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ABSTRACTI
Progress on real-time I-D and 2-D spatial light modulators, optical systolic

array processors, optical image processing, and distortion-invariant pattern

recognition are reported. Our real-time spatial light modulator research con-

cerns the Soviet PRIZ device and bulk acousto-optic transducers. Novel features

detailed for the Soviet device include: uniform and directional spatial filter-

ing and static image suppression or change detection. Systolic array processor

research includes a new frequency-multiplexed architecture, realization of

I singular value decomposition and matrix decomposition algorithms. Optical image

processing and pattern recognition research received major attention. A new

I class of nonlinear local operators including the Sobel operator were described

and demonstrated. New optical feature generation techniques for distortion-

invariant pattern recognition were developed. These included the generalized

optical chord transformation. Our primary distortion-invariant pattern recop-

nition research addressed synthetic discriminant functions with attention to

J two new efficient calculation techniques. The performance of synthetic dis-

criminant functions for multi-class distortion-invariant pattern recognition,

and initial noise performance of this optical pattern recognition algorithm.
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1. INTRODUCTION

During the past year (September 1982 - September 1983), our research in

optical data processing for missile guidance has addressed many of the key

issues and aspects of this technology. This research includes: various new

devices and components, new system architectures, new high-speed general pur-

pose optical data processing techniques and systems, tests on new image data-

bases, basic studies of existing pattern recognition architectures, and new

pattern recognition techniques, algorithms, and concepts. As in past years,

we have been quite faithful in reporting our AFOSR sponsored research in vari-

ous journals and conference publications. Copies of the more relevant papers

we have published over the past year are included as the chapters of this

report to provide complete documentation of each aspect of our work.

In Section 2, we provide a summary and overview of our research progress

achieved during the past year. This work addresses six vital areas of optical

data processing research: (1) real-time spatial light modulators (Sections 3

and 4); (2) systolic array processors (Sections 5-8); (3) image preprocessing

(Section 9); (4) optical correlator analysis (Sections 10-11); (5) optical

feature extraction (Section 12); and (6) synthetic discriminant functions (Sec-

tions 13-15). Topic (1) concerns the vital issue of real-time devices; topic

(2) concerns the hottest topic in optical processing at present and a potentially

quite general-purpose optical processor; topic (3) applies parallel optical tech-

niques to achieve operations normally performed by digital image preprocessors;

topic (4) provides a better understanding of conventional optical pattern rec-

ognition architectures with attention to the performance obtained from these

systems; topics (5) and (6) address distortion-invariant optical pattern recog-

nition techniques (feature extraction and correlation).

'W
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1
Details on the more salient results of our research are provided in Sec-

tions 3-15. In Section 16, we enumerate our AFOSR sponsored publications, the

presentations given on this research at conferences and seminars during the

past year, and the Master's and PhD students that this grant has supported.

During the past year, the principal investigator (PI) presented invited

talks on our AFOSR sponsored research at the following conferences: SPIE Inter-

national Conference (San Diego, August 1983), IOCC Conference (Boston, April

1983), and CLEO'83 Conference (Baltimore, May 1983). The PI also chaired con-

ference sessions and seminars and served on the organizing committees for the

following conferences and topics: SPIE (Robotics), CLEO (Lasers and Light

Modulators), and IOCC (Optical Computing).

1

I



I -3-

2. SUMMARY AND OVERVIEW

Sections 3-15 detail our recent research on seven different aspects of

I optical data processing. Brief highlights of each of these sections and topics

follow below.

I
~2.1 REAL-TIME SPATIAL LIGHT MODULATORS

Real-time spatial light modulators are the primary elements necessary for

the realization of optical pattern recognition systems. Our research during

the past year on two different types of these devices follow. The details of

Ithis work are provided in Sections 3 and 4 of this report.

2.1.1 Soviet PRIZ Light Modulator (Section 3): A unique opportunity arose for

J us to conduct a first-hand four month test and evaluation of a Soviet spatial

light modulator (the PRIZ). Section 3 is the last paper on this topic. It sum-

I marizes our research, the performance of these devices, their applications, and

their unique features (these include automatic edge enhancement, directional

edge enhancement, and dynamic image subtraction). Further U.S. research is

necessary on these devices to facilitate fabrication of equivalent U.S. com-

ponents and to allow full understanding of the operation of these new devices.I
2.1.2 Acousto-Optic Light Modulators (Section 4): The most commercially avail-

able, proven and reliable spatial light modulators are acousto-optic cells. A

I summary of these elements, the basic architectures employing them, and several

new architectures and applications employing these components are reviewed in

Section 4. These include systems to process long codes and systems less suscep-

tible to various acousto-opti.c device shortcomings. These elements are, in

1!
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general, most appropriate for signal rather than image processing and are quite

attractive for optical systolic processor fabrication.I
2.2 OPTICAL SYSTOLIC ARRAY PROCESSORS (SECTIONS 5-8)

One of the most general-purpose and flexible optical data processing tech-

I niques is the optical systolic array processor. These optical architectures

perform matrix-vector and various linear algebraic operations optically with

high-speed, parallel processing, and very high computational rates possible.

Sections 5-8 detail our recent research in this area. This work is intended to

I develop an optical systolic processor for air-to-air missile guidance and control.

2.2.1 Frequency-Multiplexed Optical Systolic Processor (Section 5): A new

optical systolic array architecture using acousto-optic cells was devised and

described. This system employs frequency-multiplexing to represent 2-D data.

I We refer to it as a frequency-multiplexed acousto-optic systolic array proces-

sor. Specific attention was given to: a new matrix inversion and linear alge-

braic equation solution algorithm, a new technique for handling bipolar data and

new matrix-matrix and matrix-matrix-matrix multiplication algorithms. Primary

attention was also given to the efficient flow of data and operations on such

j a processor and to the demonstration that this one system could achieve all of

the basic operations required in Kalman filtering. The method that we are pur-

suing for our air-to-air missile guidance problem employs a Kalman filter. We

j are working in conjunction with AFIT researchers in this area.

1 2.2.2 Direct Matrix Solutions (Section 6): Optical systolic array processors

1allow direct matrix decomposition to be efficiently performed. Optical matrix-

I
-I ,
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I
vector processors cannot efficiently perform this operation. We were the first

to address this topic and to note that the major computational load in a direct

solution was the matrix decomposition itself. We thus considered techniques to

achieve matrix decomposition on our frequency-multiplexed optical systolic array

processor. We detailed how to realize the LU and Cholesky decomposition on our

optical processor. This included a new parallel LU algorithm and full detailing

of the flow of data and operations in the optical version of this algorithm.

New attention to a parallel algorithm was required for efficient realization of

this technique on an optical processor.

2.2.3 Optical Singular Value Decomposition (Section 7): Singular value decom-

position is an attractive (and in many cases an essential) technique for solving

matrix equations, inverting matrices and for singular matrix processing. We

detailed one technique to achieve this operation on a general matrix-vector pro-

cessor.

2.2.4 Guidelines (Section 8): Considerable interest and many publications

exist on optical systolic processors. However, much of the published work is

not properly directed. In this section, we note that attention should be given:

to N3 problems, to architectures that achieve flexible performance, to architec-

tures that do not require parallel output 2-D detector arrays, to architectures

that avoid optical system sources and to systems that can be easily fabricated

and realized today.

2.3 OPTICAL IMAGE PROCESSING (SECTION 9)

We distinguish between optical image processing and optical pattern rec-

ognition. In image processing, the input to the system is an image and so is

I
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the output (usually an enhanced image). Our new research includes the first

demonstration of an optical nonlinear local operator. Such operations are

normally performed digitally and used for image preprocessing or image proces-

sing. We describe two optical architectures to achieve arbitrary nonlinear

local operators of large size with the parallelism and speed of optical systems

fully utilized. These architectures include correlators using multiple matched

spatial filters and computer generated holograms. The nonlinear local operator

we detailed and demonstrated was the Sobel operator. This edge-enhancement

operator is most attractive and necessary in infrared and multisensor image

preprocessing. Extensions of this new basic technique are possible and should

be pursued.

2.4 OPTICAL CORRELATOR ANALYSIS (SECTION 10)

Optical correlators are well-known and often used. In our work, we addressed

two potential error sources in optical correlators and especial-y in optical

correlators in which coefficient-estimation is the purpose of the optical ar-

chitecture. Those error sources considered include: finite space bandwidth

product and global rather than zero-mean data correlation. The first issue is

important when the statistical correlation features are optically estimated.

We show from the standard deviation of the crosscorrelation coefficient that

the error in the correlation estimate can be appreciable if the space bandwidth

product of the image data is small. Major attention is given to the second

possible error source, since it is not apparently well-known within the optics

community. Conventional optical correlators automatically suppress dc spatial

frequency data and thus correlate zero-mean data. This represents no problem if

the location of the correlation peak rather than the correlation peak value is
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I
of major concern. When the correlation peak value itself is the parameter of

concern, then one must carefully distinguish between local and global zero-mean

data being used, if one is to achieve an accurate correlation peak estimate.

Quantitative data on the magnitude of each of these effects is included.I
2.5 BINARY IMAGE CORRELATIONS (SECTION 11)

I - As an extension of earlier AFOSR research, we experimentally considered the

iperformance of correlators operating on binary images. Such architectures are

attractive for digital and optical implementation, because of the reduced dv-

j namic range that is needed. Using the peak-to-sidelobe ratio of the correlation

output, we show in theory and confirm by experiments that a binary correlator

(i.e. a correlator operating on binary or two-level image data) can provide

better performance than a correlator operating on gray-scale imagery.

2.6 OPTICAL FEATURE EXTRACTION (SECTION 12)

In this year, we introduced a major new approach to distortion-invariant

pattern recognition: the hybrid combination of optical feature generation,

digital feature extraction and classification. In Section 12, we advance a new

feature set (the generalized chord distribution), a new optical technique to

produce these object features and the use of a digital classifier that maximizes

the Fisher ratio. This digital classifier is used for feature extraction and

for analysis of the optically generated feature outputs. We demonstrated this

technique for distortion-invariant multi-class pattern recognition and obtained

very promising results. We plan further work on this technique and other opti-

ally-generated features.

1.
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I
I 2.7 SHIFT-INVARIANT DISTORTION-INVARIANT PATTERN RECOGNITION (SECTIONS 13-15)

All feature extractors (optical or digital) cannot accommodate multiple

I objects or significant noise. Only correlators can achieve such multi-object

or shift-invariant performance with high noise or clutter present. The major

Iapproach we have pursued for this purpose is the synthetic discriminant function

Iconcept. In this case, a synthetic discriminant function (capable of distortion-
invariant pattern recognition) is synthesized off-line and then an optical

matched spatial filter of it is formed and used in an optical or digital cor-

relator.I
2.7.1 Efficient Matrix Inversion (Section 13): Our off-line synthetic dis-

criminant function synthesis techniques require processing and inversion of

large matrices. In Section 13, we describe a new and most efficient technique

we devised to achieve this with significantly reduced storage and computations.

I This is quite essential and necessary as the size of the synthetic discriminant

function training set increases. The algorithm we developed is essentially an

efficient matrix inversion technique with minimal data storage requirements.

Experimental comparison on tank images was used to verify the superiority of

this new off-line filter synthesis technique.I
2.7.2 Synthetic Discriminant Function Performance (Section 14): We have ob-

tained a large four-class database of ship images with 36 different distorted

versions of each ship class available (taken at 100 intervals around the object

from a zero-degree attack angle). In Section 14, we provide quantitative data

Ion the first full test of our four different types of synthetic discriminant

functions on this 144 image data base. The performance obtained is quite

I
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I
excellent with over 90% correct classification achieved for multi-class dis-

tortion-invariant pattern recognition.I
2.7.3 Initial Noise Performance (Section 15): In Section 15, we review our

synthetic discriminant function synthesis techniques and advance the first noise

performance of these algorithms. The performance obtained in the presence of

noise was excellent. These are perhaps the most impressive and comprehensive

I pattern recognition results (optical or digital) obtained for distortion-

invariant multi-class pattern recognition.

I
I
I
I

[
I
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I 3. APPLICATIONS OF THE PRIZ LIGHT MODULATOR
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Reprinted from Applied Optics, Vol. 21, page 3846, November 1, 1982.

Copyright 0 1982 by the Optical Society of America and reprinted by permission of the copyright owner.

I
Applications of the Priz light modulatorI
David Casasent, Frank Caimi, M. P. Petrov, and A. V. Khomenko

The Priz light modulator suppresses inl)ut data at zero spatial frequency, can provide directional spatial I'd-
tering. and can perform dynamic image selection or change detection. In this paper, we summarize the
Priz's performance and provide experimental confirmation of the above three image processing applications
of this device.

I. Introduction recognition correlation examples of the use of the device
Optical signal processing and image pattern recog in Sec. IV. Because of the transverse linear electrooptic

nition applications require real-time and reusable de- effect used in the Priz to modulate read light, it exhibits
vices on which the input data to be processed can be three unique features that are of use in various image
recorded for subsequent optical processing. These vital processing and pattern recognition applications. These
components in an optical processor are known as spatial include: suppression of dc and low spatial frequency
light modulators (SLM). Although many candidate data as well as directional filtering of input spatial
SLM devices exist,' we will restrict our present atten- frequencies oriented in selected angular directions (Sec.
tion to only one such device, the Priz light modulator.2 8 V) and a quite unique feature referred to as dynamic
Priz is a Soviet acronym that translates as image image selection in which the device responds only to
transformer. This modulator was proposed by a group changes in the input image data (Sec. IV). Our sum-
of researchers of A.F. loffe Physico-Technical Institute mary and concluding remarks follow in Sec. VII.
(FTI) of the Academy of Sciences of the U.S.S.R. It II. Operation of the Priz
employs the same active element, i.e., the bismuth sil-
icon oxide (BSO) type crystal, as the well-known Prom The Prom light modulator!' consists of a BSO crystal
modulator.9  -20 X 20 X 0.4 mm with Parylene insulating layers and

At the Electrical Engineering Department of Car- transparent electrodes on the large faces. In operation
negie-Mellon University (CMU), five Prom and Priz the spatially modulated data to be processed are imaged
units fabricated at the FTI laboratory headed by Petrov or scanned onto the device in Xtw write light (350-450
were tested and evaluated. One worker of FTI partic- nm). Pbotocarriers are generated in the photocon-
ipated in the research program (Khomenko). ductive BSO, and a spatially modulated charge layer is

In Sec. II, we review the structure of the Priz light produced within the BSO. When the device is illumi-

modulator and the motivation for its fabrication and nated with a uniform read light beam at XI? (usually 633

highlight the spatial frequency response data obtained nm), the XI? light emerging from the device is polariza-

on the devices we evaluated at CMU. We then include tion modulated spatially with an amplitude of modu-

(Sec. 111) a summary of the dynamic and optical per- lation that varies spatially in accordance with the

formance of the Priz. These data were obtained from original Xw input light or data pattern. This XI? mod-

experiments performed in both the Soviet Union and ulation occurs by the linear-longitudinal electrooptic

at CMU. We include several image and signal pattern or Pockels effect. The polarization modulation can be
converted to amplitude modulation when a crossed
analyzer is placed behind the modulator.

In the Priz light modulator,2 " a 11101 or 11111 cut
BSO crystal is used rather than the 1100] cut crystal

M. P. Petrov and A. V. Khomenko are with A. F. loffe PhysicO- used in the Prom. Other proprietary fabrication
Technical Institute of the U.S.S.R. Academy of Sciences, 194021 techniques are employed, but the issue of major im-
leningrad. U.S.S.R.; the other authors are with Carnegie-Mellon
IUniversity. )epartment of Electrical Engineering, Pittsburgh, portance is that with these different crystal cuts, the
Pennsylvania 1521:. device now modulates Xn light by the transverse rather

Received 22 April 1982. than the longitudinal electroo)ptic effect. The spatially
(XX):t-69:t5/82/21:t846-09$01.(X)/t. varying Xw light distribution is still incident on the
c 1982 Optical Society of America. crystal's large faces collinear with the applied electric

' 3846 APPLIED OPTICS / Vol. 21. No. 21 1 November 1982



field direction, and the spatially varying charge layer IMl. Performance of the Priz
parallel to the crystal's large faces is still induced. In the MTF tests performed on the Priz at ('Nil, we
However, the transverse component of this field is what operated the device at 2 frames/sec. In other experi-
is used to provide the spatial modulation of the Xl ments, we operated the device at 2t frames/sec. A
light, faster frame rate should he possible. but no effort has

Trhe Prom exhibits low diffraction efficiency iand at vet been made to determine the device's maximum cycle
sharp i- 1/fI decrease in usable output light intensity time. However, results of several experiments are
at high spatial frequencies /." If we assume that the useful in providing some indication ,fthe final device
sine wave electric charge grating with amplitude T, in- performance possible on the Priz.
duced during image writing in the Prom is infinitely thin In the experiments performed in FIT the device was
and that it exists at the crystal dielectric interface, the operated with write times as short at 7 nsec using a
phase modulation vs spatial frequency is describedbv I pulsed laser source with anl intracavity electrooptic

2 modulator. In this case, photocarriers were generated
,= -- :,,,. in a negligible time, but the output light )attern was not
I ', j/,, co,h27rjda + ,. oth2,rd, visible until I Psec later, and it peaked after 10 psec.

where (,j and (, are the relative dielectric constants of' Carrier mobility and transit times thus appeared to
the dielectric layer and the BSO crystal, respectively. limit the minimum write read cycle times of the iPriz
da and d, are the thicknesses of these layers, and I ' t 10 usec. In the more conventional operating m,,de.
is the halfwave voltage of the crystal. Equation I) I -msec exposure times are used. and the out)ut pattern
indicates that when f increases at f > /,da, coth27r/di is then immediately visible.

I and coth2rfd, 1, and thus ,/ decreases - ]/f. Erase time is a second limitation on the device's
Since Y7 ' (_10,2 Eq. (1) predicts q , Il/f. However, in speed. In all tests performed at ('N1, a fixed I -msec
experiments a sharper (7 , I/f') dependence was o- erase flash (from the standard erase unit provided with
served. This was attributed to the fact that. in the the U.S.A. Prom) was used. However, neither the Prom
process of image writing, a volume electric charge dis- nor the Priz can be recycled immediately after erasure.
tribution is formed within the crystal volume rather and a delay time is necessary to allow redistribution and
than an infinitesimally thin one. "' Using this new relaxation of excited carriers within the crystal. One
model, it has been shown that in the case when the millisecond of relaxation time and hence a total I -msec
charge is distributed throughout a layer of thickness d,, erase time appear adequate. High-energy erase pulses
near the crystal-dielectric interface cannot decrease this time. since the' generate and dis-

a,,:lcosh2rld, - cosh21r/id, - lo,, I  lodge ot her carriers within tie bulk of the device, and
.A_ = _- ,longer relaxation times between the end of erasure anded,oj, cth2irfd,, + .c'th2irfd, 1. sinhhrhl, the start of a new write cycle then becole necessary.

Equation (2) predicts an Y7 , lfi dependence at high f, Thus operation of the Priz at a 10-frame/sec (write
which agrees with experimental results. Thus the sharp read -erase cycle) rate appears possible, but addit ional
dependence of q on [ for the Prom is attributable to the theory and experiments are necessary to confirm this.
volume character of charge distribution. The most Moreover, an application for which the entire spatial
complete and detailed theoretical description of the input data changes every millisecond is necessary t)
Prom device can be found in Refs. 12 and 1:3. These merit such an effort together with attention to how one
papers discuss a model that includes the location of thie can introduce such a new 2-1) Xu spatial distribution
charge layer within the BSO, the thickness of the dif- to the device at these tt):lframe/sec rates.
ferent device layers, the wavelength of' the light used. The storage times for the IPriz are adequate for most
To overcome the disadvantages of the volume charge applications I I -min storage in the dark and 10 20-sec
predicted by Eq. (2), it was suggested in Refs. 14 and 15 storage under a high Xl = 633-nm read light intensity
to use the transverse electrooptic effect for read light (I, = 2 mW/cm)i. These can be sonevhat COi( rolled
modulation rather than the longitudinal effect used in by varying the thickness of the insulating layers. The
the Prom. The modulator that uses the transverse lifetime of the Priz. like that ofthe Pron. appears to be
electrooptic effect is called the Priz. The corresponding excellent. Selected Priz units have been operated for
calculation of the phase modulatiom for the case of the over one million cycles at a 20-frame/sec rate with no
transverse effect shows that'! noticeable change in performance. The only concern

4___ ,_ - ,l(',sh2rWfd, + cosh2rf(d, - d,,) - II + k (
A X I2/,, 2rrf 2d(i tanh2 d, + t, tanh2;rfd,-) csh2 rfd,I

where k1  , tanh21rfdd sinh2rfd,,.
From this formula, two characteristic feat ures of the

Priz device can be seen. First, AO(O) = 0; i.e., the
modulator suppresses the dc component. Second, at
high f, A0 1/f and q a 1/f2, i.e., the Priz il vs [ char-
acteristic is superior to that of the Prom.
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I
with the device's lifetime appears to be its operation actually be used. The Priz performs well with inputwith high 11? light levels. In this case, a device with high write light exposures Ew of 50u,J/cmn 2 or less with cor-
transmittance and electrodes with good conductivity responding interharmonic distortions and hence re-
is necessary. For such cases, InO. electrodes are used. sponse nonlinearities below 1% at these write light
The performance of such Priz units appears to be good energies. The sensitivity of the device defined as the
(as several of them have operated successfully for sev- write light exposure Ew necessary to achieve q = l'i at
eral years). 5 cycles/mm is 50 pj/cm2 . In our CMIU data on these
S The resolution of the Priz is mostly understood and devices, .s an available laser source not optimized to the

has been experimentally verified by several techniques. thickness of the Priz used was employed. With this
Its diffraction efficiency q, at low spatial frequencies experimental setup, we obtained only f., = 20 cycles/
is -1%, its 10-dB spatial frequency response fo.i is -30 mm and f(.. = 30-mm resolution. If the optimal read
cycles/mm, and the spatial frequency /0U at which I? = light wavelength were used, we expect superior results
001q is 100 cycles/mm. At CMU, we operated the with fr, in excess of :30 cycles/mm as obtained at
device with input data having spatial frequencies as high FTI.
as 80 cycles/mm. With higher quality optical systems Both the Priz and Prom modulators have high optical
and a different area detection technique, FTI re- quality and allow use of large crystal sizes. The Priz
searchers have measured diffraction efficiency on the units evaluated at CMU had a 15-mm diam active area
device beyond 500 cycles/mm. Since the usable output with X/4 optical quality. Larger units have been fab-
light intensity at these high spatial frequencies is quite ricated (up to 30-mm diam) with -1 X optical flatness.
low, only in selected applications can such resolution The standard Priz units have also been fabricated,

tested, and used with X/10 optical quality. The BSO
crystal in the Priz is nominally 400 pm thick, and the.7 insulating layers are -3 pm thick. No substrate is usedI in the Priz, or the Prom, as clamping effects change the
dielectric constants of the materials and induce stresses
in the device. One of the units tested at CMU is shown

I in Fig. 1.
In Table 1, we summarize the salient Priz perfor-

mance parameters. These data were obtained from
diverse FTI and CMU tests and experiments. As withIany BSO device, a wide range of performance is possible
depending upon the thicknesses used for the different
layers in the device. The parameters in Table I are all
simultaneously obtainable, but they should be inter-
preted with the above consideration in mind. II all
cases, the device should be operated at the intended
write light exposures El and write light wavelength \wI if optimum device performance is to be obtained. MTF
data are frequently used to describe the spatial resolu-
tion of SLMs. Since the Priz has a dc response of zero,
the MTF function r(f) is not usable for such a device.

Fig. 1. Priz spatial light modulator. Rather the diffraction efficiency 77 of such a device is the

I Table I Priz Parameter and Performance Specifications

Paranleter pvcifticatli unll Paramet er Specit'wiit it(I

SO crystal 100 tp In thick Address ie 7 nsec inlinl
Insii aiing laver :1 ,u i thick \Vrite/read c'vlclt t ilisec In/in)
E ltrodes IIt or Ilno - Erase ninme I sc " mini
Act ive area Erase cycle I ilise, t picall

Tyiwical d5-m ilaIII
NMaximum 30 1 1 dia* Frame rate (It ic all 210 trame 'sic

Optical quality )ark Storage I I I,\ pical)
T *pica ,\ *i.

S)ecial request St torage with reatout 20 30; v(, I typical I

W rite light I itract ion el't'c. ioi,,) I
W avelength .50 ,) 111 mini eslit tion
Exp)sumre I IYl)ical) ,0 P.i mil.' ill 1= 1.1 30,, 1 c t 's n1ll1l
s'Kensiliit v I for q = I .' at S c.dles/'i III 1)) 50 l i-ll al 1 = 0Al ImjI, > l00 c yl ,s IIInl

Read light max. nivastirti > ii0 .k l e t, mmll
,\ lt5 itill 33) I ln Spatial treq. rteslilw si q
intellsity (is piclll 2 ii\\'icm
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appropriate parameter. This is why all spatial fre- I
quency resolution data in Table I are given in terms of'
Y vs [. These data were obtained with the Priz device .
operated dynamically in real time. In coherent optical "-
processing, the amplitude transmittance nit/) of the . -
SIM vs frequency f is the parameter of interest. If an
analyzer is used and the input pattern is the sine wave
grating I = 1,,1 + sin27rfx-), the amplitude transmit-
tance for the Priz can be written in the linear approxi-
mation as -

tIx) = ,ili tie2r/x I-4

Equation (4) implies that the dc component ofthe Priz
response is zero Isince from Eq. (3) Alp = 0 at f = 01, and 1. r p ,)
the readout pattern has a 7r/2 phase shift with respect
to the recorded one. In this case, m (f) is directly oh- Fig. 2. Iil'frai,,nii effitient 1 vs l ial frequency/l. r tlthe I'r,ni

tained from the rl(f) data provided by and Priz spatial light i,duhlatrs.

I r l = "x r1. ,

This expression follows from the Fourier transform
analysis of Eq. (4).

In Fig. 2, we show the diffraction efficiency 17 of Priz
and Prom units at comparable Ew = 50-MJ/cm- expo- a
sures. From these data, we see the superior diffraction
efficiency and resolution of the Priz. We also see that
the response of the Priz decreases at higher spatial
frequencies at a much lesser rate than that of the Prom.
Where rn(f) vs f is plotted rather than tj(/), the differ-
ences would be even larger. We also note that the Priz
exhibits a suppressed response at low spatial frequen- b
cies. This feature follows directly from the fact that.
upon uniform illumination of the device with write light.
a uniform longitudinal electric field is formed that has
little or no transverse component. Since the Priz em-
ploys the transverse electrooptic effect, it will not
modulate in response to such light. As a result q of the
Priz device peaks at a spatial frequency of 4 cycles/mm
(for the unit tested) rather than at dc.

IV. Use of the Priz in Pattern Recognition and Signal
Processing Correlations h iFrier t rin-.qrni plant I aoint Fourier t rllltr-tt urrehir:

An attractive optical correlator for image pattern (a) input and reference inages: Iti crss-setiional scan' and Ii n
recognition is the joint transform correlator. i In this image oft heitt pui tirrelIt imn plante pattern. Ihe tiwo peaks tot he
system, the reference object being sought is placed be- right and let ittl)) lilt d lei repre.ent the ,,rrehit limis I Ihe I , i mll
side the real-time input scene in the input plane of a 2-I) oh i,-ci.
optical FT system. The objective is to determine if the
reference object is present in the input scene and to
determine its location. Such pattern recognition ap-
plications are appropriate for locating objects on an recorded on a Priz placed in the FT plane of a lens.
assembly line and locating areas and landmarks in which was behind the joint input l)attern of Fig. 3(al.
satellite imagery as well as in missile guidance and many The FT of the data recorded on the Priz is shown in Fig.
other applications. In the joint transform correlator, 3(c) and its cross-sectional scan in Fig. 3b). This full
the Fourier transform of the input and reference data correlation plane pattern contains a central term that
is formed on an intensity sensitive material (such as is the sum of the autocorrelations of each input object.
film. the Priz, or Prom). The Fourier transform of this The large spikes on the left and right in Fig. 3(h) are the
joint FT pattern is then formed, and it can be shown" '  correlation tif the two input objects. Their presence
that it contains the correlation of the input and refer- indicates that the two input objects are similar, and the
ence images. In Fig. 3 we show an example :' of such a relative position of the peaks denotes tie location of the
correlation performed on the Priz. The FT of the two reference object within the field of view of the input
input objects IFig. 3(a)l. identical images of lobsters, was image.
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I IBBBIIIII~I~eI~flh~aNIIII~~l~lliiiawnhiauu Sinal c ir re fat it s have a lso b een pet' rrted (ilit he
IIIIIN~II~III~II~IIIIIBII~fHHIhIIIE a P Priz. An i image (if a Ii inear freqne ncv rut i I ted I. FN NI

II~UI~lhu~uIIIIII~uIII5IHI~hII~~llfll~~gIflsignl' jFig. 4( -1 iiwa reco~rd ed oni the P riz. T[he FTI oft

this pat tern f ,orifedi with ati lens whose I'' cal length was
iat c ed tofil e tre Iien *1ev rat tige (t I he 1,. F NI wa-i vel' irn

y ield(Is thle resuharI it c (ompf )ressed puI se or out pu I coi (r re -
ait tionI pea k-_ s howt i II F ig. .t hi1. '[hel wid(I I it oft, e x-
te r imi-itally ( 1 ohti Ied co~rrelat Iioni pea k was I I nut) h (of

th it f thle oiriginal I.FM signal. TIhis, is inl gooid
b agreemient wiit h the thoet eit a I iiise ci liipress ii n f ac(o i

(d 1201 ftoir t hie I, F NI signa ui sed. 'I'( he di f't c renwe b et wee en
thetoiv and exp~erimlent was due ic ta uper inl the input
light heamnif( ndiher effects

V. Image Spatial Filtering Using the Priz

g~ ~ ~ ~~~~~~~~ ~~~~~ n p~pi ip itt,..Ii lpi risiiiI i i Fig. 2 and Sec. Ill w1 e not ed I hiat hecause of the
1,1,%11 1 iptti niii I tIt -~ip,kt I t,~im-c ,wuItit re it it transverse elect ri Spt ic effect inl the 'r iz. d c an ml Ii i

spatial frequencyv data are automlatically suppressed.
Ini Fig. -7)tat I.We s hi iwIt he ruci inst mect ion ()f a circunlair
inlpt ih)ject reci irded oin the I riz. As expect ed. ml inv
the edge cititur (if the iect appears duel( ti, thet all-
intiatio (it, sp ati al freq ienc 'v supp ress io n pe rfiited bYv

the' lit. '[hel( amimunt if dc sutiressitin (lepends tint
how~ clttsely thet read light heum is- incident ftoI te utrnial
toi(h crystal. Ini tir experiments atl (Nit., w\e we.re
ahie lii ttain at (Ic 5upprvss iio init Ill \weilt- normal
t friz was aligned within I' (it th reaid lwtea. Firi a
10l 1stupprcssilitiactiir. I~ i ligninent i' tiiiss~ir\ . Ili
thle imlage priocessing experintsw at (.\I( i .-I. and

TI the read heami wiv, incident at annle I ( t iitlkc

nothea t roo ha niersitipi iiele riittotth

iculam. it exhihits i (dist inct differenkc fin restio I,I circularly and linearly poilirized reaid l-igh. Fit.utrc
s hi ws hitiw di ffractiii t e ff1 ciic uv lit h If Pri depends in
in'ientat ion tif the( cryvstals ajxes when readt p ntit I1
hlearly and circularly jilarized lighti. InI he datittII

(a) Figs. 5' and T. the electric vectir itt tt, linearly piiol~rized
ligh lt was aloing thle 11121 axis Mif the crystal. Ilit li
(lftc (Iiffrati hu efficienct.j is a tit ilt11 iif the twl

hetween the wavvetI(r ,i the sue av gi t l ad thle
110ii crysta.fil aixis is phlted in) titar ciirilinite,.

'I'he( touiter circle in) Fig,. 1; tiesrilies th ftc i\ce's re
snitnse lit circtiltrlv\ ptdiarized itifitt light . As sci i. itI ~ ~~is tfiie tiniftii. and tHinls tiperit lit with Itirciilirk
pitlarized input light proiduices ni idirect iinal firivruit
fu(r inpidi 51111ial frtquencv. '[he rectistriictcil ittlige
inl Fig. i(l verifies this respo(nse andi is essu Ilt iall ii~m
In e(ircuklair tiuter curve ilt Fig. 1; wa;s tioitainedt, lli,,\
ever. the response tit' the l t ri/ tio liiicarlv ptilanri/ct rild
ligit is quite different. lit thet twit inner ii,_krc eiti
shaped cuirves inl Fig. 6t. we sftio\ the resfitnse f(ir lilt
early podarized read fight. Wheni the (l~evit~ is ti

t linearly piilariized input light, it txllhi Ia prcierritI
respoinse ?i fur iliptt spatial frequencies iorieittetlit tint(

tb) direction, while greatlI suippressing iitilt spt it I
frequencies irieiited inl theiort igitit1al ilirtci iti ltec

t~il ut iitgitigi'tiiitititiii ititilrttiiit tiil direction il which spatial frequncties ;irc stippjressedl
liltirii.'ii-tttm.i 111 ft Iri. itj)vdiifti iiiiciti runt u triiitiil tinigi. til he tijititlled bv t he pitltrity itf fte \(itfageapiidU lii tfintitrvitwiilix lilturtil ritiitni i ittigi fitthe motduilatotr if tle pilanizaftin (I the read fuwi; is
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CIRCULAR POLARIZATIONy

50. {LI N EARLY POLARIZED

260 280.

t . PRIZ (111)

Fig,. 6. Ihiltra, t lii tlit ieiti' q hr tihe I'ri/ asa tl in i.'il l'ih an le
htuiven tl th wae et'or il the re,',rded sine t e gralti g and Ile
,'rv l',i, axe, hr input read light with 'irtular and linear i,ihatiin.
'urvt', I and 2 ,rr > ,lnd itl experimtneial point , Ilr litnearly pilar
it'd light, and curve :1 v'orres,pofidh t,' 'irc'ultrle ii,.lari/tld read light.

fixed. The two figure eight shaped plots in Fig. 6 were )reprocessing operations for mtltisensor anid IH pattern
obtained with the same polarity of the read light but recognition. In Fig. 7. we show the original IR image
with different polarities of the applied voltage. l)if- IFig. 7(a 1. the image constructed from a [1101 cut Priz
ferences arising from changing the voltage polarity can with the read light polarized at 450 [Fig. 7(01) and with
Ie attributed to the optical activity of the BSO crystal.' -  vertically polarized read light IFig. 7(ct]. The recon-
Figure 5()) shows the reconstructed image of a circular st ructed image in Fig. 7(b) approximates an edge-en-
object recorded on the Priz and read with linearly hanced version of' the original iniage. whereas tie re-
polarized light. As seen, the spatial frequencies in one construction in Fig. 7c) results in enhancement of
direction are suppressed as )redicted by Fig. 6. vertical lines in the original image and suppression tif

For t 11101 cut Priz. similar plots of tl vs the read wave horizontal spatial frequencies in the original input
vector's direction result. However, for circularly pattern.
polarized read light, a saddle-shaped response rather
than a circular one results. Similarly, a larger i (a factor
ot"2 larger than for the I I 11 cut Prizl results when the VI. Dynamic Image Selection
I1101 cut device is operated with linearly polarized read In invest igating the response of the IPriz to spatially
light. Thus the II Itlj cut device is preferable for mtil- moving 2-1) input pat terns, it was found I that the de-
tichannel I -I) signal processing apl)licat ions and ot hers vice's response was a function of hoth the spatial Ire-
in which directional spatial filtering is desired. Con - quenc ofthe input data and the velocity with which the
versely the II I II cut Priz is pireferable for image pro- input data moved across the input field of view. A
cessing where a uniform response is generally desired modified version of the Priz was used in these experi-
for all input spatial frequency directions. ments. It had no insulating layers, so electrodes were

''o achieve a high degree of suppression of the dc evaporated directly on the crystal's surface.t s The re-
component in the image ()oth with linearly and circu- sponse of the device to an (.5-mm wide input line was
larly polarized read light), the modulator should be measured for different velocities (I 40 am/sec) ofthe
placed between a high-quality l)olarizer and analyzer, input object across the inl)ut plane, and it was found
which in the case of circularly polarized light can be that the resl)onse of the device peaked when the velocity
achieved with a \/4 wave plate and a linear polarizer, was -7 nm/sec. The response of the Priz is thus a
The dc suppression. directional spatial filtering, and function of [oth time and space (i.e.. tle spatial fre-
e(ge enhancement feattires ofthe Priz arequite useful quenc\y of the input data and the rate at which it
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changes or mioves with timle). Ail initial attemlpt to
dlescribe t1e combined timie and space respo nse of the

(a) device hats been reported. '- Inital experiments' "
inica telthat as t he spatial freq nenc cy olif he input dat a

decreases, the input velocitly bor which the respo nse Y?
of the device peaks shifts to higher velocities.

