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ABSTRACT

A method for obtaining a perceptual ranking (ficaling) for

I defining texture measures is described. This metlod can be

~v. used to scale the relative visual differences among a set of

I .texture pairs. This perceptual ranking is called the law of

comparative judgment.N
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1- INTRODUCTION

A theoretical method for defining texture measures was

defined by Conners and Vasquez Ci.23. The use of ihis method

requires a perceptual ranking which can be used to rank the

r relative visual / differences among a set of texture pairs.

This report describes the theoretical development and an

implementation of such a perceptual ranking. This perceptual

ranking is called the law of comparative judgment (LCJ. It

was developed by Thurstone E 3 3. It allows n things to be

ranked (scaled) based on pairwise responses obtained over all

possible combinations of n things taken two at a time.

The n things to be ranked in the measurement definition

problem are n texture pairs. The scalin determines the

relative discriminabillty of the pairs* i.e., which pair is

the most visually distinct, which is the next most visually

U distinct* etc. The pairwise responses are experimental data

obtained by showing subjects two texture pairs at a time.

Each subject is asked to independently give his opinion as to

which of the two is the more visually distinct texture pair.

In what follows, a background on perceptual ranking will

be given and the reasons for selecting the LCJ will be

presented. Then a theoretical development of the LCJ is

jgiven in sections 3 and 4 which develops the mathematical

S.'!



equations necessarg to implement the method. Documentation

for the software based there mathematical equations are

presented in section 5. Finallyj in section 6 *ome samples

- runs are given.



2.-BACKGROUND

For the measurement definition problem* aperceptual

S - ranking (scaling) is neccesary. A psychological .experiment

has to be performed in order of obtain this scaling. This

- section presents a brief description on psychological scaling

methods Psychological scaling methods are procedures for

constructing scales for the measurement of psychological

attributes.

The measurement of observers' responses to stimuli grew

up in what is called psychophysics. Psychophyslcs was

defined by Gustav Theodor Fechner as 'an exact science of the

* functional relations of dependency between body and mind."

E43 As developed by Fechner E53# psychophysics includes both

the measurement of sensory attributes and the quantification

of perception# in order to correlate these psychological

scales with physical measurements of the stimuli. He

suggested that the sensation intensity was proportional to

the logarithm of the stimulus intensity.

L. L. Thurstone E33 pointed out that there were two

classes of psychophysical methods. One class required that

I the euperimenter be able to obtain some physical measurement

of the stimulus# and to control this measurement for purposes

I of his experiment. Examples of this class are the method of



average error and the method of minimial changes E63. A

second class could be readili applied in cases where precise

measurement and controlled variation of the physical

characteristics of the stimuli were not posible. The method

of paired comparisons is a second class example.

In his overview of psychophysical scaling methods, F.

I Nowell Jones C73 divided the psychophysical scaling in two

methods: the direct methods and the indirect methods. The

direct methods requires that judgments be made either

according to some predetermined ratio given by the

experimenter, or made in terms of real numbers. Thus the

data collection involves a judgment In terms of a scale

external to the stimuli themselves. Example of methods that

belong to this group are methods involving judgment of

I assigned intervals, fractionation methods# methods of

multiple production or multiple judgment , the constant sum

or ratio partition method, and magnitud estimation. The

I(  "indirect," or Fechnorian methods, sem to be so called

because considerable statistical manipulation is required for

the constructions of a measurement scale. Actually, data

collection is "direct" for these methods, because what it

required is direct judgments of differences among stimuli.

Methods that belong to this group are The law of comparative

judgments and categorical judgments. The best method for our

perceptual scaling belongs to the indirect method because the

i' i.:-!1
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needs of direct judgments of differences among texture pairs

(stimuli). For this reason, let discuss or describes the

indirect methods. For the description of tfre different

methods for the direct case and also indirect7 cases the

reader can be referred to the following references [4,6-134 .

The original Fechnerian idea was based on what he called

Weber's law E53. That is, if discrimination requires a

constant proportional increase in the stimulus, a furrtion

dr/R=k, may be written for some probability of

discrimination, and if one assume that this relationship

holds for very small increments, one may regard this formula

as giving the relationship between the stimulus and

subjective increment. This leads to the statement that S=K

log R. Now, if what one needs is the Weber fraction (k), and

if one assumes that it is constant over a long range of

stimuli, any pbychophysical method that yields a measure of

discrimination will give us a subjective scale. In practice,

this is not done. The above is known as classical

psychophysic method. The law of comparative judgment belongs

to a group of methods known as psychological-scaling. It

differs from the traditional or classical psychophysical

method in that at the end results are no values on physical

scales but are on psychological scale.

tModern work on indirect scaling was begun by Thurstone



with the publication of the LCJ. The idea was that a

stimulus - whether physical or otherwise- gives rise to a

hypothetical discriminal process within the subject which,

for various random reasons varies from presentation to

presentation of the same stimulus. The LCJ can be considered

Ias a probabilistic model. This model assumes that the scale

positions belonging to the psychological objects are

S! themselves stochastic. Then the scale position does not have

I a fixed value but is regarded as a stochastic or random

variable with an associated probability density function, An

assumption is needed to form the density function. A popular

assumption is that the scale positions are normally

distributed.

The most usual method of obtaining data for use in

scaling according to the LCJ is bq means of pair comparisons.

The main advantage of the method of pair comparisons is that

I 1 it yields an estimate of subjective distance over the range

of whatever stimuli are used. It is possible to use stimuli

that cannot be arranged on an objective dimension. One need

not know in advance which stimuli lie next to each other

subjectively. There are two main disadvantages. First,

there must be some degree of confunsion between adjacent

I stimuli since, if not, we have seen that no estimate of

distance is possible. The second disadvantage is that the

! •method. requires a good many judgments for the amount of

[+
[i



I information extracted. Other scaling method has been

developed using the method of paired comparison or a

I variation of the method to try to overcome: the above

disadvantage. But all of these methods are very -estrictive

to be used in our definition problems. These methods are the

I composite standard C133 and the proposed by Quttman C143.

