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ABSTRACT

Estimates of the parameters in a linear model are considered

based upon the minimization of a dispersion function of the resi-

duals. The dispersion function used depends on Walsh averages of

pairs of residuals. Results similar to those arising with signed

rank statistics can be obtained as a special case. Trimming and

weighting of the Walsh averages can occur with a suitable choice

of dispersion function. Asymptotic properties of this type of

dispersion function and its derivatives are developed and used to

determine the large sample distribution of the estimates. Some

discussion appears on the practical application of this metho-

dology.

Key Words and Phrases: H-estimation; Walsh averages; dispersion
function; signed rank statistics;
robustness
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1. INTRODUCTION

This paper is concerned with the development of robust

statistical methods based on Walsh averages. The results are

broad enough to include many of the familiar results on Walsh

averages that arise with signed rank procedures and also to allow

for extensions, for instance to trimmed or weighted Walsh aver-

ages. The framework of a general linear model is used in the

development so that applications can be made to a wide range of

statistical problems including one- and two-sample problems,

multiple regression problems and analysis of variance and co-

variance problems. The emphasis will be on the estimation prob-

lem although the large sample distributional results can be used

to specify tests of hypotheses in a natural way.

The general linear model is given by

= ,(1.1)

where Y (Y, ... , Y)', X (xij) is an n x p design

matrix, M= (B. ... , p)' is a p x 1 parameter vector and

e - (e,, ... , en)' is an n xl vector of independent,

identically distributed error random variables with density func-

tion f(y). It is assumed that f(y) is symmetric about zero.

Residuals are denoted by Z - (Z1, ... , Zn)' where

Z - Z(b) - Y -X b.

Consider estimating the parameter s by minimizing a measure

of dispersion of the residuals. In the least-squares approach

the sum of squares Zi Z.2 is used as the dispersion function.

it is well-known that the least-squares estimate is not
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robust. It can be inefficient and heavily influenced by outliers

in the presence of nonnormal error distributions. The robust

M-estimates developed by Huber (1964, 1972, 1973) arise by mini-

mizing a dispersion function E'P(Z) for a suitably chosen

convex function P . To attain a degree of robustness the func-

tion should increase at a lesser rate than the quadratic function

in its tails. The I or least absolute deviation method

minimizes E.IZiI. The dispersion function E.1 a(e)Zil, where

a(-) is a score function and R. is the rank of Z. in
1 I

absolute value, generates an estimate of 8 based on signed-rank

statistics, see Adichie (1967, 1978).

*The basic dispersion function to be considered here measures

variability in the Walsh averages of the residuals with

D - D(b) - Ei< j wij P(Zi + Z), (1.2)

where p is a convex function. For convenience, the "2" in the

denominator of Walsh averages has been absorbed in the P func-

tion. The constants w i. >.0 are weights reflecting the

importance of individual Walsh averages. The weights can depend

on the design matrix. Zero-one weights can be used to omit some

Walsh averages from consideration.

For the present, three potential p functions will be

mentioned. The first is simply

" = itP ( 1 .3 )

If this p function is used in (1.2) with weights w 1,

the dispersion function is very similar to that of the signed

rank approach with Wilcoxon scores. For example, in the

' . .. " ". . . " " " " " " - ' " " ", .A . .
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one-ample problem with Y. = e + ei the dispersion function

using pl(t) is minimum at the median of the Walsh averages

(Yi + Y.)/2, for i < j, which is essentially the signed rank

estimate of e .

Another p function is

P2(t) - max {tI - c, 0} (1.4)

for some c > 0. This function is zero on the interval I-c, c]

and in effect trims "middle" Walsh averages that are sufficiently

near zero. However, P2 (t) can also be viewed as a simple

modification of pI(t) which flattens its abrupt behavior at

t - 0. A consequence of this modification may be that the

standard error of becomes more stable, but this conjecture

needs further examination.

Huber's p function can also be used in the dispersion

(1.2). It is quadratic in the middle with linear tails and is

given by

P3 (t) - t2/2 if Itl i k (1.5)

klti - k2/2 if Itl > k,

for some k > O.

