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ABSTRACT

A method for obtaining a perceptual ranking (_gcal'ing) for
defining texture measures is described. This met_izod can be
used to scale the relative visuval differences am'c‘mg a set of

texture pairs. T,his'perceptual ranking is called the law of

comparative judgment, -
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i~ INTRODUCTI1ON

A theoretical method for defining texture mgashres was

P

defined by Conners and Vasquez £1:21. The use of ghis method
requires a perceptual ranking which can be used to} vank the
relative visval 6 differences among a set of texture pairs.
Thi; report describes ¢the theoretical development and an
implementation of such a perceptual vanking. This perceptual
ranking is called the law of comparative Judgmentfizgs;l It
was developed by Thurstone L 3 1! It allows n things ¢o be

ranked (scaled) based on pairwise responses obtained over all

-

possible combinations of n things taken two at a time. o

The n things to be ranked in the measurement definition
problem are n texture pairs, The scaling determines the
relative discriminability of the pairs, i.e., which pair is
the most visvally distinct:, which is the next most visvally
distinct, etc. The pairwise responses are experimental data
obtained by showing subjects two texture pairs at a time,
Each sub;eg$ is asked to independently give his opinion as to

which of the two is the more visuvally distinct texture pair,

In what follows, a background on perceptual ranking will
"be given and the reasons +for selecting the LCJ will be
presented. Then a theoretical develdpment of the LCJ s

given §in sections 3 and 4 which develops the mathematical

————
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equations necessary to implement the method.

for the souftware based

'preseneed in section 5.

Tuns are given.

there mathematical

Finally in section

6

Documentation

equations are
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2. ~BACKCROUND

For the measurement definition problem a;pefceptual

ranking (scaling) is neccesary. A psychological “experiment

R}

1

has to be performed in order of obtain this scaling. This
section presents a brief description on psychological scaling
methods Psychological scaling methods are procedures for
constructing scales for the measurement of psychological

attributes.

The ﬁeasurement of observers’ responses to stimuli grew
up in what is called psychophysics. Psychophysics was
defined by Gustav Theodor Fechner as “"an exact science of the
functional relations of dependency between body and mind. *
4] As developed by Fechner (51, psychophysics includes both
the measurement of sensory attributes and the quantification
of pevception, in order ¢to correlate these qsqchological
stales with physical measurements of the stimuli. He
suggested that the sensation intensity was proportional to

the logarithm of the stimulus intensity.

‘L. L. Thurstone (3] pointed out that there were two
classes o©of psychophysical methods. One class required that
the eipérimeatnr be able to obtain some physical measurement
of the stimulus, and to control this measurement for purposes

of his experiment. Examples of this class are the method of
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average error and the method of minimial changes [61]. A
second class could be readily applied in cases where precise
measurement aﬁd controlled variation of thg_ physical
characteristics of the stimuli were not posible.g The method
of paired comparisons is a-second class example,

'

In his overvieuw o# psychophysical scaling methods, F.
Nowell Jones (7] divided the psychophysical scaling in two
methods: the direct methods and the indirect methods. The
divect methods requires that Judgments be made either
accordind to some predetermined ratio given by the
experimenter, or made in terms of vreal numbers. Thus the
data collection involves a judgment iIn terms of a scale
;xternal to the stimuli themselves. Example of methods that
belong to this group are amethods involving Judgment of
assigned ' intervals, fractionation methods, methods of
multiple production or multiple judgments, the constant sum
or vatio partition method, and magnitud estimation. The
“indirect,* or Fechnerian methods. seem to be so called
because conﬁidnrablv statistical manipulation is required for

the constructions of a measurement scale. Actually, data

collection is “direct"” for these asthods, because what is

required is direct Judgments of differences among stimuli.
Methods that belong to this group are The law of comparative
Judgaents and categorical jgudgments. The best method for our

perceptual scaling belongs to the indirect method becasuse the




needs of direct judgments of differences among texture pairs
(stimuli). For this reason, let discuss or describes ¢he

indirect methods. For the description of the different

-~

methceds for the direct case and also indirect? cases the
reader can be referred to the following reFerenceg £4.6-13].
The original Fechnerian idea was based on what he called
Weber‘s law (53. That is. if discrimination requires a
constant proportional increase in the stimulus: a +function
dr/R=k, may be written for some probability of
discrimination, and if one assume that this relationship
holds for very small increments: one may regard this formula
a4 giving the relationship betuween the stimulus and
;ubJoctive increment. This leads to the statement that S=K
log R. Now, if what one needs is the Weber fraction (k), and
if one assumes that it is constant over a long vange of
stimuli, any peychophysical method that yields a measure of
discrimination will give us & subjective scale. In practice,
this is not done. The above is known as <classical
psqchophqsiﬁ method. The law of comparative Judgment belongs
to a group of methods knouwn as psychological—-scaling. It
pifﬂers from the traditional ov <classical psychophysical
method in that at the end results are no values on physical

scales but are on psychological scale.

Modern work on indirect scaling was begun by Thurstone
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with ¢the publication of ¢the LCJ. The idea was that a
stimulus - whether physical or otherwise~ gives rise ¢to a
hypothetical discriminal process within the squecé which,
for various random rveason: varies from presé;tation to
presentation of the same s$imulus. The LCJ can bc.cansidered
as a probabilistic model. This model assumes that the scale
positions belonging to the psychological objects are
themselves stochastic. Then the scale posifion does not have
a fixed value but 1is regarded as a stochastic or random
variable with an associated probability density function. An
assumption is needed to form the density function. A popular
assumption is that the scale positions are normally

distributed.

The most wvsual method of obtaining data for use in
scaling according tc the LCJ is by means of pair comparisons.
The main advantage of the method of paiv comparisons is that
it yields an estimate of subjective distance over the range
of whatever stimuli are used. It is possible to use stimuli
that canno& be arvanged on an objective dimension. One need
not know in advance which stimuli lie next to each other
fubJoctivelu. There are two main disadvantages. First,
there must be some degree of confunsion between adjacent
stimuli since, if not. we have seen that no estimate of
distance is possible. The second disadvantage is that the

method requires a good many Judgments for the amount of
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information extracted. Other scaling method has been
developed wusing the method of paired comparison or a

variation of the method ¢tc try to overcome;,thé above

disadvantage. But all of these methods are verqirestrictive
to be used in our definition problems. These methods are the

composite standard [13] and the proposed by Guttman [14].

The other method for collection of data for comparative
Judgment {s ¢the method of rank order. In this method, the
subject is asked to arrange a set of stimuli in accordance
with the amount of some property. This method differs
psycheclogically from the pairs comparisons in the stimuli are
all presented at the same time and bhence the Judgment are
ﬁade in the <context of the total range, whereas the total
range enters into pair comparisons only by way of some memory
process, To derive, a scale from rvank data is ordinarily
accomplished in one of two ways. The first assume that the
stimuli were drawn from a population of stimuli that is
normally distributed with respect ¢t the property of
interest. fhe second method is derived from ¢the LCJ (131],
The advantage of this method is less time consuming that the
method of pair comparison. The method of categorical
Judgment was developed by Tognrsdn 4. The subject is
prvesented with a succession of stimuli that he is to place in
appropiate category, where the experimenter has determined

the number of categories to be used. This method is no




appropriated for our experiment.