I The other method for collection of data for comparative

judgment is the method of rank order. In this method, the

subject is asked to arrange a set of stimuli in accordance

with the amount of some property. This method differs

psychologically from the pairs comparisons in the stimuli are

all presented at the same time and hence the judgment are

made in the context of the total range, whereas the total

range enters into pair comparisons only by way of some memory

I process. To derive, a scale from rank data is ordinarily

accomplished in one of two ways. The first assume that the

I stimuli were drawn from a population of stimuli that is

normally distributed with respect tt the propert of

interest. The second method is derived from the LCJ [131.

The advantage of this method is less time consuming that the

". method of pair comparison. The method of categorical

judgment was developed by Togerson C43. The subject is

p%'esented with a succession of stimuli that he is to place in

appropiate category# where the experimenter has determined

the number of categories to be used. This method is no

eI



appropriated for our experiment.

Of all the techniques mentioned, the best tec-hnique that

* seems suitable for our experiment purpose is the LCJ. The

- data collection will follow the method of paired.comparison.

The LCJ is applicable not only to the comparison of physical

stimuli intensities but also to qualiltative comparative

judgment such as those of excellence of specimens in an

educational scale, and it has been applied in the measurement

of such psychological values as a series of opinions on

disputed public issues. Also, it has been used for scaling

social values, nationality preferences, temperature-

moisture, the lifted-weight experiment etc. More recently

this law was used by Tamura et al. [15] to construct a

psychometric prototypes with which the measures computed from

a set of texture could be compared. In the next section, a

complete discussion on the LCJ is given,

II
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3.-THE LAW OF COMPARATIVE JUDGMENT (LCJ)

A. The Psychological Theory

Thurstone C31 postulates an one-ldimensional

- psychological scale onto which stimuli (texture pairs) are

I mapped. The nature of this scale is left unspecified: it

may be psychic, physiological or both. The concepts is as

I follow: each time a stimulus (texture pairs) is presented it

is presumed to be represented by a point along the

psychological scale. The location of the point is determined

by an unknown discriminal process by which the organism

identifies, distinguishes, discriminates, or reacts to

stimuli. Because of the uncertain nature of a person's

perceptual state, the same stimulus does not always excite

the same discriminal process, It is assumed that repeated

I joccurrences of a stimulus produce a distribution called a

discriminal dispersion of such processes along the

psschological scale. A normal distribution is usually

assumed. These random events will tend to describe a normal

distribution around a mean. The mean is associated with the

scale value of the stimulus, and the standard deviation is

interpreted as the unit of measurement along the internal

scale.

For convenience, Thurston* represented each stimulus on

a a hypothetical psychological continuum by the single



discriminal process corresponding to the mean of its

discriminal dispersion. By using the standard deviation of

the discriminal dispersions as units of measure, scale value

- are then established. Thus the means of the discriminal

__ dispersions are the scale values measured on an interval

1 - scale in units of standard deviation. Pairs of stimuli are

represented for judgment to obtain an empirial estimates of

the distance along the psychological scale separating each

stimulus from every other one.

Lets consider the theroretical distribution of

discriminal processes for any two stimulus j and k as show in

figure 1. These stimuli are associated on the psychological

scale with theirs respective normal discriminal dispersion

with means uk and uj and standard deviation Ok and r.

I

STIMULUS

Figure 1. Discriminal. dispersion for stimuli J and k,
The means of the hypothetical distributions
are ue nd ug with standard deviation'XI-5UK.

........ t.



If the two stimulus were presented together to an observer on

a large number of occasions, each would excite a discriminal

process on each presentation. i.e.# a point along the scale.

I These two discriminal proceses are compared.! On those

occasion when the process associated with k is greater than

I ;the process for, j the observed will judge k to be greater

than j, an vice versa. Since the two distributions are

I normal, no value for a process is impossible. The two

distribution will overlap, and theoretically a stimulus will

not be judged greater than another on 100% of. the trials. In

figure 1 it is clear that k will be judged greater than j on

most occasions since most of the distribution for k has

higher values that the one for j. But assuming random

sampling from each distribution, we can expect a reversal

once in a while (j > k).

In the analysis of stimulus pairs# one does not directly

I. measure the variance and means of individual discriminal

dispersions. Instead, one is receiving information on the

distribution gerarated by all possible pairs of processes

selected from the two discriminal dispersions. One needs to

have the appropriate assumptions in which the information on

. 'the individual dispersions is directly translated into

information on the distribution of differences and vice

versa.

Kf



Figure 2 shows thc distribution associated with four

stumuli: 1#2,3, and 4. The scale value for stimulus 1 is

ul, of stimulus 2 is u2, etc.

Figure 2. Distributions of di.scriminal processes
* associated with four stimuli.

B . The Law of Comparative Judgment

One wishes to estimate the distance between stimuli and

use this information to locate the stimuli relative to each

othier along one dimensional psychological scale. Let% assume

that each pair is associated with a single hypothetical

distribution of differences generated by pairing all possible



discriminal processes in j with all discriminal processes in

k. Therefore, the subject uses the differences in the

magnitude of discriminal p.ocesses to make 4 decision

concerning the dominance of one stimulus over another. From

statistics, the difference between the means of two normal

distribution is ,equal to the mean of their differences.

Then, to find the differences in scale values for two

astimulus (k and j), the mean of their distribution of

differences has to be found. This mean can be measured

arbltrarily from a point representing those cases where the

difference between two discriminal processes, one for each

stimulus, is 0. Lets locate, for convenience, the zero point

as the mean discriminal process for the stimulus j. i.e.,

this transformation may be done by substrating the original

mean uj from all discriminal process in both distribution.

Then the mean of the discriminal dispersion of j is now zero

(uj - uj 0) and the mean of the discriminal dispersion of

k is now uk - uj. This value is also the mean of the

difference between all possible discriminal dispersions. To

prove this recall the new distribution was created by taking

differences between pairs of discriminal process, one from

each of the discriminal dispersions.

Let pick a discriminal process with a value s from

distribution k and calculate the mean difference between s

and all discriminal processes in j. This average will be s

%.--a



since the discriminal dispersion of j is sy~mmetric around 0.

That is, for every discriminal process with value x there is

on* with value -x with the same densityj defined by the

discriminal dispersion of j, and their effects ane. if

one repeats this procedure for all discriminal processes in

k produces, a symmetric distribution around uk -uj will

result. Then the mean of the difference of the discriminal

A dispersion is uk -uj.

