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ABSTRACT

Progress on real-time 1-D and 2~D spatial light modulators, optical systolic
array processors, optical image processing, and distortion-invariant pattern
recognition are reported. Our real-time spatial light modulator research con-
cerns the Soviet PRIZ device and bulk acousto-optic transducers. Novel features
detailed for the Soviet device include: wuniform and directional spatial filter-
ing and static image suppression or change detection. Systolic array processor
research includes a new frequency-multiplexed architecture, realization of
singular value decomposition and matrix decomposition algorithms. Optical image
processing and pattern recognition research received major attention. A new
class of nonlinear local operators including the Sobel operator were described
and demonstrated. New optical feature generation techniques for distortion-
invariant pattern recognition were developed. These included the generalized
optical chord transformation. Our primary distortion-invariant pattern recop-
nition research addressed synthetic discriminant functions with attention to
two new efficient calculation techniques. The performance of synthetic dis-
criminant functions for multi-class distortion-invariant pattern recognition,

and initial noise performance of this optical pattern recognition algorithm.
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1. INTRODUCTION

During the past year (September 1982 - September 1983), our research in
optical data processing for missile guidance has addressed many of the key
issues and aspects of this technology. This research includes: various new
devices and components, new system architectures, new high-speed general pur-
pose optical data processing techniques and systems, tests on new image data-
bases, basic studies of existing pattern recognition architectures, and new
pattern recognition techniques, algorithms, and concepts. As in past years,
we have been quite faithful in reporting our AFOSR sponsored research in vari-
ous journals and conference publications. Copies of the more relevant papers
we have published over the past year are included as the chapters of this

report to provide complete documentation of each aspect of our work.

In Section 2, we provide a summary and overview of our research progress
achieved during the past year. This work addresses six vital areas of optical
data processing research: (1) real-time spatial light modulators (Sections 3
and 4); (2) systolic array processors (Sections 5-8); (3) image preprocessing
(Section 9); (4) optical correlator analysis (Sections 10-11); (5) optical
feature extraction (Section 12); and (6) synthetic discriminant functions (Sec-
tions 13-15). Topic (1) concerns the vital issue of real-time devices; topic
(2) concerns the hottest topic in optical processing at present and a potentially
quite geéeral-purpose optical processor; topic (3) applies parallel optical tech-
niques t¢ achieve operations normally performed by digital image preprocessors;
topic (4) provides a better understanding of conventional optical pattern rec-
ognition architectures with attention to the performance obtained from these

systems; topics (5) and (6) address distortion-invariant optical pattern recog-

nition techniques (feature extraction and correlation).
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Details on the more salient results of our research are provided in Sec-

tions 3-15. 1In Section 16, we enumerate our AFOSR sponsored publications, the
presentations given on this research at conferences and seminars during the

past year, and the Master's and PhD students that this grant has supported.

During the past year, the principal investigator (PI) presented invited
talks on our AFOSR sponsored research at the following conferences: SPIE Inter-
national Conference (San Diego, August 1983), IOCC Conference (Boston, April
1983), and CLEO'83 Conference (Baltimore, May 1983). The PI also chaired con-
ference sessions and seminars and served on the organizing committees for the
following conferences and topics: SPIE (Robotics), CLEO (Lasers and Light

Modulators), and IOCC (Optical Computing).
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2. SUMMARY AND OVERVIEW

Sections 3-~15 detail our recent research on seven diiferent aspects of
optical data processing. Brief highlights of each of these sections and topics

follow below.

2.1 REAL-TIME SPATIAL LIGHT MODULATORS

Real-time spatial light modulators are the primary elements necessary for
the realization of optical pattern recognition systems. Our research during
the past year on two different types of these devices follow. The details of

this work are provided in Sections 3 and 4 of this report.

2.1.1 Soviet PRIZ Light Modulator (Section 3): A unique opportunity arose for

us to conduct a first-hand four month test and evaluation of a Soviet spatial
light modulator (the PRIZ). Section 3 is the last paper on this topic. It sum-
marizes our research, the performance of these devices, their applications, and
their unique features (these include automatic edge enhancement, directional
edge enhancement, and dynamic image subtraction). Further U.S. research is
necessary on these devices to facilitate fabrication of equivalent U.S. com-

ponents and to allow full understanding of the operation of these new devices.

2.1.2 Acousto-Optic Light Modulators (Section 4): The most commercially avail-

able, proven and reliable spatial light modulators are acousto-optic cells. A
summary of these elements, the basic architectures employing them, and several
new architectures and applications employing these components are reviewed in

Section 4. These include systems to process long codes and systems less suscep-

tible to various acousto-optic device shortcomings. These elements are, in

U




general, most appropriate for signal rather than image processing and are quite

attractive for optical systolic processor fabrication.

2.2 OPTICAL SYSTOLIC ARRAY PROCESSORS (SECTIONS 5-8)

One of the most general-purpose and flexible optical data processing tech-
niques is the optical systolic array processor. These optical architectures
perform matrix-vector and various linear algebraic operations optically with
high-speed, parallel processing, and very high computational rates possible.
Sections 5-8 detail our recent research in this area. This work is intended to

develop an optical systolic processor for air-to-air missile guidance and control.

2.2.1 Frequency-Multiplexed Optical Systolic Processor (Section 5): A new

optical systolic array architecture using acousto-optic cells was devised and
described. This system employs frequency-multiplexing to represent 2-D data.
We refer to it as a frequency-multiplexed acousto-optic systolic array proces-
sor. Specific attention was given to: a new matrix inversion and linear alge-
braic equation solution algorithm, a new technique for handling bipolar data and
new matrix-matrix and matrix-matrix-matrix multiplication algorithms. Primary
attention was also given to the efficient flow of data and operations on such

a processor and to the demonstration that this one system could achieve all of
the basic operations required in Kalman filtering. The method that we are pur-
suing for our air-to-air missile guidance problem employs a Kalman filter. We

are working in conjunction with AFIT researchers in this area.

2.2,2 Direct Matrix Solutions (Section 6): Optical systolic array processors

allow direct matrix decomposition to be efficiently performed. Optical matrix-




vector processors cannot efficiently perform this operation. We were the first

to address this topic and to note that the major computational load in a direct

solution was the matrix decomposition itself. We thus considered techniques to

achieve matrix decomposition on our frequency-multiplexed optical systolic array
processor. We detailed how to realize the LU and Cholesky decomposition on our

optical processor. This included a new parallel LU algorithm and full detailing
of the flow of data and operations in the optical version of this algorithm.

New attention to a parallel algorithm was required for efficient realization of

this technique on an optical processor.

2.2.3 Optical Singular Value Decomposition (Section 7): Singular value decom-

position is an attractive (and in many cases an essential) technique for solving
matrix equations, inverting matrices and for singular matrix processing. We
detailed one technique to achieve this operation on a general matrix-vector pro-

cessor.

2.2.4 Guidelines (Section 8): Considerable interest and many publications

exist on optical systolic processors. However, much of the published work is
not properly directed. In this section, we note that attention should be given:
to N3 problems, to architectures that achieve flexible performance, to architec-
tures that do not require parallel output 2-D detector arrays, to architectures
that avoid optical system sources and to systems that can be easily fabricated

and realized today.

2.3 OPTICAL IMAGE PROCESSING (SECTION 9)

We distinguish between optical image processing and optical pattern rec-

ognition. In image processing, the input to the system is an image and so is
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the output (usually an enhanced image). Our new research includes the first
demonstration of an optical nonlinear local operator. Such operations are
normally performed digitally and used for image preprocessing or image proces-
sing. We describe two optical architectures to achieve arbitrary nonlinear
local operators of large size with the parallelism and speed of optical systems
fully utilized. These architectures include correlators using multiple matched
spatial filters and computer generated holograms. The nonlinear local operator
we detailed and demonstrated was the Sobel operator. This edge-enhancement
operator is most attractive and necessary in infrared and multisensor image
preprocessing. Extensions of this new basic technique are possible and should

be pursued.

2.4 OPTICAL CORRELATOR ANALYSIS (SECTION 10)

Optical correlators are well-known and often used. In our work, we addressed
two potential error sources in optical correlators and especial.y in optical

correlators in which coefficient-estimation is the purpose of the optical ar-

chitecture. Those error sources considered include: finite space bandwidth
product and global rather than zero-mean data correlation. The first issue is
important when the statistical correlation features are optically estimated.
We show from the standard deviation of the crosscorrelation coefficient that
the error in the correlation estimate can be appreciable if the space bandwidth {
product of the image data is small. Major attention is given to the second '

possible error source, since it is not apparently well-known within the optics

community. Conventional optical correlators automatically suppress dc spatial
frequency data and thus correlate zero-mean data. This represents no problem if

the location of the correlation peak rather than the correlation peak value is




of major concern. When the correlation peak value itself is the parameter of
concern, then one must carefully distinguish between local and global zero-mcan
data being used, if one is to achieve an accurate correlation peak estimate.

Quantitative data on the magnitude of each of these effects is included.

2.5 BINARY IMAGE CORRELATIONS (SECTION 11)

As an extension of earlier AFOSR research, we experimentally considered the
performance of correlators operating on binary images. Such architectures are
attractive for digital and optical implementation, because of the reduced dv-
namic range that is needed. Using the peak-to-sidelobe ratio of the correlation
output, we show in theory and confirm by experiments that a binary correlator
(i.e. a correlator operating on binary or two-level image data) can provide

better performance than a correlator operating on grav-scale imagery.

2.6 OPTICAL FEATURE EXTRACTION (SECTION 12)

In this vear, we introduced a major new approach to distortion-invariant
pattern recognition: the hybrid combination of optical feature generation,
digital feature extraction and classification. 1In Section !2, we advance a new
feature set (the generalized chord distribution), a new optical technique to
produce these object features and the use of a digital classifier that maximizes
the Fisher ratio. This digital classifier is used for feature extraction and
for analysis of the optically generated feature outputs. We demonstrated this
technique for distortion-invariant multi-class pattern recognition and obtained
very promising results. We plan further work on this technique and other opti-

ally-generated features.
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2.7 SHIFT-INVARIANT DISTORTION-INVARIANT PATTERN RECOGNITION (SECTIONS 13-15)

All feature extractors (optical or digital) cannot accommodate multiple
objects or significant noise. Only correlators can achieve such multi-object

or shift-invariant performance with high noise or clutter present. The major

approach we have pursued for this purpose is the synthetic discriminant function
concept. In this case, a synthetic discriminant function (capable of distortion-
invariant pattern recognition) is synthesized off-line and then an optical
matched spatial filter of it is formed and used in an optical or digital cor-

relator.

2.7.1 Efficient Matrix Inversion (Section 13): Our off-line synthetic dis-

criminant function synthesis techniques require processing and inversion of

large matrices. In Section 13, we describe a new and most efficient technique
we devised to achieve this with significantly reduced storage and computations.
This is quite essential and necessary as the size of the synthetic discriminant

function training set increases. The algorithm we developed is essentially an

efficient matrix inversion technique with minimal data storage requirements,
Experimental comparison on tank images was used to verify the superiority of

this new off-line filter synthesis technique.

2.7.2 Synthetic Discriminant Function Performance (Section 14): We have ob-

tained a large four-class database of ship images with 36 different distorted

versions of each ship class available (taken at 10° intervals around the object

from a zero-degree attack angle). 1In Section 14, we provide quantitative data
on the first full test of our four different types of synthetic discriminant

functions on this 144 image data base. The performance obtained is quite




excellent with over 90% correct classification achieved for multi-class dis-

tortion-invariant pattern recognition.

2.7.3 1Initial Noise Performance (Section 15): In Section 15, we review our

synthetic discriminant function synthesis techniques and advance the first noise
performance of these algorithms. The performance obtained in the presence of
noise was excellent. These are perhaps the most impressive and comprehensive
pattern recognition results (optical or digital) obtained for distortion-

invariant multi-class pattern recognition,
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APPLICATIONS OF THE PRIZ LIGHT MODULATOR
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Reprinted from Applied Optics, Vol. 21, page 3846, November 1, 1982. )
Copyright © 1982 by the Optical Society of America and reprinted by permission of the copyright owner.

Applications of the Priz light modulator

David Casasent, Frank Caimi, M. P. Petrov, and A. V. Khomenko

The Priz light modulator suppresses input data at zero spatial frequency. can provide directional spatial fil-
tering. and can perform dynamic image selection or change detection. In this paper, we summarize the
Priz's performance and provide experimental confirmation of the above three timage processing applications

of this device.

l. Introduction

Optical signal processing and image pattern recog-
nition applications require real-time and reusable de-
vices on which the input data to be processed can be
recorded for subsequent optical processing. These vital
components in an optical processor are known as spatial
light modulators (SLM). Although many candidate
SL.M devices exist,! we will restrict our present atten-
tion to only one such device, the Priz light modulator. ¥
Priz is a Soviet acronym that translates as image
transformer. This modulator was proposed by a group
of researchers of A.F. loffe Physico-Technical Institute
(FTI) of the Academy of Sciences of the US.S.R. It
employs the same active element, i.e., the bismuth sil-
icon oxide (BSQO) type crystal, as the well-known Prom
modulator.®

At the Electrical Engineering Department of Car-
negie-Mellon University (CMU}, five Prom and Priz
units fabricated at the FT1 laboratory headed by Petrov
were tested and evaluated. One worker of FTI partic-
ipated in the research program (Khomenko).

In Sec. II, we review the structure of the Priz light
modulator and the motivation for its fabrication and
highlight the spatial frequency response data obtained
on the devices we evaluated at CMU. We then include
(Sec. II) a summary of the dynamic and optical per-
formance of the Priz. These data were obtained from
experiments performed in both the Soviet Union and
at CMU. We include several image and signal pattern

M. P. Petrov and A. V. Khomenko are with A. F. loffe Physico-
Technical Institute of the U.S.8.R. Academy of Sciences, 194021
Leningrad, U.S.S.R.; the other authors are with Carnegie-Mellon
University, Department of Electrical Engineering, Pittshurgh,
Pennsvlvania 15213,

Received 22 Aprif 1982,

0003-69:35/82/213846-09$01.00/0.

¢ 1982 Optical Society of America.
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recognition correlation examples of the use of the device
in Sec. IV. Because of the transverse linear electrooptic
effect used in the Priz to modulate read light, it exhibits
three unique features that are of use in various image
processing and pattern recognition applications. These
include: suppression of dec and low spatial frequency
data as well as directional filtering of input spatial
frequencies oriented in selected angular directions (Sec.
V) and a quite unique feature referred to as dynamic
image selection in which the device responds only to
changes in the input image data (Sec. IV). Our sum-
mary and concluding remarks follow in Sec. VII.

Il. Operation of the Priz

The Prom light modulator? consists of a BSO crystal
~20 X 20 X 0.4 mm with Parylene insulating layers and
transparent electrodes on the large faces. In operation
the spatially modulated data to be processed are imaged
or scanned onto the device in Ay write light (350-450
nm). Photocarriers are generated in the photocon-
ductive BSO, and a spatially modulated charge layer is
produced within the BSO. When the device is illumi-
nated with a uniform read light beam at A, (usually 633
nm), the Ay light emerging from the device is polariza-
tion modulated spatially with an amplitude of modu-
lation that varies spatially in accordance with the
original Ay input light or data pattern. This Ay mod-
ulation occurs by the linear-longitudinal electrooptic
or Pockels effect. The polarization modulation can be
converted to amplitude modulation when a crossed
analyzer is placed behind the modulator.

In the Priz light modulator,” ® a [110] or [111] cut
BSO crystal is used rather than the {100] cut crystal
used in the Prom. Other proprietary fabrication
techniques are employed, but the issue of major im-
portance is that with these different crystal cuts, the
device now modulates Ay light by the transverse rather
than the longitudinal electrooptic effect. The spatially
varying Ay light distribution is still incident on the
crystal’s large faces collinear with the applied electric




field direction, and the spatially varving charge laver
parallel to the crystal’s large faces is still induced.
However, the transverse component of this field is what
is used to provide the spatial modulation of the Ap
light.

The Prom exhibits low diffraction etficiency n and a
sharp n ~ 1/f' decrease in usable output light intensity
at high spatial frequencies f.!" If we assume that the
sine wave electric charge grating with amplitude a,, in-
duced during image writing in the Prom is infinitely thin
and that it exists at the crystal-dielectric interface, the
phase modulation vs spatial frequency is described
by!!

A= —— 2_”" . Y

U\ ofve, coth2rfd, + ¢ coth2afd,)

where ¢, and ¢, are the relative dielectric constants of
the dielectric layer and the BSO crystal, respectively,
dy and d, are the thicknesses of these lavers, and (' .
is the halfwave voltage of the ¢rystal. Equation (1)
indicates that when f increases at f = ud,, coth2wfd,
~ | and coth2nfd. ~ 1, and thus Ay decreases « 1/f.
Since 7 « (Ap)7, Eq. (1) predicts n o 1/f~. However, in
experiments a sharper (n « 1/f%) dependence was ob-
served. This was attributed to the fact that. in the
process of image writing, a volume electric charge dis-
tribution is formed within the crystal volume rather
than an infinitesimally thin one.'" Using this new
model, it has been shown that in the case when the
charge is distributed throughout a laver of thickness d,,
near the crystal-dielectric interface

aofeoshlrfd, — coshZafid, — )| -

Uy of "dateg coth2rfdy + ¢, coth2afd,) - sinh2xfd, '
Equation (2) predicts an n « 1/f! dependence at high /,
which agrees with experimental results. Thus the sharp
dependence of n on f for the Prom is attributable to the
volume character of charge distribution. The most
complete and detailed theoretical description of the
Prom device can be found in Refs. 12 and 13. These
papers discuss a model that includes the location of the
charge layer within the BSO, the thickness of the dif-
ferent device layers, the wavelength of the light used.
To overcome the disadvantages of the volume charge
predicted by Eq. (2), it was suggested in Refs. 14 and 15
to use the transverse electrooptic effect for read light
modulation rather than the longitudinal effect used in
the Prom. The modulator that uses the transverse
electrooptic effect is called the Priz. The corresponding
calculation of the phase modulaticn for the case of the
transverse effect shows that®

Ag = 2

{may ___¢td|cosh2nfd, + cosh2afid, ~ d,) = 1] + k,

A=

where k| = ¢, tanh27fd; sinh2=nfd,,.

From this formula, two characteristic features of the
Priz device can be seen. First, Ap(0) = 0; i.e., the
modulator suppresses the dc component. Second, at
high f, A¢ « 1/f and n « 1/f2, i.e., the Priz n vs f char-
acteristic is superior to that of the Prom.

T Uspmef U 20f2dateq tanh2afd, + ¢, tanh2xfdy) cosh2nfd.]

l. Performance of the Priz

In the MTF tests performed on the Priz at CMU, we
operated the device at 2 frames/sec. In other experi-
ments, we operated the device at 20 trames/sec. A
faster frame rate should be possible, but no effort has
vet been made to determine the device’s maximum cvele
time. However, results of several experiments are
useful in providing some indication of the final device
performance possible on the Priz.

In the experiments performed in FTI, the device was
operated with write times as short at 7 nsec using a
pulsed laser source with an intracavity electrooptic
modulator. In this case, photocarriers were generated
in a negligible time, but the output light pattern was not
visible until 1 usec later, and it peaked after 10 usec.
Carrier mobility and transit times thus appeared to
limit the minimum write read cyele times of the Priz
to 10 usec. In the maore conventional operating mode.,
1-msec exposure times are used. and the output pattern
is then immediately visible.

Erase time is a second limitation on the device's
speed. In all tests performed at CMU, a fixed 1-msec
erase flash (from the standard erase unit provided with
the ULS.A. Prom) was used. However, neither the Prom
nor the Priz can be recveled immediately after erasure,
and a delay time is necessary to allow redistribution and
relaxation of excited carriers within the crystal. One
millisecond of relaxation time and hence a total 1-msec
erase time appear adequate. High-energy erase pulses
cannot decrease this time, since they generate and dis-
lodge other carriers within the bulk of the device, and
longer relaxation times between the end of erasure and
the start of a new write cvele then become necessary.
Thus operation of the Priz at a 10°-frame/sec (write
read -erase cvcle) rate appears possible, but additional
theory and experiments are necessary to confirm this.
Moreover, an application for which the entire spatial
input data changes every millisecond is necessary to
merit such an effort together with attention to how one
can introduce such a new 2-1) \yy spatial distribution
to the device at these 10*-frame/sec rates.

The storage times for the Priz are adequate for most
applications [1-min storage in the dark and 10 20-sec
storage under a high Ay = 633-nm read light intensity
(Ix = 2mW/cmi|. These can be somewhat controlled
by varving the thickness of the insulating lavers. The
lifetime of the Priz, like that of the Prom, appears to be
excellent. Selected Priz units have been operated for
over one million cveles at a 20-frame/sec rate with no
noticeable change in performance. The only concern

3)
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with the device's lifetime appears to be its operation
with high I light levels. In this case, a device with high
transmittance and electrodes with good conductivity
is necessary. Forsuch cases, InQ. electrodes are used.
The performance of such Priz units appears to be good
(as several of them have operated successfully for sev-
eral years).

The resolution of the Priz is mostly understood and
has been experimentally verified by several techniques.
Its diffraction efficiency ny at low spatial frequencies
is ~1%, its 10-dB spatial frequency response f; ; is ~30
eveles/mm, and the spatial frequency fy; at which n =
0.01n, is 100 cyvcles/mm. At CMU, we operated the
device with input data having spatial frequencies as high
as 80 cycles/mm. With higher quality optical systems
and a different area detection technique, FTI re-
searchers have measured diffraction efficiency on the
device beyond 500 cycles/mm. Since the usahle output
light intensity at these high spatial frequencies is quite
fow, only in selected applications can such resolution

Fig. 1. Priz spatial light modulator.

actually be used. The Priz performs well with input
write light exposures Ey- of 50 pJ/cm” or less with cor-
responding interharmonic distortions and hence re-
sponse nonlinearities below 1% at these write light
energies. The sensitivity of the device defined as the
write light exposure Ey necessary to achieve n = 1% at
5 eyveles/mm is 50 pd/cm?  In our CMU data on these
devices,” " an available laser source not optimized to the
thickness of the Priz used was emploved. With this
experimental setup, we obtained only [, = 20 cycles/
mm and [, = 30-mm resolution. If the optimal read
light wavelength were used, we expect superior results
with fu; in excess of 30 cycles/mm as obtained at
FTI.

Both the Priz and Prom modulators have high optical
quality and allow use of large crystal sizes. The Priz
units evaluated at CMU had a 15-mm diam active area
with A/4 optical quality. Larger units have been fab-
ricated (up to 30-mm diam) with ~1X optical flatness.
The standard Priz units have also been fabricated,
tested, and used with A/10 optical quality. The BSO
crystal in the Priz is nominally 400 um thick. and the
insulating lavers are ~3 um thick. No substrate is used
in the Priz, or the Prom, as clamping effects change the
dielectric constants of the materials and induce stresses
in the device. One of the units tested at CMU is shown
in Fig. 1.

In Table 1, we summarize the salient Priz perfor-
mance parameters. These data were obtained from
diverse FTI and CMU tests and experiments. As with
any BSO device, a wide range of performance is possible
depending upon the thicknesses used for the different
layers in the device. The parameters in Table 1 are all
simultaneously obtainable, but they should be inter-
preted with the above consideration in mind. In all
cases, the device should be operated at the intended
write light exposures Ey- and write light wavelength Ay
if optimum device performance is to be obtained. MTF
data are frequently used to describe the spatial resolu-
tion of SLMs. Since the Priz has a dc response of zero,
the MTF function 7(f) is not usable for such a device.
Rather the diffraction efficiency 1 of such a device is the

Table | Priz Parameler and Performance Specifications

Parameter Specification Parameter

Specification

RSO crystal
insulating laver

400 pm thick
3 um thick

T nsec imind
I msec (min)

Address time
Write/read cvele

Flectrodes Pt or InQ. Erase time 1 usec (tmin)
Active area Erase cyvele I msee (tvpicall
Typical Fa-mum diam \ . )
Maximum 30-mm diam Frame rate (tvpical) 20 frames'see
Optical quality Dark Storage I min tvpical)
Tvpical Aid X . ) .
Special request A0 Storage with readout 200 30 sec ttvpical)
Write light Diffraction effic. (g, 19
Wavelength 250 S0 nm Resolution

Exposure (typical) A0 pdiem: atn =i 30 eveles 'mm ,
Sensitivity tfor n = 17 at 5 eveles/mm) A b em” at p = 001, > o0 eveles mm !
Read light max. measured > 0 cveles mm !
] \ ttvpical) G333 nm Spatial freq. response IR

[ntensity (typicali 2mWiem!
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appropriate parameter. This is why all spatial fre-
quency resolution data in Table | are given in terms of
nvs f. These data were obtained with the Priz device
operated dynamically in real time. In coherent optical
processing, the amplitude transmittance m(f) of the
SLM vs frequency f is the parameter of interest. If an
analyzer is used and the input pattern is the sine wave
grating [ = I(1 + sin2xfx), the amplitude transmit-
tance for the Priz can be written in the linear approxi-
mation as

Hxdy = mif) cos2afx 1)

Equation (4) implies that the dc component of the Priz
response is zero [since from Eq. (3) A¢ = ¢ at f = 0], and
the readout pattern has a /2 phase shift with respect
to the recorded one. In this case, m(f) is directly ob-
tained from the n(f) data provided by

[m| =2y ()

This expression follows from the Fourier transform
analysis of Eq. (4),

In Fig. 2, we show the diffraction efficiency 7 of Priz
and Prom units at comparable E - = 50-uJ/cm? expo-
sures. From these data, we see the superior diffraction
efficiency and resolution of the Priz. We also see that
the response of the Priz decreases at higher spatial
frequencies at a much lesser rate than that of the Prom.
Where m(f) vs f is plotted rather than n(f), the differ-
ences would be even larger. We also note that the Priz
exhibits a suppressed response at low spatial frequen-
cies. This feature follows directly from the fact that,
upon uniform illumination of the device with write light,
a uniform longitudinal electric tield is tormed that has
little or no transverse component. Since the Priz em-
ploys the transverse electrooptic effect, it will not
modulate in response to such light. As aresult nof the
Priz device peaks at a spatial frequency of 4 cvcles/mm
(for the unit tested) rather than at dc.

IV. Use of the Priz in Pattern Recognition and Signal
Processing Correlations

An attractive optical correlator for image pattern
recognition is the joint transform correlator.'® In this
system, the reference object being sought is placed be-
side the real-time input scene in the input plane of a 2-I)
optical FT system. The objective is to determine if the
reference object is present in the input scene and to
determine its location. Such pattern recognition ap-
plications are appropriate for locating objects on an
assembly line and locating areas and landmarks in
satellite imagery as well as in missile guidance and many
other applications. In the joint transform correlator,
the Fourier transform of the input and reference data
is formed on an intensity sensitive material (such as
film, the Priz, or Prom). The Fourier transform of this
joint FT pattern is then formed, and it can be shown!®
that it contains the correlation of the input and refer-
ence images. In Fig. 3 we show an example® of such a
correlation performed on the Priz. The FT of the two
input objects |Fig. 3(a)]. identical images of lobsters, was

(o
PHI.
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.
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-1 .
1 |~ ~
+‘,‘ .
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- -
Tit L
A -
(It 8 \
\\
1.4 \‘Q
—— s L PP
1 2 5 1 20 »of (ip )

Fig. 2. Diffraction efficiency y vs spatial trequency f tor the Prom
and Priz spatial light modulators.

Fig. 3. Real-time image pattern recognition with the Priz used in

the Fourier transform plane of a joint Fourier transtorm correlator:

(a) input and reference images: (h cross-sectional scan: and (¢) an

image of the vutput correlation plane pattern. The two peaks to the

right and left in th) and te) represent the eorrelations of the two input
objects.?

recorded on a Priz placed in the FT plane of a lens,
which was behind the joint input pattern of Fig. 3(a).
The FT of the data recorded on the Priz is shown in Fig.
A(e) and its eross-sectional scan in Fig. 3(b). This full
correlation plane pattern contains a central term that
is the sum of the autocorrelations of each input object.
The large spikes on the left and right in Fig. 3(b) are the
correlation of the two input objects. Their presence
indicates that the two input objects are similar, and the
relative position of the peaks denotes the location of the
reference object within the field of view of the input
image.
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Signal correfutions have also been performed on the
Priz. Animage of a linear frequency modulated (LFM)
sigmal [Fig. 1G] was recorded on the Priz.. The F'Tof
this pattern formed with a lens whose focal length was
matched to the frequency range of the LEM waveform
vields the resultant compressed pulse or cutput corre-
lation peak” shown in Fig. 1th), The width of the ex-

perimentaltly obtained correlation peak was 1/100th of

the width of the ariginal LFM signal. This is in good
agreement with the theoretical pulse compression factor
of 120 for the LFM signal used.  The ditference between
theory and experiment was due to taper in the input
light beam and other effects.

V. Image Spatial Filtering Using the Priz

In Fig. 2 and Sec. HI. we noted that because of the
transverse electrooptic etfect in the Priz. de and low
spatial frequency data are automatically suppressed.
In Fig. Mar, we show the reconstruction of a circular
input object recorded on the Priz. As expected, only
the edge contour of the object appears tdue ta the au-
tomatic de spatial frequency suppression performed by
the Priz). The amount of de suppression depends on
how closelyv the read light beam is incident to the normal
to the crvstal. I our experiments at CMU we were
able to obtain a de suppression of 10 when the normal
to Priz was aligned within 4° of the read beam. Fora
10 suppression factor, 1° alignment is necessary., In
the image processing experiments at CMU (Fies, 5 and
i, the read beam was incident at an angle ot 1.7° o the
nornl to the eryvstal,

The Priz has anisotropic properties arising from those
of the linear transverse electrooptic ettect.’ In par
ticular. it exhibits a distinet difterence in respanse to
circularly and linearly polarized read light. Figure 6
shows how diffraction efticiency ta the Priz depends on
orientation of the ervstal’s axes when read ont with
linearly and circularly polarized light - In the data of
Figs. 5 and 7. the electric vector of the linearly polarized
light was along the [112] axis of the ervstal. In Fig 6,
the ditfraction etficieney 5 as a ftunction of the angle
between the wave vector of the sine wive grating .nd the
[ 110} ervstal axis is plotted in polar coordinates.

The outer circle in Fig. 8 deseribes the deviee's re
sponse to cireularly polarized input light. As seen. it
is quite uniform. and thus operation with circularly
polarized input light produces no directional preference
for input spatial frequency. The reconstructed image
in Fig. Hat verifies this response and is exsentially how
the circular outer curve in Fig. 6 was obtained. How
ever. the response of the Priz to linearlv polarized read
light ix guite ditferent.  In the two inner figure cight
shaped curves in Fig. 6, we show the response for lin
carly polarized read light. Whein the device is exposed
to linearly polarized input light, it exhibits a preferred
response 1 for input spatial frequencies oriented inone
direction. while greatly suppressing mput spatial
frequencies oriented in the orthogonal direction. The
direction in which spatial frequencies are suppressed
can be controlled by the polarity of the voltage applied
to the modulator if the polarization of the read hight s

vy -
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Fig. 6. Ditfraction etficiency g for the Priz as a function of the angle 1

between the wave veetor of the recorded sine wave grating and the
crvstal's axes tor input read light with circular and hnear palarization,
Curves and 2 correspond to experimental points tor hnearly polar
17ed light, and curve 3 corresponds to circularly polarized read light

fixed. 'The two figure eight shaped plotsin Fig. 6 were
obtained with the same polarity of the read light but
with different polarities of the applied voltage. Dit-
ferences arising trom changing the voltage polarity can
be attributed to the optical activity of the BSO ervstal.'”
Figure 5(b) shows the reconstructed image of a circular
object recorded on the Priz and read with linearly
polarized light. As seen, the spatial frequencies in one
direction are suppressed as predicted by Fig. 6.

For . [110] cut Priz, similar plots of 5 vs the read wave
vector's direction result.  However, tor circularly
polarized read light. a saddle-shaped response rather
than a circular one results.  Similarly, a larger n (a factor
of 2 larger than for the [111] cut Priz) results when the
[110} cut device is operated with linearly polarized read
light. Thus the [110] cut device is preferable for mul-
tichannel 1-D signal processing applications and others
in which directional spatial filtering is desired. Con-
verselv the [111] cut Priz is preferable for image pro-
cessing where a uniform response is generally desired
for all input spatial frequency directions,

To achieve a high degree of suppression of the de¢
component in the image (both with linearly and circu-
larly polarized read light), the modulator should be
placed between a high-quality polarizer and analvzer,
which in the case of circularly polarized light can be
achieved with a A\/4 wave plate and a linear polarizer.
The d¢ suppression, directional spatial filtering. and
edge enhancement features of the Priz are quite usetul

preprocessing operations for muitisensor and IR pattern
recognition. In Fig. 7. we show the original IR image
|Fig. 7(a}]. the image constructed from a [110] cut Priz
with the read light polarized at 43° [Fig. 7(b)] and with
vertically polarized read light [Fig. 7¢¢)]. The recon-
structed image in Fig. 7(b) approximates an edge-en-
hanced version of the original image, whereas the re-
construction in Fig. 7(¢) results in enhancement of
vertical lines in the original image and suppression of
horizontal spatial frequencies in the original input
pattern.

VI. Dynamic Image Selection

In investigating the response of the Priz to spatially
moving 2-1) input patterns, it was found' that the de-
vice's response was a function of both the spatial fre-
quency of the input data and the velocity with which the
input data moved across the input field of view. A
maodified version of the Priz was used in these experi-
ments. It had no insulating lavers, so electrodes were
evaporated directly on the erystal's surface.’™ The re-
sponse of the device to an 0.5-mm wide input line was
measured for different velocities (1-40 mm/sec) of the
input object across the input plane, and it was found?
that the response of the device peaked when the velocity
was ~7 mm/sec. The response of the Priz is thus a
function of both time and space (l.e.. the spatial {re-
quency of the input data and the rate at which it

1 November 1982 Vol. 21, No. 21 - APPLIED OPTICS 3851




‘- - .