Of all the techniques mentioned, the best teqhniﬁue that

e

seems suitable for our experiment purpose is the> LCJ. The
data <collection will follow the method of pairedfcomparison.
The LCJ is applicable not only to the comparison of physical
stimuli intensities but also ¢to qualiltative comparative
Judgment such as those of excellence of specimens in an
educational scale, and it has been applied in.the’measurement
of such psychological wvalues as a serias of opinions on
disputedApublic issues., Also, it has been used for scaling
social valves, nationality preferences. temperature~
moisture, the lifted~welght experiment, etc. More recently
this law was vused by Tamura et al. (15) to construct a
psychometric prototypes with which the measures computed from
a set of texture could be compared. In the next section, a

3

complete discususion on the LCJ is given,




3. -THE LAW OF COMPARATIVE JUDGMENT (LCJ)

A. The Psychological Theory

-.

Thurstone €3] postulates an onei%imensional

% psychological scale onto which stimuli (texture pairs) are

mapped. The nature of this scale is left unspecified: it
may be psychic, physiological or both. The concepts is as
follow: each time a stimvlus (tezture pairs) is presented it
is presumed to be represented by a point along the
psychological scale. The location of the point is determined
by an unknown discriminal process by which the organism
identifies, distinguishes, discriminates, or reacts to
stimuli. Because of the uncertain nature of a pevson‘s
perceptual state, the same stimulus does not always excite
the same discriminal process, It is assumed that vepeated
occurrences of a stimulus produce & distribution called a
discriminal dispersion of such  processes along  the
psychological .scale. A novmal distridbution is wusually
~assumed. These vandom events will tend to describe @& normal
distributiop around a mean. The mean is associated with the
s¢ale value of the stimuvlus, and the ~standard deviation s
interpreted as the unit of meisurement along the internal

sCale.

For convenience. Thurstone represented each stimvlius on

& hypothetical psychological continuum by ¢the single
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discriminal process corresponding ¢to the mean of its
discriminal dispersion. By using the standard deviation of
the discriminal dispersions as units of measure, gcalé value
are then established. Thus the means of the;discriminal
dispersions are the scale -values measured on ;n interval

scale in wunits of standard deviation. Pairs of stimuli are

represented for judgment to obtain an empirizal estimates of

the distance along the psychological scale separating each

stimulus from every other one,

Lets consider the theroretical distribution of
discriminal processes for any two stimulus §y and k as show in
figure 1. These stimuli are associated on the psychological
sctale with theirs respective normal discriminal dispersion

with means uk and uy and standard deviation §k and (7.

STIMULUS

Figure 1, Discriminal dispersion for stimuli j and k.
The means of the hypothetical distributions
. are uj and uy with standard deviation G=U,

I — D L ——
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If the two stimulus were presented together to an observer on
@ large number of occasions, each would excite a discriminal
process on each presentation. i.e., a point along the scale.
These ¢two discriminal proceses are compared.f On ¢those
occasion when ¢the process associated with k is g;eater than
the process for, § the observed will jJudge k to be greater
thaﬁ J: an vice versa. Since ¢the ¢two distributions are
normal, no value for & process is impossible. The two
distribution will overlap, and theoretically a stimulus will
not be judged greaver than another on 100X of the trials. In
figure 1, it is clear that &k will be judged greater than § on
most occasions since most of the distribution for k has
higher values that the one for . But assuming random
sampling from each distribution, we can expect a reversal

once in a while () > k),

In the analysis of stimulus pairs, one does not divectly
measure the variance and means of individual discriminal
dispersions. Instead, one is vreceiving information on the
distributiqp geravated by all possible pairs of processes

selected from the two discriminal dispersions. One needs to

have the appropriate assumptions in which the information on

the individual dispersions s directly translated into
information on ¢the distribution 69 diffevences and vice

versa.
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Figure 2 shows the distribution associated with " four
stumuli: 1,2,3, and 4. The scale value for stimulus 1 is

ul, of stimulus 2 is u2.etc.

R ";".'

_,.z”A
\l| U2 u-_u, u«t

Figure 2. Distributions of discriminal processes
associated with four stimuli,

v

" B. The Law of Comparative Judgment

One wisties to estimate the distance between stimuli and
use this information to locate the stimuli relative to each
otaer along one dimensional psychological scale. Lets assume
that each peir is associated with a single hypothetical

distrifutioa of differences generated by pairing all possible




discriminal processes in § with all discriminal processes in
k. Therefore, ¢the subject uses ¢the differences in the

ﬁagnitude of discriminal processes to make & Becision

~

concerning the dominance of one stimulus over another. From

statistics, the difference.between the means of ftwo normal
distribution is ,equal ¢to the mean of their differences.
Then, to find the differences in scale values for two
stimuius (k and J), the mean of their distribution of
differences has to be found. %his mean can be measured
arbitrarily from a point representing those cases where the
differance between two discriminal processes, one for each
stimulus, is O. Lets locate, for convenience:, the zero point
as the mean discriminal process for the stimulus j. i.e..
fhis transformation may be done by substrating the original
mean vy from all discriminal process in both distribution.
Then the mean of the discriminel dispersion of j is now zero
(uy = uy = 0), and the mean of the discriminal dispersion o#f
k is now uk - uy. This value is also ¢the mean of the
difference between all possible discriminal dispersions. To
prove this yecall the new distribution was created by taking
differences between pairs of discriminal process, one from

each of the discriminal disgersions.

Let pick a discriminal process with & value s from
distribution &k and calculate the mean difference betueen s

and all discriminal processes in J. This average will be s,
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since the discriminal dispersion of J is symmetric around O.
That is: for every discriminal process with value x there |is
one with value -x with the same density definéd by the
discriminal dispersion of J, and»their effects %ancel. I¢
one rtepeats ¢his procedufe for all discriminal érocesses in
k produces. a symmetric distribution around uk - uy will
resglt. Then the mean of the difference of the discriminal
dispersion is‘uk - uy. _

Figure 3 presents a hypothetical distribution of
differences, with a mean uk - uy and a standard deviation

ok,. The shaded area in the figure B indicates  the

proportion of times the difference dk - d) was positive, and

the unshaded area indicates the proportion of time dk =~ dy
was negative. di is an arbitrary discriminal process for

stimuli {.

PROBABILITY

DIFFERENCES (dy-d;)

Ak ey

Figure 3. Hypothetical normal distribution of
differences between discriminal
processes (dy - dj). Data obtained
by paiving stimuli § and X on wany
occasions.




The normal density function may be defined by the
egquation:
N 2 i ’
pcx) =4 exp [—%ﬁ‘ﬂ] = (1)

Gu®
The total area under the curve is 1. By integrating equation

1 the area under, any section of the curve may be determined.

