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ABSTRACT

Estimates of the parameters in a linear model are considered
based upon the minimization of a dispersion function of the resi-
duals. The dispersion function used depends on Walsh averages of
pairs of residuvals. Results similar to those arising with signed
rank statistics can be obtained as a special case. Trimming and
weighting of the Walsh averages can occur with a suitable choice
of dispersion function. Asymptotic properties of this type of
dispersion function and its derivatives are developed and used to
determine the large sample distribution of the estimates. Some
discussion appears on the practical application of this metho-

dology.

Key Words and Phrases: M-estimation; Walsh averages; dispersion
. function; signed rank statistics;
robustness
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1. INTRODUCTION

This paper is copcerned with the development of robust
statistical methods based on Walsh averages. The results are
broad enough to include many of the familiar results on Walsh
averages that arise with signed rank procedures and also to allow
for extensions, for instance to trimmed or weighted Walsh aver-
ages. The framework of a general lingar model is used in the
development so that applications can be made to a wide range of
statistical problems including one- and two-sample problems,
multiple regression problems and analysis of variance and co-
variance problems. The emphasis will be on the estimation prob-
lem although the large sample distributional results can be used
to specify tests of hypotheses in a natural way.

The general linear model is given by

I=Xg+te, (1.1)

vhere Y = (Yl, cee s Yn)', X= (xij) is an n x p design
matrix, g = (31, oo s Bp)' is a p x 1 parameter vector and
e= (e, ... ,e)' 1is an n xl vector of independent,

1 n
identically distributed error random variables with density func-
tion f(y). It is assumed that f£(y) is s&mmetric about zero.

Residuals are denoted by 2 = (Zl, oo s Zn)' where

z=2(0) =Y-Xb.

Consider estimating the parameter 3 by minimizing a measure
of dispersion of the residuals. In the least-squares approach
the sum of squares D zi is used as the dispersion function.

it is well~known that the least-squares estimate is not
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robust. It can be inefficient and heavily influenced by outliers
in the presence of nonnormal error distributions. The robust
M-estimates developed by Huber (1964, 1972, 1973) arise by mini-
mizing a dispersion function 2io(zi) for a suitably chosen
convex function P ., To attain a degree of robustness the func-
tion should increase at a lesser rate than the quadratic function
in its tails. The 21 or least absolute deviation method
minimizes I |Z.|. The dispersion function I, a(R;)lzil, where
a(+) 1is a score function and RI is the rank of Z, in
absolute value, generates an estimate of _f based on signed-rank
statistics, see Adichie (1967, 1978).

The basic dispersion function to be considered here measures

variability in the Walsh averages of the residuals with
- 1.2
D = D(b) 5 "ij"(zi + zJ.), (1.2)

where p is a convex function. For convenience, the "2" in the
denominator of Walsh averages ﬁas been absorbed in the P func-
tion. The constants wij 2-0 are weights reflecting the
importance of individual Walsh averages. The weights can depend
on the design matrix. Zero-one weights can be used to omit some
Walsh averages from considerationm. ’

For the present, three potential p functions will be

mentioned. The first is simply
pl(t) - It{' (1.3)

If this p function is used in (1.2) with weights vi; =1,
the dispersion function is very similar to that of the signed

rank approach with Wilcoxon scores. For example, in the
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one-sample problem with Yi =0+ e the dispersion function

using pl(t) is minimum at the median of the Walsh averages
(Yi + Yj)/Z, for i < j, which is essentially the signed rank
estimate of 9 .

Another p function is
p,(t) = max{|t| - ¢, 0} T (1.4)

for some ¢ > 0. This function is zero on the interval [~c, c]
and in effect trims "middle" Walsh averages that are sufficiently
near zero. However, pz(t) can also be viewed as a simple
modification of Apl(t) which flattens its abrupt behavior at
t = 0. A consequence of this modification may be that the
standard error of _E becomes more stable, but this conjecture
needs further examination.

Huber's o function can also be used in the dispersion
(1.2). 1t is quadratic in the middle with linear tails and is

given by

05(t) = %72 if |e] <k (1.5)

kle| - k272 i |e] >k,

for some k > 0.