(a)

b)

)

Fie. 7. Real-time image edge enhancement and directional spatial

tiltering of IR imagery on a [110] Priz; Guoriginal input image: thy
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Fig. 80 Schematic diagram of the optical svstem nsed to demonstrate

dyvnamic mage selection or change detection on the Priz.

changes or moves with time).  An initial attempt to
describe the combined time and space response of the
device has been reported.”'™ Initial experimentst-!>
indicate that as the spatial frequency of the input data
decreases, the input velocity tor which the response n
of the device peaks shifts to higher velocities.

T'o obtain this effect. the Priz is operated with a fixed
voltage across its electrodes rather than with the applied
voltage switched between positive and negative polar-
ities.  In the normal mode (polarization of the applied
voltage switched). the device pertforms like the Prom.
Only with a fixed voltage will it perform dyvnamic image
selection.  In this mode. the device responds only to
changes in the input image. ‘This operating mode is
attractive for many applications such as change detec-
tion, and it also greatly simplifies the electronic support
svstem necessary (since a fixed rather than a switching
high-voltage supplyv can be used).  Over a selected range
of input temporal frequencies £, (where this range varies
as a function of the input spatial frequency f,), the n vs
[, response is linear, and the device performs a time
ditterentiation of the input data. This range of /. is
quite small, and moreover it varies with the intensity
of the input write light. For these reasons, this Priz
device features is best termed dynamic image selection
ti.e.. the device's output represents only the changing
part of the input data) rather than temporal differen-
tiation.? This effect can also be observed with a fixed
input and with the write light beam pulsed on and off.
In this case, whenever the write light changes (goes on
or of ), an output image of the input data appears and
then decays with a time constant that is a function of the
intensity of the write light.  1f the differential phase Ao
of the output light is measured. it is seen to be of op-
posite sign when the write tight is switched from off to
on compared to when it is switched from on to off,

When the Priz units were heing tested at CMU, we
found this Priz feature to be most attractive and thus
assembled the svstem of Fig, 8 to demonstrate the use
of the Priz in change detection. The system of Fig. 8
contains two input planes.  Plane P, contained a fixed
image, in our case a random pattern of uncorrelated
noise and correlated noise of different correlation
lengths and with different mean values, This tixed I,
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Pecton i real time oo the ey

tareet on tned noise backronne
Gt e mos e taraet poee

pattern was imaged onto the Priz at £ thy imaging lens
T Vtogether with the F'T ot an acoustooptiod tAO) eell
tusing the FT lens FTOL The AO cell was operated in
the scanning mode with i repeated LENM input sighal.
This caused a scanning spot to traverse the Priz tsu-
perimposed on the fixed noise pattern from 7). thus
imulating a moving ohject ona noise background.  The
velocity of the scanning spot was adjusted 1o be 2.8
mm ~ecoand it size was ~ 1 pixel £40 am).

Both the tixed and moving input patterns were im-
aged onto the Prizin Ay = 4176 nm light from an
argon-ion laser. Readout was performed in N\,
t33-nm light incident nermal to the Priz as shown in the
lett side of Fig. 8. The pattern an the Priz was then
imaged onto 7 using imaging lens /1. - through i crossed
analvzer and a 633-nm filter (£ The outpuat (7
pattern was detected on a vidicon, and the dvnamice
moving output was visible onan isometric display where

——

R
!

Diemonstration of dynamine o sclectin

b 1
et cotipresite e ol e

Locbo v o, tead it =cloes

tonof the donage s

it could be photographed. A fiber optice 1FOD prob
with a microscope and PAMT was also placed av 12 1o
allow quantitative measurements of the output phine
to be made.

In Fig. 9var we show the tall output imaee at 7 owath
the high-voltage Priz power <upphy operated in 1t
normal pulsed moder. This output <hows the tined
background noise pattern and the moving spot. T
moving object or spotis present in the back fetv ot the
figure.r When the high voltaae Priz power supplhy po
larity was tived, only the time varving portion of the
iput pattern appeared at the output. Inthis case.onh
the moving spot produced by the scimmmg AO cell was
visible. In Figo b we show the PP ooutput tor one o
cation of the scanning spot teorresponding to a2 simu
lated moving target in the constant noise background
image). As can be seen, the Priz suppresses the tined
backeround noise quite well,
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Table Il Quantitative Dynamic Image Selection Data on the Priz

R, 1 25 1 20

Ko D S0 4N 1

To quantify the amount of background suppression
obtained. the intensity of the moving spot was varied
and the ratio

intensity of the moving spot
R = (65)
average intensity of the tised background

was measured at the input and output of the svstem
{i.e.. with and without dynamic image selection or
change detection). The results are summarized in
Table II.  From these data, we note that once the in-
tensity of the scanning spot has been increased so that
R, = 2.5 or greater. a constant R, =~ 5 ratio results
with the intensity of the dvnamic part of the output
image being 50 times the average background level in
the P> output. This occurred because when R;, was
increased above 2.5, saturation of the Priz occurred. and
thus no further changes in the etfective R;, resulted.

This is expected since, with the Priz in the FT plane of

the AQ cell. all the light trom the cell was concentrated
onto a single pixel on the Priz.

VIl. Summary and Conclusion

A complete and unitying summary (at this present
time) of a new light modulator. the Priz, has been pre-
sented. Many new experimental demonstrations re-

cently obtained at CMU were included. The theory of

operation of the Priz was reviewed and experimentally
verified, and its similarity and differences from the
Prom were noted (Sec. I1). The first unifving summary
of the pertormance parameters of the Priz was also ad-
vanced (Sec. II1). A summary of many of the possible
applications of the Priz was then presented. This in-
cluded conventional optical pattern recognition and
optical signal processing correlators (Sec. V) plus three
new image processing operations: dcsuppression and
directional filtering (Sec. V) plus dvnamic image se-
lection (Sec. V). The first image processing operation
had been experimentally demonstrated previously.
Directional spatial filtering demonstrations had not
been previously described. Qur dvnamic image selec-
tion experiments together with Ref. 18 represented the
first examples of the use of the device for the selection
of the dynamic part of an image from a constant fixed
noise background (i.e.. change detection).

Many aspects of the Priz device are well understood.
However, further theoretical analvses and modeling
together with further device fabrication and experi-
mental testing are necessary to understand tully and
describe many of the observed features of the device.
Issues meriting further analysis include the nonlinearity
associated with the transverse electrooptic effect, the
combined time a'id space dependence of the resolution
of the device. and u theoretical formulation of the dv-
namic image selection feature of the device with at-
tention to the selection of device parameters to optimize
and control this etfect.

The promising performance parameters tabulated for
the Priz light modulator and the experimental verifi-
cation included of several of the novel features of this
device indicate that a wealth of new research efforts and
applications are still possible in the field of real time and
reusable spatial light modulators.
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ABSTRACT

The basic acousto-optic signal processing architectures (spectrum analyzer, space-irte-~
grating, time-integrating and triple product processor) systems and algorithms such as the
chirp-Z transform are reviewed. We then describe new acousto-optic data processing systers
and applications that utilize these basic architectures and new ones. These include a
matched spatial filter acousto-optic processor, two new hybrid time and space-integratirc
systems, a triple product processor and four new matrix-vector iterative feedback systers.

1. INTRODUCTION

Acousto-optic (AO) transducers are commercially available real-time spatial light rodu-
lators that can be used for many applications and system architectures. Such devices ané
systems have received considerable attention [1]. 1In Section 2, we review several of the
more basic AO system architectures. 1In Section 3, we discuss a multi-channel A0 processcr
[2] architecture in which multiple signal channels are accommodated by multiple LEDs or
laser diodes (LDs) rather than by a multi-channel AO cell. One of the major attractive
reasons for using AO processors is the large processing gain (PG) and time bandwidth product
(TBWP) possible on such systems. In Section 4, we discuss PG, define various possible out-
put correlation plane SNR measures and provide experimental verification of our remarks 2.
We also discuss a technique to facilitate generation of the lona codes for which AQO systers
are useful ({4,5). 1In Section 5, we describe several new AO processors: a matched spatial
filter (MSF) AO correlator that reduces the effects of non-uniform spatial AD cell respcrse
variations (3], two new hybrid time and space-integrating (TSI) architectures that simul-
tanecusly achieve the best features of a space-integrating and time-integrating processcr
{41, and a new application (5] of the triple product processor. 1In Section 6, we address a
major new application area for AO devices: optical systolic array matrix-vector ané 1itera-
tive optical processors. We describe the basic optical matrix-vector feedback syster and
note the general-purpose nature of such a processor. We then discuss two deconvolution
architectures using such a concept, an optical systolic matrix-vector multiplier and an or-
tical systolic system for solving matrix-vector eguations {6]. We then conclude with a rnew
frequency-multiplexed version of these systems [7] and our summary and conclusions (Secticr
7).

2. BASIC ACOUSTO-OPTIC SIGNAL PROCESSING ARCHITECTURES

Various reviews exist of the possibilities of optical signal processing systems and arch-
itectures [1,8-10). Thus, this present discussion of the same subject will be guite brief.
First, we note that an AO cell illuminated with parallel laser light diffracts this light at
angles proportional to the frequencies present in the input signal and with the amplitude of
each diffracted wave proportional to the strength of each input signal component. Thus, a
lens placed behind an AO cell forms the Fourier spectrum of the input signal data in ite
back focal plane. This spectrum analysis feature of AO devices is presently being used ir
many applications (1]. One particularly attractive application uses an A0 cell with two
transducers or two separate AO spectrum analyzers, each fed with a signal from a different
antenna pointed in a different direction. From the location of peaks in the two resultant
output Fourier transform (FT) planes, the frequency distribution of emitters present in the
field-of-view of the antennas can be obtained. From the ratio of the amplitudes of the out-
put peaks on detectors corresponding to the same freguency component, estimates of the di-
rection of each emitter can be obtained. The resultant output information from such a sys-
tem can thus be used to obtain a 2-D (frequency/direction-of-arrival, or f/DOA) display of
the emitters present in the field-of-view of the antennas [1l). Such displays are most use-
ful for many signal processing applications.

The space-integrating (SI) AO correlator or convolver system [12] of Figure 1 is a basic
A0 processor architecture. 1In this system, the signal g(t) is fed to an AO cell at plane
Pip, whose transmittance is a function of time t and space x given by g(t-x/vg) = g{(t-x') or
g(x'-t), where vg is the velocity of sound in the AO cell. This pattern is then imaged onto
a mask h(x') at plane Pjg. The light distribution g(t-x')h(x') or g(x'-t)h(x') is then
spatially integrated by lens L3 and the time-history output from the photodetector at Pj3 is
the correlation
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R(T) (ia.

h®g = fgi(x* - t)h(x')dx'
or the convolution

Jg(t ~ x*)h(x')dx"' C(1) (1L,

h«g

of the two signals g and h. 1In this architecture, the integration in (1) is performed over
space and the convolution or correlation output is displayed with the shift variakble 1 beirnz
time t as in (1l). We thus refer to this architecture as a space-integrating convolver or
correlator.

optic optic Photo
cell SSB cell ssB detector
hlter h(x) Photo hih It ¢ array
detector light source |
;t' 9(t) ox ; 0 ﬂ
Pa L, P L Pb L3 3 1 pz L %

FIGURE 1 Schematic diagram of the basic space FIGURE 2 Schematic diagram of the basic
integrating acousto-optic convolver or corre- time-integrating acousto-optic convolver
lator. or correlator.

The third basic AO processor architecture is the time-intearating (TI) convolver or cor-
relator [13] of Figure 2. 1In this system, the signal g(t) is used to time-segquentially mocd-
ulate the output from an LED, LD or point AQ cell. This output uniformly illuminates ar a7
cell at Py fed with a signal h(t). With the transmittance of this AO cell described by
h{x'-t) or h{t-x'), the light distribution leaving P; is the product of g(t) and the trans-
mittance of the AO cell. The AO cell is then imaged onto a linear detector array at Pj3,
where time-integration of the product is performed directly on the detector. The resultant:
output at P3 for this system is again either the correlation

R(1) (2a°

g®h Jg(t)h(t - x')dt

or the convolution

g+ h Jg(t)h(x' - t)dt C(t). (2b)

Since the integration in (2) is performed in time, we refer to this as a time-intearatirc
convolver or correlator and we note that the shift variable 1 in the output correlation or
convolution plane P3 is the space variable x'

The space-integrating system of Figure 1 enjoys a large ranage delay search, but carn ornly
operate on signals whose TBWP equals that of the AO cell (typically 1000 to 2000). Converse-
ly, the TI system of Figure 2 can only search a range delay equal to the aperture time or
transit time Tp of the AO cell (typically 1-50usec), but can process a signal of long dura-
tion (>> Ta) and large TBWP and hence can provide a large PG and integration time T; (lirit-
ed by the dynamic range of the detector system used).

The fourth basic AO architecture is the triple product processor (TPP) system [14]! (see
Figure 7 in Section 5). 1In this system, a point light source uniformly illuminates one AQ
cell (oriented horizontally). The light distribution leaving this AO cell is compressed
horizontally and expanded vertically to illuminate a second AO cell (oriented vertically)
Both A0 cells are then imaged onto an output plane P3 where time-integration occurs on a 2-D
detector array. If the signals to the point modulator and the two AO cells are denoted by
u(t), v(t) and s(t), then the 2-D output at plane P3 is the triple product

R(TZ.TI) =,ri"u(t)v(t - 1p)s(t + 1,)dt, (3)
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and hence the name TPP has been given to such an architecture. This system has considerable
versatility, since its 2-D output plane pattern can be a folded spectrum, an ambiguity sur-
face or (as we show in Section 5) a coarse/fine time delay display.

One particular algorithm that has provided each of these latter three AO architectures
with an increased flexibility is the chirp-Z transform (C2T) algorithm {15}. We describe [
this algorithm with respect to the TI system of Figure 2. If the input signal g(t) is a
signal f(t) multiplied by a chirp or LFM waveform and if the input signal h(t) to the AC
cell is also a chirp and if the opposite sidebands of each chirp are filtered within the
optical portion of the system, then the 1-D output pattern at Py can be shown to be the
Fourier transform (FT) of the input signal f(t). This same technique can be applied to the
TPP system to yield a 2-D FT output with coarse and fine frequency axes (i.e., a folded
spectrum output display).

3. MULTI-CHANNEL ACOUSTO-OPTIC PROCESSING

There are various ways to achieve multi-channel and 2-D processing usino 1-D AO devices.
The use of crossed AO cells (as in the TPP system) is one technique. The use of AO cells
with separate signal channels on the same cell is a second approach. 1In Figure 3, we show
an alternate architecture (2) in which a single channel AQ cell and a linear array of LEDs
or LDs are used to achieve a multi-channel system. The input signal to the AO cell in this
system of Fiqure 3 is a(t) and the transmittance of the cell is uniform along any vertical
line. The input signals to the N LEDs are fj to fy. The output pattern on the N 1-D detec-
tors is then the N correlations fn ® g. Such an architecture thus realizes N 1-D correla-
tions of g(t) with the N input signals f,(t). If the C2T algorithm is used, the output pat-
tern contains the N 1-D Fourier transforms Fp(u) of the N input signals f,(t). Such an
architecture is useful for imaging FT spectroscopy [2]. 1If the N input signals originate
from N antennas pointed in N different directions, the output can also be an f/DOA display.
This architecture is thus very attractive, since the same basic system can be used for mul-
tiple different applications (such as the ones mentioned above) simply by controllinc the
input electronic signals used.

DETECTOR

FIGUPE 3 Simplified schematic diagram of a multi-channel
acousto-optic general-purpose signal processor
(2].

4. PROCESSING GAIN AND SNR CONCEPTS

One attractive feature of optical signal processors is their ability to accommodate sig-
nals of large duration and long Ty and large TBWP. The TI architectures are especially at-
tractive for realizing such features. In such cases, a most attractive performance measure
is PG. This is defined as the ratio SNR,/SNR; of SNRy at the output of the processor to the !
SNR; at the signal input to the system. In many cases, the signal code used is best de-
scribed statistically, the signal is then a sample realization of a random process and we
refer to the statistical correlation or the ensemble average (denoted by E) of two signals
s3(t) and sy(t), i.e.

R{1) = E{s)(t)s,(t + 1)}. (4)

We have highlighted the PG and three different SNR; measures for optical systems in [3].
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Let us first discuss the three different SNR, measures possible. The classical SNR :
measure used is the ratio of the average peak intensity of the output correlation divided i
by the variance at the peak (assumed to lie at 1 = t3 = 0 for simplicity) averaged over many
realizations of the process

snr; = EZ{c(0) i/varic(o) . (5) 1

We refer to this as SNR, at the peak. A second useful SNR, measure is the peak-to-sidelobe
ratio (PSR) or the value of the peak intensity divided by the variance of the correlation
far from the peak

]
' E2Ccm ),

; SNR, = I . (€)
. 2 VaricC (1)} 150

The SNR, measure in (5) is difficult to measure experimentally since it reguires evaluatiorn
at one point and thus requires many repetitions of the experiment. The SNR, measure ir (€)
is easily obtained from one experiment. However, the dependence of this measurement or. the
size and location of the 1 >> 0 region used to estimate the variance in (6) can affect this
SNR, measure. Thus, a new SNR, measure

b gt

2. R
_ E“<C(0) -
SNR3 = Tc/z — — (7
(l/TC)I var{C( , }dt

-TC/2

was defined, in which the variance is obtained for the full Tc = T, range of output delays
being searched.

From an optical experimental standpoint, measurement of SNR, = SNRg is (6) is preferable.
In (3], we showed that for the case of PRN signal with high nolse {(low SNR;) that SNRj =
SNR; and that for low noise (high SNRj), SNR;] = = and SNRp; = TBWP. In the practical low
noise case, the simpler SNR, measure thus yields the same results as the more difficult SNP;
measure of SNR,. However, gor the case of passive signals in which the recieved signal
amplitude is continuous rather than discrete, the signal is well-modeled as Gaussian anc for
this case we showed {3] that the numerators in (5) and (6} will be identical and that for
such Gaussian signals SNR) = SNRp ~ 3dB (if SNRj = «, i.e. no noise). For the case of Gaus-
sian signals and SNR; = 0 (equal amounts of signal and noise), we find SNR; = SNR). We con-
clude by noting that SNR) is the more appropriate measure for communications (when the pro-
cessor is in synchronization and when location or position of the correlation peak is known
Conversely, SNR, is more appropriate for parameter estimation (such as when the location or
time delay of the correlation peak is desired).

In [5), we discussed how the bandwidth of the noise with respect to the bandwidth of the
signal code affected PG and we noted that for narrowband noise PG = TBWP (of the signal) or
TgBg and for wideband noise PG = ITBWP (of the system) or Ty;Bg. This distinction is impor-
tant when the code used is repeated and when integration is performed over repeated versions
of the code (T1 >> Tg). As we have shown [3,5]) in such cases, the PG obtained will be less
(i.e. PG = TBWP) if the noise is narrowband than if it is wideband (in this case PG = ITBWF
>> TBWP). To demonstrate that PG = TBWP rather than ITBWP for the case of narrowband noise
and to demonstrate the use of our SNR, measure of SNRy, we {3) used a signal with a TBWP =
2047. We repeated this signal approximately 150 times and integrated the output on the TI
system of Figure 2 for the full 150 cycles of the signal code. The TBWP = 2047 corresponds
to a PG = 33dB and the ITBWP of approximately 300,000 corresponded to a PG = 55dB.

In Figure 4, we show the results of correlations of this signal with narrowband jammers
of different strengths (different SNR; levels). The results obtained verified that the PG
of such a system is TBWP not ITBWP and it also verified that our SNR, measure gave adequate
results that were more easily obtained in the laboratory. These experiments and our associ-
ated theory show the need for long codes and processors capable of coherent integration of
codes of long duration and large TBWP. Many applications require such performance together
with the need to search large range delays between the received and transmitted signals. 1In
Section 5, we discuss several such processors and we also discuss ways to improve the uni-
formity of the correlation plane outputs shown in Figure 4.

A final important and practical aspect associated with the realization of a correlation
of a code with a very large TBWP is the code generator itself. A very attractive technigue
for generation of a code with a large TBWP is to produce two codes 0 and ¢ with N, and N,
bits respectively and to repeat each code N, and N, times respectively in two sevarate signal
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generators. If we then form the bit-by-bit product of each code (Figure 5), we obtain a
product code with a period equal to NgTg = N, NyTg or the product of the durations of each
code (where Ty is the duration of one bit of the code).

(a) SNR1 = 4® (b) SNR1 = -20dB (c) SNRi = -25dB

i FIGURE 4 Photographs of several correlation plane output patterns from the time- '
integrating correlator of Figure 2 demonstrating the processing gain and

SNR measurement techniques. The signal used was a pseudorandom code with

various narrowbund noise jammers present |[3}.
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FIGURE 5 Simplified representation of the generation of a product code (4].

5. NEW ACOUSTO-OPTIC ARCHITECTURES AND APPLICATIONS

In this section, we briefly discuss four new AO architectures and applications. First,
we recall the conventional MSF optical correlator [16) redrawn as in Figure 6. If we place
an AO cell in the input plane and an MSF of the reference signal at plane P,, and in the i
output use a parallel output shift and summation detector system (detailed below), we obtain
a new hybrid time and space-integrating (TSI) architecture that we refer to as an AO MSF
correlator [(3]. 1Its operation, performance, architecture and features differ considerably I
from thoseof the prior A0 systems. First recall that an MSF correlator is shift-invariant,
i.e. the location of the output correlation peak corresponds to the location of the signal
in the input plane. If an AO cell is placed at the input plane of an MSF correlator (as
shown in Figure 6), then the output correlation wpeak will move across the output linear de-
tector array as the input signal traverses the AO cell. At each detector element at each
time instant, we have a partial correlation with the full PG of the TBWP of the AO cell. We
detect one such correlation output pattern and the output pattern at the next time instant
(the correlation peak will now lie on an adjacent detector). We delay these two detector
outputs by one bit time, add them and repeat the process for N bit times. We then obtain
the noncoherent summation of the N partial correlation outputs, each with a PG = TBWP of the
1 AO cell. Thus, such a system yields a large PG. But also, since each correlation output is
obtained for a different location of the signal in the AQ cell, the final correlation output
has the effects of spatial non-uniformities in the AO cell removed (or integrated over the
aperture of the cell). We have demonstrated the use of such a system [3] for an AO cell
-with large dead areas in which negligible acoustic diffraction fields are present. The re-
sults were very attractive.
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FIGURE 6 Schematic diagram of a matched spatial filter acousto-

optic processor [3].
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FIGURE 7 Schematic diagram of the triple product processor used
for synchronization and demodulation of product codes [5].

Next, we note two other new TSI architectures. The first system uses an AO cell imaged
onto a spatial mask with the FT of the resultant signal pgxoduced being multiplied by a sec-
ond spatial mask on which the MSF of another signal was recorded. We have shown [4] that
the output from such a system is the correlation of a large code equal to the product of the
codes recorded on the two spatial masks. We have also modified this system to utilize a 2-D
mask and a different vertical output detector system to achieve similar results with more
flexibility in the code that can be used [4). We have analyzed the noncoherent and coherent
correlations obtained from such TSI architectures and verified that the desired envelope de-
tection is obtained with the full PG possible [(4].

As our fourth new AO application, we consider the TPP system for processing a repeated
product code to obtain the full PG of the code and a large range delay search. 1In Figure 7,
we show how this can be achieved. The received signal s(t) and the two reference product
code signals u(t) and v(t) are fed to the elements of the TPP as shown. We have shown [5)
that the output plane pattern for such a system contains axes that correspond to coarse and
fine time delays and that the location of the correlation peak thus indicates the target's
range to the full range resolution possible with the code. 1In addition, the PG of the sys-
tem and hence the SNR of the output correlation peak corresponds to the TBWP of the full
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product code. This cer approach 106 in some cases.

6. ACOUSTO-OPTIC MATRIX-VECTOR PROCESSORS

In this section, we address a new class of AO processors that differ considerably from
the dedicated architectures described in Sections 2 - 5. This new class of AO processor is
very general-purpose in that all of the systems to be described perform matrix-vector opera-
tions. First, we introduce the basic matrix-vector multiplication concept together with the
use of an iterative feedback optical processor [17). Next, we consider the realization of a
deconvolver with such an architecture using the AO systems of Figures 1 and 2 as the basic
system elements [6]). This corresponds to a matrix-vector problem in which the matrix is
Toeplitz. As our second AO matrix-vector architecture, we consider a systolic array optical
processor using AO devices and its use in the multiplication of banded matrices and vectors
of large dimension. We also consider its use in the solution of large matrix-vector prob-
lems when the matrix is banded. Finally, we conclude with a new iterative matrix-vector
architecture using a frequency-multiplexed AO systolic array architecture and discuss its
use for the solution of more complicated matrix problems.
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FIGURE 8 General optical matrix-vector feedback system
(using a 2-D mask) (17).
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FIGURE 9 Acousto~optic systolic array iterative matrix-
vector processor architecture [6].

In Figure 8, we show a general matrix-vector multiplication system (using a 2-D mask) as
well as the iterative feedback architecture version of the same system. We restrict our
attention to the Pp - Pg - Pc portion of the systenm for the moment. We image the
outputs from the linear LED or LD input array vertically and expand the output from each
horizontally to uniformly illuminate the rows of a 2-D mask at Pp. We then integrate the
light leaving the separate columns of the Pg mask onto separate output detectors at P.. 1If
we describe the output from the LEDs as a vector a and the transmittance of the mask as a
matrix (I - B), where 1 is the identity matrix, the detector outputs at Pc are seen to be
the matrix-vector product {1 - Bla and a parallel optical matrix-vector processor results.
If we then add an external vector ¢ to this matrix-vector product (and denote the vector
output at iteration k by a(k)) and then feed this vector sum back to the LED inputs as the
input a(k+l) at iteration k + 1, the system is described by

~-
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(I - Bla(k) + ¢ = a(k) - Ba(k) + ¢ = a(k + 1). (8)
In steady state, when a(k) = a(k + 1) = a, equation (8) reduces to Ba = ¢ and the output
vector a is the solution
a =8¢ (9)
of the matrix-vector egquation Ba = ¢. Many very attractive applications forsuch an itcra-

tive optical matrix-vector processor have been described and demonstrated by us.

For our present purposes, we consider the realization of similar operations using AC de-
vices that are more reliable and commercially available than 2-D spatial light modulators.
We begin by considering realization of the matrix-vector product Ba = d, when B is tri-
diagonal, i.e. - B -

[5)) =] el
b1 P22 ay d;
Py) P3z P33 23 d3
by Py3 Pyy = . (10
Pg3 Pgy by
L <-4 Lo

Consider the system of Figure 9 used to realize the matrix-vector product in (10). 1In the
system of Figure 9, the output from separate LEDs are imaged through separate regions of a
AO cell and onto separate detector elements in the output plane. 1In {6), we showed that if
the time-history of the three diagonals of B are fed to three input LEDs and the time-histo-
ry of the vector a is fed to the AO cell and if the detector outputs are properly shifted
and summed, then the time-sequential detector output is the desired matrix-vector product
Ba =d in (10). Addition of an external vector ¢ and feedback of the detector outputs bhack
to the AO cell inputs enables this system to solve matrix-vector equations such as Ba=¢
for a = g’lg. This is indicated {6] in Figure 9 together with the use of a slightly differ-
ent and more stable iterative algorithm than the one described in (8). This systolic array
architecture of Figure 9 is a very practical and general-purpose AQ matrix-vector processor.

Many AO processor architectures can be used as the basic element in the system of Figure
9. If the SI or TI convolver of Figures 1 or 2 were used, then the output vector would be
the deconvolution of the received signal. This can be seen by writing the convolution as a
matrix-vector multiplication where the matrix is Toeplitz as was done in {6). Similarly,
various difference equations can be solved on the system of Figure 9 by first writinag the
derivatives in the equation as finite differences as we described in [6]).

Next, we consider a new extension of this AO systolic matrix-vector processor concept.
First, we note that the bandwidth and TBWP of the AO cell are not fully used in the system
of Figure 9 and that the detector shift and summation operations required are not attractive.
In our new optical systolic matrix-vector AO processor of Figure 10 [7], we use a linear
array of LEDs or LDs at the input and again image them through selected regions of a AC cell.
However, now we form the FT of the product information leaving the A0 cell and we detect the
outputs on a linear output detector array with parallel readout. 1Into the LEDs, we feed a
matrix properly arranged with its columns and rows multiplexed as functions of space and
time. 1Into the AO cell, we feed another matrix with its columns and rows multiplexed as
functions of time and frequency. As we have shown (7), the time-sequential output as a func-
tion of time and space from the output detectors can be obtained in parallel and that it cor-
responds to the matrix-matrix product. Note that in this system, no output detector shift
and summation networks are required (as was the case in Figure 9). We also note that the
time-history outputs from the detectors are available for direct feedback immediately into
the LED inputs or the AQ cell input for iterative operation$. We have extended this basic
concept to the solution of matrix-matrix equations, the multiplication of three matrices,
matrix inversion, etc. [7] followina the basic techniques used in our prior optical systolic
array matrix-vector publications. We have also addressed the pipelining of data and opera-
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tions in such systems. From the brief general remarks advanced above, we see that this new

| and most general-purpose type of optical matrix-vector systolic array processor architecturc
research has many diverse applications and that it represents a major new area of applica-~
tion research for AO devices.
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FIGURE 10 New frequency-multiplexed acousto-optic iterative matrix-
vector systolic array processor architecture [7].

7. SUMMARY AND CONCLUSION

In these brief pages, we have reviewed the conventional AO processors that realize the
Fourier transform, convolution and correlation operaticns. We have also described ten new
AO processor architectures. These have used combined hybrid time and space-integratinc con-
cepts, 2-D output patterns, multi-channel architectures, and qeneral-purpose matrix-vector
systolic array concepts. From this brief summary of new and advanced AO architectures, it
appears clear that these devices have a most attractive place in future signal processinc
applications and that they can serve as very general-purpose processors as well as being
able to easily be configured into unique architectures for specific applications.
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Frequency-multiplexed and pipelined iterative optical

systolic array processors

David Casasent, James Jackson, and Charles Neuman

Optical matrix processors using acoustooptic transducers are described with emphasis on new systolic array
architectures using frequency multiplexing in addition to space and time multiplexing. A Kalman filtering
application is considered as our case study trom which the operations required on such a svstem can be de-
fined. This also serves as a new and powertul application for iterative optical processors. The importance
of pipelining the data flow and the ordering of the operations performed in a specitic application of such a
system are also noted. Several examples of how to etfectively achieve this are included. A new technique
tor handling bipolar data on such architectures is also described.

1. Introduction

Optical processors that realize matrix-vector! and
matrix-matrix? multiplications represent a most at-
tractive and rather general-purpose optical processor
concept. [Iterative optical matrix-vecior processors
constitute an even more powerful version of these basic
svstems.! However, the practical realization of these
svstems requires real-time and reusable 2-D) spatial light
modulators.'  Since electrically addressable 2-D spatial
light modulators of adequate performance are not
presentlv readilv available, attention has recently
shifted to systems using acoustooptic (AQ) transducers
that realize matrix-vector multiplications” and iterative
optical matrix-vector operations.®

These recent architectures™* are optical systolic array
processors. However, these initial architectures have
not vet fullv utilized the frequencyv-bandwidth and
time -bandwidth products possible in the AQ devices.”
In Sec. Il we describe several basic trequency-multi-
plexed optical svstolic array architectures that more
tully utilize the signal capacity of the system and that
require simpler output detection systems than did the
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original architectures proposed. In Sec. IV we include
advanced AO systolic array optical processor archi-
tectures with attention to more complex operations and
with attention to the throughput of the resultant sys-
tem. A new basic optical svstolic array processor ar-
chitecture using a Fourier transform output plane with
the simultaneous addition of multiple outputs on a
linear detector arrav with parallel readout is pre-
sented.

Since different data processing problems require
different operations, we select a specific case study and
thus in Sec. Il introduce and describe a new application
(Kalman filtering) for implementation on an optical
systolic arrayv processor. This case study (Sec. 111} is
used to delineate the basic operations required on our
system. It is important to properly pipeline the data
flow and operations in a parallel processor to fullyv re-
alize the parallel processing capability of such a system
and to determine the basic processing elements or
functions into which a specific problem should be for-
mulated for proper implementation on such a syvstem.
In Sec. IV we address this issue with the operations
determined frem our Kalman filtering problem as our
case study. The new optical svstolic arrav processor
architectures presented realize matrix -matrix multi-
plication, matrix-matrix- matrix multiplication, as weil
as matrix inversion. Previous iterative optical pro-
cessors required various operations in the feedback loop.
These are usuallv implemented digitallv and can hence
appreciably slow down the cyele time of the svstem. In
particular. bipolar operations on these svstems require
the addition and subtraction of data from one or sub-
sequent cveles and hence require A D and D A con
verters plus digital data storage and addition. In Sec.
V we advance a new technique to accommodate bipolar
data on such noneoherent optical processors,
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Fig. 1.

Original optical systolic matrix vector multiplier svstem
tafter Refs. 5 and p).

li. Basic Frequency-Multiplexed Optical Systolic
Arvay Processors

By way of review we show the prior®® optical systolic
system in Fig. 1. This system achieves the multiplica-
tion of a banded matrix B of bandwidth three by a
vectora;e.g.,B-a=d, or

b” T ’—(11 '-d 1T
by by ay d»
by b by as dy
bys byn by
bay bas b = <
L Z L J L-J

Without loss of generality, we have chosen the case in
which the main and the two lower diagonals of the ma-
trix contain the only nonzero elements of the banded
matrix. To achieve this operation, the time-sequential
input signals to the three LEDs (or laser diodes) and the
acoustooptic cell are

fithy=... 0 by 0 b 0 0
foAty = ... b 0 [ 0 by 0
fay=_... 0 baa 0 hoy \] hyy
gy=... 0 ax 0 as 0 a,, )

where time increases from right to left and where the bit
duration for each element of B and a is Ty. As was
shown in Refs. 5 and 6, if the detector outputs are
shifted down at a clock rate 1/T; and if successive
products are summed in the detector’s CCD shift reg-
ister readout channel, the time-history output from the
detector system will be the desired matrix-vector
product d.