X 2
L -(3-.\0]
P& ) e dy (2)

The distribution function can not be expressed in closed form
in terms of elementary functions, The distribution function
is wusually tabulated for a normal random variable that has a
mean value of zero and a vaviance of unity (standard normal

distribution), It is often designated by i(x) and is defined

b = _ﬁ%m!wxexp [* z/g}zd;, (3)

By converting the probability with which & > § (shaded avea

by

on figuve Q) into a cumulative standavd novmal distribution.
one obtains & standarlized aeasure uf the difference betuween
discriminﬁg processes (vk = u3). Therefore,
ZK'S « WYw -:\15 | (4)
Ok
where @iy iv the standard deviation of the differences of
-stimuius pair. The standard deviation of the difference

betueen twé novinal distvibution is

Ocj = \]Ef + 022-2“:30;3'& ()
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where vyk is the correlation coefficient. For the derivation

of equation 5 see appendix A. Rearranging equation 4

Ui - Uy = Zky G : e

substituting equation 5 into equation -y one obtain

Thurstone’s complete law of comparative judgment
. . 2 2 \%
Uk - U3 = st (G'k"-i—ﬂ'} - th'K()i) (.’7)

where uk and vy are the mean wvalue for stimuli &k and
respectivelyy. 6k and &5 are the standard deviation for
stimuli k anﬂlJ. vky is the correlation coefficient between
stimluli k and Jo Zky is the normal deviate corvesponding to
thé theoretical proportion of time stimulus &k is Judged

greater than stimulus .

The LCJ is not sclvable in its complete form: since,
vregardless of the number of stimuli, there 'are always:, move
unknouns than obsevvation equations. For examples, with n
stimuli, cChere are n scale values: n standard deviation, and
n{n-1)/72 iqﬁepondont correlation which are unknown, The zero

point of the scale can be set arbitrarily at the scale value

of one stimulus, and the unit can be taken as one of the

standard deviation, leaving 2(n-1) + n(n-1)/2 wunknowns.
Against this we bhave only nin-1)/2 cobservation equations -
one for each independently observable proportion. The number

of equations is always 2(n-1) less than the number of
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unknowns. Symplifying hypotheses are thus necessary in order

to make the law workable.

<

T
Thurstone U[3] presented five cases of the LCJ. In case

1, the complete form of the LCJ can be used making at least
one assumption. , The correlation between discriminal
deviation is practicillq constant throughout ¢the stimulus
series and for single observer. Case 2 is the same as case
1. The only difference is the wuse of several observers.
Case 3/ case 4, and case 9 denote three special sets of
equations'obtained from various simplifying assumptions. For
the measurement definition problem, case 4 of the ULCJ was
implemented (see next section). Lets now present the

approach followed by Thurstone (3] to develop case 4,

In case 4 Thurstone assumes the correlation coefficient
is equal to 2ero and the standard deviatién is not subjgect o
gross variation. MWith those assumptions, the complete ¢form
of the LCJ can be simplitied so that it becomes linear. I¢
the correlatéon coefficient is zevro (v = 0), wusing equation

7, the law takes the following form

U -U§ = Zey (0 +03 )% (8)

Assume that

Ok =63 +d




in which d is assume to be smaller than ). Equation 8

becomes
4
U - U = Zef ((63 44 ) +q;1)/5 *
= Zes (624 2@ d +4% 6%

2
. The term dT may be dropped if d is small.

Ue-Uy = 2 (64 26d +07 )%

= Zk4 (2(73)//2 (6 +d§'/3 (t0)

Let expand the term (@) + d)1/2 in equation 10 , and lets use

the first two terms.
War, o, g\
Uy - Uy = 2 6 @) “ L (G) A -+ ]
-7 (26 + d|i] )
Rewriting equation 9 as follow

| d =g - T (12)

Substituting equation 12 in equation 11, one obtains
U U =25 B G +(0-5) | ]

=264 [ G| + G i3] (13)
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Equation 13 is the case 4 of the LCJ.

In (4], Torgerson found an approximating eﬂuaéion for
the LCJ that is formally identically with the iquation 13.
He assumed that the c correlation coefficient are all equal
and the difference between standard deviation are small. The

equation is as follows:
Uk - Uj = Zxi ((\-t")lay/é (ox +05) (14)

He demonstrated that the assumption of r=0 was unnecessarily
restricting. One needs only to assume that the correlation

are all equal. For the demotration of sguation 14 the reader

is referred to reference 4.

C.~ The Method of Paired Comparisons

The law of comparative Jjudgment assume that each
stimulus has been compared with each other stimulus a lavge
number of times. Hence, the law vequires that data of the
form “the proportion oé times any stimuvlus &k is Juﬂged
greater than any other stimulus “ ave available, The direct
method for obtaining empivical estimates of these proportions
is knoun as the method of paired comparisons. This method is
eisentially a generalization of the two-category case of the
method of constant stimuli, where in the method of constant
stimuli, each stimulus is compared with & single standard and

in pcirod' comparisons each stimulus serves (in turn, as the

s b T A TIORT (3 e




standard. In paired comparisons, each stimulus is paired
with each other, that means that with n stimuli there are
thus n(n-1)/2 pairs. Each pair is presented to tﬁg §ubJect,
whose ¢task is ¢to indicate which meﬁber of the ;air appears
greater with respect to the attribute ¢to be scaled. The
subject must designate one of the pair as greater, and no
subject must designate one of the pair as greater, and no
equélitq Judgments are allowed. This is consistent with the

derivation of the law , wherein the probability of a zero

discriminal differences is vanishingly small.

To obtain data from which the proportion may be
estimated. a large number of comparison have to be made for
each pair of stimuli. There exist three alternatives where
the necessary replication might be obtained:

1. having & single subject yudge each pair a large
number of times, )
2. many subjects each judge each pair once, or
3. several subjects each Judge each pair several
v times,
The choice of these alternatives will may depend on the

purpose o#f -tho experiment, the extent o¢ individual

differences, and the nature of the stimuli.

Cauvtion has to be taken in order to use either the first

or third aiternativa that the stimuli should be such that no

e T ‘1




extraneous differentiation cues are available to the subject.
If ¢the subjact can identify the stimulus pairs, there is the

possibility that he will base his later Judgments on his

memory of his earlier judgments of the pair. ¥

In the %aw of comparative judgment, no explicit
provision is made for time or space errors. Nor is thefe
provision for changes in parformance due to fatigue or
pr;ctice effects, or for judgments based in poart on factors
other than ¢he relative magnitudes of the discriminal
processes. Then, it is necessary to control experimentally
the conditions ¢that might introduce these biasing effects.
Most of these factors can be controlled in the assignment of

the relative positions (spatial or temporal) of the members

of each stimulus pair and the order of presentation of the

pair themselves. An experiment can be controlled by
randomization of relative positions and of orders. This
methoed is not the most efficient one. Move efficient methods
use counterbalancing procedures. For example, time (or
tpace) errors can be controlled by arranging the members of
the pairs vso that half the time each stimulus appears first
{or to the left, below, etc.) and half the time second (to
%bo right: above, etc.). Perhaps, the best procedure is to
counterbalance each pair of stimuli: e 9.. with stimulus

pair g, k, present ) first half the time, k firct the other

half. Practice or fatigue effects can be controlled by




reversing ¢the order of presentation of the pairs for half of

the subject (or trials).

