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In this paper we study scaling rules and round-off noise variances in a
fixed point implementation of the Kalman predictor for an ARMA time series
observed noise-free. The Kalman predictor is realized in a -fast form that
uses the so-called fast Kalman gain algorithm. The algorithm for the gain
is fixed point.

Scaling rules and expressions for rounding error variances are derived.
The numerical results show that the fixed point realization performs very
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FIXED POINT' IMPIRMENTATIONS OF FAST KAIMAN ALGORITHMS

Louis L. Scharf Sigurdur Sigurdsson

Department of Electrical Bag iaeeriftS Department of Electrical Engineering
Uaiversity of Rhode Island Colorado State UaiversitY

KigstOfl. RI 0231 Ft. Collins. CO 80523

Inti ppr~ td caigrue a inspection as the causal and stable inverse of
round-off woise variamces in a fixed point the representation. The so-called lalmas gain is

i~plmenatlo ofthe ame preictr fo anthe innovations representation (or equivalently

prodste is eelZ04ia afas foia tat seswith the Levinson recursions for factoring the

the o-clledfas 9flina gan agorihm.Theinverse of the correlation matrix for the time
algoith fo thejoi isfixe pont.series or with the Leouna-Gueguen recursions for

results show that the fixed point realization celled fast algorithm produces a fast Kalman

performs very closely to thle flatist point filter.
realizatiom for relatively low-order ARMA tine
aeries that are not too narrowband. In this paper we present results from a

stud oftes Kawaspredictors, implemented in
The predictor has been implemented In 16-hit floatiag point end in fixed point arithmnetic, for

fixed point arithmstie on an SITL 8086 autoregressive moving average time series. more
microproceasor. and in 16-bit floating point extensive results of this study. for noisy ad
arithmetic on an INELE g0go. Fixed point code noise-free filtering and prediction. soy be found
was written in ASgIK.? lamageaud floating in the thesis of Sigurdasto [11.
point code was written in POSRO. Inporimental

r esults were obtaifed by running the fined and In out summary of results for Kalean
Etat:t1g point filters on identical dataesta. filtering we draw heavily upon, the wort of Nerf,
All experimeata were* carried ot on as SIRL ND8 Kailath. Anderson. end Moore. See (21 and (3)
236 Develdpment System. for our previous references to the appropriate

literature. Io our derivstiom of scaling rules
Ittrodct ion--- end enpressioss for rounding error variances we

adapt the stationtary results of Jackson 141 and
Finite-dimenusional Goasien time series have Mllis and Roberts [51 to our noastationary

stationary Marhoviam sate-space deacriptions. problem.
In such descriptions the initial conditions are

itiwariate normal and state variables are Signal Models for Stationary ARMS Time Series
predicted values of the series based o am
infiatte past of observations. The linear A zero-mass. second-ordes statiosary. times
filtering problem is one of estimating the atate series (y(t)) is said to be autoregressive mowing
at time t based on observations up to times t and average (ARMA) if the entries y(t) in the time
the prediction problem is onie of predicting the series obey this recursion for all t:
state at time t+1 based on observations up to
tie t.

p 4
Correspondiug to the Marhovian a(n)y(t-a) - ba~ut-n)

representation is the innovations representation. Sao

The esential characteristic of this
smntstiomary representation is that it ay be a 8(0-0 a a(t)*(t+n) 2 o (n
used to synthesize a timeo-series. starting from
zero Initial conditions, whoae sea onvd-order a *h- b &(a): Ironseher dolts
statistics match the statistics Of the original 0 0

ime series. The states are predicted values of
the time series based on a finite past of EroimRpeetto
observations. going this represataties. the MroiaRpeetto
galman predictor my be written down from The Marhovian repressatatina for tyit)) is

Thi paer as preentd t te 2ndsummarized in the following equatioms. where a I
ThisPape wa preentd atthe22ad Ianastp~q). and where for purposes of illustration

Conference on Decision sad Control. Sa Antonio. we have assumed q )p.
71 (December 14-16, 18j3). The work was
supported by Off ice Of Na2val Research. Contract 9
N M 14-12-9-0300.
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State Equations