The above p functions suggest what might be accomplished
by the use of the dispersion function (1.2). With pl(t) and no
weights the estimate should be similar to that arising with the
signed rank dispersion function. The use of weights allows broa-
der possibilities and the modification to Oz(t) may prove

useful. On the other hand, the use of 03(t) suggests this to

be an extension of the M-estimate approach (Huberizing Walsh
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% averages). Huber (1964) had mentioned this type of idea at the

end of his first paper.
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2. THE MAIN RESULTS

In this section the basic notation is introduced and the
assumptions are listed. The basic focus will be on the deriva-
tive of the dispersion function (1.2). Theorem 2.1 shows that
this derivative has a multivariate normal limiting distribution.
This is extended to the case of contiguous distributions in
Theorem 2.4, These results are useful in developing test statis-
tics for testing hypotheses about B. An asymptotic linearity
result is given in Theorem 2.3 and this is used to drive the
limiting normality of the estimate ‘é in Theorem 2.5.

Some assumptions will be listed concerning the design matrix
X and the weights used in the dispersion function. Extend the
definition of the weights to the case oé i > j by defining
wji = wij' Also let vi; zj+i wij and define an n x n weight
matrix W = (wij). Then W is a symmetric matrix with weights
'ij in the off-diagonal locations and its diagonal elements are
the sums of the off-diagonal elements in the corresponding row.

K ) and let A (k) =

zj+i aij(k). A calculation shows that the n x p matrix having

Further, define aij(k) = wij(xi + LI

Ai(k) for its i,kth element is given by A = W X.

ASSUMPTION (Al) :

(1/n)_§'_lg > z

a8 n + o , where : is a p x p positive definite matrix.
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1<i<n

ASSUMPTION (A3): For each k=1, .., , p

2
max (k)
l<i<n 5
fi 2
1=1 A0

+ 0 as n > =,

ASSUMPTION (AA): For each k=1, ... , p

2
Yoo a5, (k)

Lia1 Ai(k)

ASSUMPTION (As):

e OUL P S

a8 n+» , where V is a p x p positive definite matrix.
ASSUMPTION (A6):

N QU QU
a8 n .+, where C is a p x p nonsingular matrix.

The following assumptions concern the  function in the
disversion (1.2). They are sometimes motivated by the approach

used in the proofs and alternate assumptions could be specified
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with different proof techniques. The basic requirement is that
p and its derivative be sufficiently smooth(piecewise). In many
cagses of practical interest p has a bounded, piecewise contin-
uous derivative and then the assumptions could be considerably

simplified.

ASSUMPTION (Bl): p(t) 1is a convex function, symmetric about
zero, with a derivative y(t) = p'(t) except at possibly a
finite number of points. This implies that y(t) is nondecreas-—

ing and y(-t) = -y(¢c).

ASSUMPTION (B,): h(t) = E (y(Y; + t)) exists and is finite
for all t, where the expectation is under the assumption that

8 =0 in model (1.1).

ASSUMPTION (33): The following expectations are positive and

finite:

2. 2 =

T | Eo(h (Yl)) Eo(w(Y1 + Yz)w(Y1 + Y3)),
2 2

Ll Eo(w (Y1 + Yz)) and

ECCh' (1 D),

ASSUMPTION (Ba): The first and second derivatives h'(t) and
h"(t) exist except possibly at a finite number of points and

|h"(e)| < M for some constant M.

ASSUMPTION (35): H(t) = Eo(h(Yl -t)) = EO(W(Y1 + Y, - t))

2

and its derivative exist in a neighborhood of t = 0. Moreover,

H'(t) is continuous at t = 0 and H'(0) = -Eo(h').
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e
ﬂ ASSUMPTION (B;): For some constant M,, EIO(‘J)Z(Y1 + Y, -t))

) £ M in some neighborhood of t = 0.

N3

4

b . . . .
;“. The behavior of the dispersion function (2.1) can be studied
%
g

' through the vector of its derivatives., The negatives of these
;‘: derivatives will be denoted by T(b) = (TI(B), cee s Tp(g))'

K
N where

!

= -3 = I, . . . . 2..

. T, (®) Db, i 2332+ 20) (
kY

3] for k=1, ... , p, where ¥ = p' gand ai.j(k) a

:";:'

) wij(xik + xjk)'
N The asymptotic distribution of T(b) will be treated by the
N -

.\ » » » L3
ix projection method. It will be sufficient to assume B = 0 in
) model (1.1), in which case the Y, are iid with symmetric
density £. The k" coordinate of T(0) has projection
)

W)
2 ’

i ™(0) = 17 E (T (0)|Y, = y;)

5 k L=] P k=170 T N
: n
N = lga1 {Kj a; ;OB (Y, + Yj)IYz =y,) (2.2)
0 n
M = L= A GONCY),
ljc. where h(t) is defined in assumption (Bz): Note that

o
> EyGu (Y, + Yj)) = 0 was used since ¥ 1is an odd function under
B assumption (B;). Thus the projection of T(0) is T*(0) =
5
£ (Ti'(g), oo s T';(Q))'. In matrix form,

1“

™) =A' E=X' WH

wvhere H = (h(Yl)’ oo s h(Yn))'.