(LRI

In [4], Togerson presents a list of . additional
precauvtion, some of which.maq or may not be relevant for any
given experiment., These additiPnal precaution are:

1. Keeping pairs having one stimulus in common
maximally separated in the order of presentation.

2. Arranging pairs so that "correct" responses are
approximately evenly divided between first and
second memebers of the pairs.

3. Arranging pairs so that there is no detectable
systematic pattern of “correct" responses.

4. Arranging pairs so that there is no systematic
variation in difficulty of yudgment.

9. Varying the order of presentation from trial to
trial to eliminate serial learning of & vesponse

pattern.

Ross g}?] gives a table of the balanced optimal orders
for o0dd numbers of members from five to seventeen, Also, he
lpresented tis general wmethod ¢for calculating ovders of
presentation. His ovders ave optimal in the sense that &)
each stimulus appears first in halé the pairs of which it is
a member, blpairs having one stiamvlve in common are marimally

sepavated in the order of presentations and c) there is no
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detectable pattern of “correct" responses. His orders have
the €ollowing a&vantagu;:
1. They maintain the greatest possible spacing
between paivs involving identical membé%s.
2. Thay are so balanced as to remove tim! ;nd
space erros.
3. They avoid regular repetitions which might
have suggestion effectis.
4. By repeating the series in reverse ordev
fatigue effects may be balanced out.
'S. From these orders for odd-number of members.
the optimum even-number orders may be

obtained by a simple rule,

In (163, Wherry shows that Rose’s optimum lists are not
optimum in all senses, and he presented an eampivically
devived list for seven items which is superiovr to the list
given by Ross (18], Also, a method is given, wheveby any
list, arvived at either vationally ov empirically, mayg be
rewritten ;}n Bn different ways: by uvse of 4 step given in

€16). It is shoun that 2n of these lists may be combined in

-such a fashion that fatigue effects arve cancelled out.




4. —-ANALYTICAL PROCEDURES

~The complefe' form of the law of comparative judgment

-

-

(ch) is

U - Us:Zk's(G'k1+W51'-2rKSG—KGDI/2 (15)

An experimental test of the complete LCJ has not been
conducted because of the problems encountered in determining
values for ¢the vunknowns, standard deviation and the
correlation coefficient between pairs ([12]. Simplifying
#ssuptions are vsvally made to reduce these difficulties (see
section 3 ). The model more widely employed is Thurstone’s
case V (r(k, j)=0 and ‘&gﬁ? ). Case V assumes that one can
ignore the standard deviation associated with individual
stimuli because they are constant and their discriminal
processes are uncorrelated. That is, knowing the occurrence
of a discriminal process from one distribution would not help
us prédict the discriminal process from another. Because for
our case }fhe stimuli are complex ¢the best fit for our
observational data is necessary. We select case IV for the
fitting of our observational data and propose a method based
on the solution of tﬁe complete form of the LCJ which has
less restrited assumpéion that case IV. Before describing
Case IV and our proposed method, we describe how the

observational data is rearrange to be used by either method.



After each of the n(n-1)/2 pairs of stimuli have been
presented a large number of times, we have as raw data the
number of times each stimulus was Judged greateg than each
other stimulus. These observed frequencies may be arranged
in the n x n squared matrix R. The general element r(jy. k) ,
which appears at/the intersection of ¢the jth row and kth
cnlumn, denotes the observed number of times stimulus k was
Juﬂged greater than stimulus . The diagonal cells of matrix
R will ordinarily be left vacant. No comparisons are made
between the same stimulus. Since the symmetric cells (e.g..,

r(2,3) and r(3,2)) sum to the total number of Jjudgments made,

the matrix contains n(n-1)/2 independent cells.

Lets construct matrix P from matrix R. The element
p(y, k) is obtafned by dividing the element r(y, k) by the
number of total observation, and it is the observed
proportion of ¢times stimulus &k was judged greater than
stimulus . Diagonal «cells are ,again, ordinarily left

vacant. Symmetric cells now sum to unity (e.g., p(2,3) +

p(3,2)=1)."

After the matrix P is constructed, the basic
transformation matrix X, is constructed. The element x(y, k)
is the wunit normal deviate corresponding to the element
p(yr k), and may be obtained by referring to a table of areas

under ¢the wunit normal curve. The element x(j, k) will be



positive for all values of p(y,k} 2ver 0.50, and negative for
all values of p(y, k) under 0. 50. Proportions of 1,00 and

0. 00 cannot be used since the x values corresponding to these

-

proportions are unboundedly 1large. When such proportions
‘occur, the corresponding cells in matrix X are left wvacant.
Zeros are entered in the diagonal cells since we can
ordinarily assume that here U(ﬁ)-U(J) = 0. The matrix 1is
skew-symmetric: that is, the symmetric elements sum to zero,

since, e.g., x(2,3)= - x(3,2).

Matrix X contains the sample estimates x(j, k) of the
tﬁeoretical values found in the equation of the law of
comparative gjudgment. The element x(j, k) is an estimates of
the difference (U(k)—u(J) } between scale values of the two
stimuli measured in wunits of the standard deviation of the
distribution of discriminal differences .. Each independent
element of matrix, X is an estimate of a value for one

rd

equation of the law.

In casg IV of the LCJ, the assumptions are that the
discriminal dispersion are not subject to gross variation and
the correlation term is zero. Assuming these two
conditions,a linear equation is obtained (see section 3)1

The equation is

Uw - Uiz Zei[lz (G +0) (16)



Togerson [4] demonstrated “hat the explicit assumption of

zero correlation was unnecessarily restricting. He got the .

| i same result as Thurstone assumidg the correlation ferm equals

for each pair of comparation and small difference between

discriminal dispersion. The approximate equation is \

W~y = i (02 (a0)) ()

where equation 16 and 17 are equal if the correlation term is

equal to z2ero.

Two method have been presented in the literature for the

sblution of Case IV. The +first method wae proposed by

Thurstone (18], 1In this method, the standard deviation must
ch be estimated from the observational data and then the means
ere calculated, Burros (191 presented an alternative
approximation formula for the estimation of the standard

deviation, This approximation yields the same value of

standard deviation as Thurstone‘s method, and involves less

labor calculation. The second method is proposed by Gibson
[203. His Vhethod consists of a least-square solution for
case IV, He displayed case IV as a system of homogeneous
linear equations for which a least-square solution is
presented, wvsing various conditional equation which fix the

origin and the unit of measurement. However, the

computational labor that would be involved in obtaining a

numerical solution is such that it has not yet bdeen applied

;
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to data.