To oi bta in this effect . t he I i 1 is oplerated with a fi xed
voltage across its electrodes rather than with the applied
vottage switched bet ween positive and negative polar-
it ies. Ini the normial miode i ptolariz~at ioni ofthe applied
volt age switched), the dlevice tpert'ornis like the IProm.
Onily wnih a ixed v'olltg will it perfo rml dyniamic Imiage
select ionl. Inl this Ilntde. thle device respoinds tonly tot
changes in the input imiage. This operating miode is
attractive f'or mayapiain uhas change detec-
t in.and it astgralvi)j itsthe elect rt llicsiq ppi rt

systemi necessary (since a tixed rat her than a switching
high-voltage sutittl y can1 be used). Over a select ed ranlge
of' iput tempo(ral f'requencies /-, (%\here t his range varies
ais alII i'tc ill ii) tlhe illnut spat ia) I requeet I .th ~v

(b) resptonse is linear. anIll e device perftirmis a time
(bidifferent iat ion tit the input data. 'I'his range of'/- is

quite smiall, and motreoiver it varies withI the il)ensit v
of' the input write light. For these reasons, this Prn,
device features is best t ermied dyniamic iniage selectittn
(i.e.. the device's oiutput represents oilv thle chaniging"
part of' t he in pu I data) rat her t han t empo1 ral (i t~e re 0-
tia t itin. It is effect canl alsot be ibse rved wit h a t'i ed
illput andl wit h t he write light beai pulsed onl anId tt.
Ililt his case, whenever thle write light changes I gties ttl
or otff). an otiltput imiage oif' the inlllt data app~lear., and
thenl deca vs withI a timne const anlt t hat is a t'linct lif t oIlhe
intenlsi t of the write light. It fthe d if erelt ia I phlase A),
of' the out put light is nmeasuredl. it is seen tt be (it' tip-
posit e sign when the write light is swit ched f'rttmit tf t
onl compa 111red tlt when it is sw itchbed 1'ri iillo to il.

When the I'riz unlits were being tested at CN11% we
fiund this l t riz featuore to bie nliost att(raective aind thus

(c) assembled the syst em of' Fig. 8 tot demionsrate the use
of' I he I ri z in change dii ect ion. T'hi' sv stem (Iiiit Fig. S

F6,7 Ri)ea n iliZ di itiiiiiithtilrt i~l contains two input tlanes. Plane I , citniainled at fixed
fltlvring Ilti inigi'r tn a if WI t'ri/: taM -'rinipit pirle u41) imiage, ill our case a randoii pattern itt ,nciirrelated
Vttgi eittto rittlsI riiltitd irmiagi, t I0 iirititittt l it) re nilse and correlatedi nit itt d iterent ciirrelat ioni

its I ni ite lait) c i ian engths anil Witil diftere iiiill ea Il va ItII's. Thliis tixeid IP,
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IT
Table It Quantitative Dynamic Image Selection Data on the Priz

Tlo quant ifv the amount of background sulppression Many aspects oiithe Priz device are well understood.
obtained. the intensity of the moving spot was varied However, furl her theoretical analyses and modeling
and the 'atlo together with further device fabrication and exJperi-

= iiitil'i. ti' I fit, iiii\ Ing 'JUit Mental testing are necessary to understand fully and
*li describe many, of the observed feat tires of thle device.

* ivirdg 0 c.~i * i I le tixid ~ickg rnilIssues meriting further analysis i nclutde the m inIi nearit v
d Was meastired at the inlput and ouitpuit of' the systemn associated with the transverlse electrooptic effect, the

i.e.. with and wit hout dynlamic image select ion or cmie iea ~ pc lpnlneo h eiiu o
change detection). The restilts are suimmarizedl i of the device, and at theoretical fortmulatioin of the dv-
Table 11. From these data, we note that once the in- namic image select ion feat tre of' t be device with at -
tensityv of the scanning spot has been increased so that teiltion to the select ion if device parameters to opt imize

with the intensity of the dynamic part of the otut Ttt he p~romising p~erfotrmance piarameters tabulated for
image being 50) ti'mes the average background level itt the Priz light miltilatiir ain(i the exp~erimental verifi -
h le 1) outptit. This occurred becaulse when /?M wit cat ion included of several of the novel feat ures if this

inicreasedl above 2.5. sattiration of the Priz oiccuirredl. and dlevice indicate that a wealth (if ew research effo rts and
thus no furt her chang-es in the effective Ri,, resuilted. app~llicat ions are still possible in the field of real time and
T[his is expected since, with the lPriz in the FT planeof reuisable spatial light modulators.
the AO) cell, all the light fromn the cell was coincent rated
onto a single pixel on the Priz. References

VII. Summary and Conclusion I t ;.iii.I, ~: s :

A complete and unifying- summnary (at this plresein .N ' itr(,% t af SI , s. Ph 'T~ Ii. I'll\ ~. 25. T/ 191 1t' I

ime) iifa new light moduilator, the Itriz, has been pre- 1, Nt . Pirc(iti \.Tc hh ~.Ixit.G IiG 1iIP.t
sented. Many new experimental demonstrations re- . 1 '. Po'c r,. a d) A. K lirtiiiiki. ((Ilt. (', ini iiiiit1. 37. 127.2 I i

centlv ol~tained at ('MU were included. r'lihe theorv (it i6, AI. 1'. I'vtrm ,i ii!' Zh. TIklh. Vt,. ) t. 1 122 1 1 9S 1 1

iiperat ion of the Priz was reviewed and experimientally Te, It. t'l\ . 261;16 I; 11

verified, and its similarity and differences from th'e I). Catni t. F. (Uiitii. aind A. l(..iiik..p llpt 21), :iiilo

Prom were niited (Sec. ii). T 'he first unifying- summary S. I .~ .Il~~n~ I 9S t.1 21. 12
itfthe performance parameters tifthe Priz was also ad- 1) ak~n.F iii n . hin(.Ap.(p.2

vanced (See. III)..A suimmary ofnmany of the possible 1). B. Ii Ht/nd F.. (rci 01i. Eng. IT, :i7,:; i 19i.

appllicat ions of the Priz was then tpresented. This in- lt. NI. Pet ir.'v , t . Fernriii t ric. 22. /7'! I 1TS 1
clutded co nvent itoma Iopt ical p at terni reco gn itin and I.W. l ah IEE 'I.F rail,. He cI ri i. Ill-% ice,. El -2 1, 1 I .:t I PITII
op~tical signal processing ci rrelat ors (Sec. IV) pluts three 12. Y. thv (wik, Aiiti .. Tingi i. Pro(. sit. Ifl 'hi -t)I it I uiA t ni. FiiEg.

new image processingotperat ions: tdcstip)pressionantI 2011 ( 19,91

directional filtering (Sec. V) plus dya im nage se- 13 .(wilkiiilA.iiii. Pr..,. Si. 'li - Opit. li~trlin.ig.
lect ii n (Set'. VI). The first image processing operation 2 15.G ( I! IStitf.

had been exp~erimentally demonstrated previotisly .. 1 1, NI. t 'itri ci (it. tikiIlcktiiikii Attil. Naiik SSSH S. t

D~irect ional spatial filtering demonstrations had not .)-
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ABSTRACT

The basic acousto-optic signal processing architectures (spectrum analyzer, space-ir.tc--
grating, time-integrating and triple product processor) systems and algorithms such as the!
chirp-Z transform are reviewed. We then describe new acousto-optic data processing syster-.s
and applications that utilize these basic architectures and new ones. These include a
matched spatial filter acousto-optic processor, two new hybrid time and space-integratinr
systems, a triple product processor and four new matrix-vector iterative feedback systemrs.

1. INTRODUCTION

Acousto-optic (AO) transducers are commercially available real-time spatial light rod-
lators that can be used for many applications and system architectures. Such devices and
systems have received considerable attention 11). In Section 2, we review several of the
more basic AO system architectures. In Section 3, we discuss a multi-channel AO processor
[21 architecture in which multiple signal channels are accommodated by multiple LEDs or
laser diodes (LDs) rather than by a multi-channel AO cell. One of the major attractive
reasons for using AO processors is the large processing gain (PG) and time bandwidth product
(TBWP) possible on such systems. In Section 4, we discuss PG, define various possible out-
put correlation plane SNR measures and provide experimental verification of our remarks :3'.
We also discuss a technique to facilitate generation of the lona codes for which AO systems
are useful [4,5). In Section 5, we describe several new AO processors: a matched spatial
filter (MSF) AO correlator that reduces the effects of non-uniform spatial AO cell response
variations [31, two new hybrid time and space-integrating (TSI) architectures that simul-
taneously achieve the best features of a space-integrating and time-integrating processor
[4], and a new application (51 of the triple product processor. In Section 6, we address a
major new application area for AO devices: optical systolic array matrix-vector and itera-
tive optical processors. We describe the basic optical matrix-vector feedback syster and
note the general-purpose nature of such a processor. We then discuss two deconvolution
architectures using such a concept, an optical systolic matrix-vector multiplier and an op-
tical systolic system for solving matrix-vector equations 16]. We then conclude with a new
frequency-multiplexed version of these systems [7] and our summary and conclusions (Section
7).

2. BASIC ACOUSTO-OPTIC SIGNAL PROCESSING ARCHITECTURES

Various reviews exist of the possibilities of optical signal processing systems and arch-
itectures [1,8-10]. Thus, this present discussion of the same subject will be quite brief.
First, we note that an AO cell illuminated with parallel laser light diffracts this light at
angles proportional to the frequencies present in the input signal and with the amplitude of
each diffracted wave proportional to the strength of each input signal component. Thus, a
lens placed behind an AD cell forms the Fourier spectrum of the input signal data in its
back focal plane. This spectrum analysis feature of AD devices is presently being used in
many applications (1]. One particularly attractive application uses an AO cell with two
transducers or two separate AO spectrum analyzers, each fed with a signal from a different
antenna pointed in a different direction. From the location of peaks in the two resultant
output Fourier transform (FT) planes, the frequency distribution of emitters present in the
field-of-view of the antennas can be obtained. From the ratio of the amplitudes of the out-
put peaks on detectors corresponding to the same frequency component, estimates of the di-
rection of each emitter can be obtained. The resultant output information from such a sys-
tem can thus be used to obtain a 2-D (frequency/direction-of-arrival, or f/DOA) display of
the emitters present in the field-of-view of the antennas [11]. Such displays are most use-
ful for many signal processing applications.

The space-integrating (SI) AD correlator or convolver system (121 of Figure 1 is a basic
AD processor architecture. In this system, the signal g(t) is fed to an AO cell at plane
PlA, whose transmittance is a function of time t and space x given by g(t-x/v s ) = q(t-x') or
g(x'-t), where vs is the velocity of sound in the AO cell. This pattern is then imaged onto
a mask h(x') at plane PlB. The light distribution q(t-x')h(x') or q(x'-t)h(x') is then
spatially integrated by lens L3 and the time-history output from the photodetector at P3 is
the correlationI
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h@g = fg(x* - t)h(x')dx' = R()

or the convolution

h * g = fg(t - x')h(x')dx' = C(T) (l,

of the two signals g and h. In this architecture, the integration in (1) is performed over
space and the convolution or correlation output is displayed with the shift variale T b _n
time t as in (1). We thus refer to this architecture as a space-intearatino convolver or
correlator.

acouslo- acousto-
optic optic Photo
cell SSB cell

9 M iltr W) Phot h 0 filter array
I tt 2D g(t) C~ pOi: .O e ector light suc

P a L, P2  L2 Pb L3  P L0 P L, P2 L P

FIGURE I Schematic diagram of the basic space FIGURE 2 Schematic diagram of the basic
integrating acousto-optic convolver or corre- time-integrating acousto-optic convolver
lator. or correlator.I

The third basic AO processor architecture is the time-integrating (TI) convolver or cor-
relator [13] of Figure 2. In this system, the signal g(t) is used to time-sequentially mod-
ulate the output from an LED, LD or point AO cell. This output uniformly illuminates an AC
cell at P1 fed with a signal h(t). With the transmittance of this AO cell described byh(x'-t) or h(t-x'), the light distribution leavinq P1 is the product of 9(t) and the trans-
mittance of the AO cell. The AO cell is then imaged onto a linear detector array at P3,
where time-integration of the product is performed directly on the detector. The resultant
output at P3 for this system is again either the correlation

g 0 h = Irg(t)h(t - x')dt = R(T) (2a

or the convolution

g * h = fq(t)h(x' - t)dt = C(T). (2b)

Since the integration in (2) is performed in time, we refer to this as a time-intearatina
convolver or correlator and we note that the shift variable T in the output correlation or
convolution plane P3 is the space variable x'.

The space-integrating system of Figure 1 enjoys a large ranoe delay search, but can only
operate on signals whose TBWP equals that of the AO cell (typically 1000 to 2000). Converse-
ly, the TI system of Figure 2 can only search a range delay equal to the aperture time or
transit time TA of the AO cell (typically 1-50usec), but can process a signal of lona dura-
tion (- TA) and large TBWP and hence can provide a large PG and integration time TI (limit-
ed by the dynamic range of the detector system used).

The fourth basic AC architecture is the triple product processor (TPP) system [14: (see
Figure 7 in Section 5). In this system, a point light source uniformly illuminates one AO
cell (oriented horizontally). The light distribution leaving this AO cell is compressed
horizontally and expanded vertically to illuminate a second AO cell (oriented vertically).
Both AO cells are then imaged onto an output plane P3 where time-integration occurs on a 2-D
detector array. If the signals to the point modulator and the two AO cells are denoted by
u(t), v(t) and s(t), then the 2-D output at plane P3 is the triple product

R(T 2 ,T) = T fU(t)v(t - TI)S(t + T2 )dt, (3)

-1
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and hence the name TPP has been given to such an architecture. This system has considerable
versatility, since its 2-D output plane pattern can be a folded spectrum, an ambiguity sur-

face or (as we show in Section 5) a coarse/fine time delay display.

One particular algorithm that has provided each of these latter three AO architectures
with an increased flexibility is the chirp-Z transform (CZT) algorithm 115). We describe
this algorithm with respect to the TI system of Figure 2. If the input signal g(t) is a
signal f(t) multiplied by a chirp or LFM waveform and if the input signal h(t) to the AO
cell is also a chirp and if the opposite sidebands of each chirp are filtered within the
optical portion of the system, then the 1-D output pattern at P 3 can be shown to be the
Fourier transform (FT) of the input signal f(t). This same technique can be applied to the
TPP system to yield a 2-D FT output with coarse and fine frequency axes (i.e., a folded
spectrum output display).

3. MULTI-CHANNEL ACOUSTO-OPTIC PROCESSING

There are various ways to achieve multi-channel and 2-D processing usina I-D AO devices.
The use of crossed AO cells (as in the TPP system) is one technique. The use of AO cells
with separate signal channels on the same cell is a second approach. In Figure 3, we show
an alternate architecture 12] in which a single channel AO cell and a linear array of LEDs
or LDs are used to achieve a multi-channel system. The input signal to the AO cell in this
system of Figure 3 is a(t) and the transmittance of the cell is uniform along any vertical
line. The input signals to the N LEDs are fl to 'N. The output pattern on the N 1-D detec-
tors is then the N correlations fn G g. Such an architecture thus realizes N I-D correla-
tions of g(t) with the N input signals fn(t). If the CZT algorithm is used, the output pat-
tern contains the N 1-D Fourier transforms Fn(u) of the N input signals fn(t). Such an
architecture is useful for imaging FT spectroscopy [2]. If the N input signals originate
from N antennas pointed in N different directions, the output can also be an f/DOA display.
This architecture is thus very attractive, since the same basic system can be used for 1rul-
tiple different applications (such as the ones mentioned above) simply by controllino the
input electronic signals used.

AO
LEDs CELL
L Ps P 33

f (t)_ _. .

f (t) -

2-D TI

DETECTOR
g (t)

FIGURE 3 Simplified schematic diagram of a multi-channel
acousto-optic general-purpose signal processor
(21.

4. PROCESSING GAIN AND SNR CONCEPTS

One attractive feature of optical signal processors is their ability to accommodate sig-

nals of large duration and long T, and large TBWP. The TI architectures are especially at-
tractive for realizing such features. In such cases, a most attractive performance measure
is PG. This is defined as the ratio SNRo/SNR i of SNRO at the output of the processor to the
SNRi at the signal input to the system. In many cases, the signal code used is best de-
scribed statistically, the signal is then a sample realization of a random process and we
refer to the statistical correlation or the ensemble average (denoted by E) of two signals

sl(t) and s 2 (t), i.e.

R(T) - E{sl (t)s 2 (t + r . (4)

We have highlighted the PG and three different SNR0 measures for optical systems in [31.

!mot,
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Let us first discuss the three different SNR o measures possible. The classical SN o
measure used is the ratio of the average peak intensity of the output correlation divided
by the variance at the peak (assumed to lie at i = td = 0 for simplicity) averaged over many
realizations of the process

SNR1 = E2 C(O)h/Var C(0) . (5)

We refer to this as SNR O at the peak. A second useful SNR o measure is the peak-to-sidelobe
ratio (PSR) or the value of the peak intensity divided by the variance of the correlation
far from the peak

E2{C(T)1)r=0
SNR = --- T__ (i ' (6)2 VarC(T)

The SNRo measure in (5) is difficult to measure experimentally since it requires evaluation
at one point and thus requires many repetitions of the experiment. The SNRo measure in (6)
is easily obtained from one experiment. However, the dependence of this measurement on the
size and location of the i > 0 region used to estimate the variance in (6) can affect this
SNR o measure. Thus, a new SNR o measure

2SNR 3  T E2 C(O(7)

(I/T C) f Var{C ) dT-Tc/ 2

was defined, in which the variance is obtained for the full TC = TA range of output delays
being searched.

From an optical experimental standpoint, measurement of SNR2 = SNR 0 is (6) is preferable.
In [31, we showed that for the case of PRN signal with high noise (low SNRi) that SNR1 =
SNR 2 and that for low noise (high SNRi), SNR1 = m and SNR 2 = TBWP. In the practical low
noise case, the simpler SNR measure thus yields the same results as the more difficult SNR1
measure of SNR o . However, for the case of passive signals in which the recieved signal
amplitude is continuous rather than discrete, the signal is well-modeled as Gaussian and for
this case we showed [31 that the numerators in (5) and (6) will be identical and that for
such Gaussian signals SNR1 = SNR 2 - 3dB (if SNRi = -, i.e. no noise). For the case of Gaus-
sian signals and SNRi = 0 (equal amounts of signal and noise), we find SNR 2 = SNR 1 . We con-
clude by noting that SNR1 is the more appropriate measure for communications (when the Fro-
cessor is in synchronization and when location or position of the correlation peak is known).
Conversely, SNR 2 is more appropriate for parameter estimation (such as when the location or
time delay of the correlation peak is desired).

In (5), we discussed how the bandwidth of the noise with respect to the bandwidth of the
signal code affected PG and we noted that for narrowband noise PG = TBWP (of the signal) or
TsB s and for wideband noise PG = ITBWP (of the system) or TIB s . This distinction is impor-
tant when the code used is repeated and when integration is performed over repeated versions
of the code (TI >> Ts). As we have shown 13,5] in such cases, the PG obtained will be less
(i.e. PG = TBWP) if the noise is narrowband than if it is wideband (in this case PG = ITBWP

> TBWP). To demonstrate that PG = TBWP rather than ITBWP for the case of narrowband noise
and to demonstrate the use of our SNR 2 measure of SNR o , we [3] used a signal with a TBWP =
2047. We repeated this signal approximately 150 times and integrated the output on the TI
system of Figure 2 for the full 150 cycles of the signal code. The TBWP = 2047 corresponds
to a PG = 33dB and the ITBWP of approximately 300,000 corresponded to a PG = 55dB.

In Figure 4, we show the results of correlations of this signal with narrowband jammers
of different strengths (different SNRi levels). The results obtained verified that the PG
of such a system is TBWP not ITBWP and it also verified that our SNR 2 measure aave adequate
results that were more easily obtained in the laboratory. These experiments and our associ-
ated theory show the need for long codes and processors capable of coherent integration of
codes of long duration and large TBWP. Many applications require such performance toacther
with the need to search large range delays between the received and transmitted signals. In
Section 5, we discuss several such processors and we also discuss ways to improve the uni-
formity of the correlation plane outputs shown in Figure 4.

A final important and practical aspect associated with the realization of a correlation
of a code with a very large TBWP is the code generator itself. A very attractive technique
for generation of a code with a large TBWP is to produce two codes 0 and 0 with Nu and Nv .j bits respectively and to repeat each code NV and Nu times respectively in twio seoarate signal

1
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generators. If we then form the bit-by-bit product of each code (Figure 5), we obtain a
product code with a period equal to N5 T B = NuNvTB or the product of the durations of each
code (where TB is the duration of one bit of the code).

(a) SNR t - +- (b) SNR - -20dB (C) SUR, -- 25dB

FIGURE 4 Photographs of several correlation plane output patterns from the time-
integrating correlator of Figure 2 demonstrating the processing gain and
SNR measurement techniques. The signal used was a pseudorandom code with
various narrowb~nd noise janmers present [3).

1 2 N

IS t
t II

ILI I

= N N

FIGURE 5 Simplified representation of the generation of a product code 14].

5. NEW ACOUSTO-OPTIC ARCHITECTURES AND APPLICATIONS

In this section, we briefly discuss four new AO architectures and applications. First,
we recall the conventional MSF optical correlator [16] redrawn as in Figure 6. If we place
an AO cell in the input plane and an MSF of the reference signal at plane P2 , and in the
output use a parallel output shift and summation detector system (detailed below), we obtain
a new hybrid time and space-integrating (TSI) architecture that we refer to as an AO MSF
correlator [3]. Its operation, performance, architecture and features differ considerably
from thoseof the prior AO systems. First recall that an MSF correlator is shift-invariant,
i.e. the location of the output correlation peak corresponds to the location of the signal
in the input plane. If an AO cell is placed at the input plane of an MSF correlator (as
shown in Figure 6), then the output correlation peak will move across the output linear de-
tector array as the input signal traverses the AO cell. At each detector element at each
time instant, we have a partial correlation with the full PG of the TBWP of the AO cell. We
detect one such correlation output pattern and the output pattern at the next time instant
(the correlation peak will now lie on an adjacent detector). We delay these two detector
outputs by one bit time, add them and repeat the process for N bit times. We then obtain
the noncoherent summation of the N partial correlation outputs, each with a PG = TBWP of the
AO cell. Thus, such a system yields a large PG. But also, since each correlation output is
obtained for a different location of the signal in the AO cell, the final correlation output
has the effects of spatial non-uniformities in the AO cell removed (or integrated over the
aperture of the cell). We have demonstrated the use of such a system [31 for an AO cell
-with large dead areas in which negligible acoustic diffraction fields are present. The re-
sults were very attractive.

il
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FIGURE 6 Schematic diagram of a matched spatial filter acousto-
optic processor 13].
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FIGURE 7 Schematic diagram of the triple product processor used
for synchronization and demodulation of product codes [5].

Next, we note two other new TSI architectures. The first system uses an AO cell imaged
onto a spatial mask with the FT of the resultant signal produced being multiplied by a sec-
ond spatial mask on which the 14SF of another signal was recorded. We have shown [4] that
the output from such a system is the correlation of a large code equal to the product of the
codes recorded on the two spatial masks. We have also modified this system to utilize a 2-D
mask and a different vertical output detector system to achieve similar results with more
flexibility in the code that can be used [4]. We have analyzed the noncoherent and coherent
correlations obtained from such TSI architectures and verified that the desired envelope de-
tection is obtained with the full PG possible 14].

As our fourth new AO application, we consider the TPP system for processing a repeated
product code to obtain the full PG of the code and a large range delay search. In Figure 7,
we show how this can be achieved. The received signal s(t) and the two reference product
code signals a(t) and v(t) are fed to the elements of the TPP as shown. We have shown [5]
that the output plane pattern for such a system contains axes that correspond to coarse and
fine time delays and that the location of the correlation peak thus indicates the target's
range to the full range resolution possible with the code. In addition, the PG of the sys-
tem and hence the SNR of the output correlation peak corresponds to the TBWP of the full
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product code. This can approach 106 in some cases.

6. ACOUSTO-OPTIC MATRIX-VECTOR PROCESSORS

In this section, we address a new class of AO processors that differ considerably from
the dedicated architectures described in Sections 2 - 5. This new class of AO processor is
very general-purpose in that all of the systems to be described perform matrix-vector opera-
tions. First, we introduce the basic matrix-vector multiplication concept together with the
use of an iterative feedback optical processor [17]. Next, we consider the realization of a
deconvolver with such an architecture using the AO systems of Figures 1 and 2 as the basic
system elements [6). This corresponds to a matrix-vector problem in which the matrix is
Toeplitz. As our second AO matrix-vector architecture, we consider a systolic array optical
processor using AO devices and its use in the multiplication of banded matrices and vectors
of large dimension. We also consider its use in the solution of large matrix-vector prob-
lems when the matrix is banded. Finally, we conclude with a new iterative matrix-vector
architecture using a frequency-multiplexed AO systolic array architecture and discuss its
use for the solution of more complicated matrix problems.

(using a 2-D mask) j17j.

AO CCDS
LEDs cel E

FIGURE 9 Acousto-optic systolic array iterative matrix-

InFgre8 e hwa vector processor architecture [6].
general matrix-vector multiplication system (using a 2- mask) as

well as the iterative feedback architecture version of the same system. We restrict our
S attention to the PA - PB- PC portion of the systea for the moment. We imaoe the

outputs from the linear LED or LD input array vertically and expand the output f row each

horizontally to uniformly illuminate the rows of a 2-D mask at P9 . We then integrate the
we describe the output from the LEDs as a vector a and the transmittance of the mask as a
matrix (I - B), where I is the identity matrix, t e detector outputs at PC are seen to be

the matrix-vector product II - B]a and a parallel optical matrix-vector processor results.
If we then add an external vector-c to this matrix-vector product (and denote the vector
output at iteration k by a(k)) and-then feed this vector sum back to the LED inputs as theFinput a(k+l) at iterationk + , the system is described by

vetrpoesrarhtcue11
In igue 8 wesho a eneal atrx-vcto mutipicaionsysem usiq a2-Dmas) a
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(I - B)a(k) + c- a (k) - Ba(k) + c = a(k + 1).(8)

In steady state, when a(k) = a(k + 1) = a, equation (8) reduces to B a = c and the output
vector a is the solution

a = B- c (9)

of the matrix-vector equation B a = c . Many very attractive applications forsuch an itera-
tive optical matrix-vector processor have been described and demonstrated by us.

For our present purposes, we consider the realization of similar operations using AO de-
vices that are more reliable and commercially available than 2-D spatial light modulators.
We begin by considering realization of the matrix-vector product B a = d, when B is tri-
diagonal, i.e.

b2 1 b 2 2  a2  d 2

b b b 0 a d31 32 33 3 3

b 4 2 b4 3 b4 4  = (10,

b b b
53 54 55

Consider the system of Figure 9 used to realize the matrix-vector product in (10) . In the
system of Figure 9, the output from separate LEDs are imaged through separate regions of a
AO cell and onto separate detector elements in the output plane. In [6], we showed that if
the time-history of the three diagonals of B are fed to three input LEDs and the time-histo-
ry of the vector a is fed to the AO cell anl if the detector outputs are properly shifted
and summed, then the time-sequential detector output is the desired matrix-vector product
B a = d in (10) . Addition of an external vector c and feedback of the detector outputs back
to the AO cell inputs enables this system to solve matrix-vector equations such as B a = c
for a = B-ic. This is indicated 16] in Figure 9 together with the use of a slightly differ-
ent and more stable iterative algorithm than the one described in (B). This systolic array
architecture of Figure 9 is a very practical and general-purpose AO matrix-vector processor.

Many AO processor architectures can be used as the basic element in the system of Fiaure
9. If the SI or TI convolver of Figures 1 or 2 were used, then the output vector would be
the deconvolution of the received signal. This can be seen by writing the convolution as a
matrix-vector multiplication where the matrix is Toeplitz as was done in 16]. Similarly,
various difference equations can be solved on the system of Figure 9 by first writing the
derivatives in the equation as finite differences as we described in [6].

Next, we consider a new extension of this AO systolic matrix-vector processor conceot.
First, we note that the bandwidth and TBWP of the AO cell are not fully used in the system
of Figure 9 and that the detector shift and summation operations required are not attractive.
In our new optical systolic matrix-vector AO processor of Figure 10 17], we use a linear
array of LEDs or LDs at the input and again image them through selected regions of a AO cell.
However, now we form the FT of the product information leaving the AO cell and we detect the
outputs on a linear output detector array with parallel readout. Into the LEDs, we feed a
matrix properly arranged with its columns and rows multiplexed as functions of space and
time. Into the AO cell, we feed another matrix with its columns and rows multiplexed as
functions of time and frequency. As we have shown [7], the time-sequential output as a func-
tion of time and space from the output detectors can be obtained in parallel and that it cor-
responds to the matrix-matrix product. Note that in this system, no output detector shift
and summation networks are required (as was the case in Figure 9). We also note that the
time-history outputs from the detectors are available for direct feedback immediately into
the LED inputs or the AO cell input for iterative operation . We have extended this basic
concept to the solution of matrix-matrix equations, the multiplication of three matrices,
matrix inversion, etc. (7] followina the basic techniques usee in our prior optical systolic
array matrix-vector publications. We have also addressed the pipelining of data and opera-
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tions in such systems. From the brief qeneral remarks advanced above, we see that this new
and most general-purpose type of optical matrix-vector systolic array processor architecture
research has many, diverse applications and that it represents a major new area of applica-
tion research for AO devices.

LDS/ AO FT

LEDs CELL LENS

b / COLUMNS

I I 

t N ROWS

1=B = *' , =

b j Cm 1 b a

L M DETS

6 W ~,t)

FIGURE 10 New frequency-multiplexed acousto-optic iterative matrix-
vector systolic array processor architecture [7].

7. SUMMARY AND CONCLUSION

In these brief pages, we have reviewed the conventional AO processors that realize the
Fourier transform, convolution and correlation operations. We have also described ten new
AO processor architectures. These have used combined hybrid time and space-integrating ccn-
cepts, 2-D output patterns, multi-channel architectures, and qeneral-purpose matrix-vector
systolic array concepts. From this brief summary of new and advanced AO architectures, it
appears clear that these devices have a most attractive place in future signal processing
applications and that they can serve as very general-purpose processors as well as being
able to easily be configured into unique architectures for specific applications.
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Frequency-multiplexed and pipelined iterative optical
systolic array processors

David Casasent, James Jackson, and Charles Neuman

Optical matrix processors using acust optic transd'ucers are descrihbed with emphasis on new svstlit array

architectures using frequency multiplexing in addititn to space and time multiplexing. A Katnan filtering
applicat ion is considered as our case st udyv from which the operati n. required to such ; svsteln can be de-
fined. This also serves as a new and poweri'ul application ftor iterative ptit-cal processors. The importance

of pipelining the data flow and the ordering of he o perations performed in a pevcific application of ?such a
ystem lire also ntled. Several examples of how to effectively ac-hieve this lire included. A ne\% technique

for handling hiplar data on such architectures is also described.I
I. Introduction original architectures proposed. In Sec. IV we include

Optical processors that realize matrix--vector' and advanced AO systolic array optical processor archi-
matrix-matrix2 multiplications represent a most at- tectures with ittention to more complex operations and
tractive and rather general-purpose optical processor with attention to the throughput of the resultant sys-

concept. Iterative optical matrix-vecuor processors tem. A new basic optical systolic array processor ar-
constitute an even more powerful version of these basic chitecture using a Fourier transform Output plane with
systems.' However, the practical realization of these the simultaneous addition of multiple outputs on a
systems requires real-time and reusable 2-D spatial light linear detector array with parallel readout is pre-
modulators.1 Since electrically addressable 2-D spatial sented.
light modulators of adequate performance are not Since different data processing problems require
presently readily available, attention has recently different operations, we select a specific case study and
shifted to systems using acoulstooptic (AO) transducers thus in Sec. III introduce and describe a new application
that realize matrix-vector multiplications5 and iterative (Kalman filtering) for implementation on an optical
optical matrix-vector operations." systolic array processor. This case study (Sec. Ill) is

These recent architectures" ; are optical systolic array used to delineate the basic operations required on mr
processors. However, these initial architectures have system. It is important to pro)erly pipeline the data
not vet fully utilized the frequency-bandwidth and flow and operations in a parallel processor to fully re-
time -bandwidth products possible in the AO devices.' alize the parallel processing capability of such a s.ystem
In Sec. I1 we describe several basic frequency-multi- and to determine the basic processing elements or
plexed optical systolic array architectures that more functions into which a specific problem should be for-
fully utilize the signal capacity of the system and that mulated for priper implementation on such a syst em.
require simpler output detection systems than did the In Sec. IV we address this issue with the operations

determined from our Kalman filtering proiblem as our
case study. The new optical systolic array processotr
architectures presented realize mat rix mat rix mulli-
plicat ion, mat rix-mat rix matrix mtill iili-at in, as wil
as matrix inversion. Previous iterative opt ical tio-
cessors required various operations in the feedback loop.
These are usually imllemented digitally and can hence
appreciably slow down t he cycle i ime oft he systen. In
part icular, thipolarm p[enal ionls 0)n11 hese sv' t I Itt1 reituitr-

"heauthorsare with (arneize Mellon Iniverst. De vpartment --I the addition and sut rattion otdata front one ,-r slh-

Electrical Engineerin, Pittsburgh. IPennsylvania 17,2:3 sequte mu cycles and hence require A I) an d ) A tn

Rv(.iii tfI AuLust 1N2. verters l)Itls (igital data storage and( addi iii. In wec.