Figure 3 presents a hypothetical distribution of

differences, with a mean uk - uj and a standard deviation

irj. The shaded area in the figure 2 indicates the

proportion of times the difference dk -dj was positive, and

the unshaded area indicates the proportion of time dk - d

was negative. di is an arbitrary discriminal process for

stimuli L.

U 10

0
DiFFERENCES (4d d)

F~igure 3. Hypothetical normal distribution of
differences between discriminal
processes (dK - dj). Data obtained
by pairing stimuli j and k on many

occasions.
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The normal density function mayJ be defined by the

equation:

EXP 0___L)

The total area under the curve is 1. By integrating equation
I " the area under, any section of the curve may be determined.

-)

The distribution function can not be expressed in closed form

in terms of elementary functions. The distribution function

is usually tabulated for a normal random variable that has a

mean value of zero and a variance of unity (standard normal

distribution). It is often designated by J(x) and is defined

By converting the probability with whict k ) j (shaded area

Soin figure 2) into a cumulative standard normal distribution#

one obtain% a starndarlized measure oif the difference between

discriminal processes (uk- uj). Therefore,

-I~L~YL (4)

whr is the standard deviation of the differences of

ii timulus pair. The standard deviation of the difference
between two normal distribution is

41 (b)

I



where rjk is the correlation coefficient. For the derivation

of equation 5 see appendix A. Rearranging equation 4

U V, -V 'Z k GV

substituting equation 5 into equation 6, one obtain

" .Thurstone's complete law of comparative judgment

where uk and uj are the mean value for stimuli k and j

respectivelyq. i ..and (j are the standard deviation for

stimuli k and j. rkj is the correlation coefficient between

stimluli k and j. Zkj is the normal deviate corresponding to

the theoretical proportion of time stimulus k is judged

greater than stimulus j.

rj The LCJ is not solvable in its complete form, since,

regardless of the number of stimuli, there'are always# more

-I unknowns than observation equations. For examples, with n

stimuli, there are n scale values, n standard deviation, and

nln-l)/2 independent correlation which are unknown. The zero

point of the scale can be set arbitrarilq at the scale value

of one stimulus, and the unit can be taken as one of the

standard deviation, leaving 2(n-1) + n(n-l)/2 unknowns.

I..: Against this we have only nin-i)/2 observation equations -

one for each independently observable proportion. The number

of equations is always 2(n-1) less than the number of

4'



unknowns. Symplifying hypotheses are thus necessary in order

to make the law workable.

i' 1Thurstone [33 presented five cases of the LCJ. In case

e 1 the complete form of the LCJ can be used making at least

one assumption./ The correlation between discriminal

deviation is practically constant throughout the stimulus

I series and for single observer. Case 2 is the same as case

1. The only difference is the use of several observers.

Case 3# case 4, and case 5 denote three special sets of

equations obtained from various simplifying assumptions. For

the measurement definition problem, case 4 of the LCJ was

' implemented (see next section). Lets now present the

approach followed by Thurstone C33 to develop case 4.

In case 4. Thurstone assumes the correlation coefficient

is equal to zero and the standard deviation is not subject to

Sgross variation. With those assumptions, the complete form

of the LCJ can be simplified so that it becomes linear. If

the correlation coefficient is zero (r = 0) using equation

7, the law takes the following form

kXI 'U S TI+ r

Assume that

L+



in which d is assume to be smaller than Er. Equation 8

becomes

The term d. may be dropped if d is small.

Let expand the term (12j + d)1/2 in equation 10 0 and lets use

the first two terms.

I ~U~a +1i (07)

Rewriting equation 9 as follow

Substituting equation 12 in equation 11. one obtains

f.1



Equation 13 is the case 4 of the LCJ.

I In E43, Torgerson found an approximating e_uaiion for

the LCJ that is formially identically with the equation 13.

He assumed that the c correlation coefficient are all equal

I .and the difference between standard deviation are small. The

equation is as follows:

He demonstrated that the assumption of r=O was unnecessarily

restricting. One needs only to assume that the correlation

are all equal. For the demotration of equation 14 the reader

is referred to reference 4.

I ' C.- The Method of Paired Comparisons

The law of comparative judgment assume that each

stimulus has been compared with each other stimulus a large

. number of times. Hence, the law requires that data of the

form Othe proportion of times any stimulus k is judged

greater than any other stimulus j" are available. The direct

method for obtaining empirical estimates of these proportions

is known as the method of paired comparisons. This method is

essentially a generalization of the two-category case of the

method of constant stimuli, where in the method of constant

stimuli, each stimulus is compared with a single standard and

in paired comparisons each stimulus serves #in turn, as the

i



standard. In paired comparisons, each stimulus is paired

with each other, that means that with n stimuli there are

thus n(n-1)/2 pairs. Each pair is presented to the subject,

whose task is to indicate which member of the pair appears

greater with respect to the attribute to be scaled. The

subject must designate one of the pair as greater* and no

subject must designate one of the pair as greater, and no

equality judgments are allowed. This is consistent with the

derivation of the law i wherein the probability of a zero

discriminal differences is vanishingly small.

To obtain data from which the proportion may be

estimated, a large number of comparison have to be made for

each pair of stimuli. There exist three alternatives where

the necessary replication might be obtained:

1. having a single subject judge each pair a large

number of times,

2. many subjects each judge each pair once, or

3. several subjects each judge each pair several

. times.

The choice of these alternatives will may depend on the

purpose of the experiment, the extent of individual

differences, and the nature of tho stimuli.

Caution has to be taken in order to use either the first

or third alternative that the stimuli should be such that no



extraneous differentiation cues are available to the subject.

If the subject can identify the stimulus pairs, there is the

-possibility that he will base his later judgments" on his

memory of his earlier judgments of the pair.

In the law of comparative judgment, no explicit
provision is made for time or space errors. Nor is there

provision for changes in performance due to fatigue or

practice effects, or for judgments based in poart on factors

other than the relative magnitudes of the discriminal

processes. Then, it is necessary to control experimentally

the conditions that might introduce these biasing effects.

Most of these factors can be controlled in the assignment of

the relative positions (spatial or temporal) of the members

of each stimulus pair and the order of presentation of the

pair themselves. An experiment can be controlled by

randomization of relative positions and of orders. This

method is not the most efficient one. More efficient methods

use counterbalancing procedures. For example# time (or

space) errors can be controlled by arranging the members of

the pairs so that half the time each stimulus appears first

(or to the left# below, etc.) and half the time second (to

the right, above. etc.). Perhaps, the best procedure is to

counterbalance each pair of stimuli: e.g.. with stimulus
I pair p k, present j first half the time, k first the other

I half. Practice or fatigue effects can be controlled by

:I



reversing the order of presentation of the pairs for half of

the subject (or trials).