Method A

\1|\ "

This method estimates the standard deviation using

’

Gh=Blve -1  (kelooon) (\8)

where
N
B-&M/éi/\/,(

Ve IN2Z 2 - (Z20) ]//Q/M

(19)

Using the values obtained for the standard deviation, the

écale values (means) of the stimuli_ may be obtained as

follows
N N
ﬂ U\s= (crkz_Z“ *ZG_\ZiK)/N K=(4,..-N) ( 20)
H | 4=l ) :
.. /
where the cdonstant A is an unknown stretching factor. This

constant may be equal to the square root of 2 (Thurstone) ,
‘may be equally to unity, some larger valuve, or equal ¢to

SQRT(2/(1-r)) ([41]. See references [18,4,19] for a complete

derivation of the method A equations. -

Method B
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In ¢this method, the scaling (means) and standard
deviation are obtained by solving a system of linear
equations. Lets write the equétions for a four stimuli

comparation as follows:

-

U-Uz = 210 (@@ Iz
ul"u3 2'3 (G"+€33Ni
Uv-Ua = 24 (G482 ()
Uz-Us = 25 (Ta@)I2
U2-Uq =2y (T403)I2
Us-Uq =Z3¢ (H2G)IN2

These equations constitute a set of six linearly independent
homogeneous linear equations in eight wunknowns. Lets
arbitrarily select a zero point and the unit of measurement
as follows:

. W =0 (22)

and
G.‘l‘: i . (23)
Lets substitute equations 22 and 23 into equation 21. We get

the following set of six linear equations in six unknowns:

- \17_ -21&.6’-'@ . s 2-2. Ifi

~ U3 -20%G)7 “i?).blf
- U - 24 Gl 24Nz (24)

U, . \ls - 203 02INE - 70303 [(Z f
Uz - Uy - Z2q G 12 - 2244 112 =

Uy -U4q- Zuﬁ;lr ~-ZuGlz =0

".'».'."“ }lj“ R
Co R 4 & .

. N NJ,‘,’».)( - .
e — o : T S Al i e gt s




Solving equation ([(24), a unique solution,except for the
/
origin and the wunit of measurement, is possible with four

stimuli, while an overdetermined solution will be .available

h 4
"for more than four stimuli. In matrix form, equation 24 can

’

‘be stated as follouws:

’

/<V © 6 -2l © o o, F
C-1o o -zlsl'rg o] Uy Zi3iv3
Oo- o 0 -2 W | 214 WZ
b -l o -l -2l o T | = e
I o4 -2ulE 0 -2l /| G o
O -l o .2l 2k \¥ s)

C - (25)

1

Since'A is square for four stimuli, the unique solution is

BR=AC, (26)

For more than four stimuli, a solution for equation 24 can be

obtained f%om
B~ (KAY AC. G

Equation 27 is a least-square solution in the sense that the
means and ¢the standard deviation minimize the sum of the

squared discrepancies of the entries in the matrix product



AB, from the corresponding entries in C.

I¢# equations 22 and 23 are replaced by equation 28 and
T
29, one obtains a greater degree of symmetry which will

involve more of the unkowns in each of the observation

equations.

( 28)

i(\‘z N . (29)
l:!

Lets multiply equatxon 29 by 1/sqrt() z(y. k) to obtainm

Z“‘ ZV = ——-—-— 25K (30}

"Adding equation &8 and the appropriate equatton 30 to

equations 21 for five stimuli in matrix form:

0 Zuli Lafi Bl (mm.

p;:::;\

- o e we N

2l O iz 20l N2z
Zulii Tallz O 20z \ [ | N2
2 Ll lS'ﬁ (o] Nzgglfa-

0 o 2 22 N1l

0 Zyll O Wi N2mlB

o zmﬁ. z.sln 0 W)

Zauliz N 2341
SV 2 i O 2
s I séli("z AT st I ‘ ‘ 23 ‘»‘lf"
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For five stimuli the solution to equation 31 is

F=t'q. (D)

; s
For more than five the solution to equation 31 is

| Fe (FEY G . (9

Y.

In method B, the computational load is quite heavy but ¢this
solution has the advantage of providing the best-fitting mean
(ranking)} and standard deviation values for a set ,Lof

paired~comparison data.

I¢ the stimuli compared are very complex, the
gssumptions for case IV are not valid and the solution
obtained will not be the best—-fitting mean and discriminal
dispersion for ¢the observational data. Maybe the best
'soldtion will be the use of the complete form of the LCJ.

Until now, an experimental test of the complete form of the

LCJ has not been conducted because of the problems
encountered in determining values for the unknowns
( ug,us,ws 0%y Ye.q) [12]. Lets now present a method

of getting a solution based on least—-squares for the complete
form of the LCJ assuming the correlation term to be constant

(Method C). Equation 34 shows this.

/
M - Uj = 2ei (O + 0 - 2raug;) 2 (34)

or

/
Zi = (Uy -U7)/ (wd +f,-‘-2r6'.<(q)/“, (35)



where eguation 35 is a nonlinear equation. Lets rewrite

equation 35 as
FO= Ue-Jwé e 2emead® R

where -
x = (“l)uz, "")““’m,ﬁ-z,.-nu-“lr)
Apply a Taylor expansion to equation 36 and use the first two

terms of the series.

§ci)=§c%)+ 3_53_ &%\)(i %) 3D

S(?O' &c.l’o): (

which in matrix form is,

_ , 35‘
({W) e 3, ?, 3“:.

L4
[

.
.
]

R A Y o

where R is a matrix which each element is given by the
difference x(kiy) = €(Xg ). The size of this matrix is
n(n=-1)/2 rows by 1 column. A is & matrix wiere each elemsnt
is & partial dervivative of the function #( X ) evaluvated for

Xo. The size of - this mat_rii is nin=-1)/2 vows bty 2n+!




columns,. Y is a matrix of the unknown variables miqus the

initial condition X,. The size of the matrix is 2n + 1 rouws

by 1 column. Multiply both side of equation 37 by the
ks

transpose of matrix A (A’).

AR =AAY o

Equatioh 40 is a least squares solution (see appendiz B).
If equation 40 is multiply by (A’‘A) , then we obtain
i N '
but
then
X= Y +Xo
The first N elements of the X are our scaling or rvanking of

the N-stimulus.

In ﬁbe next section, the computer implementation for

method A is presented.




9. ~COMPUTER IMPLEMENTATION
This section presents the algorithm used for the
implementation of method A presented as the solution for case
IV of the law of comparative judgment (LCJ). Methods B and

C have not been implemented yet. In this section, we will

propose an algorithm for both methods.
METHCD A

This method is implemented wusing ¢the subroutine
fCIV. Given a&s an input the basic transformation matrix X
‘which each element is the normal deviate corrvesponding to the
proportion of empirical judgment )24, and the total number of
stimulis wvsed N, the algorithm used to construct this

subroutine is as follows:
a) Sum each column of mateix X

SX (k) -)2 ng AX=42.uN,
3

b) Sum the square of each element of matvix X

by coluan

2
sc)x(x\#};, Eje 3,k=12, N,




c) Multiply the sum of the squares by the

total number of stimuli by column

SQXN (R N;z&i :

’

d) Square the sum of each column of matrix X

by column

| 2
SQSX(K) ¥ (56_::“(\ ,

®) The square root of the difference of step

¢ and d is obtained by column

ﬂh
XNV K) 2 (SQxnl) - SQSXK)

) The inverse of step J is obtained by column

Xy (0 =2 L/ xnvoo.

g) The sum of the inverse of step e

obtained

SUMINV 5 » XIXNVIK).
. K

h) XNB is obtained

XNB <> 2NJsuminv.




i) The standard deviation is now obtained by

column

a () = XNB & XINV(K) -4 .5

’

J) Check if the sum of standard deviations are

equal ta N

Yoy =N,
K

k) In this step the sum of the elements of

matrix X by row is obtained

SRX () %z;,‘ .

