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I. INTRODUCTION

"Research in expert systems is concerned with how to represent and
reproduce the problem-solving skills that experts exhibit in their
respective domains. One of the most basic of these skills is the
ability to put two and two together--to draw reasoned conclusions that
supplement direct observations. This poses a difficulty because our
models of reasoning are derived from the deduction mechanisms of logic
and, almost without exception, investigators have noted that expert
reasoning beyond a superficial level cannot be understood in terms of
such precise schema. Logic deals with an idealized world in which facts
are known with certainty and rules of inference allow other facts to be
deduced with equal certainty. Experts, on the other hand, are usually
required to form judgments based on evidence. Such evidence may be
subject to uncertainties arising from errors of measurement or
difficulty of interpretation. The argument that justifies a conclusion
in terms of the evidence may also be more tenuous than a syllogism.
Again, experts can operate in environments containing inconsistent or

contradictory "facts,"

but such environments are useless in the logical
sense because a set of propositions that includes implicitly both the

affirmation and the denial of a proposition can be used to prove

o
anything whatsoever. -or
_ 2 @
-> The study of how to overcome difficulties such as inconsistency and O
2d O
lack of definitiveness and still reach reasonable, supportable tlon |
conclusions is called plausible or uncertain inference. Systems
e
iony

developed for this task typically operate in a zeroth-o r world of
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propositions and relations among them, where the "zeroth-order" means
that propositions are unquantified or atomic. Propositions may be
interpreted as facts (''the car won't start"), hypotheses ('the trouble
is in the ignition system"), findings ("the distributor cap is
defective"), or any concept in the domain that is relevant to the
expert's problem-solving behavior. Relations connecting subsets of the
propositions are usually expressed as logical definitions ("A is the
conjunction of B, C, and D") or inferential links ("If A is true, then
so is B"). The feature that distinguishes uncertain inference from the
familiar propositional calculus is the qualified nature of knowledge
about both the relations and propositions. Propositions have associated
with them some (usually continuous) measure of their validity instead of
being either true or false. Inferential relations also have a validity
measure that weakens the connection between antecedent and consequent;
the relation "If A, then B" may support a less-than-categorical
affirmation of B even when A is known with certainty.

A useful way of viewing this formalism is as an inference net
[Hayes-Roth, Waterman, and Lenat, 1978; Duda, Gaschnig, and Hart, 1979;
Gaschnig, 1981]. The propositions are represented as nodes and the
relations among propositions become the links of the network. Whenever
the validity measure of a node is changed, such as by the arrival of new
evidence, this information propagates along the links to related nodes
and may cause changes to their validity measures in turn. The secondary
changes propagate in the same way so that, when the net stabilizes
again, the evidence responsible for the initial change may be reflected

in altered validity measures of many propositions or, to put it another
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way, all the inferences that can be made from that evidence have been
made.

The general inference net framework does not address the important
questions of how validity is to be represented and how the propagation
above is to be carried out. Some approaches measure the validity of a
proposition as its posterior probability or likelihood given all the
evidence to hand, and use Bayes' Theorem together with various
assumpt ions to cempute this likelihood. Others use probability
intervals rather than values as a measure of validity, relying on more
general schemes of updating such as the Dempster-Shafer theory of
evidence [Barnett, 1981; Garvey, Lowrance, and Fischler, 1981). 1t is
not uncommori for the form of the inference net to be restricted; for
example, [Pearl, 1982] requires that it be a tree. Many systems treat
the links representing relations as directional, so that the relation
"If A, then B" allows updating of B's validity when A is known to be
true but does not allow A's validity to be altecred if B is found to be
false. A review and critique of the more common approaches can be found
in [Quinlan, 1982]. The account of two current systems that appears later
in this paper should convey some feel for the techniques used.

Quite a few expert systems embodying mechanisms for uncertain
inference have achieved notable successes, as exemplified by two of the
pioneering efforts. MYCIN [Shortliffe and Buchanan, 1975], an early
program that diagnosed bacterial infections and prescribed appropriate
antibiotic therapy, was rated highly by a panel of experts [Buchanan,
1982] and its general-purpose successor EMYCIN {van Melle, 1979, 1980]

has formed the basis of many expert systems. A recent article
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{Campbell, Hollister, Duda and Hart, 1982} reporting a verified strike

by Prospector, SR1's geological consultant program, attracted widespread

news coverage. Despite these and other achievements, there appear to be
applications requiring an uncertain inference capability that are not :
handled well by any current system. The characteristics of these
applications are discussed in later sections, but the gist of the

difficulty and the proposed solution can be obtained from the following

example.