State iquat lens
' Vt*11t) - AX(tht-1) WWI u~) z(t+1/t) - )Lz(t/t-1) k(t) 0(t)

a(01-11 z() 
-

(t) - N(O.o 
3(0I-1) - 0 ; s(t) N(O.v(t))

y(t) - z(t/t-i) * I(t)

Y(t) - eU (tt-l) * s(t) Unit Pulse Responss

unit Palso tostosa
0. DO

0. t(O IE (a) - 1. 0-

h(t) = 1. t-0 A
-  

(t), n)O

'At (l). t0O

State Covarianmc State Covariance

tit) -A
t
O

0-AM A * 2 i()an) Q AnQ(t)

Q(t+l) - AQ(t)A' + v(t)k(t)k'(t)

Output Cow i__e 0(0) - 0

t(t) - 6,1(t) 6 + .31(t) Output Covarianco

________________ r (a) C- ci i)c + V(tb I (a)

0 1ai s Equations t D R 'ut ) t t

0 001 0 II13(2)1
A- 1 J IM 0 1 kt()

0 0 00

-a(s) -all) [ 0- h()j A- a i(t)

11 AII~)bI a s(~ O kt(
(1) 1 0 1(2) a(2) b(2)avi • kt) () - MU - O(O)t + 02 b(l); (O) -0

* I
Q- AQA' 4 a 2 b(l)h()

1 a()Ot - r~o) - C, Q(t)c r(o) -,Q + a
S siP-l) I] bln 0 [bill/ In these equations, bt(a) is the response of

the system of equationas at time t~a to an impulse

lnevatieos Representation applied at tina t. t(s) is the state convariance
between s(t) and z(t+a), and rl(a) is the output

The idea behind the innovationas ovarlanca between y(t) and y(t+). If rE(s) is

rtprsentstins for {y(t)) is to replace the to equal r(n), to match the second order

statioenary initial eoaditionas. distributed as properties, than k(t) and v(t) must be chosen as

8(01-1) : K(i. 0) with the noastatiomary initial above in the deaign equations.

oudities a(WO-1) - 0, to replace the stationary slms Predictor

input veetor b(1) by a nostatioaary Kalmau &&is

Weste k(s). and to replae the statlosry 1.1 d Is the isnovations rpreanentation, identify

s0queneo (Wt)). distributed as s(t) : NCO. e,), !'S(t+l/t) as the prediction y(t+l/t). The the

with the mostationary J.id. inovatioa Kalman titter equations become simply a rewritis

segeaeo (Wt)), distributed as a(t) : N(O. of the innovations representation:

v(S)). The triak is to boose the Eaman gain

k(t) gad the insne~tioes varianes w(t) correctly.

tb. innovations representatiom is summarizud y(tl/t) - c' u(t*l/t)

betl It is orth eting that k(t) -4b(1). W) z(tl/t) - Az(t/t-l) k(t)y(t)-c'z(t/t-l))

+. sad 0(t) 441 asat -4.
y(t) - y(t)
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Past Alsorithm for h(t)

The &*is k(t) may be calculated as outlineda2 k.20/&1
iae h smowvatios eutosb sva -

system of licatti oqaatios. An alterative is
to auo that the gat& is related to the time where 6 is a parameter that way be iscreased to
varying impulse respose of the innovations force the sors of f to be small. and thereby
representation: decrease th probatility of overflow. The

parame ter a 4 is the variance Of the noisy

h t (a) - .A &I (t) . m)O excitation of the filter.

Is the Kalman predictor equation we may
Thismeas th elmens ofk~t ma be eadoutscale the state vector n(t/t-l) by a diagonal

asfollows: scalinag metrix S:

h t (1)' k 1 in Si . (
The scaled galman predictor equations ae

b t (2) k ht (2) - k(t) then

z(til/t) -S_ IAS x(tlt-l) + S
1 
I (t) u~t)

h (a)j * h a) y(tlt-3) -c, S x(t/t-l)