In E43, Togerson presents a list of additional

precautions some of which may or may not be relevant for any

given experiment., These additional precaution are:

1. Keeping pairs having one stimulus in common

maximally separated in the order of presentation.

2. Arranging pairs so that "correct" responses are

approximately evenly divided between first and

second memebers of the pairs.

3. Arranging pairs so that there is no detectable

systematic pattern of "correct" responses.

4. Arranging pairs so that there is no systematic

variation in difficulty of judgment.

5. Varying the order of presentation from trial to

trial to eliminate serial lerning of a response

pattorn.

Ross E173 gives a table of the balanced optimal orders

for odd numbers of members from five to seventeen, Also, he

presented his general method for calculating orders of

presentation. His orders are optimal in the sense that a)

each stimulus appears first in half the pairs of which it is

a member, bpairs having one stimulus in common are maximally

separated in the order of prisentati-on, and c) there is no

=! I:
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detectable pattern of "correct" responses. His orders have

the following advantages:

1. They maintain the greatest possible spacing

between pairs involving identical membfirs.

2. They are so balanced as to remove time and

space erros.

3. They avoid regular repetitions which might

have suggestion effects.

4. By repeating the series in reverse order

fatigue effects mau be balanced out.

5. From these orders for odd-number of members,

the optimum even-number orders mau be

obtained by a simple rule.

In E161# Wherry shows that Ross's optimum lists are not

optimum in all senses, and he presented an empirically

derived list for seven items which is superior to the list

given by Ross C182. Also# a method is given whereby any

list, arrived at either rationally or empirically# may be

rewritten j.in 8n different ways, by use of 4 step given in

C163. It is shown that 2n of these list% may be combined in

Such a fashion that fatigue effects are cancelled out.

ii
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4.-ANALYTICAL PROCEDURES

The complete' form of the law of comparative judgment

(LCJ) is

An experimental test of the complete LCd has not been

conducted because of the problems encountered in determining

values for the unknowns, standard deviation and the

correlation coefficient between pairs [123. Simplifying
/

assuptions are usually made to reduce these difficulties (see

section 3 ). The model more widely employed'is Thurstone's

case V (r(kj)=O and I ). Case V assumes that one can

ignore the standard deviation associated with individual

stimuli because they are constant and their discriminal

processes are uncorrelated. That is, knowing the occurrence

of a discriminal process from one distribution would not help

us predict the discriminal process from another. Because for

our case the stimuli are complex the best fit for our

observational data is necessary. We select case IV for the

fitting of our observational data and propose a method based

on the solution of the complete form of the LCJ which has

less restrited assumption that case IV. Before describing

Case IV and our proposed method, we describe how the

observational data is rearrange to be used by either method.



After each of the n(n-1)/2 pairs of stimuli have been

presented a large number of times, we have as raw data the

number of times each stimulus was judged greater than each

other stimulus. These observed frequencies may be arranged

in the n x n squared matrix R. The general element r(j,k)
/

which appears at the intersection of the jth row and kth

column, denotes the observed number of times stimulus k was

judged greater than stimulus j. The diagonal cells of matrix

R will ordinarily be left vacant. No comparisons are made

between the same stimulus. Since the symmetric cells (e.g.,

r(2,3) and r(3,2)) sum to the total number of judgments made,

the matrix contains n(n-1)/2 independent cells.

Lets construct matrix P from matrix R. The element

p(j, k) is obtained by dividing the element r(j, k) by the

number of total observation, and it is the observed

proportion of times stimulus k was judged greater than

stimulus j. Diagonal cells are ,again, ordinarily left

vacant. Symmetric cells now sum to unity (e.g., p(2,3) +

p(3,2)=1).

After the matrix P is constructed, the basic

transformation matrix ,X, is constructed. The element x(j,k)

is the unit normal deviate corresponding to the element

p(jk), and may be obtained by referring to a table of areas

under the unit normal curve. The element x(j,k) will be



positive for all values of p(jk) over 0.50, and negative for

all values of p(j~k) under 0.50. Proportions of 1.00 and

0.00 cannot be used since the x values corresponding-to these

*roportions are unboundedly large. When such proportions

occur, the corresponding cells in matrix X are left vacant.

Zeros are entered in the diagonal cells since we can

ordinarily assume that here V(k)-U(j) = 0. The matrix is

skew-symmetric: that is, the symmetric elements sum to zero,

since, e.g., x(2,3)= - x(3,2).

Matrix X contains the sample estimates x(j,k) of the

theoretical values found in the equation of the law of

comparative judgment. The element x(jk) is an estimates of

the difference (U(k)-Q(j) ) between scale values of the two

stimuli measured in units of the standard deviation of the

distribution of discriminal differences . Each independent

element of matrix X is an estimate of a value for one

equation of the law.

In case IV of the LCJ, the assumptions are that the

discriminal dispersion are not subject to gross variation and

the correlation term is zero. Assuming these two

conditionsa linear equation is obtained (see section 3).

The equation is

~u 7:/ -yv, Ov)
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Togerson [4] demonstrated that the explicit assumption of

zero correlation was unnecessarily restricting. He got the

same result as Thurstone assuming the correlation term equals

for each pair of comparation and small difference between

discriminal dispersion. The approximate equation is

where equation 16 and 17 are equal if the correlation term is

equal to zero.

Two method have been presented in the literature for the

solution of Case IV. The first method was proposed by

Thurstone E183. In this method, the standard deviation must

be estimated from the observational data and then the means

ere calculated. Burros (193 presented, an alternative

approximation formula for the estimatiqn of the standard

deviation. This approximation yields the same value of

standard deviation as Thurstone's method, and involves less

labor calculation. The second method is proposed bq Gibson

E203. His 6ethod consists of a least-square solution for

case IV. He displayed case IV as a system of homogeneous

linear equations for which a least-square solution is

presented, using various conditional equation which fix th#

* j origin and the unit of measurement. However, the

computational labor that would be involved in obtaining a

numerical solution is such that it has not yet been applied

,"



to data.

