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closely to .the floating point realization for relatively low-order ARMA
time series that are not too narrowband.

The predictor has been implemented in 16-bit fixed point arithmetic
on an INTEL 8086 microprocessor, and in 16-bit floating point arithmetic
on an INTEL 8080. Fixed point code was written in ASSEMBLY language and
floating point code was written in FORTRAN. Experimental results were
obtained by running the fixed and floating point filters onidentical data
sets. All experiments were carried out on an INTEL MDS 230 Development
System.
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. Summar
+he a—ﬁh"

In this paper 8 study scaling rules and
round-off smoise varismces in a fixed point
implementation of the Kalmas predictor for an
ARMA time series observed ncize~free. The Kalman
prediotor is reslized ia s fest form that uses
the so-celled fast Kalmas gain slgorithm. The
slgorithe for the gaia is fized point.

Scaling rules asd expressions for rounding
error variamces ere derived. The aumerical
resslts show that the fized point reslizstion
performs very closely to the flostismg point
realization for relatively low-order ARMA time
series that are mot too marrowbaand.

The predictor kas been implemented ia 16-bit
fized poiat arithmetic oa aam INTEL 8086
microprocessor, aad im 16-bit floatisg point
arithmetic oa sa INTEL 8080. Fized poiat code
was vwrittes in ASSEMBLY lasaguege™ snd flosting
poiat code was writtea ia FORTRAN. BExperisentsl
resslts were obtasised by rumaing the fized and
fldating poiat filters on idemtical data ' sets.
Al} experimests were carried ont on sa INTEL WS
230 Develdpment System. e ="

Introduot Aon\ —

Finite~dimensional Gaussisa time series have
stationary Markoviaa state-space descriptions.
In such descriptions the iaitijsl coaditioas are
multivariste acrmsl asd state variables are
prodicted values of the series based o8 an
iasfinite past of observations. The linmear
filtering prodles is one of estimating the state
st time ¢t besed on observatioms wp to time t and
the prediction probles is one of predictiag the
state at time t+1 based oa observatioss wp to

time t.
Correspoading to the Markovien
reprosentatios is the ismovations representetios.

charscteristic of this
tation is that it mey be
ssed to symthesize o time-series, starting from
sero iaitisl comditions, whose second-order
statistics match the statistics of the origiml
time series. The states sre predicted values of
the time series based on o fimite past of
obsesrvations. Using this represemtatios, the
Kelman predictor masy be vwrittes dowm from

This paper was preseated ot the 2208 IERE
Conference on Decisios and Costrol, Sam Astonio,
TX (December 14-16, 1983). The work was
supported by Office of Naval Resesrch, Costract #
NDDO14-92-K-0300.
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inspection as the caussl and stsble inverse of
the representation. The so-called Kalman gain is
the inpovstions represontation (or equivalently
in the Kalman predictor) may be associated cither
with the Levioson recorsions for factoring the

iaverse of the correlation matsrix for the time
series or with the LoRous-Gueguen recursions for
factoring the correlation matriz itself. The
latter association leads to a fized poist
slgorithm for computing Kalmen gains. This so-
called fast algorithe produces a fast Kalmen
filter,

In tbis paper we present results from »
stody of fest Kalman predictors, implemented in
flosting point amd in fized point sritbmetic, for
sutoregressive moving aversge time series. MNore
extensive results of this study, for moisy asd
soise-free filtering and prediction, may be found
in the thesis of Sigurdsson (1].

In our summary of rssults for Kalmes
filtering wo draw heavily vpon the work of Morf,
KEsilath, Anderson, snd Moore. See (2] and (3]
for oer previous refersnces to the appropriate
litesature. Ia our derivetion of scaling rules
end espressions for rosnding error variamces we
adapt the ststiomary zesalts of Jeckson [4] and
Mullis and Roberts [5] to our nomstationmary
problem.