The above p functions suggest what might be accomplished

by the use of the dispersion function (1.2). With p1 (t) and no

weights the estimate should be similar to that arising with the

signed rank dispersion function. The use of weights allows broa-

der possibilities and the modification to P2 (t) may prove

useful. On the other hand, the use of p3 (t) suggests this to

be an extension of the M-estimate approach (Huberizing Walsh
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averages). Huber (1964) had mentioned this type of idea at the

end of his first paper.

*4,

'I
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2. THE MAIN RESULTS

In this section the basic notation is introduced and the

assumptions are listed. The basic focus will be on the deriva-

tive of the dispersion function (1.2). Theorem 2.1 shows that

this derivative has a multivariate normal limiting distribution.

This is extended to the case of contiguous distributions in

Theorem 2.4. These results are useful in developing test statis-

tics for testing hypotheses about 0. An asymptotic linearity

4 result is given in Theorem 2.3 and this is used to drive the

limiting normality of the estimate 8 in Theorem 2.5.

Some assumptions will be listed concerning the design matrix

X and the weights used in the dispersion function. Extend the

definition of the weights to the case of i > j by defining

wji = w. Also let wii = -j i wij and define an n x n weight

matrix W - (wij). Then W is a symmetric matrix with weights

w.. in the off-diagonal locations and its diagonal elements are

the sums of the off-diagonal elements in the corresponding row.

Further, define a ij(k) - w ij(xik + X jk) and let A.(k) =

zj~i aij (k). A calculation shows that the n x p matrix having

A.(k) for its i,kth element is given by A = W X.

ASSUMPTION (A1):

(I/n)X'X E

as n - - , where _ is a p x p positive definite matrix.

I1.
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ASSUMPTION (A 2): For each k -1, .. ,p

max IxikI/ rn 0 as n
l~i<n

ASSUMPTION (A 3): For each k 1, *.,p

2
ma ,k

1<i<n
-). 0 as nl+co

it A 2(k)
i-1

ASSUMPTION (A4): For each k - 1, *.,p

J~ a~4 k
1< i -+0 as n

in 2
A± A(k)

ASSUMPTION (A5):

n-3 X

as n + ,where V is a p x p positive definite matrix.

ASSUMPTION (A 6):

n-2 XWX + C

as n + , where C is a p x p nonsingular matrix.

The following assumptions concern the p function in the

dispersion (1.2). They are sometimes motivated by the approach

used in the proofs and alternate assumptions could be specified
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with different proof techniques. The basic requirement is that

p and its derivative be sufficiently smooth(piecewise). In many

-cases of practical interest p has a bounded, piecewise contin-

uous derivative and then the assumptions could be considerably

simplified.

ASSUMPTION (B ) p(t) is a convex function, symmetric about

zero, with a derivative (t) - p'(t) except at possibly a

finite number of points. This implies that *(t) is nondecreas-

ing and *(-t) - -*(t).

ASSUMPTION (B 2): h(t) - E0( (Y1 + t)) exists and is finite

for all t, where the expectation is under the assumption that

- 0 in model (1.1).

ASSUMPTION (B3): The following expectations are positive and

finite:

T-2 E0 (h
2(Y1 )) I EO(0(Y1 + Y2) (y1 + W3))9

T 2 E0 (* 
2(Y1 + Y2 )) and

:i. E((h'( Wl) 2)

ASSUMPTION (B4): The first and second derivatives h'(t) and

h"(t) exist except possibly at a finite number of points and

Ih"(t)l < M for some constant M.

ASSUMPTION (B5 ): H(t) - E0 (h(Y1 - t)) - E0( M(Y I + Y2 -t))

and its derivative exist in a neighborhood of t - 0. Moreover,

H'(t) is continuous at t - 0 and H'(0) -E 0(h').



ASSUMPTION (B36): For some constant Ml) E 0( 2 (YI + - 0)

<MIin some neighborhood of t - 0.

The behavior of the dispersion function (2.1) can be studied

through the vector of its derivatives. The negatives of these

derivatives will be denoted by T(b) - (T 1(b), T p (b))'

where

T k(b) a - D/ b k -Ei a. (k)*i(Z.i + Z) (2..

for kii 1 ., p, where 4'-P' and a..(k)

The asymptotic distribution of T(b) will be treated by the

projection method. It wili be sufficient to assume 8 0 in

model (1.1), in which case the Y.I are iid with symmetric

-9density f. The k hcoordinate of T(O) has projection

T-*(0) - 1, E (Tk(0)IYt - yt)

-I 1'11 ' a (k)WE 0(41 (Y.i + -Jz y (2.2)

-A,(k)h(Y,.),

where h(t) is defined in assumption (B 2 Note that

E 0(*(Y + Y.)) - 0 was used since *' is an odd function under

assumption (B1I). Thus the projection of T(O) is T*(0)-

(TyJ(o), .. T*(0))'. In matrix form,

T*(O) - A' R V X W R

where H W hY 1 ) MY. n W().