Consider the task of a fictional detective investigating a case in
which (as usual) there are many apparent contradictions in the ervidence
that he unearths. How is he to proceed? Current approaches to
plausible inference would have him weigh evidence for and against each
hypothesis, considering the hypothesis confirmed to the extent that the
balance of evidence supports it. But any mystery buff knows that this
approach differs from the one Poirot would adopt, and might even lead to
the anomalous situation in which the balance of evidence individually
supports propositions A and B, but where A and B cannot both have
occurred. This paper suggests an alternative method of forming
conclusions that our detective would find more familiar. Instead of
making deductions from contradictory information, we divide the evidence
into two classes, items to be believed and items to be disregarded, so
that all the evidence in the former category is consistent and "makes

sense." Where there are many possible divisions we use some model to

weigh the validity, not of individual propositions, but of the division
itself. For example, a division that would require our detective to

disregard significantly more data than another might be judged to be
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less valuable. Regardless of how the divisions are evaluated, drawing
conclusions only from one or more of these consistent subsets has the
effect of giving precedence to global considerations over the more local
assessment of individual hypotheses.

The paper is organized as follows: Section II sets out a seemingly
simple uncertain inference probiem. Section IIl1 sketches Prospector as
an example of a directed Bayesian architecture, shows that the problem
must be redrafted to {it the Prospector formalism, and discusses the
difficulties of interpreting the findings for this case. Section IV
describes INFERNO, a non-directed non-Bayesian architecture sensitive to
the consistency of information, and shows that it is also less than
satisfactory for this task. Section V introduces a new system called
Ponderosa that performs uncertain inference by evidence division rather
than by propagation of validity. The final section summarizes the paper

and speculates on the pcssibility of merging two approaches.
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I1.  DESCRIPTION OF THE TRIAL APPLICATION

The setting for this application of uncertain iuference is an
attempt tc model the interactions among five econometric indicators. Wwe
are given several assertions concerning both general relatiouships among
the indicators and predictions about what will happen iu the neat
future. The goal is to draw meaningful inferences from these assertions
Sc as tc arrive at a compositc picture of what will happen to all the
indicators.

Table T! contains the ten assertions that define the mcdel.!
Numbers in brackets following assertions arc validity measures in the
range O to 1; where tliere are two such numbers following an assertion
they correspond to the "if" and "only if" cases respectively. Since we
have not defined what we mean by "validity", the precise interpretation
of these numbers is open. It is intended that a proposition or relation
with validity 1 be equivalent to a categorical assertion and that one
with validity 0 be totally vacuous. We will accept any of the different
meanings of a middle-ground validity that are used in current systems.

The model is typical of real-world applications in form if not in
content. The validities of the assertions or beliefs range from very
weak (as in Al) to near-categorical (as in A8 and A9). Assertions like
A4 that relate directly to an indicator of interest are relatively
uncertain, but it is often possible to make a stronger statement about a

less interesting proposition as illustrated by A3.

1

This model was derived from an exercise in a Mathematical Logic
text; any resemblance to any theory of Economics, past or present, 1is
purely coincidental.




Al

=3
(%]

A3

A5

Ab

AT

A8

A9

Al0

Table T1

ASSERTIONS DEFINING THE MODEL

Stocks will fall [.35]

Either taxes will not be raised cr both stocks will fall and
interest rates will fall {.85}

Either taxes will be raised or interest rates will not fall [.9)]
lnterest rates won't fall [.73)
Either taxes will be raised or there will be a high deficit [.853]

Bonds will rise or interest rates will fall if, and only if,
stocks fall or taxes are nct raised [.6,.85]

Stocks will fall if, and only if, bonds rise and taxes are
raised [.7,.8}

[f interest rates fall, either stocks will not fall or bonds
won't rise [.95]

Interest rates will not fall if there is a high deficit {.95]

If there is a high deficit, stocks will fall [.8]}

The application maps directly into the zcroth-order formalism
described in Sec. I. There are five basic propositiens corresponding to

the indicators of primary concern,

stocks will fall

interest rates will fall
taxes will be raised

bonds will rise

there will be a high deficit

We have also a small number of derived propositions stated as logical

comhinations of these basic propositions, such as "bonds will rise or

interest rates will fall," Fach such derived proposition is defined by

T




one or more logical relations, e.g. that the above is the disjunction of

"bonds will rise" and "interest rates will fall.” Assertions Al through
A5 each provides evidence in the form of a validity for one of the basic
or derived propositions. Each of the last five assertions becomes
either one or two inferential relations. All in all there are 16
propositions, 7 inferential relations and 12 logical relations.