We have examined various alternate arrangements
of the matrix input data B to the linear LED arrays to
avoid the need for a shift register summation readout
system. Such an approach is attractive, since quite
drastically improved dynamic range will result if the
original architecture of Fig. 1 is modified and if proper
format control of the input data is used.

The system in Fig. | uses a 1-D input array of LEDs
or laser diodes and a 1-D) AQO transducer. The philos-
ophy for realization of an optical matrix-vector product
on such a system was to represent the 2-I) matrix B by
the time and space variables of the LED array, i.e., we
represent the elements b,,,, of B by b(x,t). This time
and space multiplexing of the input data is quite at-
tractive since the LED input data must be provided in
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vector multiplier using a point acoustooptic modulator.

parallel from some source. As noted above, this system
uses the AO cell only to shift the input vector dataa. It
does not use the large frequency-bandwidth and
time-bandwidth products possible in AO cells.

To alleviate these problems and to produce a more
powerful optical systolic processor, we frequency mul-
tiplex the input data. In Fig. 2 we show a simple initial
system to demonstrate the architecture and concept.
We consider the multiplication of a vector with elements
b, by a constant a. In Fig. 2 we show a point AO
modulator (an AO cell with only one spatial resolution
element or equivalently an AQ cell with the input light
source imaged through only 1 pixel of the cell). Asthe
input to the AO cell, we place each b, on a corre-
sponding frequency carrier f,, with intensity modula-
tion proportional to b,, and sum these M terms to form
one simultaneous input signal b, (f,,) to the cell at 1-bit
time Tx. lens | now forms (at the output plane P;)
the Fourier transform of the light distribution leaving
the point modulator. For simplicity we ignore the
bandpass frequency response of the AO cell, and we
show the system for the case of an AO cell bandwidth
MAf extending from Af to MAf, where Af is the fre-
quency resolution of the svstem (corresponding to the
used aperture of the AO cell. i.e., the bit time Ty = 1/
Af). At Py, we place M detector elements in a linear
array at spatial locations corresponding to these M
frequency components. At the instant that the input
signal b,, (/) is present in the point modulator, we pulse
on the LED or laser diode with an output light intensity
a. This light intensity multiplies the signal in the AO
cell and M waves leave the cell (at angles proportional
to fm). These M wave fronts are focused onto the M
output detectors where we obtain the M products abp,
in parallel.

Let us next consider the use of the svstem in Fig. 2 to
realize the general matrix-vector product Ba = ¢ or

i bya ay Cy
. B : . = -1 - 3
bari o barn ax A

To realize this matrix-vector multiplication in the
system of Fig. 1, we partition the matrix B into column
vectors b,, and write Eq. (3) as

fby...b,...byla=c 1)

To realize Ba = ¢ in the form of Eq. (4) in the system of
Fig. 2, we time multiplex the elements a, of a as se-
quential LED inputs, and we time multiplex each b,

e unpm—




Ll 4 L

R o CENS ;J
= .
" . f = MNS
s, LR Lt A ] COLUMNS
A ~ 1 oa: ROWS
. o

s i < . . < pe

v . . g‘gl ]

-~ . ! (g = ibg a
ay j&3 N NG " nenn
L‘—‘ L M DETS

" 3 N

Fig 30 Basic space . time -, and trequency-maltiplexed optical sys-

tolic matrix vector processor system.

and frequency multiplex the M elements of each b, as
the AO cell inputs.  Specitically, by is the AO cell input
at time T’y (with the elements of by frequency-multi-
plexed, b. is the AQO cell input at time 2Ty, etc.). We
choose to frequency multiplex the components of each
column vector b, in Eq. (4) since this arrangement al-
lows us to multiply the first element @, of a by all the
required elements of B (e.g., b)) at time Ty, At time
27, we multiply a. by all the necessary elements b, of
B, etc.

Several other combinations of input data sequences
and different time- and frequency-multiplexing ar-
rangements are also possible. Frequency multiplexing
of the input LED or laser diode (or replacing it by a
second point AQ light modulator) are two of many dif-
ferent possibilities.  We selected the choice noted above
for matrix-vector multiplication, since all M compo-
nents of ¢, = Y, b,,,a, are formed at the proper M
output detector element. Each b,.a, product is
formed at a different (nTx) time interval, and thus we
can sum the proper b,,,a, products by time integration
directly on each of the M output detectors. This ar-
chitecture does not require shifting the contents of the
output detectors and summing the proper shifted con-
tents of these detector elements (as was needed in ear-
lier systems).™  In the system of Fig. 2, after NTy; time
intervals, the outputs from the M detectors at plane P
are the proper elements ¢, of the matrix-vector product
Ba =c.

The arrangement in Fig. 2 utilizes the bandwidth of
the AO cell but neither its full potential time aperture
nor its time - bandwidth product. In Fig. 3 we show a
preferable topology for many cases. In this architec-
ture, the input vector a is space-multiplexed rather than
time-multiplexed and the matrix B is fre. iency- and
time-multiplexed as before. In this system, after NTy
time intervals, the contents of the AO cell are as shown
in Fig. 3. At this time the LLEDs are pulsed on with the
outputs shown in Fig. 3. This N7’y time delay has en-
abled the AO cell to convert the time- and frequency-
multiplexed b(f.t) representation of the matrix B into
the indicated frequency- and space-multiplexed ar-
rangement shown. When the LEDs are pulsed on as
indicated, the full matrix-vector product in Eq. (3) or
Eq. (4) is generated in one Ty time period in parallel on
the linear output detector array.

These architectures (Figs. 2 and 3) are attractive and
preferable to the original architecture of Fig. 1 because
of the increased flexibility they provide and because of
the increased number of computations they perform in

e e R

any time period (this is necessary for such systems to
become competitive with digital systolic array proces-
sors). 'The system of Fig. 2 performs one scalar-vector
product every Ty and automaticaily adds the proper N
such products on the correct detectors. It requires NT,
of time to produce the product of an M X N matrix by
an N-dimensional vector. The system of Fig. 3 per-
forms M vector inner products of the mth row of B and
the column vector a in parallel and displays each of the
M elements of the matrix-vector product Ba on M
spatially separated output detectors in one Ty of time
(after an initial N7y delay time).

It is also possible to frequency multiplex each of the
LED outputs in Fig. 3 (and thus input the matrix to the
LLEDs rather than the AO cell) or to combine frequency
multiplexing of both the LEDs and the AO cell. Inthis
discussion we do not consider all possible combinations
of space, time, and frequency multiplexing of the dif-
ferent elements of the system. The present arrange-
ment in Fig. 3 is the preferred architecture for realizing
matrix-vector products (in Sec. IV we show that this
system can also perform many other operations). We
note that the roles of the matrix and the vector are re-
versed in this system (compared with the one in Fig. 1)
with the matrix represented by frequency and time
multiplexing being fed to the AO cell rather than the
input LED array. In Sec. IV we consider iterative
matrix algorithms as well as the pipelining and data flow
of the system. In such applications we will find it
preferable to reverse the matrix coding used to facilitate
data flow and operational pipelining. For now, our
initial concern is to convey the concept of frequency
multiplexing and the new general optical systolic array
Fourier transform architecture of Fig. 3.

If all N components of a are available in parallel, the
system of Fig. 3 is preferable. If this is not the case, the
system of Fig. 2 is preferable. We note that, although
the system in Fig. 3 produces the full matrix-vector
product in parallel, a time delay of NTy is required
before this output is obtained (this is necessary to
properly format the contents of the AQ cell, using it as
atime delay element). In Sec. IV we discuss how proper
pipelining of data and operations can avoid this delay.
We do not consider the system of Fig. 2 further since its
potential is quite limited.

The locations of the detector elements in these fre-
quency-multiplexed architectures are easily calculated.
For the RF frequency f,, associated with row m of the
matrix A, the spatial frequency of the signal in the cell
is up, = fm/v., where v, is the velocity of sound in the AQ
cell. The corresponding location of this f,, frequency
component in the output P; plane is a distance d,,, ~
UmAf1./n = fm Mf1./nv, below the central point of the
output Fourier transform plane (where X is the wave-
length ot iight, n is the index of refraction, and f;, is the
focal length of the Fourier transform lens).

To fully utilize the architecture of Fig. 3, we consider
the realization of more complex basic operations beyond
the simple matrix-vector multiplication considered thus
far (e.g., matrix-matrix products, matrix-matrix-
matrix products, and matrix inversions). We believe
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that the reduction and description of a specific data
processing problem to such more complex fundamental
operations represent the best utilization of such a par-
allel architecture. To detail such operations, a specific
application is necessary. In Sec. I1I we describe a new
and most powerful general matrix processing problem
for such systems (Kalman filtering). A discussion of
the realization of several of the matrix operations re-
quired in Kalman ftiltering using the architecture of Fig.
3 follows in Sec. 1V, where we also address the associated
pipelining and flow of data and operations in such a
parallel processor.

. Kaiman Filtering on an lterative Optical Systolic
Array Processor

Our earlier optical matrix-vector research on optimal
control®¥ used an iterative optical processor with a 2-D
spatial light modulator mask. In such applications, the
refresh time (30 msec, typically) of 2-D light modulators
restricted the algorithms we could consider to those
which required very few changes of the 2-D mask. Our
original optimal control problem involved the solution
of the algebraic matrix Ricatti equation to calculate the
feedback gains and optimal controls to be applied. Our
proposed solution®? involved a double-nested iterative
algorithm with an inner and outer iterative loop. On
each outer iterative loop, the mask (the 2-D matrix) had
to be altered. Our new architecture in Fig. 3 removes
the restriction of considering only algorithms that re-
quire a minimum number of changes of the matrix
mask. Moreover, our prior optimal control applications
were restricted to the case when we assumed that all
states in our system model were observable and that the
noise statistics were known in advance. In practice, this
is not the case. Rather, we must estimate many of the
states in the control system (and we must also update
our estimates of the noise statistics after each new input
measurement). A solution to these problems is the
discrete-time Kalman filter. This is an optimal filter
in the minimum mean-square sense.

In Table I we summarize (without derivation) the
basic discrete-time Kalman filtering equations.!® All
control parameters used are defined in Table II.
Equations (1a) and (1b) in Table I model the system as
a linear vector difference equation. In our discrete-time
svstem model, we assume that the system noise vector
w and the noise vector v associated with measurement
k are GGaussian distributed and of zero mean. as in Egs.
(1c)and (1d), and that they are uncorrelated as defined
in Eq. (1e). The initial state estimate X, and the initial
error covariance matrix My in Eq. (1) complete our
system model. The basic operations required in Kal-
man filtering and state estimation involve an iterative
algorithm (with the iteration index & denoting different
time samples). The actual sampling times kT, are
equally spaced. We assume for now that the noise
statistics (Q.R) are known a priori. The system model
(®,I'.H) is assumed to be known. Just prior to time
kT.,we know the state x;, of the svstem and the error
covariance M, from the time update Eqs. (1)) and (1k).
We also know (or can precompute if the noise statistics
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Table {. Kalman Filtering Algorithm

DESCRIPTION DEFINING EQUATTORE
System Model {laj !«01 R NL T L
Gbi oz, = HX e v
A e N
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Initial Conditions (167 x 4ni ¥

) «
Mearureront Ujdates

-1 T, -1 1

4 Jov e 30 = . MR
Error Jovariance {1 Ek (ﬁ* # N E*

Kalmar Gain Matrix h = P H R
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State Estimate o x, = ik LR N

Time Vpdates
t lated Stat timat =3 < lw
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Extrapolated Error Covariance |(K) M | = ix‘-ﬁaf Ly

Table Il. Control Parameter Notation

FSY%L’L DIMENSION | DEFINITION
k calar fample time
—4
lk Nx 1 System state vector
c* N x N System transit.on matrix
ﬁk N x| System nolse vector: uaus=:an distributed with mearn
W and ¢ d o
@, a ovariance g
Lk N x N Input noise distribution matrix
2z, 8 x 1 Measurement vector
t]* N x N Measurement distribution matrix
Ve Nx 1 Measurement nclse vector: Gaussian distributed with
mean zero and covariance &(
P_* N x N Error cevariance matrix
S Nx N Kalman gain matrix
x Nxl State es t ter measurement z
Xy timate after me 2
X, Nox 1 Extrapolated state estimate
K+l
5(‘1 N x N Extrapolated errcr covariance matrix
|

are known in advance) the matrices P, and K, in Egs.
(1g) and (1h). At time kT.. we make a measurement
z.. We then calculate the new state estimate %, from

z; asin Eq. (1i). This estimate is the expected value of

x;, given all the measurements from |z;{to z,. We then
calculate the extrapolated state estimate X4, as in Eq.
(1j). 'This is based on the system model and our %, es-
timate. If Q. and R, are known as assumed, P,.. K, .
and M ;+; can be precomputed in advance from Eqs.
(1g). (1h), and (1k).

In this initial example the only required calculations

" are the state estimate %;, in Eq. (1i} and the extrapolated

state estimate X, 4+, in Eq. (1j). In this case. Kalman
filtering requires only matrix-vector multiplications
and vector additions and subtractions. Thus, the
simple system of Fig. 1 or Fig. 2 suffices. We address
how vector additions and subtractions can be accom-
modated in our system in Sec. V. For now we return to




our Kalman filtering discussion and we consider the
more practical case when our a priori noise statistics
(Qx Ry ) are inaccurate or not known (together with
their time history) in advance. In this case, atter the
measurement z; , we calculate extrapolated noise sta-
tistics Q. and R, from our prior estimates. We then
calculate P, and K, in Egs. (1g) and (1h) and finally %,
in Eq. t11). Next we extrapolate the state estimate and
the covariance estimate to the next sampling time using
Egs. (1)) and (1k).

In this more practical case, Egs. (1g)-{1k) must be
calculated for each new input measuremicnt. The op-
erations in Eqs. (1g), (1h), and (1k) require the new
operations of matrix-matrix-matrix multiplication and
matrix inversion in addition to matrix summations. We
note that the covariance matrices M, and P, are sym-
metric and specific algorithms can be used to simplify
the computations. To maintain the generality of our
processor, we will not exploit this matrix feature at
present. Instead, we use the matrix operations that
emerge from this Kalman filtering application to define
more general and complex matrix operations required
in a typical problem. We now consider how to realize
these operations on our frequency-multiplexed systolic
array processor with attention to an efficient pipelining
and flow of data and operations.

IV. Pipelining and Flow of Data and Operations

In this section we consider how the advanced opera-
tions of matrix-matrix and matrix-matrix-matrix
multiplication, matrix inversion, and matrix addition
can be realized on our basic optical systolic processor.
To concentrate our attention on the architecture that
achieves the best pipelining and flow of data and oper-
ations. we suppress the details of the required timing
and control circuits and the required data storage and
buffering. In all case studies to be presented, we as-
sume square matrices (M = N) with no loss of general-
itv. Toenable the data and operational 1low to be more
clearly shown, we consider only the case of matrices of
order N = M = 3. Our system architectures can be
directly extended to the case of matrices of larger
order.

We first consider the basic space-, time-, and fre-
quency-multiplexed optical systolic matrix-matrix
multiplication system of Fig. 4 used to realize the ma-
trix-matrix product AB = C. This architecture uses
the basic system of Fig. 3 with the matrix B fed to the
linear input LED array as b,,,,, = b(x,t); l.e., using space
and time multiplexing. The matrix A is fed to the AO
cellas a,, = a(f,t),i.e., using frequency and time mul-
tiplexing as before. The matrix-matrix product in this
system is thus realized as
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Fig. 4. Basic space-. time-.and frequency-multipiexed optical svs
tolic matrix matrix multiphier.

Table lil.  Time History (with Space and Frequency

Multiplexing) of the Contents of the Comp ts in the
System in Fig. 4 for Matrix—Matrix Multiplications
T, 1 T2 [ T3 | T4 | Ts COMMENTS
1| Y12 | 3| - -
AD CELL INPUTS
3y L7y LP]) - - AT FREQUENC IES
£, f, f
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%31 | %32 f %33 | - -
. - - Y T
- - - 52 | b3
- 1PUTE
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where the space, time, and frequency multiplexing are
shown explicitly. To achieve the proper output, we
recall that the AO cell converts time to space, that its
transmittance shifts in space as time increases, and that
the Fourier transform Iens converts frequency to space
in the output transform plane.

To simplify description of the system in Fig. 4, we
show in Table I1I the time history of the space-multi-
plexed inputs to the LEDs and the frequency-multi-
plexed inputs to the AO cell as well as the space and
time outputs from the detector array. Note that time
proceeds from left to right in this table and that the
basic space and time arrangements of the matrix input
B to the LEDs are as before. Referring to Table I1I we
see that, at time T4, all elements of the first column of

TIME
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A multiply &,,, all elements of the second column of A
multiply b, and all elements of the third column of A
multiply &;,. The proper terms in these three vector
inner products are formed and summed on the correct
detectors by the indicated choice of space, time, and
frequency multiplexing. As before, there is a time delay
of 2T before we can commence accessing the elements
of C. The philosophy used in this space, time, and
frequency multiplexing is the same as before. We form
the products of the three rows of A and the first column
of B to give the first column of C. We then note that
the three rows of A are needed for subsequent multi-
plications by the remaining second and third columns
of B. We thus input these later columns of B into the
input LED array at successive times with their spatial
locations shifted by 1-bit location (to account for the
propagation of the A data in the AO cell).

Thus. at time T'; we use the contents of the AQ cell
(the three rows of A with frequency-multiplexed col-
umns) to multiply the second column of B yielding
outputs that are the second column of C at time T';. At
time T we similarly produce the third column of C as
our output. Thus, in 5T this system performs nine
vector inner products (three at a time in parallel) after
a 2Ty initial delay. We gate the output detector ele-
ments off during this 2T initial time delay. Asshown
in Table 111, the output from this system is the desired
matrix-matrix product AB = C with elements:

Pl

= ‘_ aby,. [G1)
k=1
In general, the multiplication of two matrices of di-
mensions (M X N) and (N X M) in this system requires
M frequencies, M detectors, (2N — 1) LEDs, and (2N
— 1Ty of time Jof which (N — 1)T; is dead or delay
time].

From this brief extension of our original system in
Fig. 3 to the realization of more complex operations such
as matrix-matrix multiplication as in Fig. 4, we have the
intuitive feeling that, unless the data flow and opera-
tions are properly pipelined, this architecture will not
achieve its full potentiai. We now consider the case of
forming a matrix-matrix-matrix product (e.g., ABD =
E) on this system as required in the Kalman filter for-
mulation in Sec. III. This proves to be an excellent
example of how proper pipelining of the data and op-
erations can achieve a reduced overall delay time and
efficient data flow. The basic matrix-matrix multiplier
in Fig. 4 is again used to realize this. The operation and
data flow we use involve first calculating AB = C and
then feeding back C to the AO cell with D now applied
to the LED inputs. This system then forms CD =
ABD = E.

A simplified diagram of this architecture is shown in
Fig. 5. This architecture includes the basic system of
Fig. 4 with the addition of feedback through a sample
and hold (S/H) unit to a frequency multiplexing and
switch box. This unit insures that the inputs to the AO
cell are the matrix A during the first three time periods
and then the matrix C during the next three time peri-
ods. In Table IV we show the time-history flow (as
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Table IV. Time History (with Space and Frequency Multiplexing) for the
Cuntents of the C. ts in the System in Fig. 5 for Matrix-Matrix -
Matrix Multiplications
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functions of frequency and space) of the data inputs to
the LEDs and the AQ cell plus the detector outputs. By
T+ = 3Ty, the A matrix is present in the AO cell and
now the first column of B is entered into the lower three
LEDs. At this time, T, the detector outputs are valid,
and at times from T to T; the detector outputs are the
associated columns of C (as in Fig. 4 and Table IID.
These detector outputs are delaved by one clock period
T'1 (by the S/H unit) and fed back immediately into the
AO cell at times from Ty to Ty, At T, the system has
completed the first matrix multiplication AB = C and
the LEDs are now free to accept the columns of D as
inputs (during T to Tx). This is the precise time at
which they are needed. From T to Ta. the svstem
performs the final CD = E matrix multiplication and
the elements e,,,,, of E = ABD appear at the detector
outputs from T to Th. We note that, in this feedback
architecture, no additional delay or dead time is accu-
mulated after the initial 2T'; loading of the AQ Cell and
that new data can be fed to the AQ cell at 7- and the
LEDs at T if necessary in specific problems.

The two matrix-matrix cycles performed on the
system are summarized:
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where we again show the space, time, and frequency B ={I -~ «H|B, + «C. i8)

multiplexing used. The first AB = C matrix-matrix
multiplication proceeds as in Eq. (5). The C output is
then converted to frequency and time/space by the
frequency-multiplexing unit in Fig. 5 as shown in Eq.
(7a). The second CD = E matrix multiplication in Eq.
(7b) proceeds exactly the same as in Egs. (5) and (7a).
For the N = M = 3 problem, the system performs the
eighteen vector inner products, three at a time in par-
allel, in a total time of 87'4. In general, for (M X N)
matrices, the system requires M frequencies and de-
tectors, (2N — 1) LEDs (equal to the time-bandwidth
product of the AQ cell), and (3N — 1) Ty of processing
time. The total time delay or dead time of the processor
has not been increased over the initial (N — 1} Ty time
delay. After this initial delay, all operations of the
system are properly pipelined with no additional de-
lays.

Rather than considering further pipelining heyond
the matrix-matrix-matrix multiplication operation in
Fig. 5 and Table IV, we now consider the realization of
a matrix inversion on the basic optical system in Fig. 4.
Our present purpose is to determine the basic archi-
tecture of a space-, time-, and frequency-multiplexed
optical systolic processor. In computing the error co-
variance matrix update and the Kalman gain matrix
update in Eqgs. (1g) and (1h), matrix inversion is re-
quired. This operation is computationally intensive
and is thus a most attractive one to realize on our par-
allel optical system. To achieve this, we use a modified
Richardson algorithm'! that we previously described.?
Its realization on the present system is quite different,
however. et us consider solving C = HBfor B = H-IC
without explicitly computing the matrix inverse H-1.
This is attractive because in some cases H is ill-condi-
tioned and hence cannot be inverted. To achieve this,
we use the iterative algorithm?

where w is the acceleration parameter that is chosen to
speed convergence of the iterative algorithm. When the
results B, = B+, on two successive iterations k and k&
+ 1 are equal, Eq. (8) reduces to the solution

B=H"'(. (4

To realize this algorithm in our system, we first re-
write Eq. (8) as

B/« =1/« ~HIB, + C. (BIE0)

We then recognize that H is known and fixed and that
we can easily compute I/w by a simple scaling of its el-
ements (this flexibility in a variable acceleration pa-
rameter w on each iteration is attractive and necessary
for increased generality of the problems for which we
intend this processor to be used). We thus write |I/w
—~ H] as a matrix A which we assume to be known and
fixed (or easily recomputed for different « if necessary).
Our iterative algorithm then becomes

Biii = «|AB, + C] an

Our final general purpose space-, time-, and fre-
quency-multiplexed optical systolic processor archi-
tecture is then as shown in Fig. 6. This svstem is similar
to that of Fig. 5 with the addition of an input unit that
computes [I/w — H] = A and a resistive adder and am-
plifier with gain w at the output of the detectors.

In this architecture, the optical system performs the
matrix—matrix multiplication AB;,, the matrix C is
added one row at a time to the rows of the AB,. output
(in a resistor adder) to form |AB,. + C|. This matrix
summation is then multiplied by w to realize the right-
hand side of Eq. (11) or the next B, ;, iterative input to
the AO cell. InTable V we show theti - histories (as
functions of space and trequency) of the inputs to the
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architecture of Fig. 6, flow and pipelining of operations
and data are ideal as there is no dead or delay time after
the initial (N = 1)T'4 AO cell delay.

Several alternate architectures were considered for
this system. These included feeding back the output
to the LEDs rather than the AO cell (this required
variable delays of the detector outputs with the delay

AL w time depending on the order N of the problem being

:::/.c-y.-,,p‘q (L0 solved). In the system shown in Fig. 6, a fixed 1Ty
Aoy 280 [ ™y delay (achieved with the S/H circuit) is adequate for all
‘snwmf . (;:”; problems. Thus, the feedback architecture indicated

Fig. 6. General optical systolic iterative optical processor architec-

ture (matrix inversion case study detailed).

AQ cell and the LEDs, the outputs from the detectors,
and the inputs and outputs from the adder. For nota-
tional simplicity in Table V, we denote the elements of
the initial & = 0 matrix B, by b,,,., the elements of B,
(By, for iterationk = 1) by b,,,,,, and the elements of B,
(fork =2)byb,,,. Asweseefrom Table V, the initial
b, inputs to the AO cell originate from our initial es-
timate as described in Refs. 3, 8, and 9 and thereafter
all future AO cell inputs for all successive iterations
come from the S/H output circuit. Thus, in this final

was chosen as preferable. Realization of the addition
of the matrix C in the optical system by including ad-
ditional input LEDs and additional time was also con-
sidered. Since this resulted in a slower system with
poorer pipelining of data and operations and a general
degradation of the modular structure of the processor’s
architecture, we chose to achieve matrix addition by the
external resistor adder following the detector as shown
in Fig. 6. On inspecticn of Table V we see that, to allow
feedback of B+, to the AO cell rather than the LEDs
(this is desirable as noted above), we have used A and
B,: as the inputs to the LEDs and the AO cell. respec-
tively. This differs from the prior systems (Figs. 4 and
5) in which AB was formed with A fed to the AO cell.
As detailed in Table V, we achieve the proper matrix

Table V. Data and Operational Flow and Pipelining of the System in Fig. 6 for Matrix

Inversion
LAY T T3 Te Tg Ts Ty Ts COMMENTS
’ * U " H
by by by | b by By | P Ba o cal s AT
. L] ' ' " ] FREQUENCIES Ty f, f
b b b b b b b b L,
12 22 31 12 22 32 12 2 |1 D T 1 aE
L} 1 n )
i3 by by | by byy Yy | Bly  bhy |FAOM DETECTORS.
- . P
- - - - LEY - - 31
- - - Y % | 21 '3 INUTS TO
. - ’ . N 8 4y 3 T FIVE
1 22 33 : ' il
- - LIV L) - 2 23
- - 43 - - 13 - -
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Y]
- - 4, & 4 4  d  dp Dp=ad
1]
.
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multiplication and feedback by space multiplexing of
the rows of A and time multiplexing of its columns at
the LED inputs and by frequency multiplexing the rows
of B and time multiplexing its columns. This differs
from the space, time, and frequency multiplexing used
in Figs. 4 and 5. The AB = D product thus appears on
the output detectors one row at a time. Further anal-
vsis shows that this architecture of Fig. 6 can realize all
the prior matrix operations (matrix-vector multipli-
cation, the solution of linear matrix-vector equations,
matrix-matrix multiplication, matrix-matrix matrix
multiplication, vector addition and subtraction, matrix
addition and subtraction, matrix inversion, and the
solution of linear matrix-matrix equations). We thus
choose this as our basic architecture for the class of
problems we have thus far considered. In later publi-
cations we will address the fabrication details of such
a system, the partitioning of large matrix problems into
smaller ones and the full details of implementation of
Kalman filtering and other linear and nonlinear alge-
braic matrix applications on such a processor. We now
address the final topic of this paper: operating on bi-
polar-valued matrix and vector data and the imple-
mentation of matrix subtraction.

V. Bipolar-Valued Data Handling

Many techniques have been suggested for accom-
modating matrices and vectors with bipolar- and com-
plex-valued elements on an optical processor. We
consider only bipolar data representation here (the

+ -1

1 %n i

a - a + :

Ap = |- 11 ¢
== + -
41 % i

- +1

21 % E

extension to complex-valued data follows directly as
before®). In all prior approaches to processing bipo-
lar-valued data, the matrix was placed on a bias (this
increased the dynamic range requirements of the de-
tector and the matrix). In our prior bipolar-valued data
algorithm® we operated the system twice, once with
positive-valued input data and once with negative-
valued input data. In postdetection electronics, we
then form the difference of these two matrix-vector
outputs. This achieved the necessary bipolar matrix—
vector multiplication. However, this required consid-
erable time (A-D and D-A conversion and data storage,
plus a digital addition in the feedback loop). In con-
trast, our present architecture (Fig. 6) requires no A-D
and D-A conversion and performs the necessary matrix
addition in an analog svstem (this is possible to suffi-
cient accuracy to be compatible with the accuracy of the
rest of the processor). Our present initial concern is
pipelining of data and operations and the speed of the
system. In later publications we will address the ac-

curacy of the resultant processor. To maintain a high
system throughput, an alternate bipolar-valued data
algorithm is thus desirable. We now describe our new
solution to this problem.

We consider first the multiplication of two bipolar
scalars a and b. We denote their positive and negative

parts by (a*,a”) and (b*,b7), respectively. Each of

these components is non-negative. We recall thatifa*
>0, thena” =0,andifa= > 0,thenat = 0 (i.e., half of
the elements will always be zero). The required bipolar
multiplication is

ab =tat —a Wb =b )
=tath' ' +ua b y—(a b tath ) (12)

From this we see that the positive and negative parts of
the product ab are

tab)y* =(a*b* +a b, (1:3a)
ahy” =ta b* +ta*h ) [BRIN]

and the bipolar output product is
ah = (abi' — tab) ", (14

whereas before only one of the two terms in Eq. (14) is
nonzero. We now extend this technique to the case of
matrix-matrix multiplication AB = C where the matrix
elements are bipolar-valued. We arrange each element
@,,, of the matrix as a (2 X 2) submatrix and each ele-
ment of B as a two-element column vector. ForN =M

=2,

O ’;‘ ) B R B

212 11 E 12 €11 Ecl2
- + - - - -

a2 | P11 P12 ‘11 412 .

---------- o |ccmapmiiad = =] = ( (1%)

M - b + : b . c * : C M -

222 21 {22 21 |22
- + -1 + bl | -

822 by P22 €21 22|

- [} - L !

Each element ¢, of the output product matrix C is
likewise represented as a two-element column vector as
shown. As before, only one of the two elements (¢,,,,)* .
(¢nn)~ will be nonzero, and all input and output ele-
ments will be positive or zero. We have detailed this
new algorithm for the case of matrix-matrix multipli-
cation in Eq. (15), since this is the basic operation per-
formed on our new systolic processor shown in Fig. 6.
This algorithm leads itself to direct pipelining and
incorporation into all our architectures since the matrix
output is fed back to the AO cell, and this output C is
in the required form of the B matrix as shown in Eq.
(15). 'This increases the size of the processor [(3IN — 1)
LEDs are now required rather than (2N — 1) as before
and 2M frequencies and 2M detectors are now re-
quired]. All previous bipolar-valued data algorithms
requirs a similar increase in the number of point
sources, frequencies, and detectors, however. Qur new
algorithm is superior to our prior one because it is di-
rectly incorporated into the flow and pipelining of data
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matrix subtraction. The resultant systolic architecture
does not require CCD shift register readout and sum-
mation of the output detector array, and it more fully '
utilizes the frequency-bandwidth and time--bandwidth
products of the AO cell. Our new bipolar data algo- ;
rithm avoids the need for A-1) and D-A conversion and .
digital subtraction in the feedback loop. It thus pro-
vides a fast system with continuously pipelined data and
operations.
The applications for iterative optical processors are
Using our prior ()* and ()~ notations, we write Eq. (16)  quite considerable. The applications we have ad-
as dressed to date include: adaptive phased array radar
and beam forming,'? optimal control,** deconvolution
and inverse filtering,’ and Kalman filtering. Also
documented ' is the use of an iterative optical processor
for general operations such as solution of simultaneous
algebraic equations and difference or differential
equations, least mean-square problems, computation
of eigenvalues and eigenvectors, and nonlinear matrix
problems. The use of iterative optical processors im-
plemented with the new frequency-multiplexed systems
described in this paper represents a most powerful and

and operations (without the requirement to operate on
output data from successive cycles) and because it re-
duces the dynamic range requirements of the detector
and the matrices.

The arrangement in Eq. (15) can also be used to
perform a true matrix subtraction without the need to
handle negative numbers. To show this we consider
forming

A-BC=D (161

D=D'-D =(A* - A") - {BC)* = (BC) |

=AY + (BC)] - A~ +(BCIY. (17

from which we see that the positive and negative parts
of the bipolar output matrix D are obtained as

D+ = A* +(BC)-,
D-=A"+(BO*.
Realization of Eq. (16) in the form of Eq. (17) follows

(18a)

(18b)

directly from the matrix partitioning used in Eq. (15).
This new bipolar and matrix subtraction algorithm now
completes our list of operations required for Kalman
filtering. A quite similar list of operations exists for
many other matrix problems.

VI. Summary and Conclusion

In this paper we have advanced and described a new
iterative matrix-matrix application (Kalman filtering)
for implementation on an iterative optical systolic
processor. We have analyzed the operations required
to realize the Kalman filter and found that they include
matrix-matrix and matrix-matrix-matrix multiplica-
tion, matrix inversion, and matrix addition and sub-
traction. We have proposed several new space-, time-,
and frequency-multiplexed iterative optical systolic

general-purpose data processing architecture.
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Direct rather than indirect solutions to matrix-vector equations on an optical systolic array processor are considered. A
frequency-multiplexed optical systolic array processor for matrix-decomposition is described. The data flow and ordering of
operations for LU decomposition or gaussian elimination and ££° or Cholesky decomposition on this system are detailed
using an algorithm that utilizes the parallel processing ability of the optical systolic array processor. The time required for
this optical algorithm is found to be much less than for the digital equivalent. The data flow in the optical system is seen to

be most excelient.

1. Introduction

Optical matrix-vector processors [1,2] are very
general-purpose systems appropriate for many applica-
tions. The new optical systolic array architectures
{3-5] using acousto-optic (AO) devices are even more
attractive because both the vector and matrix are easily
updated in real-time. However, such processors require
attention to the pipelining and flow of data and opera-
tions {5]. A primary application for such systems is
the solution of matrix —vector equations of the form
Ax = b (or similar matrix —matrix and nonlinear matrix
equations) [1]. Thusfar, only indirect or iterative al-
gorithms have been suggested for the solution of such
problems on optical processors. In this paper, we ad-
vance a direct solution using LU matrix-decomposition
(or gaussian elimination) [6] and also propose a paral-
lel method for Cholesky decomposition {6].