6i?
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THEOREM 2.1. Let assumptions (A3) - (A5 ) and (B ) -(B )

hold. Then for any fixed vector 6 (el, ... )'

M n-3/2 ('T(O) - 8'T*(O))1O --P-+ 0 and

i) n 3 2 T(o) L N(0, T2V) as n co

Proof: First let

u " W X 8 - (Ul, ... , U)'. (2.3)

TThen n *() n u' H is a sum of independent random

variables with mean 0 and variance n Z. u=
~~~~~-3 28 2 8

A -3 T 2' W W X T 2 6' V 8 by assumptio.A (A5) It will
2 n 2

have a limiting normal distribution if max ui/-I U.
- l i iI

0 as n + . But this follows from assumptions (A ) and (A )

Thus n-3/2T*(O)J0 ... , N(O, T2V) and part (ii) will follow from

part (i).

'FFor part (i) examine the expected square

n-3 E0(eT(O) - _ 6T(0))2

= n-3 (E0 ('T(0)) 2 - 0 (eT*(0)) 2)

= (T2- 2T2)(n- 3u'u)(Y,.<. u2./I.u. )

where ui. - Ik Ok aij(k). The middle factor converges to a

constant as in the previous paragraph and the last factor tends

to zero by assumptions (A4 ) and (A5). Thus part (i) follows.
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-' THEOREM 2.2. Let assumption, (AI), (A3) - (A5) and (B1) -

(B4 ) hold. Let A- (A, ... , A )' and*P

-- 3/

• .R(A) - n 3  (T(A//'n) - T(O) + E 0(h')X'W X A/n)•

Then R(A 1o! 0 as n 0 .

Proof: First extend the definition of T*(O) in (2.2) by defin-

ing T*(b) to have kth element

T(b) In A A(k)h(Z)jai il

where Z - Y - X b. Note that T(b) has the translation pro-

perty I (bI L T(b b-2) 10 L T(O)Ib-

k 2 -- -20_2 7-

and so also does T*(b). Then Theorem 2.1 (i) and a contiguity

argument shows that

n-3/2 (.T(0) - "r*(o))I_A/n - 0.

Using the translation property it follows that

n-3/2 (_r'T(A/ ) - O'T*(A//n))Io P 0.

Thus it is sufficient to replace T by T*. in verifying that

O'R(_A)o 0 -, 0.

Define an n x 1 vector of constants t - X A/rn. Then

with u as in (2.3) use a Taylor's approximation to write

.' - .- d , -,,-.,-..-.-. ' " .. . ' .'...* ".-, ." - ,"..'. ' . . - '.. ., , . **.., , ., .- ..- ;.. ,. .- .
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Q'T*(/) /1 u h(Yi - ti)

liuih(Yi) - u i uitih'(Y)

+ . u.tah"(.)/2

where J.i -ij - t i , i- 1, ... , n. Then

-'R*(A) - n-3/ 2(eT*(A/9) - e'T*(o) + E 0(h')e'X'W x 6/ r)
= n-3/2(Q u ih(Y i+ti )  i MY i)+E0 hE u tu~(Y+t)- E.u.h(Y.) +E(h')Z uit.)

-n Ei uiti(h'(Y) - E 0(h')) + n- 3 /  E.. uith"(&i)/2

S 1 + S 2  say.

Now S1 is a sum of independent random variables with mean zero

and variance

nE. ut Var(h'(Y))

< (n_3 Ul u) (max u?/ u 2)(E t 2) Var(h'(Y).
l<i<n

The first factor here converges to a constant and the second

factor converges to zero as in the proof of Theorem 2.1. Also

2 A' X'X A/n + A'E A by assumption (A With its variancet. p

tending to zero, S1 - 0. Using the bound on h" in as-

* sumption (B4) , the term S2 is bounded by a constant which

tends to zero,

121 < ,-3/2  max Jui M . t /2.
l<i<n

Thus S2 P 0 and the proof is completed.
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LI The previous theorem shove that T(b) can be

approximated by a linear function of b for b near zero.

However, the result is not strong enough for the application

V- needed here. The following theorem shows that this result holds

uniformly. A proof will not be given as it is quite lengthy and

the details follow closely the compactification argument used in

the proof of Theorem 5.1 of Sievers (1983).

THEOREM 2.3. Let assumptions (A1) - (A ) and (B ) -(B6 )

1 5 1 6

hold. Let D-... a a p ): Ik j c, 1 < k < p} , where

c > 0, and let 1 11 denote Euclidean distance. Then

supI IR(A_ ) i 0 as n-
AED

The asymptotic distribution of T(O) given in Theorem 2.1

can be extended to the case of contiguous distributions. The