Despite the simplicity of this model, it may not be immediately
apparent that the information in the assertions is inconsistent. Al and
A7, for example, jointly support the inference that taxes will be
raised, while assertions A2 and A4 together suggest thiat taxes will not
be raised. In the logical sense, therefore, this collecrion ot
assertions is of no value because anything at all can be inferred from
it via the tautology A -> (~A -> B). However, it seems that most
plausible reasoning tasks involve inconsistent information so that the

example is not an unfair one.
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II1. PROSPECTOR

Prospector [Duda, Hart, and Nilsson, 1976; Duda, Hart, Nilsson,
Reboh, Slocum, and Sutherland, 1977; Gaschnig, 1980, 1981] is a
general-purpose architecture for uncertain inference that has been used
with several geological models and whose basic approach has been taken -1

up by other systems such as AL/X [Reiter, 1980, 1981; Paterson, 1981]}.

It is therefore representative of a well-developed school of thought

abour uncertain inference. !

OVERVIEW OF PROSPECTOR

; Prospector and other Bavesian systems model the validity of a !
proposition by its posterior probability given the evidence at hand.
Let H be some proposition about which inferences are to be drawn and E
another proposition. Bayes' theorem gives the posterior probability (or

|
|
|
& likelihood) of H given E as
l
l
: P(HIE) = P(E;H) x P(H) / P(E)
t where P(E) and P(H) are prior probabilities, and correspondingly
[

P(~H[E) = P(E|~H) x P(~H) / P(E)

Assuming that the latter is non-zero, we can divide the first equation

by the second to obtain

O(HIE) = O(H) x [P(E[H) / P(E{~H)]

which may be stated as, the posterior odds of H is its prior odds

e e S ot
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lj
multiplied by a factor (called ) that characterizes the sitliciency of
|
Eoas a predictor of Ho A siwmilar analysis can be performed replasing © ‘
by ~E in the above, and the corresponding tactor A characterizes the
necessity of £ it H is to hold.
!
tnfortunately, this formalism is insutficient by itself to E
determine what should happen to the odds of H when severai propositions
El' E,. are relevant to it, or when the E's are known with less
than certainty. The approach taken in Prospector is to make two
additicnal assumptions:? ;
“Uhnditional independence)  The prebability PoE. HE .y of B, given
i i
H and Ej 1s equal to P(Ej|H). and similarly for ~H.
{(Interpolation) The effective multiplying 1+ tor to usce when I in
1
known with less than certainty is obtained from a piecewise linear h

interpolation:

-- It the observed probability of Ei is greater than i.s prior

probability, interpolate the posterior probahility of H betweern

P(H) and P(H!Ei)
-- Otherwise, interpolate between P(H) and P(H'~Ei)

In either case the effective multiplying factor is the iuterpoiatad

|
posterior odds of H divided by its prior odds. t
!
LA PodnadTT,NZﬁEEEr, and Muresan (1981) and Szolovits and Pauker :
{1780 have commented on the inappropriateness of these assuupiions,
particularly the first. FKonolige [Konolige 1982, Dudi, Hirt, fonelig.
and Keboh, 1979] has developed an appealing scheme in which these an-
sumptions are replaced by a single unifyving issumption: that the poste-

1

rior distribution chosen should contain minimal information while still

conforming to user-specified constraints on marginal and conditional
probabilities.
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Under these assumptions, the posterior odds of proposition H is simply

the product of its prior odds and the effective multiplying factors

obtained as above for each F ..
i

Inferential links from one proposition to another can thus be
implemented by choosing appropriate values for the factors } and \'.

Prospector allows logical relations among propositions as follows:

If A is the negatior of B, the odds of A is the reciprocal of
the odds of B.

If A is the disjuncrion of ... , the odds of A is the
maximum of the odds of any
If A is the conjunction of ... , the odds of A is the
minimum of the odds of any

Prospector's control structure comes from its intended application

consu.tation-style system. Each relation can cause the odds of
snly one propesition to be altered directly; inferential relations "If
L, thur H" a5 before affect only H, and logical relations as above
affect only A, Accordingly, the links representing relations are
thought of as directed into the affected proposition. Prospector
requires that there be no cycles in the corresponding inference net and
allows observed probabilities to be given only for "evidence"

propositions that have no links directed into them.

APPLYING PROSPECTOR TO_THE MODEL
Several difficuities arise when we attempt to use the Prospector

architecture for the task described in Sec. II. The more serious of

these are conseqiences of Prospector's tacit assumption that
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propositions can be arranged in a hierarchy with inference chains
flowing smcothly from raw evidence through to conclusions.

Cousider, for example, the proposition "stocks will fall."
Assertion Al establishes this proposition as L-ing true with some
validity, implying thet this proposition is evidence. Several otler
asscrtions, however, establish conditions under which the preposition
can be inferred to be true, thus establishing infercenutial links to the
proposition and so preventing it from being evidence. Again, assertions
A2, A2, and A3 establish that certain logical combinations of
propositions are valid, and Prospectcr contains no mechaniss that would

llow evideuce to bear directly on such propositions. Similar problems
arise from A6, AT, an. 58, where logical combinatious are on the
receiving end of the infereatial links.