Method A

This method estimates the standard deviation using

Vi

where

VK~ \IK

Using the values obtained for the standard deviation, the

scale values (means) of the stimuli may be obtained as

follows

where the 6onstant A is an unknown stretching factor. This

constant may be equal to the square root of 2 (Thurstone)

may be equally to unity, some larger value, or equal to

SGRT(2/(I-r)) E43. See references r18,4, 19) for a complete

derivation of the method A equations.

Method B



In this method, the scaling (means) and standard

deviation are obtained by solving a sustem of. linear

equations. Lets write the equations for a for stimuli

comparation as follows:

Ul-ab 013 (V+J0lfi

These equations constitute a set of six linearly independent

homogeneous linear equations in eight unknowns. Lets

arbitrarily select a :ero point and the unit of measurement

as follows:

and

I (23)

Lets substitute equations 22 and 23 into equation 21. We get

the following set of six linear equations in six unknowns:

-U U 3 ~3i)f-- ~ ?A U4* ,, 1 r2 Z14 CP4

'.4 .. -2 4 q2" • 24,i " "

U's-4 47 4T



Solving equation E24], a unique solution, except for the

origin and the unit of measurement, is possible with four

stimuli, while an overdetermined solution will be .available

for more than four stimuli. In matrix form, equation 24 can
U

:be stated as follows:

0 " 0 0 Lko 0 -1 0 0 074tV 1

- A4 0 22+1f -?-3f o
0 1- o2~( 07 0

Since A is square for four stimuli, the unique solution is

For more than four stimuli, a solution for equation 24 can be

obtained +iom

B (AA') A C. .s

Equation 27 is a least-square solution in the sense that the

means and the standard deviation minimize the sum of the

squared discrepancies of the entries in the matrix product



SAB* from the corresponding entries in C.

If equations 22 and 23 are replaced by equation 28 and

29, one obtains a greater degree of symmetry which will

" - involve more of the unkowns in each of the observation

equations.

and

Lots multiply equation 29 by 1/sqrt(2) z(j,k) to obtain

I-- . N (3 o)

Adding equation 28 and the appropriate equation 30 to each

equations 21 for five stimuli in matrix form:

- 1 4 Io , , 214Ir: N 2"
11 0 0 1 sr2ZOOW 2,5162 0 U4

z 2 o0 11W z o ?,-I iZ I \ q,I 1 0 # Is 0 .2 ,,i~ I R 0 i 2

1 0 wI l. ZyrZ0 I 0 0 W 43

I 1. 1 -0 5) N



For five stimuli the solution to equation 31 is

For more than five the solution to equation 31 is

In method B, the computational load is quite heavy but this

solution has the advantage of providing the best-fitting mean

(ranking) and standard deviation values for a set of

paired-comparison data.

If the stimuli compared are very complex, the

assumptions for case IV are not valid and the solution

obtained will not be the best-fitting mean and discriminal

dispersion for the observational data. Maybe the best

solution will be the use of the complete form of the LCd.

Until now, an experimental test of the complete form of the

LCJ has not been conducted because of the problems

encountered in determining values for the unknowns

E123. Lets now present a method

of getting a solution based on least-squares for the complete

form of the LCd assuming the correlation term to be constant

(Method C). Equation 34 shows this.

-' -1 + w 2-1rlc V) t 34)

or



where equation 35 is a nonlinear equation. Lets rewrite

equation 35 as

SI( VZ + (i-- ac+r - vr. q) (sI.

where OA1 ,,U2, ... .,r,.... %AT 6' .,r)

Apply a Taylor expansion to equation 36 and use the first two

terms of the series.

aor

I0

which in matrix form is,

IX - a

where R is a matrix which each element is given by the

difference x(kj) - f(X o. The size of this matrix is

n(n-l)/2 rows by I column. A is a matrix wheore each element

is a partial derivative of; the function fC X ) evaluated for

Xe. The size of this matrix is n(n-I)/2 rows by 2n+1

* '



!I
columns. Y is a matrix of the unknown variables minus the

initial condition Xo. The size of the matrix is 2n + 1 rows

by I column. Multiply both side of eqyati-on 39 by the

transpose of matrix A (A').

z A A AY (4 6)

Equation 40 is a least squares solution (see appendix B).

If equation 40 is multiply by (A'A) , then we obtain

but

then

Y+X0
The first N elements of the X are our scaling or ranking of

the N-stimulus.

In the next section, the computer implementation for

method A is presented.

L .
.. • . .." ... ... . .. .. ,. c i t . .



5. -COMPUTER IMPLEMENTATION

This section presents the algorithm used for the

implementation of method A presented as the solution for case

* IV of the law of comparative judgment (LCJ). Methods B and

C have not been implemented yet. In this section, we will

propose an algorithm for both methods.

METHOD A

This method is implemented using the subroutine

TCIV. Given as an input the basic transformation matrix X

-which each element is the normal deviate corresponding to the

proportion of empirical judgment j.k, and the total number of

stimulis used No the algorithm used to construct this

subroutine is as follows:

a) Sum each column of matrix X

,.( 
00

I> I

b) Sum the square of each element of matrix X

by column

.. .. .-... _ +



c) Multiply the sum of the squares by the

total number of stimuli by column

-SOxN W_<*, N Z..I2.

d) Square the sum of each column of matrix X

by column

2

a) The square root of the difference of step

:Z- c and d is obtained by column

f) The inverse of step e Ls obtained by column

= XNV (Kv

g) The sum of the inverse of step a is

ii obtained

SUwZtV mum XNVMK .

-- I ) XN is obtained

Xwe "p WIUMIV •

_.I . - ! i L

L ..... , ., "



i) The standard deviation is now obtained by

SI column

I /

j) Check if the sum of standard deviations are

.! equal to N

k) In this step the sum of the elements of

- matrix X by row is obtained

S RX~i 4
K

1) Mlultiplyj each result *of %~top k by the

corresponding discriminal dispersion

'SXR i =3PSRX (S' -t*

m) Hultiply step a by the discriminal

dispersion

SxSX t 4 SX(K) -(K.

n) The difference of step m and step I is

' iiA-



Ii

obtained

~S X 4 SX (K%\ -SXR 1

o) Divide XS(k) by the total number of stimuli

and the scaling for each stimuli is obtained.