result follows readily from Theorem 2.2 and is summarized in the

following theorem.

* THEOREM 2.4. Let assumptions (A1) (A3) - (A6 ) and

(B - (B4 hold. Then as n -'.

-3/2 L (h)AT2V)

Finally, the limiting distribution of the estimate 8 can

be given. With the asymptotic linearity result of Theorem 2.3,

the argument of Jaeckel (1972) and Sievers (1983) can be used.
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First note a translation property of the estimate,

_ - ) 0 where minimizes D*(A) D(/v -)/n._

The asymptotic linearity implies supA EDID*(&) - Q(A) 10 0,

where Q is the quadratic function

Q(A) - E0(h')A'C A/2 - n-3 1 2A'T(O) + D*(O).

Form this it follows that A is asymptotically equivalent to the

point minimizing Q(W). The following theorem summarizes.

THEOREM 2.5. Let assumptions (A1) - (A6 ) and (B -

(B6) hold. Then as n -

'n(8 - 8)1 N(O, (T/E (h'))2C-1V C-1).
_ 0_

1%

a4

"A,4
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3. GENERAL COMMENTS

The regular H-estimate of I minimizing Ip(Z ) has an

influence function proportional to p(y) and its asymptotic

2 2-1
variance-covariance matrix is E(* )/(E(*')) . The estimate

of I minimizing the dispersion (1.2) has an influence func-

tion h(y), which is a smoothed version of *(y), and its vari-

ance-covariance matrix, given in Theorem 2.5, may have a factor

larger or smaller than that of the regular H-estimate. Some

examples of these quantities appear in the next section.

There is special interest in conditions under which the

matrix C-V C appearing in Theorem 2.5, equals Z -I  If

this is the case, the variances of 8 can be compared to the

variances of regular M-estimates and least-squares estimates

simply by the constant multiples of this matrix. An answer to

this question can be given for the unweighted case, 1.. 1. In

this case W - (n-2)1 + J, where I is an identity matrix and

J a matrix of "ones". Then C - Z + p i' and V + 3P P,'

where u is the limit of the column means of X. Then a suf-

ficient condition for C_1 V C - _-, equivalently

-1
V - C C C, is given by

p,£-I = I,(3.1)

as can be seen by direct multiplication. This condition is

4p. easier to verify in particular cases than the basic equation

itself.

To estimate the standard errors of the estimates in 8 an

2 2
estimate is needed for the scale factor T2/(E 0 (h')). Recalling

' ; ,' '7 ' . . . . . . .. . ..'" " -. .' .. . . . . . . . . . . ....'--.-.. -. .. • . • • ." • .
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that 2  E 0(*(y 1 + Y2)*(Y + Y3)), a U-statistic is

suggested for the numerator. A symmetric kernel is given by

(¥I' Y 2 Y3) = (*(Y + Y2 )i(Y 
+ Y3) 

+ *(YI + Y2)(Y 2 + Y3 ) +

*( I + Y3 )(¥2 + Y3))/3. Then using residuals Z - Y - X ,

consistent estimate of T is

T = i<j<ko(Zis Zk, )

To estimate the denominator of the scale factor consider the case

where h'(t) - f*'(y + t)f(y)dy. Then E0(h') - E0( 4'(Y1 + Y2))

and a consistent, U-statistic estimate is given by

0(Z + Z(z/(n

The computational aspects discussed in Huber (1972, 1973)

for regular M-estimates could be modified for use in computing

*for p functions satisfying his conditions. In particular,

a scale measure should be used with some P functions, such as

(1.5). The process will be slower since the dispersion (1.2)

involves j) rather than n terms.

There is another type of dispersion function that can be

used for the analysis of a linear model. Consider

DI D (b) - i w..j (Z. -Z.).

3Dispersion is measured by differences of residuals. This is a

generalization of the dispersion function considered in.Sievers

(1983) where p(t) - Itl was used. With no weights this Gini's

mean difference was shown by Hettmansperger and McKean (1978) to