W03)t ti5 s003 iitol 15- II)$oI0t0iF V we advance a new t'echnique to a'ciiimiitnitc hipolar
.,s:I (hptiial Sic,'iety of Anerica. data oin such no oliherent o)ptical pricesrs.
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Fig I. Original optical svstolic Iilni rix v\tcir i' uhilli r .Xt-h l vecor multiplier using i pimit ust. otic inodulatior.

(after )R fls. --, d)d 6).

II. Basic Frequency-Multiplexed Optical Systolic parallel from some source. As noted above, this system

Array Processors uses the AO cell only to shift the input vector data a. It
does not use the large frequency-bandwidth and

By way of review we show the prior"" optical systolic time-bandwidth products possible in AO cells.
system in Fig. 1. This system achieves the multiplica- To alleviate these problems and to produce a more
tion of a banded matrix B of bandwidth three by a powerful optical systolic processor, we frequency mul-
vector a; e.g., B • a = d, or tiplex the input data. In Fig. 2 we show a simple initial

ht a, ti system to demonstrate the architecture and concept.
b.j -, U,.., d l We consider the multiplication of a vector with elements
h: hV, h3 :, a:, d., b,, by a constant a. In Fig. 2 we show a point AO

b4,. h4. h44  modulator (an AO cell with only one spatial resolution
h,3 b, 4 .- (h5 element or equivalently an AO cell with the input light

source imaged through only 1 pixel of the cell). As the
input to the AO cell, we place each b,, on a corre-
sponding frequency carrier f,, with intensity modula-

tion proportional to b,, and sum these M terms to form
one simultaneous input signal b,,, (I, ) to the cell at 1-bit

Without loss of generality, we have chosen the case in time TH. Lens L, now forms tat the output plane P:)-
which the main and the two lower diagonals of the ma- the Fourier transform of the light distribution leaving
trix contain the only nonzero elements of the banded the point modulator. For simplicity we ignore the
matrix. To achieve this operation, the time-sequential bandpass frequency response of the AO cell. and we
input signals to the three LEI)s (or laser diodes) and the show the system for the case of an AO cell bandwidth
acoustooptic cell are MAf extending from Af to MAf, where Af is the fre-

fI~t u ... o 14._ o) b, 0 quency resolution of the system (corresponding to the

f21t) ... 4: 0 ti., 0 b1_, 0 used aperture of the AO cell. i.e., the bit time TB = l/

ftt) = 0 :b 0 11., 0 hi A/). At P:j, we place M detector elements in a linear

g(t) = 0 a:i 0 a 0 a. (2) array at spatial locations corresponding to these At
frequency components. At the instant that the input

where time increases from right to left and where the bit signal b,,, (f,) is present in the point modulator, we pulse
duration for each element of B and a is Tii. As was on the LED or laser diode with an output light intensity
shown in Refs. 5 and 6, if the detector outputs are a. This light intensity multiplies the signal in the AG
shifted down at a clock rate 1/Tq and if successive cell and At waves leave the cell (at angles proportional
products are summed in the detector's CCD shift reg- to ,,). These M wave fronts are focused onto the At
ister readout channel, the time-history output from the output detectors where we obtain the M products ab,,
detector system will be the desired matrix-vector in parallel.
product d. Let us next consider the use of the system in Fig. 2 to

We have examined various alternate arrangements realize the general matrix-vector product Ba = c or
of the matrix input data B to the linear LEI) arrays to
avoid the need for a shift register summation readout [al Tel
system. Such an approach is attractive, since quite • •
drastically improved dynamic range will result if the , h.. = . 4:)

original architecture of Fig. 1 is modified and if proper
format control of the input data is used. I. i 1 ( 1

The system in Fig. I uses a I-D input array of LEDs To realize this matrix-vector multiplication in the
or laser diodes and a 1-1) AO transducer. The philos- system of Fig. 1. we partition the matrix B into column
ophy for realization of an optical matrix-vector product vectors b,, and write Eq. (3) as
on such a system was to represent the 2-D matrix B by
the time and space variables of the LED array. i.e., we lb1 ... b...la = c (4)

represent the elements b,,,, (of B by bx,t). This time To realize Ba = c in the form of Eq. (4) in the system of
and space multiplexing of the input data is quite at- Fig. 2, we time multiplex the elements a,, of a as se-
tractive since the LEI) input data must be provided in quential LE) inputs, and we time multiplex each b,,
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I
:3 any time period (this is necessary for such systems to

S OcLumNs become competitive with digital systolic array proces-S . S sors). The system of Fig. 2 performs one scalar-vector
product every TB and automatically adds the proper N
, ch products on the correct detectors. It requires NTj

Dfi' of time to produce the product of an M X N matrix by
an N-dimensional vector. The system of Fig. :3 per-

F_1. Itti pae. tint . and Irtnqu tthI exed optiCal ss- forms M vector inner products of the m th row of B and
tit lImatIrix t-( trcesr ipotat the column vector a in parallel and displays each of the

M elements of the matrix-vector product Ba on M
spatially separated output detectors in one T11 of time

and frequency multiplex the M elements of each b, as (after an initial NT 1 delay time).
the AG cell inputs. Specifically, b, is the AO cell input It is also possible to frequency multiplex each of the
at time '/i (with the elements of b1 frequency-multi- LEI) outputs in Fig. 3 (and thus input the matrix to the
plexed, b2 is the AO cell input at time 27%, etc.). We LEDs rather than the AG cell) or to combine frequency
choose to frequency multiplex the components of each multiplexing of both the LEDs and the AG cell. In this
column vector b,, in Eq. (4) since this arrangement al- discussion we do not consider all possible combinations
lows us to multiply t he first element a 1 of a by all the of space, time, and frequency multiplexing of the dif-
required elements of B (e.g., bl) at time TB. At time ferent elements of the system. The present arrange-
27',. we multiply a., by all the necessary elements b., of ment in Fig. 3 is the preferred architecture for realizing
B, etc. matrix-vector products (in Sec. IV we show that this

Several other combinations of input data sequences system can also perform many other operations). We
and different time- and frequency-multiplexing ar- note that the roles of the matrix and the vector are re-
rangements are also possible. Frequency multiplexing versed in this system (compared with the one in Fig. 1)
of the input LEl) or laser diode (or replacing it by a with the matrix represented by frequency and time
second point A( light modulator) are two of many dif- multiplexing being fed to the AO cell rather than the
terent possibilities. We selected the choice noted above input LED array. In Sec. IV we consider iterative
for matrix-vector multiplication, since all M compo- matrix algorithms as well as the pipelining and data flow
nents of.,,, = , are frmed at the proper M of the system. In such applications we will find it
output detector element. Each bna7,, product is preferable to reverse the matrix coding used to facilitate
formed at a different (n T11) time interval, and thus we data flow and operational pipelining. For now, our
can sum the proper b,,,a,, products by time integration initial concern is to convey the concept of frequency
directly (n each of t he M output detectors. This ar- multiplexing and the new general optical systolic array
chitecture does not require shifting the contents of the Fourier transform architecture of Fig. 3.
output detectors and summing the proper shifted con- If all N components of a are available in parallel, the
tents of these detector elements (as was needed in ear- system of Fig. 3 is preferable. If this is not the case, the
lier systems).r 'n 0 In the system of Fig. 2, after NTB time system of Fig. 2 is preferable. We note that, although
intervals, the outputs from the M detectors at plane P: the system in Fig. 3 produces the full matrix-vector
are the properelements c,,, of the matrix-vector product product in parallel, a time delay of NTB is required
Ba = e. before this output is obtained (this is necessary to

The arrangement in Fig. 2 utilizes the bandwidth of properly format the contents of the AG cell, using it as
the AO cell hut neither its full potential time aperture a time delay element). In Sec. IV we discuss how proper
nor its time- bandwidth product. In Fig. 3 we show a pipelining of data and operations can avoid this delay.
preferable topology for many cases. In this architec- We do not consider the system of Fig. 2 further since its
ture, the input vector a is space-multiplexed rather than potential is quite limited.
time-multiplexed and the matrix B is fre, wncy- and The locations of the detector elements in these fre-
time-multiplexed as before. In this system, after NTjj quency-multiplexed architectures are easily calculated.
time intervals, the contents of the AO cell are as shown For the RF frequency f associated with row rn of the
in Fig. 3. At this time the LEl)s are pulsed on with the matrix A, the spatial frequency of the signal in the cell
outputs shown in Fig. :3. This NTB time delay has en- is u,, = At/v., where v,' is the velocity of sound in the AG
abled the AG cell to convert the time- and frequency- cell. The corresponding location of this f, frequency
multiplexed h(ft ) representation of the matrix B into component in the output P:j plane is a distance d, -,
the indicated frequency- and space-multiplexed ar- u,,,X//n = [r, 1./nv., below the central point of the
rangement shown. When the LEI)s are pulsed on as output Fourier transform plane (where A is the wave-
indicated, the full matrix-vector product in Eq. (3) or length ot light, n is the index of refraction, and fl. is the
Eq. (4) is generated in one TB time period in parallel on focal length of the Fourier transform lens).
the linear output detector array. To fully utilize the architecture of Fig. 3, we consider

These architectures (Figs. 2 and 3) are attractive and the realization of more complex basic operations beyond
preferable to the original architecture of Fig. I because the simple matrix-vector multiplication considered thus
(If the increased flexibility they provide and because of far (e.g., matrix-matrix products, matrix-matrix-
the increased number of c(mputations they perform in matrix products, and matrix inversions). We believe
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that the reduction and description of a specific data Table 1. Kalman Filtering Algorithm
processing problem to such more complex fundamental ,.. __ . - - I

operations represent the best utilization of such a par-
allel architecture. To detail such operations, a specific -.... I' X..j 4K"

application is necessary. In Sec. Ill we describe a new 1.

and most powerful general matrix processing problem
for such systems (Kalman filtering). A discussion of (d,

the realization of several of the matrix operations re- Elwv.'] . .
quired in Kalman filtering using the architecture of Fig. _v
3 follows in Sec. IV, where we also address the associated . ., ... , .......
pipelining and flow of data and operations in such a
parallel processor. ______.. j...

Error T.rinr
Ill. Kalman Filtering on an Iterative Optical Systolic
Array Processor = - - % ii "• -

Our earlier optical matrix -vector research on optimal Kalman ... ..... MI)

control8-' used an iterative optical processor with a 2-D .... *= m • Ho

spatial light modulator mask. In such applications, the
refresh time (30 msec, typically) of 2-D light modulators
restricted the algorithms we could consider to those E.raj ...a.d State "ti. i

1 
, ",

which required very few changes of the 2-D mask. Our Ex .. oj ated Eri- Co...... (1k tik, = - '

original optimal control problem involved the solution

of the algebraic matrix Ricatti equation to calculate the Table II. Control Parameter Notation
feedback gains and optimal controls to be applied. Our
proposed solution" ,!' involved a double-nested iterative S,'. IIMENSISN

algorithm with an inner and outer iterative loop. On k -1-r S..1 .....
each outer iterative loop, the mask (the 2-D matrix) had NxI System state vector

to be altered. Our new architecture in Fig. '3 removes
the restriction of considering only algorithm s that re- -k N x N ____ ..... ........ ....

q u ire a m in im u m n u m b e r o f c h a n g e s o f th e m a trix -k N x I t n .. var . .or .a ..... it! ,. ....

mask. Moreover. our prior optimal control applications a N N

were restricted to the case when we assumed that all _ _______....... __.... _.........

states in our system model were observable and that the , N a S "e....e..nt.s....
noise statistics were known in advance. In practice,this _, N x N _ _ ......... ma.... tri.........

is not the case. Rather, we must estimate many of the N . I e asure.ent noise vector: . a.ssian distributed .
states in the control system (and we must also update meat e.. and -.variance

our estimates of the noise statistics after each new input N, N x N Error covarianc matrix

measurement). A solution to these problems is the x N talma gain m.1trx

discrete-time Kalman filter. This is an optimal filter x Ni x I State estimate atlter.seurrment.

in the minimum mean-square sense. Extrlated state

In Table I we summarize (without derivation) the 4.1 _... ..... _ _.................

basic discrete-time Kalman filtering equations.'" All " ........ :a e..or..ta.ia...matri

control parameters used are defined in Table II.
Equations (la) and (lb) in Table I model the system as are known in advance) the matrices Pi, and K, in Eqs.
a linear vector difference equation. Inourdiscrete-time (1g) and (lh). At time kT,. we make a measurement
system model, we assume that the system noise vector zA. We then calculate the new state estimate i;, from
w and the noise vector v associated with measurement z,, as in Eq. (li). This estimate is the expected value of
k are Gaussian distributed and of zero mean, as in Eqs. x/, given all the measurements from 1zjj to zA. We then
(hc) and (1d). and that they are uncorrelated as defined calculate the extrapolated state estimate R;, 4 1 as in Eq.
in Eq. (ie). The initial state estimate 9() and the initial (lj). This is based on the system model and our X, es-
error covariance matrix M,, in Eq. (If) complete our timate. If Q and R are known as assumed, PA. K),.
system model. The basic operations required in Kal- and M,+1 can be precomputed in advance from Eqs.
man filtering and state estimation involve an iterative (1g), (lh), and (1k).
algorithm (with the iteration index k denoting different In this initial example the only required calculations
time samples). The actual sampling times kT. are are the state estimate ik in Eq. ( i) and the extrapolated
equally spaced. We assume for now that the noise state estimate x,+I in Eq. (lj). In this case. Kalman
statistics (Q,R) are known a priori. The system model filtering requires only matrix-vector multiplications
(4,rJ) is assumed to be known. Just prior to time and vector additions and subtractions. Thus, the
kT,, we know the state x. of the system and the error simple system of Fig. 1 or Fig. 2 suffices. We address
covariance M1, from the time update Eqs. (lj) and (lk). how vector additions and subtractions can be accom-
We also know (or can precompute if the noise statistics modated in our system in Sec. V. For now we return to
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our Kalman filtering discussion and we consider the UM1 cU LM
more practical case when our a priori noise statistics -

(Qk.Rk are inaccurate or not known (together with
their time history) in advance. In this case, after the A °,-
neasurenent ZA, we calculate extrapolated noise sta- .= M -.

tistics Q,, and Rk from our prior estimates. We then - A.

calculate Pk and KA in Eqs. (1g) and (1h) and finally kj, •B
inEq. li. Next we extrapolate the state estimate and J

the covariance estimate to the next sampling time using A '... ..
Eqs. (lj)I and (Il k). Fig. -4. B'a~i( pace- I ine, and I requenc- n jItip;exed .,,ptica IyIn this more practical case, Eqs. (Ig)-( 1k) must be t)ic matrix matrix nultiplier.

calculated for each new input measurenicnt. The op-
erations in Eqs. (lg), (1h), and 1k) require the new
operations of matrix-matrix-matrix multiplication and
matrix inversion in addition tto matrix summations. We Table Ill. Time History (with Space and Frequency

note that the covariance matrices Mj, and Pj, are sym- Multiplexing) of the Contents of the Components In the

metric and specific algorithms can be used to simplify System in Fig. 4 for Matrix-Matrix Multfplications

the computations. To maintain the generality of our T1  T? T3  TA T, I Ca0imfs
processor, we will not exploit this matrix feature at al__
present. Instead, we use the matrix operations that AD1 13 C0 ELL nWrrs
emerge from this Kalman filtering application to define 'Z 2? '23 - - AT FRECCIES

more general and complex matrix operations required f °- . fz. f
in a typical problem. We now consider how to realize 32 32 33

these operations on our frequency-multiplexed systolic 1

array processor with attention to an efficient pipelining b22  b3
and flow of data and operations. - bTOS

IV. Pipelining and Flow of Data and Operations 51 2 LW

In this section we consider how the advanced opera- - -----

lions of matrix-matrix and matrix-matrix-matrix _ _ _

multiplication, matrix inversion, and matrix addition 11 C12 13

can be realized on our basic optical systolic processor. --- -- wts
To concentrate our attention on the architecture that C21 C2 2  C23  F" TIC
achieves the best pipelining and flow of data and oper- B c cR32  cs

ations. we suppress the details of the required timing - " ___

and control circuits and the required data storage and
buffering. In all case studies to be presented, we as-
sume square matrices (M = N) with no loss of general-
itv. To enable the data and operational flow to be more where the space, time, and frequency multiplexing are
clearly shown, we consider only the case of matrices of shown explicitly. To achieve the proper output, we
order N = M = 3. Our system architectures can be recall that the AO cell converts time to space, that its
directly extended to the case of matrices of larger transmittance shifts in space as time increases, and that
order. the Fourier transform lens converts frequency to space

We first consider the basic space-, time-, and fre- in the output transform plane.
quency-multiplexed optical systolic matrix-matrix To simplify description of the system in Fig. 4, we
multiplication system of Fig. 4 used to realize the ma- show in Table III the time history of the space-multi-
trix-matrix product AB = C. This architecture uses plexed inputs to the LEDs and the frequency-multi-
the basic system of Fig. 3 with the matrix B fed to the plexed inputs to the AO cell as well as the space and
linear input LED array as b,,,, = b(x,t); i.e., using space time outputs from the detector array. Note that time
and time multiplexing. The matrix A is fed to the AO proceeds from left to right in this table and that the
cell as a,,,, = a (f,t), i.e., using frequency and time mul- basic space and time arrangements of the matrix input
tiplexing as before. The matrix-matrix product in this B to the LEDs are as before. Referring to Table III we
system is thus realized as see that, at time Ti. all elements of the first column of

SPACE/TIME TIME TIME

AB C )ia ,a a lb b b In I~ c ,A1 2l 22 23 91, 21 b22  23 (,11 21 c22 c23

'1 '32 '33 '31 b32 b33 '31 '32 '33
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A multiply b, 1, all elements of the second column of A
multiply b,, and all elements of the third column of AJ. 
multiply b.11. The proper terms in these three vector ".
inner products are formed and summed on the correct 111
detectors by the indicated choice of space, time, and Tlug

frequency multiplexing. As before, there is a time delay5 , -- j L:'%
of 2TI, before we can commence accessing the element. A. L
of C. The philosophy used in this space, time, and i
frequency multiplexing is the same as before. We form A.
the products of the three rows of A and the first column It ' -F 4
of B to give the first column ofC. We then note that
the three rows of A are needed for stbsequent multi- Fig. . Iat ii space., mc .tl arid tr'q -flc( f i tiltilphoxed,m ina)

plications by the remaining second and third columns lolit matrix matrix matrix multiplier -ytem.

of B. We thus input these later columns ofB into the
input LE) array at successive times with their spatial
locations shifted by I-bit location (to account for the
propagation of the A data in the AO cell).

Thus. at time T4 we use the contents of the AO cell Table IV. Time History (with Space and Frequency Multiptlexing) for the

(the three rows of A with frequency-in tilt iplexed col- Contents of the Components in the System In Fig. 5 for Matrix-Matrix-

umns) to multiply the second column of B yielding Matrix Multiplications
outputs that are the second column of C at time T.I. At I Z T3 4, " T7 T -

time T-, we similarly produce the third column of C as , 2 c1 '
our output. T hus. in 57"1 this system perform s nine 2 '2 3 '1 '2 AT -

vector inner products (three at a tim e in parallel) after ' 2 3 '3 *3 , 1 , D7, S

a 2Ti, initial delay. We gate the output detector ele- -l 32 3 3I r ( -
ments off during this 2Th initial time delay. As shown -- " A1  TO

in Table Ill, the output from this system is the desired 12 b23 1 1 " 3 HE FT I

matrix-matrix product AB = C with elements: " ' d 2 33j LEDi/L

[ b2 - b d - I32

A-I 12 -.-- ri ~ 13t ' 1 2 1 ' :3~ D(ECTOR aJUWST

In general, the multiplication of two matrices of di- - '2C '23 '21 {'22 '23 TECTS OUT-PUTS

mensions (M X N) and (N X M) in this system requires L 3 '32 '33 j'31 '32" 3_3 AE FE 8XK 0 A

M frequencies, M detectors, (2N - 1) LEl)s, and (2N
- I)T, of time [of which (N - l)TI, is dead or delay
timel.

From this brief extension of our original system in
Fig. 3 to the realization of more complex operations such
as matrix-matrix multiplication as in Fig. 4, we have the functions of frequency and space) of the data inputs to
intuitive feeling that, unless the data flow and opera- the LEDs and the AO cell plus the detector outputs. By
tions are properly pipelined, this architecture will not T:j = 3T1, the A matrix is present in the AO (ell and
achieve its full potential. We now consider the case of now the first column of B is entered into the lower three
forming a matrix-matrix-matrix product (e.g., ABD = LEDs. At this time, T:t, the detector outputs are valid.
E) on this system as required in the Kalman filter for- and at times from T:j to Tr, the detector outputs are the
mulation in Sec. Ill. This proves to be an excellent associated columns of C (as in Fig. 4 and Table 1I).
example of how prop-r pipelining of the data and op- These detector outputs are delayed by one clock period
erations can achieve a reduced overall delay time and Ti, (by the S/H unit) and fed back immediately into the
efficient data flow. The basic matrix-matrix multiplier AO cell at times from T. to T;. At T7, the system has
in Fig. 4 is again used to realize this. The operati(n and completed the first matrix multiplication AB = C and
data flow we use involve first calculating AB = C and the LEI)s are now free to accept the columns (If D as
then feeding back C to the AO cell with D now applied inputs (during T,; to Ts). This is the precise time at
to the LED inputs. This system then forms CD = which they are needed. From T,; to, Ts. the system
ABD = E. performs the final CD = E matrix multiplication and

A simplified diagram of this architecture is shown in the elements c,,,, of E = ABD appear at the detector
Fig. 5. This architecture includes the basic system of ,,utputs from Tf; to Ts. We note that, in this feedback
Fig. 4 with the addition of feedback through a sample architecture, no additional delay or dead time is accu-
and hold (S/H) unit to a frequency multiplexing and mulated after the initial 2T loading of the AO Cell and
switch box. This unit insures that the inputs to the AO that new data can be fed to the AO cell at 7' and the
cell are the matrix A during the first three time periods LEI)s at T,, if necessary in specific problems.
and then the matrix C during the next three time peri- The two matrix-matrix cycles performed on the
,,ds. In Table IV we show the time-history flow (as system are summarized:
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TIME/SPACE , n TIME m TIME X-l*F, T-X TIME/SPACE

13 U

TIME/SPACE n TIME m TIME

c d e (7b)

where we again show the space, time, and frequency Bi,,, I= 11 - w11B + ,C'. 18)
multiplexing used. The first AB = C matrix-matrix where w is the acceleration parameter that is chosen to
multiplication proceeds as in Eq. (5). The C output is speed convergence of the iterative algorithm. When the
then converted to frequency and time/space by the results Bj, = B.+ I on two successive iterations k and k
frequency-multiplexing unit in Fig. 5 as shown in Eq. + I are equal, Eq. (8) reduces to the solution
(7a). The second CD = E matrix multiplication in Eq.
(7b) proceeds exactly the same as in Eqs. (5) and (7a). B = 11t'. (91
For the N = M = 3 problem, the system performs theFor he = = : prble, th sytemperfrmsthe To realize this algorithm in our system, we first re-
eighteen vector inner products, three at a time in par-
allel, in a total time of 8f,. In general, for (M X N) write Eq. (8) as

matrices, the system requires M frequencies and de- B,., I/ LA: II/c- - IB& + C
tectors, (2N - 1) LEI)s (equal to the time-bandwidth
product of the AO cell), and (3N - 1)TB of processing We then recognize that H is known and fixed and that
time. The total time delay or dead time of the processor we can easily compute 11w by a simple scaling of its el-
has not been increased over the initial (N - 1 ) Ti time ements (this flexibility in a variable acceleration pa-
delay. After this initial delay, all operations of the rameter w on each iteration is attractive and necessary
system are properly pipelined with no additional de- for increased generality of the problems for which we
lays. intend this processor to be used). We thus write l/u.Rather than considering further pipelining beyond - HI as a matrix A which we assume to be known and
the matrix-matrix-matrix multiplication operation in fixed (or easily recomputed for different w if necessary).
Fig. 5 and Table IV, we now consider the realization of Our iterative algorithm then becomes
a matrix inversion on the basic optical system in Fig. 4.
Our present purpose is to determine the basic archi- B, I = ,A'lB, + (J (11)
tecture of a space-, time-, and frequency-multiplexed Our final general purpose space-, time-, and fre-
optical systolic processor. In computing the error co- quency-multiplexed optical systolic processor archi-
variance matrix update and the Kalman gain matrix tecture is then as shown in Fig. 6. This system is similar
update in Eqs. (Ig) and (1h), matrix inversion is re- tothat of Fig. Swith the addition ofan input unit that
quired. This operation is computationally intensive computes jI1w - HI = A and a resistive adder and am-
and is thus a most attractive one to realize on our par- plifier with gain w at the output of the detectors.
allel optical system. To achieve this, we use a modified In this architecture, the optical system performs the
Richardson algorithm' that we previously described. :' matrix-matrix multiplication ARH.. the matrix C is
its realization on the present system is quite different, added one row at, a time to the rows of the AB), output
however. Let us consider solving C =HB for B =HIC (in a resistor adder) to form IAB, + C1. This matrix
without explicitly computing the matrix inverse H-. summation is then multiplied by w to realize the right-
This is attractive because in some cases H is ill-condi- hand side of Eq. (I I) or the next B),+ I iterative input to
tioned and hence cannot be inverted. To achieve this, the AO cell. In Table V we show the ti- histories (as
we use the iterative algorithm" functions of space and frequency) of the inputs to the
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LD, CD architecture otffig. 6, flow and pipelining of operations
I and data are ideal as there is no dead or delay time after

the initial (N - I )Ti AO cell delay.
2 -*]-Several alternate architectures were considered for

I OB this system. These included feeding b~ack the output
4 -PE)--to the LEI~s rather than the AG cell (this required

varialble delays of the detector outputs with the delay
A1~ time depending on the order N of the problem being

solved). In the system shown in Fig. 6. a fixed I 7Th
I delay (achieved with the S/H circuit) is adequate for all

I £'~ prob~lems. Thus, the feedback architecture indicated
was chosen as preferable. Realization of the addition

Fig. 6. ( ;neri opt clssi j ititv cal alplesrtrlit- of the matrix C in the optical system by including ad-
luore Unatrix inIversionl CaISt St~d idtet i ltdi(. d it ional input LEDs and additional time was also con -

sidered. Since this resulted in a slower system with
poorer pipelining of data and operations and a general

AO cell and the LEI~s, the outputs from the detectors, degradation of the modular structure of the processor's
and the inputs and outputs from the adder. For nota- architecture, we chose to achieve matrix addition by the
tional simplicity in Table V, we denote the elements of' external resistor adder following the detector as shown
the initial k =0 matrix Bo by b,,, the elements of B, in Fig. 6. On inspectiwn of Table V we see that, to allow
(B31 for iteration k = 1) by b ~,,and the elements of B. feedback of B,~+ Ito the AG cell rather than the LEI~s
(fork =2) byb ". As we see from Table V, the initial (this is desirable as noted above), we have used A and
b,,,,, inputs to the AG cell originate from our initial es- B,. as the inputs to the LEDs and the AG cell. respec-
timate as described in Refs. :3, 8, and 9 and thereafter tively. This differs from the prior systems (Figs. 4 and
all future AG cell inputs for all successive iterations 5) in which AB was formed with A fed to the AG cell.
come from the S/H output circuit. Thus, in this final As detailed in Table V, we achieve the proper matrix

Table V. Data and Operational Flow and Pipeiinrg of the System Ini Fig. 6 for Matixs
inversion

TI T2  T3  T4  TS T6  T7 Te COIWETS

b1 b21 b31 bI b21  03 , b1  b'1  I A C.L tWUSSA
b b2  b b'e2 b ' RQECE f.f2

12 2 31 2 V2 i2 2 2T 4- T6AC T7- T9 ARE

b 13 b123 b 33  b13  b '3  113 b '3  b;3 F" OETECTW .

3143

a 1 3 a21 a32 IPU'TS TO

l1 122 a'33 af 2 22 a33 TEFV

12 a23 a'12 a 23 -

a - 13 - a'13 - -

d 1 821 831 8;3I c~ 8l DETECTOR OUjTUTS
d - 12 822 d32 d!2 q22 d312 a

d 13 d~23 d3 3 d 8ID 23 3 AI

III1  c 21. C31  C 1 C2 1  C3 1

c12 '22 '32 '12 '22 C32 KIATRIX f

iIPTS TO
c 13 C2 3  C3 ' 13 '23 c33 Ti ADE

11 b t 21 b31 
1

1 It 7 ,T A

612 b 22 b~ 32 b 
1

2 p 3 +2 INUT

-1 b2 ti e33 b' '13 b' 23 " H

b'1 W21 W31 11' b2'1 9"E - ME

'1 - b 2  b2 2 b32 12 2? US= DCL

b ' b I' " b " b INUTS FROM T4 ETC.
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p multiplication and feedback by space multiplexing of curacv of the resultant processor. ''o maintain a high
the rows of A and time multiplexing of its colunns at system throughput, an alternate bipolar-valued data
the LE) inputs and by frequency multiplexing the rows algorithm is thus desirable. We now describe our new
of B and time multiplexing its columns. This differs solution to this problem.
from the space, time, and frequency multiplexing used We consider first the multiplication of two bipolar
in Figs. 4 and 5. The AB = D product thus appears on scalars a and h. We denote their positive and negative
the output detectors one row at a time. Further anal- parts by (a+,a-) and (b4 ,b- ), respectively. Each of
ysis shows that this architecture of Fig. 6 can realize all these components is non-negative. We recall that ifa '
the prior matrix operations (matrix-vector multipli- > 0,then a- =0, and ifa- >0, thena+ = 0(i.e.,half'of
cation, the solution of linear matrix-vector equations, the elements will always be zero). The required bipolar
matrix-matrix multiplication, matrix-matrix matrix inult iplication is
multiplication, vector addition and subtraction, matrix
addition and subtraction, matrix inversion, and the (l, = 1 -. a ,+ 

- ,
solution of linear matrix-matrix equations). We thus = (ah + a ) - W + a + h 1 1121
choose this as our basic architecture for the class of From this we see that the positive and negative parts of
problems we have thus far considered. In later publi- the product a t are
cations we will address the fabrication details of such
a system, the partitioning of large matrix problems into (a 1' = ( 1/,' + a h i. 413aI
smaller ones and the full details of implementation of a 1 a 10 + a , . t 3o
Kalman filtering and other linear and nonlinear alge-
braic matrix applications on such a processor. We now and the bipolar output product is
address the final topic of this paper: operating on bi-
polar-valued matrix and vector data and the imple- (d, = uii - ,tJ 14
mentation of matrix subtraction. whereas before only one of the two terms in Eq. (14) is

nonzero. We now extend this technique to the case of
V. Bipolar-Valued Data Handling matrix-matrix multiplication AB = C where the matrix

Many techniques have been suggested for accom- elements are bipolar-valued. We arrange each element
modating matrices and vectors with bipolar- and com- a,, of the matrix as a (2 X 2) submatrix and each ele-
plex-valued elements on an optical processor. We ment of B as a two-element column vector. For N = M
consider only bipolar data representation here (the =2,

+ -l + - + b+2 +1 +

al1 all a12  a12 b bl C1 C12

- + - + b -. . ial a1 1  a1 a1 bl 2 l c1

a21 a21 22 21 22
- + - b+ b b -

21 a21  '22 '2 j 21 22 L21 c22

extension to complex-valued data follows directly as Each element Cm,, of the output product matrix C is
before ). In all prior approaches to processing bipo- likewise represented as a two-element column vector as
lar-valued data, the matrix was placed on a bias (this shown. As before, only one of the two elements (c,,,, 4.

increased the dynamic range requirements of the de- (c,,,,)- will be nonzero, and all input and output ele-
tector and the matrix). In our prior bipolar-valued data ments will be positive or zero. We have detailed this
algorithm :' we operated the system twice, once with new algorithm for the case of matrix --matrix multipli-
positive-valued input data and once with negative- cation in Eq. (15), since this is the basic operation per-
valued input data. In postdetection electronics, we formed on our new systolic processor shown in Fig. 6.
then form the difference of these two matrix-vector This algorithm leads itself to direct pipelining and
outputs. This achieved the necessary bipolar matrix- incorporation into all our architectures since the matrix
vector multiplication. However, this required consid- output is fed back to the AO cell, and this output C is
erable time (A-I) and D-A conversion and data storage, in the required form of the B matrix as shown in Eq.
plus a digital addition in the feedback loop). In con- (15). This increases the size of the processor 1(3N - 1)
trast, our present architecture (Fig. 6) requires no A-D LEL)s are now required rather than (2N - 1) as before
and 1)-A conversion and performs the necessary matrix and 2M frequencies and 2M detectors are now re-
addition in an analog system (this is possible to suffi- quiredl. All previous bipolar-valued data algorithms
cient accuracy to be compatible with the accuracy of the requir? a similar increase in the number of point
rest of the processor). Our present initial concern is sources, frequencies, and detectors, however. Our new
pipelining of data and operations and the speed of the alviorithm is superior to our prior one because it is di-
system. In later publications we will address the ac- rectly incorporated into the flow and pipelining of'data
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and operations (without the requirement to operate on matrix subtraction. The resultant systolic architecture
output data from successive cycles) and because it re- does not require CCI) shift register readout and sum-
duces the dynamic range requirements of the detector mat ion of the output detector array, and it more fully
and the matrices, utilizes the frequency-bandwidth and time- bandwidth

The arrangement in Eq. (15) can also be used to products of the AO cell. Our new bipolar data algo-
perform a true matrix subtraction without the need to rithm avoids the need for A-I) and 1)-A conversion and
handle negative numbers. To show this we consider digital subtraction in the feedback loop. It thus pro-
forming vides a fast system with continuously pipelined data and

A - HC= 1). 1161 operations.
The applications for iterative optical processors are

Using our prior ( )+ and ( ) notations, we write Eq. (16) quite considerable. The applications we have ad-
as dressed to date include: adaptive phased array radar

and beam forming, -'2 optimal control, s ' deconvolutionand inverse filtering,' and Kalman filtering. Also
= IA + BCI - - IA + 113' 1, (17 documented " is the use ofan iterative optical processor

from which we see that the positive and negative parts for general operations such as solution of simultaneous
of the bipolar output matrix D are obtained as algebraic equations and difference or differential

equations, least mean-square problems, computation
DW = A+ + B0-, (ISa) of eigenvalues and eigenvectors, and nonlinear matrix

D-= A- + (BC). 18 )1 problems. The use of iterative optical processors im-
plemented with the new frequency-multiplexed systems

Realization of Eq. (16) in the form of Eq. (17) tbllows described in this paper represents a most powerful and
directly from the matrix partitioning used in Eq. (15). general-purpose data processing architecture.
This new bipolar and matrix subtraction algorithm now
completes our list of operations required for Kalman
filtering. A quite similar list of operations exists for References
many other matrix problems. 1. J. (todman, A. I)ias. and 1,. Woody. Opt. Left, 2,1 1I971.