In section 2, we discuss such solutions and formu-
late a paralle] algorithm for LU matrix-decomposition
that is very attractive for an optical realization. We
also note that when direct techniques are used. it is
preferable to realize the matrix-decomposition on an
optical system and to utilize a digital processor for the
solution of the simplified resultant matrix —vector
problem. In section 3, we describe one method of
realizing LU matrix-decomposition on a new [5] fre-
quency-multiplexed optical systolic array matrix—
matrix processor. In our solution, we also note that

considerable attention must be paid to the pipelining
and flow of data and operations in any systolic array
processor. In section 4, we discuss a simple method for
extending the process of LU decomposition to
Cholesky LLT decomposition on our optical processor.

2. LU matrix-decomposition

A very popular direct solution to Ax = b forx is to
decompose A into the product of a lower L and an
upper U triangular matrix. The equation to be solved
then becomes LUx = b. One can solve this equation by
first solving Ly = b for y and then Ux = y for x. Alter-
natively, one can compute L=! and L-1b =" and
solve Ux = b". Since L and U are triangular matrices,
the solutions by back substitution are easily achieved
in dedicated digital hardware. The computational
load associated with the LU decomposition is much
larger than the solution of the simplified triangular
equation that results [6]. Thus, the use of an optical
systolic array processor for matrix-decomposition
appears to be a new and most attractive application,

We now consider an LU matrix-decomposition al-
gorithm that is most suitable for implementation on a |
parallel optical systolic array processor. For an & X A’
matrix A, we require N ~ 1 steps. In step 1, we form
M, A = A, (where the first element is the only non-zero
element in the first column of A,). In step 2, we form
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M, A, = A, (where A, is such that the first element is
the only non-zero element in the first column and the
first two elements are the only non-zero elements in
the second column). We continue this procedure for

N — 1 steps until we obtain My, _; Ay _, = Ay_, which
is an upper triangular matrix U. Each matrix M,, is an
elementary lower triangular matrix of the general form
of an identity matrix with non-zero elements below the
diagonal only in the nth column,

pe ey

e

- ' M

*nﬂ.n

:ll

“nd.n .
_O e O 1

where the non-zero elements of column n of m,, satisfy
-1 -1
Mn =0l @

forn +1 <k <N. By the symbol af, ) we denote
element (k,n) of A, _; atstepn —1. )

The product M, _, ... M, = M s also a lower triangu-
lar matrix. To solve Ax = b, we thus form the upper-
triangular matrix MA = U and the vector Mb = d'. We
note that M~ = L is lower-triangular and that A = LU.
Thus, Ax = b can be written as M—1Ux = b or as

Ux=Mb . 3)

In our proposed LU decomposition of A to solve Ax

LDs/ AO
LEDs CELL

OPTICS COMMUNICATIONS 15 July 1983

= b, we will compute only U and Mb in (3). These cal-
culations will be performed optically and the simpli-
fied problem in (3) can then be easily solved digitally
by back substitution. Such direct techniques are often
more attractive than indirect or iterative matrix inver-
sion algorithms when the same matrix is used many
times (e.g. in the implicit solutions of partial differen-

tial equations as described in [7]). They are also attrac-

tive since the number of steps required (N — 1) is fixed
and known. Conversely, the number of iterations re-
quired in indirect solutions is not easily estimated in
advance. We assume that A is either strictly diagonally
dominant or positive definite so that there is no need
for Fivgning (interchanging rows to insure g ;”
>a;j;i> forn+1 <k <N)[6). '

3. Optical systolic array implementation

To optically implement the LU decomposition, we
consider the frequency-multiplexed optical matrix—
matrix systolic array processor {5] of fig. 1. In this
architecture, M LEDs are imaged through M regions of
an acousto-optic (AO) cell and the Fourier transform
of the light distribution leaving the cell is detected on
an output linear detector array. If the matrix B is fed
to the LEDs with the matrix elements b,,,, encoded in
space x and time 7 as b(x, ) and if the elements a,,,
of the matrix A are encoded in frequency f and time 7
asa(/f, 1), then the detected output € is a matrix with
elements c,,, = c(x, t). This matrix is the matrix -
matrix product € = AB. If b,,, = b(t, x) and a,,,,, =

LENS

,*F'

L F—

!.bl‘ll

- Bx,0) —

SHIFTED

«—[F

ar,
Or, €= <,
DI3 - c(x,t)

y %‘
Aea =a(f,t)
L L]

Fig. 1. Schematic diagram of a frequency-multiplexed optical matrix-matrix systolic array processor.

271




Volume 46, number 5,6

a(t, f), then ¢, = (2, x) and € = BA is produced. The
operation of this system is detailed in [5]. We denote
separate time slots on this system in units of a bit time
Tp asT) =Ty, Ty = 2Ty, etc. For N X N matrices, we
require (2N — 1) LEDs. At each T, N LEDs are used.
They are fed with successive rows or columns of B. The
N LEDs used are shifted up by one at successive Ty
times. For example, for b,,, = b(x, t), the bottom N
LED:s are fed with the first row of B at Tg. LEDs 2
through N + 2 are fed with the second row of B at
2T, etc. This is necessary to allow the input data to
properly track the matrix information present in the
AO cell as it moves through the cell.

To implement our LU decomposition algorithm
described in section 2 on the system of fig. 1, three
operations are required at each of the N — 1 steps. At
step n, we:

(1) calculate (1 /af,",,‘ Dy,

(2) calculate the terms my, = [~1/aCh V)oY in
(MNand (2Q)forn+1 Kk <N,

(3) calculate M, A, _, = A, and M, b,_, =b,.
After N — 1 such steps, we have our desired My _; Ay _
= MA = U upper triangular matrix and the Mb vector
required in (3).

We perform steps (1) and (2) in simple analog elec-
tronics (fig. 2) and perform step (3) on the system of
fig. 1. At successive Ty times, the circuit of fig. 2 pro-
duces successive rows of M,,. We denote row m of M,
at step n by mf:). Since each row has one element that
is 1 and only one other non-zero element, a simple
MOS switching gate array can select which two LEDs
are on at each Ty and feed the 1 and m,,, data to
these two LEDs. To form M, A, _;, we thus feed suc-
cessive rows of M,, to the LEDs at successive times I'g.
We frequency-multiplex each row of A,_; (we denote
the kth row by ai" = 1)) and feed successive rows to the
AO cell at successive times T. After NTyg of time, the
full A, matrix is present in the lower ATy time slots
of the AO cell. The lower N LEDs are now fed with

Jl

(n-1)

*en sviteh [————{>Lene

(n-1)
-llann

Fig. 2. Analog circuitry to compute the mth row ""v'n of M,
atstepn.
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Table 1

Detailed data flow for the realization of LU matrix-decomposi-
tion of a 3 X 3 matrix on the optical systolic array processor
of fig. 1.

+ +
TIME (T nT)) T, T, 1, T, T,
4
3
LED INPUTS RS S o
(FROM FIG.2 CIRCUIT) 8 fynE Z31
I--- SR M
o o0 0! 1o
A0 TRED f)-f, 5 5 50 5o |
CELL 0o 0 of 11!
1} 1
INPUTS TREQ f, b by b”O b, by !
_________________ .
DETECTOR OUTPUTS R 23
s 2 !3: 3, !3:
1 1 102 2!
by b byidy b3
I[ J
1
STORE Col.l of A, |Col.2 of 52{
L}
Tlem.1 of gli“"" 33y
! :
:b2 and b3 '

m(l") and the first row a(l") of A, is formed on the de-
tectors. At successive nTg times, successive rows of

A, are produced. We compute M,b,,_, =b,, in step

(3) in parallel with A, by adding an additional (N +1)th
frequency to the cell and encoding elements b;‘"‘ D of
b,,_, on this frequency at successive Ty times.

The nth column of the final U matrix has been cal-
culated at step n and at step n + 1 we do not alter the
first n columns and rows of A, or the first elements
of b,,. Thus, at each step, we store the appropriate new
column of A, and the corresponding new element of
b,, and we operate with matrices M,, and A, _, reduced
in order by one on each successive step. In table 1, we
show the pipelining and flow of data and operations
in the system of fig. 1 for the case of a 3 X 3 matrix.
This table shows the inputs to the LEDs and the AO
cell as well as the detector outputs and the data stored
at successive times T, = nT. As before, we denote row
m of M, and A,, by m® and & and the element m of
b, by b (note that Ay = A and by = b).

For an N X N matrix, we require 2NV —1 LEDs,

N +1 frequencies and an AO cell of length (2N - 1)Tp.
Processing the first column of A requires (2V - 1)Tg

of time, processing the second column of A, requires
(N -1)T, for the third column (N —2)Ty, etc. Ignor-
ing the initial (V —1)T}y set-up time, the total time for
an optical LU decomposition is ]
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[N+ WN-1)+(N-2)+..+2]Ty
=[(N2+N-2)/2]Ty . @)

For large N, approximately N 3/3 multiplications are
required in the conventional serial digital LU decom-
position approach. If we assume that a multiplication
time and our bit time Ty are comparable, then the
digital system requires approximately a factor of NTg
longer time than does the optical system. This occurs
because the optical system performs N vector inner
products in parallel during each T time. Memory
access times, data management and bookkeeping can
increase the time required digitally (especially if V is
large). As shown, data flow in our proposed optical
realization of this LU algorithm is quite ideal.

4. Cholesky decomposition and its optical
implementation

When a matrix A is symmetric and positive-definite,
it can be decomposed into the product of a lower-
triangular matrix £ and its transpose L7, i.e.

A=LLT )

This is the Cholesky decomposition [6] and £ is the
square-root of the matrix A [8]. This decomposition
is extremely popular and has many applications in
science and engineering because, in many physical
problems, symmetric (hermitian) and positive definite
matrices arise. We now describe a new and simple
paralle] approach for Cholesky decomposition and
discuss its implementation on our systolic optical
processor. The three steps in the algorithm are:

(1) Perform the LU decomposition on the systolic
optical processor as described above to determine U.
This requires [(N2 + N - 2)/2] Ty of time.

(2) From U, compute the diagonal matrix

P = diagonal (

| 1 1 )
Uy Vuy Viuyy
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(3) On the systolic optical processor we then form
the matrix-matrix product PU. This requires (2N~1)Tg
of time [5]. This is now our desired upper-triangular
matrix

2T=pu, 6)

and the Cholesky decomposition is uniquely deter-
mined.

Our optical implementation of Cholesky decomposi-
tion requires only [(N2 + SN ~4)/2) Tg of time. For
large matrices of order N X N, the conventional
Cholesky decomposition on digital computers take
approximately N 3/6 multiplications. Thus, the digital
computation requires a time approximately a factor
of NTg /3 longer than does the optical computation.
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Recently. there has heen increasing interest!= in extend-
g the repertoire of vperations achievable through optical
data processing. A major class of processars proposed roward
this end is that of iterative optical processors (10P). The
generic 1OP has two data paths: a forward path, where an
input vector X is multiplied by a matrix M to produce the
output vector y and a feedback path which uses ¥ to produce
the input to the forward path for the next iteration. Imple-
mentations of [OP include tiber based systems! and more
recently” svstems based on the use of acoustooptic light
modulators along with svstolic processing concepts.  Because
the differences among these implementations are not con-
ceptual, we will treat these as equivalent in this Letter. Ap-
plications of {OP include the optimal weight vector determi-
nation for adaptive radar arrays,t matrix inversion for control
problems.* and eigenvalue/vigenvector estimation.”™ In this
Letter we suggest a way of using the 10P for estimating the
singular values and the corresponding singular vectors ot a
matrix.

The singular value decompaosition (SVI) of a matrix M of
size m X n twith m = n)is given by

M=VvDhU/, i

where D is an m X n matrix containing zeros evervwhere ex-

cept along the first r diagonal elements where r is the rank of

the matrix M. Let us arrange the nonzero entries along the
diagonal of this matrix in descending orderas o, 00, .. . 0.
The matrices U and V are unitary and are of size n X n and
m X m, respectively. and the superseript T denotes the
transpose operation,  SVD was originally conceived as an
aceurate method of estimating the rank of a singular matrix.
Andrews and Patterson have shown its use for image com-
pression applications. SVD can be considered as the deter-
ministic counterpart of the statistical Karhunen-lLoeve (K-1.}
transform in the sense explained below. The K-L transtorm
is based on the computation of a covariance matrix from an
ensemble of images and then estimating the dominant ei-
genvectors of this matrix. These dominant eigenvectors can
then be shown to represent the set of images optimally. but
a single image mayv not be represented well. Thus the K-1.

transform has the disadvantages that it needs an ensemble of

images and that it may not represent a particular image very
well. ‘The SVD works only on a particular image and is geared
toward representing that image in the sense of minimum
square error.  Even though the usetfulness of SVD for image
processing was demonstrated long ago™ ! it has not gained
popular acceptance because of the heavy computational
burden it imposes. I optical processing can be used to per-
form SV, this computation can be carried at a rapid rate.
Because of the heavy computational burden of performing
complete SV, it is desirable to know a priori it SV is useful
tor data compression with a particular image. This can be
answered by estimating the singular values of a matrix and
then comparing the magnitudes of the few dominant singular
vilues.  Sahasrabudhe and Vaidva'! suggest a relation be-
tween these dominant singular values and the observed cor-
relation coefficient for a Markov tvpe image.  Their method

has the disadvantages that the relation at best is qualitative
only and that this relation is true only for Markov type images.
The method suggested in this Letter is applicable to general
matrices and provides explicit estimates ot the dominant
singufar values.
Because of the unitary nature of matrices U and V. we can
get the foellowing two results from Eq. (1)
MMV = VDU HUD/V OV
=VDIU D AVIYY
ViDD . )
U IARETAY ) IRENI B
UDIV IV T U
=D D v

From the above results we can easily conclude the following,
The n columns ug, us, . .., 4, of matrix U are the eigenvectors
of matrix MM with the corresponding eigenvalues given by
the diagonal elements of D7D of size n X n. Similarly the
m columns vy, ¥a, . .., v, of Vare the eigenvectors of (MM 7)
with the corresponding eigenvalues being the diagonal ele-
ments of DD, Since D is a matrix with diagonal nonzero
elements oy, 6., ..., ., the diagonal matrices DD7 and D/'D
contain the nonzero elements a7, 03, .. . o7, Thus the singular
values g, of the matrix M can be optically obtained by using
the power method to determine the eigenvalues of the ma-
trices MM 7 or M7M and taking the square root of these
valties.  We can also obtain the dominant left singular vectors
by determining the dominant eigenvectors ot MM 7 and the
dominant right singular vectors U by determining the domi-
nant eigenvectors of MM,  More details regarding the ap-
plication of power method for determining the eigenvalues and
eigenvectors can be tound elsewhere.”* This approach has
the disadvantage that the mask representing MM ! requires
a dynamic range that is twice (in decibels) of a mask repre-
senting M. As pointed out by Stewart.!” this situation can
easily lead to very erroneous results in the presence of finite
aceuracy.

A possible approach to avoiding the dynamic range prob-
lems of the mask is to use two masks. one to represent M and
another to denote M7, These two masks can be used in two
ditferent optical vector/matrix multipliers connected in a loop.
T'he functions of these two matrix/vector multipliers can be
better understoed by looking at the following results easily
obtained from Eq. (1%

MM

MU = VD, (B}

M/V=UD" )

The above exact equations suggest the following version of

power method to estimate the singular values and the corre-
sponding singular vectors.

Step 1: Choose an initial vector u,.
Step 2: Determine the matrix- vector product Mu,. Norm

of this vector is the initial estimate for the first xin-
gular value. Nermalized (Norm = 1) version of this
vector is our new estimate for v. namelv. thisis v, .
Find v), from u;; according tov,, = Norm{Mu, |. and
.+ is found from v, as per ;41 = Norm|M Z'v,].
where Norm{-| denotes the normalization such that
the resulting vector is of unit.length. The norm of
the vectors before normalization is an estimate of the
singular values of the matrix.

Repeat step 3 until convergence is obtained in the
estimated singular values. 'The ‘convergence be-
havior of such an approach is discussed else-
where I

As can be easily seen from the above algorithm, the optical

Step &

Step +:
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realization of this would involve a top halt of the loop which
optically multiplies u, by M to produce v, and a bottom half
which will multiply the v, generated in the top hall, by matrix
M ! to produce the vector u, | as the input tor the next evele
at the top halt.  Such an arrangement increases the com-
plexity of the hardware by a factor of 2, but it vnables us to
obtain more accurate estimates of the singular value and the
stngular vectors,

The author would hke to acknowledge the support of the
Air Force Office of Scientific Research under grant
AFOSR79-0091.
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ABSTRACT

The design, error analysis, component accuracy
required, computational capacity, data flow and
pipelining, plus the algorithm and application all
seriously impact the use of optical systolic array
processors. This paper provides initial remarks,
results, examples and solutions for each of these
issues.

1. INTRODUCTION

Optical matrix-vector processors {1-4) repre-
sent general-purpose optical processors. Optical
computing has long desired and needed such systems.
The iterative optical processor [5-6} includes feed-
back of the output back to the input of such sys-
tems through an analog (or digital) feedback cir-
cuit. This architecture thus relieves the problem
of what to do with the output data generated by
such systems and moreover it provides many addi-
tional operations of increased flexibility and com-
plexity. These architectures all require the use
of real-time and reusable 2-D spatial light modula-
tors (SLMs) for the matrix data. Such devices have
yet to become widely available. New engagement
mode optical matrix-vector processors [7] may be-
come very attractive if more advance” versions of
2-D SLMs can be produced.

A more attractive and realizable optical line-
ar algebra processor can be achieved using bulk
acousto-optic (AO) devices. Several versions of
such systems [8-10] have been described. These
architectures are referred to as optical systolic
array processors. The most attractive, general and
powerful system of this type is a frequency-multi-
plexed AO matrix-matrix systolic array processor
[10]. This architecture is briefly reviewed in
gection 2. Remarks on its speed versus that of the
system using a 2-D SLM and associated remarks on
input data requirements are noted in Section 3.
This is felt to be the most attractive optical sys-
tolic array processor since it fully utilizes both
the bandwidth, aperture time and space bandwidth
product of an AO cell, since the basic operation it
performs is a matrix-matrix rather than a matrix-
wector operation, and since it lends itself quite
nicely to pipelining of data and cperations.

The accuracy achievable in any optical or ana-
log processor will be limited. Thus, the effect of

CH1880-4/83/0000/0209$401.00 © 1983 IERE

i

component errors on such a processor is a major
issue. Such analyses of conventional optical line-
ar algebra processors are very limited [11,12).

Our own results have addressed the use of such pro-
cessors in the solution of a total system problem.
In this area, we have found that for adaptive
phased array radar and optimal control that the ac-
curacy of the adaptive weights in the closed-loop
poles calculated on the conventional optical sys-
tolic processors are sufficiently adequate. How-
ever, other applications require precision beyond
1s. In such cases, optical convolution to realize
digital multiplication {13) can be incorporated in-
to optical systolic processors as recently described
in Ref.14, residue arithmetic can also be used in
systolic processors as we recently described in
Ref.15 or similar techniques can be employed to re-
duce the dynamic range requirements and improve the
accuracy of optical matrix processors as required.
Space does not permit us to detail these issues
here.

Next, we consider the computational rate for
optical systolic processors. The computing capaci-
ty of an optical linear algebra processor must sig-
nificantly exceed that of VHSIC, digital systolic
processors, GaAs and other technologies. This is-
sue is not often detailed. 1In Section 3, we dis-
cuss the performance possible on the frequency-
multiplexed optical systolic array processor and we
note that the use of wmatrix-matrix rather than
matrix-vector aoptical systolic processors repre-
sent an obvious method by which to achieve
increased computing capacity. However, cptical ma-
trix-matrix processors which output the entire ma-
trix in parallel are not necessarily realistic Ebe-
cause of the data handling and data flow problems
associated with feeding an entire matrix to a sys-
tem in parallel or extracting an entire matrix from
it in parallel. Thus, data flow, pipelining of
operations, data management and storage require-
ments, avoiding A/D conversion, etc. are often more
vital aspects of optical systolic processors. These
aspects of computing capacity are discussed in Sec-
tion §S.

In Section 4, we discuss algorithms appropri-.
ate for realization on such processors. The list '
is not complete, but attention should be given to
the fact that these optical systems should work in
concert with digital processors and not emulate
digital linear algebra and digital systolic array
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algorithms. In Section S5, we use the solution of a
matrix equation (or matrix inversion) as an example
of a most vital issue for any systolic array pro-
cessor: data flow and pipelining of operations.

In Section &, we advance initial remarks on the ap-
plications for which optical systolic array proces-
sors should be directed. These include large di-
mensionality problems and problems involving compu-
tationally complex matrix calculations. We also
note that specific case studies are essential to
detail the design, pipelining and performance of a
given optical systolic array processor.

2. FREQUENCY-MULTIPLEXED AO SYSTOLIC ARRAY PROCESSOR

The frequency-multiplexed AC systolic array
processor ig shown schematically in Figure 1. It
uses 2N-1 LEDs, each imaged through a different re-
gion of an AO cell, with the Fourier transform of
the data leaving the AO cell recorded on a linear
array of N detectors. To use the system for a ma-
trix-matrix multiplication, we consider the calcu-
lation of AB=C, where all matrices are NxN. We
frequency encode the elements of sach row of B and
feed one row of B to the AD cell at each bit time
Tg- After NTg, the full B matrix is present in the
lower NTp time aperature of the AO cell. We then
pulse on the bottom N LEDs with the first row a; of
A. The detector cutputs are then the first row of
€. This is achieved since the product of aj; and
all elements of the first column by of B leave the
AO cell at the same frequency f; and hence add on
the same detector in the output Pourier transform
plane. Similar remarks hold for the other elements
of the first row of C.

I J'-

PIGURE 1: General optical systolic iterative opti-
cal processor architecture (matrix in-
version case study detailed).

At each Tp, the system calculates N vector
inner products (on ¥ element vectors) in parallel.
Frequency-multiplexing of the columns of A into the
AO cell is also possible (and necessary) depending
upon the opsrations required [10]. The general
philosophy of this processor is to time and space
sultiplex the matrix data fed to the LEDs and to
time (or space) and frequency-multiplex the matrix
data fed to the AO cell. Such an architecture can
fully use the bandwidth and time bandwidth product
of the AO cell. Because one row (or column) of the
output matrix is produced in parallel at one time,
these outputs can be directly fed back to the AO
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cell, thus data flow and pipelining is nearly ideal
in such a processor. We detail the pipelining of
data and operations on this system i{n Section 5.
The basic operation in this processor is a matrix-
matrix multiplication rather than a matrix-vector
multiplication. Thus, this architecture performs N
times more computations per bit time Ty than do
other AO systolic processors.

3. COMPUTING CAPACITY

The use of an AO cell rather than a 2-p SLM
does not cause any loss of computing power for
general matrix problems. In fact, such systolic
processors provide increased computing capacity.
However, frequency-multiplexing must be employed to
achieve this. Consider a TeO2 AO cell with a typi-
cal aperture time of 40usec and a time bandwidth
product of 103, With the use of frequency-multi-
plexing, we can enter an entireyx matrix in-
to the cell in 20usec. Then, every Tp=20/0 =

sec the system performs 3D vector inner prod-
ucts on PP point vectors in parallel and displays
the outputs on the linear detector array. This
corresponds to|fp operations per, or 6:x 1030
multiplications and additions per second, for a
typical multiplication time of 0.} w88 nsge-. Thus
such an architecture is very competitive with digi-
tal processors, even if its capacity is reduced by
a factor of 100fy,

The optical matrix-vector processors using 2-D
SLMs can perform a comparable number of computa-
tions. Thus, no loss of computational rate results
when AOC systems are used. When the matrix data in
the 2-D SLM version of the system must be changed,
I0msec is typically required. This can cause a
significant loss in effective computations and data
flow, since a congiderable dead time of 30msec re-
sults every time the matrix must be changed, plus
the output data (and the input data for the matrix)
must be buffered during this time. Thus, AO sys-
tolic processors have more computing capacity and
flexibility, than do matrix processors using 2-D
SLMg. In addition, the dynamic range of an AO cell
and its uniformity is typically superior to such
parameters for 2-D SlMs.

To avoid A/D conversion of the output detector
data and to provide proper data flow, the conven-
ticnal iterative algorithms must often be modified.
To demonstrate this, we recall the most popular
iterative feedback algorithm (the Richardson algo-
rithm) rewritten to solve the matrix-matrix equa-
tion HB= C for B = H'1C, i.e.

B(k+l) = B(k) + w(C - EB(k)], (1)

whare k denotes the iteration index and w is the
acceleration parameter used to speed convergence

(w is the reciprocal of the maximum eigenvalue of H
which we approximate by the Buclidean norm of H).
We rewrite (1) as

(B+1)1/y = [T/y-BIB(X) + C,

We realize that [I/w~H) is known and sasily calcu-
lated, since 1/w affects only the diagonal elements




of H and the effect is the same for all diagonal

elements. Denoting [(I/w-H]) by a new matrix A, we
rewrite our iterative algorithm as

B(kel) = wAB(X) +C). 2)

The system of Figure 1 represents a rather
general-purpose iterative optical matrix-matrix
systolic processor. We now discuss the feedback
portion of this system with attention to the itera-
tive matrix solution or matrix inversion algorithm
of (2). The LED inputs are the rows of A. They
are easily calculated from H. The preprocessing
box feeding the LEDs requires only one operational
amplifier, one resistor adder and an N element MOS
switch. At the detector output, one row of AB ap-
pears in parallel at a time. Thus, we can add the
matrix C to this matrix-matrix product {as required
in the right hand side of (2)] one row at a time.
This is achieved by a simple N element resistor
adder. Multiplication by the acceleration param-
eter is likewise trivial in electronics. Thus, as
shown, the entire right hand side of (2) can be
calculated on-line without the need for A/D conver-
sion, digital storage or any appreciable feedback
delay. Such combinations of analog electronic ad-
ders and multipliers properly combined with optical
matrix-matrix sultiplipliers represent very excel-
lent and powerful systolic processors with high
computational rates and excellent data flow. Be-
fore detailing the pipelining and data flow, we
consider parallel algorithms and appropriate opera-
tions for realization on such systems.

4. APPROPRIATE PARALLEL ALGORITHMS

uch of the recent research on optical sys-
tolic array processors has considered the use of
these processors to realize conventional linear
algebra algorithms and various operations. Many
of these operations can already be easily per-
formed in digital VHSIC and digital systolic pro-
cessors. A typical example of this issue arises
in the solution of a linear system of equations by
direct (matrix-decomposition) rather than indirect
(iterative) methods. The key issue we noted [16]
is that performing the matrix-deccmposition is the
most computationally intensive operation. In Ref.
16, we noted that the solution of the resultant
lower triangular system of equations is trivial in
dedicated digital systolic processors by back or
forward substitution algorithms.

In Refs.16-18, we detailed how OR and LU and
Cholesky decomposition is possible or optical sys-
tolic array processors. In Cases when an all op-
tical solution is preferable (e.g. for data flow
reasons), an optical solution of the resultant
lower (or upper) triangular system of equations is
possible as we detailed in (19]. The production
of Hessenberg and tri-diagonal matrices is also
possible as we have noted (17). Such solutions
lead directly to eigenvalue calculation applica-
tions of these processors and to the possible use
of other optical systolic array processors [8-9)
for solving tri-diagonal metrix equations. When

Toeplits matrices result, an optical deconvolver
{9) is appropriate.

The implicit and explicit
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solutions of partial differential equations (9,16]
also merits similar remarks. Attention to parallel
algorithms (for example the Householder algorithm)
and algorithms that pipeline quite nicely (e¢.g. new
descriptions of the solution of lower or upper tri-
angular systems of ’oquntion-") arenecessary and es-
sential for the practical and efficient use of this
new class of processor. Least square solutions and
other iterative algorithms that are more appropri-
ate than our general Richardson algorithm (when the
matrix has special structure) exists as we have
detailed (20].

To detail the preferable procedure for the di-~
rect solution of a matrix-vector equation, we con-~
sidered the QR matrix-decomposition solution of
Bx=afor x. The matrix B is generally decomposed
into an orthogonal Q and upper triangular R matrix.
We then obtain QRx=a. Since QT =01, we can solve
Rx= Fa = a', where g-1 = QT is easily calculated
from 0. The solution of Rx=4'is easy in digital
hardware by back substitution, since this corres-
ponds to a lower triangular system of equations.
However, to best utilige such an algorithm on our
optical system, we should never explicitly calcu-
late Q0 and QT. Rather, we calculate R and a' di-
rectly by successive matrix-matrix and matrix-vec-
tor multiplications of the matrix B and the vector
a2 by Householder decomposition matrices on our sys-
tem of Figure 1. This yields &' directly, thus
simplifying the entire problem. This also repre-
sents a preferable use of optical systolic proces-
sors in concert with digital systems (the conven-
tional approach would be to optically emulate cal-
culation of R and Q from B). Other new parallel
and revised linear algebra algorithms are possible
for many other applications. They are typical of
the more appropriate uses for such optical processors.
We note that such a philosophy should be pursued in all
future optical systolic array procesasor algorithms.
Matrix-decomposition algorithms are a specific exam—
ple of algorithms which require a newmatrix mask at
each iteration. 1f realized on a systemwith a 2-D SIM
mask, 30msec would be required for each change of the
matrix or on each iteration. Thus, this type of algo-
rithm is typical of those that are appropriate for
realization on a systolic processor, rather than a 2-D
SLM matrix-vector system. These are also typical of
the types of algorithms this new type of optical pro-
cessor should address. ¥We note in passing that no ap~
plication has yet appeared requiring the real-time
eigenvalue/eigenvector msatrix calculations possible
an such systems.

S. PIPELIXKING OF DATA AND OPERATIONS

Any systolic processor must pay close atten-
tion to the flow of data and operations. 1In Ref.
10, this issue was first noted. In Refs.10,16-19,
we provided many examples of the data flow and
pipelining associated with the realigzation of vari-
ous linear algebra opsrations on such processors.
This issue is vital for many reasons. Pirst, once
data enters the AO cell, it must be cowpletely pro-
cessed, i.e. all calculations requiring it sust be
performed before the data reaches the end of the
cell (typically in 40-50usec). Furthermore, as
soon as the parallel output data appears at the
detector, something must be done with it. 1In our
algorithms and in our architectural studies of 4i-
verse linear algebra algorithms, we have given
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particular attention to such issues. As a most
appropriate study of this issue, we show in Table
1 the flow of data into the LEDs and the AO cell,
and the flow of data from the detectors back
into the AD cell for realigzation of the solutjon in
{2) to the matrix-matrix equation HB=C for B=H1c
on the system of FPigure 1 using the general feed-
back architecture shown in this figure. Each
column of Table 1 shows the data contents of the
corresponding system elements at times Ty =Ty, Ty =
2Ty, T3=3Tp etc. As shown, data flow and pipe-
lining of operations is essentially ideal in this
system. FPor our detailed 3Ix 3 matrix example, we
see that as soon as one row of the B(k+l) output

is calculated, it is available for feedback direct-
ly into the AD cell. We also note that at the
specific time that this detector ocutput occurs, the
bottam Tp of the time aperture of the A0 cell is
free and available for new input data.

TABLE 1: Data and operational flow and pipe-
lining in the gystem of Pigure 1

for matrix inversion.
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6. APPLICATIONS
As our final topic, we note the fact that if
optical linear algebra processors are to become
competitive with digital technology, these proces-
sors must consider five key items:

1. The architectures for such systems should pro-
vide full processing cspability. The use of
matrix-matrix sultipliers rather than matrix-
wvector operations is a typical example.

2. The data flow and pipelining of operations in
such architectures must be addressed. Such

m

designs will clearly show the superior data
management ,bookkeeping, and avoidance of A/D con-
version that is possible in optical systolic
processors. Table 1 is an example of the effi-
cient pipelining possible on such systems with
the proper choice of the algorithm used.

3. These processors should be applied to problems
where the accuracy of the final actual result
(not necessarily the matrix-vector or matrix-
matrix product) is the performance measure
used. Our adaptive phased array radar and
closed-loop optimal control examples are vi-
able specific cases where such a philosophy
is most appropriate.

4. The problems addressed on such processors
should be of sufficiently large size (i.e. the
order N of the matrix should be large).

S. the calculations required in the solution of
the problem should be proportional to N3
(rather than N2 or N). We have found matrix~de-
composition and Kalman filtering to be examples
that fully utilize the possibilities of such
optical processors and that represent appli-
cations with high cosputational loads [10,16-19).

Applications satisfying such constraints exist in
many areas and represent the class of problems for
which such optical systolic array processors are
applicable and most appropriate.
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Nonlinear local image preprocessing using coherent optical

techniques

David Casasent and Jiabi Chen

Two coherent optical svstems are deseribed that can realize local nonlinear preprocessing operators such s
the Sobel edge-enhancement function in parallel on a 2-D input image. By local, we reter to the size of the

image region rather than a nonstationascy process,
matched spatial filter and a computer-generated hologram is discussed.

Realization of such operators using a multiple-exposure
Experimental results using these

technigues for 3 X 3and 5 X 5 Sobel operators. vospectively. are presented.  Our technigues can be extended
to larger window sizes and other edge-enhancement operators. These new operators are achieved by novel
coherent systems using complex arithmetic with magnitude evaluation of the output pattern.