1) Multiply each rvesult of step k by the

corresponding discriminal dispersion

SXRY U5Y SRX (3% #a7ti),

m) Multiply step & by the discriminal

dispersion
SXSX (k) =5 SX(K) AT Y.,
n) The di¢ference 0Ff stép a and step 1 is
i
e ————— — - e . —— —




obtained

XS L) = SXSX KV -SXRX (K), -

o) Divide XS(k) by the total number of stimuli

- and the scaling fsr each stimuli is obtained.

S > XS(kY /v,

p) Check for the sum of the scaling

D sy = 0,

K

METHOD B

Like method A, the inputs are matrix X and a

variable N. The algorithm is as follouws:
a) Create matrix € and G.
b} Check for the number of stimuli N,

1) If# n is less than § stop.

2) I€ N is no tunI 5 go to step ¢




e A e L e

3) else

1- Get the inverse ?0 matrix E.
2- Multiply the inverse of
matrix £ iby matrix 6.
3- Matrix F will contain the
ranking and the standard
deviation.
4- Go to step h.

¢). Get the transpose of E (E’).

d) Multiply matrix E° by E and matrix E’ by G

e) Qet the inverse of the multiplication of
mateix E’ by E.

£) Multiply the results of step e by the

vesults obtained in step d for the multiplication of matrix

E’ by 0.




g) The results of step £ is the matrix F that
contains the ranking and standard deviation. '
2
h} Check if the sum of the first N elements of
the matrix F are equal to zero, and the szum of the last N

z
elements are equal to N.

i) Stop.

METHOD C

Like the other two methods, the input will be the
matrix X and the total number of stimuli N. This method
needs an initial condition, The resylt ocbtained from wmethod
A or method B can be used a&s initial condition. If method A
is vsed, the injitial condition for the correlation term s
set to negative cne. For method B, it is set to zero. The
algorithm is ags follows:

v

a) Construct matriz A and matrix R.
b). Find the tvanspose of matrix A (A’

¢) Find the inverse of the product A‘A.




R

T T 1 g S o
Cat o : ) . Lo

P

d) Multiply the transpose A’ by R,
e) Multiply the vesults of step ¢ ?q step d.

¥) Check the elements of the matrix resulting
from step e. If &all the elements are less than a giving

accuracy go to g else go to h.

g) The results is the sum of the results of

step e plus the initial condition. Stop.

h}Sum ¢the results of step e plus the initial
condition. This vesul$ will be the new initial condition.

Go to a.

in appendix C, the listing of the_ program for method A

is presented.




6. —-RESULTS

This section presents the results obtained for two given data
sets. The two data sets were obtained from references
(4.18]. The results cbtainéd by our program arvre compared

‘with ¢the results alveady published in rcferences (4, 181.

-

The first data set were taken from reference [4]. Table 1

shows the data set. The results given by Torgerson (4] are

showed in table 2. Table 3 shows our vesults, which agree

with the results given in table 2.

Maraix X
a . . Stimuli &
B i 2 3 4 s
1| 00000 02778 06818 12500 1,2500
A 2 [~02776 00000 05000 10714 11384
Stimulij 3 [—0.6818 —0.5000 0.0000 02778 05749
4 =120 ~1.074 02778 00000  0.5000 :
5| =12500 «1.1364 ~0.5769 —0.5000 0,000 lf
|
N Table 1. Data Set Given by Torgerson (6}
F. Al for his Illustrative Example.

Stimoli
1 2 b} 4 3

vt s AR 2 g

SCALING| —1417 —0893 0129 063 1343 |

[ 3 -

- R

Table 2. Results Given by Torgerson {4).




MATRIX X

0.0000 0Or2778 0.6818 1.03500 1. 2500
=0.2778 0.0000 0.5000 1.0714 1.1361
~0. 6818 -0.5000 0.0000 0.2778 0.578%7
~1. 2500 -1.0714 -0.2778 0. G00C 0. 5000
=1.2500 -1.1364 -0. 57469 0. 500G 0. 0000

STD. DeV. ( iji= 1. 0623344

ETD. DEV. ( 2= 6. 847030

STD. DEV. ( Q3i= 1.214482

STD. DEV. { 471~ G. 585500

S8TDh. bV, ( Oi: 1. REBAT70

ECALING ( 1) ~-1.4163595

ECALING ( 2= 0. 872Rs0

SCALING ( )= 0. 1e3dH4l

SCALING ¢ 4): G. 632480 :
SCALING ( D= 1. 5A%13Y

Table 3. Results Obtained by our Program TCIV.

The second data set were taken from reference (181. These
data were obtained experimentally by Thurstone. Tﬁese data
consists of thirteen nationalities or races. Each one of
this nationality was paired with eQerq other nationality.

The number of pair was 78. These pairs were arranged in a

F 4
R duced from
b:?troavuailable copy}




printed schedule and were submitted ¢o 250 high school
children in Chicago. The instruction were given with the
following printed schedule.

This is an experimental study of attitudes toward races
and nationalities. You are asked merely to underline the
one nationality, or race, of each pair that you would
rather associate with. For example, the first pair is:
ENGLISHMAN - SOUTH AMERICANS
If in general, you prefer to associate with ENGLISHMAN
rather than with SOUTH AMERICANS, underline ENGLISHMAN.
If you prefer, in general, to associate with SOUTH
AMERICANS: underline SOUTH AMERICANS. If you find it
"difficult to decide for any pair, simply underline one
of them anyway. If two nationalities are about equally
well liked, they will have about the same number of
underlinings in all of the papers. Be sure to underline
one of eack pair even if you have to make a sort of
guess. :

Table 4 shows the eiperimental proportien. It shows the
proportion of the subjects who preferred each nationality at
the top of the table:, to each nationality at the side of the
table. For example, the proportion of subjects who preferred

ENGLISHMAN to GSOUTH AMERICANS was .935. The proportion of
subjects who preferred SOUTH AMERICANS to ENGLISHMAN was

068, wince intermediate categovies of Jjudgment were not

allowed., Table 9 shows the X—-values, and Table & shows the
results fot the standard deviation and the scaling value for
vach nationality. Table 7 shows the results obtained by our
program. The standavd deviation results agree with table 6.
The scaling results are different, ‘because our stretching
factor A is equal to one. If one divides our scaling results

by 1/V2, A=1/VZ, one obtains the same results as table 6&.