generate the rank estimate of B based on Wilcoxon scores. The



-16-

projection and asymptotic linearity approach of this paper can be

used vith only minor changes to obtain the theoretical properties

for the estimate minimizing DI . The results are basically the

same as Theorems 2.1 - 2.5 with some changes in the details.

Tests of hypotheses can be developed based on T(O), 8 or

the dispersion function, see Hettmansperger and McKean (1977) and

Schrader and Rettmansperger (1980).

4
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4. EXAMPLES

The introduction discussed three possible P functions for

use in the dispersion (1.2). Further details on these functions

will be given in this section, in particular, on the influence

function h(y) and quantities appearing in the asymptotic vari-

ance. Some cno-ents are made on the one- and two-sample problems

and on the simple linear regression model.

The function P1(t) - Itl has derivative

(t) = + 1 if t > 0

- 1 if t < 0.

Then the influence function is h(t) - 2F(t) - 1 and 2 . 1/3.

Also h'(t) - 2f(t) and E0(h') ='2ff 2 . The asymptotic variance

factor is 1/12(ff2 ) 2 , the familiar result for signed rank

estimates.

The function P2 (t) of (1.4) has derivative

2(t) = - if t < -c

0 if It < c

+ I if t > c.

*Then the influence function is h(t) - F(c + t) - F(c - t) and
5 2

IT is the expected square of this function. Also

h'(t) - f(c + t) + f(cc- t). The expected value of h' can be

expressed as E0(h') - 2g(c), where g(y) is the density

function of Y + Y2 "
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The Huber function P 3(t) of (1.5) has derivative

3 (t) - -k if t < -k

t if It < k

+k if t > k.

. The influence function is h(t) - t+k F(u)du - k and it can beJ t-k
viewed as a smoothing of * 3 " It readily can be seen that

h'(t) - F(t + k) - F(t - k) and E0 (h') - P0(IY1 + W21 j k).

For the one-sample problem the Y. are assumed to be sym-

metric about a point e and the dispersion function is

D(e) - liq P(Yi + Yj - 20). There appears to be no use for

weights here. The assumptions simplify considerably. If P1  is

used, the estimate is the median of (Yi + Y.)/2 for i < j."

The effect of the Walsh averages on 0 can be trimmed or

smoothed with other choices of the p function.

For the two-sample problem suppose there are samples of

sizes n1 and n2  from two groups G1 and G2 with locations

1 and 82. Write the design matrix as

,: 0 1

where 0 and 1 are vectors of zeros and ones, respectively.

. Suppose wij = w1 1 if ij are both in G1 , wij = w2 2  if i,j

are both in G2  and w. = - w1 2 if ij are in different groups.

Assumptions (AI) - (A6 ) will hold in this case. The dispersion

function becomes

-. . .
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D w 11 EG 1G (Yi + Y. - 2B1 + w2 2 ZG 2,G2P(Y + Y. - 20 2)

.4 + W1 2 ZGS P(Y j + - Oi. 82)

It appears that BI depends on the data from both groups if

w 0; similarly for 82. This differs from the regular

M-estimate method where Sk depends only on the data from group

Gk, k 1 1, 2. It can be verified by direct computation that

C V C- = . This is so regardless of the choice of w1 1 , w2 2

and w12 and as a result these weights have no effect on the

asymptotic variances.

In the simple linear regression model Yi . 8I + 82 xi + ei,

1 < i < n. The dispersion function is

D = Eiq v.i P(Yi + Y. - 208 - (xi + x.)02

In the case of no weights, w 1ij = , expressions for C, V and

Z are readily computed and (3.1) implies CI V C- =  , the

familiar matrix for this problem. It is not clear if this can

hold for other choices of weights.

4

* . .:=a
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