2. A. l)ias. in "Optical Informatiom Processing Ior Aerospace Ap-
Vl. Summary and Conclusion plicati hns." NASA (Cont. I'ub. 2207 tN'I'S. Springfield, Va..

In this paper we have advanced and described a new ]98s n.

iterative matrix-matrix application (Kalman filtering) 3. 1 . (arhftlo and 1). Casasent Appl Opt. 21, 1-17 (19821
.1. 1). ('asasent, IProw. IEEE 65,143: (1.977)

for implementation on an iterative optical systolic 5. H. ('alfiel vt a.. Op. 'Commun. 111, 86 t 91.

processor. We have analyzed the operations required 6. 1). 'asasent, Ap)pl. O(). 21, I59 (19852).
to realize the Kalman filter and found that they include 7. A. Warner el al .1. App)l. 'hys. .13, 4489 (1972 1.
matrix-matrix and matrix-matrix-matrix multiplica- S. I). ('asasent ct al. I'r,. S.,. i'hoto-Opt. Instrum. Eng. 295, 17

tion, matrix inversion, and matrix addition and sub- (1981).
traction. We have proposed several new space-, time-, 9. C. Neuman 0i a/ . Prc. Eleotro)Opt. Svst. Ites. ('on). :it.

and frequency-multiplexed iterative optical systolic (1981.
array processor architectures. We addressed the flow 10. A. Bryson an(l Y. C. Ho, .4pplicd Optimal (Citrl (Ilaidell.

and pipelining of data and operations on these archi- Waltham, Mass., 1969), ('hap. 12.
1i. 1). Young. Itcrativc Stluimi of Larg' Linear SNstems (Academi(c.tectures (with attention to the operations required for New York, 1971 H. pp. 94 and361 365.

the Kalman filter). The final system in Fig. 6 repre- 12. 1). ('asasetit and M. ('arhltto. Opt. Etg. 21, 814 (Sept. 19821.
sents a general-purpose basic optical systolic array 1:. 1). Casasent and C. Neuman, in "Proceedings. optical I)ata

module capable of all the required operations. We have 'rcessing for Acrospace Applications." NASA ('onI. Publ. 22107
also described a new algorithm for bipolar data and IN'I'IS. Springfield. Va.. HI95).

The support of this research by NASA Lewis (grant
NAG 3-5), partial support by the Air Force Office of
Scientific Research (grant AFOSR 79-0091), and by
contractors of Unicorn Systems, Inc., is gratefully ac-
knowledged.

124 APPLIED OPTICS / Vol. 22, No. 1 / 1 January 1983



1 -41-

I

6. LU AND CHOLESKY DECOMPOSITION ON

AN OPTICAL SYSTOLIC ARRAY PROCESSOR

VL

4t

-Ii



Volume 46. number 5,6 OPTICS COMMUNICATIONS 15 July 1983
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Direct rather than indirect solutions to matrix-vector equations on an optical systolic array processor are considered. A
frequency-multiplexed optical systolic array processor for matrix-decomposition is described. The data flow and ordering of
operations for LU decomposition or gaussian elimination and LLT or Cholesky decomposition on this system are detailed
using an algorithm that utilizes the parallel processing ability of the optical systolic array processor. The time required for
this optical algorithm is founl to be much less than for the digital equivalent. The data flow in the optical system is seen to
be most excellent.

1. Introduction considerable attention must be paid to the pipelining
and flow of data and operations in any systolic array

Optical matrix-vector processors 11,21 are very processor. In section 4, we discuss a simple method for
general-purpose systems appropriate for many applica- extending the process of LU decomposition to
tions. The new optical systolic array architectures Cholesky £T decomposition on our optical processor.
13-51 using acousto-optic (AO) devices are even more
attractive because both the vector and matrix are easily
updated in real-time. However, such processors require 2. LU matrix-decomposition
attention to the pipelining and flow of data and opera-
tions 151. A primary application for such systems is A very popular direct solution to Ax = b for x is to
the solution of matrix-vector equations of the form decompose A into the product of a lower L and an
Ax = b (or similar matrix-matrix and nonlinear matrix upper U triangular matrix. The equation to be solved
equations) [11. Thusfar, only indirect or iterative al- then becomes LUx = b. One can solve this equation by
gorithms have been suggested for the solution of such first solving Ly = b fory and then Ux = y for x. Alter-
problems on optical processors. In this paper, we ad- natively, one can compute L- 1 and L-b -- b' and
vance a direct solution using LU matrix-decomposition solve Ux = b'. Since L and U are triangular matrices,
(or gaussian elimination) 161 and also propose a paral- the solutions by back substitution are easily achieved
lel method for Cholesky decomposition 161. in dedicated digital hardware. The computational

In section 2, we discuss such solutions and formu- load associated with the LU decomposition is much
late a parallel algorithm for LU matrix-decomposition larger than the solution of the simplified triangular
that is very attractive for an optical realization. We equation that results [6]. Thus, the use of an optical
also note that when direct techniques are used, it is systolic array processor for matrix-decomposition
preferable to realize the matrix-decomposition on an appears to be a new and most attractive application.
optical system and to utilize a digital processor for the We now consider an LU matrix-decomposition al-
solution of the simplified resultant matrix-vector gorithm that is most suitable for implementation on a
problem. In section 3, we describe one method of parallel optical systolic array processor. For an A X .
realizing LU matrix-decomposition on a new 151 fre- matrix A, we require N - I steps. In step 1, we form
quency-multiplexed optical systolic array matrix- M! A = A1 (where the first element is the only non-zero
matrix processor. In our solution, we also note that element in the first column of A,). In step 2. we form
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M2 AI = A2 (where A2 is such that the first element is b, we will compute only U and Mb in (3). These cal-
the only non-zero element in the first column and the culations will be performed optically and the simpli-
first two elements are the only non-zero elements in fled problem in (3) can then be easily solved digitally
the second column). We continue this procedure for by back substitution. Such direct techniques are often
N - I steps until we obtain MN lI AN.2 = AN-, which more attractive than indirect or iterative matrix inver-
is an upper triangular matrix U. Each matrix M n is an sion algorithms when the same matrix is used many
elementary lower triangular matrix of the general form times (e.g. in the implicit solutions of partial differen-
of an identity matrix with non-zero elements below the tial equations as described in [71). They are also attrac-
diagonal only in the nth column, tive since the number of steps required (N - I ) is fixed

and known. Conversely, the number of iterations re-
quired in indirect solutions is not easily estimated in

1 advance. We assume that A is either strictly diagonally
dominant or positive definite so that there is no need

0 for pivoting (interchanging rows to insure a(n - )
1-.,.,(1) > a "kforn+I<k4N)[6].

0- 3. Optical systolic array implementation

where the non-zero elements of column n of m. satisfy To optically implement the LU decomposition, we
(n-I) (M-1) (2) consider the frequency-multiplexed optical matrix-mk,n sk,n Iann  ( 1) matrix systolic array processor [5] of fig. 1. In this

for n + 1 < k 4 N. By the symbol akn we denote architecture, M LEDs are imaged through M regions of
element (k, n) of A. -1 at step n - 1. an acousto-optic (AO) cell and the Fourier transform

The product M- 1 ... M1 = M is also a lower triangu- of the light distribution leaving the cell is detected on
lar matrix. To solve Ax = b, we thus form the upper- an output linear detector array. If the matrix B is fed
triangular matrix MA = U and the vector Mb = b'. We to the LEDs with the matrix elements brn encoded in
note that M-1 = L is lower-triangular and that A = LU. space x and time t as b(x, t) and if the elements amn
Thus, Ax = b can be written as M- 1 Ux = b or as of the matrix A are encoded in frequency f and time t

Ux = Mb. (3) as a(f, t), then the detected output C is a matrix with
elements Cmn = c(x, t). This matrix is the matrix-

In our proposed LU decomposition of A to solve Ax matrix product C = AB. If bn= b(t, x) and am=

FT
LDS / AO LE NS
LEDs CELL .

I-b..

-b(z.., 3, , ) 0 f

A
A "am * e(f.t)

Fig. 1. Schematic diapam of a frequency-multiplexed optical matrix-matrix systolic array processor.
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a(t, f), then cm, = c(t, x) and C = BA is produced. The Table I

operation of this system is detailed in (5]. We denote Detailed data flow for the realization of LU matrix-decomposi-

separate time slots on this system in units of a bit time tion of a 3 X 3 matrix on the optical systolic array processor

TB as T, = TB, T2 
= 2TB, etc. ForN XN matrices, we of ig. 1.

require (2N -l) LEDs. At each TB, N LEDs are used. TIME (T . nT ) T1 T2 T3 14  T5: T6 17

They are fed with successive rows or columns of B. The - 4
LED INPUTS 1 1 1 I

N LEDs used are shifted up by one at successive TB (FROM FIC.2 cIRCUIT) !!1 !!2 -3:-2 -!3:

times. For example, for bnm = b(x, t), the bottom N 0 0 0AO ,RZo f -f3 0' 0' 0- 0 e11 1
LEDs are fed with the first row of B at TB.LEDs 2 CELL f1f3f A 1 3 2 -

through N + 2 are fed with the second row of B at INPUTS FREQ f4 b0 b 2 b 3 : b 2 b 3 ,

2TB, etc. This is necessary to allow the input data to D 1 .2 2:

properly track the matrix information present in the iETE CTo2 -3 -2 -3

AO cell as it moves through the cell. b I b2 b

To implement our LU decomposition algorithm 4

described in section 2 on the system of fig. 1, three STORE Co2. of CoI.2 of A2
Elem. 33,

operations are required at each of the N - I steps. At 91.1 of bl1 2 b
stepn, we: b2 3

(I) calculate (l/ann -l)

(2) calculate the terms mkl I I-/an in an in
(1) and (2) for n + 14 k 4 N, M, and the first row ) of An is formed on the de-

(3) calculate MA,_ 1 = A, and Mnbn.. = bn, tectors. At successive nTB times, successive rows of
After N- I such steps, we have our desired MNI IAN- 2  An are produced. We compute Mnb,. 1 = b, in step
= MA = U upper triangular matrix and the Mb vector (3) in parallel with A. by adding an additional (N + I )th
required in (3). frequency to the cell and encoding elements b(n- 1) of

We perform steps (1) and (2) in simple analog elec- b,_ 1 on this frequency at successive TB times.
tronics (fig. 2) and perform step (3) on the system of The nth column of the final U matrix has been cal-
fig. 1. At successive TB times, the circuit of fig. 2 pro- culated at step n and at step n + I we do not alter the
duces successive rows of Mn. We denote row m of M first n columns and rows of A. or the first elements
at step n by mn ). Since each row has one element that of bn. Thus, at each step, we store the appropriate new
is I and only one other non-zero element, a simple column of A, and the corresponding new element of
MOS switching gate array can select which two LEDs bn and we operate with matrices Mn and A, -I reduced
are on at each TB and feed the I and mkn data to in order by one on each successive step. In table 1, we
these two LEDs. To form M, An, 1 , we thus feed suc- show the pipelining and flow of data and operations
cessive rows of M, to the LEDs at successive times TB. in the system of fig. I for the case of a 3 X 3 matrix.
We frequency-multiplex each row of A,- 1 (we denote This table shows the inputs to the LEDs and the AO
the kth row by a("- 1)) and feed successive rows to the cell as well as the detector outputs and the data stored
AO cell at successive times TB .After NT B of time, the at successive times Tn = nT B . As before, we denote row
full A, matrix is present in the lower NTB time slots m of M and A, by mn ) and a ) and the element m of
of the AO cell. The lower N LEDs are now fed with bn by b() (note that A0 = A and b0 = b).

For an N X N matrix, we require 2N - I LEDs,

COTrrOL N + I frequencies and an AO cell of length (2N - I )TB.
Processing the first column of A requires (2N - I )TB
of time, processing the second column of A, requires

,k- SWIT LE, (N - I)TB, for the third column (N -2)T B , etc. Ignor-
ing the initial (N-I)T9 set-up time, the total time for
an optical LU decomposition is

,nFig. 2. Analog circuitry to compute the mth row m of Mn
at step n.
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[(N) + (N-1) + (N-2) + 213 TB(3) On the systolic optical processor we then form
the matrix-matrix product PU. This requires (2N- I )TB

[(N 2 + N-2)/21 TB . (4) of time [51. This is now our desired upper-triangular
matrix

For large N, approximately N3/3 multiplications are JT = PU, (6)
required in the conventional serial digital LU decom-
position approach. If we assume that a multiplication and the Cholesky decomposition is uniquely deter-
time and our bit time TB are comparable, then the mined.
digital system requires approximately a factor of NTB  Our optical implementation of Cholesky decomposi-
longer time than does the optical system. This occurs tion requires only [(N2 + 5N - 4)/2] TB of time. For
because the optical system performs N vector inner large matrices of order N X N, the conventional
products in parallel during each TB time. Memory Cholesky decomposition on digital computers take
access times, data management and bookkeeping can approximately N 3/6 multiplications. Thus, the digital
increase the time required digitally (especially if N is computation requires a time approximately a factor
large). As shown, data flow in our proposed optical of NTB/3 longer than does the optical computation
realization of this LU algorithm is quite ideal.
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Singular value decomposition using iterative hIts thet d isadvant ages Ihat Ithe relat Ii in at b est is qukalIitaitIiv
optical processors olilY and that this relat ion ist rue onlY. for Markio% t Ylie iniige'.

The mthoduggeted in this L et te r is app ~lit-ahle 14,general
B. V. K. Vijaya Kumar mat rices and pro v ides expl it-it estimiates tit the(Ii doinnt 

Carniegie- Mellon I niversitY, D epa rt menti of Elect rical singular %-allies.
Engi neering' P t shutu r P n nsvlvan ia F1213 Because 4 the unllitary- natutre if mat rices, 1 and V. we can
R ece ived 2:' D ecemb er 19,12. g.et the fotllotwinrg twio results fro m Eq.

c I S:; Optical Society it'Atticrica. VDt U 1 U1 ) I ' VI

Recent ly. there has bteen increasing interest' ' in extend- = Vi DI), -
ing, the repertoire of operations achievahle through optical (MI i = I 11) I~ NIIVIAL' Iit
(tit processi ng. A iai r lssif[W cesiir riilt sd iwa'
this end is that oft iterative optical processors (10P). The =t)''V~ 'I
generic [101P has two dat a paths: at ft irard path, where an U 11i) 1, D).
inputt vectoir x is multiplied hY at matrix Mi to produce thle Fro m the ahove restilts we canti easily c ehide the fi tltwing.

outtpurt vectory and a feedbiack path which uses y to prildice Thel Ci cims ui, u2,. .. -u, of matrix U are the eigenvectors
the input to the forward pathI for the next iteration. I ni[)e- ofimatrix M I'M with thle coirrespoinding eigenvaliies given lh\
mient at itns of 10 1) include fibher based svstemns and more the diagonal elements if' D I'D i f'size ni X o . Siil a rlv t he
ret-entlv, syst eras based unl the uise of' acottst oiti light ort cttlumns vt*i,.. .,v i ifV are the eigenvect i rs ofMM
titittWilattirs along with syst itic- pro cessi ng concept s. Becaulse with the corresponding t'igenvalues being the diagional ve-
thle differences anmiong these implement at ions are iit co n - me its it DD ". Si ne D is at matrix wit h d iagional nonze ri
ceptuil. we will treat these ats ettuivalent in this Let terAji- elvieens ta. (Y. , , T, the diagonal matrices DI antd D ID
itlicat ions itt [OP incltude thle tiptimial weight vectoir determi- contain the nonzero elements irj. .. 0< I' Thos thle singular
nat ion toir adapt ive radar array, mat rix i nversiiin ftor ci mt nil Valutes aT, tof the matrix Mi t-an ie opt itl lv ioItainetd liy using,
[)riillenisi; and ienae/gnecirestimatioin.-- 'Ii this thle ptower method tit determine thle eigenva-iues oft thle ma-
Letter we suggest a way itt ttsing the 101) for est irmatig thle t rices MM1 u7' iF rdtkn h sl-r itto hs
singutlar values anti the coirresponding singular vectoirs tfa values. We can also otbtain the dominant left singular vectiirs
miatrix. liv determining the dotminant eigen ettirs oittMM 1 'and thle

Tlhe singular value tlet-tinpisit iiit (SV[)) if a matrix Mi tf dominant right singutlar vectors U by dettermining thle titini-
size in X n Iwith in t nt)is given liv nant eigenvecttirs' ifM "M'N. More detaiuls regrdin-g the ap-

pitcat ion i f power met hod for determni ng the ergenvalues anI
'I ~DU igenivectuirs cartt ie fottnd elsewherei.'I This approach has

whee Dis n i x t mtri t-intinig zrri evrywereex- the disrvantage that the mask representing MM F requires

cept along the first r diagoinal elements where r is the rank of ia dynviamic range that is twice tin decihels) iif a mask repre-
he matrix Ni. Let us arrange the noinzerot eiwtres alilg thle senting Ni. As pttinted tiut bi\ Stewart.'-'< this situtation c-an

diaitnal if this matrix in des-eniding oirder as al-('-' ur . Y,. easily lead tit very erroneous resuilts irr thle ptresetnte itt init e
I'he mat rites U and V arte tinitary and are of size P? X 11 antI actiracy.
i X Pin. respect ivtlv. and thle surperstcr ipt T' dentot es the A pi ssi hle appro at-h toi avidling thle d vuata it range itritl-
ranspotse oiperatiton. SVI) was originally cionteived as an lems of the mask is to ttse twit masks. tine tot reptresent Mi and

atcturate rie thiod ittes t imatrig the rank ia sr gular matrix, a not hier to ittentte Ni 1' These two masks can lie used in twit
Andrews arid Pat tersitr have shoiwn its uise for imiage coni- different op~titcal vector/miatrix rmultipliers coinrnected ii] alotopj.

pressi iiiap~plicat itns. SV 1) t-art te t-onsidered as Ire dlet er- T [he funttions ittthese two trial ri x,'v~ecl ti iI )1 itrs tarti lie
in in ist it cotunt erptart otite stat ist ical Karhitrnen -I o eve (K- L) lt tet'r trnderstoo ii i lttk in ri at hie fotllotwing resul ts easily
transfo rm in tht' sense explained beltow. The K-1, transform ioitai ned frim t q. M I:
is liased tin the coimput at ion i f a t-ovarianie mtririx fri nt al NitU D
e nsernide (it' imnages and t hent tsl irnating the do m inant ei-
gerivetIrs ut this matrix. 'These dominant eigenveetirs call Mt' I tj) F*

Ihen hie shtiwn tio reptresent the set it' images oipt imiallv. buat The abttve exact eqtuat ions suggest t he filliowinig versioin it'
at single image may nit lie represented well. Thus the K-1, pitwer intlhod to estimate the singuilar values nid the cttrre-
t ransfoirm has the disadvantages that it ineeds an enisenible it' sptiirding singtular vecttors.
mnages and t hat it may nit represent a ptart it-rilar image very' Step I1: (Chotose anl initial vectotr uo.

well. 'ihe SVI)switrts onlytnapriua iaeadi ert Stept 2: D~etermine the matrix- vectoir proidutt Mu,,. Noirmr
tioward representing that image in the senste tif minimtimi ittthis vector is the init ial estimate t-or the first sin-
sqtiare errttr. Even thotigh the uset'tilnes itSVI) for image gular value. Notrmalized Nttrmn It1 versiton ittthis

proctessing was demotnstrated long agtl 'ii. it has not gained vectoir is iotr new estimate for v. namiely" , this is v,,.
po ptilar atccept antce itetatrse ott the heavy tivnomput at ional Step :1: Find v,. froim u;, acct-trding toi v,, Nttrm iMu.. 1, and
Irurden it imptoses. If iipt ital [irtitessing c-an lie tused toi [per- u, + i is fountd froim v,, as tier u,i = Norm( N ' vii.
form SVI). this coimpurtat ioit can lie tarried at a rapitd rate, where Norml.I denotes the noirmalizatittn siucl that

Bet-mise ott the heavy ti m potat itnal biurden iiipertrimi ng the resti [Iinrg vectohr isoit iinit. length -. 'lhenii ril t
coi mplete SVI). it is desirahle toi knotw a prioiri if SVI) is useftil the vectors betfire niormalizatiton is anl est irnate tt thet
for data cotmprtessiont' with at partictilar image. T'his tar t e singular v-allues iiithe matrix.
answered byv est imalinrg the singular v-alu es itt a matrix and Step 4l: R epteat step :1 tint il t'onvergenlce is ob t a inedl in t ie
then cioimpatrinrg the inagit it tites ittthe few domtin iant singular estimated singular va lues. '[he'vi-ivergerite lie-

valtues, Sahasrahud he antd V aitival suggest it relatioin lie - havitir iof suth a it app~ro atch is iiisisserl else -
I ween these dotminant singuilar valtues and thle oihserved cur- where.
relat io n i-i etiiient ft i a Mrki v type image. Their inel hi d As cori he easily scen froim the alitove algo rit hm. the topt ical

Reprituti'd Critill Arpied Opt its. V'ol. 22. page 96i2,- Aprit t1, t l:t
uips-right C6 vlsi:t iwv t hie Op~tit-al Ss-ii't y iiiAmrrit-, arid reprinite'd liY piermiissionr o f t he coipyrighit otwneir.



realization it I I. j, ilhl i IvIl e p I I l, it f I h Nhi(h
oplicallv multplie. u, . I y M Iproduce v, ald a bhlont hall
which Will m hiply tlie v, generated in the ti halt. I, matrix
M I produce the vect or u, I as tht inlput I hr the nex I (ycle
al the top hal. Stich an arrangement increaue the conn-
plexit t flth, hardware b. a factor if 2. lut it enable, u. to
ibtain more accurat etimats oif he .inutlar value and the
singular vectors.
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ABSTRACT
component errors on such a processor is a major
issue. Such analyses of conventional optical line-

The design, error analysis, component accuracy ar algebra processors are very limited [11,12).

required, computational capacity, data flow and Our own results have addressed the use of such pro-

pipelining, plus the algorithm and application all cessors in the soljtion of a total system problem.

seriously impact the use of optical systolic array In this area, we have found that for adaptive

processors. This paper provides initial remarks, phased array radar and optimal control that the ac-

results, examples and solutions for each of these curacy of the adaptive weights in the closed-loop

issues. poles calculated on the conventional optical sys-

tolic processors are sufficiently adequate. How-
ever, other applications require precision beyond

1. INTRODUCTIO 1%. In such cases, optical convolution to realize

digital multiplication (13) can be incorporated in-

Optical matrix-vector processors 11-41 repre- to optical systolic processors as recently described

sent qeneral-purpose optical processors. Optical in Ref.14, residue arithmetic can also be used in

computinq has long desired and needed such systems. systolic processors as we recently described in

The iterative optical processor 15-61 includes feed- Ref.15 or similar techniques can be employed to re-

back of the output back to the input of such sys- duce the dynamic range requirements and improve the

tems through an analog (or digital) feedback cir- accuracy of optical matrix processors as required.

cuit. This architecture thus relieves the problem Space does not permit us to detail these issues

of what to do with the output data generated by here.

such systems and moreover it provides many addi-

tional operations of increased flexibility and com- Next, we consider the computational rate for

plexity. These architectures all require the use optical systolic processors. The computing capaci-

of real-time and reusable 2-D spatial light modula- ty of an optical linear algebra processor must sig-

tors (SLMs) for the matrix data. Such devices have nificantly exceed that of VHSIC, digital systolic

yet to become widely available. New engagementmode optical matrix-vector processors (71 may be- proessors. Ge.Aa and other technologies. This is-
come verycl attrtvecifore advnces rsi of) maybsue is not often detailed. In Section 3, we dis-

cuss the performance possible on the frequency-
2-D SuIs can be produced. multiplexed optical systolic array processor and we

note that the use of matrix-matrix rather than

A more attractive and realizable optical line- nttrix-vector optic a ti rer rern

ar algebra processor can be achieved using bulk matrix-vector pticl ywtolic processors repre-

acousto-optic (AO) devices. Several versions of ient an obvmou method by which to achieve

such systems 18-101 have been described. These increased computing capacity. However, cptical ma-

architectures are referred to as optical systolic trix-matrix processors which output the entire ma-

array processors. The most attractive, general ad trix in parallel are not necessarily realistic be-

powerful system of this type is a frequency-multi- cause of the data handling and data flow problems

Sassociated with feeding an entire matrix to a sys-
pisxed /£O matrix-matrix systolic array processor tsm in parallel or extracting an entire" matrix from

(101. This architecture in briefly reviewed in it in parallel. Thus, data flow, pipelining of

Section 2. Remarks oan its speed versus that of the operations, data management and storage require-

system using a 2-D SUE and associated remarks on mants, avoiding A/D conversion, etc. are often more

input data requirements are noted in Section 3. vital aspects of optical systolic processors. These

This is felt to be the most attractive optical Sys- aspects of computing capacity are discussed in Sec-

tolic array processor since it fully utilizes both tion 5.

the bandwidth, aperture time and space bandwidth
product of an AD cell, since the basic operation it in Section 4, we discuss algorithms appropri-
performs is a amtrix-matrix rather than a matrix- ate for realization on such processors. The list

vector operation, and since it lends itself quite i not cplet, but attention should be given to

nicely to pipelining of data and operatiOnS, the fact that these optical systems should work in

The accuracy achievable in any optical or an&- concert with digital processors and not emulate

log processor will be limited. Thus, the effect of digital linear algebra and digital systolic array

CualO0-4/$3/0000/0209$01.00 S 1983 IE
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algorithms. In Section 5, we use the solution of a call, thus data flow and pipelining is nearly ideal
matrix equation (or matrix inversion) as an example in such a processor. We detail the pipelining of
of a most vital issue for any systolic array pro- data and operations on this system in Section 5.
cessor data flow and pipelining of operations. The basic operation in this processor is a matrix-
In Swution 6, we advance initial remarks on the ap- matrix multiplication rather than a matrix-vector
plicetionsfor which optical systolic array proces- multiplication. Thus, this architecture performs N
sors should be directed. These include large di- times more computations per bit time Ta than do
mnsionality problems end problems involving compu- other AO systolic processors.
tationally complex matrix calculations. We also
note that specific case studies are essential to 3. COMPUTING CAPACITY
detail the design, pipelining and performance of a
given optical systolic array processor. The use of an AO call rather than a 2-D SIM

does not cause any loss of computing power for
2. rFEVNCY-MULTIPLECfl) AO SYSTOLIC ARRAY PROCESSOR general matrix problems. In fact, such systolic

processors provide increased computing capacity.
The frequency-multiplexed AO systolic array However, frequency-multiplexing must be employed to

processor is shown schematically in Figure 1. It achieve this. Consider a TeO2 AO cell with a typi-
uses 2N-I LEDs, each imaged through a different re- cal aperture time of 40Vsec and a time bandwidth
qion of an AD cell, with the Fourier transform of product of 103. With the use of frequency-multi-
the data leaving the AO cell recorded on a linear plexing, we can enter an entire~ xO matrix in-
array of N detectors. To use the system for a ma- to the cell in 20sec. Then, every TB-20/_W -
trix-matrix multiplication, we consider the calcu- "&sec the system performs S vector inner prod-
lation of A 9 - C, where all matrices are N x N. We ucts on VV point vectors in parallel and displays
frequency encode the elements of each row of 8 and the 30 outputs on the linear detector array. This
feed one row of B to the AD cell at each bit time corresponds to 16" operations per .461 .. or6x 1010
TD. After NT8 , the full a matrix is present in the multiplications and additions per second, for a
lower NTS time aperature of the AO cell. We then typical multiplication time of 0.4 nsec. Thus
pulse on the bottom N LEDs with the first row !. of such an architecture is very competitive with digi-
A. The detector outputs are then the first row of tal processors, even if its capacity is reduced by
C. This is achieved since the product of Sl and a factor of 1000,
all elements of the first column bi of B leave the
AD cell at the same frequency f, and hence add on The optical matrix-vector processors using 2-D
the same detector in the output Fourier transform SLs can perform a comparable number of computa-
plane. Similar remarks hold for the other elements tions. Thus, no loss of computational rate results
of the first row of C. when AO systems are used. When the matrix data in

the 2-D SLM version of the system must be changed,
., a , 30msec is typically required. This can cause a
M L_ significant loss in effective computations and data

flow, since a considerable dead time of 30msec re-
sults every time the matrix must be changed, plus

2 the output data (and the input data for the matrix)
- .. must be buffered during this time. Thus, AO Sys-

mitt tolic processors have more computing capacity and

flexibility, than do matrix processors using 2-D
S 1.L SL~s. In addition, the dynamic range of an AO cell

and its uniformity is typically superior to such
parameters for 2-D SLId.

so To avoid A/D conversion of the output detector
data and to provide proper data flow, the conven-
tional iterative algorithms must often be modified.

FIG=RE It General optical systolic iterative opti- To demonstrate this, we recall the most popular
cal processor architecture (matrix in- iterative feedback algorithm (.he Richardson algo-
version case study detailed). rithm) rewritten to solve the matrix-matrix aqua-

tion NB- C for B - 1irc, i.e.

At each Tg, the system calculates V vector 2_(k+l) - B(k) + w (C - B(k)I, (I)
inner products (an N element vectors) in parallel.
Vrequency-multiplexing of the columns of A. into the where k denotes the iteration index and w is the
AD cell is also possible (and necessary) depending acceleration parameter used to speed convergence
upon the operations required [101. The general (w is the reciprocal of the maximum eigenvalue of H
philosophy of this processor is to time and apace which we approximate by the Euclidean norm of H).
multiplex the matrix data fed to the LEDs and to We rewrite (1) as
time (or space) and frequency-multiplex the matrix
data fed to the AO cell. Such an architecture can [_(k+l])/w - LI/w-13(k) + C,
fully use the bandwidth and time bandwidth product
of the AD cell. Because one row (or column) of the We realise that [I/W-H) is known and easily calcu-
output matrix is produced in parallel at one time, lated, since I/w affects only the diagonal elements
these outputs can be directly fed back to the AD
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of H and the effect is the same for all diagonal solutions of partial differential equations [9,16]

elements. Denoting (I/W-H by a new matrix A, we also merits similar remarks. Attention to parallel

rewrite our iterative algorithm as algorithms (for example the Householder algorithm)
and algorithms that pipeline quite nicely (e.g. new

!(kel) - w(ADk) +C). (2) descriptions of the solution of lower or upper tri-
angular systems of -equations

m
) arenecessary and es-

The system of Figure I represents a rather sential for the practical and efficient use of this

general-purpose iterative optical atrix-matrix new class of processor. Least square solutions and

systolic processor. We now discuss the feedback other iterative algorithms that are more appropri-

portion of this system with attention to the itera- ate than our general Richardson algorithm (when the

ti matrix solution or matrix inversion algorithm matrix has special structure) exists as we have

of (2). The LED inputs are the rows of A. They detailed 120).

are easily calculated from H. The preprocessing To detail the preferable procedure for the de-
box feeding the LED* requires only one operational t dtil t prfrablec dre for te d-
amplifier, one resistor adder and an N element NS rct solution of a matrix-vector equation, we con-

switch. At the detector output, one row of AU ap- sxmafor x. The matrix B is generally decomposed

pears in arallel at a time. Thus, we can add the intoan orthogonal 2 and upper triangular B matrix.

matrix C to this matrix-matrix product [as required We tn orta g a. Sine t 2 - , e carslv

in the riqht hand side of (2)) one row at a time. We then obtain 2Rx-a. Slnce -T -I, we ei an solve

This is achieved by a simple N element resistor fro -. The solution of Ax-a' is easy in digital

adder. 14ltiplication by the acceleration param- hardware by back substitution, ince this corres-

eter is likewise trivial in electronics. Thus, as pond. to a lover triangular system of equations.

shown, the entire right hand 
side of (2) can be

calculated on-line without the need for A/D conver- 
However, to best utilize such an algorithm on our

sion, digital storage or any appreciable feedback 
optical system, we should never explicitly calcu-

delay. Such combinations of analog electronic ad- late 2 and 2T. Rather, we calculate R and a' di-

dere and multipliers properly combined with optical rectly by successive matrix-matrix and matrix-vec-

matrix-matrix mltiplipliers represent very excel- tor multiplications of the matrix B and the vector

lent and powerful systolic processors with high a by Householder decomposition matrices on our sys-
coputational rates and excellent data flow. Be- tem of Figure 1. This yields a' directly, thus

fore detailing the pipelining and data flow, we simplifying the entire problem. This also repre-

lalgorithms and appropriate opera- sents a preferable use of optical systolic proces-

consider parallel ontssore in concert with digital system (the conven-

tions for realization on such systems. tional approach would be to optically emulate cal-

4. APPROPRIATE PARALLEL ALAORITH4S culation of R and 2 from B). Other new parallel

and revised linear algebr7 algorithms are possible
optical sys- for many other applications. They are typical of

tl ch of the recent research onothe us$- the more appropriate uses for such optical processors.

telic array processors has considered the use of We note that such a philosophy should be pursued in all

these processors to realize conventional linear future optical systolic array processor alqorithms.

algebra algorithms and various operations. Many Katrix-decomosition algorithms are a specific exam-

of these operations can already be easily per- ple of algorithms which require a new matrix mask at

formed in digital VUSIC and digital systolic pro- each iteration. If realized on a systemwith a 2-D SL

cessors. A typical example of this issue arises mask, 30maec would be required for each change of the

in the solution of a linear system of equations by matrix or on each iteration. Thus, this type of algo-

direct (matrix-decomposition) rather than indirect rithm is typical of those that are appropriate for

(iterative) methods. The key issue we noted [16] realization on a systolic processor, rather than a 2-D

is that performing tfe matrix-decomposition is the sOL mtrix-vector system. These are also typical of

most computationally intensive operation. In Ref. the types of algorithms this new type of optical pro-

16, we noted that the solution of the resultant cessor should address. We note in passing that no ap-

lower triangular system of equations is trivial in plication has yet appeared requiring the real-time

dedicated digital systolic processors by back or edgenvalue/igenvector matrix calculations possible

forward substitution algorithms, on such syste.