The steps taken to reformulate the example are as follows: (1) The
two propositions 'stocks will fall" and "interest rates will fall" that
zppear both as evidence and as potential conclusions are represented
each by two nodes in the net. The first node is a conventional evidence
node with a very strong inferential link to the second copy that is also
the recipient of other inferential links. (2) Assertions such as A2 of
the form "A or B" are represented functionally as the pair of inference
relations "If A is false, then B" and "If B is false, then A." (3)
Complex assertions are broken down into more primitive relations that
have a single proposition as the inference. For example, A6, of the

form "A or B if, and only if, C or D,”" becomes the set of relations:

If (A or B) and ~C, ther. D

If (A or B) and ~D, then C

T s P A by el 4 Sy S A e
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If ~A and ~B, then ~C

If ~A and ~B, then ~D

(4) Finally, all prior probabilities are taken by default as 0.5 since

the example does not specify other values, and the strengths of the

multipliers X and ' are determined so that, if the relation "If A, then

B" has validity V, the posterior probability of proposition B given A is

also V.

Table T2 lists the Prospector-style inferential relations that this

reformulation produces, together with their multiplying factors X and

stocks-

interest-

taxes+

bonds+

high deficit

Table T2

INFERENTIAL LINKS IN PROSPECTOR FORM

From A
same (evidence) 10,000
taxes+ 5.67
(bonds+ v interest-) & taxes+ 5.67
~bonds+ & ~interest- 0.67
interest- & bonds+ 0.05
high deficit 4.00
same (evidence) 10,000
high deficit 0.05
taxes+ 5.67
stocks- 4.0
interest- 9.0
high deficit 1
(bonds+ v interest-) & ~stocks- 0.18
~bonds+ & ~interest- 1.5
~stocks~- & bonds+ 0.43
stocks- 4.0
interest- & stocks- 0.05
~stocks- & taxes+ 0.43
taxes+ 1

.0001

— e et = O

.0001

.18
.18
.67

— N OO

—

Source

A2
A6
A6
A8
Al0

A9
A2,A3

A2,A7
A2,A3
A5
A6
A6
A7

A7
A8
A7

A5

P ——
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A'. The final column of the Table shows the assertion(s) responsible
for each link. At this point a serious flaw becomes evident--the
network of propositions and relations contains cycles and sc violates
another Prospector requirement. The cycles are the result of stroug
interconnections among the five indicators, however, and there seems Lo
be no way of eliminating them. Rather than abandon the enterprise
forthwith, we will generalize the Prospector algorithm to allow
computation of posterior probabilities by relaxation, terminating when
changes are small so tha" the cyczles will not cause infinite loops.

A Prospector-like system embodying this change was used to obtain

the results shown in Table T3. (Since a relaxation algorithm was used,
there is no guarantee that this is the only set of posterior
probatilities that is stable; reordering of the computational steps
could give rise to a different solution.) Although they appear to be the
kind of results that are commonly obtained from plausible infe:ence
systems, they are deficient in at least two respects. TFirst, they do
not highlight the fact, noted in Sec. II, that the set of asscrtions

from which the model was derived is internally inconsistent. The

Table T3

RESULTS FROM A PROSPECTOR-STYLE SYSTEM

Posterior Categorical
Proposition Probability Interpretation
stocks will fall .64 T
interest rates will fall .08 F
taxes will be raised .27 F
bonds will rise .59 T
there will be a high deficit .66 T
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assumptions that Prospector makes will never produce an overconstrained
system, so any collection of evidence and relations will lead to a
solution. But Michice (1980, 1982) argues convincingly that practical
expert systems must be user-friendly, and therefore, out of councern for
the validation and intelligibility of results, it would seem that
consistency checking ought to be one of their wore important functions.
Sccond, the statement of a result as a probability is fine when there is
only one result of interest, but can lead to problems in cases such as
this when we need a simultancous rcading of several variables. Suppose
that the mede!l builder wished tc predict the most likely future state
from the 2° possible in terms of the five indicators. Converting the
probabilities to categorical form by threshholding as in Table T3 would
lead to the conclusion that

stocks will fall;

interest rates will not fall;

taxes will not be raised;

bonds will rise; and

there will be a high deficit.
These conclusions may be individually unsurprising but in combination
they violate the "only if" part of assertion A7. This relation has a
relatively high validity of 0.8 and so any conclusion that disregards it
is suspect. Thus mapping from probabilistic to categorical results for
several variables (when called for by the application) may produce
conclusions that do not fit with the evidence.

In summary, in order to run our example on Prospector we had to

make significant alterations to the formulation of the model and to

modify Prospector as well: even so, the results we obtained were

Y AR gy T
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deficient. For all these reasons it would seem that Prospector is not

well-suited to this application.