Signal Models for Statiomary ARMA Time Series

A zsro-msan, second-orde: statjomary, time
series (y(t)} is said to be autoregressive moviang
average (ARMA) if the entries y(t) is the time
series obey this recursion for all t:

| 4 q
§ s{n)y({t-n) = Z‘, b(n)ui{t-n)
=0 a
E (t)=0 £ s(t)nlten) = 28 (n)
a_=p =1 8(n): Kromecker delta
° o

Narkovias Represemtatios

The MNarkovias represeatation for {y{t)) is
susmarized in the following squatioss, where a =
ad where for parposes of illestretioa
we bave assumed q ) p.
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State stions

3(tel/e) = Ap(t/e=1) + 2(D)uit)
2(0/-1) : N(Q.Q) 3 wlt) = N(O.0%)
yit) = ¢* z(t/t=1) + u(t)

Usit Pelse Response

0, t<0
M) = 1, t=0

At ™, vo

State Covariance

R(t) ~ ata
Q= am s dant

Output Covariamee
£lt) = g'R(t) ¢ + e°h(1)

Desiga Equatioss

o 1 1) a)
o o 1 ] 2 (2)
A =l "l ).
1 .
-ala) -atn) o] ()

1 (1) a(1) (1}
a(1) 1 0 2(2) a(2) b(2)
: : - : +
alp-1) ... 1 alp)

a{p-1) 1 h(n) 0 b(q)

Iasevations Representation

The idea behiad the isnovations
representation for (y(t)) is to replace the
stationsry imitial ocosditions, distributed as
3(0/-1) : N(Q, Q) with the nomststiomary imitis!

somditions 2(0/-1) = 9, to replace the stationsry
ingst vestor h(1) by & sosstatiomary Kalmes gais
vester h(t), and to replace the statiomary i.i,d.
seguenee (u(t)), distriduted as s(e) : N(O, c‘).

with the wmonstatiesery 1.i.d. iasovations
segoence (u(t)), distriduted ss =n(t) : N(O,
v(t)). The triek is to ochoose the Kalmam gais
k(t) and the ismovations varience v(t) correctly.

e iesovations represestation s suamsrized

lu:,'. It is worth motiag that k(t) -2h(1), v(t)
S¢*, oad Q(t) HQ as t I=,

State Equstions

x(tel/t) = Az(t/e-1) + ki) wlt)
2(0/-1) = 0 ; s(t) : N(O,v(t))
z

y(t) = ¢ x(t/e-1) + u(t)

Uait Pulse Resposse
0. a¢0

pta) = 1, w0
A", w0

State Covariance

e e

2t(a) = A%l
Q(t+1) = AQ(IA’ + v(t)k(t)k' (1)
Q(0) = 0

Output Covarisace
rta) = crtlode + vt

Design Equations

0 1 1 )
o 0o 1 o 0
A=) c = ki{t) =
1
-a(n) ~s(1) o t(a)

(L) w(t) = A - G(1))g + oF B(1); QLO)Y = O
Q= AaA‘ ¢ olB(1IBY (D)
v(t) = g(o) -~ ¢’ Q(tle ; rlo) = c'Qc + o’

In these equstioss, bt(s) is the response of
the system of equatigns st time t¢m to as impulsse
applied st time t, R'(8) is the state convarisnce
between x{(t) snd x(t+m), and r'(n) is the output
covariance between y(t) and y(ttn). It t(n) is
to equsl 1(n), to match the second order
properties, then k(t) ead v(t) must be chosen as
above in the design equations.

Kalmsn Predioctor

In the immovations representation, identify
e’'s(te1/t) es the predictios y(t+1/t). Then the
KEalman fittes equations become simply o rewriting
of the inmovations represestatios:

y(t+1/1) =« ¢’ nlt+l/e)