In Flefe.16-18, we detailed bow QR and LU and 5. PIPLIWIUPG OF DATA AND OPM1ATIOUS

n decomosition s petaible or. o a LU aAny systolic processor must pay close atten-

Oolesky decomposition is possible or. optical sys- tion to the flow of data and operations. In ref.
telic array processors. In cases when an all op- 10, this issue was first noted. In lef s.lO,16-19,

tical solution is preferable 
(e.g. for data flow

reasons), an optical solution of the resultant 
we provided many examples of the data flow and

lower (or upper) triangular system of equations is pipelining associated with the realization of varn-

possible as e detaitled in (191. "t production aus linear algebra operations on such processors.

of u-ssenberg and tni-dagonal matrices Is also This Issue is vital for many reasons. First, once

possible as we have noted (17). Such solutions data enters the AO cell, It met be completely pro-

lead directly to eigenvalue calculation applie- 
cessed, i.e. all calculations requiring it mst be

tions of these processors and to the possible 
use performed before the data roaches the end of the

of other optical systolic array processors 19-91 cell (typically in 40-S0osec). Furthermore, as

for solving tri-diagonal matrix equation. When soon as the parallel output data appears at the

Toeplits matrices result, an optical deconvolver detector, omething must be done with it. In our

19) is appropriate. The implicit and explicit algorithms and in our architectural studies of di-

verse linear algebra algorithms, we have given
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particular attention to such Lemon. As a most designs will clearly show the superior data
appropriate study of this issue, we show in Table managementbookkeeping, and avoidance of A/D con-
1 the flow of data into the LE)s and the A0 cell, version that is possible in optical systolic
and the flow of data from the detectors back processors. Table 1 1 an example of the effi-
into the AO cell for realization of the solution in cient pipelining possible on such systems with
(2) to the matrix-matrix equation _D-Cfor 8-r-IC the proper choice of the algorithmused.
on the system of Figure 1 using the general feed- .backarcitecureshow Inthisfigre. ach3. These processors should be applied to problems

cklumn archiTe e Ishowsi this figurcones och where the accuracy of the final actual result
olum of Table 1 shows the data contents of the(not necessarily the matrix-vector or matrix-
corresponding system elements at tise T1 - T, T2 - matrix product) is the performance omasure
2?5, T3- 3TB etc. As shown, data flow and pipe- used. Our adaptive phased array radar and
lining of operations is essentially ideal in this csed-lOop optia cnreaa e ar vn-system. For our detailed 3x 3 matrix example, we clomed-loop optimal control examples are vi-
ym.a Fhat as o nasonrow ou dtrix e ~le, wetput able specific cases where such a philosophy

se that as soon as one row of the I (k.1) output

is calculated, it is available for feedback direct- is most appropriate.

ly into the AD cell. We also note that at the 4. The problems addressed on such processors
specific time that this detector output occurs, the should be of sufficiently large size (i.e. the
botton TB of the time aperture of the AO cell is order N of the matrix should be large).
free and available for new input data. 5. the calculations required in the solution of

the problem should be proportional to N
3

TABLE 1: Data and operational flow and pipe- (rather than N
2 
or N). We have found matrix-de-

lining in the system of Figure 1 composition and Kalman filtering to be examples

for matrix inversion. that fully utilize theaposibilities of such
optical processors and that represent appli-

is ,I  14 is To 1 t7 , cations with high computational loads 110,16-19).

SIn an II on b III A"Applications satisfying such constraints exist in
many areas and represent the class of problems for

t an -k , € which such optical systolic array processors are
Tr 'Fe Tr 't A

% 6 W6 mn applicable and most appropriate.
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Nonlinear local image preprocessing using coherent optical

techniques

David Casasent and Jiabi Chen

or vilrt iititliil v~stemr, are dtr"ririei iha ;it r ea l ~ ize [oirc rirrilirirar prerr~riicssing rrfrrratir, 'lii I I

tile Sobr- iel e nir e Irr t ind Iiwi in praulel ,iti 2-1I) input inia~ge. Blocrial. vo- refer to tithe izvt . thei

itniage region rat her thu it nmirs,ttniuv prrre-s Reaizatuion dt urch opferaliir, losing a i tii-xire
inatched spatial filler mid a n- rnpnter pgierated horirgrain i.s iisciiseni. Experimnental resultS tising Ilirese
triniqre fur i X i itn it& X 5 Sinir I ,peratrrs. t, pct I% v. are jiresentei. Orit tehni~iqes can be ex tendiniI
(( latrger wi ndmv u ize, anut ,I her edge -cIhaflitnenent Iprtr. hs new operatI mrs are ar- hi, jed ii ,. (-vIiu
cirhereirt Yvstenis uisng ciiriex uri I linit i i- ith inagnitI tile ev Iiat it it the Miit piiI prattIerir.

1. Introduction nonlinear operators and which edge-enhancement op-

Essentiallv all image processing applications and erator is best (for a comparison, see Refs. 6, 7, and 1, pp.
sytes tiize lclnninaprpoesgoeatr 49-99), hut rather we are concerned with the design

' sch s andl deosrto fca severala oreticain systemsr to4eaiz
scasmedian filters and various types oft edge-en- addmntainosvrlotclssest elz

hancement operators.1' The computational load for some nonlinear local operators.
realizing these nonlinear local operators is quite high, In Sec. 11, we review several possible nonlinear local
and although many of them can be realized to various operators and the features of each. We also proivide a
degrees of'real time in pipelined digital electronics,-" it brief summary and motivation for the different kinds
is worthwhile to consider the realization of such local of edge-enhancement operators that have been found
operators on optical processors. This. is especially true useful for different applications. All these involve sonme
when such operators can he combined with synthesis of formn (Ifderivative operation. Our discussion empha-
an optical matched spatial filter and when optical pro- sizes the Sohel edge -enhancement operator, althbough
cessors are bleing considered for other portions (If the the techniques we prop~ose can directly be extended to
processing. Conventional optical spatial filtering sys- many nonlinear local operators. We also briefly discuss
tems can achieve l(ow-pass high-pass bandpass and nonnlinear operators (Iflarger window sizes (5 X 5) and
similar linear and global spatial filtering operations. note that many' types of operators are possible ii larger
The results of global oplerations differ froim local ones win1dow funfctions are available. In Sec. 111, we describe
(e.g., the mean of an entire image can differ considerably (oir new technique for realizing local nonlinear ima ge
trom the mean (if each local :1 X :3 image region). processing operations optically. In Sec. IV. w (ditail
Nonlinear preprocessing oiperators provide improved the optical realization (of a :3 X :3 Sobel operator using
SNR performancelni- oiver simpler linear edge-en- molt iple-exposure matched spatial filter t e(hniqotes a d
hancement operations such as high-pass filtering. Such include explerimental verification of'otir work. In Sec.

local nonlinear preprocessing operations are thus quite V ecnie s f optrgnrtdhlga
difterent from the conventional linear and global optical to realize such operations, and we demonstrate this
spatial filtering functions. Their study' and realization technique for a 5 X 5 Sobel operator.
on an optical processor represent a new class (ifmost If Loa Operators
useful operations that we consider. We restrict atten-
tion to nonlinear edge-enhancement opleratoirs. Our In the protcessing of moltisensor. IF?. and other types
concern is not with image distortions produced bt of imagery, the edges in the image are wuell known to he

useful teatuores for target detect ion and classification.
Man -N t ' yes of edge detection anid edge-enhancement
rperat ins h ave bleen propo sed . but litlIe thbeo ret icalI

'I'hi- arrt~hr are with C arneigie- %10iir It Iiig. I v ti it ifo -i ( anialysis has been piresent ed to add ress t be typies (if

Eli-ct ru-al l'.rgineeri 11. P itt Isurgh. Penim Iva-ia 1 t 12 i. edge -en hanIcenie ii needed f ir vari os patio n nog -

Rteceiived 22 Seiier iber 1982. ii n a 1)1)cat iins. ebreiysn mn.ei111iiIle
NHHie Il;i:1I5:lS/tigitiiS 0a1)IOOit. available lite(ratutre on this I opic' We ha1ve h ond to lbe

I 9S3 (i)ptri-ai Soi-it \if America. (ischti1. This pirovides uisefu tioloivat ior for dlirect ion
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into the types ofedge-enhancenent operations that are second, mixed, G rad, etc.), and thus attention hI, thw,
needed. An\ such general treatment requires careful general class ,If nonlinear operators merits attelthin
attention to ( I ) the forms assumed for the spectra (if the with particular emphasis on the I(radj operator.
signal and the noise (Is the noise white? Is the saine Let us next address how such operations are con-
spectra assumed for both the signal and the noise?): (2) ventionally performed. l)igital edge-detection tech-
the pixel correlation measure q for the image 1 - I for niques generally involve the convolution of local linear
a highly correlated image. Y1 << I for an uncorrelated operators (3 X 3 window sizes are connon) with the
image; il is closely related to the correlation length and inl)ut image f(x ,v). These linear operators all provide
correlation coefficient of the image data): and (3) tie various approximations to first or second derivatives of
performance measures used (e.g.. peak-to-sidelobe ratio the input image with various window masks. The
of the correlation output or SNR at the correlation peak: simple 2 X 2 masks to realize if/x and ifli// are
the second measure is appropriate for image registration 1 +1
applications). We consider the applicationsofpattern ) I j [1 l
recognition and image registration, and thus we use the x I +
performance measures of the peak-to-sidelobe ratio A much better approximation to the directional deriv-
(PSR) and th- SNR of the output correlation plane. atives is possible with the 3 x 3 operators
We note that these are significantly different from other F-t u +t_mesrs.

6,
7 of performance previously considered for" + ' , ,,

edge-enhancement techniques (e.g., sharpness of the I ' ,= [ 0+' 1edge, noise in the edge-enhanced image).
Let us now recall some prior results on the edge- Similar operators (e.g., compass gradient masks:') are

enhancement preprocessing required for our applica- possible for realization of the derivatives in different
tions. In Ref. 8, it is shown that if the image spectrum diagonal directions. Convolution masks that atlprox-
is white (1 << 1), maximization of PSR requires no imate the Laplacian are also possible. These operators
preprocessing. However, if the image is highly corre- consist of various approximations to the second deriv-
lated (0i - 1), maximization of PSR requires the first ative. For example, the second derivative can he esti-
derivative of each image to be formed prior to correla- mated as the differences (if the first differences. For
tion. These results were obtained assuming no noise image pixel (rnn), this approximation yields (for the
in the input image. If noise is present, it has been second derivative in x)
shown 9' -"' that maximization of SNR requires a deriv- ,'/,*.x-= 10n - 1.0 - 2_'i,., + 11m + I.,, (3)
ative operation involving the sum (f the original image,
its first derivative, and a mixed derivative term. If q We can realize Eq. (3) by convolving the image f~n,n)

1-- I for the images (and no noise is present), one can with a 3 X 3 mask function such as
show'' that maximization of PSR can be achieved by f1 0 1
forming the second derivative of the reference image I' = -
rather than the first derivative of each image separately. dx- L0 0 0
This follows -'2 .I since the correlation of the first de-
rivatives of two images with r -- 1 is the second deniv- One can realize other types of Laplacian operator by
ative of the correlation of the original two images and convolution with other masks such as
since the order of the operations can he reversed (be- I i H i [i I I
cause they are commutative). A more detailed inves- [1 -2t + -2(12 [t-,
tigation. 13 shows that all above results are only ap- i.- ,I, 1
propriate for imagery for which the noise and the signal J L 1 L 1
have the same statistics. We have also showni-.1' that xI
for highly correlated images (im _ 1), the necessary or
weighting to maximize SNR (as well as PSR) is well
approximated by the IGradi operator (followed by F' 01 FO ii ] F '1
histogram reshaping). Several of these results are also + "0 2
present in Ref. 14 in a somewhat different form. ' " L o 1 ' o L

Our present purpose is not to derive or discuss the
optimum edge-enhancement preprocessing operator
required but rather to note the nature of the prepro- In Eq. (5a), the :1 X 3 operator shown is ohtained lY
cessing required in different pattern recognition and summing individual operators such as the one in Eq. (4).
image registration applications. From the prior brief In Eq. (5b). the Laplacian is formed by differencing
remarks, we have seen that the problem being addressed along diagonals rather than rows and columns. Many
(pattern recognition or image registration, target de- other types of Ilaplacian operator can he produced: e.g..
tection or target location, etc.) and the nature of the Eqs. (5a) and (5h) ('an le combined, or one can average
image (correlated or uncorrelated pixels. q -- I or q1<< the difference along three columns or three rows. In
1) affect the optimal preprocessing required. We have each case. these 3 x 3 operators are applied to each pixel
also seen that all of the preprocessing noted in Refs. in the input image, and the central pixel in the corre-
8- 14 involves some form of derivative operator (first. sponding 3 X 3 region of the input inmage is rel)laced bY
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-~ rI
he product oft he mask weights shown in Eqs. () 5) GENERAL EDGE DETECTION APPROACH (GRAD)

and the corresponding- pixel values in the input %-A-

hlese linear edge-enhancement techniques are ,
Simple to realize in a pilelined processor. However. "ik ... .

they amplifv high spatial frequencies (i.e., noise) as well
as Ihe edges in the image. Preferable techniques em-
ploy nonlinear operators in which nonlinear comhina- .,... , .,,. , , 'A

tions of' the results of the basic linear operators are Fig. IL t1,ik di,igr;m -.1 Iiv .,hvl , rir it- a lin'ar 4puratur
produced. Figure 1 shows a block diagram" for an iiwht i aind a ii ilin.ia int),,jw -rat r lr I to. 6 1

edge-detection algorithm for the magnitude gradient
operator. The output image from the local operator is
thresholded to yield the final edge-enhanced output
pattern. 'l'o describe these operators and how they are Inspection of' Eq. (9) and comparison with Eq. (2)

realized, a specific numbering procedure for the pixel show that the linear operators used in the Sobel masks
\alues a, in he input imge surrounding the general correspond to the partial derivatives in x and Y averaged

input point (n.n) whose pixel value is f(m,n ) has been over the image pixels in three horizontal and vertical

adopted: rows and columns, with the central row and column
weighted most heavily. In Ref. 15 it was shown that the
averaging of difference estimates over several rows and
(olumns of the image pixels with a decreased weighting

U, U for pixels further from the mask center provided in-

We consider the IJGradI operator (noted earlier to be proved performance. The Sobel operator described by
useful for preprocessing) as realized by a Sobel local Eqs. (7) and (8) includes both of these desirable features
operator.' For this operator, the output image value and is thus a most attractive edge-enhancement oper-
gn,n ) at pixel (rn,n ) is ator. It was thus chosen for our optical experiments.

To best describe the operation performed by the
eiii = .\: + V'') , 7I Sobel. we write the output function as

where the local operators are It = d1,it- i + , ( ,' I , i-I ". ,Iii

N = Ii,, + 2o, + ,1,) - i,,, + 2-, + t,;). where ( ), and ( , denote averages over x and v, re-

Y = aI,, + 2a + aI - i a, + 2w, + a.. spectively. This fornmulation emphasizes that each local
operator in Eqs. (9) performs the first difference ap-

Recall that the a, values in Eqs. (8) correspond to the proximation to the partial derivative of / in x and v
intensities of the pixels surrounding the general input averaged over v and x, respectively. A detailed deri-
image point (rn,n) and that the operation described by vation of Eq. (10) tl)lows directly .; We detail only the
Eqs. (7) and (8) is applied at each input image pixel. Sobel nonlinear operator, but the technique is directly
Thus Eqs. (7) and (8) describe the final image pixel applicable to realization of many other operators such
value for pixel (m,n I as the nonlinear combination of as the Roberts, Prewitt. Kirsch. and others by simply
its surrounding neighbors. INote that the original changing the mask weights in Eq. (9). An alternate
values of" image pixel (m,n) is not used in computing the formulation is needed to describe edge-enhancement
corresponding output pixel value and that the sum of operators such as compass gradients.
the weights in the Sobel masks is 0.1 We can thus de- In the optical realization of such nonlinear prepro-
scribe this realization of juradi by the two linear local cessing operators, we can easily use larger mask windows
mask operators (e.g., 5 X 5). For such cases, the flexibility possible

[i :: +1il[+ 42 +,1 increases significantly as many choices are possible for
,-2 + - ,2 [= I • , the various mask elements. In one quite simple 5 X 5

-t +- -2. Sobel-type operator, Eq. 9) would become

I- oi +t + 1 [+ + 2 + +11
F-1+11 1 +1 +2 +1 +t

NIi +12 +2 0 = 0 0 i .- 11)
-I 1 +1 +1 - 1 -1 2 - I

1 +1 +1 1 -1 -2 -I 11

Many other 5 X 5 edge-enhancement operators (tin be
formulated. We will refer to the 5 x 5 nonlinear local
operator defined by Eqs. (7) and (1 ) as a ) X a Sobel,
We consid(er its opt ical realization in Sec. V.
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As described in Ref. 15. averaging over larger neigh-
borhoods (five rather than three elements) greatly ima- CL *
proves the performance of the operator when the inl)ut WEDE FT
SNR is low. Such operators produce wider edges, but LENS
this is not of major concern in the pattern recognition M
cases we consider, and edge thinning is also a possibility ", MSF

if' necessary. As noted in Ref'. 15, different weights - MS
(besides 0, 1, and 2) for the elements of the masks can
also significantly improve performance of the operator. VRS CL

Many other operations besides the 5 X 5 Sobel in Eqs. ,-
(11) can thus be achieved by judicious choice of the Fig.-!. Mhille-expusurc -;helfilter ,ynthest \t mirrur:
mask elements. One possible operator is the realization VBs. variable beam splitter: ('1,. c1,lliniation hlen,, ystem: FT let.
of two successive Sobels by one pair of 5 X 5 masks. Fourier transtorm lens; N.% matched ,patial filter.
Another possibility is the reduction of a 5 X 5 input
image region to a 3 X 3 region (in which each pixel value square-r()l operation if Eq. (1) is often omitted in the
is the result of a 3 X 3 Sobel applied to the correspond- digital realization of such operators wit h no adverse
ing 3 X 3 region of the original input image) and the effects." This issue is not essential for l)reprocessing
subsequent reduction of these 3 X 3 image regions to one or for the realization of a nonlinear filter. We thus

pixel value that is the Sobel of the 3 X 3 set of pixel consider the realization of' a optical system whose

values obtained from the first Sobel. This sequence of output amplitude at each point is

two Sobels is one form of the second derivative of the X +.)= J, + 2(t, + at - ia,, + 2-, + -1,11
original image. Such operators should be realizable in + Jj,,, + 2(, + 11, - I,, + 2a. + al. t
extended 5 X 5 masks. Other local masks can be used
to achieve mixed derivative operations. With the use where a, are the pixel values of the input image in Eq.
of 5 X 5 masks, realization of Laplacian and similar (6). We describe Eq. (14) as in Eq. (12) by the convo-
operations is also directly possible. In general, use of lution of the input function f(x.y with a sum of delta
window operators of higher order are more easily real- functions at eight spatial locations with complex-valued
izable on the optical systems we consider, and they weights for each delta function:
should be able to achieve the types of nonlinear local .. = f. x .,,,, - Ind,, - ndI I .;,iI
operators noted in Refs. 8-14 as desirable.
Ill. Nonlinear Local Optical Operators = f.. I + .ilIx - d.% - d) + 2' )x - d.I

+ Il -., I1(IN~ - (d.\ + Ill + 2.; )x - d

Optical systems can perform the linear spatial dif- + (I -j + d - 1 - dI + .1 - d)
- "2jDix.\, + (J) - (I -.IDI. + d..\ d Il

lf'rentiation operation of various techniques.t 7 The one
of interest to us is performed on an optical matched - 2bix + H .I + )iv + d..\ + till.  I I, I
spatial filter correlator. The system's output is the where d is the spacing between pixels in the input image
convolution of the input image f(x,y) and the reference and where the weights and locations of each delta
function h or the impulse response ofthe system. (The function are obtained from Eq. (14).
complex Fourier transform H of h is recorded on the Our proposed technique for the optical realization of
matched spatial filter.) When h is two delta functions nonlinear local preprocessing operators such as the
separated by d, the system's output is Sobel is thus to employ an optical correlator with a

oitput = f - = f(x..\ - 16(x + d. I - (ix.y) ---df/dx. (121 matched spatial filter whose impulse response is a

or the first-difference linear two-point approximation weighted sum of delta functions. The necessaryweights are complex-valued. However, we can achieve
to the I -D spatial differentiation of the input image these by holographic techniques and appropriate phase
f(x,y). This is still a linear operation and to realize the shiftingaswedetail in Sec. IV. Wecanalsoachie-ethe
Sobel or other such nonlinear operators, we must de- required impulse response by use of a comu)uter-gen-
velop new optical techniques. crated hologram as we detai Sec. V.

We begin by rewriting the Sobel output function in
Eq. (7) as IV. Realization Using Multiple-Matched Spatial

Filters
mmn) = X-' + ''-')I = li-\ +JYI P' I. +.iYI- 11:1) The desired impulse response in Eq. (15) could be

This complex arithmetic description is most useful. achieved by forming the holographic matched spatial
Should a digital processor capable of direct complex filter (MSF) of an input function containing delta
arithmetic in one pass be developed and implemented, functions (apertures) at the correct locations and oft he
one can realize the Sobel operator as in Eq. (13). This correct radii (to adjust the intensity) and with the
is not available in present digital systems; however, an necessary phase factors achieved by placing /I or,\/2
optical system to realize Eq. (13) is possible. The light plates behind the appropriate apertures. e (hose to
amplitude distribution at the output of this optical form the desired MSF by eight multiple exposures oi
system will be given by Eq. (13). After detection, the one plate (because the necessary light levels and expo-
square of Eq. (13) will be produced in an optical system. sure times were easier to achieve). The MSF svnhesis
This represents no significant difference since the system used is shown in Fig. 2. It is a conventional
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or X/8 phase shift. The wedge angle was 4 sec of arc,

1 and thus shifting it caused minimal displacements in
the input beam and thus did not cause misalignment of4-7 the system. To measure the angle t of the wedge, we
measured the fringe spacing d, produced by interfer-

INPUT FT ttNsLrss l SOBEL ence from the front and back surfaces and found d1 =
IMA" LFNS SOBEL MSF OF INPUT (X/2)/avn = 10 mm, where n is the index of refraction of

Fig. :1. System to produce the Sobel edge-enhanced image from a the wedge. If the wedge is shifted vertically by a dis-
multiple-exposure matched spatial filter. tance d,, , the beam traveling through it sees a path

difference a d,, (n - 1) from its prior value. Substi-
holographic MSF system with the addition of the wedge tuting for ok and equating this path difference to X/8, we
and the FT lens. The FT lens allows a lensless MSF to find that a shift d,, = 7.5 mm provides the desired phase
be recorded (the MSF plus an FT lens with focal length factor.
ht. = I = 250 mm) as we have described and used previ- The above procedure was followed, and eight multiple
ously.' We ignore this FT lens for our present dis- exposures of the MSF plate were made. After devel-
cussion. opment, we inspected the impulse response of the

The MSF recorded at each exposure is the interfer- lensless MSF and found it to he as required. We then
ence of two plane waves and thus produces a sine wave placed this MSF in the lensless correlator of Fig. 3. A
grating whose impulse response is a delta function. The converging beam system (with the input behind the first
amplitude of each delta function is set by varying the FT lens) was not possible since such a system was not
exposure. This does not alter the modulation of the used during synthesis of the MSF. The additional
grating being recorded, since the bias level is also phase term introduced in the converging beam system
changed for each exposure; however, the amount of light would thus not be canceled by this MSF. If the angle
diffracted into the output correlation plane does vary of the input plane wave in Fig. 2 were altered, the Sobel
proportionally to the exposure as is desired. The lo- version of the input image would appear on-axis in Fig.
cation of each delta function was controlled by trans- 3 rather than at an angle 0 = 150 to the optical axis as
lating the FT lens in its plane (and thereby varying the shown. The input image size used was 8 X 8 mm 2, al-
spatial frequency of the recorded grating). We pro- though larger image sizes could be accommodated in the
duced the necessary complex-valued strength for each system used. An input text image and the corre-
delta function by shifting the wedge in 1-D in its plane. sponding Sobel edge-enhanced IGrad I output image
After synthesis of this Sobel MSF in Fig. 2, we place it obtained on this system are shown in Fig. 4. The results
in Fig. 3 and in the output plane obtain the Sobel of the
input image.

We now detail these systems for the case of a multiple A F 0 S R
MSF to realize the 3 X 3 Sobel of Eq. (14). All lenses
in Fig. 2 had /1, = 760 mm. In the Sobel correlator (Fig.
3), the first FT lens used h. =500 mm, and the focal
length of the lensless MSF was 1= f.= 250 mm. This G E N E R A L
correlator reconstruction system exhibited a 2:1 dem-
agnification. The highest input spatial frequency we
set the system to handle was ur = 20 cycles/mm. The
spatial frequency plane in Fig. 3 must thus have an
aperture of 2Xf1.umn = 12 mm. We used 15-mm diam- (a)
eters for all beams in Fig. 2 and for the corresponding
diameter of the MSF. To select the distance d between
the delta function impulse responses (and similarly the
amount d by which to translate the FT lens between a -
exposures), we determine that the smallest edges of
interest in the 8- X 8-mm 2 input image were of 0.2-mm
width. In the output plane of Fig. 3, they would be 0.1
mm. We chose a spacing d = 12.5 pm between delta [ '- E ] L
functions and a corresponding 12.5-pm FT lens shift.
This produced edges in the output of 25-pm width.
This will produce sufficient detail to provide a good , d
edge-enhanced output. Note that in this optical Sobel
system, one can easily choose the filter to select the t
minimum input edge size we wish to consider.

The eight exposures in Eqs. (15) were arranged so
that successive exposures had a phase difference of ir/4. (b)
We now compute the amount by which the wedge in Fig. Fig. 4. Input image 1at and Sobel edge-enhanced image (N) using
2 must be translated between exposures to provide a ir/4 the multiple-exposure matched spatial filter system.
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Llit' lost iniitlie, reto()lst rkiIte(ol ait f romn this tlier. A
ditfferenit ((I s~nt t'5is facilitv wVold( pro\ide lk,.s
inage reso luiition rest ritionls.

, 'llh'('( CH correspioiiiing- to F(Is. I I was compu~~tedI.
plot ted, an pol jihdoredl uce(I as dIescrjib)ed abo((ve'. It w is

INPT FT CGH FT SOBEL thlen placedi in the Fl pilane oft tie svst em of Fig. .7 wit Ili
IMAGE LENS LENS OF INPUT the l'Ocal lengi h (ithe first lens being .50011nini and that

Fi , vS\ttI1 to prlmv~ tht S.,II Vdgko V1111MMd llltlt kl at t le t''h eCond 1e115 being 11,5111iii. The i1111)10 and 0LIt hit
cmue vnrite oognijn- inia1gts obhtained for ain atrial input1 pilotog-raphl are

slhowni in Figs. Guta) and I . For comlparison Iii he of t l It
t'roni the 31 X 3 mu tlt iple-ex posutre MISF Sobel applied

appear as expetted. All inpt lines art' >2d in width to t his samet imiage is i ncluded in Fig-. 61c). 'Ilht' hig-her
and thuIs have out [put imiage edges uif Width 2d./ resolttion of' thle 3 X 31 Sobiel is applarenit as art'e it'

broader lines prt'st'nt in tht' 5 X 5 Sobiel otiltput. For a
V. Realization Using a Computer-Generated 5 X 5 Sobel and( anl inpiut withI edges of* 1(1 %idthI. w'
Hologram e'xptctt t let edg's iii th lit' pulttt to lie 3d idet (compiharedh

It is possible to produce the net'essary' FT plane filter withI 2d fo(r te li' X :3 Sobel I. Our data vt'rifv t his since
funct tion tar the Sob~el (or athr lentdge-enlhant'ement all edges in t he out put f'roiii the.5 X S5lilFg Ib
operators by ulse (of t'aniputer-gt'iierated hologrm art' wider t han thost' in Fig. 6(c t doainitd usin-i a 31 X
(C(H ). Thle g-eneral form for the desired impulse :3 Sobel I. The edges that ar'nt rsn inl F7ig.h I
response f'or a Sobel operator is were (iii general) lost lbY t lie limitt'd S-cycle/nn mm maxi -

mium bandpass of t lie (G H.

To realize suich an impulse response with a ('(H. we
Fourier transform" sample it, and fo(r eatci saniplinig
cell in the CGH we record anl amplitutde .A aiid a phase
oP. In (16). we igliore (tatrsim-plic itvoaithe exp~ressnuis
presented) the tact that this CGH is aii off-axis hala--
grani. The transmittance at the FT plane ('(H is thlus
of the genieral f'orm O

I~~~~~ T)jI. I

where (x.v) in ( 17) reters tt the coordinat es oft the FT 4
plane where the (ThH will lie placed. This (NH filter
technique is quite ap~propriate for Saliei opjeratoirs withI
large neighborhoods (i.e.. 5 X 5). since 25 mult iplt' t'x-

posuires are quite difficuilt to athieve withI the holo-
graphic MSF systemi of* Fig. 2 . As disc ussed earlier.
such filters are mucth more flexible aiid are of* significantIa
iniportanc'e when the input has a law SNP.

We chase to demonstrate this techniquie far the 5 X
5 Sobel in Eqs.(II). We now describe t lie dlesigii aiid
fabrication (of the (NH. The CGH contains 1. X It
tells. each of size dxr X d -v aiid each 'oiitaiiiing a trans-
parnt ol theirepertsie taIttan e f each cel lian
parnto h aperture friaesmXittanWe f' eac cel dyi
va rying 1. 'Ia reduce noise and praduce a goad iniage
reconstruction with a CGH, we require dx = d 'v <
\f,/h. where b is the size (if the output p~laiie (assumlied
to be square for simplicity). Ini our case, the (N H re-
construction or its imptilse response is a pattern (if'delta
futnctionsi. T1he maximum dimension of' this out put
p~atternl is h =4d. For oiur CGH, we thus used d = I I
Mm and dx d ' v = 0.03 iiim. The size of' the ('alcomip
lplotter pen. the 40X reduction available, and the reso-
lot ion (If the FT p~lanie film allowed us to f'airicat e a
CG H wit h only 250 X 250 cells iii 7.5 X 7.5 nimi'. TIhis (C)

.;i-mm FT plane width will only piass inpu~it spatial ' .1 . * 1 h,1d IIIIIlt
frequencies below 5 cycles/mm (tor Ithe/fi 5(X I-ninIi FTl (IT IfrI I).l' .11W. I~ 1' ;111( iii 1 11111
lens). Thuis input image detail smaller than 0.2mmni will 11,1,11 i ll, T ' S'.wIl

15 March 1983 Vol122. No 6 APPLIED OPTICS 813

------ -- loft



TI he avai Iahl ite'ri a i niage used j I'ig. 6i(a j c ota ins opje ratoi r required. TI he prodsuct ion ot Ihis' i pera I
Iitnes I iLe.. two edges) rat hier t hant one edge seliarat ing WvithI the dlesiredl winudo w size and ordler c-an then he
diftferent textuared regins. Tlh us, in a na lvz lug t he achieved b y pa ralielI lensless noinIea r opt ical prepri-
out put images shown, we must recall that the edge- cessars such ats we have described.
tenhanced versioin at a line consists of two edges iii wdt h W hn h i ic fiea cetu ~ ei
2d tir 3d t(this also depiends on the sharp~ness tt the (gatAO 7-01)frspoto'DCanfr
edlges) sep~arated by the width oft he line. 'l'lwe sp~acinig suprr olIu (itca dat procssin prg and tarh
d chasen and] the spatial trequenicv bandwidth and siisr i r(jtia lt ~~csigpormo hc
resolutioan of' the Sobel filters also affect the obs"erved this is (ine pro ject aspect. We also thank 13N.K. Vi Java
aupulidt aie a ly it f the input imiage used Kumar foir manl\ truitful discunsions.

Puts A etaied nalyis 'Iiahi ('hen is at visit ing scholar frram H uazh ing In-
and the filter parameters chosen confirmis that the re-
silS at' a., expected. To demonstrate and quant ify thle st it te a fTe chnolo,~ \\ Uh in China.
SNU oat the outpiut images and the SNHI improvement
obtained using diffterent :) X :3 and 5 X 5i iilera!ars. a References
teXtured image wvith edges t not lines) sep~arat ing regiomns P iIraitt. IDiLiil lma- Pn -m- in iie\ .N-%w Yorl. 19I,1
of' difliterent variances s hould be Used. This tyvpifties , aI. InI rPh Iligip ai.I* 1 et

future work to be performed an such processors. 177)

VI. Summary and Conclusion R Dda adii .Hat.iittpil ph laii, wo artd' , i ?U\

As iniage sizes increase, the nonlinear edge-en- i\\ilk,. New York. 19173).

hancvement preprocessing re(JUired becomies quite ex- G. Roin... ni and J1. Ii. "A Reail-IJiiii tlip Pt'i.-.iigtni

pensive to perform in real time by digital or electronic iI'iiii..ik trbij 'iI'iuiuhl)<iTiIIi

methods. The niew% techniqtues we have developed re- ~ Auiikii li g' p.II? E.NnYr.h7
stilt in a coherent optical system (capablle (it'nanlinear PP 1. Abm n . rt.PmI..67 9,1
local aperators. We derived and detailed this technique 7 . .1. Frain iiid E. I eiitsh. ire,. W EE ('-24.; Iii lJune 197-70.
fo r the case if the Sobel operator. However, it caln s.A Artese. I'. H. M eligert . a nd F. \\. tIrmiii 1i IF F leans. Itil
easily be extended toi many noinlinear local operators nHivir y IT-I Ii.5:4 i t9ii i.