IV. INFERNO

INFERNO {Quinlan, 1982] is another inference ncetwork system that

was designed around four idecas:

1. General systems for uncertain inference are better off without
assumptions such as conditional independence whose universal

validity is suspect.

(S ]

On the other hand, it should be possible to assert that
particular groups of propositions exhibit relationships such as
independence.

3. There should be no restrictions on the direction of information
flow in the network. (This was the cause of much of
Prospector's difficulty with the example of Sec. II.)

4. The consistency of the given information should be checked and

the system should be able to advise on alternativce methods of

rectifying inconsistencies.

The effect of these requirements has been to lead away from Prospector-

style formalisms.

DESCRIPTION OF INFERNO

The first difference comes in the way that the validity of a
proposition is represented. Instead of a single point probability,
INFERNO uses probability bounds similar to the interval approach of the

Dempster-Shafer Theory of Evidence [Barnett, 1981; Garvey et al., 1981].

Every proposition A is characterized by a lower bound t(A) on the
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probability P(A) of A and a lower bound {(A) on P(~A), so that

t(Ad) £ PAY £ 1 - f(A).

This appreoach has two tvdatures. The uncertainey of cur knowledge abouat
A is apparent, being just the difference between U(A) and 1 - (A
Second, the values of t(A) and A are derived from evidence teuding (o
support and to deny A respectively, and these values are retained and
propagated separately.

To achieve the non-directed propagation of inferences as in point
(3) above, INFERNO follows WAND [Hayes-~Roth, 1961} in viewing relations

as establishing constraints on the respective validities of collections

cf propositions. Changing a probability bound of any propesiticn in the
collection may cause the constraint to be violated, requiring some other
bound to be altered. VFor example, one form of inferential relation,

written as

A enables B with sirength X

is intended to capture the (uncertain) relation "I1f A, then B." This

relation has two constraints associated with it:

t(B) 2 t(A) x X

f(A) 2 1 - (1 - f(B)) / X

and thus can cause t(B) to be increased when t(A) is increased, or t(A)

to be increased when f(B) is increased. Logical connections amoug

propositions are handled in the same manner. The rclation defining A as

the conjunction of Bl' Bo, cee Bn gives four constraints: for all Bi‘

“

s e ¢ e
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t(A) 2 1 - Zi(l - t(B.))
f(A) 2 f(Bi)
t(Bi) 2 t(A)

f(B.Y 2 f(AY - £.,.(1 - t(B.))
i Jj*i j

; These and all other INFERNO constraints can be derived from simple
‘ probability identities and do not depend on other assumptions.

This representation also supports a probabilistic concept of
consistency. If t(A) + f(A) > 1 for some proposition A, the information
about A is inconsistent and one or both of the bounds must be incorrect.
Since the propagation constraints are provably correct, the
inconsistency can only arise trom contradictions implicit in the
information given to the system. INFERNO can suggest ways to alter the
data so as to make it consistent. A change takes the form of lowering
the given value of a bound or reducing the strength of one of the

infcrential relations. A combination of changes that is sufficient to

make the bounds on all propositions consistent is called a

rectification. INFERNO can generate the best n of the possible

rectifications, ranking them under the assumption that those involving i
the least aiteration of the original data are more likely to be \

acceptable.

APPLYING INFERNO TO THE MODEL

When we wished to app'v Prospector to the task of Sec. 1I wo first
had to reformulate it to conform to Prospector's architectural
restrictions. INFERNO doe:. not impose any such restrictions and the

example can be run in its original form.

. .
. _‘.d_n 5 — _ ; - ) R e ]
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INFERNO immediately finds the set of assertions to be inconsistent.
The explanation o1 one such inconsistency serves also to illustrite the
propagat ion of bounds in the system. It helps to remember in the
following that INFERNO s again using probability as a model of

validity.

. Assertion Al of Table T1 is that stocks will fall with
probability .55, and A7 states (with strength .8) that this
will happen only if bouds rise and taxes are raised. The
conclusion is that the probability of bonds rising and taxes
being raised is at least .8 x .55, or .44.

. Clearly, the probability of one component of this conjunction,
taxes being raised, must also be at least .44, so the
probability that taxes will not be raised is at most .56.

. Assertion A2 gives the probability that taxes will not be
raisced or stocks will fall and interest rates will fall as .85,
the probability of the first term of the disjunction is at most
.56, so the probability that stocks will fall and interest

rates will fall is at least .29.

. The probability that interest rates will fall must therefore be

at least .29, but (by A4) the probability is at most .25.