»

kY

3,
)
&
-
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- - - el Ndie b LalOd A Aul b AN M -
TR B . PO L TN RS A -~ L KL IR S ST T T e -t LR - 1
x .

- J

A
'2:;'; THEOREM 2.1. Let assumptions (A3) - (AS) and (Bl) -(33)

hold. Then for any fixed vector 6 = (61, cee s 6p)',

R W o221 - s, T~ 0 and

L 2

n-3/21(9_) |0 — N, V) as n > ®

(11)

Proof: First let

X u=WXB8=(u, .. »u ). (2.3)

;— Then n-3/26"1‘*(0) = n-3/2u' H is a sum of independent random
e =2 1 =2

v ) . . -3 2 2

O variables with mean 0 and variance n ~ T Zi u;, =

<.

' n..3 12 B XWWXe - 2 6' Vv 8 by assumptio. (AS)' It will

i~ have a limiting normal distribution if max u?/ n u? >

X 1<i<n i’ bi=]1 "3
021 . 0 as n +» , But this follows from assumptions (A3) and (A.).

5
~3/2'1‘*(9_)l0 L, N(O, 12_\1) and part (ii) will follow from

. Thus n

part (1i).

s STl

For part (i) examine the expected square

"f

a By (810 - o'T*(0)?

= 2 (g 0'10)? - B (e'Tx(0)) D)

4 }.)‘j‘)- v‘"‘v.

2 2,, =3, 2 2
= (1] - 2t)(n Eg)qi(j uij/ziui)’

Py .

where s = Ly B aij(k)' The middle factor converges to a

o

-
&

constant as in the previous paragraph and the last factor tends

P
P
v

to zero by assumptions (Aa) and (AS)' Thus part (i) follows.
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)| VY |

s
(]
‘e
)




.............

THEOREM 2.2. Let agsumptions (Al), (AB) - (AS) and (Bl) -

- '
(B,) hold. Let A= (4, ... , Ap) and

(I(4//n) - T(0) + E (h")X'W X &//0).
Then 5(A)|0 2, 0 as n +> =,

Proof: First extend the definition of T¥(0) in (2.2) by defin-

ing T*(b) to have k" element

n
T*(b) = Zi-l A; (10h(zZ;)

o

where Z2=Y-X

. Note that T(b) has the translation pro-

lhl

L
perty I(_lll) |£2 I(P-l - 22) IQ_ '_f_(ﬂ) hlz'-b-l

and so also does T*(b). Then Theorem 2.1 (i) and a contiguity

argument shows that

n"3/2( P

6'1(0) -_g'y(g))|_“',; —— 0.

Using the tramnslation property it follows that

n ¥ 2(g 1(a/ /) - p'Te(a/ ) |, o o

Thus it is sufficient to replace T by T* in verifying that

B'R(M|y = o.

Define an n x 1 vector of constants t = X //a. Then

with u as in (2.3) use a Taylor's approximation to write
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8T/ = T wh(Y, =€)
= Ju0(Y) = ] u eh' (X))

+ zi uitzh"(ii)/Z

3/2 _ '
n (2:i uih(Yi+ci) I “ih(Yi) + Eo(h )2i uici)

-3/2 . _ . =3/2 "
-n Zi uiti(h (Yi) Eo(h )) +n z uitih (Ei)/Z

= S1 + S2 say.