As the cerreation metrix for y(t) is related to The 12 scaling rules for the states of the Kalman
the time varying impulse responses. we may write predictor are

it - i V UTS 
I 

QG(t)ljkS T . 1 2'_-1 1,2

where the t z t matrices RLV. Bad 8 are defined Ie state variance Q(t) nay be computed
as follows recursively as outlined previously. or

fourecursively as

T- ding (vo) .... Wt)) Q(t) - v(t) 0-' k(t-n) (An-' k(t-.)),

b'h(0) 0-1

a -hb(l) bh(0) The diagonal terns of Q(t) converge
1 1notonienlly to the upper limit Q - AQA' +

b (1) a ttlih'(l. A practical procedure Is to

hlt) h (t-1) h (0). replace 0(t) by Q to obtain the scaling rule

k( k 6 ~~/l* 2n- (k1.2 .... .n)

This means the correlation natris my be factored
with the fast impals* response algorithm of This result for stationary state apace filters is
Ltos-Guesuen (6) to obtain 5. ad a-dimassioaal due to Nallie and Roberts (SI.
columns of I my be picked off to obtain k(t). The algorithm for the geis need not be
Sealizg na& Ronding in the Kalman Predietor scaled between it is fined point: nll internal

variables are hounded by unity in magnitude.
Let f. dsete tunntizatios, step sine, and

162 0-a the bound on the matimnm magnitude that Roundiag
my be reproested in as n-bit. sigaed binary
reprosentation. The problem in a finite-word The apdatiag of the state vector io the
length realixotiom of the Salson predictor is to Kalman predicter requires one multiply for the
sale variables so that the probability of figst (&-I) elements and (n~l) multiples for the
overflow Is small, a t element. By Issociatial a sequence of

,. i.d. * variance (. /22, random variables with
lealisg each fined point multiply. ve&geete a meatn

'C.- nero. variance N random vector s~t) each time we
Afilter is said to be 12 Scaled if udae



8(t+11t0 - 3-1* AS~ 1.~~tnt'nt 141 i.S. Jackson. 0en the Interaction of
Roundoff Noise sad Dynamic Dealt in Digital

* I ~t~mt~h - N(~)Filters.* DST], 49 (1970).

11151S C.T. Mullis ad R.A. Roberts. 'Systhesis of
I I Minimum, Rosadoff Noise Fined Point Digital

e
2  I Filters. 11112 Trans. Circuits and Systems,

Ty1  CAS-23 (Sptember 1976).

I m.) 16] J. Leloxs ad C.J. Customs, *A Fixed Point
*The &tote variance is non Computation of Partial Correlation

Coefficients.* IEEE Trans. Acost.. Speech.
and Signal Proc.. 25. pp. 257-259 (Jass
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Numrical Experiments

Refer to the abstract for a asumary of how
all experiments ere conducted. What followa is
a brief annotation of figures I through 4.-

Inperimeuts, weire coaducted by generating
realization* of a sationary tine serine from the
model

1-1.75&-1 * .+

-. n
1

*1.21X-2 -0.4550z s

Figure I Illustrate& h(t). a Sal vector, 2
computed with floating point arithmetic (curves
1-3) and with fixed point arithmetic (curves 4- t
6). Figure 2 Illustrate* the Innovetion variance r() i
v(t) computed In floating point (carve 1) and in
flixed point. These two curves illustrate that
the data-independent feet Kalmn gain calculation

* any be practically computed In fined point asing
id-bits.

Figure 3 illustrate# predictions y(t/t-1) in
the floating point reelization (carve 1) ad in
the scaled, fixed Point realization of the Kalman
predictor.

Figure 4 illuetrate& the corresponding TIME1
innovatione seqnenceas. The floating point and Figure 1. The Kalman predictor gain vector k~t)
fined point predictors were runs over the eame calcuasted acing floating point arithmetic
realization of the time series. (carves 1-3) and fixed point arithmetic (carves
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*TIME T14
Figure 2. The innovations variance v(t)iue 4 heinvtos euneut

innovatiod 

*&is& f pt)
"ad 

e f point arithmetic (curve calculated using floating point arithmetic (curve
I) ed lied ointerihnetc (urve2).1) and fixed point arithmetic (curve 2).

TIME
Figure 3. The predicted output y(t(t-l)
calcteated using floating point arithmetic (curve
1) and fixed Point arithntic (curve 2).
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