Prewi it. R( bert s.as well as the I aplacia nand higher - 91. C. 1). NIki hi-ni anid NI. Seed lw. IF FEI'raiis. ( ;,)ici. Fleet in a.
oirder difference aperators). We have descrihed and GE- 11. 14 iW1761~.

detmoi nst rated two techniques tar real izatio ~f such I o. C. I). Ntc(illciii and Mi . SedlwEE 'iraii. (4-i. Elect ri t.

ft1I ~ion1s0upticallv. T he multiple MISF technique re- C E- I5, 257 i 1977Th.'I
quires a specially tarcae pliiligsstl o od I. \\, K. P'ratt . IEEE. I'ai.Aerusp. Elect roll. Svst. AES-t II :,5:1
results. but suich a s 'ystemn is quite easily, produced if' 12. Y im an )19,-li. '(,.Sc.Pilo(p Intui.Ft
needed. We demonstrated good 3 X 31 Sob~el edge- .Iri x111I)(asslt 'rcSu.I'ot p.Ilitrli.a.
enhanced outpiut data tin our initial svstenm with resulIts 1:2 Y4. Ban ix. H. Mta\ i. an id I). ( asaselt . IProc. Sic. I'loli-(lii.
linewidths and SNR) in agreement w ith those expected I ii~itriui. Eng. 2:35. 1 i7,6 11951.

hy the irv. We a lson descri bed antd denimuls rated a 5 X 1.1. J. Prcwi ti. I Ilijct En ihaticeinl and Extractill.' inl Pi, turi i

5 Si iel using( ls. rhe resuilts were quite attractive I'i i 51.adI' atn...I.iiki nd.I 'e -l.d.
and again agreed with theory. A particularly attractive iAaeii.NwYr.17h

aspec't ofit he oipt ica 1 real iza t in (it nonIi near lica Iotp - F,. 1. Abdliti. Reor 830i SI. t'. Soi li hm i lit imnia. linage Pr 'cissi 1W

t'rators is that larger window sizes and higher-order Iiislitiite 117:1

ope rat ors ('an he used with no lo ss in processing speed. 16i. .1. (lien aind 1). ('asetit . at 1.1 A C(ivreace. I ili rlia li

It is alIso possible toa cambhine MfSF. So bel, anld lensless 'i 'tgress oni Appl CIicain ofi ILasers aid ElcBii-I~ c.I"ti
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A variety of methods have been proposed for solving pat-
tern recognition problems using optical methods.' Some of
these involve generating a synthetic discriminant function
that is a weighted combination of the functions available aF
training data. The weights for the combination are obtained
either from the principal component of the data set- or by
imposing different deterministic constraints that ensure the
separation of the classes." Caulfield 4 has shown that these
problems can be unified as solving the foliowing matrix-vector
equation:

Rw = c. II

where R is the matrix of correlation coefficients among the
members in the training set. w is the vector of desired weights.
and c is the vector of constraints.

Before we can solve Eq. (I I for weight vector w. we have to
determine the correlation coefficient matrix R from the given
training data. Various elements of R can be determined op-
ticall* ' by forming cross correlations of all pairs among the
training data set and then noting the peak values. Through
this Letter we would like to point out two sources of error in
the computation of R. Errors in R lead to inaccurate weights
which, in turn, can result in a discriminant function that does
not satisfy the constraints.

A well-known" source of error in the estimation of any sta-
tistical parameter is the finite length of the observation. If
the input functions x(t I and %(t ) are of length T and band-
width B, we can easily show5 that the standard deviation of
the estimated cross-correlation coefficient p,, is

01 = p.,[(I + p; i/(2BT,,tl, 1 - ,  121

where Tt,,,,, denotes the total length of the signals used to
estimate p.,. The correlation coefficient p,, is related to the
cross-correlation function by normalizing constants that are
related to the energies in the signals x ( t and * Nt I We note
from Eq. (2) that aI is inversely proportional to (BT,,,.I)1 2.
where (BT0 t.) denotes the total time-bandwidth product of
the signal. This type of error can be reduced by increasing
the length of observation. In the case of images. the space-
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Fig. 1. Correlation functions for p,," 0A5 solid line. ideal correla- Fig 2. Correlation functions for pt, =0.8: solid line. ideal c'orreta
tion. line with Xs. observed correlation for T - 30. line with Os. ob- tion: line with xs. observed correlation for T - 30: line with Cis,. ob[-

served correlation for T = 100. served correlation for T - 100.

bandwidth product easily exceeds 1000 and ol can be con- p_,'(o) = I - (2/oTi + (2!o":T-i - (2/a0-T:i expi -aT, (6)
sidered insignificant. But with increasing use of I-D devices

such as acoustooptic cells, even for image processing.- care For large (aT) values. the above relation can be approxi-
should be taken to see that this type of error is not signifi- mated as
cant.-

The second source of error in estimation seems to be less , 0)=1-2,T T
well known among the researchers in optical pattern recog- Thus the removal of mean from a signal x(t) can cause a
nition. The rest of this Letter will be devoted to a discussion significant bias in the estimated value of p. (0). This can beof this error source. When two functions x It ) and Ft ) areCorrlatio n o sli ienid e-
correlated using matched spatial filter (MSF) lechniques, the a iniint problee oen fo T l 3i nwith .-eried cor ing ovices to process long duration signals or large images Sinenlinear prod erasiyeee s of 100 and () cn terM. these devices can accommodate only a limited time-band-
pse proety oferagecalues of t mean to zero width product at any instant mean removal can cause a sig-
Tuhs ourtofoptica crellsteven forrage ceing cae Fnificant bias in p , (0) estimated from each segment.
does not pose a problem in the conventional applications of te as
cross correlators where the primary objective is to locate les a p w g twell knoneaon la the researc s in thi pakncot Tquences of lengths T = 30 and T = 100 with p , values f .5pitin Therresationpnen of this Letterpwillebede oa is n and 0.8. Ideal autocorrelation functions according ti Eq 5
important. Te Whe effective correlation is between x ( I and the autocorrelation functions estimated from the mean
and usn) where removed signals are shown in Figs. and 2. The result-n in

Xno nl xi - (x()), r(t) = yho i - (ymeim . 3) these figures were obtained by averaging over fift indepen-
dent sequences. Thus the random error in Eq. (2 resung

and where denotes the average over a duration of T. Even from the finite signal length should be negligibly small But
in digital estimation of p we end up using only xr e and the bias errors due to the mean removal do not average out and
do(t) because the coefficients in the Fourier transform cor- can be clearlseen in Figs. and 2. In Fig 1,pis.8 small
responding to zero frequencies are usually suppressed. TBH ) and biases are large, whereas in Fig. 2, p is 0.5 (large

Let p, (r ) denote the cross-correlation coefficient of x(t TBW) and biases are small. In fact. the expected valuefo t r
and Y ). Thenp (0)obtainedfromthemeanremoved p,'(0)accordingto Eq. (7) are 0.972 and 0.911 for T= (.
signals x'(t) and (t)-, is related to p, () as .4 whereas w ere ob0.964 and 0.937 experimentally. For T

Tandwhere = 30, theoretically expected values are 0.904 and .7mu
p,n 0) p(0) - (2/T) w en u usig (only ) whereas the experimentally obtained values are 0.90u and

0.775. As can be seen, the experimental results are close tsa
Note from Eq. (4 that we are underestimating p (0) be- the theoretically expected values.

cause of the use of me obtaned from t and (t). To We note from our results that the correlation coefficients
better understand the magnitude of this error, let us assume obtained from optical MSF correlators should be accepted
p,) (S) to be an exponential function only if the time-bandwidth products of the signals are large.

p,~'( pt (O) , (20l - (aT)]. t. O) therwise, the biases in them should be corrected by adding
.() that we a eresta p,, (0) (2/aT) where OT) is the time-bandwidth product. Oftenwe

where po is inversely related to the bandwidth of the signal do not know the a priori value of a and this must also be es.-
and a is a measure of the signal bandwidth. For this corre- timated. This causes variance in estimated correlation
lation function we can show that coefficients and one has to take this into account.
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ICorrelation of Binarized Images

ICorrelator technique has been used in pattern recognition appli-

cations. We introduce a correlation performance measure, peak to

background ratio iPBR), defined as the ratio of the peak intensity

to the average background variation in a single correlation output.

Using this performaince measure, we analyze the binary correlator

and show that the binarization of the images can result in better

performance. We consider a real-time implementation of the binars

correlator, using VLSI technology. The analytical results are sup.

i ported by computer simulations.

I. INTRODUCTION

'I Matched filter or con'elalor receiver was originallI Ij
derived as the optimum linear timc-invariant filter to de-

I MrMnuscript receivcd Fbruar, 20. 19Xl
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tcct a known signal in the presence of additive .hite does not appreciably degrade the PBR of a correlator A
noise. The perlormance criterion used in this situation Our theoretical results arc in good agreement %kith the
was the ratio of the average value of the correlation out- prior work I II utili/ing PSR as the criteron. We present
put at a parlicular time instant to the standard deviation of simulation results in Section III to support the results of
the output at that time instant. This ratio is commonl our analysis. The main advantage of a binary correlator is
known as the signal-to noise ratio (SNR) and has been that it can be realized without multiplication. It is thus
the optimality criterion in many communication receiver ideally suited for direct digital logic design and xwe con-
designs. sider an implementation of this using VLSI technology

Recently. correlation operation has found Asidcspread 1141 in Section IV.
application in image pattern recognition because of ad-
vances in coherent optical methods 121 as well as digital
methods 131. In such image correlations. Ae are interested II. BINARY CORRELATOR PERFORMANCI
not onl, in detecting the presence of a "target" in a
noisy 'scene." but also in estimating the location of the Let . and .v,. i = 1.2 ...... %'denote the target and

target in the scene. For this purpose, it is desirable to scene, respectively. One-dimensional notation is used

keep the correlation peak (at the true location) as high as only for simplicity and extension to the mo-dincnsional

possible while reducing the sidelobe levels all around this case of images is straightforvard. In general. \ is related
peak. As a result, the ratio of average correlation peak to to i by

the standard deviation of output correlation -far" from , t..
the peak, commonly denoted as peak-to-sidelobe ratio
(PSR). is used 141 as a performance measure to evaluate %&here i,, denote,, the shift between the t'.o signal, and n,
the image correlations. PSR has been widelx used to is a sequence of zero mean uncorrelated random varia-
evaluate image correlations in the presence of image dis- bits. Without any loss of generality. wc assume i, to be
tortions such as coordinate transforns 14. 51. frequencv zero in the rest ol this paper. Then the correlation output
plane blurring 161. and input transducer nonlincarit, in is given as
coherent optical corrclators 171.

The arbitrary nature of sidelobe determination in PSR C(j) - (I N) \ .i) i j). .j 1.2. ..... N (2
calculations is evident in the selection of position far"
from the peak. In fact. a recent paper 181 talks about the where we have implicitly assumed that vi) is periodically
PSR at three different locations: exact registration, near repeated for values of arguments beyond N. This is pre-
misrcgistration. and gross misregistration. We ecel that a cisely. what happens when correlations are pert'mned dig-
good measure of the correlator pcrformance should utilize itally using discreet Fourier transtorms 1151. For this cor-
the variance at all points in the correlation plane rather relation output (j). we define the PBR -y as follovs:
than at any single point. This will avoid the possibilitN of
getting a high PSR simply beuiuse we happen to choose
a correlation plane location where variance asas small. In "/ - I V ( (tfl (j \  I('(./)l (3)

this paper. we utilize a somewkhat similar measure knovkn
as peak-to-background ratio (PBR). PBR is defined as the is the ratio of the correlation peak intcnsit,, hen the rcf-
ratio of the average correlation peak to the average of erence and input arc pcrfcctl. matched) to the avcrage

standard deviations at all points in the output. One can correlation tut oer the entire range (not just at i - 0
generalize the PBR by appropriately weighting the stan- or (It). (J.) is in general \crv sinall as.1 increases.
dard deviations in the correlation output before averaging Thus 'c note from 3) that PR increasc,, as the length .,

them. For example, standard deviations of points close to of the signals increases,. This supports the experimental
registration may be given more importance compared observation 1161 that the PBR of a correlator is directls
with points of gross misregistration. proportional to the space band-, dth product of the input

We analye the performance of the binary correlator data .
in this paper using PBR. The conventional correlator per- in this section [he purLrt siMals, of and -rc sub-
fortns poorly in comparison to some veque'ntial similaruti thard Ii not lh bt ire reain
dete'tion alorilhns (SSI)A) 191 in terms of computa- .ictcd to hard liniting hchorc correlation.

tional elficicncy. Such computational considerations have o if , (
led to renewed interest in the use of' correlators where the ' *4i

input signals arc hard limited (to two amplitude levels)
prior to correlation. Svedlow et al. I101 report the cxperi- where the caret denotes binari/ed s:ariables We have inI
mental use of' such binary corr-clators, ViJaya Kumnar I I I I plCitlVy assumed aho~c that [ihe input signal", tI and . ,analyzes the performance using PSR. Boland el al. 1121 arc t'th of zero mean Such an assumptlon Is tus tIlied

suggest a real-time digital implementation, while Cole due to one of the lollom ig two reason,, In cohercnt opti-

1131 proposes an incoherent optical processor for binary
correlation. In Section II. we show that the hinarization t 112A $ 7 t 9
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cal processors 116), the matched filter plane medium usu-
ally exhibits a dark central region, thus removing any NIR, 2(0)/ > R2(j) I  4' Nlrr/212

average value present in the input signals. Average values
in images are deliberately removed 131 in many image IR '(0)1 R 2(j). (I0)

correlations because it results in an output bias level, thus '  I

S degrading the output correlation PBR.
The binary correlation peak value in the absence of We can calculate the expected PBR for any input sig-

noise is given by nal by substituting its autocorrelation function R,(j) in (8)
and evaluating it. To understand the effects of binariza-3 , lion on PBR. we estimate the PBR -y of unbinarized cor-* C(0) = (/N)I (.)0 = a2  (5) relation from (3) using a similar approach as

which can be seen to be the maximum possible peak N

value for a given input dynamic range I -a, + al. In -y -- NIR, 2 (O)/ _ R, (j)I. (1
digital correlators, correlation peak values may not be ina-
portant, but in optical correlators. system noises such as Comparing (10) and (11), we note that PBR - for the
detector noise, reflections, speckle noise, and scatter indi- binary correlation is greater than the PBR Y for the unbi-
cate the need for a large correlation peak I I 11. Thus bi- narized correlation. We also can see that this improve-
nary correlation reduces the effects of system noise in ment is at the most a factor of (,rr/2)2 or 3.8 dB. The
optical correlators. analysis of the binary correlator has so far assumed no

PBR of binary correlation can be written as noise at the input. To analyze the effect of noise, we re-
A, N place the signal {x,} by {x} + {n,}. where {n,} is a sam-

N(a4)y I1/N) ,,,12 (6) pie realization from a zero mean, Gaussian random
__1 process with an autocorrelation function R,,(j. ixJ and

where we have assumed no noise in the input. We con- {n, are also assumed to be jointly Gaussian and
sider the effect of noise at a later stage in this section. uncorrelated.

It is difficult to evaluate the denominator of (6) unless Proceeding as before, the correlation peak value for
the input signal sequence {x, is known. The exact nature the noisy case is given by
of {x,} is rarely known a priori, but we will assume that N

i,} is a sample realization from a zero mean Gaussian 60) = (I/N) x.X, + n)
process with a second-order statistics R4jJ. With such an
assumption. we have (2/7r)a 2 sin '1{ R,(0)J/

E{ ,,,I a2{PrJxx,,I > 0) -Pr(xx,., 0- OR,(O)}R,() + R,0) Jt121(2/iTo)I ,(o si R.(0)1,()J (7 2

= a2 ( 2/n sin I[R(j)/R(O)} (7) - (2/iT)a2 sin 'VR,(O)/[IR,(0) + RO)1. (12)

where E{.} denotes ensemble average and the last equal- Comparing (12) with (5). we note that the correlation
ity is derived elsewhere 117). The quantity within the par- peak value decreases as the amount of input noise R,tO)
enthesis in the denominator of (6) can be seen to be a increases. The PBR ^ in the presence of the noise can be
sample estimate of the ensemble average in (7). For suffi- derived as
ciently large N. the error in the sample estimate is ex- N

pected to be small and we can approximate -i as , I(I/N) + n,))2

NI ~ y = Na4! 1, Fr ))12N"' {~o(IIN)L +(/)':

N i = 1

Na4 / , {(2/Trr)a 2 sin ' R(j)IR,(O)I}2  =1(2/'rr)a2 sin- I \VR(O)/{R,(O) + R,(O)1-

* (.; , {(l/N)(2a2 /rr) 2
I = NITrl212l{ Isin 'JR,(j)1R,AOJJ2J. N8

s in Isin ' \1R 2 (j)1JR 2(O) + R(O)R.(0)}I}2  
I

One can show that for any 0 1, 1 I.

13 5 -sin (r/2) (9) = NIsin ' "/RA(O)/{R,(O) + R,(0) 2

and using this inequality in (8), we can bound y as • Isin I 2(j)I{R 2(O) + R,)R,(O)}]2}

0018-9251/83030-0324 00 75 T 1983 IEEE (13)
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Using the inequality of (9) in (13), we can show that the simulation results, a few words of caution are in or-
der. We considered the performance only from the view-2 .rTr) ,y _ "Y Tr ( /22  -y (14)
point of PBR, hut as the input noise level increases, there

where -y is the PBR of unbinarized correlation as in ( I. is a greater probability that the correlation has a niaxi-

The inequality in (14) shows that the ratio (6/y) var- mum at o ,. The effect of input binarization on this

ies from - 3.8 dB to + 3.8 dB; thus depending on the false peak probability is of importance in location estima-

input noise level, we will find situations where the binary tion problems. Correlation is often used to separate tsNo U
correlator will outperform the unbinarized correlator. As classes of targets. Binarwation effects on class discrimi-

we have shown in (8). i/ is closer to the upperbound for nation should also be considered. When we use the defi-

the case of low noise. It has been shown elsewhere I I I I nition in (31 for PBR. we are implicitly assuming that the

using peak to sidelobe ratio (PSR) that binarization results correlation has a peak at j = 0. This is true only for loX

in a loss of 3.8 dB in the case of very noisy inputs. Us- noise situations and thus our conclusions should not be

ing an exponential model for R,(j). Kumar and Casasent used for high noise input scenarios.

I I I examine the PSR for binarized correlation as a func-

tion of signal bandwidth. itl. SIMULATION RESULTS
In this section, we have shown that binary correlators

perform at least as well as unbinarized correlators. But In this section, we support the conclusions of Section
their main advantage is in the ease of implementation Ii with the help of a very limited image data set shown in
which is considered in Section IV Before we examine Fig. I. These are all digitized images of the same area

P1 P2

iAi

V fri
P3 P4

Fig I Multispeciral pictures of tou lh of Frc.no, (alifornia Spetral hands of each plC Are as folio',' P, 0 8 1 1 0 7 t 8 .
01 7 P t

4 
05 01 6 t

501 -92511 -I .1 25 $I(X 7 c 198.1 I Ft
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south of Fresno. California. but taken with different sen- TABLL I

sors. The spectral bands in which these images were Performance of Unbinanied (orrelation

taken are indicated in Fig. 1. These images P1. P,. Pk.
and P4 of size 128 x 128 represent the same scene and P
thus all cross correlations tas well as autoconelations) A. Normalzed Intcnsic, it cross-(orrclaition (igim,

should peak at j = 0 in the correlation plane. As was
P, I (XX) 6175 0 0622 0 1"N

discussed in Section II, the mean of the image carries no 0,6175 1 0 1 0

relevant information (especially for multispectral data) P, 0 0622 0 W21 I t 1 (XN57

and is thus removed before any processing. For our mu)- p0 U (W 0 (K126 0 X 57 1 ,I

tispectral data, the gain factor of each multispectral sen- B Peak to Bavkground Ratios I PtBRs

sor is not only different, but also unreliable, and as a
result, we had to rescale the gray levels in all four images P" 63 163 531 286 K 2(71 9 9l571

P: 53.256 t9, 625 IIIi 12 ,3
so that the energies in all of them are the same. Such P, 44 2 51 3.,

preprocessing is necessary to use the model in (I). P, 9 9K70 12 53 SI 5145, 7; 9

After the above normalization on the four images,
cross correlations were performed among them. The re- * P, and P, * P4. We use * to denote correlation opera-
suiting correlation peaks and PBRs are listed in Table 1. tion.
From Fig. I, we note that P, and P2 are similar and P, The four images P, to P4 arc no%4 binariled to pro,-
and P4 are similar. This behavior is indicated by larger duce the hard-limited images S1 to S, as shokn in Fig. 2.
cross-correlation peaks and PBRs for P, * P, than for P, The median in each image was chosen as the threshold

Sl S2

II

S3 S4

Fig 2 Binarcd versions ot the inultipcctral picture,, sh.',"n in Fig I

OI8-9251 't43'0-0326 $(E75 , i993 IEl-l
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rather than the mean to satisfy our assumption that the show the peaks and PBRs obtained as different amounts
average value of {.,} is zero. Even though the gray levels of additive white noise is introduced in the autocorrela-
as shown in Fig. 2 represent completely dark (0) and tion P, * P. The ratio N/S indicates the white noise
completely white ( + I) areas, we treat them as denoting power to the image (signal) power. The peak values and
- I and + I in our actual processing. Cross correlations PBRs obtained in the binarized autocorrelation S, * S, fr
are perlormed on these binary images and the resulting various N/S values are shown in Table IV. For the rea-
parameters are shown in Table II. Once again S, corre- TABLE IV

TABLE I1 Effect of Input White Noise on Binanzed Correlation
Perfrnnace o)f Binariied correlation

N/S Peak PBR
S, S, 0.00 10000 100 27

A Normalized Intensities at Cross-Correlation Ongins 002 0 9129 93 301

S, 1.8X)X0 0.5806 0.2171 0.2101 0.0 0 H707 89097
0 016 0.8402 86 798

S. 0.5806 1 ( ) 0.2157 0.1911
008 0.8175 86.640

S, 0.2171 0.2157 1.0000 0.6733 0 10 .784883.453
S 0 0.2101 0.1911 0 6733 1 00(x) 0.10 07820.12 0 76801 83 297

B Peak-to-Background Ratios (PBRs) 0.14 0.7472 81 270

S, 100.27 64.595 44.880 48.693 0 16 0.7233 80 562
S., 64.595 117.48 49.385 49507 0.18 0 7308 81 689
S, 44.879 49.385 139.56 100.51
S. 48.693 49.507 100. 51 154.00 Notes. Input is the binanzed JP, + noise). Reference is the binar-

ized {PI)

lates better with 2 than with S, or S4. Comparing the di-agonl lBand abl IIB we eestat s discussed in Section I1, only small amounts of noise
elements of Table are considered here. From Table ill, we note that PBR of

unbinarized autocorrelations yield PBRs of 63.2. 93.6, P, * P, is relatively unaffected by small amounts of
44.9. and 76.7. while binarized autocorrelations yield
PBRs of 100.3. 117.5. 139.6, and 154.0, respectively, noise. On the other hand, the PBR of binarized correla-
Thus we see that for all four images, binarization im- tion decreases as noise increases: but for the range of
proves the correlation PBR by factors of 1.25 to 2.0. noise levels shown, binarized correlation still gives better
These improvement factors are well within the range of PBR compared with unbinarized correlation. Binarized
L. t) i(12)2 = 2.5 predicted by ( 10), The PBRs in all correlation peak is also seen to be more sensitive to noise
cases are estimated using the definition in (3) on the ob- in the input signal. Thus we see that binary correlator still
served correlation output. The PBRs for binarized cross outperforms unbinarized correlation in the presence 0f
correlations are consistently higher than the PBRs for un- small amounts of noise.
binarized correlations. Improvement factors of almost 5.0 IV. DISCUSSION
(beyond the 2.5 suggested by (10)) are observed in the

cross correlations of S, and S, and P, and P. This is be- In this paper we have shown that binary correlation
cause P, and P4 differ drastically (through random con- gives better peak-to-background ratios even in the pres-
trast reversals) and the differences cannot be modeled ence of small amounts of noise. We supported these thco-
simply as additive noise. Binarizing removes the unrelia- retical arguments with the help of simulation on a set of
ble amplitude information while retaining only the major multispectral images.
edge information and thus results in better PBR 1181. The binary correlator is attractive mainly from itiple-

We now observe the effects of additive noise in the mentational considerations. By using the VLSI technol-
input on the observed autocorrelations. In Table III, we ogy 1141. the binary correlator can be implemented in a

TABII III reasonable number of chips. The + a and - a levels of
Eftect of Input White Noise on Unhinarized Correlations the binarized signal in (4) correspond to logical I and 0

in a digital implementation. The multiplication laws areVS Peak PBR
then as given in Table V. We observe from this table that

0[0 10I11) (l,38I TABI.lI V
0.02 0l 98(15 63 (152

0209K05 62-Multiplication t.aws for Binary Input-0014 (19621 62 549

006 (09439 62.759 X Y X ' I. Ij L RIY I.N.X )I
(I 08 119267 63 265

if) 1) I 09 t 2 149 a a I I I I

t 12 0 8957 62 515 a a - I 0 (I
0 14 0 9809 h 1826 a a i 04 I0

11 16 I 8644 Is61 450 1 a -11 0

t IX I 859 62 A3
Not, 1.1 1 reters to the corresponding Io i lesel

.Vote, Input i% the inten,it norniali ed I'l . nois,) Relerence i,
the rteni,t. ri ornialied JP, 10)18-92518311030-0327 $W 75 i 1983 IE-E
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12. GENERALIZED CHORD TRANSFORMATION FOR

j DISTORTION-INVARIANT OPTICAL PATTERN RECOGNITION



Reprinted fromt Applied Optics, V'ol. 22, page 20K8. .July F.. 14831

Coyih c1:1bthOpiaSoiyofAerica and reprinted bY permission oit the copright owner.

Generalized chord transformation for distortion- invariant
optical pattern recognition

David Casasent and Wen-Thong Chang

Ant pltical processor that realizes it genera lized cho rd t ransfotrmiation is (lescri ed - 'fIhe wedge -ring detect or
sailles of an aulocorrelat ion aresh slitn to be the hi,tograis the chord distributions. 'I'hk is fjnsitoiali-
iv redutced set oi lfeatktres is used] as the feat ore vector inp)uts lor aI Fisher linear classifier to determnine the,
class of thle input object independent of geonivt neal distort ions. hitial discussions oni the use oft different

classifiers, the p' tarit t ssiit(,,l 'ser output1. and 'elect ion of the inmage training (-t are also advanced.

1. Introduction to a Fisher classifier' (Sec. IV) f'rom which thle class of'
Obtaining object classification in the l'ace of' geti- the input ob~ject is determined even if geometrical dis.

metrical distortions in the input tobject (due to scale. tortitins are p~resen~t in the inp~ut tbject. Initial simou-
roitatiotn, asp~ect variations, etc.) is a major pattern rec- lat ion results (Sec. Vi are most imlpressive. Extensions
tignition prtohlem that has receiv'ed extensive attent ion. tt inult iclass problemns and thIe use of alternate classi-
Various optical systems of' increasing flexibilityv-nd fiers are then advanced tttget her with new techniques
potential have been ti uested as p~artial soiltions to this tot select the training set image data (Sec. Vli
problem.' These include weighted matched spatial
filters.2 space-variant op~tical pattern recognitioin sys-
tems,1 opltical ctrrelatttrs using generalized matched I.OtclRaiaino eeaie hr
sp~atial filters t and synthetic discriminant fuinctions" Trans otioeln to fa eeaie hr
Conventitnal digital techniques for disiortion-invariant Tasomto
pattern recognitioin involve extracting feat ures f'ri The chord transformation1 ' is defined for a binary
regions of' the input image. determination of a linear solid obiject described only by its boundary t i.e.. Fig. I1
discriminant f'unct ion or linear combination of' these For each pair of points onl the boundary, we ctmstruct
features (from imagve training sets of the different object a chord and notte its length r and angle 0I. We then de-
classes), and using the measured featuires for an inlput scribe the oibject I boundary) by the distribution hi r. (1)
object in a classifier to determine the class (if the inlput il all chords. This conversion tif a lbinar 'v soilid object
oibject. A recent optical system' f'ollows this approach f (x,) into h (r.0) is a chtrd t ransformiation.
by extracting the moments of the input oibject optically To develop a g-eneralized chord transf'ormatitu and
and then using these as the f'eatures tt ble fed to a digital its optical realization, we first colnsider a simp~lified
nonlinear least -mean -square estimnator to perf'orm technique (suitable for opItical realizatiomn) tot protduce
object classification, the chord t ransf'ormat iln. W co((nsider anl image and

In this pap)er. we describ~e a new optical architecture denote points ini the image Iby (xY) and the boundary
that realizes a new toperation, a generalized chord of the image I)\ thoise points hlxv I = 1. A chord then
transformat ion (Sec. MI. This constitutes ouir t)1ser- exists between two pints if'
vatitin sp)ace. We utilize a wedge-ring detector-, to ex-+ +
tract feattires f'rtim Ibis output f'or reduced dimen- g xr t. tIl ot+rsn . I

sionalitv and for dlist ort ion-invariant pattern rectigni- i.e., if the two points are onl the lbtotndarv. ,1 . and a
timn (Sec. 1ll). These measured f'eatuires are then f'ed ctr eie yrad( xss lb ls iuimh(.i

of chtmrds in the image can then ble describled Fromt

i fri =~ A .' I t Y.N (1

''lii au~thor, art with Ca'rnegie-Mellotn tnivvrsit\ . t)('tartiient oI= i1h(A )III + I. ct + r (iti~I 21

Kiet-trital Engineering. P'ittsbuirgh. Pennsvania 1,-21:;. Subst ifuting ( .t) (r cotsfl.r sin t
)). Eq. (2) becme(s

Rtecei ved i Febr a rv HIM:.

c 9851 t)pnit al S ict\ ofI Atterita. =it, -/i,,I i
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conputed troin the apti(al autocorrelation, and dif-
ferences in both dist ribut i)ns were noted to exist for
different letters af the alphabet. However, no classi-
ficat ion algorithm was suggested. In Ref. 13. the sum
and difference of the angles between the chords and the
boundary of the object were calculated. The authors
refer to the distribution iif these angular sums and dif-
ferences as a 3-1) histogram. In Ref. 13, such a display
was considered for ship classification, In Ret. 14, the
dist ribut i)of the lengths of the chords was digitally
c'omputed for various noisy circular objects and map
outlines.

We found much potential shape information and'h ,rd iran,(,*rnaliwn. pattern recognition patential in the chord transforma-
tion. However, the computational complexity required

which we recognize as the autocorrelation of the in prior techniques, the use of only boundary objects in
boundary bx.x) prior work, and the lack of attention to the classificatian

The calculation of all (rj)) values for all boundary algorithm to use motivated our present work. We first
points is very time-consuming. However, from Eq. C1. consider a new technique to extract the h (r.0) radial and
we see that the h ( lap dist ribution can also be obtained angular chord distributions from an optically generated
by simply autocorrelating the boundary of the object. autocorrelation of the input image. As noted earlier.
IThis fact was also noted in Ref. ItI and elsewhere.) our h,;r )) will be the distribution of a generalized
Since optical pro),essors easily realize the correlation chord transformation. Hereafter. we do not specifically
operation, an optical realization of the chord transform distinguish between h and h,;.
appears quite attractive. However. optical s*ystems can As a preferable approach, we consider a simple and
realize the autocorreation of the full (abject (not just its direct technique for feature extraction trom Lhe gen-
boundary) with no increase in system complexity. We eralized chord transformation observation space with
denote the autocorrelation ofthe full image /(xy) rather attention to( dimensionality reduction and obtaining
than just its b)oundarv b(xv) by distortion-invariant features. Dimensionality reduc-

tion is essential, since otherwise It (,o) can contain 1()fti.rl= i/x.\ Iix + .,X+ rlidxd = f " .f t41 1
output samples (for a 10: X lO'-pixel image). and the

Since this autocorrelation is not restricted to the corresponding object would have to be modeled as a
boundary of the object nor is it restricted to binary vector f with dimensionality D = 10c. Processing such
objects, we denote the result as a generalized chord vector data would be computationally intense. An at-
transformation. tractive, easily realized, and intuitively pleasing choice

One can optically realize the autocorrelation of an for a feature sl)ace results if the h (,) optical autocor-
image by several techniques. Nichols'' used a two- relation output plane pattern is sampled with a
stage Fourier transform in which the autocorrelation wedge-ring detector. This detector7 consists of 32
was obtained from the Fourier transform of the lower wedge-shaped detector elements in one-half of a
spectrum. If two 2-D spatial light modulators are used. 2.54-cm (1-in.) circular detector and 32 annular or
the autocorrelation ('an be realized entirely optically in ring-shaped detector elements in the other half of the
parallel on one system. A joint transform co:relator1- circular detector area. All 64 outputs are available in
using mirrors or point holographic elements to replicate parallel on 64 separate leads. Figure 2 shows the gen-
the input pattern is vet another possibility. With a eral schematic of our hybrid processor. We discuss the
nonlinear crystal positioned in the joint Fourier trans- features produced below, and in Sec. IV we discuss the
form plane. these systems ('an be further simplified, classifier.
Thus the optical realization ofthe autocorrelation of an Denoting our generalized chord transformation oh-
input image (as required to produce a chord transfor- servat ion space by/h ($I)1 = h Ir cosOr sinfl), where =

mation) is easily achieved by many techniques. r cost) and ?I = r sinfl, the wedge-sampled outputs are

I1. Feature Space hil) = Ih(r costi.r sinl)rdr. (5aI

Much research 1"" . has been performed on dif- and the ring-sampled detector outputs are
ferent manipulations and displays of the chord trans- 100 I"hir cosfi.r sin hrdf). (51))
formation output distributions to achieve distortion- -_.r,.._ __

invariant pattern recognition. In Ref. 10, the distri- .. ,

butions of the lengths and angles of the chords of an- , - "'
object were considered as feature.- However, only the
peak value of the distribution was used, and the classi- I AT IIIT

fication of only several simple geometrical shapes was Fig. 2. Siml)lified b)lock diagram of a hybrid optical/digita distor-
considered. In Ref. 11. 1 he length and angle distribu- ti,,i invariant pattern recogniiion) systeim using a generalized chord
tion of the chords ot' different characters were digitally Iransformation.
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I
lnspection ot Eq. (5a) shows that tie h (I) features are or for each new type of classifier used. Our s'stem is
independent of r (or chord length) and are thus also more general and flexible: since its out Iptl van directly
effectively invariant to scale changes in the input image. be used in any classifier for any object ('lass,. we ('hoose
Similarly, from Eq. (51)), we see that the h (r) output to use the Fisher criteria because oft heir intuitive ap-
features are independent of'f (or the orientation of the peal.
chord distribution) and are thus also effectively in- In inan' classifiers, image training set: fimages of
variant to rotational differences in the input image. each ('lass of object with, for example. dfferent geo-
Thus, as our feature space, we use the 64 wedge-ring metrical distortions) are used to determine the LI)F.

detector-sampled outputs of the generalized chord o1- We consider a two-class pattern recognition problem
servation space. This constitutes a 64-sample repre- with the image training set being Ifj ,and f-, for classes
sentation of the h(r,fl) chord distribution. Such a I and 2. respectively. Ve(lenote the numl)er oftraining
representation of' an image f(x,y) is equivalent (in set images in each class by .N andt N,. re.,Iectively. For
conventional pattern recognition terminology s ) to the each image, we calculate its leature vectors ft, and f.-.,
representing of an image as a vector f ofdimensionality We also calculate the vector means m, and m., fo)r the
) = 64. with the elements off being the 64 h(l) and h(r) two classes of training set data. where for class I

wedge-ring detector-sampled values. This new optical
architecture thus produces the desired h (rj) chord i, = , .\ f,
distribution in parallel with a greatly reduced coml)U-
tational load (compared to a digital version of the We also calculate the scatter matrices Si and S., for each

equivalent system), class, where for (lass I

IV. Classifier s, = L if,. - mniff, - mIln 17

As the second major issue in this paper, we consider In Eqs. (6) and (7), the summation is over the i = N,'! or
the classifier to be used with such a feature space. In N., images in the corresponding Iraining set.
conventional pattern recognition and object classifi- The images in a lin claiir isetcatio feaures f 'The purpose of a linear classifier is to determine
cation techniques, the features (the elements of the (from the training set data i an I)F,,r vectorw ?I
vector f are fed to a classifier in which the class of the
input object is determined. This is achieved by pro- this has been done, the system is tested. In such a case.

jecting the measured vector f onto a linear discriminant a linear c mlhinatiin of the tiserved features for an
function vector w and comparing the scalar output unknown input image f is calculated and compared to
obtained to a threshold. In our general architecture of a threshold level 7'. This is equivalent to calculating
Fig. 2, we use a parallel optical system to produce our the vector inner product w Tf or fw or the projection
observation space (the autocorrelation) of the input of f onto w (all vectors are column vectors, the super-
object), a wedge-ring detector to provide the dimen- script 7' denotes the transpose or a row vector) and
sionality reduced feature space, and a digital postpro- comparison ofwT to the threshold T. The LDF vec-
cessor for classification. This is a new quite general and cor t to T treshld T. the trFivec-verto w and the threshold T are selected from the trainingv attraction a n Ituefor advanced set data (as we detail later). fwIf z 7'. we classify the
pattern recognition applications. It employs the par- unknown input object as a member tif class one oir two.
allelism of the optical system for feature extraction and respectivel.
the flexibility and numerical computation features of Te eine ,To) determine w, we must first select the p~ert'ormance
a digital processor for classification. measure to be optimized. In a Fisher classifier, theWenow discuss the classifier we used. We consider -

the use of a linear discriminant function (LDF) that parameter maximized is the Fisher ratio

maximizes the Fisher ratio to determine the linear . iii - .21J
2  ,s,

combination of output features to use for object classi- S i + S2
fication. Our analysis and formulation follow that in In Eq. (8). in and in. are the means of the projections
Ref's. 8. 15, and others. Caulfield et al. i5 also used the of the training set data in (lasses one and two on w. i.e..
Fisher criteria, but they used Fourier transform coef- for class I
ficients as the image features and used the Fisher LDF
to synthesize a matched spatial filter. Leger et al.A1f,,/i n\. ,
used Fukunaga-Koontz techniquesli and least-mean-
square algorithms 7 to synthesize a set of optical filter and Si and S.) are the s( 'tter of the projections for the

tfunctions. Our approach differs significantly in concept training set data in classes ,me and two, respect ivel,; i.e..
and implementation, since we use the optical system to for c'lass I

produce the features and a digital postprocessor to i'ri,.iiui, i1
perform the classification. In approaches such as those

in Refs. 16 and 17, the location of the output correlation = -f 1 - W I ) = W I S I W M,

peak indicates the class of the input object rather than The Fisher ratio J in Eq. (8) is an intuitively pleasing
the location of the object (as in a conventional correla- performance parameter. In a hyperspace data repre-
tor). In such systems, a new filter function must be sentation, each input image is a vector described by a
produced for each new class of object to be recognized given position in this hyperspace. The numerator in
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Eq. (8) is the difference in the means oftihe projections (ray-scale and binary images were used in all experi-
for the two classes of'training data, and the denominator ments, and the hull of the ship was reived (retaining
is the sum of the scatter of the projections. Thus the only the superstructure). The number of features
numerator in J is a measure of the separation of' the (wedge-ring detector samples) or the dimensionality 1)
classes, and the denominator is a measure oft he clus- of the feature space used affects the number of training
tering within each class. The reader should recall that set images N, + N, = N that are necessary. The cases
the parameters in Eqs. (61-(10) refer to the training set to consider are 1) > N, 1) = N, and D < N. IfI) > N,
data for the two classes, many solutions are possible, and we simply pick one. In

To determine the LDF w that maximizes d in Eq. (8), 1) > N, we find that Sw is singular (its rank is less than
we must descrihe 4 in terms ofw. Using Eqs. (6) and I)), and thus an LDF w to maximize the Fisher ratio
(9), we can write the numerator in Eq. (8) as does not exist (since S-i does not exist), and instead

07M - WFM2 = many solutions exist. IfI) = N, a unique solution exists
in1 - 1

2 1-'=('w~m1 -m-w . 11t H and is easily obtained )y solving a matrix-vector

where the between-class scatter matrix St( for the problem. If I) < N, no direct solution exists, and thus
two-class discrimination problem is the vector outer we approximate one by least-mean-square techniques.
product: Since maximizing the Fisher ratio is known" to be

m - mh~m1 - m r  (t21 equivalent to a least-mean-square solution, use of such
an approach automatically requires N > I). We thus

We describe the denominator in Eq. (8) using Eqs. (7) find the soution w that minimizes the least-square
and 110) for the two-class problem as error.