Now S1 is & sum of independent random variables with mean zero

and variance

n-3 Zi 3 i Var(h' (Y ))
2 2 2 '
5_( u_g) (12:§n ui/z.1 ui)(ziti) Var(h (Yl))'

The first factor here converges to a constant and the second

factor converges to zero as in the proof of Theorem 2.1. Also

L.t \i A'X'X 8/n > A'L 4 Dby assumption (Al). With its variance
P . .

tending to zero, S1 —/ 0. Using the bound on h" in as~-

sumption (34), the term §, is bounded by a constant which

tends to zero,

2
|szl .<_n-3/2 max |ui| M ):i ti/2.
1<iln
Thus s2 2. 0 and the proof is completed,

o T ey T A I A i A A N, RN
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THEOREM 2.3. Let assumptions (Al) - (As) and (Bl) -(B6)
hold. Let D= {(Al, cee s Ap): lAk| <c, 1<k<p}, where

THEOREM 2.4. Let assumptions (Al)’ (A3) - (A6) and

The previous theorem shows that T(b) can be
approximated by a linear function of b for b near zero.
However, the result is not strong enough for the application
needed here. The following theorem shows that this result holds
uniformly. A proof will not be given as it is quite lengthy and
the details follow closely the compactification argument used in

the proof of Theorem 5.1 of Sievers (1983),

¢ >0, and let |||/ denote Euclidear distance. Then

sup||5(A)||—P—+0 as n + @
s €D

The asymptotic distribution of T(0) given in Theorem 2.1
can be extended to the case of contiguous distributions. The
result follows readily from Theorem 2.2 and is summarized in the

following theorem.

(Bl) - (34) hold. Then as n + = ,

n°3/22(2)IA//n- L N(E,(h')Ca, 12!).

~

Finally, the limiting distribution of the estimate B8 can

be given. With the asymptotic linearity result of Theorem 2.3,

the argument of Jaeckel (1972) and Sievers (1983) can be used.
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First note a translation property of the estimate,

N L ~ " e s . =
/(B - g) Iﬁ— A'g , where A minimizes D*(a) = D(a/v/n)/n.
The asymptotic linearity implies sup, eDID*(_A_) - Q(y) | |0 £ o,

where Q 1is the quadratic function

n~/2511(0) + D*(0).

Q) = Eg(h')A'C 4/2 -

Form this it follows that A is asymptotically equivalent to the

point minimizing Q(4). The following theorem summarizes.

THEOREM 2.5. Let assumptions (Al) - (A6) and (Bl) -

(36) hold. Then as n =+

).

/a8 - 8) la £ n, (t/Eg(n' %ty ¢t

" 0 AN LN L Y N R T R I A K R
AT R MO A V" T, S A T T e AT

e, .
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3. GENERAL COMMENTS

The regular M-estimate of B minimizing {p(zi) has an
influence function proportional to y(y) and its asymptotic
variance-covariance matrix is l‘:(q;z)/(l'.'(tp'))2 2-1. The estimate
of B minimizing the dispersion (1.2) has an influence func-
tion h(y), which is a smoothed version of Y(y), and its vari-
ance-covariance matrix, given in Theorem 2.5, may have a factor
larger or smaller than that of the regular M-estimate, Some
examples of these quantities appear in the next section.

There is special interest in conditions under which the

1

matrix 2-1! g. , appearing in Theorem 2.5, equals E_.l. 1f

this is the case, the variances of __é_ can be compared to the
variances of regular M-estimates and least-squares estimates
simply by the constant multiples of this matrix. An answer to
this question can be given for the unweighted case, wijE 1. In
this case W = (n-2)1 + J, where 1 is an identity matrix and
J a matrix of "ones". Then C= I+ pyu' and V=1 + 3uu’,

where yu is the limit of the column means of X. Then a suf-

1 1 -1

ficient condition for g. 12. =1 °, equivalently

Vs g_z_'l C, 1is given by

w1, (3.1)

as can be seen by direct multiplication. This condition is
easier to verify in particular cases than the basic equation
itself.

~

To estimate the standard errors of the estimates in _3_ an

estimate is needed for the scale factor Tz/(Eo(h'))z. Recalling
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that 2 = E(GW(T, + ,)9(Y, + 1)), a U-statistic is
suggested for the numerator. A symmetric kernel is given by
o (Y, Yy, Y0 = (Y, + Y )u(y, + Yy + WY+ Y Iu(Y, + ¥,) ¢

w(Y1 + Ys)w(Y2 + Y3))/3. Then using residuals 2 =Y -X B8, a

consistent estimate of 12 is
~2 - - - n
1< = Zi<j<k¢(zi, Z, zk)/[3]
To estimate the denominator of the scale factor consider the case
where h'(t) = [y'(y + t)f(y)dy. Then Eg(h') = Eg(v' (¥, + Y,))
and a consistent, U-statistic estimate is given by
Tij v' (g + zj)/[:] :
The computational! aspects discussed in Huber (1972, 1973)
for regular M-estimates could be modified for use in computing
é. for p functions satisfying his conditions. In particular,
a scale measure should be used with some p functions, such as
(1.5). The process will be slower since the dispersion (1,2)
involves [:] rather than n terms.
There-is another type of dispersion function that can be