I. Introduction

Essentially all image processing applications and
systems utilize local nonlinear preprocessing operators
such as median filters and various types of edge-en-
hancement operators.! © The computational load for
realizing these nonlinear local operators is quite high,
and although many of them can be realized to various
degrees of real time in pipelined digital electronics,” it
is worthwhile to cunsider the realization of such local
operators on opticai processors. This is especially true
when such operators can be combined with synthesis of
an optical matched spatial filter and when optical pro-
cessors are being considered for other portions of the
processing. Conventional optical spatial filtering sys-
tems can achieve low-pass high-pass bandpass and
similar linear and global spatial filtering operations.
The results of global operations differ from local ones
{e.g., the mean of an entire image can difter considerably
from the mean of each local 3 X 3 image region).
Nonlinear preprocessing operators provide improved
SNR performance’*" over simpler linear edge-en-
hancement operations such as high-pass filtering. Such
local nonlinear preprocessing operations are thus quite
different from the conventional linear and global optical
spatial filtering functions. Their study and realization
on an optical processor represent a new class of most
useful operations that we consider. We restrict atten-
tion to nonlinear edge-enhancement operators. Our
concern is not with image distortions produced by
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nonlinear operators and which edge-enhancement op-
erator is best (for a comparison, see Refs. 6,7, and 1, pp.
497-99), but rather we are concerned with the design
and demonstration of several optical svstems to realize
some nonlinear local operators.

In Sec. II, we review several possible nonlinear local
operators and the features of each. We also provide a
brief summary and motivation for the different kinds
of edge-enhancement operators that have heen found
useful for different applications. All these involve some
form of derivative operation. Qur discussion empha-
sizes the Sobel edge-enhancement operator, although
the techniques we propose can directly be extended to
many nonlinear local operators.  We also briefly discuss
nonlinear operators of larger window sizes (5 X 3) and
note that many tvpes of operators are possible if larger
window functions are available. In Sec. 111, we describe
our new technique for realizing local nonlinear image
processing operations optically. In Sec. IV, we detail
the optical realization of a 3 X 3 Sobel operator using
multiple-exposure matched spatial filter techniques and
include experimental verification of our work. In Sec.
V. we consider use of a computer-generated hologram
to realize such operations, and we demonstrate this
technique for a b X 5 Sobel operator.

il. Local Operators

In the processing of multisensor, IR, and other types
of imagery, the edges in the image are well known to he
useful features for target detection and classification.
Many tvpes of edge detection and edge-enhancement
operations have heen proposed. but little theoretical
analysis has been presented to address the types of
edge-enhancement needed for various pattern recog-
nition applications,  We briefly summarize some of the
available literature on this topic we have found to he
useful. This provides useful motivation for direction




into the tvpes of edge-enhancement operations that are
needed. Any such general treatment requires careful
attention to (1) the forms assumed for the spectra of the
signal and the noise (Is the noise white? Is the same
spectra assumed for both the signal and the noise?); (2)
the pixel correlation measure 5 for the image (3 ~ 1 for
a highly correlated image. n « 1 for an uncorrelated
image; i is closely related to the correlation length and
correlation coefficient of the image data); and (3) the
performance measures used (e.g.. peak-10-sidelobe ratio
of the correlation output or SNR at the correlation peak:
the second measure is appropriate for image registration
applications). We consider the applications of pattern
recognition and image registration, and thus we use the
performance measures of the peak-to-sidelobe ratio
(PSR) and ths SNR of the output correlation plane.
We note that these are significantly different from other
measures! %7 of performance previously considered for
edge-enhancement techniques (e.g., sharpness of the
edge, noise in the edge-enhanced image).

Let us now recall some prior results on the edge-
enhancement preprocessing required for our applica-
tions. InRef. §, it is shown that if the image spectrum
is white (7 « 1), maximization of PSR requires no
preprocessing. However, if the image is highly corre-
lated (n =~ 1), maximization of PSR requires the first
derivative of each image to be formed prior to correla-
tion. These results were obtained assuming no noise
in the input image. If noise is present, it has been
shown®-!" that maximization of SNR requires a deriv-
ative operation involving the sum of the original image,
its first derivative, and a mixed derivative term. If »
=~ 1 for the images (and no noise is present), one can
show!! that maximization of PSR can be achieved by
forming the second derivative of the reference image
rather than the first derivative of each image separately.
This follows'>!* since the correlation of the first de-
rivatives of two images with n ~ 1 is the second deriv-
ative of the correlation of the original two images and
since the order of the operations can be reversed (be-
cause they are commutative). A more detailed inves-
tigation!=! shows that all above results are only ap-
propriate for imagery for which the noise and the signal
have the same statistics. We have also shown!2!" that
for highly correlated images (n ~ 1), the necessary
weighting to maximize SNR (as well as PSR) is well
approximated by the |Grad| operator (followed by
histogram reshaping). Several of these results are also
present in Ref. 14 in a somewhat different form.

Our present purpose is not to derive or discuss the
optimum edge-enhancement preprocessing operator
required but rather to note the nature of the prepro-
cessing required in different pattern recognition and
image registration applications. From the prior brief
remarks, we have seen that the problem being addressed
(pattern recognition or image registration, target de-
tection or target location, etc.) and the nature of the
image (correlated or uncorrelated pixels. n ~ 1 or n «
1) affect the optimal preprocessing required. We have
also seen that all of the preprocessing noted in Refs.
8- 14 involves some form of derivative operator (first,

second, mixed. Grad, ete.), and thus attention to this
general class of nonlinear operators merits attention
with particular emphasis on the |Grad| operator.

Let us next address how such operations are con-
ventionally performed. Digital edge-detection tech-
niques generally involve the convolution of local linear
operators (3 X 3 window sizes are common) with the
input image f(x,v). These linear operators all provide
various approximations to first or second derivatives of
the input image with various window masks. The
simple 2 X 2 masks to realize df/ox and af/ov are

I -1+l -1 o
—_— = . (DY)
n +1 0

{) 1]
A much better approximation to the directional deriv-
atives is possible with the 3 X 3 operators

It

ax

-1 0 +1 -1 -1 -1
S <1 o +i L [T TR I 1)
X A
™ -1 0 414 * +1 41+

Similar operators (e.g.. compass gradient masks?) are
possible for realization of the derivatives in different
diagonal directions. Convolution masks that approx-
imate the Laplacian are also possible. These operators
consist of various approximations to the second deriv-
ative. For example, the second derivative can be esti-
mated as the differences of the first differences. For
image pixel (m.n). this approximation vields (for the
second derivative in x)

oy = fim = L) = 2ftman) + ftm + L, (K3}

We can realize Eq. (3) by convolving the image f(m.n)
with a 3 X 3 mask function such as

8] 0 0
s
— =11 =21 1)
o
‘ TR

One can realize other tvpes of Laplacian operator by
convolution with other masks such as

it [V 0 1 0 ] 1 0
[} -
el =2+l 2ol -4
dx? ovE
AR TR 0 10 010
{Ha)
or
1 00 1] 01 ] oo
i+i= 0O =2 0f4lo -2 0 =] -3 0
et
el noo0 1 00 T

tahy

In Eq. (5a), the 3 X 3 operator shown is obtained by
summing individual operators such as the one in Fq. (4).
In Fq. (5b), the Laplacian is formed by differencing
along diagonals rather than rows and columns. Many
other tvpes of Laplacian operator can be produced: e.g..
Fgs. (ha) and (5b) can be combined. or one can average
the difference along three columns or three rows. In
each case. these 3 X 3 operators are applied to each pixel
in the input image. and the central pixel in the corre-
sponding 3 X 3 region of the input image is replaced by
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the product of the mask weights shown in Egs. (13 (H)
and the corresponding pixel values in the input
image.

These linear edge-enhancement techniques are
simple to realize in a pipelined processor. However,
they amplifyv high spatial frequencies (i.e., noise) as well
as the edges in the image.  Preferable techniques em-
ploy nonlinear operators in which nonlinear combina-
tions of the results of the hasic linear operators are
produced. Figure 1 shows a block diagram® for an
edge-detection algorithm for the magnitude gradient
operator.  The output image from the local operator is
thresholded to vield the final edge-enhanced output
pattern. To describe these operators and how they are
realized. a specific numbering procedure for the pixel
values ¢, in the input image surrounding the general
input point {(m.1) whose pixel value is f(m.,n) has been
adopted:

finins

(5)

We consider the |Grad| operator (noted earlier to be
useful for preprocessing) as realized by a Sobel local
operator.! For this operator, the output image value
gim.,n) at pixel (m,n)is

atmay = (X7 4 YO (W

where the local operators are
N =104 20, +up—ta,+ 20+ a,). s
|
Y o= tay+ 2a, + au) —tay + 2a; ouy)

Recall that the a, values in Egs. (8) correspond to the
intensities of the pixels surrounding the general input
image point (m,n) and that the operation described by
Eqgs. (7) and (8) is applied at each input image pixel.
Thus Egs. (7) and (8) describe the final image pixel
value for pixel (m,n) as the nonlinear combination of
its surrounding neighbors. [Note that the original
values of image pixel (m,n) is not used in computing the
corresponding output pixel value and that the sum of
the weights in the Sobel masks is 0.] We can thus de-
scribe this realization of {GGrad| by the two linear local
mask operators

-0+ +142 +1]
X=1-2 0 #2171, }y = [P ol . 19}
-1 0 41 -1 =2 -
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Fig. 1. Block diagram of the sobel operator as o linear operator
tunction and a nonhnear point aperator tatter Ret. 6.

Inspection of Eq. {9) and comparison with Eq. (2)
show that the linear operators used in the Sobel masks
correspond to the partial derivatives in x and v averaged
over the image pixels in three horizontal and vertical
rows and columns, with the central row and column
weighted most heavily. In Ref. 15 it was shown that the
averaging of difference estimates over several rows and
columns of the image pixels with a decreased weighting
for pixels further from the mask center provided im-
proved performance. The Sobel operator described by
Egs. (7) and (8) includes both of these desirable features
and is thus a most attractive edge-enhancement oper-
ator. It was thus chosen for our optical experiments.

To best describe the operation performed by the
Sobel, we write the output function as

o= [redfraer 2+ capsan s - S (K

where ( ), and ( ), denote averages over x and y. re-
spectively. This formulation emphasizes that each local
operator in Egs. (9) performs the first difference ap-
proximation to the partial derivative of f in x and »
averaged over v and x, respectively. A detailed deri-
vation of Eq. (10) follows directly.!® We detail only the
Sobel nonlinear operator, but the technique is directly
applicable to realization of many other operators such
as the Roberts, Prewitt, Kirsch, and others by simply
changing the mask weights in Eq. (9). An alternate
formulation is needed to describe edge-enhancement
operators such as compass gradients.

In the optical realization of such nonlinear prepro-
cessing operators, we can easily use larger mask windows
(e.g., 5 X 5). For such cases, the flexibility possible
increases significantly as many choices are possible for
the various mask elements. In one quite simple 5 X 5
Sobel-type operator, Eq. (9) would become

-1 ~1 o+l + +1 41 42 41 4]
| 0+ 4 +1 +1 42 41 +1]
L] 0o+2 +2 . Y= i i 1] [ <ok
-1 -1 0o+ 41 -1 -1 =2 -1 -1
-1 -1 (LS| - -1 -2 -1 =1

Many other 5 X 5 edge-enhancement operators can be
formulated. We will refer to the 5 X 5 nonlinear local
operator defined hv Egs. (7) and (11) as a 5 X 5 Sobel.
We consider its optical realization in Sec. V.,




As described in Ref. 15, averaging over larger neigh-
borhoods (five rather than three elements) greatly im-
proves the performance of the operator when the input
SNR s low. Such operators produce wider edges. but
this is not of major concern in the patiern recognition
cases we consider, and edge thinning is also a possibility
if necessary. As noted in Ref. 15, different weights
(besides 0, 1, and 2) for the elements of the masks can
also significantly improve performance of the operator.
Many other operations besides the 5 X 5 Sobel in Eqgs.
(11) can thus be achieved by judicious choice of the
mask elements. One possible operator is the realization
of two successive Sobels by one pair of 5 X 5 masks.
Another possibility is the reduction of a 5 X 5 input
image region to a 3 X 3 region (in which each pixel value
is the result of a 3 X 3 Sobel applied to the correspond-
ing 3 X 3 region of the original input image) and the
subsequent reduction of these 3 X 3 image regions to one
pixel value that is the Sobel of the 3 X 3 set of pixel
values obtained from the first Sobel. This sequence of
two Sobels is one form of the second derivative of the
original image. Such operators should be realizable in
extended 5 X 5 masks. Other local masks can be used
to achieve mixed derivative operations. With the use
of 5 X 5 masks, realization of Laplacian and similar
operations is also directly possible. In general, use of
window operators of higher order are more easily real-
izable on the optical systems we consider, and they
should be able to achieve the types of nonlinear local
operators noted in Refs. 8-14 as desirable.

ill. Nonlinear Local Optical Operators

Optical systems can perform the linear spatial dif-
ferentiation operation of various techniques.!” The one
of interest to us is performed on an optical matched
spatial filter correlator. The system’s output is the
convolution of the input image f(x,3) and the reference
function h or the impulse response of the system. (The
complex Fourier transform H of h is recorded on the
matched spatial filter.) When h is two delta functions
separated by d. the system’s output is

output = f « b = flx vy« [+ dyy = ote )| ~ dfidx, (12)
or the first-difference linear two-point approximation
to the 1-D spatial differentiation of the input image
f(x,v). This is still a linear operation and to realize the
Sobel or other such nonlinear operators, we must de-
velop new optical techniques.

We begin by rewriting the Sobel output function in
Eq. (7) as

glmn) = (X34 ¥ 2= X 4y

This complex arithmetic description is most useful.
Should a digital processor capable of direct complex
arithmetic in one pass be developed and implemented,
one can realize the Sobel operator as in Eq. (13). This
is not available in present digital svstems; however, an
optical system to realize Eq. (13) is possible. The light
amplitude distribution at the output of this optical
system will be given by Eq. (13). After detection, the
square of Eq. (13) will be produced in an optical system.
This represents no significant difference since the

=N +Y

Fig. 2. Multiple-exposure Sobel filter svnthesis svstem: M. mirror:
VBS, variable beam splitter; CL, collimation lens svstem: F'T lens.
Fourier transtorm lens; MSF. matched spatial tilter.

square-root operation in Eq. (13} is often omitted in the
digital realization of such operators with no adverse
effects.’ This issue is not essential for preprocessing
or for the realization of a nonlinear filter. We thus
consider the realization of an optical svstem whose
output amplitude at each point is

N+ Y = ftae + 2a+ ap) —tan + 205 + a1
+iltan+ 2a; +an = a4 2a +ayl]. U

where a, are the pixel values of the input image in Eq.
(6). We describe Eq. (14) as in Eq. (12) by the convo-
lution of the input function f(x.y) with a sum of delta
functions at eight spatial locations with complex-valued
weights for each delta function:

gly ) = flxy) s N kbt = mdy = nd) ldal
o
=fiead s (1L + by —dyv —d) + 200 —da
+ (1 =y —dy +d)+ 25600y = d)
—2MxN+d) =l =+ dy —d)
=20l Hdy) = (L4 i+ day + o)), 115h)

where d is the spacing between pixels in the input image
and where the weights and locations of each delta
function are obtained from Eq. (14).

Our proposed technique for the optical realization of
nonlinear local preprocessing operators such as the
Sobel is thus to employ an optical correlator with a
matched spatial filter whose impulse response is a
weighted sum of delta functions. The necessary
weights are complex-valued. However, we can achieve
these by holographic techniques and appropriate phase
shifting as we detail in Sec. IV. We can also achieve the
required impulse response by use of a computer-gen-
erated hologram as we detail in Sec. V.

IV. Realization Using Multiple-Matched Spatial
Filters

The desired impulse response in Eq. (15) could be
achieved by forming the holographic matched spatial
filter (MSF) of an input function containing delta
functions (apertures) at the correct locations and of the
correct radii (to adjust the intensitv} and with the
necessary phase factors achieved by placing N/ or A/2
plates behind the appropriate apertures. We chose to
form the desired MSF by eight multiple exposures on
one plate (because the necessary light levels and expo-
sure times were easier to achieve). The MSF synthesis
system used is shown in Fig. 2. It is a conventional
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Fig. 3. System to produce the Sobel edge-enhanced image from a
multiple-exposure matched spatial filter.

holographic MSF system with the addition of the wedge
and the FT lens. The FT lens allows a lensless MSF to
be recorded (the MSF plus an FT lens with focal length
f. =1 =250 mm) as we have described and used previ-
ously.!'® We ignore this FT lens for our present dis-
cussion.

The MSF recorded at each exposure is the interfer-
ence of two plane waves and thus produces a sine wave
grating whose impulse response is a delta function. The
amplitude of each delta function is set by varying the
exposure. This does not alter the modulation of the
grating being recorded, since the bias level is also
changed for each exposure; however, the amount of light
diffracted into the output correlation plane does vary
proportionally to the exposure as is desired. The lo-
cation of each delta function was controlled by trans-
lating the FT lens in its plane (and thereby varying the
spatial frequency of the recorded grating). We pro-
duced the necessary complex-valued strength for each
delta function by shifting the wedge in 1-D in its plane.
After synthesis of this Sobel MSF in Fig. 2, we place it
in Fig. 3 and in the output plane obtain the Sobel of the
input image.

We now detail these systems for the case of a multiple
MSEF to realize the 3 X 3 Sobel of Eq. (14). All lenses
in Fig. 2 had f;, = 760 mm. In the Sobel correlator (Fig.
3), the first FT lens used f;, = 500 mm, and the focal
length of the lensless MSF was ! = f; = 250 mm. This
correlator reconstruction system exhibited a 2:1 dem-
agnification. The highest input spatial frequency we
set the system to handle was u,,, = 20 cycles/mm. The
spatial frequency plane in Fig. 3 must thus have an
aperture of 2\fru, = 12mm. We used 15-mm diam-
eters for all beams in Fig. 2 and for the corresponding
diameter of the MSF. To select the distance d between
the delta function impulse responses (and similarly the
amount d by which to translate the FT lens between
exposures), we determine that the smallest edges of
interest in the 8- X 8-mm? input image were of 0.2-mm
width. In the output plane of Fig. 3, they would be 0.1
mm. We chose a spacing d = 12.5 um between delta
functions and a corresponding 12.5-um FT lens shift.
This produced edges in the output of 25-um width.
This will produce sufficient detail to provide a good
edge-enhanced output. Note that in this optical Sobel
system, one can easily choose the filter to select the
minimum input edge size we wish to consider.

The eight exposures in Eqs. (15) were arranged so
that successive exposures had a phase difference of 7/4.
We now compute the amount by which the wedge in Fig.
2 must be translated between exposures to provide a n/4
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or A/8 phase shift. The wedge angle was 4 sec of arc,
and thus shifting it caused minimal displacements in
the input beam and thus did not cause misalignment of
the system. To measure the angle « of the wedge, we
measured the fringe spacing d; produced by interfer-
ence from the front and back surfaces and found d, =
(M\/2)/cen = 10 mm, where n is the index of refraction of
the wedge. If the wedge is shifted vertically by a dis-
tance d,, the beam traveling through it sees a path
difference «d, (n — 1) from its prior value. Substi-
tuting for « and equating this path difference to A/8, we
find that a shift d, = 7.5 mm provides the desired phase
factor.

The above procedure was followed, and eigi:t multiple
exposures of the MSF plate were made. After devel-
opment, we inspected the impulse response of the
lensless MSF and found it to be as required. We then
placed this MSF in the lensless correlator of Fig. 3. A
converging beam system (with the input behind the first
FT lens) was not possible since such a system was not
used during synthesis of the MSF. The additional
phase term introduced in the converging beam system
would thus not be canceled by this MSF. If the angle
of the input plane wave in Fig. 2 were altered, the Sobel
version of the input image would appear on-axis in Fig.
3 rather than at an angle = 15° to the optical axis as
shown. The input image size used was 8 X 8 mm?Z, al-
though larger image sizes could be accommodated in the
system used. An input text image and the corre-
sponding Sobel edge-enhanced |Grad| output image
obtained on this system are shown in Fig. 4. The results

AFOSR
GENERAL
DYNAMICS

AFOSR
GENERAL

DYRAMICS

(b)
Fig. 4. Input image (a) and Sobel edge-enhanced image (b) using
the multiple-exposure matched spatial filter system.
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Fig. 5 Svstem to produce the Sobel edge enhanced image using
computer-generated holograms.

appear as expected. All input lines are >2d in width
and thus have output image edges of width 2d.

V. Realization Using a Computer-Generated
Hologram

It is possible to produce the necessary FT plane filter
function for the Sobel (or other) edge-enhancement
operators by use of computer-generated holograms
(CGH)." The general form for the desired impulse
response for a Sobel operator is

NN kb —md oy — nd) 116
M i

To realize such an impulse response with a CGH, we
Fourier transform'® sample it. and for each sampling
cell in the CGH we record an amplitude A and a phase
¢. In (16), we ignore (for simplicity of the expressions
presented) the fact that this CGH is an off-axis holo-
gram. The transmittance of the F'T' plane CGH is thus
of the general form

Atvaexpliote )], ]

where (x.3) in (17) refers to the coordinates of the FT
plane where the CGH will be placed. This CGH filter
technique is quite appropriate tfor Sobei operators with
large neighborhoods (i.e.. 5 X 5), since 25 multiple ex-
posures are quite difficult to achieve with the holo-
graphic MSF svstem of Fig. 2. As discussed earlier,
such filters are much more flexible and are of significant
importance when the input has a low SNR.

We chose to demonstrate this technique for the 5 X
5 Sobel in Egs. (11). We now describe the design and
fabrication of the CGH. The CGH contains L. X W
cells, each of size dx X dv and each containing a trans-
parent aperture of size | X w. We fix 10 = dx/8 and
control the aperture transmittance of each cell by
varying [. To reduce noise and produce a good image
reconstruction with a CGH, we require dv = dv «
Nf1./b, where b is the size of the output plane (assumed
to be square for simplicity). Inour case, the CGH re-
construction or its impulse response is a pattern of delta
functions. The maximum dimension of this output
patternis b = 4d. For our CGH, we thus used d = 11
pum and dv = dv = 0.03 mm. The size of the Calcomp
plotter pen. the 40X reduction available. and the reso-
lution of the FT plane film allowed us to fabricate a
CGH with only 250 X 250 cells in 7.5 X 7.5 mm~. This
7.50-mm FT plane width will only pass input spatial
frequencies below 5 cveles/mm (for the f; = 500-mm FT'
lens). Thus input image detail smaller than 0.2 mm will

be lost in the reconstructed output from this filter. A
different CGH synthesis facility would provide less
image resolution restrictions,

The CGH corresponding to Egs. €111 was computed.
plotted, and photoreduced as described above. Tt was
then placed in the F'T' plane of the svstem of Fig. 5 with
the tocal length of the first lens being 500 mm and that
of the second lens being 115 mm. The input and output
images obtained for an aerial input photograph are
shown in Figs. 6ta) and th). For comparison. the outpuat
from the 3 X 3 multiple-exposure MSF Sobel applied
to this same image is included in Fig. 6t¢). The higher
resolution of the 3 X 3 Sobel is apparent as are the
broader lines present in the 5 X 5 Sobel output. Fora
5 X 3 Sobel and an input with edges of 1d width. we
expect the edges in the output to be 3d wide (compared
with 2d for the 3 X 3 Sobel).  Our data verity this since
all edges in the output from the 5 X 5 Sobel |Fig. 6(h)]
are wider than those in Fig. 6(¢) (obtained using a 3 X
3 Sobel). The edges that are not present in Fig. 6th)
were (in general) lost by the limited 5-cvele/mm maxi-
mum bandpass of the CGH.

@) b)

(c)

Fuzoo Inputimaze catand edee enhanced output mugzes oy s
computer senerated holocrams x5 SobeD and vor a mulniple
matched tilter 3 FSahels
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The available aerial image used [Fig. 6(a)] contains
lines ti.e.. two edges) rather than one edge separating
ditterent textured regions. Thus, in analvzing the
output images shown, we must recall that the edge-
enhanced version of a line consists of two edges of width
2d or 3d (this also depends on the sharpness of the
edges) separated by the width of the line. The spacing
d chosen and the spatial frequency bandwidth and
resolution of the Sobel tilters also aftect the observed
outputs. A detailed analysis of the input image used
and the filter parameters chosen confirms that the re-
sults are as expected.  To demonstrate and quantify the
SNR of the output images and the SNR improvement
obtained using different 3 X 3 and 5 X 5 operators. a
textured image with edges (not lines) separating regions
of different variances should be used. This tvpifies
future work to be performed on such processors,

VI. Summary and Conclusion

As image sizes increase, the nonlinear edge-en-
hancement preprocessing required becomes quite ex-
pensive to pertorm in real time by digital or electronic
methods. The new techniques we have developed re-
sult in a coherent optical system capable of nonlinear
local operators.  We derived and detailed this technique
for the case of the Sobel operator. However, it can
easilv be extended to many nonlinear local operators
(Prewitt. Roberts, as well as the Laplacian and higher-
order difference operators). We have described and
demonstrated two techniques for realization of such
tunctions optically. The multiple MSF technique re-
quires a specially fabricated positioning system tor good
results, but such a svstem is quite easilyv produced if
needed. We demonstrated good 3 X 3 Sobel edge-
enhanced output data on our initial svstem with results
tinewidths and SNR) in agreement with those expected
by theory. We also deseribed and demonstrated a b X
5 Sobel using CGHs. The results were giite attractive
and again agreed with theory. A particularly attractive
aspect of the optical realization ot nonlinear local op-
erators is that larger window sizes and higher-order
operators can be used with no loss in processing speed.
[t is also possible to combine MSF. Sobel, and lensless
filters into one plane. Such a system would realize the
compactness of a lensless MSF correlator and the
preprocessing provided by optical Sobel operators. To
obtain the tull benefit from any such system, one should
first determine the optimal nonlinear preprocessing

814 APPLIED OPTICS Vol. 22.No. 6 ¢ 15 March 1983

operator required.  The production of this operator
with the desired window size and order can then he
achieved by parallel lensless nonlineuar optical prepro-
cessors such as we have described.

We thank the Air Force Oftice of Scientific Research
tarant AFOSR 79-0081) for support of D.C. and tor
support of our optical data processing program of which
this is one project aspect.  We also thank B.V. K. Vijava
Kumar for many fruitful discussions.

Jiabi Chen is a visiting scholar from Huazhong In-
stitute of Technology, Wuhan. China.
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A variety of methods have been proposed for solving pat-
tern recognition problems using optical methods.! Some of
these involve generating a synthetic discriminant function
that is a weighted combination of the functions available as
training data. The weights for the combination are obtained
either from the principal component of the data set” or by
imposing different deterministic constraints that ensure the
separation of the classes.® Caulfield® has shown that these
problems can be unified as solving the foliowing matrix-vector
equation:

Rw =c. (h

where R is the matrix of correlation coefficients among the
members in the training set. w is the vector of desired weights.
and c¢ is the vector of constraints.

Before we can solve Eq. (1) for weight vector w. we have to
determine the correlation coefficient matrix R from the given
training data. Various elements of R can be determined op-
ticallv® by forming cross correlations of all pairs among the
training data set and then noting the peak values. Through
this Letter we would like to point out two sources of error in
the computation of R. Errors in R lead to inaccurate weights
which. in turn. can result in a discriminant function that does
not satisfy the constraints.

A well-known® source of error in the estimation of anv sta-
tistical parameter is the finite length of the observation. If
the input functions x(¢) and ~(t) are of length T and band-
width B, we can easily show® that the standard deviation of
the estimated cross-correlation coefficient p,, is

0= 0, [(1 4 p; IV 2BT ) -, )

where T, denotes the total length of the signals used to
estimate p,,. The correlation coefficient p,, is related to the
cross-correlation function by normalizing constants that are
related to the energies in the signals x(t)and »(t}  We note
from Eq. (2) that ¢, is inversely proportional 10 (BT 41! -,
where (BT 1) denotes the total time-bandwidth product of
the signal. This type of error can be reduced by increasing
the length of observation. In the case of images, the space-

15 January 1983 . Vol 22, No. 2 . APPLIED OPTICS

209

———_ =




e |
= }
A ¥
-— b
S
S |
— }
[Va} 4‘
e
i
> {
c i
_ 1
- !
i . !
[V L = I
x * ® I
CC! . : : .. o = auhdin BE s din TSRS ;
[ . PRSI v «
- . L 4 i
- r " .
|
N i
.
I R T R R S R
S8 7 VAR AR ©
Fig. 1. Correlation functions for p, = 0.5: solid line. ideal correla-

tion: line with Xs, observed correlation for T = 30; line with Os. ob-
served correlation for T = 100.

bandwidth product easily exceeds 1000 and ¢, can be con-
sidered insignificant. But with increasing use of 1-D devices
such as acoustooptic cells, even for image processing.” care
should be taken to see that this type of error is not signifi-
cant.

The second source of error in estimation seems to be less
well known among the researchers in optical pattern recog-
nition. The rest of this Letter will be devoted to a discussion
of this error source. When two functions x(t) and v(t) are
correlated using matched spatial filter {(MSF) techniques, the
nonlinear properties of the recording medium in the MSF
plane force the average values of x(t) and »(t) to go to zero.®
This property of optical correlators to force the mean (o zero
does not pose a problem in the conventional applications of
cross correlators where the primary objective is to locate the
peak in correlation plane and the value of this peak is not
important. Then the effective correlation is between x* (1}
and »*(t) where

x’{t) = x(t) = (x(t1)), N = N = (vl ), (3)

and where ( ) denotes the average over a duration of T. Even
in digital estimation of p,,, we end up using only x*(t) and
¥*(t). because the coefficients in the Fourier transform cor-
responding to zero frequencies are usually suppressed.

Let p,, (1) denote the cross-correlation coefficient of x(¢)
and (¢t + 7). Then p,,*(0), obtained from the mean removed
signals x*(t) and y*{t), is related to p,, (1) as®

T
p,,'<0)=p,)(0»-(2/r)£ (1~ /Tpstr)dr. ()

Note from Eq. (4) that we are underestimating p,, (0) be-
cause of the use of mean removed signals x*(t) and »*(t). To
better understand the magnitude of this error, let us assume
#x, (1) to be an exponential function

P1, (1) = po| 7| = expl(~a]|7|)]. (5

where p, is inversely related to the bandwidth of the signal
and a is a measure of the signal bandwidth. For this corre-
lation function we can show that
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050 =1 = (2/aTy + (2/a°T+) = (2/a?T-) expt—aT+ 6

For large (aT) values, the above relation can be approxi-
mated as

Pt =1—-1(2,aT) ()

Thus the removal of mean from a signal x(t) can cause a
significant bias in the estimated value of p,, (0). This can be
a significant problem when we use low time-bandwidth de-
vices to process long duration signals or large images. Since
these devices can accommodate onlv a limited time-band-
width product at anv instant. mean removal can cause a sig-
nificant bias in p,, (0) estimated from each segment.

To illustrate the above problems, we generated digital se-
quences of lengths T = 30 and T = 100 with p,, values of L.
and 0.8. ldeal autocorrelation functions according 10 Eq (51
and the autocorrelation functions estimated from the mean
removed signals are shown in Figs. 1 and 2. The results in
these figures were obtained by averaging over fiftv indepen-
dent sequences. Thus the random error in Eq. (2i resulting
from the finite signa) length should be negligibly small. But
the bias errors due to the mean removal do not average out and
can be clearly seen in Figs. 1and 2. InFig. 1, p is 0.8 (small
TBW) and biases are large, whereas in Fig. 2, p is 0.5 (large
TBW) and biases are small. In fact. the expected values for
P "(0) according to Eq. (7) are 0.972 and 0.911 for T = 10,
whereas we observe 0.964 and 0.937 experimentally. For T
= 30, theoretically expected values are 0.904 and 0.70:.
whereas the experimentally obtained values are (.90 and
0.775. As can be seen, the experimental results are cluse to
the theoretically expected values.

We note from our results that the correlation coefficients
obtained from optical MSF correlators should be accepted
only if the time-bandwidth products of the signals are large.
Otherwise, the biases in them should be corrected by adding
(2/aT) where (aT) is the time-bandwidth product. Often we
do not know the a priori value of a and this must also be ex-
timated. This causes variance in estimated correlation
coefficients and one has to take this into account.
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CORRELATION OF BINARIZED IMAGES

11.




Correlation of Binarized Images

Correlator technigue has been used in pattern recognition appli-
cations. We introduce a correlation performance measure, peak to
background ratio (PBR), defined as the ratio of the peak intensity
to the average background variation in a single correlation output.
Using this performance measure, we analyze the binary correlator
and show that the binarization of the images can result in better
performance. We consider a real-time implementation of the binary
correlator, using VLSI technology. The analytical results are sup-

ported by computer simulations.

1. INTRODUCTION

Matched filter or correlator receiver was originally 1)
derived as the optimum lincar time-invariant filter to de-

Manusenipt recerved February 26, 1981
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tect a known signal in the presence of additive white
noise. The performance criterion used in this situation
wis the ratio of the average value of the correlation out-

put at a particular time instant to the standard deviation of

the output at that time instant. This ratio 18 commonly
known as the signal-to-noise ratio (SNR) and has been
the optimality criterion in many communication receiver
designs.

Recently. correlation operation has found widespread
application in image pattern recognition because of ad-
vances in coherent optical methods 2] as well as digital
methods [3]. In such image correlations. we are interested
not only in detecting the presence of a “target™ in a
noisy “scene.”” but also in estimating the location of the
target in the scenc. For this purpose. 1t is desirable to
keep the correlation peak (at the true location) as high as
possible while reducing the sidelobe levels all around this
peak. As a result. the ratio of average correlation peak to
the standard deviation of output correlation **tar™ from
the peak. commonly denoted as peak-to-sidelobe ratio
(PSR). 1s used [4] as a performance measure to evaluate
the image correlations. PSR has been widely used o
evaluate image correlations in the presence of image dis-
tortions such as coordinate transforms [4. 5], frequency
plane blurring {6]. and input transducer nonlincarity in
coherent optical correlators |7].

The arbitrary nature of sidelobe determination in PSR
calculations iy evident in the selection of position *“far™
trom the peak. In fact. a recent paper [8] talks about the
PSR at three different focations: exact registration, near
misregistration. and gross misregistration. We feel that a
good measure of the correlator performance should utilize
the variance at all points in the correlation plane rather
than at any single point. This will avoid the possibility of
getting a high PSR simply because we happen to choose
a correlation plane location where variance was small. In
this paper. we utilize a somewhat similar measure known
as peak-to-background ratio (PBR). PBR is defined as the
ratio of the average correlation peak to the average of
standard deviations at all points in the output. One can
generalize the PBR by appropriately weighting the stan-
dard deviations in the correlation output before averaging
them. For example, standard deviations of points close to
registration may be given more importance compared
with points of gross misregistration.