EXPERIMENTAL PROPORTIONS

1 2 ¢ 3 [ ? 9 101|121
Eng.{ Cs. | Fr. | Ir. | Sc. | Sw. | Ge. | Ho. ! Sp. | Be. [S.A. | Jew | It.
. 1...... Eng.|....|.388].218|.324.165|.221|,227|.162|. 144{.103|.065(.155{.066
-~ 2...... Ca. |.612]....].457].406].280].260|.297].102|.201}.100|.088|.180/.073
3...... Fr. |.782|.543|....].541|.500(.370].380].255|.184(.214|.149}.192].081
4...... Ir. |.676].594{.459}. ...

.361{.3871.3781.253|.273).2431.162|.221.128

- S...... Sc. |.835{.720|.500{.639]....1.400|.409].268|. 249|.258|. 262|.223|.128
6...... Sw. |.779].740(.630{.613|.600]. ...1.471{ 444(.377|.317|.318|.229|.228

Toooo. Ge. 1.773|.703].620|.622|.591|.529|. ...1.347].3911.325|.343{.253|.152

; 8...... Ho. |.838].898(.745|.747|.732].556/.653|. ...1.471|.432].389!.263).310

9...... Sp. |.856(.799(.816;.727].751].623|.609|.529]. ...].510].422].289].217

10...... Be. [.897(.900(.786{.757|.742|.683|.675{.568].490|. . . .|.461|.360|.271

n...... S.A.|.935/.912|.851.838|. 738.682|.655].611|.578).539]. .. .|.420].320

12...... ew |.845|.820|.808).7791.777(.771].747|.737|.711{.640/.580(....|.524

3...... t. 1.934].927/.919].872].872(.772|.848}. 690].783(.729.680{.476.. ...

Table 4. Experimental Proportion Given by
Thurstone (18).

-, .
X-VALUES
| ] H 3 ) ? ] L 10 1 12 13
Eng Ca. Fe Ir Se Sw Ge. He Sp. Be S.A Jew N
1Eng...] 00 |~ 28|~ 78| 46~ 07| 07| = 95| = 99| =106 | =1.26 | =1.51 | —=1.02 | — 1.50
. 2Cs 28 | 00[~ a0 |~20]|~ 58] <6t~ 8| 027|804 =1.28] ~1035| ~ 02| = 1.4
[ 3Fo...| 8t 1| o 10 — 3|~ A~ 66 = 90|~ 19| ~1.04 |~ 87|~ 1,40
. ' LU T I R T P w 36| =20 |~ 3| = 67| =60~ 0| |~ |~ 114
sse o e | 0| 3 25| 23 e 62)~ 08|~ 68|~ 64 = 26|~ 814
6 Swuna| M7 6| 33| of 28 00 07|~ 4|~ 3 {= 8= 40|~ 2|18
| 7G| 8 S| S M| 2] o] 00— 39| 28|~ 45| - 0] = 167 |~ 100
| 8Ho....l 00 | 127 le| 6| ea| ae| | 00|=07]|= 7|~ .2]|- 6]~ 50
i 98| 106 | Bl w0 el e8| M| | o] w] 03— 0]~ 56|~ 7
. W0Be....| 126 | va| 9| 0| es| w| ws] arf{-—03| 00|~ 0|~ %[~ e
1 SA.| 1St | LBE oo | | 280 a0l 0| eol-.0f-
12 Jew....| 102 02 b m| er] . 36l o) oo 06
B 0S| v v ]| e s oves| so] | a| |- ®| oo

- ';-' Table 5. X-Values given by Thurstome (18}.




L

1 English........... 1.4050 -
2 Canadian......... .8718
3 French............ .4902
4 Irish......oovnnene €159
S Scotch............ .2828
6 Swede............ .1029
7 Germas........ .1298
8 Hollander......... - .2573
9 Spaniadd.......... - .280S.
10 Belgian........... - 4229
11 Soutb American....| — .5686
12 Jew, . ceeeenennen, —~1.2540
13 Itabian............ —1.1151
Table 6. Results Given by Thurstone (18).
/7 S7D. DEV. ( 1)
STD. DEV. ( Z:=
ETD. DEV. ( Zi=
€7D, REV. ( 4=
ETD. DEV. ( S)=
ETh. DEV. ( &)=
STDh. DREV. ( 7=
STh. DY, ( 8w
ETD. DEV. ( ©:=
€7D, DEV. «i0Q)=
STD. DEV. (11)=
STD. DEV. (12)=
STD. DEV. (12)=
SCALING ( 1)= 1
.. SCALLING ( 2)= 1.
AN SCALING ( 3)= v
SCALING ( 4)= 0.
SCALING ( 5)= 0.
SCALING ( &)= 0.
SCALING ¢ 7)== 0.
SCALING ( 8)= -0.
SCALING ( &)= -0.
SCALING (10)= -0.
SCALTING (11)= =90,
SCALLING (12)= -1
SCALING (13)= -1,
Table 7; Results Obtained by

Seativg

-~ oy .- -
., 3 ' .’ ...’:3 !

G, G9RHO
U, 70L508
5. 175264
0. 701411
1. 084149

L 117447
0. 991897

L QBT375

PITPRERIY e
LS

Y] [/ Tl d
. .’-.-1\.-\'.“

/32453
377926
1455805
J335H01
H3NGA
395541
078002
804074
7742290
077064

’

our Program TCIV,

Reproduced from
best available copy.

[
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APPENDIX A

In this appendix, the standard deviation of the

difference between two normal random variables is found.

1
Assume that X and ¥ are two normal random wvariables.

The expected valuve can be written as follows:

Elox-vi]= Bl axvey?] O
= ;; -‘2i§’4-§i. 12)

The variance for a rvandom vaviable is defined as

Ty = E[tx-ue) )
- EDx] - 2UGElx] + Uy

Gxaz ;&2-—\!:. (3)

Using the same procedure,
X g 2 |
O Y-y o 4)
IV one substitutes into equation () with (3) and (4) then,

e[ex-v]z &8 4674 0720y

= G 48y +Up 4y - 2%y, 15)
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The last term in equation (S} is the correlation term and can

_bi defined as

Elxyl = XV.

I¢ X and Y have nonzero means, then it is +frequently more
convenient to find the correlation by substracting the mean

values.

ELOx-0) (Y-u) = (X-Ued CY-Uy)

This is known as the covariance.

To express the degree to which two random variables are
correlated without regard to ¢the magnitude of either one,
then the correlation coefficient or normalized covariance is

the appropriate quantity. It is defined as

o = £ (X5) (Your)] = Est]

‘ S= X - Uy t—‘-Y"uY
ax oy
’
X =o6+\Uy Y=16& +Uy

hence

XY = E[XY] z [(('56': H (& +U)]
= EL StHOy + GGy + £ &y +UyUy]
- E[st] o6 +E L t-u)uy]+ ELlY-unul+E [uy )
> P06 + E[xuy-uxty]+ E[YUx -Uyly] +ETUy U]
= POx 6y + UxUy - Uyly + Uy Uy-UylUx +Uyly

XY = POxOy +Usly - (&)
AN T

t
. DA st & s s .