x(ee1/t) = As(t/e-1)+k(t){y(t)-g'xlt/e-1)]
y(t) = y(¢)
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>4 Fast Algoritha for k(t) - -
2 2 { s
B&y f. () = [Jse2° °/b
'-;'; . The gain k(t) may be calculated as oswtlined ° } (S I l
o uader the immovatioms equationms by solviag a =0
i S system of Ricatti equatioss. An sltermative is
N3 to sote that the gais is related to the time where 8 is a psrameter that msy be incressed to
p varyiag impulse respomse of the immovatioas force the norm of f, to be small, and thereby
indd 9 Tepresentstion: decresse thf probability of overflov. The
i parameter o is the varience of the aoisy
N -1 excitation of the filter.
Y IS CYREIPLY g YU BT |
A In the Kalman predictor equation we may
0 - i 1
W This measns the elements of k(t) may be resd out scrle the “'“, vestor x(t/t-1) by s disgons
= scaling matriz S:
as follows:
o S ~ dieg (8(1), ..., S(a))
* t t
E 37(1) = x°{1)
The scaled Kalman predictor equations are
. v = 1t - then
\':.’ .
) . 2(t+1/0) = 87 g(t/e-D ¢ 57MR(0) W)
2 t
:.; ST = Lata y(t/e-1) = ¢' 8 x(t/t-1)
a
" As the correlatios matriz for y(t) is related to The 1, scaling rules for the states of the Kalman
the time varying impulse responses, ve may write predictor sre
s RVl sMacn), 8T - o 2 lrs?
7
.3:4 where the t z t matrices R,V, and H sre defined The state variance @Q(t) way be comsputed
el as follows: recursively as outlined previously, or
ponrecursively as
R= lr"_”l ¢
B, ¥ = diag (v(0),...v(eD) o = vt 3 A" e 7 p(e-a))
&
R - 2°(0) 1
"o g <) .l(o) The diagonal terms of Qt) converge
)/ nsnoloniully te the upper limit Q = AQA’ +
L hl(l) e® Bah’(1). A practicsl procedvze Js to
replace Q(t) by Q to obtain the scaling rule
°e) alee-1) Vo
¥ 1/2 »-1
‘:2 8S(k) = [01“ 8/2 (k»1,2,...0)
"1 This mesns the correlstion matriz msy be factored
"" with the fast impulse respomss aslgorithe of This result for stationary state space filters is
be. * LeRosz—Gueguen [6) to obtais N, sad n-dimensional due to Nsllis and Roberts [S).
lumns of § .
co s 0 may be picked off to obtaim k(t) algorithm for the gain mesd mot be
Sesling aad Rowsding is the Kelmas Predictor s11 isterual
a0 — variables are bosnded by unity io magnitude.
.x‘ I‘.u € denote quastization step size and
] [€2" " | the bound on the mezimum magaituds tdat Rouadiag
-.' say be represested is am m-bit, sigaed Ddimary
XN representation. The prodlem in o finite-word The wpdatiag of the state vector in the
.,.' longth reslization of the Kslman predictor is to Kalman predicter requires one multiply for the
scale variables so that the probadility of u{u (p~1) elements and (n+1) multiples for the
ovezflov is small. ' nt olement. By ;nociull. 8 sequence of
a i.1.d., variasce €4/12, rasdom variables with
'<. Scalisg oach fixed point multiply, we gensrate s mesn
o 2810, variance N random vector n(t) each time we
o A filter is ssid to be 1, scaled if update:
b
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2es1/0) = 870A8 s(e/e-D)es H(Ou( ) n(2)

B a(t)a'(tek) = N&(X)
1

(a+1)

The stste varisnce is now

atte1) = (s7an1ace) (872as) cev I (O (1) oN

2

e=(s'amra(s71as) reta (1IN (1) ¢ N

Numerigal Eiperiments

Refer to the abstract for s summary of how
all esperimeats were coasducted. What follows is
s brisf amsotatios of Figeures 1 through 4.

Ezperiments were conducted by generastiasg
realizations of & statiomary time series from the
model
2

1

1-1.7527 + 0.82"

¥a) = = —
1-1.5z © + 1,212

- 0.43502>

Figeze 1 illustrates k(t), a 311 vector,
computed with floatiag poist arithmetic (curves
1-3) asd with fized point arithmetic (curves 4-
6). Figure 2 illustrates the inmovetioa variance
v(t) computed in floatimg point (curve 1) asd in
fized poist. These two carves illustrate that
the data-independent fast Kslman gain calcslation
may be practically competed ia fixzed poist using
16-bits,

Figure 3 illustrates predictions y(t/t-1) ia
the floating poist reslization (curve 1) aad ia
the sceled, fized poiat reslizatioa of the Kalaan
predictor.

Figure 4 illustrates the ocorrespondiag
ianovations sequences. The floating point and
fized poist predictors were rum over the same
realization of the time series.
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Figure 1. The Kalman predictor gain vector k(t)
celoulated wsing flosting point srithmetic
(curves 1-3) and fized point aritbmetic (curves
4-6).
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Figare 2. The ismovetions varlemce v(t)
calculated using flosting poinst arithwetic (curve
1) s8d fized point aritbwetic (curve 2).
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Figere 3, The predicted output y(t/e-1)

calevleted vsing floatisg point arithmetic (cerve
1) ond fized poist arithsetic (curve 2).
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MIN = ~-1.419

MAX = 3,326
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Figure 4. The isnovations sequence wu(t)
calculated vsing floating point arithmetic (curve
1) and fixed point aritbmetic (curve 2).
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