We analy/ze the performance of the binary correlator
in this paper using PBR. The conventional correlator per-
forms poorly in comparison to some sequential similariry
detection algorithms (SSDA) 9] in terms of computa-
tional effictency. Such computational considerations have
led to rencwed interest in the use of correlators where the
input signals are hard limited (1o two amplitude levels)
prior to correlation. Svedlow et al. [10] report the experi-
mental use of such binary correlators, Vijaya Kumar |11]
analyzes the performance using PSR, Boland et al. [12)
suggest a real-time digital implementation, while Cole
[13] proposes an incoherent optical processor for binary
correlation. In Scction . we show that the binarization

CORRESPONDENCE

does not appreciably degrade the PBR of 4 correlator
Our theoretical results are in good agreement with the
prior work [ 1] vtlizing PSR as the criterion. We present
stmulation results in Section 11 to support the results of
our analysis. The main advantage of & binary correlator 1y
that it can be realized without multiplication. It is thus
ideally suited for direct dignal logic design and we con-
sider an implementation of this using VLSI technology
{14] in Section IV,

1. BINARY CORRELATOR PERFORMANCE

Let{aand {v}. i = 1.2, ... N denote the target and
scene, respectively. One-dimensional notation s used
only tor simplicity and extension to the two-dimensional
case of images is straightforward. In general. v, s retated
oy, by

AV R S T3 (h

where i, denotes the shift between the two signals and »,
Is & sequence of zero mean uncorrelated random varia-
bles. Without any loss of generality, we assume 4, to be
zero in the rest of this paper. Then the correlation output
15 given as

\ﬂ
CU) - (N S vt + .

[

Jo= L2 N 2)

where we have implicitly assumed that vii) is periodically
repeated for values of arguments beyond N. This is pre-
cisely what happens when correlations are performed dig-
itally using discreet Fourier transtorms {15]. For this cor-
relation output Cij). we define the PBR vy as follows:

hY
vy - NC P N e (3)
ool

is the ratio of the correlation peak intensity (when the ref-
erence and mput are pertectly matched) to the average
correlation output over the entire range (not just at j = 0
or g 70 Cras in general very small as 7 oncreases.
Thus we note from (3y that PBR increases as the length N
of the signals increases. This supports the expertmental
abservation [16] that the PBR of a correlator is directly
proportional to the space bandvw idth product of the input
data.

We evaluate the performance of the biany correlator
in this section. The mput signats {1} and {v} e sub-
Jected to hard himiting betore correlation:

" . (BN
where the caret denotes binarized vaniables We have i
plicitly assumed above that the input signals {1} and (v}

are both of 7ero mean. Such an assumption s Justfied
due 1o one ot the following two reasons. In coherent opti-
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cal processors |16}, the matched filter plane medium usu-
ally exhibits a dark central region, thus removing any
average value present in the input signals. Average values
in images are deliberately removed [3] in many image
correlations because it results in an output bias fevel, thus
degrading the output correlation PBR.

The binary correlation peak value in the absence of
noise is given by

N
CO) = (UM Z. (£)7} = @ (5)
<
which can be seen to be the maximum possible peak
value for a given input dynamic range | —a. + «]. In
digital correlators, correlation peak values may not be im-
portant, but in optical correlators, system noises such as
detector noise. reflections. speckle noise. and scatter indi-
cate the need for a large correlation peak {11]. Thus bi-
nary correlation reduces the effects of system noise in
optical correlators.
PBR of binary correlation can be written as
N N
¥ = N(a*) 2' [(1/N) Zl A5, 1R ()
< <
where we have assumed no noise in the input. We con-
sider the effect of noise at a later stage in this section.

It is difficult to evaluate the denominator of (6) unless
the input signal sequence {x,} is known. The exact nature
of {x,} is rarely known a priori, but we will assume that
{x,} is a sample realization from a zero mean Gaussian
process with a second-order statistics R, [j). With such an
assumption, we have

E{zx,, } = &*{Pr(xx,,, > 0] -Pr{xx,,, = 0]}
a*{(2/my sin R ()I/R (D]} (7

where E{-} denotes ensemble average and the last equal-
ity is derived eisewhere [17). The quantity within the par-
enthesis in the denominator of (6) can be seen to be a
sample estimate of the ensemble average in (7). For suffi-
ciently large N, the error in the sample estimate is ex-
pected to be small and we can approximate y as

N
NIRAOV D R = ¥ = Nm/2)?
J-

N
< IRX0)/ D R (10)
7=1

We can calculate the expected PBR for any input sig-
nal by substituting its autocorrelation function R,(j} in (§)
and evaluating it. To understand the effects of binariza-
tion on PBR. we estimate the PBR v of unbinarized cor-
relation from (3) using a similar approach as

N
v = NIR20)/ 2. R (11)
-1

Comparing (10) and (11), we note that PBR v for the
binary correlation is greater than the PBR v for the unbi-
narized correlation. We also can see that this improve-
ment is at the most a factor of (1/2)° or 3.8 dB. The
analysis of the binary correlator has so far assumed no
noise at the input. To analyze the effect of noise. we re-
place the signal {x,} by {x;} + {n,}. where {n,} is a sam-
ple realization from a zero mean. Gaussian random
process with an autocorrelation function R,(j}. {x,} and
{n} are also assumed to be jointly Gaussian and
uncorrelated.

Proceeding as before, the correlation peak value for
the noisy case is given by

N /\
(1/N) Z xx, + n)

2/m)a’* sin’ '{j R(O))/

C(0)

I

I

VR.(O[R.(0) + R,(0)] }

= (2/ma’sin ' VR OVIR(O) + Ry, ()

Comparing (12) with (5). we note that the correlation
peak value decreases as the amount of input noise R,(0)
increases. The PBR v in the presence of the noise can be
derived as

N /\
[(1/N) Z‘ LG+ )

"y =
ﬁ.’:
-9 = Na'/ [E(.\:,X‘,UH" N N ~
1= {UNY D TUNY 3 55, + o))
N j=1 =1
= Na*/ Y {(2rm)a? sin 'R, (G)/R (0)))? _ . ;
a ;«, {(2m)a (R.( I = [ima? sin~ ' VROVIR.(0) + R}
N * {(I/N)(2a%/7)?
= N2 2 {sin [R.(GVRONL. ) N
=1
' » 2 Isin 'VRIGIRAO) + R(OR, O} !
One can show that forany 0 < 8 < |, J=i
B=sin'B=(m2)p 9 = Nlsin ' VR,(0)/[R.(0) + R,(®})?
and using this inequality in (8), we can bound 7 as . i Isin " VRIG{R.A0) + R(OR, O} .
=1
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Using the inequality of (9) in (13), we can show that
Qi ysys @Dy (4

where v is the PBR of unbinarized corrclation as in (1 1),

The inequality in (14) shows that the ratio (Y/v) var-
ies from — 3.8 dB to + 3.8 dB; thus depending on the
input noise level, we will find situations where the binary
correlator will outperform the unbinarized correlator. As
we have shown in (8). 17 is closer to the upperbound for
the case of low noise. It has been shown elsewhere [11}
using peak to sidelobe ratio (PSR) that binarization results
in a loss of 3.8 dB in the case of very noisy inputs. Us-
ing an exponential model for R (), Kumar and Casasent
[11] examine the PSR for binarized correlation as a func-
tion of signal bandwidth.

In this section, we have shown that binary correlators
perform at least as well as unbinarized correlators. But
their main advantage is in the ease of implementation
which is considered in Section 1V. Before we examine

the simulation results, a few words of caution are 1n or-
der. We considered the pertormance only from the view-
point of PBR. but as the input noise level increases. there
is & greater probability that the correlation has a maxi-
mum at j # 0. The effect of input binarization on this
talse peak probability is of importance 1n location estima-
tion problems. Correlation is often used to separate two
classes of targets. Binanization effects on class discrimi-
nation should also be considered. When we use the deti-
niton in (3) for PBR. we are implicitly assuming that the
correlation has a peak at j = 0. This is true only for Jow
noise situations and thus our conclusions should not be
used for high noise input scenarios.

i, SIMULATION RESULTS

In this section, we support the conclusions of Section
11 with the help of a very hmited image data st shown in
Fig. 1. These are all digitized images of the same arca

Fig | Multspectral pictures of south of Fresno, Califorma Spectral bands of cach prcture are as tollows Py 0 X
0O7Tu, P05 06p
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south of Fresno, California, but taken with ditferent sen-
sors. The spectral bands in which these images were
taken are indicated in Fig. 1. These images P,. Py, Py,
and P, of size 128 X 128 represent the same scene and
thus all cross correlations (as well as autocorrelations)
should peak at j = 0 in the correlation plane. As was
discussed in Section 1, the mean of the image carries no
relevant information {especially for multispectral data)
and is thus removed before any processing. For our mul-
tispectral data, the gain factor of each multispectral sen-
sor is not vnly different, but also unreliable, and as a
result, we had to rescale the gray levels in all four images
so that the energies in all of them are the same. Such
preprocessing is necessary to use the model in (1),

After the above normalization on the four images,
cross correlations were performed among them. The re-
sulting correlation peaks and PBRs are listed in Table 1.
From Fig. 1, we note that P, and P arc similar and P,
and P, are similar. This behavior is indicated by larger
cross-correlation peaks and PBRs for P, * P, than for P,

we-

%

TABLE 1
Performance of Unbinanzed Correlation

P, P. P P,

A. Normalized Intensities at Cross-Correlation Ongins

P, 1.00(6) 0.6175 00622 0 06U
P, 0.6175 14006 00023 (.0026
P. 00622 0.0023 1 (%) (1 X387
P, 4 G6ly 04126 O 8187 (XLLy e

B. Peak to Bachground Ratos (PBRs)

P, 63 163 S3.2%6 8 2671 9 U870
P, 53.2%6 93 628 11060 12533
P, K.2671 11 060 43912 51 K48
P, 9 9870 (RETR S1 K48 76 T34

* Pyand Py % P,. We use * to denote correlation opera-
tion.

The four images Py to P, are now binarized to pro-
duce the hard-limited images S, to S as shown in Fig. 2.
The median in each image was chosen as the threshold

Fig 2 Binanzed versions of the multispectral pictures shown in bFig |
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rather than the mean to satisty our assumption that the show the peaks and PBRs obtained as different amounts ‘
average value of {x,} is zero. Even though the gray levels  of additive white noise is introduced in the autocorrela- ‘[
as shown in Fig. 2 represent completely dark (0) and tion P, = P;. The ratio N/§ indicates the white noise {
completely white (+ 1) areas, we treat them as denoting power to the image (signal) power. The peak values and
-1 and +1! in our actual processing. Cross correlations PBRs obtained in the binarized autocorrelation S, # S| for !
are performed on these binary images and the resulting various N/S values are shown in Table 1V. For the rea- v
ar: ers are shown in Table 11. Once again S corre-
parameters are sh e g2 ) TABLE IV
TABLE 11 Eftect of Input White Noise on Binanzed Correfation
Performance of Binanzed Correlation !
Ni§ Peak PBR
5 S, N J
il : ! S 0.00 1.0000 100 27
A Normalized Intensities at Cross-Correlation Ongins 0.02 0.9129 93 301
(
s 1.0000 05806 02171 0.2101 0.04 ). 8707 89.097
' 0.06 0.8402 86.798
S, 0.5806 1 0000 0.2157 0.1911
: 0.08 0.817S 86.640
S 0.2171 0.2157 1.0000 0.6733
y 210 0.1911 0.6733 1.0000 0.10 0.7848 83.453 ]
S 0.=1 ' o 0.2 0.7680 83 297 .
B. Peak-to-Background Ratios (PBRsy) 0.14 0.7472 81.270
S, 100.27 64.595 44.880 18.693 0.16 0.7233 80 562
S, 64.595 117.48 49.385 49.507 0.18 0.7308 81 689
S, 44.879 49.385 139.56 100.51)
S, 48.693 49 507 100.51 154 .00 Notes. Inpul is the binarized {P, + noise}. Reference 1s the binar- L
ized {P,} ]
lates better with S, than with S, or S;. Comparing the di- . . . . :
: ! 4 paring sons discussed in Section I, only small amounts of noise 3

agonal elements of Table IB and Table IIB. we see that
unbinarized autocorrelations yield PBRs of 63.2, 93.6,
44.9, and 76.7. while binarized autocorrelations yield i o
PBRs of 100.3. 117.5. 139.6, and 154.0, respectively. ~ 00is¢. On the other hand. the PBR of binarized correla-
Thus we see that for all four images. binarization im- tion decreases as noise increases: but for the range of
. proves the correlation PBR by factors of 1.25 to 2.0. noise levels showp. bma.nzefi corrclauonA still gives better
: These improvement factors are well within the range of PBR compared with unbinarized correlation. Binarized
: 1.0 to (m/2)* = 2.5 predicted by (10). The PBRs in all f;()nela{tl()n pgak is also seen to be more sensitive to noise
in the input signal. Thus we see that binary correlator still
outperforms unbinarized correlation in the presence of
small amounts of noise.

are considered here. From Table 1ll, we note that PBR of
P, = P, is relatively unaffected by small amounts of

} cases are estimated using the definition in (3) on the ob-
served correlation output. The PBRs for binarized cross
correlations are consistently higher than the PBRs for un-

M e at ‘-. 0 D Ya S S 5'
% binarized correlations. Improvement factors of alr.nosl 0 v, DISCUSSION
i (beyond the 2.5 suggested by (10)) are observed in the
{ cross correlations of S, and S, and P, and P,. This is be- In this paper we have shown that binary correlation
cause Py and Py ditfer drastically (through random con- gives better peak-to-background ratios even in the pres-
trast reversals) and the differences cannot be modeled ence of small amounts of noise. We supported these theo-
simply as additive noise. Binarizing removes the unrelia- retical arguments with the help of simulation on a set of
ble amplitude information while retaining only the major multispectral images.
edge information and ‘h“"“fr_c‘”“s in better PBR [18]. The binary correlator is attractive mainly from imple-
‘ We now obsern.dthc effects ()f additive <n0m|l|r|l the mentational considerations. By using the VLSI technol-
| input on the observed autocorrelations. In Table H1, we ogy [13], the binary correlator can be implemented in a }
=' TABLE 11l reasonable number of chips. The +a and —« levels of ‘
L Effect of Input White Nuotse on Unbinanized Correlations the binanzed sngnal in (4) correspond to logical 1 and 0 §
| v Peat PER " in a digital implementation. The multiplication laws are ‘
i o bia then as given in Table V. We observe from this table that |
!
| ‘(;g: ") ‘:’“‘" “-: ";: TABLE V ,
3 < B 6308 Multipheation Laws for Binary Input: :
' 004 0 962( 62 S4K
006 0.9439 62.759 ¥ y Xy Lix) LIy LIXY)
3 008 0.9267 63 268
010 ) 9098 62 149 a a a’ I |
012 0 §Y57 62 S0S a d -’ ! 0
014 0 RROY 61 K26 ” a «* 0 1
016 ) 864 61 450 a a o 0 0
018 0 859 62 318
) ——— Note L[ ] refers to the comesponding logic level
] Notes Input s the intensity normalized (P ¢ nose} Reterence s —
; the mtensity rormahized {P)} 0018-9251/83:0300-0327 $00.75 < 1983 JEEE
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Generalized chord transformation for distortion-invariant

optical pattern recognition

David Casasent and Wen-Thong Chang

An aptical processar that realizes a generalized chord transtormation is described. The wedge-ring detector
samples of an autocorrelation are showvn to be the histograms of the chord distributions. This dimensionali-
ty reduced set of features is used as the feature vector inputs for a Fisher lincar classifier to determine the

class of the input object independent of geometrical distortions.  Initial discussions on the use of different
classitiers, the polarity of the classifier’s output. and selection of the image training set are also advanced.

I. Introduction

Obtaining object classification in the face of geo-
metrical distortions in the input object (due to scale,
rotation, aspect variations, etc.) is a major pattern rec-
ognition problem that has received extensive attention.
Various optical systems of increasing flexibility and
potential have been suggested as partial solutions to this
problem.! These include weighted matched spatial
filters.” space-variant optical pattern recognition svs-
tems,” optical correlators using generalized matched
spatial filters.' and synthetic discriminant functions.”
Conventional digital techniques for disiortion-invariant
pattern recognition involve extracting features from
regions of the input image, determination of a linear
discriminant function or linear combination of these
features (from image training sets of the different object
classes), and using the measured features for an input
object in a classifier to determine the class of the input
object. A recent optical svstem® follows this approach
by extracting the moments of the input object optically
and then using these as the features to be fed to a digital
nonlinear least-mean-square estimator to perform
object classitication.

In this paper. we describe a new optical architecture
that realizes a new operation, a generalized chord
transformation {Sec. II). This constitutes our obser-
vation space. We utilize a wedge-ring detector” to ex-
tract features from this output for reduced dimen-
sionality and for distortion-invariant pattern recogni-
tion (Sec. 11I).  These measured features are then fed

i
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to a Fisher classifier® (Sec. IV) from which the class of
the input object is determined even if geometrical dis-
tortions are present in the input object. Initial simu-
lation results (Sec. V) are most impressive. Extensions
to multiclass problems and the use of alternate classi-
fiers are then advanced together with new techniques
to select the training set image data (Sec. VI).

Il. Optical Realization of a Generalized Chord
Transformation

The chord transformation® is defined for a binary
solid object described only by its boundary ti.e.. Fig. 1).
For each pair of points on the boundary, we construct
a chord and note its length r and angle /. We then de-
scribe the object (houndary) by the distribution hi(r,
of all chords. This conversion of a binary solid object
[f(x Y into h(r.f) is a chord transformation.

To develop a generalized chord transformation and
its optical realization. we first consider a simplified
technique (suitable for optical realization) to produce
the chord transformation. We consider an image and
denote points in the image by (x.3) and the boundary
of the image by those points b(x.v) = 1. A chord then
exists between two points if

glxy .t = bix bty 4 reosthy + rsinth = 1, (l

i.e., if the two points are on the boundary. ¢ = 1.and a
chord defined by r and # exists.  The distribution hr.h
of chords in the image can then be deseribed from

hoirdhy = ¥ex v Mdydy
Jh b 4 reostt A+ r sinfhidvdy 21

Substituting (£.7) = (r cosflr sinf), Kq. (2) becomes

s = bt abia + £+ pdaaa

=Dbian) « by, (3
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Fig. 1. Chord transfurmation.

which we recognize as the autocorrelation of the
boundary bix.v)

The calculation of all (r. values for all boundary
points is very time-consuming. However, from Eq. (3).
we see that the /1 (£.y) distribution can also be obtained
by simply autocorrelating the boundary ot the object.
{This fact was also noted in Ref. 10 and elsewhere.)
Since optical processors easily realize the correlation
operation, an optical realization of the chord transform
appears quite attractive. However. optical svstems can
realize the autocorrelation of the full object (not just its
boundary) with no increase in system complexity. We
denote the autocorrelation of the full image f(x.y) rather
than just its boundary d(x,3) by

hotém = i flieafie + & + nhdxdy =§ 2 f. &Y

Since this autocorrelation is not restricted to the
boundary of the object nor is it restricted to binary
objects, we denote the result as a generalized chord
transformation.

One can optically realize the autocorrelation of an
image by several techniques. Nichols!! used a two-
stage Fourier transform in which the autocorrelation
was obtained from the Fourier transform of the power
spectrum. I two 2-D spatial light modulators are used,
the autocorrelation can be realized entirely optically in
parallel on one system. A joint transform correlator!>
using mirrors or point holographic elements to replicate
the input pattern is vet another possibility. With a
nonlinear crystal positioned in the joint Fourier trans-
form plane. these systems can be further simplified.
Thus the optical realization of the autocorrelation of an
input image (as required to produce a chord transfor-
mation) is easily achieved by many techniques.

li. Feature Space

Much research!™ 1tV has heen performed on dif-
ferent manipulations and displays ot the chord trans-
formation output distributions to achieve distortion-
invariant pattern recognition. In Ref, 10, the distri-
butions of the lengths and angles of the chords of an
object were considered as features. However, only the
peak value of the distribution was used, and the classi-
tication of only several simple geometrical shapes was
considered. In Ref. 11.1he length and angle distribu-
tion of the chords of different characters were digitally
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computed trom the optical autocorrelation. and dif-
ferences in hoth distributions were noted to exist for
ditferent letters of the alphabet. However, no classi-
fication algorithm was suggested. In Ref. 13, the sum
and difference of the angles between the chords and the
houndary of the object were calculated. The authors
refer ta the distribution of these angular sums and dif-
ferences as a 3-D histogram. In Ref. 13, such a display
was considered for ship classification. In Ref. 14, the
distribution of the lengths of the chords was digitally
computed for various noisy circular objects and map
outlines.

We found much potential shape information and
pattern recognition potential in the chord transforma-
tion. However, the computational complexity required
in prior techniques, the use of only boundary objects in
prior work. and the lack of attention to the classification
algorithm to use motivated our present work. We first
consider a new technique to extract the h(r.fl) radial and
angular chord distributions from an optically generated
autocorrelation ot the input image. As noted earlier.
our h(r) will be the distribution of a generalized
chord transformation. Hereafter. we do not specifically
distinguish between h and hy,.

As a preferable approach, we consider a simple and
direct technique for teature extraction trom he gen-
eralized chord transformation observation space with
attention to dimensionality reduction and obtaining
distortion-invariant features. Dimensionality reduc-
tion is essential, since otherwise f2(£,n) can contain 10°
output samples (for a 10* X 10?-pixel image). and the
corresponding object would have to be modeled as a
vector f with dimensionality D = 108, Processing such
vector data would be computationally intense. An at-
tractive, eazily realized. and intuitively pleasing choice
for a feature space results if the h(£,n) optical autocor-
relation output plane pattern is sampled with a
wedge-ring detector. This detector’ consists of 32
wedge-shaped detector elements in one-half of a
2.54-cm (1-in.) circular detector and 32 annular or
ring-shaped detector elements in the other half of the
circular detector area. All 64 outputs are available in
paralicl on 64 separate leads. Figure 2 shows the gen-
eral schematic of our hybrid processor. We discuss the
features produced below, and in Sec. IV we discuss the
classifier.

Denoting our generalized chord transformation ob-
servation space by h(&.n) = h(r cosfl.r sinfl), where & =
r cosll and n = r sinfl, the wedge-sampled outputs are

hith = Shir cosflor sinfhhrdr, (Hal
and the ring-sampled detector outputs are

hiry = fhir cosfhr sinfhird#. (5b)

AL Te-

NN (
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Fig. 2. Simplified block diagram of a hybrid optical/digital distor-

tion invariant pattern recognition system using a generalized chord
transformation.




Inspection of Eq. (5a) shows that the h(#) features are
independent of r (or chord length) and are thus also
effectively invariant to scale changes in the input image.
Similarly, trom Eq. (5b), we see that the hA(r) output
features are independent of ¢ (or the orientation of the
chord distribution) and are thus also effectively in-
variant to rotational difterences in the input image.

Thus, as our feature space, we use the 64 wedge-ring
detector-sampled outputs of the generalized chord ob-
servation space. This constitutes a 64-sample repre-
sentation ot the hir#) chord distribution.  Such a
representation of an image f(x,v) is equivalent (in
conventional pattern recognition terminology®) to the
representing of an image as a vector f of dimensionality
1) = 64, with the elements of £ being the 64 £ () and h(r)
wedge-ring detector-sampled values. This new optical
architecture thus produces the desired hir/) chord
distribution in parallel with a greatly reduced compu-
tational load (compared to a digital version of the
equivalent system).

V. Classifier

As the second major issue in this paper, we consider
the classifier to be used with such a feature space. In
conventional pattern recognition and object classifi-
cation techniques, the features {the elements of the
vector f) are fed to a classifier in which the class of the
input object is determined. This is achieved by pro-
jecting the measured vector f onto a linear discriminant
function vector w and comparing the scalar output

obtained to a threshold. In our general architecture of

Fig. 2, we use a parallel optical svstem to produce our
observation space (the autocorrelationj of the input
object). a wedge-ring detector to provide the dimen-
sionality reduced feature space. and a digital postpro-
cessor for classification.  This is a new quite general and
very attractive concept and architecture for advanced
pattern recognition applications. It employs the par-
allelism of the optical system for feature extraction and
the flexibility and numerical computation features of
a digital processor for classification.

We now discuss the classifier we used. We consider
the use of a linear discriminant function (LDF) that
maximizes the Fisher ratio to determine the linear
combination of output features to use for object classi-
fication. Qur analysis and formulation follow that in
Refs. 8. 15, and others. Cauifield et al.'™ also used the
Fisher criteria, but they used Fourier transform coef-
ficients as the image features and used the Fisher LDF
to synthesize a matched spatial tilter. Legeret al.'-1"
used Fukunaga-Koontz techniques’® and least-mean-
square algorithms!™ to synthesize a set of optical filter
functions. Qur approach differs significantly in concept
and implementation, since we use the optical system to
produce the features and a digital postprocessor to
perform the classification. In approaches such as those
in Refs. 16 and 17, the location of the output correlation
peak indicates the class of the input object rather than
the location of the object (as in a conventional correla-
tor). In such systems, a new filter function must be
produced for each new class of ohject to be recognized

or for each new tvpe of classifier used. Our system is
more general and flexible; since its outputs can directly
be used in any classifier for any object class, we choose
Lo use the Fisher criteria hecause of their intuitive ap-
peal.

In many classifiers, image training sets {images of
each class of object with, for example, d'fferent geo-
metrical distortions) are used to determine the LDF.
We consider a two-class pattern recognition problem
with the image training set heing If |, { and if ., for classes
1 and 2, respectively. We denote the number of training
set images in each class by Ny and N.. respectively. For
each image, we calculate its feature vectors £, and f,.
We also caleulate the vector means my and m. for the
two classes of training set data. where for class

m‘=tl.\,»}_f,, H

We also calculate the scatter matrices ) and S. for each
class, where for class 1

Se=2f = mpif, - mp! o
In Egs. (6) and (7). the summation is over thei = N, or
N, images in the corresponding training set.

The purpose of a linear classifier is to determine
(from the training set data) an LDF or cector wthot i
a linear combination of the observed features. After
this has been done. the system is tested.  In such a case.
a linear combination of the observed features for an
unknown input image f is calculated and compared to
a threshold level T. This is equivalent to calculating
the vector inner product w'f or f 7w or the projection
of £ onto w (all vectors are column vectors, the super-
script T denotes the transpose or a row vector) and
comparison of w7 to the threshold 7. The LDF vec-
tor w and the threshold T are selected from the training
set data (as we detail later). If wT'f = 7", we classifyv the
unknown input object as a member of class one or two.
respectively.

To determine w, we must first select the performance
measure to be optimized. In a Fisher classifier. the
parameter maximized is the Fisher ratio

Iy mal®
TNy s

(Y]

In Eq. (8), m; and m, are the means of the projections
of the training set data in classes one and two on w. i.e.,
for class 1

my= (N wif), =wim,, 19)
;
and 8, and 8. are the scatter of the projections for the
training set data in classes one and two, respectively: i.e..
for class 1

N Prajectionsy, = m”

=2
=N wWI, - wim )t = wiSw (1
The Fisher ratio o in Eq. (8) is an intuitively pleasing
performance parameter. In a hvperspace data repre-
sentation, each input image is a vector described by a
given position in this hvperspace. The numerator in
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Eq. (8) is the ditference in the means of the projections
tor the two classes of training data, and the denominator
is the sum of the scatter of the projections. Thus the
numerator in -J is a measure of the separation of the
classes, and the denominator is a measure of the clus-
tering within each class. The reader should recall that
the parameters in Eqgs. (6)-(10) refer to the training set
data for the two classes.

To determine the LDF w that maximizes J in Eq. (8),
we must describe o/ in terms of w.  Using Egs. (6) and
(9), we can write the numerator in Eq. (8) as

tmy—ma=iwim —w’mu* = wiSyw, (11}

where the between-class scatter matrix Sp for the
two-class discrimination problem is the vector outer
product:

Sy =(m; — moim; — ma)’ (1)

We describe the denominator in Eq. (8) using Eqgs. (7)
and {10) for the two-class problem as

Si+Si=wiSiw+ wisS,w=wlSyw, (13)
where the within-class scatter matrix Sy is
Sw =S+ S (14)

Substituting Egs. (11) and (13) into Eq. (8), we find that
the Fisher ratio can be described in terms of the LDF
W as

Jiw) = “’TS[;W/“‘ TSuw. (1o

Differentiating Eq. (15) with respect to w and setting
the result equal to zero, we find that w is the solution
of the general eigenvalue problem

Sarw = A\Spw. (16a)
If Sy is nonsingular, we can write Eq. (16a) as
SulSpw = Aw. (16b)

The unique solution to Eq. (16b) is our LDF. [t is given
by

w=3S3lim; - mo). (17

Thus to determine the LDF in Eq. (17) we must calcu-
late the vector means m; and m, plus the within-class
scatter matrix Sy for our training set data. Substi-
tuting these into Eq. (17} then yvields the optimal LDF
w that maximizes the Fisher ratio .J(w) in Eq. (8). As
our threshold, we use the average of the means of the
projections for our training set data, i.e.,

T=(my+ m/2 (18)

V. Initial Experimental Verification

A. Available Data Base

To demonstrate the use of this Fisher-discriminant
classifier with a wedge-ring detector-sampled general-
ized chord transformation observation space, we used
an available IR ship image data base. This data base
contained two classes of ships with 36 images in each
class (one image every 10° with a 90° depression angle).
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Gray-scale and binary images were used in all experi-
ments, and the hull of the ship was removed (retaining
only the superstructure). 'The number of features
(wedge-ring detector samples) or the dimensionality [)
of the feature space used affects the number of training
set images N| + N, = N that are necessary. The cases
toconsiderare D >N . D=N,and D<N. If D> N,
many solutions are possible, and we simply pick one. In
D > N, we find that Sy is singular (its rank is less than
D), and thus an LDF w to maximize the Fisher ratio
does not exist (since Sy! does not exist), and instead
many solutions exist. 1 [) = N, a unique solution exists
and is easily obtained by solving a matrix-vector
problem. If [) < N, nodirect solution exists, and thus
we approximate one by least-mean-square techniques.
Since maximizing the Fisher ratio is known® to be
equivalent to a least-mean-square solution, use of such
an approach automatically requires N > ). We thus
find the soution w that minimizes the least-square
error.

B. Dimensionality Reduction

The consequence of the N > D) requirement (which
is the practical case of concern in pattern recognition)
is that if our available image data base is of finite size
(this is obviously the practical situation), we must thus
reduce I) before a Fisher or similar classifier can be
designed and before significant test data are possible.
To quantify these remarks, we consider our present
problem and available data. If we retain all ) = 64
wedge-ring detector features, we require N > 65
training set images. For a two-class problem. we only
have available 36 images per class or 72 images total.
Thus, if all 64 wedge-ring detector values are retained
as features, we would have to use 65 of our available 72

images for training. This would leave us with only 7 of

the 72 images for use as new images during testing. The
results of such experiments (training on 65 of 72 images)
would not be impressive. Thus we next consider tur-
ther dimensionality reduction of our feature space.
To perform more impressive tests and to reduce the
size of the training set and the amount of calculations
required, the number of features used must be reduced.
Such dimensionality reduction is commonly employed
(for different reasons, i.e., to reduce the computations
required). From an analvsis of the wedge-ring detector
outputs for our full set of 72 images. we found that the
outer 8 ring readings were approximately zero. We thus
ignored these features in all cases and reduced the
maximum number of features to [} = 56. For a feature
vector of dimension 56, we would still require 29 images
in each class for training. To further reduce the di-
mensionality of our feature space, we calculated the

. +) R B
means m 4 and m.y and the variances a7y and a3, of

each wedge and ring detector output (d = 1,. .., 586) for
various two-class training sets of data. We then cal-
culated R = (m4 — myy)/ (034 + a3,) for each case for
all 56 detectors. As our features, we retained the 18
detector outputs with the largest mean difference to
variance ratio R for the various training sets. OQur
simplified technique for reduction of the dimensionality

ey




Fig. 3. Representative images for the class 1 ship imagery: (top
right) 0, (top left) 45, (bottom) 90°.

Fig. 4. Representative images for the class 2 ship imagery: (top
right) 0, ttop left) 45, (hottom 90°,

of the feature space assumes independent features. A
more precise technique'® using the covariance of the
features could be employed (to account for dependent
relationships between features). However, our results
were adequate. and thus such technigues were not em-
ploved.

c. Image Training Sets

In Figs. 3 and 4. we show three of the images from the
set of 36 images for each of the two classes of ships used.
We number the 36 images in each class consecutively
from the bow to the stern, with the class one images
denoted by 1-36 and the class two images by 37-72.
Images 1 and 37 are the bow views, images 9, 27, 46, and
64 are the broadside views, etc. We selected five
training sets of data (Table I). 'The same aspect views
were used for each ship class for compatibility, and thus
only the ship image numbers for class 1 are listed in
Table [. Training set I contains all the imagery.

Training set 2 contains half of the imagery (images every
20°). Three sets (sets 3-5) of 12 training set images per
class were chosen In set 3, the training images were
clustered within £50° of broadside on the front and
back of the ship. In set 4, the 12 images were clustered
every 10° from 40° to 150° on one side of the ship only,
and in set 5 they were evenly spaced every 30°.

Table I. Image Training Sets Used

Training set
images used
for class |
(class 2

Image Number of
training training set

set  images used Training set

number per class analogous) remarks

1 36 All images

2 18 Images every 20°

3 12 Images every 20°

30,32 (within £50°
of broadside)

4 12 4,5,..., 14.15 Images every 10°
tone side only,
near

broadside)

b} 12 i4,..., 13,16; 19.22, Images every 30°

L3134
Table il. Simulated Test Data (Binary imagery)
Probability
of correct
Experiment Fisher Number classification
number ratio of errors (%0
1 114 0 100
2 126 0 100
3 1180 8 88.9
4 2322 4 94.4
5 158 0 100

Simulation Results

In Table 11, we list our experimental results obtained
for binary ship image data with the hull of the ship re-
moved. (This was done to remove nonreliable gray-
scale image data, and hence the binary version of such
imagery was used in our present tests also.) In all cases,
the 18 wedge-ring detector features previouslv noted
(Sec. V.B) were used. The five experiment numbers
listed correspond to the tests performed using the cor-
responding five image training sets noted in Table I. In
each case we calculated m,, m,, and Sy’ for the indicated
training set data and from these computed the LDF w
in Eq. (17) and the threshold T in Eq. (18).

