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ABSTRACT OF RESULTS

Aluminum alloys exhibiting high strength and improved creep resistance

at elevated temperatures offer the potential for lower weight and

reduced cost in aerospace components. Powder processing, involving

controlled atomization and hot consolidation, provides a means for

fabricating candidate alloys; the microstructure consists of a stable

fine-scale uniform dispersion of intermetallics in the aluminum matrix.

Retention of elevated temperature strength has been demonstrated in a

P/M Al-Fe-Ni alloy. Atomized powder is characterized by a duplex

microstructure of fine and coarse regions of FeNiAl (Vf = 0.3) in the

aluminum matrix. The fine microstructure is harder than the coarse

microstructure and is stable up to "350 0C, above which its hardness

decreases rapidly. There is a gradual coarsening and decrease in

hardness of the initially coarse regions with increasing temperature.

The duplex microstructure is carried over into the hot pressed and

extruded material. Changes in microstructure and hardness of the extruded

material during elevated temperature exposure are similar to those

occuring in the powder form. Hot tensile test data (up to 400*C) indicate

4 that the extruded material retains 't60% of its ambient strength up to

"250eC with ductility approaching 10%. This reflects a promising level

of structural stability. These results and observations can be explained

in terms of particle cooling rate, precipitation of aluminides, and aluminide

coarsening during powder processing; powder consolidation temperatures

should be kept as low as possible.

"--,



SUMMARY OF RESULTS

a) Background

As a result of several recent studies, a viable basis now exists

for the development of elevated temperature aluminum alloys for aero-

space applications in the 230-350*C temperature range (1). Acceptable

alloys must exhibit strength retention over this temperature range,

which will necessarily require microstructural stability. With appro-

priate alloying additions, and utilizing powder metallurgy (P/M)

processing science and technology, it is possible to achieve a high-

volume fraction of stable, incoherent finely dispersed intermetallics

in the matrix (2-5). These provide dispersion hardening and microstruc-

tural stability during elevated temperature exposure. In contrast, the

slower solidification rates inherent in conventional casting preclude

the development of such microstructures.

At the present time, only a limited understanding exists of composi-

tion, processing, microstructure, property and performance relationships

in these P/M processed aluminum alloys. It is the overall objective

of the present on-going study to develop such fundamental relationships.

Attainment of optimum properties reflects a complex interplay of powder

solidification rate, composition, mode(s) of consolidation and subsequent

deformation processing. Properties being evaluated are elevated tempera-

*ture strength and creep resistance, elastic modulus, ductility, toughness

and fatigue response.

Several compositions in the Al-Fe-Ni system are included in this

study; the system can be considered as a model dispersion-strengthened

alloy in which the dispersoid is FeNiAI9 . Strength at 232*C is

"7% lower than in the Al-Fe-Ce system but ductility is appreciably higher

(2). Previous work on Al-Fe-Ni (6,7) has provided some insight into the
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influence of powder particle morphology, particle size distribution

and particle bonding integrity on strength, ductility and toughness.

The present study complements a similar on-going AFOSR program by

Fine and Weertman (8) on the Al-Fe-Ce system.

First year results and observations are summarized in this report

and technological implications delineated. Studies have focussed on

elevated-temperature microstructural stability and hot-tensile defor-

mation.

b) Procedures

Atomized powder of composition Al-6.2 w/o Ni-5.9 w/o Fe (Al-3 a/o

Ni-3 a/o Fe) was received from Alcoa. Powder surfaces and internal

structure were characterized by means of SEM and optical microscopy,

respectively. Dispersoid morphology was examined by TEM, using foils

prepared from the powder by the technique of cold sintering (9). Powders

were then exposed for 1 hour at temperatures up to 600*C to evaluate

microstructural stability and microhardness.

Powder was hot pressed to full density at 371*C and subse-

quently extruded at the same temperature, using a 16:1 extrusion ratio.

The hot pressed and extruded powder alloy was then exposed for 1 hour

periods up to 600*C. After both modes of consolidation, the microstruc-

ture was examined optically and by TEM. Micro and macrohardness were

measured as a function of prior elevated temperature exposure. Tensile

* tests were conducted at temperatures up to 400C on the extruded material.

c) Powders

The air atomized powders are irregular in shape with rough surfaces,

Figure 1. Average particle diameter is 11.4um w4.th 92.8% by weight of

the powder <44um. Internally, as-atomized powder particles are character-

ized by a duplex structure of fine (A) and coarse (B) regions, Figure 2; the
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coarse structure is dendritic in appearance. After exposure at 400°C,

some coarsening of both the fine and coarse regions of the structure

is apparent, Figure 3. TEM of the powder more clearly illustrates

coarsening of the FeNiA19 dispersoid above 400°C; examples for the

fine structure are shown in Figure 4. The fine scale microstructure

is harder than the coarse microstructure, as shown in Figure 5, and

is stable up to 1350C. A gradual coarsening of the initially coarse

regions takes place during elevated temperature exposure, with an

accompanying small decrease in microhardness, Figure 5.

d) Consolidated Material

The duplex microstructure is carried over into the hot pressed and

extruded material, and remains after elevated temperature exposure of

both consolidated forms of the alloy. Representative microstructures

of the hot-pressed material, before and after exposure at 400*C, are

shown in Figure 6. Coarse and fine-scale regions (corresponding to the

original powder particles) are clearly seen and some coarsening is evi-

dent after exposure at 400*C; this is generally more apparent in the

finer than in the coarser particles. From TEM observations, it is seen

that coarsening of the intermetallic occurs by a break-up and rounding

of the lamea-lar form, Figure 7. The hardness of the hot-pressed material

begins to drop significantly after exposure at temperature above %350*C.