S1 + S ; = w'Sw + w 'Sw = w'Tsww. 1:31 B. Dimensionality Reduction

where the within-class scatter matrix Sw is The consequence of the N > D requirement (which
is the practical case of concern in pattern recognition)

S ';w = s + S.. (141 is that if our available image data base is of finite size

Substituting Eqs. (11) and (13) into Eq. (8), we find that (this is obviously the practical situation), we must thus
the Fisher ratio can be cle,cribed in terms of the lAF reduce 1) before a Fisher or similar classifier can be
w as designed and before significant test data are )ossible.

To quantify these remarks, we consider our present
,J<w) =w', 1w/1 '5 1w. 115) problem and available data. If we retain all ) = 64

Differentiating Eq. (15) with respect to w and setting wedge-ring detector features, we require N > 65
the result equal to zero, we find that w is the solution training set images. For a two-class problem. we only
of the general eigenvalue problem have avaiJable 36 images per class or 72 images total.

Thus, if all 64 wedge-ring detector values are retained
114w = ,Xs~ w. M tia) as features, we would have to use 65 of our available 72

If Sw is nonsingular, we can write Eq. (6a) as images for training. This would leave us with only 7 of
the 72 images for use as new images during testing. The

,iS w = ,Aw. I 16)) results of such experiments (training on 65 of 72 images-
The uniqtue solution to Eq. (16b) is our IA)F. It is given would not be impressive. Thus we next consider fur-
by t her dimensionality reduction of our feature space.

To l)erform more impressive tests and to reduce thew =.,-"!(m1 - M2). (1711
size of the training set and the amount of calculations

Thus to determine the LA)F in Eq. ( 17) we must calcu- required, the number of features used must be reduced.
late the vector means m, and m plus the within-class Such dimensionality reduction is commonly employed
scatter matrix Sw for our training set data. Substi- (for different reasons, i.e., to reduce the computations
tuting these into Eq. (17) then yields the optimal LDF required). From an analysis of the wedge-ring detector
w that maximizes the Fisher ratio 4(w) in Eq. (8). As outputs for our full set of 72 images, we found that the
our threshold, we use the average of the means of the outer 8 ring readings were approximately zero. We thus
projections for our training set data, i.e., ignored these features in all cases and reduced the

I' (n I + 1, /2(12.maximum number of features to I) = 56. For a feature
vector of dimension 56, we would still require 29 images
in each class for training. To further reduce the di-

V. Initial Experimental Verification mensionality of our feature space, we calculated the
means mid and i,_,2 and the variances (id and 2,_ of

A. Available Data Base each wedge and ring detector output (d = 1 .... 56) for

To demonstrate the use of this Fisher-discriminant various two-class training sets of data. We then cal-
classifier with a wedge-ring detector-sampled general- culated R = (mid - m'_,d)/((T2d + a~2) for each case for
ized chord transformation observation space, we used all 56 detectors. As our features, we retained the 18
an available IR ship image data base. This data base detector outputs with the largest mean difference to
contained two classes of ships with 36 images in each variance ratio R for the various training sets. Our

class (one image every 10* with a 90' depression angle). simplified technique for reduction of the dimensionality
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Table I. Image Training Sets Used

Training set
linage Number of images used

Omatraining training set for class I
.set images used (class 2 rraining set

number per class analogous) remarks

1 36 1,2,... _35,36 All images

2 18 1,3,5.....,5 Images every 20'
3 12 4,6,8,....12,14; 22,24, Images every 200

... ;30,32 (within ±501
of broadside

4 12 4,5_. 14.15 Images every 100
(one side oniv.

Fig. :1. Representative images for the class 1 ship imagery: (top near
right) 0). tp left ) 45. bottom 90

°
. 12 1,4. 13,16; 19.22. Images every :00

.... 31.34

Table iI. Simulated Test Data (Binary Imagery)

Probability
of correct

Experiment Fisher Number classification
number ratio of errors ("i)

I 114 0 Its
2 126 0 100
8 1180 8 88.9

4 2:122 4 94.4
5 158 0 10l

Simulation Results
In Table II, we list our experimental results obtained

Fig. 4. Representative images for the class 2 ship imagery: (top for binary ship image data with the hull of the ship re-
right) 0, (top left) 45, (bottom 901 .  moved. (This was done to remove nonreliable graN'-

scale image data, and hence the binary version of such
imagery was used in our present tests also.) In all cases,
the 18 wedge-ring detector features previously noted

of the feature space assumes independent features. A (Sec. V.B) were used. The five experiment numbers
more precise techniquet , using the covariance of the listed correspond to the tests performed using the cor-
features could be employed (to account for dependent responding five image training sets noted in Table 1. In
relationships between features). However, our results each case we calculated ml, m,, and S-) for the indicated
were adequate. and thus such techniques were not em- training set data and from these computed the LDF w
ployed. in Eq. (17) and the threshold T in Eq. (18).

From experiment 1, we note that the entire data base
c. Image Training Sets was used for training and that no errors occurred. This

In Figs. 3 and 4. we show three of the images from the indicates that the full data base is linearly separable
set of 36 images for each of the two classes of ships used. using as few as 18 features. It is thus realistic to assume
We number the :16 images in each class consecutively that some subset (less than all 36 images per class) of the
from the bow to the stern, with the class one images full image data base might provide similar performance
denoted by 1-36 and the class two images by 37-72. to that obtained using the full data base (i.e., 100%,
Images I and 37 are the bow views, images 9,27, 46, and probability of correct recognition). One cannot theo-
64 are the broadside views, etc. We selected five retically prove this, however, but test data seem to verify
training sets of data (Table I). The same aspect views this intuitive remark. In experiment 2, we use 18 im-
were used for each ship class for compatibility, and thus ages per image class and find that the computed LDF
only the ship image numbers for class 1 are listed in is again capable of correctly classifying all 72 images in
Table I. Training set I contains all the imagery. both classes (halt' of which it had not previously seen)
Training set 2 contains half of the imagery (images every with no errors.
200). Three sets (set-, 3-5) of 12 training set images per Experiments 3-5 consider the use of a much smaller
class were chosen In set 3, the training images were training set (12 images per class or one-third of the
clustered within 450* of broadside on the front and available imagery) and the testing of the computed IDF
back of the ship. In set 4, the 12 images were clustered against all 72 images. In experiment 3, 12 images per
every 10° from 40' to 1,50' on one side of the ship only, object class were used (clustered around the broadside
and in set 5 they were evenly spaced every :10*. views of the target, from both sides of the ship). Good
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results, 8 errors out of 72 images or 88.9', correct rec- Table Ill. Simulated Test Data (Gray-Scale Imagery)
ognition, were obtained. As might be expected, most Probahilily
of the 8 errors occurred for test images close to the how )o (orrect .

and stern views. Since such images have fewer pixels Experiment Number classification Traininig el

on the target and since these images were not included number 14 errors ") remjrk,

in the test data, these errors are to be expected. In a 1 0 100 All image.s

ship recognition scenario with such imagery, one would 2 1 sis. Inage every 20'

not expect to perform classification on such bow and e3 9ery 20'
Iwit hi ±00(

stern views of a ship. ,I broadside)
However, to pursue further the issue of training set 46 91.6 Inages eer o'

selection and the performance of this feature-extraction one sidh. only.

space, we considered other training sets of 12 images per -nar broadside)

class (from our data base of 36 images per class). In 0 100l Image (very :30'

experiment 4, 12 images taken from only one side of the
ship were used during training. The motivation for this features useful for training set select ion. We will am-
choice was that the views from both sides of the ship plify on our general remarks to follow in a fut ure pub-
were rather similar, and thus we could possibly contain lication when we consider the effects of noise on the
all information on the ship class by training on images performance of our system.
from one side of the ship only. Our results (4 rather For our present discussion, we will consider how the
than 8 errors out of 72 images, 48 of which were never Fisher ratio value J (obtained from training set data)
seen in the training of the classifier) verified this con- can be used to influence our image training set selection
jecture. As might have been expected, the majority of criteria.
errors encounteed again occurred for images near the We first note that maximization of J is a least-square
how and stern. These images were not present in the problem, and thus the d parameter (Table 11) provides
training set. and thus such errors are again expected. a measure of the accuracy of the least-squares fit solh-
As our third set of twelve training set images per class, tion. Specifically, J is inversely proportional to the
we used set 5 (12 images, evenly spaced every 300 about least-squares error. Thus a low ] value (Table i) in-
the full ship). Our performance (no errors for all 72 test dicates a large least-squares error in our solution.
set images) is the best possible (matching that obtained However the major point we advance at this junction is
in experiments 1 and 2 using 36 and 18 training set im- that a large J (and hence a small least-mean-square
ages, respectively, per class), error) does not necessarily reflect that better classifi-

In all cases, no more than 8 errors occurred (above cation performance will result. Rather, a smaller J for
88.9% probability of correct recognition). The third the training set indicates that the training set is more
major issue of concern in this paper is further analysis divergent (large mean square error) or. equivalently.
of these results to obtain insight into why such excellent that it is more represenialive of the full image dala
performance results and insight into how selection of base.
the training set used affects the results obtained. Thus the philosophy we presently discuss advocates

Before leaving our experimental data section, we selection of a training set with a lower d value. This
present (Table III) our ship data test results obtained premise is based upon the fact (confirmed by our initial
using gray-scale imagery (for the same experiments and experiments) that such an image training set provides
training sets used for binary imagery). These results a better statistical representation of the test data. As
are quite similar to those obtained using binary imagery we noted earlier, such measures for training set selection
(Table II) with a reversal in the results for tests 3 and are needed, both to provide more meaningful test data
4 being the most obvious differences. (We attribute and to provide better discrimination performance.
this to additional reliable gray-scale image data present To quantify these remarks, let us consider the Fisher
in the superstructure and deck line of the ship.) These ratio J (column 2 of Table II) calculated for the various
experimental results are noteworthy because they training sets. Considering the first three entries, we
represent the generalized chord transform operation note that J increases as the number of training set im-
that we noted (Sec. I1) that our optical system could ages used increases (114 for all 72 images. 126 for 36
directly and easily perform. images, and 1180 for 24 images). This reflects the ob-

vious fact that it is easier io separate 24 or 36 images
Vl. Discussion than 72. The large increase (126-1180) in going from

Our optical processor to realize a chord-distribution 36 to 24 images is also due to t he 12 images chosen per
sampled feature space has proven most attractive as has class (all were within ±50' of broadside and thus cluster
our wedge-ring detector-sampled chord feature space. well). Similar remarks apply to the large J (2322) oh-
Our technique to reduce further the dimensionality of tained for the case when the 12 training set images per
our feature space has likewise been shown to be useful class were chosen from the same side of the ship.
and adequate. Further research is needed to optimize Recall that a large J merely reflects a small least-
our image training set selection technique. Our three squares error that indicates that the training set sepa-
training sets of data (for our 12 image per class training rates well between classes and cluslers well wif hin each
sets) were chosen to investigate and demonstrate certain (lass. However, a large .1 value does not imply good
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performance on test images. In fact, the opposite effect We note that the sampling of the autocorrelation is
occur,-. (Ani I.DF formed from a training set with a equivalent to the chord histogram. We also note that,

large J yields worse performance than does one with a by blocking dc in forming the autocorrelation, the
low J.) This is obvious and provides insight into a more conventional chord distribution is produced (corre-
formal rather than an ad hoc technique for training set sponding to the boundary of the object). More light
selection that we now advance, level and a less narrow autocorrelation (with more

Once a training set is selected, our algorithm produces structure) result from our generalized chord t ransform.
an LDF with the largest J possible (for the given Hence this appears preferable and to be a more attrac-
training set). The value of J obtained indicates the tive observation space for an optical processor.
divergence of the training set. Thus an LDF with a low Our architecture (in which the features of the input
J indicates that the training set used is more statistically object are optically computed) is quite general and at-
representative (larger divergence) of the imagery than tractive. It utilizes the high-speed and parallel-pro-
is an LDF with a larger J. Once we have chosen the cessing features of an optical system for feature ex-
number of training set images we desire to use (e.g., 12 traction, and it allows these optically computed features
per class), we can use J as a measure of which training to be fed to any output classifier. Discussions of other
set and which LDF is best. Specifically, we choose the optical pattern recognition systems using the Fisher,
training set and LDF with the lowest J. Fukunaga-Koontz, least-mean-square, and other clas-

Comparing J for the three training sets of 12 images sifiers were advanced in Sec. IV. However, these svs-
per class (experiments 3-5), we find a low J (158) when tems 5 I- used such classifiers to synthesize the filter
the 12 training images per class were evenly distributed used. Thus they all require different filters to be made
(every 30') around the entire ship rather than clustered for every different pattern recognition application and
on one side of the ship (experiment 4, J = 2322) or near new filters to be made if different classifiers are used (as
broadside on both sides of the ship (experiment 3, J = is required in certain applications). Our architecture
1180). Intuition also tells us that training set 5 should is more general, since the optical system need not
be more statistically representative of the image classes, change if different pattern recognition problems are
(The J value reflects and quantifies this.) Our exper- being addressed or if different classifiers are to be
imental data confirm this. [The LDF produced from used.
training set 5 yields fewer errors (zero) than did the Another important aspect of our approach can he
LDFs in cases 3 and 4.1 This technique for training set seen by considering the application of the Fisher criteria
selection is directly applicable to other feature spaces to synthesis of a matched spatial filter using a Fourier
and other classifiers. We will elaborate further on this coefficient feature space. In such an approach,' the
issue and other methods of training set selection that LDF w is a linear sum of the Fourier coefficients of the
explain the classification percentages in experiments training set data, and thus a matched spatial filter of
:3 and 4 in a future publication, this 2-D LI)F can be fabricated and placed at the Fou-

Care must still be exercised in selecting the number rier transform plane of a frequency plane correlator.
of training set images N when D features are used. The output correlation plane in this case would consist
Specifically, to use a least-mean-square solution, we of peaks of light of amplitude proportional to rn I or r ,
require N > 1). However, the N training set images (the means of the projections for the data in classes I
must be totally independent. This is difficult to achieve and 2, respectively). If the data in the input were in
in practice. and hence we do not choose N = D + 1 but class 1, the output would have an amplitude propor-
rather utilize several additional training set images. tional to i1. If the data were of' class 2. the output
When ) was large (e.g., 56 features), we found the sum would be proportional to r._, and, with the location of
of the covariance matrices for both classes to be very each peak of light, proportional to the locat ion of each
unstable with digital truncation error alone often being object in the input field of view. However. it has been
sufficient to affect the rank of the matrix and permit its shown in Ref. 8 that maximizing the Fisher ratio forces
inversion. In general, operating with a smaller di- the output projection values for the two classes of data
mensionality feature space is also preferable for com- tobe -1, respectively. Although the least-squares so
putational reasons, but this is not the major issue in an lution will not give projections of exactly ± 1. it will (with
optical processor. high probability) give positive and negative means for

We have considered other simpler observation spaces the two classes. Thus the intensity output from such
such as the magnitude of the Fourier transform of the an optical correlator will not allow one to distinguish the
input object. The wedge-ring detector was originally sign or polarity oft he output projections and hence will
intended to be used in Fourier plane sampling. Since not permit target classification. Heterodyne detection
the information content of the power spectrum and the of the correlation plane output is thus necessary if a
autocorrelation are similar (the latter is the Fourier Fisher criterion is used for synthesis of the matched
transform of the former), it might appear that there is spatial filter in a correlator. Only with such methods
no difference in which plane we sample. However, the can the shift-invariant advantages of such systems (over
physical significance of the two representations our feature-extraction method) be realized. In our use
(wedge-ring detector samples of the Fourier transform of the Fisher criteria (in which the classification is
anti the autocorrelation) is quite different. We make performed in a digital pstprocessor), different pro-
no effort to decide which is best for pattern recognition. jection polarities are easily handled and are in fact
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Efficient approach to designing linear combination filters

B. V. K. Vijaya Kumar

Various linear coimbi natin (il5 Ptsipnple matched spatial fil ters have been propo sed in the literature o" n)-

pr ove the dIiscrinminat ion in mtn tclass pat tern recoPgnit ion. It Itas been shopwn that all suchp appr ,ache,
Ipased on dten iistic ciost rainpts (api be modeled aNs similar mat rix/vect or proIplemis. the onk dvifference,
arising in the individuial co~nst rai nt \ectoPrs. Sine the design o anv oft t lese linpear comb i nat ion Itilt ers 0,0) "
can lie po~sed as a commron ttpatrix/vect or tpriPIleni, efficient iterative miet hids can bie used toP determn e the
I tFS. Th'le a ppl icat pap pif' one such met hod0 cal led t he mod ified hvperplane I NI HIP) paet ho d Ip r dit ermni ni ng
the LU F is described and its convergence behavior is numerically in~vest iga teid fp r a set it seven tpaltt rns. It
is shppwn that the MIHI' met hod yields correct I X'IFs (with rins erro r <o.1', in less than tien ite(ratp its,.

1. Introduction were used by Caulfield and Haimes" to prtoduce stat is-
Matched spatial tilters (MSF) have been extensively tically optimal LCFs. TIhe c4)tflmtin ature of all these

used in opticst to identify a known pattern in a noisy LCFs is well unified by Caulfield."
background. This simple approach has been shown to In this paper we utilize the unifyinv ntotatiopn oft
tail in the presence of common image distortions such Caulfield" and our earlier work7 which showed that
as in-plane rotations and sca'o changes. Simple MSFs these previous LCF approaches can be reduced to a
are also seen to be inadequate2 for multiclass pattern common matrix/vector problem. We note that the size
recognition ap~plicatioPns. Multiclass pattetn recoPgni- Pf this matrix/vector problem is directly' proportional
tion (MPR) can he defined as the task of discriminating to the number of patterns in the input training set and
a pattern from among many classes of patterns. A good that, since the accuracy and the usefulness (Pta IA'F
example of MPR is the identification of a given letter increases with the size of' the input t raining set, we need
in a language from its alphabet. to solve larger matrix/vector problems for better accu-

Linear combinations of MSFs matched to the indi- racy. The contrit nttion of this paper is that this retpr-
vidual p~atterns have been used to improve the dis- mufation of the LCF design inlto a single nlarrix/vector
crimination in MPR.2 Such anl approach resulted not solution can benefit from the vast amount of results
only in improved discrimina 'on between patterns but available' for solving matrix/vector tproblerns. As an
also in increased tolerance to geometrical distortions in illustration of this approach, we p~ropose the use of Cep
a given pattern class. Hester and Casasen 0 have shown modified hyperplane (MHP)1" method to design the
through the use of the Gram-Schmidt procedure that IXFs. The MHP was initially used by Ramnakrislinani
a singl', sIpatial filter can be designed to produce iden- N at.!' for image restoPration and bly \"ijaya Kumnar'" fopr
tical cross-correlation values with all the patterns in the adaptive array null synthesis. In this patper we ptuint
input set. For obvious reasons, this type of' filter is (Put the usefulness of this technique in a lCF syntlhes-is
known as an equal c'orrelation peak (ECP) filter. for MPHR.
Braunecker cI a/. I t~ izb multiple linear combination Il.LnaCobatnFier
filters toP produce compact binary descriptions of' the I.Lna obnto itr
input pattern. All these filters are purely deterministic Consider the set oif N input characters
in the sense that they depend only on the training set 1I ,.2 .  IXN1. Each pattern X, is co(nverted fropm
patterns. Principles of statistical pattern recognition anl image to a vecttir for ctnvenience. T!he lengthof the

vectors equals the total numbher of pixels ill thle patterns.
A linear comtbinat ion filter Y is defined as

Ihe- aut hior is wpt h ('arniegie Millon pp1ppiversi tv. I epa rttiipnt of where a1 ,a..... ajN are real v'alutes denot1inhg t he ('Ph) -
Elect ricalI Etineering. I itt shiprgh. Ipnn isvlva na 152131. ri but ion t f'each input pat tern in the IA F Y. The I A'I

Received 22 .Ianiparv 1!)8:1. designs dlisc'ussed below describpe three t(('hniqfues for
oo4tt:t-69t5r/5;/IoItttS-l$tl tm/t. determining the cotefficient s 0a .( ..... .%. hese

c 193 OptiS opn tvo'reia techniques differ only in I he constr1 iaintfs imposed for
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determining these weights and the number of' filters large that determining the inverse ol H direct ly can be
used. The N mutually orthogonal filters ( MOF) coml111utatiolnally cumbiersome. Project ion techniques' I

Y JY ..... .Vare designed such that each filter cor- are usu~ally SuggestedI for solving such equat ion., %%henr
relates with onily one pattern and p~roduces zero cross N is large. In proJection methods, the N constraints in
correlat ionl with all other inputs, i.e Eq. (5) in terms of' the tunknown coiefficient s

Y, '41 t2) ~a ,a,. . ., a\v are considered to represent V h '\per-
* '~' planies in an N-dimenisionial hyperspaci(e. 'Ihe Ncoor-

where the dot denotes the inner product of* the two dinates ot the intersection of these N hvperplanes are
vectors anid (5, denotes the D~irac dlelta function). the N-coefficient values.

The ECP filter approach suggested by Hester anid The alternating orthogonal p~rojection (AOl') method
('asasent'1 requires that a single LCF Y be determined suggested by Youla' Ilprojects the init ial guess (solutionO
that correlates equally well with all the patterns in the vector orthogonally onl all N hyperplanes. one after
training set, i.e., anlot her. Ramiakrishnam el (1?." ~Suggested a il d ifi -

Y I ori 1, ..... V CO cation to this method to improve its convergence be-
* X,= I ~ri 1,2havior. This modificat ion involves rearranging the A,

In the nonredundant filter ( NRF) method' M IXFs hvperplanes of'our equations so that the adjacent 11 'v-
yl~ .... Y ,are chosen such that, when all these Al lerlplares are orthogonal to each other. Tlhis miodifi-

filters are correlated with a given input X, ,the resulting cation was shown'"' to be p~referable to AOl' hoth1 in
M cross -correlation values provide ali M-tuple de- terms of' the computational load per iterat ion and inl
scription of i, the input number. If M is greater than terms of' the number oif' iterations needed for conver-
log2N, we can see that the resulting description is a bi- gence.
nary one. To illust rate this method, consider anl inp~ut Let uts consider Eq. (5) with u... = u (a tunit vector) for
set of three patterns IXX, X,X:Il aid two nonredundant illustration purp~oses. The oither two equations call be
filters Y I and Y,. Since thle binary descript ions (oft he handled in at similar mlannier. Let us denote the N rows
numbers 1,2,3 are (t,1.)(,(,respectively, Y, anid ofthe matrix R by the vectors Si.S 2 . Sy. Tlhen the
Y., should sat isfy N hyperplanes in the N-dimensional space are rep~re-

* x I; y * x I:sented lby

, X, 1: Y. S,' W' I4 r o

Y, , 1 Y-where u Wi is the ith element in tile coInstrainlt vector u.
* XI: Y * X = LThe twoI step~s inl the MHP are detailed in the next twoI

Tlhe LCF solutions to Eqs. (2)-(4) have beell shownl subseto.
to be described7 in terms of the solution a to .uetos

Ra,= u(5) A. Hyperplane Rearrangement
The hyperplanes characterized by S.. 2 . .v are

For the MOF. u... = u iis anl N-element vector with a rea rrailged such t hat the new hvlperplanes
I in the ith position anid zeros everywhere else. R is the S '...S.' are ort hogonal to their adjacent hyper -
N X N correlation matrix of' the input data planes. The algorithm to p~erfoirm this is
1I,.---,X,\I. For the ECI), u,,i u is an N-elemient
vector containing all oines. For the nonredundant fil- S.= S~ (7
ters, U, = u.,, is a vector consisting of'ones anid zeros -' =S - ,III,'S
only, corresponding to the ith bits in the binary de- '-''"

scriptions of'rnumbers t ,_ . ,N. lIn our examiple N =21

-23, M = 2, anid u.,, would he givenl as l1t 1I1"', where the U~I l)
suil)erscril)t'deniotes transl)(ise. Sinlilarly u22is given 1101=1O-(I, )Is is I'S, 11
as Jl0 1i'. A noniniary description isuch asternary can .1
also be used to reduce the number M (If' the filters but
at the exp~ense litincreased dy nami(c range requirements Now the matrix equation to be solved is
in the otpu~lt plane If the cllrrelators. R~a =U# uII'

From this we see that all three techniques reduce to)
the same matrix/vector piroblem in Eq. (5). Only the where the sup~erscript # throughout inidicates modifiedl
colnstraint vectors u,,, u, anid u,, differ in the three (quantities.
c*ases. This leads to the possibility of'solving all three
p~roblems with only a few changes. For goodl filters we B. Projection Algorithm
require a large i iput data set, thus increasinlg the value Tlhe proiect 11)1 step) starts with ant initial guess a,, flor
if N. Since the size of the matrix R is N X N. we need the sllut iln vector. 'Illhis poiit a,, in tlie N -d imIensh al
to co~nsidler efficient methods of soilving for a. space is thenr on hogonall "v proiect ed oilto lt he first fly-

I )rl laneid ' p'a a I (I to ii v itlte ex t Sl it 1111 vect I ir
Ill. Modified Hyperplane (MHP) Method estimate a,. In general I he liroJect ioil onito the 'ith

The mat nix/vector Eq. (5) can be soilved by' finding liyperplaiie S, P'a = u ( o ( results in t he ,ih t 'fiiniate
the inverse Il the matrix R. However. N is oiften so for t he sllt io 11 vectolr:
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I~l

a,, = a,,.- I - Ia,,- (S;, - u',41/(S;,rS4,. starting guess for the solution vector was also a vector
1,2....,. V. 4124 with all o i.e.,

Once ax is determined, it is projected back again onto a. = H I 1 4 I I II . , I
the first hyperplane to start a second iteration. This The recursions are carried out using the MHP algo-
process of going from a.0 to ax is known as one complete rithm outlined in Sec. lIl, and these recursions are
iteration. It has been observed"' that this algorithm stopped when the error,
converges to the true solution in a small number of it-
erations. err= . a* .l44

decreases below a predetermined threshold, where
IV. Numerical Results * denotes the Euclidean norm of the vector and a*

As was discussed earlier, all three filters use the same denotes the true coefficient vector obtained by the di-
matrix R for a given input training set. Once R is de- rect solution of the corresponding equation. In general
termined, the coefficients for the three LCFs can be a* will not be available a priori and we can use the dif-
obtained by using the MHlP method in Eq. (5) with a ference between successive estimates of a to monitor
common matrix R. Only the constraint vectors are convergence. The MHP can be deemed to be successful
different in the three cases. if the error decreases as the number of complete itera-

As an illustrative example, we considered the input tions increase.
data set used by Hester and Casasent.3  This data set The error in the coefficient vector obtained by the
consists of seven IR views of a tank. We applied the MHP method is listed in Table I for ECP, MOF, and
MHP technique to the 7 X 7 correlation matrix R pro- NRF linear combination filters. (lose inspection of
vided by Hester and Casasent." To obtain the ECP Table I reveals that the solution vector obtained after
filter we used the constraint vector I1 1 1 1 1 1 1'r . The ten complete iterations is quite accurate. After

Table I. The rms Errors Vs Iteration Number

Iteration
1,. E('P MO)F:1 NRFI

1 2.3709 2.6099 2.o4.58
2 4. 198f 0.21 11 1.43159
34 4,.47405 0.0103 0.5.445
1 0. 19831 00 1,47 4.21S9

5 4.07157 0.414582 1.40 8557
f 0.02797 0.40022S 0i.4334-4

40.044093 04.000449 04.40 f: 447
8 0.0-1427 044444448 o.004510
9 0.0)016-7 0,01 H I4 4 t1. 0(111!9

10 0.00(615 04,400004I5 0.000719

15 ()i X Ill " 44, X lol ; 4.7 X Io4-

24 4.7 X Il
-
, 0A,4 X 10-" o.9 X 4l4

25 01. X I0-1 o.2 X I o 0.9 X 10_

Table II. The rms Errors Vs Iteration Number

Iteration
1o=:. N =4 ' .V=5 N= ( A= 7

I 1.2.1:12 1.4547 1.211 I.2_ _S' 2:. 7409
2 ).40700 4.03:5 4). 1.5621; 0.26:34 4. 1 946
3 1).(;X lo- .I4s X It).-' 0.67 X 11) .1.7.02 ( 71,1 1i-
t 0..5 X 10- 0.16X I0- o. w X I( o.9'7× 7X 10 0.1,42.l4

5 . 5x II1-: ]o- o. 1 X 4 4.4 X Il4 1 4.8i4X ll 1 11,0 17154 ;

4 0.12 X 144 4).1: tX I"- 11.91 X 140 0 u.442797!

7 . I X 404' 44o.7 X l 11.9 3 X 144 0,)4l109
8 44.:47 X 104 4.48 X 444 4.8.) X IX " 44.i44414

4 0.19 X 10 4.11 X 104- 4.42 X 10 0',i400l7
(4 4.857 X 4o 1 ) "4 44.:4 X 444 44,444444

04 4.4 1 X 144 0.12X 144 4ilol2."