used for the analysis of a linear model. Consider

Dy = DB = Ty vy (B 2y

Dispersion is measured by differences of residuals. This is a
generalization of the dispersion function considered in Sievers
(1983) where o(t) = |t| was used. With no weights this Gini's

mean difference was shown by Hettmansperger and McKean (1978) to

generate the rank estimate of £ based on Wilcoxon scores. The
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projection and asymptotic linearity approach of this paper can be
used with only minor changes to obtain the theoretical properties
for the estimate minimizing D,. The results are basically the
same as Theorems 2.1 - 2.5 with some changes in the details.
Tests of hypotheses can be developed based on T(0), é_ or

the dispersion function, see Hettmansperger and McKean (1977) and

Schrader and Hettmansperger (1980).
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4, EXAMPLES

The introduction discussed three possible p functions for
use in the dispersion (1.2). Further details on these functions
will be given in this section, in particular, on the influence
function h(y) and quantities appearing in the asymptotic vari-
ance, Some comments are made on the one- and two-sample problems
and on the simple linear regression model.

The function Dl(t) = |t| has derivative

wl(:) = +1 if t>0

-1 if t < 0.

Then the influence function is h(t) = 2F(t) - 1 and <2 = 1/3.
Also h'(t) = 2£(t) and Eo(h') "2ff2. The asymptotic variance
factor is 1/12(ff2)2, the familiar result for signed rank
estimates.

The function p,(t) of (1.4) has derivative

Yplt) = -1 if t < -c
0 if |t] ¢

+ 1 if t > c.

Then the influence function is h(t) = F(c + t) - F(c - t) and
12 is the expected square of this function. Also
h'(t) = £(c + t) + £(c - t). The expected value of h' can be

expressed as Eo(h') = 2g(c), where g(y) 1is the density

function of Yl + Yz.

R L
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The Huber function 03(t) of (1.5) has derivative

t if |e] <k

+k 1if t > k.

s
The influence function is h(t) = J ::: F(u)du - k and it can be

viewed as a smoothing of ¢3. It readily can be seen that

h'(e) = P(c + k) - F(t - k) and Ey(h') = P(|Y; + ¥,| < K).
For the one-sample problem the Yi are assumed to be sym-

metric about a point © and the dispersion function is

D(6) = Zi(j D(Yi + Yj - 29)., There appears to be no use for

weights here. The assumptions simplify considerably. If P, is

1

used, the estimate is the median of (Yi + Yj)/2 for i< j.-

The effect of the Walsh averages on © can be trimmed or
smoothed with other choices of the p function.
For the two-sample problem suppose there are samples of

and G, with locations

1 2

81 and BZ. Write the design matrix as

= (o)

are vectors of zeros and ones, respectively.

sizes n, and n, from two groups G

where 0 and 1
Suppose 'ij =V if i,j are both in Gl’ wij =y, if i,j
are both in G, and Yis " Y12 if 1,j are in different groups.

Assumptions (Al) - (A6) will hold in this case. The dispersion

function becomes




......

-l
4.

fo T

-19-

1

:

<4 = - -
) D=w, I, .G p(Y, + Yj 231) * vy Ig G plY, + Yj 28 ,)

E 1°71 2’72
iy
5
A
E: + wlz ZGI’GZ p(Yi + Yj Bl 82)0
oy It appears that B1 depends on the data from both groups if
Li Vi, # 0; similarly for éZ' This differs from the regular
., M-estimate method where ék depends only on the data from group
il Gk’ k=1, 2, It can be verified by direct computation that
2 k _ )

A g_{g.g 1. ;_1. This is so regardless of the choice of w,,, Voo
:: and Y1 and as a result these weights have no effect on the

. asymptotic variances.
B
ol » . . -

> In the simple linear regression model Yi Bl + 62 x; + e,
lf 1 <i<n. The dispersion function is

' = - -
- D zi(j ¥ij o(Yi + Yj 28, - (x; + xj)Bz).

¥

In the case of no weights, wijE 1, expressions for C, V and

I are readily computed and (3.1) implies gflx_gfl = 2-1, the

familiar matrix for this problem. It is not clear if this can

FAL

hold for other choices of weights.
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