From experiment 1, we note that the entire data base
was used for training and that no errors occurred. This
indicates that the full data base is linearly separable
using as few as 18 features. It is thus realistic to assume
that some subset (less than ali 36 images per class) of the
full image data base might provide similar performance
to that obtained using the full data base (i.e.. 100%
probability of correct recognition). One cannot theo-
retically prove this, however, but test data seem to verify
this intuitive remark. In experiment 2, we use 18 im-
ages per image class and find that the computed LDF
is again capable of correctly classifying all 72 images in
both classes (haif of which it had not previously seen)
with no errors.

Experiments 3-5 consider the use of a much smaller
training set (12 images per class or one-third of the
available imagery) and the testing of the computed LDF
against all 72 images. In experiment 3, 12 images per
object class were used (clustered around the broadside
views of the target, from both sides of the ship). Good
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results, 8 errors out of 72 images or 88.9% correct rec-
ognition, were obtained. As might be expected, most
of the 8 errors occurred for test images close to the bow
and stern views. Since such images have fewer pixels
on the target and since these images were not included
in the test data, these errors are to be expected. Ina
ship recognition scenario with such imagery, one would
not expect to perform classification on such bow and
stern views of a ship.

However, to pursue further the issue of training set
selection and the performance of this feature-extraction
space, we considered other training sets of 12 images per
class (from our data base of 36 images per class). In
experiment 4, 12 images taken from only one side of the
ship were used during training. The motivation for this
choice was that the views from both sides of the ship
were rather similar, and thus we could possibly contain
all information on the ship class by training on images
from one side of the ship only. Our results (4 rather
than 8 errors out of 72 images, 48 of which were never
seen in the training of the classifier) verified this con-
jecture. As might have been expected, the majority of
errors encounteed again occurred for images near the
bow and stern. These images were not present in the
training set. and thus such errors are again expected.
As our third set of twelve training set images per class,
we used set 5 (12 images, evenly spaced every 30° about
the full ship). Our performance (no errors for all 72 test
set images) is the best possible (matching that obtained
in experiments 1 and 2 using 36 and 18 training set im-
ages, respectively, per class).

In all cases, no more than 8 errors occurred (above
88.9% probability of correct recognition). The third
major issue of concern in this paper is further analysis
of these results to obtain insight into why such excellent
performance results and insight into how selection of
the training set used affects the resuits obtained.

Before leaving our experimental data section, we
present (Table III) our ship data test results obtained
using gray-scale imagery (for the same experiments and
training sets used for binary imageryv). These results
are quite similar to those obtained using binary imagery
(Table II) with a reversal in the results for tests 3 and
4 being the most obvious differences. (We attribute
this to additional reliable gray-scale image data present
in the superstructure and deck line of the ship.) These
experimental results are noteworthy because they
represent the generalized chord transform operation
that we noted (Sec. 1) that our optical system could
directly and easily perform.

Vi. Discussion

Our optical processor to realize a chord-distribution
sampled feature space has proven most attractive as has
our wedge-ring detector-sampled chord feature space.
Our technique to reduce further the dimensionality of
our feature space has likewise been shown to bhe useful
and adequate. Further research is needed to optimize
our image training set selection technique. Qur three
training sets of data (for our 12 image per class training
sets) were chosen to investigate and demonstrate certain
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Table lll. Simulated Test Data (Gray-Scale Imagery)

Probability
of correct

Fxperiment  Number  classification Training set
number of errars i) remarks
1 0 100 All images
2 1 986 [mages every 20°
3 3 45,2 Images every 20°
(within £50°
of broadside)
4 6 91.6 Images every 10°

tone side anly.
near broadside)

b 0 100 [mages every 30°

features useful for training set selection. We will am-
plify on our general remarks to follow in a future pub-
lication when we consider the effects of noise on the
performance of our system.

For our present discussion, we will consider how the
Fisher ratio value J (obtained from training set data)
can be used to influence our image training set selection
criteria.

We first note that maximization of o/ is a least-square
problem, and thus the J parameter (Table 11} provides
a measure of the accuracy of the least-squares fit solu-
tion. Specifically, J is inversely proportional to the
least-squares error. Thus a low J value (Table 11) in-
dicates a large least-squares error in our solution.
However the major point we advance at this junction is
that a large J (and hence a small least-mean-square
error) does not necessarily reflect that better classifi-
cation performance will result. Rather, a smaller ./ for
the training set indicates that the training set is more
divergent (large mean square error) or, equivalently,
that it is more representative of the full image data
base.

Thus the philosophy we presently discuss advacates
selection of a training set with a lower o/ value. This
premise is based upon the fact (confirmed by our initial
experiments) that such an image training set provides
a better statistical representation of the test data. As
we noted earlier, such measures for training set selection
are needed. both to provide more meaningful test data
and to provide better discrimination performance.

To quantify these remarks. let us consider the Fisher
ratio J (column 2 of Table 1) calculated for the various
training sets. Considering the first three entries. we
note that J increases as the number of training set im-
ages used increases (114 for all 72 images. 126 for 36
images, and 1180 for 24 images). This reflects the ob-
vious fact that it is easier to separate 24 or 36 images
than 72. The large increase (126-1180) in going from
36 to 24 images is also due to the 12 images chosen per
class (all were within £50° of broadside and thus cluster
well). Similar remarks apply to the large o/ (2322) ob-
tained for the case when the 12 training set images per
class were chosen from the same side of the ship.

Recall that a large J merely reflects a small least-
squares error that indicates that the training set sepa-
rates well between classes and clusters well within each
class. However, a large -J value does not imply good




performance on test images. In fact, the opposite effect
occurs, (An LDF formed from a training set with a
large J vields worse performance than does one with a
lowJJ.) This is obvious and provides insight into a more
formal rather than an ad hoc technique for training set
selection that we now advance.

Once a training set is selected, our algorithm produces
an LDF with the largest J possible (for the given
training set). The value of J obtained indicates the
divergence of the training set. Thus an LDF with a low
J indicates that the training set used is more statistically
representative (larger divergence) of the imagery than
is an LDF with a larger J. Once we have chosen the
number of training set images we desire to use (e.g., 12
per class), we can use J as a measure of which training
set and which LDF is best. Specifically, we choose the
training set and LDF with the lowest J.

Comparing o for the three training sets of 12 images
per class (experiments 3-5), we find a low J (158) when
the 12 training images per class were evenly distributed
(every 30°} around the entire ship rather than clustered
on one side of the ship (experiment 4, J = 2322) or near
broadside on both sides of the ship (experiment 3,J =
1180). Intuition also tells us that training set 5 should
be more statistically representative of the image classes.
(The J value reflects and quantifies this.) Our exper-
imental data confirm this. {The LDF produced from
training set 5 yields fewer errors (zero) than did the
[.DFs in cases 3and 4. This technique for training set
selection is directly applicable to other feature spaces
and other classifiers. We will elaborate further on this
issue and other methods of training set selection that
explain the classification percentages in experiments
3 and 4 in a future publication.

Care must still be exercised in selecting the number
of training set images N when D features are used.
Specifically, to use a least-mean-square solution, we
require N > [). However, the N training set images
must be totally independent. This is difficult to achieve
in practice, and hence we do not choose N = J + 1 but
rather utilize several additional training set images.
When [? was large (e.g., 56 features), we found the sum
of the covariance matrices for both classes to be very
unstable with digital truncation error alone often being
sufficient to affect the rank of the matrix and permit its
inversion. In general, operating with a smaller di-
mensionality feature space is also preferable for com-
putational reasons, but this is not the major issue in an
optical processor.

We have considered other simpler observation spaces
such as the magnitude of the Fourier transform of the
input object. The wedge-ring detector was originally
intended to be used in Fourier plane sampling. Since
the information content of the power spectrum and the
autocorrelation are similar (the latter is the Fourier
transform of the former), it might appear that there is
no difference in which plane we sample. However, the
physical significance of the two representations
(wedge-ring detector samples of the Fourier transform
and the autocorrelation) is quite different. We make
no effort to decide which is best for pattern recognition.

We note that the sampling of the autocorrelation is
equivalent to the chord histogram. We also note that,
by blocking de¢ in forming the autocorrelation, the
conventional chord distribution is produced (corre-
sponding to the boundary of the object). More light
level and a less narrow autocorrelation (with more
structure) result from our generalized chord transform.
Hence this appears preferable and to be a more attrac-
tive observation space for an optical processor.

Our architecture (in whicn the features of the input
object are optically computed) is quite general and at-
tractive. It utilizes the high-speed and parallel-pro-
cessing features of an optical system for feature ex-
traction, and it allows these optically computed features
to be fed to any output classifier. Discussions of other
optical pattern recognition systems using the Fisher,
Fukunaga-Koontz, least-mean-square. and other clas-
sifiers were advanced in Sec. IV. However, these sys-
tems!® 17 uysed such classifiers to synthesize the filter
used. Thus they all require different filters to be made
for every different pattern recognition application and
new filters to be made if different classifiers are used (as
is required in certain applications). Our architecture
is more general, since the optical system need not
change if different pattern recognition problems are
being addressed or if different classifiers are to be
used.

Another important aspect of our approach can he
seen by considering the application of the Fisher criteria
to synthesis of a matched spatial filter using a Fourier
coefficient feature space. In such an approach,!® the
LDF w is a linear sum of the Fourier coefficients of the
training set data, and thus a matched spatial filter of
this 2-D LDF can be fabricated and placed at the Fou-
rier transform plane of a frequency plane correlator.
The output correlation plane in this case would consist
of peaks of light of amplitude proportional tom; or m.
(the means of the projections for the data in classes 1
and 2, respectively). If the data in the input were in
class 1, the output would have an amplitude propor-
tional to m,. If the data were of class 2. the output
would be proportional to m. and. with the location of
each peak of light, proportional to the location of each
object in the input field of view. However. it has been
shown in Ref. 8 that maximizing the Fisher ratio forces
the output projection values for the two classes of data
to be £1, respectively. Although the least-squares so-
lution will not give projections of exactly £1. it will (with
high probability) give positive and negative means for
the two classes. Thus the intensity output from such
an optical correlator will not allow one to distinguish the
sign or polarity of the output projections and hence will
not permit target classification. Heterodyne detection
of the correlation plane output is thus necessary it a
Fisher criterion is used for synthesis of the matched
spatial filter in a correlator. Only with such methods
can the shift-invariant advantages of such systems (over
our feature-extraction method) be realized. 1n our use
of the Fisher criteria (in which the classification is
performed in a digital postprocessor), different pro-
jection polarities are easily handled and are in fact
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preferable. Our algorithm and general architecture can
also be directly extended to multiclass pattern recog-
nition applications (involving more than two classes of
objects) more easily than can other optical architectures
(that require a different optical system to be used when
different numbers of classes of data are involved).

V. Summary

In this paper, we have described a new optical system
that computes the histogram of the generalized chord
transformation of the input object. Our wedge-ring
detector-sampled feature space provides a reduced di-
mensionality vector representation of the input object
that has the fundamental data necessary for scale and
rotational invariance. As our classifier, we chose the
linear discriminant function that maximizes the Fisher
ratio. Our initial experiments showed that we could
recognize and correctly classify the input image data
with as few as 18 features and that using the proper
training set of 12 images per class, we could achieve
100% correct recognition of the 72 images available in
our data base. Extensions of this approach to multi-
class pattern recognition were noted together with the
use of other output classifiers and the initial ideas for
techniques to select the optimal training set of data for
any such system.

The support of this research by a grant from the Air
Force Office of Scientific Research (grant AFOSR 79-
0091) is gratefully acknowledged.
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Efficient approach to designing linear combination filters

B. V. K. Vijaya Kumar

Various linear combinations of simple matched spatial lilters have been praposed in the literature to im-
prove the discrimination in mufticlass pattern recognition. It has been shown that all such approaches
based on deterministic constraints can be modeled as similar matrix/vector problems, the only differences
arising in the individual constraint vectors.  Since the design of any of these linear combination filters (LCF)
catt be posed as a common matrix/vector problem, efficient iterative methods can be used to determine the
LCFs. The application of one such method called the modified hyperplane IMHP) method for determining
the LCF is described and its convergence behavior is numerically investigiated for a set of seven patterns. It
is shown that the MHP method vields correct LCFs (with rms error <0.170) in less than ten iterations.

I. Introduction

Matched spatial filters (MSF) have been extensively
used in optics! to identify a known pattern in a noisy
background. This simple approach has been shown to
fail in the presence of common image distortions such
as in-plane rotations and sca’c changes. Simple MSFs
are also seen to be inadequate” for multiclass pattern
recognition applications. Multiclass pattern recogni-
tion (MPR) can be defined as the task of discriminating
a pattern from among many classes of patterns. A good
example of MPR is the identification of a given letter
in a language from its alphabet.

Linear combinations of MSFs matched to the indi-
vidual patterns have been used to improve the dis-
crimination in MPR.? Such an approach resulted not
only in improved discrimina "on between patterns but
also in increased tolerance to geometrical distortions in
agiven pattern class. Hester and Casasent” have shown
through the use of the Gram-Schmidt procedure that
a singl~ spatial filter can be designed to produce iden-
tical cross-correfation values with all the patterns in the
input set. For obvious reasons, this type of filter is
known as an equal correlation peak (KECP) filter.
Braunecker et al. ' utitize multiple linear combination
filters to produce compact binary deseriptions of the
input pattern. All these filters are purely deterministic
in the sense that they depend only on the training set
patterns. Principles of statistical pattern recognition

The author is with Carnegie Mellon University, Department of
Klectrical Engineering, Pittshurgh, Pennsyvlvania 15213,
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were used by Caulfield and Haimes” to produce statis-
tically optimal LCFs. The common nature of all these
LCFs is well unified by Caulfield.%

In this paper we utilize the unifving notation of
Caulfield® and our earlier work™ which showed that
these previous LLCF approaches can be reduced to a
common matrix/vector problem. We note that the size
of this matrix/vector problem is directly proportional
to the number of patterns in the input training set and
that, since the accuracy and the usefulness of a 1.C'F
increases with the size of the input training set, we need
to solve larger matrix/vector problems for better accu-
racy. The contrihution of this paper is that this refor-
mulation of the LCF design into a single matrix/vector
solution can benefit from the vast amount of results
available® for solving matrix/vector problems. As an
illustration of this approach, we propose the use of tie
modified hyperplane (MHP) method to design the
LCFs. The MHP was initially used by Ramakrishnam
et al.¥ for image restoration and by Vijaya Kumar!" for
adaptive array null svnthesis. In this paper we point
out the usefulness of this technique in a LCF synthesis
for MPR.

Il. Linear Combination Filters

Consider the set of N input characters
1X1. X, . ... Xy Each pattern X, is converted from
an image (o a vector for convenience. The length of the
vectors equals the total number of pixels in the patterns,
A linear combination tilter Y is defined as

Y=, X, +a.Xo+... 4+ ay Xy, o
where a.a., . ... ay are real values denoting the con-
tribution of each input pattern in the LCF Y. The L.CF
designs discussed below describe three techniques for
determining the coefficients ay.a.,...,.ax. These
techniques differ only in the constraints imposed for

15 May 1983 / Vol. 22. No. 10 / APPLIED OPTICS 144




determining these weights and the number of filters
used. The N mutually orthogonal filters (MOF)
Y..Y., ..., Yy are designed such that each filter cor-
relates with only one pattern and produces zero cross
correlation with all other inputs, i.e.,

Y X =4, )

where the dot denotes the inner product of the two
vectors and 6;, denotes the Dirac delta function.?

The ECP filter approach suggested by Hester and
Casasent” requires that a single LCF Y be determined
that correlates equally well with all the patterns in the
{raining set, i.e.,

YeX =1 fori =1.2,.....N. 3

In the nonredundant filter (NRF) method* M LCFs
Y..Y,, ..., Yy are chosen such that, when all these M
filters are correlated with a given input X,, the resulting
M cross-correlation values provide an M-tuple de-
scription of {, the input number. If M is greater than
log. NV, we can see that the resulting description is a bi-
naryv one. To illustrate this method, consider an input
set of three patterns {X,.X., X and two nonredundant
filters Y, and Y.. Since the binary descriptions of the
numbers 1,2,3 are (0,1),(1.0).(1,1), respectively, Y, and
Y. should satisfy

YieX =0 Y,oX, =1;
YieX.=1 Y.eX,=u -h
Y eX:=1: Y.eX;=1.

The L.CF solutions to Egs. (2)-(4) have been shown
to be described” in terms of the solution a to

Ra, = u,,. (H)

For the MOF, u,; = u,; is an N-element vector with a
1 in the ith position and zeros everywhere else. R is the
N X N correlation matrix of the input data
1Xi...., Xyl Forthe ECP, u,; = uis an N-element
vector containing all ones. For the nonredundant {til-
ters, u,, = u., is a vector consisting of ones and zeros
only, corresponding to the ith bits in the binary de-
scriptions of numbers 1,2,.. ., N. In our example N
=3, M =2, and u,; would be given as [0 1 1] 7, where the
superscript T denotes transpose.  Similarly u.. is given
as{101]7. A nonbinary description such as ternary can
also be used to reduce the number M of the filters but
at the expense of increased dynamic range requirements
in the output plane of the correlators.

From this we see that all three techniques reduce to
the same matrix/vector problem in Eq. (5). Only the
constraint vectors uy;, u, and u., differ in the three
cases. This leads to the possibility of solving all three
problems with only a few changes. For good filters we
require a large input data set, thus increasing the value
of N. Since the size of the matrix R is N X N, we need
to consider efficient methods of solving for a.

. Modified Hyperplane (MHP) Method

The matrix/vector Eq. (5) can be solved by finding
the inverse of the matrix R. However, N is often so
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large that determining the inverse of R directly can be
computationally cumbersome.  Projection techniques!
are usually suggested for solving such equations when
N islarge. In projection methods, the N constraints in
Eq. (5) in terms of the unknown coefficients
aipas,...,ay are considered to represent N hyper-
planes in an N-dimensional hyperspace. The N coor-
dinates of the intersection of these N hyperplanes are
the N-coefficient values.

The alternating orthogonal projection (tAOP) method
suggested by Youla'! projects the initial guess (solution)
vector orthogonally on all N hyperplanes, one after
another. Ramakrishnam et al.* suggested a modifi-
cation to this method to improve its convergence be-
havior. This modification involves rearranging the NV
hyperplanes of our equations so that the adjacent hy-
perplanes are orthogonal to each other. This modifi-
cation was shown'" to be preferable to AOP both in
terms of the computational load per iteration and in
terms of the number of iterations needed for conver-
gence.

Let us consider Kq. (5) with u,,, = u (a unit vector) for
illustration purposes. The other two equations can he
handled in a similar manner. Let us denote the N rows
of the matrix R by the vectors §,.8., ... . 8y. Then the
N hyperplanes in the N-dimensional space are repre-
sented hy

Sla = uu, 1)

where (/) is the ith element in the constraint vector u.
The two steps in the MHP are detailed in the next two
subsections.

A. Hyperplane Rearrangement
The hyperplanes characterized by §,.8.. .. .. Sy are
rearranged such that the new hvperplanes
S{¥ 8%, ..., 8% are orthogonal to their adjacent hyper-
planes. The algorithm to perform this is
SP =N, ]

S: =8, - :(S,,'S,‘.,]l 8, IISr: H“Su

w®h =), {44

W) =y = WS IS S IS et - Ly,

n=200 0 0N
Now the matrix equation to be solved is
Rea=u%, [NET

where the superscript # throughout indicates modified
quantities.

B. Projection Algorithm

The projection step starts with an initial guess a,, for
the solution vector. This point ayin the N-dimensional
space is then orthogonally projected onto the first hy-
perplane 8§ Ta = 1 (1) to vield the next solution vector
estimate a,.  In general the projection onto the nth
hyperplane 8% "a = 1 (n) results in the nth estimate
for the solution vector:
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ay = an-oy = Han ) TS, — w118, TSNS, starting guess for the solution vector was also a vector :
' n=12....N. un  withall ones, i.e., |
Once ay is determined, it is projected back again onto ap= (11111117 TR
the hrst :_lyp_erptl_ane Lo start a.‘sﬁcolld ll?ratl()n. Ilhxs The recursions are carried out using the MHP algo- | ‘
' process of going from a, to ay Is known as one complete 40 p oy Gutlined in Sec. 111, and these recursions are b
iteration. It has been observed!? that this algorithm . i
v . stopped when the error, |
converges to the true solution in a small number of it- o ‘
erations. err=+/ a, — a* . () ‘
| decreases below a predetermined threshold, where ;
IV.  Numerical Results | o { denotes the Euclidean norm of the vector and a*
As was discussed earlier, all three filters use the same  denotes the true coefficient vector obtained by the di-
l matrix R for a given input training set. Once Risde-  rect solution of the corresponding equation. In general
termined, the coefficients for the three LCFs can be  a* will not be available a priori and we can use the dif-
obtained by using the MHP method in Eq. (5) witha  ference between successive estimates of a to monitor
common matrix R. Only the constraint vectors are  convergence. The MHP can be deemed to be successful
different in the three cases. if the error decreases as the number of complete itera-
As an illustrative example, we considered the input  tions increase. 1
data set used by Hester and Casasent.® This data set The error in the coefficient vector obtained by the
consists of seven IR views of a tank. We applied the = MHP method is listed in Table I for ECP, MOF, and
MHP technique to the 7 X 7 correlation matrix R pro-  NRF linear combination filters, Close inspection of

vided by Hester and Casasent.® To obtain the ECP
filter we used the constraint vector [ 111111]7. The

Table I reveals that the solution vector obtained after
ten complete iterations is quite accurate. After

Table I. The rms Errors Vs leration Number

Iteration
no. ECP MOF3 NRF1
| 2.3709 2.6089 2.6408
2 119586 02114 143579
3 0.4705 0.040:3 Q5615
1 0.1831 00147 02184
D 007157 O.00HR2 0.08HHT
6 0.02797 000228 0.03344 1
7 .01083 000084 [IXIF RN
8 0.00427 000035 Q00510 i %
El 0.00167 Q00014 000199 |
10 0.00065 000005 0.00078 k
iH 0.6 X 10~ 05X -8 [T (1 !
20 0.7 X 1077 0.4 X 1O~ 0y X 10
25 (US> G (U 02X oM 09 > 10

Table Il. The rms Errors Vs Reration Number

Iteration

no. N=1 N=41 N=5 N=¢6 N=7T

| 1.2432 11507 1.214 12428 23709

2 00700 a.035 0.15626 0263494 1. 1986

K} 06 x 10-t (18 X - 0.67 X 1077 001592 04700

4 055 X 10" 016X 107 046 X [0 097 X 10 7 [IRESTE!

D O X 10 F (ARG 047 x 1071 0.89 X 101 007156

6 012 x 10" 043 X 107 094X 10 002797

7 ol x 1ot 087 X 108 e x 10" 00104

8 037 X e AR X 107 083X 10 00043

4 [IRE (U X -7 12X 1 - G007

10 0.85 X 0% 0a3 X e O.00065

11 il x1® 042X 10 VO02S

12 056 X 10N 0.00009

13 053 X% 10 ™ 038 X 104
R 42 X 10 O 1 X !
15 0.9 X 10
20 0y x t
2N

03T X 10
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twenty-five complete iterations, an error of only 0.4 X
10~% is observed indicating an accurate solution using
the MHP. If an accuracy of 0.1% suftices, we need to
use only ten complete iterations for the design of an
ECP filter.

In all our numerical experiments, we have observed
that the rms error monotonically decreases to a small
value as the number of iterations is increased until a
certain stage beyond which the error either remains
constant or oscillates between two small values. This
can be -asily shown to be due to the finite accuracy in
the digital computer representation.

The number of iterations required to obtain a solution
vector of a desired accuracy depends on the size of the
matrix R. To illustrate the dependence of convergence
on the size N of the input data set, we considered dif-
ferent input data sets {X,Xs, ..., X~{, where N can
take on values from 3 to 7. The resulting correlation
matrices are simply the principal minors of the 7 X 7
matrix R. The rms errors obtained after each iteration
for various matrix or training set sizes are shown in
Table II. From this table we see that more iterations
are required to obtain the same accuracy as the size N
of the input data set is increased.

Thus far we have discussed the use of the MHP for
ECP filter determination and its convergence perfor-
mance. A similar numerical analysis was carried out
for the seven mutually orthogonal filters (MOF) as well
as the three binary nonredundant filters (NRF) of Sec.
II. The convergence behavior for MOF3 as well as for
NRF1 is presented in Table I. MOF3 is obtained using
the MHP method in a manner similar to that used for
the ECP except that a constraint vector [0010000)7
was used instead of a vector with all ones. Similarly,
NRF1 was obtained by using the constraint vector {10
10101}]"T. We note from Table I that the rms error
once again decreases as the number of iterations is in-
creased. Less than ten complete iterations are needed
to achieve an error <0.1%.

Strictly speaking, only the seven MOFs need to be
computed. The ECP and NRF filters can then be ex-
pressed as simple known linear combinations of these
seven MOFs. Such an approach is computationally
inefficient when only one type of filter is of interest.
For example, when an ECP filter is needed, the i direct
approach using MOF's requires seven times more work
compared with the direct approach that utilizes the
constraint vector [1 11111 1]7.

One can easily expand the NRF synthesis to an ar-
bitrary base as 8. With a base of 8, the NRF would yield
the integer { as the output when the input is X;. Then
the constraint vector becomes [1 23456 7]7. Even
with such filters we did not need more than ten com-
plete iterations for an accurate solution.

Thus, we have shown that for various filter designs
we can use MHP for less than ten complete iterations
when the input set contains seven patterns. We have
also shown this to be a unified computational approach
to the design of linear combination filters since only the
constraint vectors need to be changed from one type of
filter to another type.

V. Conclusions

For multiclass pattern recognition, several ap-
proaches utilize linear combination filters for improved
discrimination. All these approaches are based on
deterministic constraints and can be modeled as similar
matrix/vector problems. Such an approach unifies the
computational considerations because only the appro-
priate constraint vectors need to be specified for dif-
ferent filters. In this paper we have examined the
convergence behavior of the modified hyperplane
{MHP) method in the filter design. Good convergence
properties were exhibited for the correlation matrices
that arose in these cases.
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ABSTRACT

Our unified synthetic discriminant function
(SDF) filter synthesis technique using the correla-
tion matrix of the image training set is reviewed.
Four different synthetic discriminant functions for
intra-class recognition, inter-class discrimination
and both intra and inter-class pattern recognition
are considered. All techniques proposed are appro-
priate for object identification, location and clas-
cification in the presence of 3-D geametrical dis-
tortions in the input object. 1Initial results ob-
tained on a set of four different classes of infra-
red ship imagery are presented. Excellent perform-
ance (over 90M8 correct classification) was achieved

1. INTRODUCTION

Many different optical pattern recognition
techniques to permit object recognition and classi-
fication in the face of geometrical distortions
have been proposed. These include: space-variant
processors'~‘, generalized matched filtezs"“, syn-
thetic discriminant functions (SDF5)5'7, phase-
coded systems' and others. 1In this paper, we con-
sider new SDF research. The SDF approach to 3-D
distortion-invariant pattern recognition appears to
be most attractive, since a matched spatial filter
of the SDF can be produced and used in an optical
frequency plane correlator. Thus, SDFs exhibit
shift-invariance and hence are capable of recogniz-
ing multiple objects in the field of view and pro-
viding information on their location. Other tech-
niques such as space-variant and phase-coded sys-
tems require the input object to be centered in the
input plane. Since SDFs are used in correlators,
they provide a processing gain and are thus capable
of locating objects in the presence of severe noise
and man-made clutter.

In Section 2, we describe SDFs and in Section
3 we discuss our new generalized technique' for SDF
synthesis and how the same basic algebraic equation
can be used to synthesize four different types of
SDFs. This synthesis technique ig attractive be-
cause it automatically determines the optimum basis
function set. It is thus preferable to ad hoc
techniques and to more restricted techniques®”
using a Fourier transform coefficient basis func-
tion set. 1In Section 4, we discuss the infrared
ship image data base we used and in Section 5 we
present our initial experimental results obtained
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for four different types of SDFs.

2. SDF BASIC SYNTHFSIS

The general pattern recognition problem that
we initially consider is the design of a filter
function h(x,y) that can recognize all objects
{fn(x,y)} of one class of input data, independent
of geometrical distortions present in the input
image. As noted in Section 1, we plan to optically
correlate all images {fn} with h and will design h
such that all correlations are equal to a constant
output value, i.e.

h@ ¢, = c. (1)

As our constant ¢, we gelect unity (with no loss of
generalization). Because this technique is quite
analogous to a hyperspace description of the input
image data, we represent input images and the SDF
h by vectors and write (1) as

hoeg, = @

In conventional pattern recognition terminolo-
gy, one would describe each f as a linear combina-
tion of a set of basis functions oj, i.e.

= Ia (3)

n3idy

where in (3) the fn and ¢j are 2-D functions of x
and y (i.e. images). We write each ¢; in terms of
a linear summation of the input images £, as

@5 = Idjnf,. (4)
Analo~ous to (3), we write our .unknown filter func-

tion * as a linear combination of the same basis
functions

h= §°j£d-
substituting (4) into (5), we obtain
h = Ibsiasnt,

(5)

- blgdlnSn + b2§d2n£n + ... (6)
Grouping terms in f; and t;, etc. separately, we
can rewrite (6) as
h=e)f) +eyf,+...= Eenfn' m
We have now described our filter function h as
a linear combination of the input training set {f;l
It remains only to determine the weighting coeffi-
cients e, in (7) and then we have determined our
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SDF h. To achieve this, we recall our condition in
(2) and substitute (7) into (2) to obtain

Bty = 1 (foyty) o fn= feylty c L) ()

We recognize the last term in parcutheses in (8) to
be the correlation, or projection, of f4 onto f,.
This is element Ry, of the corr-lation matrix R of
the training set data {f,] and (8) thus becomes

§'j“jn =1, (9)
We write (9) in matrix-vector notation as
Re = u, (10)

where u is the unit vector. The solution e to (10)
and hence the information necessary to calculate
the SDF h in (7) is

e=rlu. (11)

Thus, to determine the e, in (9) or the eigenvalue
in (11), we form the correlation matrix R of the
training set data {f,}, invert this matrix and mul-
tiply it by the constant vector u.

3. GENERALIZED SDF SYNTHESIS

We refer to the SOF described in Section 3 as
an equal correlation peak (ECP) SDF, since it pro-
vides a constant equal correlation peak value for
all input images {f,)} of one class of data. We
should note explicitly that the images in the train-
ing set {f;} can (and usually are) images of the
same object taken with different geometrical dis-
tortions (e.qg. different rotated or aspect views).
This type of SDF is of use in intra-class pattern
recognition (recognition of one object class, inde-
pendent of geometrical distortions within this ob-
ject class). This is similar to our initial SDF
work®, but uses a new SDF synthesis technique.

Next, we consider a mutual orthogonal function
{MOF) SDF for inter-class pattern recognition. We
consider a two-class pattern recognition problem
with one image f) in class one and one image f) in
class two. We desire two filters h; and hy, such
that

fn * hy = Spps (12)

f1om=1 =0
(13)
£3 *hy =0, £, * h, = 1.

Bach filter will again be a linear combination of
all training set images (f; and f3), i.e.

h) = Iapfn, hy = Ibnf,. (14)

To compute the a, and the bn coefficients in (14),
we solve the matrix-vector equations

Ra = wm, Rb =y, as)

where R is the 2 x 2 correlation matrix, u;T =
[1,0) and u,T = [0,1). This filter synthesis tech-
nique is similar to that described in’, but is
formulated in our new unified notation. This tech-
nique produces one filter per input object class.
As such, it is useful for inter-class pattern rec-
ognition.

We now pxovide a generalization of this tech-
nique that allows both intra-class and inter-class
discrimination. We formulu.e this new MOF SOF for
the case of two object classes with N) andN; images
respectively in each class. We desire two SDFs hy
and hy, such that

bt lihy gm0
(16)

[

fn2 =0 by £ = L,

&

where Enl and f. o denote any member of class one or
class two respectively. We describe these SDFs as i
in (14), where the summation is now over N} + N;.
There are now N} + N, weighting coefficients an and
b,. They are given by (15), where now R is an

(N; + Nj)x(N; + N2) matrix and uy7 = [17..1,0...0)
contains N} ones and N2 zeroes and 32" = [0...0,
1...1) contains N) zerces and N, ones. We refer
to this as a mutual orthogonal correlation peak
(MOCP) SDF. It recognizes different object classes
{inter-class discrimination) even in the face of
geometrical distortions within each object class
(intra-class recognition). We will discuss later how
this technique can be extended to greater than two
classes. We also note that for the two object
class example, one filter suffices for both dis-
crimination and recognition. We alsoc note that the
choice of the constants in (13) and (16) is arbi-
trary. 1In our digital simulations, we used +1,
rather than 1 and 0. An optical system would use
Oand 1 or 1 and 2, etc., since only intensity out-
put detection is easily possible in optical proces-
sors.

Next, we consider the synthesis of a nonredun-
dant SDF or a nonredundant filter (NRF). This is
similar to those described by Braunecker et al® ex-
pressed in terms of our unified notation in (11)
and (15). We also extend the original work ini.
the case of a NRF for both intra-class recogniti.n
and inter-class discrimination. As an example, we
consider a three-class pattern recognition problem.
We denote the three classes of objects by {fy},
{fy2) and {fy3]}, where N;, N2 and N3 training set
images are present respectively in each object
class. We consider one SDF h, such that

b g,

where as before, f,), f;2 and £, denote any member
of object class one, two or three respectively. As
seen, the value of the output correlation deter-
mines the object class. As before, the choice of
the constants 1, 2 and 3 in (17) is arbitrary. We
describe the SDF h as ’

h = Iayf,, (18)
where the summation is over all N) + Ny + Ny train-
ing set images. In matrix-vector terminology, the
problem is described as the solution of Ra = u, for
a, where u3 = [1...1,2....2,3...3]T contains §;
ones, N, twos and N; threes and where R is of order
N} + N2 4 N3. The solution for the weight a in
(18) is just a = K-lu, as before. .