'1
p) Check for the sum of the scaling

METHOD B

Like method A, the inputs are matrix X and a

variable N. The algorithm is as follows:

a) Create matrix E and C.

b) Check for the number of stimuli N.

1) If n is less than 5 ttop.

2) If N is no *qua1 5 go to step C

.. ,t. , .I

,. . . . .



3) else

1- Get the inverse pf matrix E.

2- MlultiplyJ the inverse of

matrix E ;byj matrix G.

3- M~atrix F will contain the

ranking and the standard

deviation.

4- Go to step h.

- c0. Got the transpose of E (E').

d) Multiplyj matrix El byj E and matrix E' byj G.

e) Oet the Inverse of the multiplication of

matrix E* by E.

f) Multiplyj the results of stop a byj the

results obtained in step d for the multiplication of matrix

* Ell byj G.



gThe results of step f is the matrix F that

contains the ranking and standard deviation.

h) Check if the sum of the first N elements of

the matrix F are equal to zero's and the sum of the last N

elements are equal to N.

'I i) Stop.

MIETHOD C

Like the other two methods, the input will be the

I matrix X and the total number of stimuli N. This method

needs an Initial condition. The result obtained from method

A or method B can be used as initial condition. If method A

is used, the initial conditi.on for the correlation term is

* set to negative one. For meathod B, it is set to zero. The

algorithm is as follows:

a) Construct matrix A and matrix R.

tb). Find the tv.anspose of matrix A WA).

c) Find the inverse of the product A'A.



Ii d) Multiplyj the transpose A' byj R.

i ) Mlultiplyj the rosults of step c by step d.

f) Check the elements of the matrix resulting

Ifrom step e. If all the elements are less than a giving

accuracyj go to g alse go to. h.

* g) The results is the sum of the results of

step e plus the initial condition. Stop.

h)Sum the results of step e plus the initial

condition. This result will be the new initial condition.

0o to a.

In appendix C. the listing of theprograi for method A

I is presented.



6. -RESULTS

This section presents the results obtained for two given data

sets. The two data sets were obtained from references

~t. E4,183. The results obtained byj our program are compared

with the results already published in raferences C4,183.

The first data set were taken from reference (43. Table 1

shows the data set. -The results given byj Torgerson E43 are

showed in table 2. Table 3 shows our 'results, which agree

with the results given in table 2.

MATRIX X

Stimuli k
1 2 3 4

1 0.0000 0.2778 0.6818 1.2500 1.2500
2 -0.2776 0.0000 0.5000 3.0714 1.1364

StimuliJ 3 -06818 -0,5000 0.0000 0.2778 C,5701
4 -1.2500 -1.0714 -02778 0,0000 0.500

5 - 1.250D -1.1364 -0.5769 -0.500 0,0000

TCable 1. Data Set Given by Torgerson t4)
for his Illustrative Excample.

Stimuli

S~~4  Ev 130634 0.8490 1.2165 0.386 1,2854

SCALrNGI -71.417 -01893 0.129 0.633 -4

Table 2. R~esults Given by! Orgergou (43

.... .- * .. .. .



MATRIX X

0.0000 0/2778 0. 6818 1. '500 I. 2500
-0. 2776 0.0000 0. 5000 1.0714 1 .13"-
-0. 6618 -0. 5000 0. 0000 0. 2778 0. 5769
-1. 2500 -1.0714 -0. 2718 0.0000 0.5000
-1. 2500 -1. 1364 -0. 5769 -0. 5000 0. 0000

STD. DE,. ( i I . 0633U1
STD. DEW. ( c)= 0. e -9030
STD. DEV. ( 13)= . 2164;32
STD. DC',. 5 ,0-". 5 55C, 
-STD. DEY. (5)- 1 2615470

S CA L N" r; .5 )r- --. .:1659,5
SC A L I" t,., . ( ;") - -0C. 2,-f,,:-!

SCALING A 0.632680
SCALIN(" 5)=i ) 1. /,1ZEl135

Table 3. Results Obtained by our Program TCIV.

g0

The second data set were taken from reference [183. These

data were obtained experimentally by Thurstone. These data

consists of thirteen nationalities or races. Each one of

this nationality was paired with every other nationality.

The number 6f pair was 78. These pairs were arranged in a

Reproduced from
best available copy.



printed schedule and were submitted to 250 high school

children in Chicago. The instruction were given with the

following printed schedule.

This is an experimental study of attitudes toward races
and nationalities. You are asked merely to underline the
one nationality, or race, of each pair that you would

rather associate with. For egample, the first pair is:
ENGLISHMAN - SOUTH AMERICANS

If in general, you prefer to associate with ENGLISHMAN
rather than with SOUTH AMERICANS, underline ENGLISHMAN.
If you prefer* in general, to associate with SOUTH
AMERICANS, underline SOUTH AMERICANS. If you find it
*difficult to decide for any pairs simply underline one
of them anyway. If two nationalities are about equally
well liked# they will have about the same number of
underlinings in all of the papers. Be sure to underline
one of each pair even if you have to make a sort of
guess.

Table 4 shows the experimental proportion. It shows the

proportion of the subjects who preferred each nationality at

the top of the table# to each nationality at the side of the

table. For examples the proportion of subjects who preferred

ENGLISHMAN to SOUTH AMERICANS was .935. The proportion of

subjects who preferred SOUTH AMERICANS to ENGLISHMAN was

.065#, since intermediate categories of judgment were not

allowed. Table 5 shows the X-values, and Table 6 shows the

results fof the standard deviation and the scaling value for

each nationality. Table 7 shows the results obtained by our

program. The standard deviation results agree with table 6.

The scaling results are different# because our stretching

factor A is oqual to one. If one divides our scaling results

by 14. A-I/4* one obtains the same results as table 6.

t----- i

1'



EXPERIMENTAL PROPORTIONS

1 2 3 4 5 6 7 8 9 10 11 12 13
Eng. Ca. Fr. Ir. Sc. Sw. Ge. Ho. Sp. Be. S.A. Jew It.