INFERNO's analysis of the various interdependencies then leads it to

propose four alternative rectifications, each of which will correct the

above and all other inconsistencies. Each rectification consists of a4

S S
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single change:
. Reduce the probability that interest rates will not fall '
(assertion A4) to .71.
. Reduce the probability of assertion A2 to .81.
. Reduce the probability that stocks will fall (assertion Al) to .5.

. Weaken the only-if strength of assertion A7 to .727.

This scrt of consistency analysis is intended to permit the user to
review selected fragments of the information that he presented to the
system with an eye to making it consistent before trusting conclusions
based on it. He has the option of ignoring the inconsistencies if he
wishes, as he might well do in this case since the probability bounds
are in only marginal conflict.

Let us suppose, though, that he elects to remove the
inconsistencies by disregarding completely the assertion Al that stocks
will fall; it was after all a relatively weak belief according to its
validity measure. The cousistent set of probability bounds that INFERNO
obtains from A2 through AlO0 is shown in Table T4. 1In general it is more

difficult to place a categorical interpretation on INFERNO's ranges than

Table T4

RESULTS FROM INFERNO

Probability Categorical
Proposition Range Interpretation
stocks will fall .36 - .5 F ;
interest rates will fall .138 - .25 F !
taxes will be raised .288 - .4 F
bonds will rise .288 - 1 ?
there will be a high deficit .45 - .625 T
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it was in the case of Prospector's single probabilities, but in this
instance the mapping to {T,?,F} seems reasonable. Notice, thoughl, that
the categorical interpretation again violates a relatively strong
relation (AlC) predicting that stocks will fall if there is a high
deficit!

To summarize: INFERNO avoids three of the four difficulties that
Prospector experienced with the model. It allows assertions and
infercences about logical combinaticns of propositions and is not put out
by cycles in the net. It also makes apparent any inconsistencies in the
information presented to it and provides helpful aids to reviewing the
information. However, an attempt to place categorical interpretations
on the results can once more lead to conclusions that are not comnsisteut

with the data.
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V. PONDEROSA

ronderosa represeuts a depiarture from current plausible inference
systems because, although it still deals with uncertain assertions and
relations, it does not attempt to propagate validity measures of any
kind. Instead, it tollows the approach outlined in Sec. 1 of trying to
separate out trom the information given Lo it one or more internally
consistent subscets.  The merit of any such division is then established
as - a tuaction of the validities of assertions that were not included.
DESCRIPTION OF THYE APPROACH

Corcvider g set of assertions such as those in Sec. I[I. Each
dassertion cdn be viewed an a4 well-formed formula (wit) of the
propusitionil caleulus with o validity measure attached, or, in the case
of the "if and ounly i{” assertions, a pair of such formulas. Tet C be a
sutset of the wits, where we disregard for the moment each wff's
votidity measure. O is consistent in the logical sense if there is no
3

wit that can be both ,voved and disproved from C. A subset is

maximally consistent if it is consistent but the addition of any other

wff from the original set will make it inconsistent.
Suppose now that the original set of wffs has been divided into a

maximally consistent subset C and the remainder R = {Rl, RZ' PN Rn},

and let V(Ri) be the validity measure of Ri. One way of assessing the

situation (which will be called an interpretation) would be to accept

This notion of consistency is sironger than the one used for INFER-
NO in which it is permissible to infer both A and ~A so long as the sum
of the upper bounds ot P(A) and P(~A) does not exceed 1.

3

oy
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the wifs in C together with all their (consistent) inferences and to
i ignore the wifs in R as being either erroncous (e.g., resulting from
faulty observation) or general default assertions that do not apply in
this case. How plausible is this interpretation? If it is to be

correct, each individual Ri must be incorrect or inapplicable. The

probability that this interpretation is incerrect is then the

probability of the disjunction of the elements of R, i.e.,

P(R1 v R7 Vo ...V Rn)

If we again treat validity measures as probabilities and use the

identity
P(AY, P(B) < P(A v B) £ P(A) + P(B)
we obtain the probability P(C,R) that the interpretation is correct as

1 - Zi V(Ri) < P(C,R) = mini (1 - V(Ri))

Since we are identifying validity measures with probabilities, P(C,R)
represents the validity of the interpretation dividing the o?iginal set
of wffs into C and R.

Of course, the number of potential splits of a set of wffs into a
maximally consistent subset and a remainder grows exponentially with the
size of the set. The validity measures attached to propositions,
however, provide mecthods of reducing the computational load. First, we
are clearly uninterested in any interpretation whose validity is zecro.
If any wff in R has 3 validity of 1 and thus is categorically correct,

the inequality above gives a zero upper bound on the validity of that




interpretation.  Conscquently, we nced consider only interpretations in
witieh all categorical dssertivus dre iancluded in the consistent subset
C.oo Sceond, we do not wisho to swamp the user with all possible
Jivisions, but rather to display oniy the best a of them for some smaii,
fixed n (curvently 10). SO we do not need to generate all possible
interpretaticns provided that the cues omitted are inferior to the oues
displayed. Since the validity of an interpretation is known only as a
range and thus two intorprataiions cannot be compared directly, the
midpoint of the range is used for ranking them.

&

s of Ponderasa can be sketched as follows. Each

11 . "

. . . - . . " . "
proposition A is hroken intc twe findings A is tvuce and A is false.

Associated with each finding is a collection of justifications for the

finding, where a nuil justification indicates that there is no reason to

believe the findiug Each justification for the finding Is either that
the finding is an explicit assertion given to the system, or that the
finding is an inference from a relation and one or more other findings
with non-aull justifications. Tor instance, the finding "B is false"

and the rolation "A implies B" togetlier justify the finding "A is

false," and the logical relation "X is the disjunction of A and B"
together with both these findings justifies "X is falsc." |
Lvery datum is eithier a relation or an assumed finding and all

finding. deend wltimately on the data. Ponderosa keeps with each I
|
i
I

‘moval plan in the form of a collection of sets of data, the

1deea being thar all justifications for this finding would evaporate if),

“  The aigor?iﬁﬁgmused in the current Ponderosa have been heavily in-
fluenced by the fact that 1t was implemented as a rewrite of INFERNO,
and are glmnst certainly not the best that could be developed.
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and only if, any one of these sets of data were removed. The aler  ithms
for removal sets below depend on the observation that a removal plan s
isomorphic to a logical expression in disjunctive normal torm. Let us

map each datum D to the predicate "Il is excluded” and the removal plan

{ (D, .,D

11 12,...}, {DZI‘DZQ“"}‘ o)

to the logical expression

(D11 is excluded and D17 is excluded and ... )

or (D?l is excluded and D,, is excluded and ... )

or ...

Then the expression is true if, and only it, one of the sets of data
making up the removal plan has been discarded, in which case the plan is
satisfied.

The computation of removal plans keeps pace with the propagation of
inferences. Initially the only findings with justifications are those
that appear in the data, and the removal plan for such a finding is
{{itself}}. Suppose now that a new justification for finding F has been

inferred from a relation R and findings {Si). This justification could

be removed if either R or any of the S's could be removed, as given by

the plan (in disjunctive form)

X = R v removal plan(Sl) v removal plan (52) v

But previous justifications may have been found for F and removal of F

would require removal of them as well. In this case, the new removal

plan for F becomes the conjunction of the old removal plan and X.

P .




When the data are inconsistent there will be one or more

contradictory propositions {A,} that can be both proved and disproved,
’ i

{.¢., one or move pairs of findings "A. is true'’ and "A. is false," both
i i

with non-uull justifications and removal plans.  Clearly, the data wonld

become consaistent if, and only if, one of each such
conld be removed.  When put into disjunctive normal

pian obtained as the conjunction over i of

removal plan ("Ai is true”) v removal plan

is then jast the set of remainders corresponding te

maximaliy consistent sets Ponderosa computes this

pair of findings
form, the removal
("A. is false'™)

i

all possible

overall plan in a

depth-first way so that, if a partial remainder is generated that is

already more implausible tharn the best n complete remainders found so

far, all possible remainders containing the partial

one are omitted.

As a small but pathological illustration of all this, consider the

inconsistent assertions

implies
implies
implies
is true
is true
C is false

>y W >
> Q=

[s ARRVAIF S S JURN S I
o)

Pouderosa notes the variou- findings and their associated removal plans

as follows, with data referenced by the above numbers:

A is true: C{o,4Y, 13,4), {45} )
A false: ({1}, (2}, (o} }
Boie trnoe: { 11,5Y, (4,3} }
R o1 falsd {2y, {e)} )}
s true- {D1.5), 23, {4,5) )
Cois talse: { {0} }

L
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The disjunctions for each contradictory proposition are then

A ({1}, (2}, (3.4}, (4,5}, {6} )
B: { {1,5}, {2}, {4,5}. {6} }
C: { {1,5}), {2}, (4,5}, {6} }

aind the conjunction of these representing all possible remainders is

{ (1,5}, {2}, (4,5}, {6} }

APVLYING PONDEROSA TO THE MODEL

As was the case with INFERNO, Ponderosa contains no restrictions
that would require the model of Sec. Il to be reformulated. Once again
the information in assertions Al through Al0 is tound to be inconsistent
and Ponderosa generates the six possible divisions of the corresponding
wffs into a maximally consistent subset and a remainder. The six
remainders are displayed in Table T5 together with the bounds on the
validity of the divisions and the midpoints of these ranges. Notice
that, whereas INFERNO would accept the weakening of just "stocks will
fall" as sufficient to remedy the inconsistencies, Ponderosa uses a
stronger, categorical definition of consistency and finds that removal
of assertion Al alone is not enough.

Ponderosa does not automatically select the "best" or any other
maximally consistent subset as being correct. Its function stops with
pointing out to the user the possibilities that exist for making his
information consistent, using the validity ranking only as a filter and
heuristic guide. The user's specialist knowledge may place a value on

various subsets of the information that differs from this simple

plausibility model. 1In this instance, let us suppose that the fourth
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PONDEROSA REMAINDERS

Validity

1 Remainder Low Mid High
A7b stocks- only if bonds+ & taxes+ .2 .2 .2
A2 ~taxes+ v stocks- & interest- .15 .15 .15
Al stocks- 0 .125 .25
Ad4 ~interest-
Al stocks- 0 .1 .2
Al0 if high deficit then stocks-
Al stocks~ 0 .075 .15
A5 taxes+ v high deficit
A4 ~interest- 0 .025 .05
A8 if interest- then ~stocks- v ~bonds+

temainder (assertions Al and A10) is selected as the least valuable of

those possible. When these assertions are deleted, the remainder form a

consistent subset whose implications for the five indicators appear in

Table Té. Ponderosa ignores the validity of wffs when it generates

inferences, so all inferences are categorical and cannot individually or

collectively fail to mesh with the evidence in the consistent subset.
Table Té

CONSISTENT INFERENCES

Proposition Validity

stocks will fall

interest rates will fall
taxes will be raised

bonds will rise

there will be a high deficit

=34 mmm




V1. CONCLUSION

This paper has focused on a class of plausible reasoning tasks with
three characteristics: inconsistent data, non-hierarchical inteic ..
of concepts, and the need to obtain simultancous readings i sivera.
hypotheses. A simple model with these attributes was used to
demonstrate that existing systems for inexact inference are not suited
to this kind of task. We first examined Prospector as the
quintessential example of a Bayesian system and showed that both the
model and Prospector itself would have to be altered to get any results
at all. Even then, the inconsistency inherent in the given mode! was
not made evident and a straightforward interpretation of the results
turned out to be at variance with the model. INFERNO, a more tolerant
non-Bayesian system, fared better in that the model did not have to bhe
changed and its inconsistencies were discovered, but once more the
attempt to wring a categorical interpretation from the results produced
an anomaly. Ponderosa was introduced as a system to perform uncertain
inference by finding consistent subsets of the model, leading to results
that are always categorical and that agree with whatever reduced model
is used.

There are clearly other classes of plausible reasoning tasks to
which Ponderosa is unsuited. If all the data is consistent or if there
is a single proposition about which information is sought, the
probability-bounding approach of INFERNO gives a better appraisal of the

confidence with which the results can be accepted. This suggests an

interesting possibility for combining the talents of Ponderosa and

ST T




INFERNO. First, Ponderosa would be used to find whether the data is

categorically consistent and, if not, to help the user choose a
maximally consistent subset of it. INFERNO could then be run with this
subset to supplement Pondercsa's categorical inferences with probability
bounds. Tor instance, in the previous section we selected a maximally
consistent subset A2 through A9 of the asscrtions in Table T1. The
analvsis of this subset with INFLRNO is shown in Table T7. It now
becomes apparant that, while categorical inferences from the subset
justify both the predictions that bonds will rise and that there will be

high deficit, the former conciusion has weaker prcbability bounds as a
consequence of its derivation from less valid assertions.

In the abstract of their 1978 paper, Szolovits and Pauker state

that

a program which can demonstrate expertise in the area of
medical consultation will have to use a judicious combination
of categorical and probabilistic reasoning--the former to es-
tablish a sufficiently narrow context and the latter to make
comparisons among hypotheses and eventually to recommend

therapy."
Table T7
COMBINING INFERNO AND PONDEROSA
Categorical Probability

Proposition Validity Bounds
stocks will fall F o - .5
interest rates will fall F .25 - .25
taxes will be raised F 15 - 4
bonds will rise T 11 -1
there will bhe a high deficit T .45 - .79




Their PIP system used categorical reasoning to generate hypotheses whose

validity was then investigated probabilistically. In some ways, the
proposed partnership of INFERNO and Ponderosa suggests another way of
arriving at the combined approach advocated above. Ponderosa would
establish a context, in the form of a subcollection of the evidence that
hangs together, within which INFERNO would be used to carry out
probabilistic reasoning.

Ponderosa has been implemented in Pascal and C for a VAX 11,780
minicomputer, based on a similar implementation of INFERNO. The
prototype has been applied only to small tasks with less than 100
relations and propositions, and on these it is fast enough to be useful
but considerably slower than INFERNC. For comparison, the CPU times
consumed by the runs of Sec. IV and V were just over one second for

INFERNO versus about 6 seconds for Ponderosa.
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