Substitute equation (&} into equation (5)
‘ 2 . 3 2
ELx-v] = G U Uy -2(36 6 2 Uxtly).

- G + €7 - D960y +Ux - 2Udly +Uy

) )
The last three terms are just The square of The mean of

(XfY). Then,

. 2
ELoeun ] = 64 67- 29667 + Cue-ty)
2
- 6468 - 2066 + (E(x-V)) .

In general

and from equation (7),

2
G+ Gy - 2966y = eLovyt] - (Elxv)).  (9)

Compariﬁg equations (B) and (?), the left hand term is the

variance for the substraction of two random variables,

Gy = G 4G -29G8 -

"The standard deviation is the square roeot of the variance.

Then,

/
Gy = (6146 - zg»mY)/':. (10)




' APPENDIX B

In this appendix: it is demonstrated that A’R=A‘AX

implies a least square solution

AR <AAX=> ) (ici-2d)
i¢

Z.Kg - 2u{ = €

1]

oarvr

2 3
(?\:5 -Z) = kw

- where ed is an error term.

- In matrix form

ZU.(S - Zgj

= €

-y & 0

and

. !
(?k&-?ng)...— Y =€

40,
.

! | (;KS _2‘51'.,..} 343"--2]:.; :GJG

. ’
i .
{

( 2¢i - 2630 ’

= €€

. @
*
s

*




Let ¢the following equation be a system of observation

equations

Ax =R

lLets rewrite this as

Ax-R= €
where € is a vector of errorék. The principle of least
squares postulates that the most satisfactory values of the
x(i) are those for which the sum of the squares of the errors

are a minimum, This sum is simply f’f,

e - (X'A'-R'Y (Ax-R).

- The minimal condition is obtained by partially
differentiating the above equation with respect to the vector

X and halving. We obtain

NAx = AR, -

a

Rty i e R A e £
w o ]




APPENDIX C

TMDS SUBROUTINE TCIV

LANGUAGE: Fortran VII. using TMDS subroutine; for

Perkin—-Elmer 3/32.

PURPOSE : To rank the relative visual differences among

a sat of texture pairs.

INPUT/0UTPUT: Respectively, the samples estimates
x(J: k) contained in a matvrix X,
a single intevger value which
represents the total number of
texture pairs and the standard

deviation of. each texture pairs.

USARE : CALL TCIV (X, SCALE. S1GMA, N)

X = input the samples estimates

SCALE - output ranking of texture pairs.




-

SIGMA -~ output discriminal dispersion of

texture pair.

N - input total number of texture pairs.

PROGRAM LOGIC The rank of the relative differences
among & set of texture pairs is calculated using case IV of

the LCJ. The standard deviation is calculated using

Ok = Bl\ln;” -4 (k=1,2,...N)
B = 2”/;4/\/4(
" 2 . 2\%
Vie = (V32 - (ZY:g'x) )//k’-
The scale wvalue of the texture pair is

calculated using

d )
Alk = (ﬁ'«}_zm +ZG‘5'Z,§;¢)/N K=42,.....N
4=l

VH

where A= | and correspond to a currelation of r= -,
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TLENAME ='LSU1: TCIV.FTN
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PROGRAM TCIV

PURPOSE

TO RANK THE RELATIVE VISUAL DIFFERENCE AMONG A SET OF TEXTURE
PAIRS.

'METHOD

THURSTONES CASE IV OF THE LAW OF COMPARATIVE JUDGMENT.

DESCRIPTION OF PARAMETERS
X = BASIC TRANSFORMATION MATRIX. EACH ELEMENT OF THE MATRIX

IS THE NORMA DEVIATE CORRESPONDING TO THE PROPORTION
OF EMPIRICAL JUDGMENT J > K.

ONE DIMENSION ARRAY CONTAINING THE DISCRIMINAL
DISPERSIONS.

ONE DIMENSION ARRAY CONTAINING THE MEANS OR SCALE VALUES
N TOTAL NUMBER OF TEXTURES PAIRS.

REMARK
THIS PROGRAM IMPLEMENT THE CASE‘IV OF THE LCJ. THE INPUT
TO THIS PROGRAM IS THE MATRIX X AND THE TOTAL NUMBER OF
TEXTURE PAIRS. THE OUTPUT IS THE SCALING AND THE DISCRIMINAL
DISPERSION OF THE TEXTURE PAIRS.

AUTHOR




¢« S8 C R. E. VASQUEZ-ESPINOSA
¢ C .
& € \
&1 c DATE
&2 ¢ : L
&3 C SEPTEMBER 20, 1982
&4 C .
65 C
& C REFERENCE
&7 C ,
&8 C THE MEASUREMENT OF VALUES BY L. L. THURSTONE.
&9 C :
70 C
71 c - -~ - - -
72 "SUBROUTINE TCIV(X,N.SIGMA, SCALE)
73 DIMENSION X(N.N), SIGMA(N), SCALE(N), SUMXCOL (500), SUMSG (500},
74 #VNK (S00 ), XINVNK (500)
78 C SUM THE ELEMENT OF EACH COLUMMN AND KEEP THE RESULTS BY COLUMN
76 € SUM THE SQUARE OF ELEMENT OF COLUMN AND KEEP THE RESULTS BY COLUMN
77 € )
78 DO 10 K=1,N
: 7% , SUMXCOL.(K)=0. 0
| _80 SUMSG(K)=0. 0
E| <81 DO i0 J=1,N )
82 . SUMXCOL. (K )=SUMXCOL (K) + X(J, K)
83 SUMSQ(K)=SUMSA(K) + X(J, K)#e2
84 10 CONTINUE
as SINV=0.0
4 - 86 DO 20 K=1,N
3 87 _ VNR (K ) =SQRT (N#SUMSQ(K) ~ SUMXCOL (K)##2)
. a8 XINVNK(K)= 1, 07 VUNK(K)
. 8% SINV=GSINV + XINVUNK(K) i
ki] - 90 20 CONTINUE
91 XNB= 2. O#N/SINV
i v DO 30 K=1,N
# 3 GICMACK)mXND#XINUNK(K) - 1.0
i 4 30 CONTINUE
%8 C .
96 € LET FIND THE SCALING
7 G
% 98 DO 40 Kw=1, N
* 92 SUMXCOL(R)=D, O
N 100 ‘ DO %0 J=1.N
101 SUMXCOL (K ) =SUMXCOL(K) + X{(J K)
102 30 CONTINUE
103 SUMXCOL(K)=SIGMALK) # SUMXCOLCR)
104 40 CONTINUE
109 DO 60 Kwi, N
106 SUMSQ(K)I=0. 0
107 DO 70 J=1,N
El. 108 SUMSQ(K YuSUMSAIK) + SICHA(JI#X(J, K)
- 109 70 CONTINUE
- 110 - SCALE(K)=(SUMXCOL(K) + BUMSG(K))/N
_l 111 &0 CONTINUE
E 112 RETURN
. 113 END