1"l hefo=2,hef,=3 an

As cur final SDF, we consider a multi-class
MOCP SDF. Por this case, we consider a four-class
problem with training set images {fy;}, {fy2}, {fyy
and {f,,) and the synthesis of two filters whose
truth table is given in Table 1. From Table 1, we




see that four unique pairs of correlation output
values result and determine the input object class.
The two filters are described by

hy=Iaf . h =Ibf, a9

where the summations are over Ny + Ny + N3 + Ng
(i.e. the full training set of images). The coef-
ficients a and b are defined by the solution to the
matrix-vector equation

(20)

.
[
=
SO .
.
O

where the vector has Nj pairs (0,0), N, pairs (Q,1},
etc. and where R is of order N} ¢+ N, 2 Ny + Ng.

TABLE 1
Truth Table for the Four-Class
Multi-Class MOCP SDF

INPUT FILTER h) FILTER hj
DATA OUTPUT OUTPUT
fa1 0 )
£n2 0 1
fu3 1 )
fue 1 1

4. DATA BASE

To test the performance of the four SDFs de-
scribed in Section 3, we used a ship image data
base. It contained 36 images (0~350°, at 10° in-
crements) of four different ships taken from a 90°¢
depression angle. Representative examples of all
four ships {(broadside views only) are shown in Fig-
ure 1. Each image was 128 x 32 pixels. We numbered
the class one images one 1-36, the class two images
as 37-72, etc.

S. INITIAL SIMULATED RESULTS

In Table 2, we summarize the experimental re-
sults for our four SDFs calculated as described in
Section 3.

For our ECP-1 SDF, we calculated the intra-
class filter from only six of the 36 ship images in
class one. When this SDF was correlated with all
36 images of class one, all output correlation peak
intensities were above the 0.5 threshold value cho-
sen. Similar results were obtained for the class
two imagery. This data is contained in the ECP-2
SDF experiments in Table 2. These first two ex-
periments demonstrated for the first time the fact
that an BECP SDF can correctly recognize and classi-
fy other distorted versions of the input object not
present in the training set.

Por our MOCP SDF, we calculated one SDF for
intra and inter-class pattern recognition, using
the same six training set images per class. PMor
this one SDF, 69 of the 72 test images gave cor-
rect peak correlation outputs with respect to the
threshold of 0.5. This represents over 97% correct

a8) CLASS 1

b) CLASS 2

¢) CLASS 3

d) CLASS 4

FIGURE 1 Representative Ship Imagery (Broadside
View Only) of the Ship Image Data Base
Used in our Experiments.

TABLF 2. SDF Performance Test Results

SDF TRAINING |CLASS 1]|CLASS 2|CLASS 3 |CLASS 4
TYPE SET ERRORS | ERRORS | ERPORS | ERRORS
ECP-1 | 1,6,10,15, 0 _ - -

20,25
ECP-2 | 38,45,50, - 0 _ _
55,60,65
mocp-111,6,10,15,1 2 - -
(AP20.5) 20,25
NRF (6 Images _
Per Class) 2 0 3
Multi= | o yoages| 2 0 3 1

Class
MocP-1 Per Class)

(£1) (10°-340°)| (95%) (1008) | (928) (97%)
Multi- (6 Images 0 [ 4 S
Class
MOCP-2 Per Class)

1) (10°-260°)1 (1008) | (1008) | (97%) (968),

recognition. This is quite impressive since it in-

cludes both intra and inter-class image distortion
and recognition as well as discrimination.




Our NRF SDF experimental results, for a three-
class pattern recognition problem, using output
correlation peak projection values of (0,1,2) are
shown next. As noted, only 5 errors occurred in
this case. When this NRPF SDF technique was exten-
ded to the case of four object classes, & consid-
erable increase in the number of image classifice-
tion errors resultad.

Encouraged by the above excellent results, we
considered the full four-class pattern recognition
problem using two SDFs (our multi-class MOCP SD¥F).
¥We fabricated one set of SDFs using 9 images per
class for training and a second set of SDFs using
only 6 images per class for the training. As seen,
a total of 6 errors (and 9 errors) out of 144 im-
ages resulted. These correspond to over 93s
correct recognition of all multi-class objects with
intra-class geometrical distortions present.

6. SUMMARY AND CONCLUSION

These initial results are most encouraging.
They demonstrate the potential of this technique to
achieve intra-class pattern recognition and inter-
class discrimination in the presence of severe
(3-D aspect) geametrical distortions. The data
shown clearly indicates the ability of this tech-
nique to perform most excellently on images not
present in the image training set. Our future work
will address training set selection and the perform-
ance of the system in the presence of noise. Our
unified SDF synthesis technique greatly simplifies
the off-line calculations required. The fact that
one can calculate the SDF off-line from training
set images and then use the same SDF for similar
object recognition problems in the future is of
great significance in the practical application of
such a technique.
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ABSTRACT

The problem of recognizing multiple objects in a highly cluttered background in the face
of geometrical object distortions is addressed in this paper. A correlation architecture
using a matched spatial filter of a synthetic discriminant function is employed to achieve
the required performance. Synthesis of the synthetic discriminant function is discussed as
is the initial performance obtained in the face of noise., 1Initial remarks are advanced on
various methods to select the training set of images to use in this algorithm,

1. INTRODUCTION

In Section 2, the advantages and features of a correlator for extracting a signal or ob-
ject in the presence of noise is briefly reviewed. A correlator is essential for our par-
ticular application since we reguire shift-invariance (the ability to recognize multiple ob-
jects and obtain high performarce in the face of severe noise or clutter). However, corre-
lators are well-known to perform quite poorly when geomtrical distortions (scale, rotation,
etc.) are present between the input and reference object. To overcome this limitation and
still retain the other advantageous features of a correlator, we employ synthetic discrimi-
nant functions (SDFs) and we form the matched spatial filter (MSF) from the SDF. The SDF is
a linear combination of a training ret of images of the object (e.g. different scaled, rota-
ted or aspect views). This concept was first advanced in [1-3]. Other MSFs referred to as
generalized matched filters [4] also exist. These assume a Fourier coefficient basis func-
tion set and appear to be more restrictive than the present filters we discuss, although no
extensive tests have been performed on them,

In Section 3, we describe the algorithm for synthesis of five different types of SDFs.
The SDF is synthesized off-line from training set data and is then used in a real-time cor-
relator acainst test imagery not present in the training set, We follow the new unified SDF
synthesis algorithm we briefly described in [5] earlier. 1In Section 4, we discuss our data
base used and we present initial test results on the performance of these SDFs. These
present results include new data on the performance of such a system in the presence of
noise. Our earlier initial and less extensive results [6] did not consider the performance
of such a system ir the presence of noise. In Section 5, we advance initial remarks on two
new techniques fcr training set selection and the superior performance obtained with the use
of an organized rather than an ad hoc training set selection method. The bulk of the test
data included ir. Section 4 uses an ad hoc trsining set selection technigque (to allow rmcre
errors than one zould otherwise achieve) and the use of a "no decision” threshold region (to
stabilize statistical fluctuations in the results obtained).

2. CORRELATORS FOR PATTERN RECOGNITION

Correlators are very well-known [7] to be quite capable of extracting signals or obijects
from a cluttered background environment. A MSF correlator is optimal for Gaussian white
noise backgrounds, but performs most admirably in the face of structured noise as well.
Whitening of the image and noise data is possible and can allow optimal performance, but
such measures do not appear to be necessary in the present problems and applications being
considered. Correlators are also well-known to be linear shift-invariant systems. As such,
they allow multiple objects to be recognized within the input field of view.

REF o}
9 = opsecr PUT ° '
X -l P ®
°
INPUT
£ = sceng W FT

FIGURE 1. Block diagram of a Fourier Transform-Based Correlator Architecture.
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The block diagram of the basic Fourier transform (FT) based correlator is shown in Figure
1. The system's output is
uix,y) =%LIG*F) = g @ ¢ ()
or the correlation of the two space functions g and f (G and F denote the Fourier transforrs

of the corresponding space functions). The processing gain (PG) of a correlator (the ratic
. of the output and inrut signal to noise ratio SNR(y/SNR1) is related to the space bandwidth

; ' product (SBWP) of the MSF by
PG = (SBWP} = SNRO/SNRI. (2)
i This PG allows a correlator to extract objects from strong cluttered background, The shift-
’ invariant, multiple-object recognition ability and the processing ogain of a correlator are
easily demonstrated by considering the general case of an input image f(x,y) that containg
N occurrences of the reference object g at spatial locations (xp,vp) plus noise n(x,y), i.e.
‘ f = gg(x-xn,y-yn) + nix,y). (3)

The output correlation for this case consists of N autocorrelations plus the cross cor-
relation of the reference object and the noise, i.e.

' OUT = f®g= g@®g *» 7(x=-x_,y-y ) + g @ n. (¢)
n n n

‘ROI-J

SECRETARY .TO'HE,AD
»-‘PROFESSOR;‘%_ ,

(a) Input Imace (b) Output Correlation of (a)

and the word PROFE’ S0R.

FIGURE 2. Example of multiple-object shift-invariant correlation.

An example that vividly demonstrates this point is shown in Figure 2, where we show the
input image f (a set of words with four occurrences of the word PROFESSOR) and the output
correlation plane pattern obtained using a MSF of the word PROFESSOR. As seen, four corre-

lation peaks are present
different occurrences of
All other input words in
this case. As seen, the
to the large SBWP of the

and the location of each corresponds to the location of one of the

the reference object (here the word PROFESSOR)
this input image are viewed as the noise ni(x,y)

correlation output plane has a very low noise level.

word PROFESSOR and the PG of a correlator.

in the input plane.
in (3) and (4) for
This is due

3.

SYNTHETIC DISCRIMINANT FUNCTION SYNTHESIS

The general concept of SDF synthesis is shown in the simple block diagram of Figure 3. Ar
SDF is calculat2d off-line from training set images fj, f>, etc. and then on-line correlated
with a real test image. The preprocessing box shown is generally not necessary as noted
above. A hyperspace description of a SDF correlator is possible [2-3). 1In such a formula-
tion, each training set image is described by a vector point in hyperspace with the basis
functions for this hyperspace being 2-D space functions. The conventional hyperspace pat-
tern recognition concepts (8] of separating objects of different classes and clusterinc dif-
ferent object variations within a class still apply.
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FIGURE 3. Block diagram to illustrate the synthetic
discriminant function synthesis concept
ard its use in a correlator.

3.1 EQUAL CORRELATION PEAK SYNTHETIC DISCRIMINANT FUNCTION

Let us now describe SDF synthesis using our new general formulation technique [5]. we {
first consider an egual correlation peak (ECP) SDF. For this case, we assume that we wish
to determine an MSF filter function h such that its correlation with any member of a set
{fn} of objects of the class yields a constant output peak value such as one, i.e.

h@ £, = 1. (5)

To determine h to satisfy (5), we assume that h can be represented as a linear combination
of the training set images f, i.e.

; = .
h gejfj. (6) '
For simplicity of notation, we denote all images and the MSF by vectors f or h. The train-
| ing set images can be different scaled, rotated or aspect views of the object. We also
| represent the correlation operation by the simple vector dot or inner product, i.e. h@® f =
| h - f. Substituting (6) into (5), grouping the dot product of f and defining the correla-
tion matrix R to have elements Typs we obtain for (5)

h+ € = £.) « £ =TTe.(f. + £ ) = Te.r. =1 . ’
n §(eJ 5) n jej(fj o) je)rjn ()

Thus, our desired ECF filter is described by

:!jlejrjn =1, (8)

or in matrix-vector form by
Re = u, (9)

where u = [1'1"..'1]T is the unit vector. The solution to (9) for the weighting coeffi-
cients e in (6) is

e =R 1y, (10)
where the e; in (6) are the elements of the vector e in (10). Thus, to synthesize an ECP
SDF, we form the correlation matrix of the training set of images, invert this matrix and
multiply it by the unit vector u. The resultant vector e defines our SDF filter function h »
in (6). To unify future notation, we write (9) as -

Re = [1,1,...,117, (11)

3.2 MUTUAL ORTHOGONAL FUNCTION SDF (2-CLASS, ONE FILTER CASE)

We note that this ECP SDF MSF in (9), (10) or (11) is capable of intra-class recognition
only. To extend this concept to the use of one filter for a two-class problem with inter-
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class discrimination and intra-class recognition required, we consider two classes of objects
{f1} and {f2}, with Nj and N objects in the training set for each class respectively. The
required SDF is ..ow described by a linear weighted sum of all of the training set images,
i.e.

N1+N2
h = z anfn. (12)
n=1

To determine the coefficients a, in (12), we require the projections of any member fp; of
set 1 on h to be +1 and the projections of any member fj7 of set two of images to be -1

(any other suitable pair of constants may be used), By direct extension of the results in
Section 3.1, this desired mutual orthogonal function (MOF) SDF is defined by the solution to
the matrix-~vector problem

Ra = (1,...,1,0,...,017 = u, (13)

where R is now a(Nj+Np)x(N1+Nj) correlation matrix or is of size 2N x2N (when Nj =Nj =N},
The solution and the SDF in (12) is defined by

a=Rrly,. (14)
This single MOF SDF achieves intra and inter-class pattern recognition.

3.3 NONREDUNDANT FILTER SYNTHETIC DISCRIMINANT FUNCTIONS (ONE FILTER FOR MULTI-CLASSES)

This type of SDF is referred to as a nonredundant filter (NRF) SDF. It is a rather di-
rect extension of the MOF SDF in (13). Here, we simply require the correlation output peak
intensity to equal a different constant value (e.g., 1, 2, 3, etc.) for each object class.
wWe consider a 3~class pattern recognition problem. The SDF is now described by

N1+N2+N3

h= 2 af, (15)
n=1

vhere the summation is over all N]+Ny+N3 members of the three training sets for the three
object classes. For this SDF, the output correlation peak value defines the input object

class. The coefficients ap that define this NRF SDF are the solution of the matrix-vector
problem

Ra = (1,...,1,0,....2,3,...,3)" = u,. (1€)
That is,
-1
a=R"u,, (17)
where now R is a 3N x 3N correlation matrix (when N) =Ny =N3 =N).

3.4 MULTI-CLASS MOF SDF (ONE FILTER PER OBJECT CLASS)

In some image pattern recognition problems, the constraint placed on the MOF or the NRF
SDFs in Sections 3.2 and 3.3 may be too stringent and hence performance on test data may be
degraded. 1In this case, M separate SDFs can be produced, each of which gives a constant
output value of 1 for a different object class and a 0 output for all other object classes.
For a 3-class pattern recognition problem, we consider the synthesis of three SDF filters

h1 = ganfn' h2 = Ebnfn' and h3 = gcnfn, (18)
where all summations in (18) are over all Nj+ No+ N3 = 3N image training sets of data.

The algorithm for synthesis of these 3 SDFs is similar to before, i.e.

-1
Ra = u, = [1...1’0.--0,0-.-0]7" a=R"y =DD1' (19a)
Rb = u, = (0...0,1...1,0...0]T' b= 5-122.==#>22' (19b)
-1
BS - 23 - IO-o-O'O.-oo'lco.llT' c = B 23 ®h3_ (19¢)

In this case, the correlation matrix is 3N x3N (for Nj =N2 =N3j =N). By inspection of (19),
we see that h) is selected to provide an output of 1 for the first N) training set images
(i.e. class~one objects) and "0" for the other images (classes two and three objects).
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Conversely, SDF hy is defined to produce a 1 output for the N *raining set images in class
two and a 0 output for the other classes. The class three SDF h3 is described similarly.

3.5 MULTI-CLASS MOF SDF (N FILTERS FOR 2N C12SS RECOGNITION PROBLEM)

For this SDF, we consider anot.er multi-class type of SDF formulation that is between the
single SDF cases considered in Sections 3.2 and 3.3 and themultirle filter example considered
in Section 3.4. This particula application is most attractive for multi-class pattern rec-
ognition problems in which very many multiple classes of data must be considered. Here, we
consider an M~class pattern recognition problem. We assume binary correlation peak threshold
outputs and the use of N SDFs (where 2N > M). For a four-class problem, we thus consider the
use of two SDFs, h) and hz. Each input image is projected onto both SDFs and the two corre-
lation outputs are used to form a 2-bit dicital word which defines by the truth table in
Table 1 below in which of the four input clasees {f;]} through {f4} the input object lies.

TABLE 1: Truth Table for Correlation Peak Output Decoding Using a Multi-
Class Mutual Orthogonal Function Synthetic Discriminant Function
with N Filters for a 2N =M Class Pattern Recognition Problem.

M =4 and N =2 Case Shown.

OUTPUTS
INPUTS h1 h2
{£,) o o
{£,) ] 1
{f3} 1 0
{£,} 1 1

The algorithm for calculation of the two filters is

= = &
h1 = Eanfn' h, gbnAn. (20)
The solution for the vectors a and b that define these two filter functions follows by ex-
tension of our previous SDFs to be

8 b ¢

R : : = 9.% . (21)
. . 10
2 bn 11

3.6 UNIFIED FORMULATION

By inspection of (11), (13), (15), (19) and (21), we find that the synthesis of all five
SDFs can be described by the same basic matrix-vector eguation Ra = u,, where the size of
the correlation matrix and the specific form of the vector up are diffzrent for each filter
functior and for each class of problem beina addressed. This is especially attractive since
all SDF filter synthesis is performed off-line. Thus, a simple digital matrix-vector routine
can be used for all cases. Because this SDF algorithm relies on a training set, the same
SDF filter will perform adeguately until the structure of the object to be recognized changes
significantly (due to new designs, etc.) or until rejection of new alternate objects is re-
quired (this depends on the specific details of each application). The unified formulation
in which the solution of the same basic matrix-vector eguation is reauired makes this gen-
eralized formulation of SDF synthesis most attractive [5] for many practical reasons and
applications. 1In all cases, if R is not invertible, a generalized inverse is used.

4, INITIAL TEST AND PERFORMANCE RESULTS

The data base we used in our test and evaluation of these SDF algorithms consisted of
four different types of ships. For each ship, 36 images were available at 10° intervals
from & 0° depression angle. In Figure 4, the broadside views of each ship are shown. 1In Fig-
ure 5, the views at several different aspect angles are shown for one of the ships. From
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‘ this data, one can clearly see the severe magnitude of the intra and inter -class recognition
problem being considered. A human cannot correctly classify many of the different ship as-
pect views from such imagery. Quite si:uply, several of the ships look essentially identical
from several different aspect views. Recognition of the ship class from the bow or stern
views alone (e.g., Figure 5d) is clearly quite difficult, even for a human observer.

b) CLASS 2 d) CLASS 4

FIGURE 4. Representative ship imagery (broadside view only)
of the ship image data base used in our experiments.

L, -,n’f‘?‘g' Q'J.e . -
SR i en

(b) 60° OUT OF PLANE

(A) 0° ANGLE
FIGURE 5. Selected aspect views of one ship.

The results of our initial experiments on four of the different types of SDFs described
in Section 3 are summarized in Table 2. As seen, the results obtained are guite excellent
(over 95% correct recognition was obtained in all cases). The data in Table 2 was obtained
with the hull present and was obtained for binarized imagery properly thresholded. It should 1
be noted that in no test were more than 9 images per class used for training and that in most ‘
instances, only 6 images per class were used for training and for SDF synthesis.

In Table 3, new results obtained with different levels of input noise added to the test
imagery and to the training set imagery are shown. To stabilize the rescults obtained and to
decrease fluctuations in these results due to statistical variations, any correlation peak
value that was within $0.03 of the threshold value of 0.5 was classified as a "no decision"
image. The number of no decisions obtained for this data are entered in parentheses, to-
gether with the number of errors obtained for each class of object. The hull of the ship
was again retained in this data and only 6-9 images per class were used for training. As
seen from the last column of Table 3, the number of correct recognitions was very constant
(127 or 128 correct recognitions out of 144 test images) with only 5-9 errors (and over 93%
correct recognition in all cases). The constancy of the number of correct recognitions as
the input noise was increased (down to an SNRy = 6, corresponding to an input noise with a
variance = 0.04) and its invariance as different amounts of noise were added to the training
set itself indicates the robustness of this SDF filter to noise. Since this is a correlator,
we expect such performance as noted in Section 2. Tests in which noise was present in the
background only and in both the background and the target were also conducted. Results very




TABLE 2. 1Initial Noise-Free Performance Obtained

|
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similar to those obtained in Table 3 again resulted for this case. l
with 4 of the Different Types of SDFs. t
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5. TRAINING SET SELECTION

The six training set images per class used in Table 2 were 50° apart. Those in Teble 3
were 30° apart and from one side of the ship only. This ad hoc trainina set selection ar-
proach is quite compatible with the intuition associated with such a rattern recognition
problem (i.e., ship images appear in general to contain little new information if viewed
from one side rather than the other). However, in other cases, more automated training set
selection techniques are required. Two such technicues are briefly described and initial
test and performance data obtained using them are presented in this section.

|
‘.
The purpose of the training set for each object class is to represent each object type by '
‘ the most valid statistical representation from the available imagery. The SDF algorithm it- !

' self provides the inter-class discrimination required. Thus, our concern in the automatic i
selection of a training set should address selecting a small set of images from the available !
image data base such that they represent a sufficiently valid statistical representation of ;
]

f

- cach object. We have considered two ways to achieve this: a correlation~sutspace and an
i eigenvector subspace selection technique.

In the first technique, we initially pick one image xjj (e.g., the bow view of a ship).
. As the second image, we select that image from the remaining ones which gives the minimum
correlation with the prior image. Such an image contains the most new information and is
the best one to select for our training set. We continue this technique and at each succes-
sive step, we pick as our new image the one with the minimum projection on the sum of the
previously chosen training set images., With proper image normalization and with the use of
a modified Gramm-Schmidt technique, we can thus select the P best training set images to use.
The value of the correlationbetween anew imaceand the sum of the prior training set images provides a measure of the
; new data added by a given additional training set image. This procedure is used for each object class separately.




- T oo e SRR

£22705

In the second technicue, we form the correlation matrix F for each object class ard cal-
culate its eigenvalues and eigenvectors. ™"e select the dominart eigenvectors and calculate
the projections of all images onto these aorinant eigenvectors. Those images with the larg-
est projections best represent the object class and are thus included in the training set.
The eigenvalue is used to determine the number of images to be sele~ted for each cominant
eigenvector. The value of the projection of a new imace on a new dominant eigenvector de-
termines the additional information present if this image is inclvded in the training set,

The results obtained with this technique are summarized in Table 4 ard compared to those
obtained earlier using our ad hoc training set selection technigue. As seen, our ad hoc
selection of 6 images gave poorer performance than did both of the new methods noted in this
section. Essentially perfect performance (0 or 1 error out of 144 images) was obtained usinc
our new training set selection methods. As the last entry in Table 2 shows, a successful
single SDF for the 4-class problem was realizecd using such training set methods. The per-
formance of these new SDFs in the presence of noise was found to be cornparable to those ob-
tained with the previous data. An average of only 4 or 5 errors was obtained (versus 8-10
errors for the cases noted in Tables 2 and 3).

TABLE 4. Comparison of the Performance of Synthetic Discrimirant
Functions Using Ad Hoc and Automated Technigues (Cor-
relation Subspace anc Eiocenvector (e-v) Subspace) to
Select the Image Training Sets.
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6. SUMMARY AND CONCLUSION 6. SUMMAPY AND CONCLUSION

In this paper, we have described a new technique to recognize rultirle classes of oklects
in the face of geometrical distortions. Our technigque uses a correlator and thus allows
multiple object recognition and excellent rerformance in the presence of structured noise
and clutter. The latter features result from the use of a correlatorand the shift-invariance
and processing gain of such a pattern recognition architecture. The ability to recognize
distorted object views and to discriminate hetween different object classes is achieved by
our new matched spatial filter technique using A matched spatial filter of a synthetic dis-
criminant function.

Five different synthetic discriminant furctions have been described 2né a general unified
synthesis procedure to form each off-line usir~ a training set of images has been advanced.
Initial simulation results showed excellent rerformance and showed the robuciness of this
algorithm in the presence of noise. New techrjoues to select the training set for such a
system were also advanced and initial perfori'cnce results were _btained and were compared to
those obtained for other ad hoc training set selection technigues. Surerior performance re-
sulted when these new training set-based filters were employed.
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"Adaptive Phased Array Radar Processing Using an Optical Matrix-Vector
Processor™, SPIE, 341, May 1982 (Casasent, Carlotto).
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42. "New Research in Holographic Pattern Recognition", Proc. SPIE, 353, 6-11,
August 1982 (Casasent).

43. "Synthetic Discriminant Functions for 3-D Object Recognition", Proc. SPIE,
360, 136-142, August 1982 (Casasent, Kumar, Sharma).

44. "Multidimensional Adaptive Radar Array Processing Using an Iterative Optical
Matrix-Vector Processor", Opt. Engr., 21, 814-821, September 1982 (Casasent,
Carlotto).

16.1.4 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPT. 1982 - 30 SEPT. 1983)

45, "Advanced Acousto-Optic Signal Processors', Proc. SPIE, 352, 50-58, August
1982 (Casasent).

46. "A Fisher Discriminant Approach to Distortion-Invariant Pattern Recognition
Using Autocorrelations", Lasers and Electro-Optics, 34, 18-23, September
1982 (Casasent, Chang).

47. "Realization of a Sobel Operator by Coherent Optical Techniques", Lasers and
Electro-Optics, 34, 24-30, September 1982 (Chen, Casasent).

48. "Applications of the Priz Light Modulator”, Applied Optics, 21, 3846-3854,

P £
November 1982 (Casasent, Caimi, Petrov, Khomenko).

49. "Frequency-Multiplexed and Pipelined Iterative Optical Systolic Array Pro-
cessors", Applied Optics, 22, 115-124, January 1983 (Casasent, Jackson,
Neuman) .

50. "Optical Linear Algebra", SPIE, 388, January 1983 (Casasent, Ghosh).

51. '"Nonlinear Local Image Preprocessing Using Coherent Optical Techniques",
Applied Optics, 22, 808-814, March 1983 (Casasent, Chen).

52. 'Developments in Acousto-Optic Signal Processings', Trends and Perspectives
in Signal Processing”, 3, 1-6, June 1983 (Casasent).

53. "LU and Cholesky Decomposition on an Optical Systolic Array Processor",
Optics Communications, 46, 270-273, July 1983 (Casasent, Ghosh).

54. "Guidelines for Efficient Use of Optical Systolic Array Processors", 10CC
Conference, Boston, Massachusetts, April 6-8, 1983, IEEE Cat. No. CH1880-4/83,
SPIE Vol. 442, p. 209-213, (Casasent).

55. "Performance of Synthetic Discriminant Functions for Infrared Ship Classifi~
cation”, IOCC Conference, Boston, Massachusetts, April 6-8, 1983, IEEE Cat.
No. CH1880-4/83, SPIE Vol. 422, p. 193-196 (Casasent, Sharma).

56. "Generalized Chord Transformation for Distortion-Invariant Optical Pattern

Recognition'", Applied Optics, 22, 2087-2094, March 1983 (Casasent, Chang).
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57. "Recent Advances in Optical Signal Processing', CLEO Conference, May 17-20,
1983, Baltimore, Maryland (Casasent).

58. '"Shift-Invariant and Distortion-Invariant Object Recognition', SPIE, 442,
August 1983 (Casasent, Sharma).

16.2 SEMINARS, CONFERENCE, ETC. PRESENTATIONS OF AFOSR RESEARCH (1 SEPTEMBER
1982-1 SEPTEMBER 1983)

September 1982:

1. Night Vision and Electro Optics Laboratory, Ft. Belvoir, Virginia -
"Optical Pattern Recognition".

2. Night Vision and Electro Optics Laboratory, Ft. Belvoir, Virginia -
"Optical Signal Processing".

3. LIA Conference, Boston, Massachusetts — "Realization of a Sobel Operator
by Coherent Optical Techniques'.

4., LIA Conference, Boston, Massachusetts - "A Fisher Discriminant Approach to
Distortion-Invariant Pattern Recognition Using Autocorrelationms”.

5. Ames Building, Washington, D.C. - "Optical Matrix-Vector and Optical
Systolic Array Processors"

October 1982:

6. Carnegie-Mellon University, Pittsburgh, Pennsylvania, Sophomore Seminar -
"Optical Data Processing at Carnegie-Mellon University".

7. TASC, McLean, Virginia - "General Purpose Optical Processors'.

November 1982:

8. Hughes Corporation, Conoga Park, California - "Moment-Based Hybrid Optical/
Digital Pattern Recognition'.

9. Hughes Corporation, Conoga Park, California - "SDFs for Distortion-Invariant
Recognition of Multiple Targets in Clutter".

December 1982:

10. Eaton Corporation, Milwaukee, Wisconsin - "Optical Processing Techniques for
Industrial Inspection, Automation and Pattern Recognition".

January 1983:

11. SPIE, Los Angeles, California - "Optical Linear Algebra" (Anjan Ghosh).
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April 1983:

12,

13, 1EEE, Boston, Massachusetts - '"Optical Data Processing for Target Recog-
nition and Classification’.

14, 10CC Conference, Boston, Massachusetts - "Performance of Synthetic Discrimi-
nant Functions for Infrared Ship Classification".

May 1983:

15. Carnegie-Mellon University, Pittsburgh, Pennsylvania, Freshman Seminar -
"Optical Data Processing".

16. Westinghouse Corporation, Baltimore, Maryland ~ "Optical Systolic Processors
for Adaptive Phased Array Radar".

17. Baltimore, Maryland - 'Optical Data Processing Research at Carnegie-Mellon
University",

18. CLEO Conference, Baltimore, Maryland - "Advanced Optical Data Processing
Research".

19. Rosslyn, Virginia, "Advanced Object Pattern Recognition in Man-Made Clutter”.

June 1983:

20. AGARD/NATO, Bonn, Germany - '"Fundamentals of Optical Pattern Recognition".

21. AGARD/NATO, Bonn, Germany - 'Advanced Optical Pattern Recognition Techniques'.

22. AGARD/NATO, Bonn, Germany - "Optical Matrix-Vector and Systolic Array
Processing".

23. Lebedev Institute, Moscow, USSR - "Optical Image, Signal and Information
Processing".

24, Latvian Academy of Sciences, Riga, Latvia, USSR - "Optical Image and Data
Processing".

25, 1Institute of Physics, Belyo, Minsk, USSR, "Optical Image and Information
Processing".

26, Shuvalov Institute, Leningrad, USSR - "Optical Image, Signal and Data

I0CC Conference, Boston, Massachusetts ~ "Guidelines for Efficient Utili-
zation of Optical Systolic Array Processors”.

Processing".

Ioffe Institute, Leningrad, USSR - "Optical Image and Data Processing'.

University of Kosova, Pristina, Yugoslavia - "Optical Image, Signal and
Data Processing".
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July 1983:
29, Instituto de Optiko, Madrid, Spain ~ "Optical Image and Data Processing".

August 1983:

30. SPIE, San Diego, California -~ "Direct and Indirect Optical Solutions to
Linear Algebraic Equations: Error Source Modeling".

31. SPIE, San Diego, California - "Linear Algebra Techniques for Pattern Rec-
ognition: Feature Extraction Case Studies",

32, SPIE, San Diego, California - "Shift-Invariant and Distortion-Invariant
Object Recognition”,

16.3 THESES SUPPORTED BY AFOSR FUNDING (SEPTEMBER 1980 - SEPTEMBER 1983)

1. Hiroyasu Murakami, M.S. Dissertation, "Matched Filter Statistical Correlator"
(February 1981).

2, Saulius Eiva, M.S. Dissertation, "Image Quality Effects in Optical Corre-
lators" (May 1981).

3. Charles Hester, PhD Dissertation, "Synthetic Filters for Multi-Class Pattern
Recognition" (May 1981).

4. Yair Barniv, PhD Dissertation, '"Multi-Sensor Image Registration'" (May 1981).

5. Mark Carlotto, PhD Dissertation, "Iterative Electro-Optic Matrix Processor"
(May 1981).

6. Andrew Sexton, M.S. Dissertation, "Digital Analysis of Space-Variant Optical
Processors” (July 1981).

7. Bernard Szymanski, M.S. Dissertation, "A Computer-Controlled Film Recorder
for Optical Processing'" (July 1983).

8. John Lycas, M.S. Dissertation, "An Optical Implementation of the Extended
Kalman Filter" (September 1983).

9. Vinod Sharma, "Synthetic Discriminant Functions' (PhD Expected in December
1983).

10. Warren Allmond, '"New Holographic Optical Elements and Architectures" (M.S.
Expected in 1984).

11. Eugene Pochapsky, '"Digital Preprocessing and Simulation for Optical Pattern
Recognition" (M.S. Expected in 1984).

12, R. Lee Cheatham, "Optical Moment-Based Pattern Recognition" (PhD Expected

in 1984).




13.

14.

15‘

16.

17.

16.4
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Anjan Ghosh, "Linear Algebra System Performance and Analysis" (PhD Expected
in 1984).

G. Kashipati, "Synthetic Discriminant Functions" (M.S. Expected in 1984).
Bruce Thomas, ''Moments for Distortion Measurement" (M.S. Expected in 1984).
William Rozzi, "Synthetic Discriminant Functions" (M.S. Expected in 1984).

Wen-Thong Chang, "Optical Pattern Recognition'" (PhD Expected in 1985). =

PATENT DISCLOSURES (SEPTEMBER 1980 - SEPTEMBER 1983)

Multiple~Invariant Space-Variant Pattern Recognition System.

Pattern Recognition by Invariant Moments.

Synthetic Discriminant Functions for Multi-Class Pattern Recognition.
Equalization and Coherence Measure Correlator.

Multi-Variant Technique for Multi-Class Pattern Recognition.







