6a). It was also easier to fabricate

* accurately than a six-pointed star. The optical Fourier transform of (6a)

is shown in fig (6b). The inverse optical Fourier transform for the low-

pass filter is given in fig (7a). "Ringing" is observed as before and due

* to intensity saturation the central "ringing" observed visually did not

photograph well. Again, we did not observe any asymmetry in the central

region as seen on the logarithmic scale in fig (6c). We believe, as before,

that this asymmetry is the result of non-uniform illumination; hardware or

4 software problems in the array processor systemi
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The high and lowpass optical filters used were proportionaly the

same size as those used in the hardware analysis. We tried to use

(roughly) the same frequency cut-offs in both cases. In addition we tried

to eliminate observed "ringing" by using smooth high and lowpass optical

filters instead of sharp ones. Figures (8a) and (8c) show the inverse

Fourier transforms after using the smooth filters on (8b) and (8d)

respectively. One observes that the "ringing" nearly disappears. These

filters were produced by allowing a slight blurring of the boundary between

the opaque and transparent regions on the glass filter slide. The results

obtained are discussed further in the next section.

'-12-
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IV. DISCUSSION AND CONCLUSION

The comparison of the optical Fourier transform against the Analogic

array processor Fourier transform of the square and star aperture showed

that both similarities and some differences were present. We shall discuss

each separately and draw some conclusions.

A. Simularities

The Fourier transforms of both the square and star were essentially

the same for the lIFT and OFT methods. There are advantages in the hard-

ware method when displaying the logarithmic of the intensity rather than

a photograph of the Fourier/or inverse/ transform. Both methods also

displayed "ringing" in their inverse low and highpass filtered transforms.

The relative size of the low and highpass filters was about the same for

both methods.

B. Differences

The amount of "ringing" varied in both methods. Here the "ringing"

could be better observed when displayed by the hardware (logarithmic)

method. Variations in the amount of "ringing" really depend on the exact

frequency cut-off for the low and highpass filters. The precise cut-offs

could not be easily matched since we were not given any data on the

hardware parameters. The important point is that for the sharp cut-off

frequencies "ringing" was observed in both cases. However, an important

difference is the observed asymmetry in the "ringing" in the hardware

method. This asymmetry was not observed at all in the optical method.

-13-
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Some conclusions can be drawn from this comparison. The "iringing"

observed is to be expected based on the so-called Gibbs phenomenon. The

error due to the Gibbs "ringing" depends on where one truncates the

frequency spectrum before performing the inverse Fourier transform. The

inclusion of more high order frequencies greatly reduces the "ringing"

When performing both low and highpass filtering the "ringing" can be

minimized by using a "smooth" filter as discussed earlier in this report.

For example, an array processor could program into its filtering an

exponential decay curve which would pick up small amounts of high frequen-

cies.* The asymmetry in the "ringing" should be further studied to deter-

mine its exact cause. This requires the array processor which we do not

have in our laboratory. There are pros and cons for each method. For

example, the optical Fourier transform due to its parallel processing is

faster than the array processor, given an input transparency one can

readily get its optical F. T. using a rather inexpensive lens. An array

processor would be a considerably more expensive method to get a simple

F. T. of an image. On the other hand, manipulation of the Fourier trans-

form plane with various Modulation Transfer Functions (so long as they

can be obtained analytically) is easier (and more accurate) to perform

with the array processor. Finally, the DIP system is a potentially power-

ful and important digital image processing system capable of many detailed

Fourier transform studies. It should, however, be further compared against

optical methods as indicated by this preliminary research study.

-14-
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Analogic Array Processor Results
(Air Force Hardware)

(a) (b)
Square aperture input Fourier transform of
(Air Force) square aperture (a).

Wc (d)

Inverse Fourier transform Lowpass filter used
of loypass filtered FT on Fourier transform
(b). (b).

Figure (3)
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Optical Processor Result's

-Uq

(a) (b)

. Square aperture input Fourier transform of
, (Virginia Tech.) square aperture (a).

Cc) (d)
Inverse Fourier transform Lowpass filter used on
of lowpass filtered FT (b). Fourier transform (b).

Figure (4)
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Analogic Array Processor Results (a,b)
(Air Force Hardware)

- (a) (b)
Inverse Fourier transform Highpass filter used
of highpass filtered FT on Fourier transform
Shown in Fig. (3b). Fig. (3b)

Optical Processor Results (cd)

S .

(c) (d)
Inverse Fourier transform Highpass filter used
of highpass filtered FT on Fourier transformSS
shown in Fig. (4b). Fig. (4b).

,* Figure (5)
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Analogic Array Processor Results
(Air Force Hardware)

(a) (b)
Star aperture input Fourier transform of
(Air Force) star aperture (a)

-

(c) (d)

Inverse Fourier transform Lowpass filter used
of lowpass filtered FT (b). on Fourier transform

(b).

Figure (6)
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Optical Processor Results

(a) (b)

Simulated star aperture. Fourier transform of
simulated star aperture (a).

(C) -d)
Inverse Fourier transform Lowpass filter used
of lowpass filtered FT (b). on Fourier transform

":'" (b).

Figure (7)
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Optical Processor Results

(a) (b)

Inverse Fourier transform Smooth lowpass filter

of smooth lowpass used on FT shown in

filtered FT shown in Fig (7b) for simulated

Fig. (7b). star aperture.

.-

"--

(C) (d)

Inverse Fourier transform Smooth highpass filter

of smooth highpass filtered used on FT shown in

FT shown in Fig. (7b). Fig (7b) for simulated
star aperture.

Figure (8)

50 -23-

% I , .. \~ J. nverse$~ Fourie transform. 
.--. *..



FILMED

18

DTIC