42 0.56 X 444 0.0000944)
1:1 0 ;.5:3 X 144 4 4:48lox 4
I 0.412 X 144 o.4I,5 X 444

I. -it X Ill

21, 1.:67 Ill
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twenty-five complete iterations, an error of only 0.4 X One can easily expand the NRF synthesis to an ar-
10 -' is observed indicating an accurate solution using bitrary base as 8. With a base of' 8, the NRF would yield
the MHP. If an accuracy of 0.1 / suffices, we need to the integer i as the output when the input is X, Then
use only ten complete iterations for the design of an the constraint vector becomes 11 2 3 4 5 6 711. Even
ECP filter, with such filters we did not need more than ten com-

In all our numerical experiments, we have observed plete iterations for an accurate solution.
that the rms error monotonically decreases to a small Thus, we have shown that for various filter designs
value as the number of iterations is increased until a we can use MHP for less than ten complete iterations
certain stage beyond which the error either remains when the input set contains seven patterns. We have
constant or oscillates between two small values. This also shown this to be a unified computational approach
can b- asily shown to be due to the finite accuracy in to the design of linear combination filters since only the
the ditital computer representation. constraint vectors need to be changed from one type of

The number of iterations required to obtain a solution filter to another type.
vector of a desired accuracy depends on the size of the
matrix R. To illustrate the dependence of convergence
on the size N of the input data set, we considered dif-
ferent input data sets IX1,X . Xyt, where N can V. Conclusions
take on values from 3 to 7. The resulting correlation For multiclass pattern recognition, several ap-
matrices are simply the principal minors of the 7 X 7 proaches utilize linear combination filters for improved
matrix R. The rms errors obtained after each iteration discrimination. All these approaches are based on
for various matrix or training set sizes are shown in deterministic constraints and can be modeled as similar
Table II. From this table we see that more iterations matrix/vector problems. Such an approach unifies the
are required to obtain the same accuracy as the size N computational considerations because only the appro-
of the input data set is increased. priate constraint vectors need to be specified for dif-

Thus far we have discussed the use of the MHP for ferent filters. In this paper we have examined the
ECP filter determination and its convergence perfor- convergence behavior of the modified hyperplane
mance. A similar numerical analysis was carried out (MHP) method in the filter design. Good c(onvergence
for the seven mutually orthogonal filters (MOF) as well properties were exhibited for the correlation matrices
as the three binary nonredundant filters (NRF) of Sec. that arose in these cases.
1I. The convergence behavior for MOF3 as well as for
NRF 1 is presented in Table I. MOF3 is obtained using
the MHP method in a manner similar to that used for References
the ECP except that a constraint vector 10 0 10 00 0J' .A.Vandertiugt lE-Trais. Int. 'ieor. IF-IO, I90
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ABSTRACT for four different types of SDFs.

Our unified synthetic discriminant function 2. SDF BASIC SYNTHESIS
(SDF) filter synthesis technique using the correla-
tion matrix of the image training set is reviewed. The general pattern recognition problem that
Four different synthetic discriminant functions for we initially consider is the design of a filter
intra-class recognition, inter-class discrimination function h(x,y) that can recognize all objects
and both intra and inter-class pattern recognition {fn(x,y)) of one class of input data, independent
are considered. All techniques proposed are appro- of geometrical distortions present in the input
priate for object identification, location and clas- image. As noted in Section 1, we plan to optically
cification in the presence of 3-D geometrical dis- correlate all images {fn) with h and will design h
tortions in the input object. Initial results ob- such that all correlations are equal to a constant
tained on a set of four different classes of infra- output value, i.e.
red ship imagery are presented. Excellent perform-
ance (over 90% correct classification) was achieved. hfn - c. (1)

As our constant c, we select unity (with no loss of
generalization). Because this technique is quite
analogous to a hyperspace description of the input

1. INTRODUCTION image data, we represent input images and the SDF
h by vectors and write (1) as

Many different optical pattern recognition h - f - 1
techniques to permit object recognition and classi-
fication in the face of geometrical distortions
havq been proposed. These include: space-variant In conventional pattern recognition terminolo-

processors 
- 2

, generalized matched filters 
3 -

, syn- gy, one would describe each fn as a linear combina-
thetic discriminant functions (SDFs)

s - , 
phase- tion of a set of basis functions Oj, i.e.

coded systems and others. In this paper, we con-
sider new SDF research. The SDF approach to 3-D fn 

= 
Ea - jfj(

distortion-invariant pattern recognition appears to
be most attractive, since a matched spatial filter where in (3) the fn and j are 2-D functions of x

of the SDF can be produced and used in an optical and y (i.e. images). We writeteach sj in terms of

frequency plane correlator. Thus, SDFs exhibit a linear summation of the inpu images fn as

shift-invariance and hence are capable of recogniz- Ed (4)

ing multiple objects in the field of view and pro- n t ,e u n r

viding information on their location. Other tech- Aialoous to (3), we write our unknown filter func-

niques such as space-variant and phase-coded sys- tions

tems require the input object to be centered in the functions

input plane. Since SDFs are used in correlators, h - Jjtj. (5)
they provide a processing gain and are thus capable
of locating objects in the presence of severe noise substituting (4) into (5), we obtain

and man-made clutter. h - Zb-d.nf
-- ) n JnL

In Section 2, we describe SDFs and in Section
we discuss our new generalized techniques for SD n n.... n 

+ 2
n,"- "

synthesis and how the same basic algebraic equation

can be used to synthesize four different types of Grouping terms in f, and f2, etc. separately, we

SO~s. This synthesis technique is attractive be- can rewrite (6) as

cause it automatically determines the optimum basis h - elf, + e2_L2 + . ef. (7)
function set. It is thus preferable to ad hoc
techniques and to more restricted techniques 1 t

using a Fourier transform coefficient basis func- We have now described our filter function h as
tion set. In Section 4, we discuss the infrared a linear combination of the input training set fn

1

ship image data base we used and in Section 5 we It rains only to determine the weighting coeffi-
present our initial experimental results obtained cients e n in (7) and then we have determined our
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SDF h. To achieve this, we recall our condition in We now provide a generalization of this tech-
(2) and substitute (7) into (2) to obtain nique that allows both intra-class and inter-class

1 *, .discrimination. We formul..e this new mw Sar for
hn (JO1fj) 

° 
In -J(Ij * In) (8) the case of two object classes with N1 andN 2 images

we recogjnize the last term in p theses in (8) to respectively in each class. We desire two SODs hl

be the correlation, or projection, of fj onto fn. and h 2 , such that
This is element Rn of the corr-lation matrix R of h -l fnl 1, -! ' L2 0
the training set ata {fn) and (S) thus becomes (16)

iejjn " 1. (9) 2 " n2 - 0 h2 !n2 - 1

lee w e )nawhere !f- and fn2 denote any member of class one or
class two respectively. We describe these SDFs as

Re - u, (10) in (14), where the summation is now over N, + N2.

where u in the unit vector. The solution a to (10) There are now N1 + N2 weighting coefficients an and

and hence the information necessary to calculate bn. They are given by (1S), where now R is an

the SDF h in (7) is (N1 + N2)x(Nl + N2) matrix and p1T - 11..10.. .0]
contains N1 ones and N2 zeroes and u 2T = [0.. .0,

e - -._ 1.. .13 contains N1 zeroes and N2 ones. We refer
_ iu. (11) to this as a mutual orthogonal correlation peak

Thus, to determine the an in (9) or the eigenvalue (MOCP) SDF. It recognizes different object classes
in (11), we form the correlation matrix R of the (inter-class discrimination) even in the face of
training set data {fn)

, 
invert this matrix and mul- geometrical distortions within each object class

tiply it by the constant vector u. (intra-class recognition). We will discuss later how
this technique can be extended to greater than two

3. GENERALIZED SDF SYNTHESIS classes. We also note that for the two object
class example, one filter suffices for both dis-

We refer to the SaF described in Section 3 as crimination and recognition. We also note that the
an equal correlation peak (ECP) SDF, since it pro- choice of the constants in (13) and (16) is arbi-
vides a constant equal correlation peak value for trary. In our digital simulations, we used +1,
all input images {fn) of one class of data. We rather than I and 0. An optical system would use
should note explicitly that the images in the train- 0 and 1 or 1 and 2, etc., since only intensity out-
ing set {f, } 

can (and usually are) images of the put detection is easily possible in optical proces-
same object taken with different geometrical dis- sors.
tortions (e.g. different rotated or aspect views).
This type of SDF is of use in intra-class pattern Next, we consider the synthesis of a nonredun-
recognition (recognition of one object class, inde- dant Sop or a nonredundant filter (NRP). This is
pendent of geometrical distortions within this ob- similar to those described by Braunecker et al1o ex-
ject class). This is similar to our initial SDF pressed in terms of our unified notation in (11)
work 

S 
but uses a new SDF synthesis technique, and (15). We also extend the original work in

1
0 .

the case of a NRF for both intra-class recognit .n
Next, we consider a mutual orthogonal function and inter-class discrimination. As an example, we

(OF) SDF for inter-class pattern recognition. We consider a three-class pattern recognition problem.
consider s two-class pattern recognition problem We denote the three classes of objects by {fN1},
with one image fl in class one and one image f2 in {fN2

) 
and {fN 3l, where Nl, N2 and N3 training set

class two. We desire two filters h, and h2 , such images are present respectively in each object
that class. We consider one SDF h, such that

•n -n , (12) h l - 1, h ' 2- 2, h ' 3- 3 (17)

i.e. where as before, fnl fAn2 and f,3 denote any member
Ll *l 1, 12* h 0 of object class one, two or three respectively. As

(13} ~seen, the value of the output correlation deter-
fa h2 0 12 h- (13) mines the object class. As before, the choice of

2 the constants 1, 2 and 3 in (17) is arbitrary. We
Each filter will again be a linear combination of describe the SD? h as
all training set images (fl and f2), i.e.

l - Xanfn, h2 - Ibnfn. (14) where the summation is over all Nl + N2 + N3 train-

To comute the a, and the bn coefficients in (14), ing set images. In matrix-vector terminology, the
we solve the matix-vactor equationas problem is described as the solution of R a - u, fora, where a3 - 11.. .1,2 .... 2,3.. 31T contifns N1

Na - 2, !b 1 2 , (15) ones, W2 twos and N3 threes and where R is of order

where R is the 2 z 2 correlation strix, T NI 
+ 
N2 + N3. The solution for the weight a in

11,0) and !2T - 10,I). This filter snthosis tsch- (18) is Just a - as before.

nique is similar to that described in , but is
formulated in our new unified notation. This tec-As our final S, we consider a multi-class
iqu produces one filter per input objct class.S. For this case, we onsider four-classAn such, it is useful for inter-class pattern rec- problem with training set images {fN1}, {fN2), {NJ

initron. and fN4) and the synthesis of two filters whose
truth table is given in Table 1. From Table 1, we
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see that four unique pairs of correlation output
values result and determine the input object class.

The two filters are described by
h1 - Ia _ * - 1b9f

- nn t. -- n, (19)

where the summations are over N1 + N2 + N3 + N4
(i.e. the full training set of images). The coef-

ficients a and b are defined by the solution to the a) CIASS 1
matrix-vector equation

w j L ] (20)

where the vector has Nl pairs (0,0), N pairs (0,1),
etc. and where R is of order N 1 + N2  N3 + N4. b) CLASs 2

TABLE I
Truth Table for the Four-Class

Multi-Class 4OCP SDF

INPUT FILTER hi  FILTER h2

DATA OUTPUT OUTPUT

fNl 0 0

fN2 0 1 c) CLASS 3

fN3 1 0

fN4 1 1

4. DATA BASE

To test the performance of the four SDFs de-
scribed in Section 3, we used a ship image data

base. It contained 36 images (0-350*, at 100 in-
crements) of four different ships taken from a 90*
depression angle. Representative examples of all d) CLASS 4
four ships (broadside views only) are shown in Fig-
ure 1. Each image was 128 x 32 pixels. We numbered FIGURE 1 Representative Ship Imagery (Broadside
the class one images one 1-36, the class two images View Only) of the Ship Image Data Base

as 37-72, etc. Used in our Experiments.

5. INITIAL SIMULATED RESULTS TABIr 2. SDF Performance Test Results

In Table 2, we summarize the experimental re- SDF TRAINING CLASS 1 CLASS 2 CLASS 3 CLASS 4

sults for our four SDFs calculated as described in TYPE SET ERROR- ERRORS ERPORS ERRORS

Section 3. ECP-l 1,6,10,15,

20,25
For our ECP-l SDF, we calculated the intra- ECP-2 38,45,50,

class filter from only six of the 36 ship images in 55,60,65 - 0 -

class one. When this SDF was correlated with all MOCP-l 1,6,10,15, 1 2
36 images of class one, all output correlation peak (AP0.5) 20,25 I 2 -
intensities were above the 0.5 threshold value cho- NRF (6 Images 2 0 3
sen. Similar results were obtained for the class Per Class)
two imagery. This data in contained in the ECP-2 Multi-
SDF experiments in Table 2. These first two ex- Class (6 Images 2 0 3 1

periments dmonstrated for the first time the fact MCP-l Per Class)(
that an 8CP SDF can correctly recognize and classi- (10-340) (95%) (100%) (92%) (97%)

fy other distorted versions of the input object not Multi-
present in the training set. Class

MDCP-2 Per Class)

For our NCP SOF, we calculated one SDF for (10-260) (100%) (100%) (97%) (96%)
intra and inter-class pattern recognition, using
the same six training set images per class. ftr
this one SDF, 69 of the 72 test imases gave cor- recognition. This is quite impressive since it in-
rect peak correlation ou%puts with respect to the cludes both intra and inter-closs image distortion
threshold of 0.5. This represents over 97% correct and recognition as well as discrimination.
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Our NRF SDr experimental results, fox a three-
class pattern recognition problem, using output
correlation peak projection values of (0,1,2) are
shown next. As noted, only S errors occurred in
this case. When this NF SDr technique was exten-
ded to the case of four object classes, a consid- £
erable increase in the number of image classifica-
tion errors resulted.

Encouraged by the above excellent results, we
considered the full four-class pattern recognition
problem using two SDFs (our multi-class NOCP SDF).
We fabricated one set of SDFs using 9 images per
class for training and a second set of SD~s using
only 6 images par class for the training. As seen,
a total of 6 errors (and 9 errors) out of 144 it-
ages resulted. These correspond to over 93%
correct recognition of all multi-class objects with
intra-class geometrical distortions present.

6. SUMMA RY AND CONCLUSION

These initial results are most encouraging.
They demonstrate the potential of this technique to
achieve intra-class pattern recognition and inter-
class discrimination in the presence of severe
(3-D aspect) geometrical distortions. The data
shown clearly indicates the ability of this tech-
nique to perform most excellently on images not
present in the image training set. Our future work
will address training set selection and the perform-
ance of the system in the presence of noise. Our
unified SDF synthesis technique greatly simplifies
the off-line calculations required. The fact that
one can calculate the SD off-line from training
set images and then use the same SDF for similar
object recognition problems in the future is of
great significance in the practical application of
such a technique.
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ABSTRACT

The problem of recognizing multiple objects in a highly cluttered background in the face
of geometrical object distortions is addressed in this paper. A correlation architecture
using a matched spatial filter of a synthetic discriminant function is employed to achieve
the required performance. Synthesis of the synthetic discriminant function is discussed as
is the initial performance obtained in the face of noise. Initial remarks are advanced on
various methods to select the training set of images to use in this algorithm.

1. INTRODUCTION

In Section 2, the advantages and features of a correlator for extracting a signal or ob-
ject in the presence of noise is briefly reviewed. A correlator is essential for our par-
ticular application since we require shift-invariance (the ability to recognize multiple ob-
jects and obtain high performance in the face of severe noise or clutter). However, corre-
lators are well-known to perform quite poorly when aeomtrical distortions (scale, rotation,
etc.) are present between the input and reference object. To overcome this limitation and
still retain the other advantageous features of a correlator, we employ synthetic discriri-
nant functions (SDFs) and we form the matched spatial filter (MSF) from the SDF. The SDF is
a linear combination of a training set of images of the object (e.g. different scaled, rota-
ted or aspect views). This concept was first advanced in [1-31. Other MSFs referred to as
generalized matched filters [4] also exist. These assume a Fourier coefficient basis func-
tion set and appear to be more restrictive than the present filters we discuss, although no
extensive tests have been performed on them.

In Section 3, we describe the algorithm for synthesis of five different types of SDFs.
The SDF is synthesized off-line from training set data and is then used in a real-time cor-
relator against test imagery not present in the training set. We follow the new unified SDF
synthesis algorithm we briefly described in [5] earlier. In Section 4, we discuss our data
base used and we present initial test results on the performance of these SDFs. These
present results include new data on the performance of such a system in the presence of
noise. Our earlier initial and less extensive results [61 did not consider the performance
of such a system in the presence of noise. In Section 5, we advance initial remarks on two
new techniques fcr training set selection and the superior performance obtained with the use
of an organized rather than an ad hoc training set selection method. The bulk of the test
data included ir. Section 4 uses an ad hoc training set selection technique (to allow nore
errors than one ould otherwise achieve) and the use of a "no decision" threshold region (to
stabilize statistical fluctuations in the results obtained).

2. CORRELATORS FOR PATTERN RECOGNITION

Correlators are very well-known [71 to be Quite capable of extracting signals or objects
from a cluttered background environment. A MSF correlator is optimal for Gaussian white
noise backgrounds, but performs most admirably in the face of structured noise as well.
Whitening of the image and noise data is possible and can allow optimal performance, but
such measures do not appear to be necessary in the present problems and applications being
considered. Correlators are also well-known to be linear shift-invariant systems. As such,
they allow multiple objects to be recognized within the input field of view.

REF FT
0OBJECT F

fINPUT X S " I"

SCENE FT :

FIGURE 1. Block diagram of a Fourier Transform-Based Correlator Architecture.



The block diagram of the basic Fourier transform (FT) based correlator is shown in Fioure
1. The system's output is

u(x,y) = -I[G*F) = g f (1,

or the correlation of the two space functions g and f (G and F denote the Fourier transforrs
of the corresponding space functions). The processing gain (Pn) of a correlator (the ratic
of the output and input signal to noise ratio SNR0 /SNR I ) is related to the space bandwidthI product (SBWP) of the MSF by

PG = (SBWP) = SNP0 /SNR 1 . (2)

This PG allows a correlator to extract objects from strong cluttered background. The shift-
invariant, multiple-object recognition ability and the processing gain of a correlator are
easily demonstrated by considering the general case of an input image f(x,y) that contains
N occurrences of the reference object g at spatial locations (xn,Yn) plus noise n(x,y), i.e.

f = lg(x-x ,y-y ) + n(x,y). (3)

n n n

The output correlation for this case consists of N autocorrelations plus the cross cor-
relation of the reference object and the noise, i.e.

I OUT f g = gg * (X-Xn y-Yn) + g n. (')

I
I

I

(a) Input Imaae (b) Output Correlation of (a)
and the word PROFE'SOR.

FIGURE 2. Example of multiple-object shift-invariant correlation.

I An example that vividly demonstrates this point is shown in Figure 2, where we show the
input image f (a set of words with four occurrences of the word PROFESSOR) and the output
correlation plane pattern obtained using a MSF of the word PROFESSOR. As seen, four corre-
lation peaks are present and the location of each corresponjds to the location of one of the
different occurrences of the reference object (here the word PROFESSOR) in the input plane.
All other input words in this input image are viewed as the noise n(x,y) in (3) and (4) for
this case. As seen, the correlation output plane has a very low noise level. This is dueI to the large SBWP of the word PROFESSOR and the PG of a correlator.

3. SYNTHETIC DISCRIMINANT FUNCTION SYNTHESIS

The general concept of SDF synthesis is shown in the simple block diagram of riaure 3. An

SDF is calculated off-line from training set images fl, f2, etc. and then on-line correlated
with a real test image. The preprocessing box shown is generally not necessary as noted
above. A hyperspace description of a SDF correlator is possible [2-31]. In such a forrmula-
tion, each training set image is described by a vector point in hyperspace with the basis
functions for this hyperspace being 2-D space functions. The conventional hyperspace pat-
tern recognition concepts [81 of separating objects of different classes and clusterina dif-
ferent object variations within a class still apply.
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OFF-LINE SYNTHESIS

J oSDF I
TRAJNING SET FILTER, .. SYNTHESIS

---------------------- ----- EI

N- Ii3-4 -- 4 TARGET
IMAGE IDENTIFICATION

TARGET
LOCATION

FIGURE 3. Block diagram to illustrate the synthetic
discriminant function synthesis concept
and its use in a correlator.

3.1 EQUAL CORRELATION PEAK SYNTHETIC DISCRIMINANT FUNCTION

Let us now describe SDF synthesis using our new general formulation technique [5]. We
first consider an equal correlation peak (ECP) SDF. For this case, we assume that we wish
to determine an MSF filter function h such that its correlation with any member of a set
(fn) of objects of the class yields a constant output peak value such as one, i.e.

h 0 fn = 
1. (5)

To determine h to satisfy (5), we assume that h can be represented as a linear combination
of the training set images f, i.e.

h = fef.f (6)j3)

For simplicity of notation, we denote all images and the MSF by vectors f or h. The train-
ing set images can be different scaled, rotated or aspect views of the object. We also
represent the correlation operation by the simple vector dot or inner product, i.e. h Q f =
h • f. Substituting (6) into (5), grouping the dot product of f and defining the correla-
tion-matrix R to have elements rjn, we obtain for (5)

h • f = (ejfj) fn le e(f f) = ejr =1 ()

Thus, our desired ECF filter is described by
ier , (8)

i jn
or in matrix-vector form by

Re - u, 9)

where u a [1,1.., ] T is the unit vector. The solution to (9) for the weighting coeffi-
cients e in (6) is

- Ru, (10)

where the ej in (6) are the elements of the vector e in (10). Thus, to synthesize an ECP
SDF, we form the correlation matrix of the training-set of images, invert this matrix and
multiply it by the unit vector u. The resultant vector e defines our SDF filter function h
in (6). To unify future notation, we write (9) as

Re - [1,1,... 1 ]T (11)

3.2 MUTUAL ORTHOGONAL FUNCTION SDF (2-CLASS ONE FILTER CASE)

We note that this ECP SDF MSF in (9), (10) or (11) is capable of intra-class recognition
only. To extend this concept to the use of one filter for a two-class problem with inter-



I class discrimination and intra-class recognition required, we consider two classes of objects
{f1 } and {f2

} , with N1 and N2 objects in the training set for each class respectively. The
required SDF is ..ow described by a linear weighted sum of all of the training set images,
i.e.

Nl+N 2

h = a fn. (12)i n= 1  nn

To determine the coefficients an in (12), we require the projections of any member fn1 of

set 1 on h to be +1 and the projections of any member fn2 of set two of images to be -1
(any other suitable pair of constants may be used). By direct extension of the results in
Section 3.1, this desired mutual orthogonal function (MOF) SDF is defined by the solution to
the matrix-vector problem

T
a ..., ..., = Ul, (13)

where R is now a(Nl+N 2 )x(Nl+N 2 ) correlation matrix or is of size 2N x2N (when N1 =N 2 =N).
The solution and the SDF in (12) is defined by

a= R-lul. (14)

This single MOF SDF achieves intra and inter-class pattern recognition.

3.3 NONREDUNDANT FILTER SYNTHETIC DISCRIMINANT FUNCTIONS (ONE FILTER FOR MULTI-CLASSES)

This type of SDF is referred to as a nonredundant filter (NRF) SDF. It is a rather di-
rect extension of the MOF SDF in (13). Here, we simply require the correlation output peak
intensity to equal a different constant value (e.g., 1, 2, 3, etc.) for each object class.
We consider a 3-class pattern recognition problem. The SDF is now described by

Nl+N2+N3

h af, (15)i nn

where the summation is over all Nl+N 2+N 3 members of the three training sets for the three
object classes. For this SDF, the output correlation peak value defines the input object' class. The coefficients an that define this NRF SDF are the solution of the matrix-vector
problem

Ba = [i ... ,0 . 2,3.. 3]T = u2. (16)

I I That is,

a 1 22' (17)

where now R is a 3N x3N correlation matrix (when N1 =N 2 =N 3 =N).

3.4 MULTI-CLASS MOF SDF (ONE FILTER PER OBJECT CLASS)

In some image pattern recognition problems, the constraint placed on the MOF or the NRF
SDFs in Sections 3.2 and 3.3 may be too stringent and hence performance on test data may be

i degraded. In this case, M separate SDFs can be produced, each of which gives a constant
output value of 1 for a different object class and a 0 output for all other object classes.
For a 3-class pattern recognition problem, we consider the synthesis of three SDF filters

h 1 -a f , h2  b nf n , and h3 = Ic nf (18)* 1 nnn 2 nn3 n~

where all summations in (18) are over all Nl+ N2 + N3 - 3N image training sets of data.

f The algorithm for synthesis of these 3 SDFs is similar to before, i.e.

Ba .1' . .00' .. T, a R 1u U 2 (19a)

IRb - u 2 -0.. " 0,1 .. 1,0 ... 0  b - R H (19b)

.c = 3  0 ..0.0' ...'I]T, c = R 1U3 h 3  (19c)

In this case, the correlation matrix is 3N x3N (for N1 -N2 -N 3 -N). By inspection of (19),
we see that hl is selected to provide an output of 1 for the first N1 training set images
(i.e. class-one objects) and "0" for the other images (classes two and three objects).



I Conversely, SDF h2 is defined to produce a 1 output for the N2 training set images in class
two and a 0 output for the other classes. The class three SDF h3 is described similarly.

3.5 MULTI-CLASS MOF SDF (N FILTERS FOR 2 N CLASS RECOGNITION PROBLEM)

For this SDF, we consider anot.ser multi-class type of SDF formulation that is between the
single SDF cases considered in Sections 3.2 and 3.3 and themultirle filter example considered
in Section 3.4. This particula application is most attractive for multi-class pattern rec-
ognition problems in which very many multiple classes of data must be considered. Here, we
consider an M-class pattern recognition problem. We assume binary correlation peak threshold
outputs and the use of N SDFs (where 2 N > M). For a four-class problem, we thus consider the
use of two SDFs, hl and h2 . Each input image is projected onto both SDFs and the two corre-
lation outputs are used to form a 2-bit digital word which defines by the truth table in
Table 1 below in which of the four input claspp- Ifl) through {f4 ) the input object lies.

TABLE 1: Truth Table for Correlation Peak Output Decoding Using a Multi-
Class Mutual Orthogonal Function Synthetic Discriminant Function
with N Filters for a 2N =M Class Pattern Recognition Problem.
M =4 and N =2 Case Shown.

OUTPUTS
INPUTS h h

___1 2

{fl )  0 0

I (f 2 ) 0 1

I {f 3 ) 1 0

{f 4
}  1 1

The algorithm for calculation of the two filters is

h = nanfn . h 2 = Ebnf (20)
n h n nbn

I The solution for the vectors a and b that define these two filter functions follows by ex-
tension of our previous SDFs Eo be

al bl 0 0
R E (21)

I n
I 3.6 UNIFIED FORMULATION

By inspection of (11), (13), (16), (19) and (21), we find that the synthesis of all five
SDFs can be described by the same basic matrix-vector equation R a = u , where the size of
the correlation matrix and the specific for' r'f the vector !n are-diderent for each filter

3 functior and for each class of problem being addressed. This is especially attractive since
all SDF filter synthesis is performed off-line. Thus, a simple digital matrix-vector routine
can be used for all cases. Because this SDF algorithm relies on a training set, the same
SDF filter will perform adequately until the structure of the object to be recognized chanqes
significantly (due to new designs, etc.) or until rejection of new alternate objects is re-
quired (this depends on the specific details of each application). The unified formulation
in which the solution of the same basic matrix-vector eauation is reauired makes this gen-
eralized formulation of SD synthesis most attractive [5] for many practical reasons and
applications. In all cases, if R is not invertible, a generalized inverse is used.

4. INITIAL TEST AND PERFORMANCE RESULTS

The data base we used in our test and evaluation of these SDF algorithms consisted of
four different types of ships. For each ship, 36 images were available at 100 intervals
from a 0* depression angle. In Figure 4, the broadside views of each ship are shown. In Fig-
ure 5, the views at several different aspect angles are shown for one of the ships. From

I
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this data, one can clearly see the severe magnitude of the intra and inter-class recognition
problem being considered. A human cannot correctly classify many of the different ship as-
pect views from such imagery. Quite si:.,ply, several of the ships look essentially identical
from several different aspect views. Recognition of the ship class from the bow or stern
views alone (e.g., Figure 5d) is clearly quite difficult, even for a human observer.

a) CLASS 1 ) CLASS 3

b) CLASS 2 d) CLASS 4

FIGURE 4. Representative ship imagery (broadside view only)
of the ship image data base usee in our experiments.

(a) CLASS 1 - 900 (c) 30°

t

(b) 60* OUT OF PLANE r0ANGL

(d) 0* A14GLE

FInURE 5. Selected aspect views of one ship.

The results of our initial experiments on four of the different types of SDFs described
in Section 3 are summarized in Table 2. As seen, the results obtained are auite excellent
(over 95% correct recognition was obtained in all cases). The data in Table 2 was obtained
with the hull present and was obtained for binarized imagery properly thresholded. It should
be noted that in no test were more than 9 images per class used for training and that in most
instances, only 6 images per class were used for training and for SDF synthesis.

In Table 3, new results obtained with different levels of input noise added to the test
imagery and to the training set imagery are shown. To stabilize the results obtained and to
decrease fluctuations in these results due to statistical variations, any correlation peak
value that was within ±0.03 of thethreshold value of 0.5 was classified as a "no decision"
image. The number of no decisions obtained for this data are entered in parentheses, to-
gether with the number of errors obtained for each class of object. The hull of the ship
was again retained in this data and only 6-9 images per class were used for training. As
seen from the last column of Table 3, the number of correct recognitions was very constant
(127 or 128 correct recognitions out of 144 test images) with only 5-9 Prrors (and over 93%
correct recognition in all cases). The constancy of the number of correct recognitions as
the input noise was increased (down to an SNR I - 6, corresponding to an input noise with a
variance - 0.04) and its invariance as different amounts of noise were added to the training
set itself indicates the robustness of this SDF filter to noise. Since this is a correlator,
we expect such performance as noted in Section 2. Tests in which noise was present in the
background only and in both the background and the target were also conducted. Results very
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similar to those obtained in Table 3 again resulted for this case.

TABLE 2. Initial Noise-Free Performance Obtained
with 4 of the Different Types of SDFs.

5'TPI CO REtCT
SVT OF ERRS 37C0617OSI

KCP 6 KNGES 0 OUT Or 36 t0o

iILtA-CLASS CLASS I

2-CLASS 6 INACS 3 OUT OF 72 961

J OUT * !I Pro CLASS

ICLASS f IKACKS S OUT or 108 g5

OUT -1.2.3 PEP CLASS

4-CLASS

Two FILTERS 9 '"ACES 7 OUT Or 144 95%

1.l~l)1,°-J, PEP CLASS

TABLE 3. Synthetic Discriminant Function Performance
in the Presence of Noise.

1 IA SUMIES TIMAE

1 2 5 4 1ORC

I(1) (0)S 1) (3)

S0 0 4 2

I(3) t1) (1 13 126

( 1 2 € (3 6 12F

3 1 ) (15 (2) (11

25 5 ) 5 127

5. TRAINING SET SELECTION

The six training set images per class used in Table 2 were 50° apart. Those in Teble 3
were 30* apart and from one side of the ship only. This ad hoc trainina Fet selection ar-
proach is quite compatible with the intuition associated with such a pattern recognition
problem (i.e., ship images appear in general to contain little new information if viewed
from one side rather than the other). However, in other cases, more automAted trainina set
selection techniques are required. Two such techniaues are briefly described and initial
test and performance data obtained using them are presented in this section.

The purpose of the training set for each object class is to represent each object type bythe most valid statistical representation from the available imagery. The SDF aloihnit-

self provides the inter-class discrimination reouired. Thus, our concern in the automatic
selection of a training set should address selecting a small set of images from the available
image data base such that they represent a sufficiently valid statistical representation of
each object. We have considered two ways to achieve this: a correlation-subspace and an
eigenvector subspace selection technique.

In the first technique, we initially pick one image xil (e.g., the bow view of a ship).
As the second image, we select that image from the remaining ones which gives the minimum
correlation with the prior image. Such an image contains the most new information and is
the best one to select for our training set. We continue this technique and at each succes-
sive step. we pick as our new image the one with the minimum projection on the sum of the
previously chosen training set images. With proper image normalization and with the use of
a modified Gramm-Schmidt technique, we can thus select the P best training set imaqes to use.
The value of the orrelation between anew inaqeane the sum of the prior training set imaoes provides a measure of the
new.data addedbya givenadditional training etimage. This procedure is used for each object class separately.

II
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In the second techniaue, we form the correlation matrix P for each object class and cal-

culate its eigenvalues and eigenvectors. "c select tbe dominart eigenvectors and calculate
the projections of all images onto these aorrinant eigenvectors. Those images with the larg-
est projections best represent the object class and are thus included in the training set.
The eigenvalue is used to determine the number of images to be selected for each dominant
eigenvector. The value of the projection of a new image on a new dominant eigenvector de-
termines the additional information present if this image is inclvded in the training set.

The results obtained with this technique are summarized in Table 4 and compared to those
obtained earlier using our ad hoc training set selection technique. As seen, our ad hoc
selection of 6 images gave poorer performance than did both of the new methods noted in this
section. Essentially perfect performance (0 or 1 error out of 144 images) was obtained usinc
our new training set selection methods. As the last entry in Table A shows, a successful
single SDF for the 4-class problem was realized using such training set methods. The per-
formance of these new SDFs in the presence of noise was found to be coyparable to those ob-
tained with the previous data. An average of only 4 or 5 errors was obtained (versus 8-10
errors for the cases noted in Tables 2 and 3).

TABLE 4. Comparison of the Performance of Synthetic Discriminant
Functions Using Ad Hoc and Automated Techniques (Cor-
relation Subspace and Eigenvector (e-v) Subspace) to
Select the Image Training Sets.

T r SETSEP OF E RORS TAL
SDF TYPE MAas CLASS LASS Cs C SS NURBSER P

PER CLASS EPOR 2 £5

(11 KN a H*l ONE SIDE 1 0 5 4 55 931

12) P5ULTI-NL O e- S 5 0 5 9 .R4

(N HUL' SUBS'PACE

MILTI -"OF CORREL 0 0 0 0 1
( NC F!LLI StYDSrACl

NC COPr: S 6 S 941
CRC HLLL) SLBSPAC (2) (13

6. SUMMARY AND CONCLUSION 6. SUMMPPV AND CONCLUSION

In this paper, we have described a new technique to recognize nuitinle classes of ob'ects
in the face of geometrical distortions. Our technique uses a correlator and thus allows
multille object recognition and excellent rerfrmance in the presence of structured noise
and clutter. The latter features result from the use of a correlatorand the shift-invariance
and processing gain of such a pattern recognition architecture. The ability to recognize
distorted object views and to discriminate hetween different object clarses is achieved by
our new matched spatial filter technique usina a matched spatial filter of a synthetic dis-
criminant function.

Five different synthetic discriminant functions have been drscribed ane a general unified
synthesis procedure to form each off-line usir- a training set of images has been advanced.
Initial simulation results showed excellent "srformance and showed the robustness of this
algorithm in the presence of noise. New tpcbrinues to select the training set for such a
system were also advanced and initial perforrence results were _btained and were compared to
those obtained for other ad hoc training set selection technioues. Surerior performance re-
sulted when these new training set-based filters were employed.
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