Representative microstructure of extruded material in the transverse

and longitudinal orientations are shown in Figure 8. It is seen that

after hot pressing and extrusion, the original duplex microstructure

present in the powder particles is retained. Elevated-temperature

exposure at 400C results in some coarsening of the intermetallic. Changes

in the scale and morphology of the fine and coarse regions of the duplex

microstructure in extruded material are clearly delineated by TEM, Figure 9.

* S -| " - " - . . ., L
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Microhardness response of the fine and coarse regions in the extruded

material to elevated-temperature exposure is similar to that exhibited

by the alloy in powder form, cf. Figure 10 and Figure 5. Macrohardness

of the extruded material is shown in Figure 11 as a function of prior

exposure temperature.

Tensile properties of the extruded material, measured at temperature

are given in Figure 12. Yield and tensile strength exhibit a similar

temperature dependence. Above n250 0C there is a significant increase in

ductility with a loss in strength. This is reflected in the appearance

of fracture surfaces. Further high temperature tests are in progress.

Concurrently, a detailed TEM study of the deformed material has been

initiated in order to understand deformation mode(s), dislocation-particle

interactions, and the effect of coarsening on tensile response. Fracture

surface characterization (SEM) is in-progress to determine crack initiation

and propagation details.

e) Interpretation and Significance of Results

As the size of the atomized liquid particles decreases, the degree

of supercooling increases. Thus, the probability of a temperature rise

in the particle above the solidus due to recalescence is low. This

results in a fine-scale structure throughout the particle. For a larger

diameter particle, the degree of undercooling is lowered and the probability

of the recalescence temperature exceeding the solidus temperature is

higher. Under this condition, the initial fine-scale structure will give

way to a coarser structure in the remainder of the particle. The frequency

of occurence of the duplex microstructure was observed to increase with

increasing particle size. The powder being used in this study contains

I4% by weight above 44 um dia.



-5-

The hardenss difference between the fine and coarse structures in

the powder reflects a combination of a finer dispersion of intermetallics

and a higher level of Fe and Ni in solid solution in the smaller parti-

cles. Hardness decreases in both the fine and coarse structural regions

of the extruded material above 'k350OC are attributed to a gradual coarsening

of the FeNiAlg intermetallic. The larger surface area and smaller inter-

dispersoid spacing in the fine-scale regions account for a more pronounced

change in the appearance of these regions than in the coarser regions.

Hot tensile test data indicate that the extruded material retains

A60% of its ambient strength up to '250C with ductility approaching 10%.

This reflects a promising level of structural stability. In the as-extruded

condition, ambient strength increases as the structure becomes finer;

this should result in further enhancement in strength at elevated tempera-

ture. Key to finer structures resides in lower powder consolidation

temperatures. To this end, samples of the Al-Fe-Ni powder were compacted

by cold sintering (: high pressure compaction at ambient temperature) to

essentially full-density at pressures > 3GPa (9). Prior to hot compressive

testing, these compacts were annealed at 300C and 371°C respectively;

the latter corresponds to the extrusion temperature. Yield strength

data are given in Figure 13. It is seen that cold sintering and annealing

provides a strength increment relative to extruded material at elevated

temperature; the effect is larger for the lower annealing temperature.

Further studies utilizing the cold sintering approach to powder compaction

are in-progress.

Overall, the study is designed to give a comprehensive and quantitative

understanding of the interplay of composition, powder processing, micro-

structure and mechanical properties in the Al-Fe-Ni system. This will

-- . . _o ,, I
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enable reliable design guidelines to be established in terms of the

definition of processing temperature ranges and elevated temperature

application of these alloys. Further, because of the fundamental nature

of the information gained in this program, it should be applicable to

other aluminum-base high temperature systems. Composition as a variable

will be reflected in different levels of dispersoid contents, above

and below the level examined to-date (approximately 30 v/o).

IL

I
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Figure 1: Air-atomized AI-Fe-Ni powder (SEM).
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(a) (b)

Figure 2: Air-atomized Al-Fe-Ni powder; optical micrographs.
(a) Fine structure (A); (b) Coarse structure (B).

Ip

(a) (b)

Figure 3: Powder after exposure for 1 hour at 400OC: optical micrographs.

(a) Fine structure (A); (b) Coarse structure ()
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Figure 4: TEM of dispersoids in powder: a) As-atomized;
b) After 1 hour at 400*C; c) After 1 hour at 4500C.

4 ---------



230

z

(Id

j l90z
a

0
U150

VL 110 A

LU A

0
S70 A FINE MICRO-

A COARSE STRUCTURE
0 1 1 1 1 1I

0 100 200 300 400 500 600
it EXPOSURE TEMPERATURE (OC)
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(a) (b)

Figure 6: Hot pressed powder; optical micrographs
(a) Hot pressed; (b) Hot pressed + 1 hour at 400*C.

(a) (b)

Figure 7: Hot pressed powder; TE. of fine-scale regions
(a) Hot pressed; (b) Hot pressed + 1 hour at 400*C.
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(a) (b)

:~J a f "

(c) (d)

Figure 8: Optical micrographs of extruded powder, a) Transverse,
as-extruded; b) Longitudinal, as-extruded; c) Transverse,
after 1 hour at 400*C; d) Longitudinal after 1 hour at 400*C.
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(a) (b)

(c) (d)

Figure 9: TEM of extruded material, a) Fine region, as-extruded;
b) Coarse region, as-extruded; c) Fine region, after 1 hour
at 400*C; d) Coarse region, after 1 hour at 400*C.
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