1. Eng. 388.218 .324 .165.221.227.162.144.103.065.155.066
2. C. .612... 457 .406 .280 .260 .297 .102 .201 .100 .088 .180 .073
3 ..... Fr. .782 .543 .... 541 .500 .370 .380 .255 .184 .214 .149 .192 .081
4 ...... Ir. .676.594 .459.....361 .387 .378 .253 .273 .243 .162 .221 .128
5 ...... Sc. .835 .720.50.639 ..... 400.409.268.249 .258 .262.223.128
6 ...... Sw. .779 .740 .630 .613 .600 .....471 .444 .377 .317 .318 .229 .228
7 ...... GT( .773 .703 .620 .622 .591 .529 .....347 .391 .325 .343 .253 .152
8 ...... Ho. .838 .898.745.747.732.556.653 ..... 471.432.389.263.310
9 ...... Sp. .856 .799 .816 .727 .751 .623 .609 .529 ... 510 .422 .289 .217
10 ...... Be. .897 .900 .786 .757 .742 .683 .675 .568 .490 .... .461 .360 .271
11 . S.A. .935 .912 .851 .838 .738 .682 .655 .611 .578 .5391.ii...420 .320
12.... 845 .8201.808.779 .777 .771 .747 .737 .711 .640 .... 524
13. .934 .927 .919 .872 .872 .772 .848 .690 .783 .729 .680 .476

Table 4. Experimental Proportion Given by
Thurstone C183.

X.VALUES

I 3 4 4 7 0 It It 13

F, C'. Fr, I, Se Sw. Ge. g. Sp. B,. SA. Jtw IL.

1 El , .. 00 - .28 .78 -. 46 - .97 -.77 - 75 - .99 -1.06 -1,26 -1.52 -1.02 -151
2 Ca..... .28 .00- . - .24 - A -. 61-= S3 -1.27 - .84 -1.28 -1.35 - .92 - 1,45

S3 Fr ... . 78 111 ,00 I zJ.10 A -. 33 - .31 - .66 [- .90 - 729 -1.04 I- .87 t- 1,140
4 Ir ...... 46 .24 -. 10 .00 - .30 -. 29 - .31 - .67 I- .60 - .70 - .99 - .77 - 1,14
s sc......97 .58 A0 .36 .00 -. 2 - .23 -. 62-,A -. A -,.64- 76 - .14
6Sw..... 77 .64 .33 .29 .25 00 - .07 - 14 -.31 -,48 - .47. - .74 - ,75
' Ge 75 .53 .31 .31.. 3 .07 ,00 - .391- 28 -,45 - .40 - .67 - .03
8Ito... . 99 1.27 .66 .67 .62 .14 .39 .00- ,07 - .17 -,28 - .63 -.50
9sp.... 1,06 184 190 A .68 .31 .28 ,07 100 .03 - .20 - . - 78
to l 'e.. 1.26 1.2$ .79 .70 .65 .48 .45 .17 -03 .00 - .10 - 36 - .61
1 SA,. 1.52 1.35 1,04 . .64 .47 .40 .28 .20 .10 .00 - .20 - ,'7
12 jew.... 1.02 .92 .87 .77 .76 .74 ,67 .63 .6 .36 .20 .00 .06
13t. 1.51 1.45 1.40 1.14 114 .75 11W .50 .78 .61 .47 - .06 100

. 1 .

Table 5. X-Values given by Tturstone (18).

it -



I En glish .......... 1.4050. 1.3121
2 Canadia ........ . .8718 .8295
3 French ............ .4902 .7062
4 Irish ............. . .6,59 1.1791
5 Scotch ............ .2828 .7015
6 Swede ........... . .029 1.0837
7 German ............ .1298 1.0122
8 Hollander ......... - .2573 .7634
9 Spaniard .......... - .2805. .8224

10 BelWan .......... - .4229 .7646
11 South Arican... - .5686 .7170
12 Jew .............. -1.2540 2.1167
13 talian ............ -1.1151 .918

Table 6. ReP'Ults Given by Thurstone [18].

- STD. DEV. ( 1)= .. 3.09C,"2
LTD. DE". ( 0 . 1 1.
STr). DEV. ( 2f= U. -3'/ .,'
STD. D-V. (4)= J. I'1926,

TD. DEV. % 5>- (). 7 4
STD. DEV. (16)= 1. 01J 9

,.. ~~c ST D.. E V. (Z.-= I 0. C7 ,,,,

S 1). DEV. 1. . 1 . .,- .-, ,-
C ID. DEV. 10 = 1 . 767

STD. DEV. (11)= 0. 16 0
STD. DEV. ( 12 )= 2 l 11754 ?
STD. DEV. (113) = 0. 991697

SCALING ( 1)t 0. 1',"775
SCALING ( 2)= 0. .305-7
SCALINO' 2 ) 0 J..330
SCALING ( 4)= 0. 1"/2^3
SCALING ( 5)= 0. :377726
SC Al-I.INo ( 6)= 0..1fA5118,5
SCALIN^ ( 0)- .j O0 1
SCALING ( 8):. -0.06:3f 1.5
E:CAI. NG ( 9)= -0. :39654 1

SCALING (10)= --0. ,V7,0002
SCALINO 11 )- -0. 804074
SCALING (12)= -1. 77 4 290
SCALING (13)= -. !p/7064

Table 7. Results Obtained by our Program TCIV.

Reproduced from
best available copy.
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APPENDIX A

In this appendix, the standard deviation of the

difference between two normal random variables is found.

Assume that X and Y are two normal random variables.

The expected value can be written as follows:

The variance for a random variable is defined as

.4 2

I.
22.

• -Et=J -2 Ux[[X] + LIy

Using the zame procedure.

' . y I • (4)

0Ii one substitute% into equation (2) with (3) and (4) then,

I"L
r +

2 26h

r- G4--+... .



The last term in equation (5) Is the correlation term and can

be defined as

Etxy XY.

If X and Y have nonzero means, then it is frequently more

convenient to find the correlation by substracting the mean

values.

This is known as the covariance.

To express the degree to which two random variables are

correlated without regard to the magnitude of either one,

then the correlation coefficient or normalized covariance is

the appropriate quantity. It is defined as

ar;... S= x-UX(; Y-Sly

X= SEx, +q Y- tcy +qIj
hence

Y IXyl,- L j( Aj +U(y U

:ESt 5'f0- + SIyq *t Cy Q + Q V J.CJ

q y -+- E[KUy-U,(,Jyh4. EEYtx AyUX'J . lyU1

-?1T'qY +QbUY-UXYy +YUyWUUv- UyU +UyYV

XY J• Xr ,UQ (4) .



Substitute equation (6) into equation (5)

The last three terms are Just The square of The mean of

(X-Y). Then,
z

=K+ ". UIY)

CFK' y 2Gc' ( x-P
In general

and from equation (7),

zz• Compar'ing equations (8) and (9), the left hand tem is the

variance for the substraction of two random variables.

''The standard deviation is the square root of the variance.

Then,

.I

1=t
S..... . , ., . . " .. . - . , " ." '



* APPENDIX B

In this appendix, it is demonstrated that A'R=A'AX

implies au least sq~uare solution

if

or

Z2.

where is an error term.

In matrix form

and

-A



Let the following equation be a syjstem of observation

equations

A=R.
*Lets rewrite this as

where Ax-RE
whre is a vector of error~z. The principle of least

squares postulates that the most satisfactory values of the

xci) are those for which the sum of the squares o~f the errors

are a minimum. This sum is simpiM

The minimal condition is obtained by partially

differentiating the above equation with respect to the vector

X and halving. We obtain

A'AxA'R*



APPENDIX C

TMDS SUBROUTINE TCTV

LANGUAGE: /Fortran VIIs using TMDS subroutinei for

Perk in-Elmer 8/32.

PURPOSE To rank the relative visual differences among

a set of texture pairs.

INPUT/OUTPUT: Respectively, the samples estimates

x(j~k) contained in a matrix X#

a single interger value which

represents the total number of

I texture pairs and the standard

I.. deviation ofeoach texture pars.

* USA(PE :CALL TCIV CX#SCALEtSIGNA#N)

X-input the samples estimates

SCALE output ranking of texture pai'rs.

... .H



SIGMA - output discriminal dispersion of

texture pair.

N- input total number of texture pairs.

PROGRAM LOGIC The rank of the relative differences

among a set of texture pairs is calculated using case IV of

the LCJ. The standard deviation is calculated using

VW (4~-(K) YNOv
The scale value of the texture pair is

calculated using

where A= I and correspond to a currelation of r= -1.
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'I, 1 C

2 C
I 3 C TEXTURE MEASUREMENT DEFINITION SYSTEM

4 c
5 C REMOT. SENSING AND IMAGE PROCESSING LABORATORY
6 C
7 C ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT
a C
9 C LOUISIANA STATE UNIVERSITY. BATON ROUGE. 70803
to C"

12 C
13 C PROGRAM TCIV
14 C

15 C
16 C PURPOSE
17 .C
1 C TO RANK THE RELATIVE VISUAL DIFFERENCE AMONG A SET OF TEXTURE
19 C
20 C PAIRS.
21 C
22 C
23 C METHOD
-24 C
25 C THURSTONES CASE IV OF THE LAW OF COMPARATIVE JUDGMENT.
26 *C
27 C
28 C DESCRIPTION OF PARAMErERS

29 C
30 C x - BASIC TRANSFORMATION MATRIX. EACH ELEMENT OF THE MATRIX
31 C IS THE NORMA DEVIATE CORRESPONDING TO THE PROPORTION
32 C OF EMPIRICAL JUDGMENT J > K:
33 C
34 C
35 C SIGMA- ONE DIMENSION ARRAY CONTAINING THE DISCRIMINAL
36 C DISPERSIONS.
37 C
38 C

39 C SCALE- ONE DIMENSION ARRAY CONTAINING THE MEANS OR SCALE VALUES
40 C0S 41 C
42 C N - TOTAL NUMBDER OF TEXTURES PAIRS.
43 C
44 C
45 REMARK
46 C
47 CTHSPORMIPEETTECSIVOT1ELJTHINU

49 C TO THIS PROGRAM IS THE MATRIX X AND THE TOTAL NUMBER OF

1 C TEXTURE PAIRS. THE OUTPUT IS THE SCALING AND THE DISCRIMINAL
b 2 C
53 C DISPERSION OF THE TEXTURE PAIRS.
54 C
55 C
56 C AUTHOR
57 C
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I se C R. E. VASQUEZ-ESPINOSA
, 59 C

61 C DATE
62 C
63 C SEPTEMBER 201 1982" "64 C

65 C
68 C REFERENCE
67 C
68 C THE MEASUREMENT OF VALUES BV L. L. THURSTONE.
69 C
70 C
71 C------------------------------------------------------------------------
72 SUBROUTINE TCIV(X, N, SIGMA SCALE)
73 DIMENSION X(NN),SIGMA(N),SCALE(N),SUMXCOL(500),SUSQ(500),
74 *VNK(500), XINVNK(500)
75 C SUM THE ELEMENT OF EACH COLUMMN AND KEEP THE RESULTS BY COLUMN
76 C SUM THE SQUARE OF ELEMENT OF COLUMN AND KEEP THE RESULTS BY COLUMN77 C
78 DO 10 K-1,N
79 SUMXCOL(K)=0.O
80 SUMSCK) -0.0
t81 DO 10 J-f, N

82 SUMXCOL(K)=SUMXCOL(K) + X(JK)
83 SUMSG(K)=SUMSG(K) + X(J,K)**2
84 10 CONTINUE
85 SINV-0.O
86 DO 20 K-IN
87 VNK(K)=SQRT(N*SUMSQ(K) - SUMXCOL(K)**2)
88 XINVNK(K)- 1.0/ VNK(K)
89 SINV=SINV + XINVNK(K)

90 20 CONTINUES 91 XNB- 2. O*NtSINV

92 DO 30 KIaoN
93 SIQMA(K)mXNB*XINVNK(K) - 1.0
94 30 CONTINUE
95 C
96 C LET FIND THE"SCALING
97 C
98 00 40 KI, N
99 SUMXCOL(K)mO.0

100 DO 50 Jm1.N
101 SUMXCOL(K)-SUMXCOL(K) + X(J.K)
102 30 CONTINUE
'03 SUMXCOL(K),SIGQA(K) * SLUIXCOL(K)
104 40 CONTINUE
105 DO 60 KwlN
106 SUMSO0(K)-.0
107 DO 70 J-1,N
108 SUMSG(K)nSUNS(K) + SIGIA(J)*X(J*K)
109 70 CONTINUE
I110 SCALE(K)-(SXCOL(K) + SNOCK))/N
111 60 CONTINUE

: 112 RETURN

113 END

+ I2 :,,+ ,.-, .;. : . . ; :. : .,:


