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" : Most game-playing programs make each move after conducting only a partial

2 search of the game tree and applying a static evaluation function at Ithe terminal
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\ search to perform? This report presents a mode! for investigating um question.
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1. Introduction

Scarcity is the cornerstone of economic theory. With chip technolégy growing

'y .
by leaps and bounds, some deny the relevance of scarcity to computer problem

BANPNRE AR

;L <golving. "Just buy a bigger machine,” they say. Yet some search tasks, like the

itnvelling salesman problem, chess-playing and optimal circuit design, have decision

)

‘trees so huge as to preclude complete search in any current technology. This
s necessitates partial search, implemented by applying a heuristic evaluation function
to certain interior nodes of the decision tree. The job of the evaluatiorn function is to

( provide information about the subtrees below the evaluated node.

WP A O e W

This report is an investigation of the search strategy rather than the move
strategy, that is, which nodes should be evaluated as opposed to what decision
should be made. A simple search strategy is uniform depth 1 search: evaluate each
- possible move directly, and u;lect thet which appears best. Such a strategy is like a
child to whom “tomorrow” is synonymous with all the future. As the child grows to
understand “next week" and "three years hence", 80 might our strategy expand to

. uniform depth 2 search, depth 3 search, and so on.

The "ocombinatorial explosion” [NILS 80] of most search problems keeps the

LAy ¥

(- search depth embarrassingly small. Fear of the "horizon effect” [TRUS 82), wherein

LN WL

important information lies just beyond the deepest level searched, encourages
. abandonment of uniform search. Instead, certain "promising” lines are searched

g deeply, while other possibilities are left unexplored. Such search is patterned after
“insight”, a typically human thought process.

y These search strategies and others have long been known to the game-playing
: community [BIER 78]. The question of which strategy is best, however, remains
unanswered. This report presents a model for investigating where in the decision
A tree limited search resources should be expended in order to aid decision-making.

Analytic results are obtained for a restricted case.




2.1. What every good model should be able to do =

r

4

We wish to study the situation wherein limited resources prévent complete
- search to the end of the deocision process. Perforce, uncertainty as to the

“correctness of our choices enters the stage. Uncertainty arrives in decision-making

from many sources, including unpredictable opponents, other external events, errors

in the evaluation function, and incomplete search. Our model must isolate this last

source of uncertainty.

Our model must also make clear the distinction between a search strategy and a
move strategy. The following example was suggested by conversations with Tom
Truscott about minimum variance search [TRUS 78).

Prudence, appearing on “Let’s Make A Deal”, must choose either what is in the
box beside her or what is behind the curtain on the stage. She knows (because she

bribed a trusted stagehand before the show) that the box contains $2000 in cash.
Careful records of the last forty-six episodes of the show indicate that the average
curtain-item has value $1417, although some items behind the curtain have been
worth as much as $5000. Clearly, her movs strategy. based on current information,
must be to take the box. But her ssarch strategy should be to further explore the
curtain, for example by signalling her thirteen-year-old cousin Ozzy to sneak behind
it. The model herein must define precisely the notion of strategy, with both its
components. Further, it nﬁould allow quantitative comparison of strategies.




8.2. Playing games

We model a decision process by a one-player game played on a game tree. The
game tree may have any shape desired; the shape is known to the Eiayer. Each of

S < the leaves (called goal nodes) of the game tree has a value, which ui:ay be any real

i number. The player begins at the root and makes sequential, irreversible moves
“until he reaches a goal node. The value of that node is the score the player achieves.

: s _ The player is trying to maximize his expected score.

' It remains to declare what information the player may acquire from search of

the game tree. First we enrich our vocabulary.

‘ i ' Definition: To move randomly at a node means herein that the probability the
player moves to one child is the same as the probability he moves to any other
chiid of that node. Suppose a player moves randomly from node w until the end
of the game. Then the score the player will achieve is a random variable X,
called the blind search value of node w. Its probability mass function (pmf) p,,

is called the blind search pn of node w and its expectation B[X,] is called the
blind search expectation of node w.
l Definition: To explore node w in the game tree means to be told the blind search
I . pmf p,, of node w.
At any time during the gams, the player may explore any node in the tree. This

[ . exploration models the generation of accurate, consistent, yet incomplete
information from uurch.. Further, the exploration is generic in nature, being tied to
no particular game.

To model limited resources, we associate a cost of $1 with sach exploration of a
node. The player begins with a limited but known budget. Generously, we give the

player the blind search pmf of the root of the game tree free of charge. -
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23. Kibitzing

Definition: A search strategy is a collection of rules that specify which nodes of the
game tree are to be explored at what times. A move strategy is ; collection of

‘4

rules that specify what moves to make during the game. A -tnu"_y is the union

of a search strategy and a move strategy.

The search and move strategies may be dynamic and may communicate. That is,
the result of one exploration or move may pertially determine the succeeding
portion of the search and move strategies. The strategies may also be probabilistic.

The player is assumed to have a true random-number generator at his disposal.

Let us review the current status of our model. Someone (say Zeus) has supplied
three game parameters:
1. the shape of the game tree,
2. the blind search pmf of the root of the tree, and
8. the player’s budget.
The player knows the values of these three parameters. He brings with him a
strategy. as defined above.

At this point the player could play the game, achieving some feted result. But as
many gamblers have found to their dismay, there is a difference between the winning
play and the correct one (obtained by playing the odds). We are interested in
evaluating the average, rather than actual, score yielded by the player's strategy. To
police and evaluate a strategy, we introduce a meta-player (MP).

The MP simulates the player’s strategy on each possible game tree. Recall that
many game trees are possible from the player's viewpoint, because although the
player knows the blind search pmf of the root, he does not know which goal nodes
bave which goal values. The cards have been dealt but not yet seen. For any
assignment of goal values to goal nodes consistent with the given root blind search
prmt, the MP simulates the player’s strategy to find an average (expected) score. This

............................
......
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M score is an average rather than a single number because of possible probabilistic

aspects of the player's strategy. The average is weighted according to the

;- probability distribution specified by the player in his strategy. =
v ) .4
N P - Once these average scores are computed, the MNP averages them over all possible
~3 ’ -
<

3 game trees. How to weight this average has not yet been specified. l;. is reasonable,
a . ’

“given the lack of additional information, to assume that all such game trees are

:-:' I equally likely. For emphasis, here is a precise statement of this assumption.
Meta-player assumption: Let a given game tree have shape §, and let its root have

S pmf p,. Label its goal nodes g =(g,. gs. * - *. §u)- 1ot T be the set of all possible

-~

oo assignments of goal values v =(v,, vz, ‘- *, %) to the goal nodes, consistent

;" with & and p,. We assume that all the elements of I" ars squally likely.

P

-~

;:‘j 24. Astrategy unmasked

b7

Enough of description! Watch the MP in action as he evaluates a strategy.

Zeus sends us a complete, binary, depth two tree. He says the root blind search
pmf p, is:

(1) = 2,00 = 3

AR Sen
——————

The only trees consistent with these specifications are those with two goal nodes
X having value “1” and two having value "0". There are aix such trees, pictured in

LN Figure 1.
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The player Prometheus brings the following $1 strategy.

1

1. He explores the left child b of the root (spending his $1 there) and computes
B[X, ] from the information purchased. He computes E[X,] = 1 -Z[X,]. Then
Prometheus moves to the child with larger expectation; if the expectations are
tied, he makes his first move randomly.

2. Prometheus makes his second move at random.

Note that Prometheus bas used his god-given knowledge of root pmf p, in his
strategy.

To evaluate this strategy, the MP plays the game using the strategy on each of
the six trees above. For example, on the first tree pictured, the search strategy
discloses that E[X,] =0 and E[X] = 1, so Prometheus moves to node c. He then
moves to either node £ or node g (at random), scoring a “1” in either case. The MP
records that Prometheus’ strategy yields a score of 1" on tree 1.

Next the MP tries Prometheus’ strategy nn Tree B (the middle tree in the first

row in Figure 1). This time
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1

® Elx] = E[X] = 05

’, The player makes both of his moves at random in Tree 2, receiving a -lco.re of sither
_"1" or “0" but averaging a score of 0.5. The MP records that Promt;eus' strategy
) jylelda an expected score of 0.5 on Tree 2. Note that this is an oxpe'-cjed (average)
P ,i.leon. In none of the six trees in Figure 1 can the actual score be 0.5.

E - Analysis of Trees 3 through b is symmetric to that of Tree 2. Analy ‘of Tree B is
' ‘ symmetric to that of Tree 1. The meta-player assumption says that ¢ ix trees are
3 weighted equally. The ‘MP evaluation of this strategy is the average of evaluation
:\ on each tree, ie.,

a3

2|

¥ (10405+405+05+05+10):6 = =

' , In no game does Prometheus actually receive a score of g— His strategy works

better than this average on some trees and worse on others. When we compare two

strategies, we will not claim that one strategy outperforms the other on all possible

h’.".i‘.n._a_l..

games, but only that one bas higher average score than the other.
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R+ 8. Restricting the Model to Limited Strategies on 0-1 Binary Trees

-

——

|
[

\ 1 _8.1. The Restrictions -4
‘O f In this section, we restrict the model in three ways. -
& 1 ;1 All trees are finite complete binary trees.
\ { 2. "0" and "1" are the only two goal values allowed.
S. The only strategies allowed are those of the following form:
'; { a. The player moves randomly until he reaches node w at depth k-1
: (0 < k-1 < depth of tree).
: b. The player explores the two depth k children of node w. From the
E probability distributions received, he computes the blind search
; expeciation of each of these children.
¢. The player moves to the child whose blind search expectation is the larger
of the two,
d.  The player moves randomly for the rest of the game.
. z Call such a strategy the one-time k strategy.
i
8.2. Definitions
j Note that in our model a finite complete binary 0-1 tree can be described by two

s 2 &3 8 1°

parameters:

.

P = number of goal nodes with value "1", and
#n = number of goal nodes.
This justifies the following definition.

)
|
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XY Definition: A (p.n) tree is a complete binary tree with n goal nodes of which p
N

N ' have value "1” and the rest have value "0".

Note thet the blind search expectation of a.(p,.n) tree is the average goal node

: value, ie., & . -
- n

The blind search expectation of a tree is the stick by which we measure the

player’s performance. It is the outcome we would expect the player to average if he

, &

R

were to play the game many times with no information to guide him. The question

‘::;f ‘ thus arises: low much will information help the player? The function in the next
.

«. definition tells how much the player is helped by information, in this restricted
{ version of the game.

Definition: The random variable J(k,p.n) is the improvement for a (p,n) tree that a
b player gsins over its blind search expectation by using the one-time k strategy.
~ Let £,(p.n) denote its expected value E [I(k p n)].

The randomness in the random variable f(k p.n) arises from two sources: the
randomness in the player's strategy and the random (p.n) tree selected. The

former randomness obeys a uniform distribution when the player is using a one-time

> & strategy. The latter randomness obeys the uniform distribution given by the

MR
_:\ z : meta-player assumption, ie., that all (p,n) trees are equally likely.
. } Js(p.n) does not give an actual score the player will receive in any particular

. instance of a game played on & (p.n) tree. His strategy will work better in some

instances and worse in others. f,(p.n) is an average over all possible games played

e :4‘.:’.1'1 -
L N

on (p.n) trees.
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Y 8.3. Results and Conjectures
’: l | This section answers many interesting questions about the lt?tegies in this
S{ ! ) restricted model. For each statement labelled "Result"”, its proof eigher follows the
:‘ -  gtatement or is in Appendix A. The statements for which no explici-t; proof appears
{ l — i are labelled "Conjecture” and are supported by the computer results in Appendix B.
5‘:3 ’ , Unless otherwise stated, results abou;. Ja(p.n) Uf for integersk,p.n, withn a
AR powerof 2(n 22),0<p <n,and 1<k <logn. Throughout, (:) denotes "z choose
,‘Z:: y" and is interpreted as 0 if x <y. Logarithms are base 2. The symbol s denotes the
%‘ , end of a proof.
.
:j; 8.3.1. Computational Results
'_h: On the aversge, how much should the player expect to gain by doing & single
-*J exploration of two adjacent subtrees at level & of a (p.n) tree? That is, how does
.“ one compute f,(p.n)? The 'relults of this section give formulas for doing that
3‘ compﬁtat.ion. These results justify the programs written to compute f,(p.n) and
x Ja(p.n) tor various values of k, p andn.
S Resuk 1: £y(p.m) = fa(n=p.n).
\ ’ | Proof: Appendix A (section 5.1).=

This expresses the 0-1 symmetry. Recall that p and n-p ere the number of
‘-' goal nodes with wvalues "1" nnd "0" respectively. This result says that the
\ improvement gained from a single exploration of two adjacent subtrees in a tree with
P “1"s is exactly the same (on average) as that gained in a tree with p "0"s.
« This result does not say that the average score achieved is the same in the two
cases. It says only '.h?t the expected increase from the two (different) no-search
.::: scores is the same. Note that the result applies no matter vhe-n the one-time
exploration is performed.
'.';;:. .




o

’ S
.J.J.)‘-‘ .

g

-
RS

S et
RV

&

-

¥ ¥ Y
s 2l

% 8,

/'l.‘

— i

11

Most of the following formulas are true for all values of p, but the programs use

Result 1 to halve the computational effort.

_Result 2:

-~

-—8 ¥ —pl(Py( " P
!,(p.n) "'(n';z) ’.l:f,:""[Zj P](j)(n/z J)

LI, R

- ,____4_ -2+1 p n-
3 IE 1] In l (lp/2+1]) (l(n—p+f)/2])

0 if p=0 or p=n
-}; if p=1 or p=n-1
=
' —%I,(p-l.n) if 2€p €£n-2 and p is even
p-1 L_s(p-1.n) if 3<p<=n-3 and p i= odd
if p=0 or p=n
=

11228) g —pj loaptle) s+
:,,n—Zjd»l fr gj Mlspsn-l

Proof: Appendix A (oectjxon 5.2).»

These formulas give ways to compute £ ;(p.n). The next result will give £, (p.n)
intermsof f,.

The first formula in Result 2 is the naive computation of £ ,(p.n). s proof is

fllustrative of the combinatorial meaning of £,(p.n). Exploring at the root of the
tree means splitting the goal n‘odes into two halves and choosing the balf with more

*1".yalued goal nodes. In the first formuls, the denominator (n';z) is the number of
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ways to divide the n goal nodes into two halves. The sum is over the cases when §
ones and n/2 — § zeros are in the selected half. The last two “choose” terms in the

formula give the number of ways to do the split in case j. The impro-iiement in each

)

case is the 25 — p term inside the sumn times the i— term outside the i_z;:m. The factor

Jof 2 exists because of the symmetry of the cases and the fact that whichever half has

more "1"-valued goal nodes is selected.

The first formula is a short sum but suffers from including terms with large
integers. In particular, ( n';Z) is too large for a PDP 11/70 double variable (84 bits)
when n > 256 (depth 8 trees).

The second formula is a closed-form version of the first formula. It eliminates
the short sum but suffers the same difficulty with large integers. Its proof consists

only of combinatorial tricks applied to the first formula.

The third formula gives the recursive definition used by the programs to
compute f£,(p.n). The basis case is when p is 1; the recursionisonp. £,(p.n)is
easily computed by this formula even for very large trees. Note the difference and
symmetry of the odd/even cases. Result 8 states more clearly how f,(p.n) changes
es & function of p. The proof of the third formula is by induction using the second
formula. The difference in the odd/even cases occurs because the terms truncated

in the second formula depend on whether p is 0dd or even.

The fourth formula in Result 2 is a non-recursive application of the third

formula.

c o - - St
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Result 3: fork 22,

Julp.n) = FT:g G (0 E) 14t5.m)

where m = =y
Proof: In the one-time k strategy, the player explores two randomly selected
adjacent subtrees, each with root at level k of the (p,n) tree, and moves to
whichever subtree has more goal nodes with value "1". In other words, the player

moves to & random node w at level k-1, and applies the one-time 1 strategy to the

subtree with root w.

Divide the possible outcomes into cases: case § means the node w subtree has §
goal nodes below it with value "i". Since node w is at level k-1, the expected

improvement over blind search in case § is f4{(j.m), where m = size of the node w

subtree = 2 .

gk-1
We must weight each case appropriately. The number of ways to select the §

goal nodes with value “1” in the node w subtree is (’j’ ). The number of ways to select

the remaining goal nodes in the node w subtree is (:;_'_‘;). There are (";) ways to

select & subtree with root at level k -1, so the weight of case § is

&) @R

(m

Multiplying the expected result for sach case by the weight of that case and
summing over all the cases yields Result 3.

This formula expresses f,(p.n) in terms of f,. For p £n/2, the non-zero

terms of the sum are those for which 4 lies between 0 and min (m,p). Forp >n/2,
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the non-zero terms are those for which j lies between max (0,m -~ (n-p))and m. In

either case, the formula is a short sum. Note that the sum is longest (m is largest)

whenk = 2.

',

The f, terms are easily computed from Result 2. However, the '-'gombinntorial

.
n

forms in f,(p.n) may still be quite large. For example, f4 requires (n';z) which is

.« too large for a PDP 11/70 double variable (84 bits) when n > 256 (depth 8 trees).

The problem In calculating f,(p.n) lies not in the time required to compute the sum
but ratber in difficulties in representing quotients whose numerator and

denominator are both quite large.

8.3.2. Special Cases

) This proposition gives simple formulas for £,(p.n) and f,(p.n) in three special
oases. The first two cases are cases for which all or all but one of the goal nodes are

the same. The third special case is a nice formula for exploration at the bottom of

the game tree.

Result4: f£,(0,n) = f(n.n) =0

[ Ni(Ln) = fh(n-1n) = %

Jgn(p.n) = t—%‘;‘f} forn=4

Prool: The first formula follows immediately from Result 2 and Result 3. The (g )or

:‘:’,) term in Result 3is always Oif p =Oorp =n, except for the § =0or j =m

oase, for which £,(f.m) = 0 by Result 2.

The second formula also follows from Result 2 and Result 3. It p =1, the sum in
Result 3 consists of two summands, the first of which is zero and the seconad of which

is easily found from Result 2. The p =n -1 case can be computed similarly or by

2 ""_'-."_;'"s'x.'.x's.l
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using the symmetry in Result 1.

The third formula follows from Result 3 and the other two formulas in this
Nlu“.. I k =log n, the sum in Result 3 consists of three summands (l; =2). The f,

- ‘term in each is computed from the first two formulas in Result 4.+

: The first formula above says that trees whose goal values are all “0"'s or all "1"s

do not improve upon closer examination. Trees with all “0"s are hopeless and those

with all "1"s are perfect already.

From the second formula we see that exploring trees with a single black sheep

enables the player to double his expected score, which improves from -1— to 2 It

seems surprising that the improvement is independent of the level k of exploration.

The last formula above gives the improvement gained by exploring at the last
possible moment, that is, just before the player's last move. The formula is
pleasantly simple. Result 7, Result 10 and Result 14 further explain the behavior of

Jign{(p.n). Eachis an easy corollary to Result 4.

Other special cases for £, can be similarly computed from Resuit 3. However, as
m in Result 3 increases linearly, the number of terms in the Result 8 sum increases
exponentially. Application of Result 3 to increasingly large subtrees becomes
computationally difficult quite quickly.

833 Which One-time k Strategy is Best?

The player is most interested in how he should play to maximize his game score.
He wants the answer to the question: Given a (p.n) tree, and given that the player
oan exzplore two adjacent subirees ezactly once in the game but musf make all other
moves blindly, when should Me player do that esploration?

statement of monotonloity.

e T e . .
Y U PP L ST S WU D PO Ny

- " " T

The coroliary to Result 5 answers this question. Result 5 is the lt.ronger.
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Result 5 [Ballard and Mutchler]: for 1<k <logn,

N(p.n) £ f1,u(p.n)

Wt g t; t

with equality iff p=Oorp=1orp=n-iorp=n.

"o

, ¥ a4}

Further, the proof does not depend on the goal node values being restricted to

“0" and "1", and works for any complete n -ary tree.

Corollary [Ballard and Mutchler]: for 1<k <logn,

Nlpn) < !b.u(?-"')

with equality iff p=Oorp=lorp=n~1orp=n.

Further, the proof does not depend on the goal node values being restricted to

*0" and “1”, and works for any complete n -ary tree.

Proof: The proof of Result 5 is in Appendix A (section 5.3). The key ideas in it were
produced by Bruce Ballard following a conversation with the author. The corollary is

an immediate consequence of the result.s

Result § is the strongest result in this report. It says that the player does better
(on average) at each moment of the game to put off m single exploration until the
next move, up to his last move. The corollary is immediate: the player should do his
single exploration at the last possible moment, ie., just before the player makes his
last move. This authoritatively answers the question of which of the strategies
allowed in this restricted model is best.

This result does not say that for every tree, the player necessarily will do better
to postpone his exploration. For example, consider the second through fifth trees of
Figure 1 in Section 2.4. If the player explores before his first move and then makes
his second move at random, he will see that both halves yield an average score of 0.5,
which he will achieve (on average). In those four trees, if he makes his first move

- - - . . PR ‘.- .-« B ..- - . L 4
B T LI AR
% Aalteda’a’adaldelns ol o ahals S
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randomly and then explores the two goal nodes beneath him, he will always find a
goal node with value "1", for an average score of 1.0. In those four trees, the player

is better off postponing the exploration until prior to his second move:-

",

- But now look at the first and last trees of Figure 1 in Section 2.4.-; Jn those, if the
a player explores before his first move he will move toward the half with.all "i"g, for an
“'nverqe acore of 1.0. But if he postpones exploration until after his first move, half

of the time he will find only "0"s below him, for an average score of 0.5. The player is

better off in the first and last trees to explore before his first move.

Result 5 says that if we average each technique over all possible trees, assuming
that each such tree is equally likely, then the player does better (on average) to do

his exploration at the lower level of the tree.

Much of the strength of this result lies in it not depending on the values of the J
goal nodes being restricted to "0" and "1". The proof of the result involves no
combinatorics. It uses only a fundamental property of the "maximum” function and

the linearity of expected value.

This result suggests that a similar result might bold if the player is allowed to do l
more than one exploration. Further investigation of this extension will be

forthcoming.

8.3.4. Yor What Trees Does Search Nost Help?

The player is also interested in knowing for which trees search is most helpful.
Result 4 says that search doesn't help at all if the goal nodes are all the same.
Results 8 through 8 answer the question: j» what game fress should the playsr de
most willing to pay for ths right to sxzplore? In terms of our model, what happens to
Ja(p.n) as p variss from 0 ton, while k and n are held fized?
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Result 6:

7i(pm) > f(p-2n) it 2sps ¥

(
"o

WA,

Ji(p.m) > f(pe2.n) ¥ %‘p sn-2

2)(p.n) < 2,(p-1.n) if pis even

Jipm) > £(p-1n) i pisodd

I particular, for fized n, £ ,(p.n) is largest when p = %-1 or p= 18‘-4-1.

Proof: Appendix A (section 5.4).»
This result states two things. First, if we look at only even p or at only odd p,
then f,(p.n) increases as p incresses until p reaches midway (g-): then £ ,(p.n)

decreases as p continues to increase to m. This relationship is illustrated for

» = 128 in Figure 2.

The second relationship given by this result is that £,(p.n) is bigger for odd
values of p than for either even neighbor. That is, for odd p,

,l("”’ > ’l(’-Ioﬁ') eand !I(P-") > fl(?"’lo”)

This relationship is illustrated for n = 128 in Figure 3. .

Suppose that prior to his first move the player will do a single exploration of the
two subtrees beneath the root of the game tree. For such a player, Result 8 means
that he expects to learn more in trees whose goal nodes are about balf "1”s and half
*0”s than in trees whose goal nodes are predominantly "1"s or predominantly "0”s.

The proofs of the statements is Result 8 use the third formula in Result 2. The

proofs do not explain the odd/even difference. However, one would expect more

* Ve Wy T s Vs
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' Figure 2: p vs. f,(p.128), drawn as continuous curves.
N Top curve is for odd p. Bottom curve is for even p.

. .
; : 0 56 : 128
A Ngure 3: p ve. £,(p.128), drawn as a continuous curve.
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i improvement in (p.n) trees with p odd than in those with p even, since only in the
’ even case is it possible for the player to explore and nonetheless achieve no
" improvement in expected result. (This happens if the two balves o-f: the tree each
s | 5
g L 3 contain exactly helf of the goal nodes with value "1".) .
B3 - -
- ) I Result?7: forfixedn x4,
1 L -
S - . Ib;n(P"') is an increasing function of p for O0<p < -’zl-. decreasing for
frt \
A %‘p < n, and convex throughout. In particular, for fixed n > 4, fh,,.(p.n) is
% -
$ largest when p = 2
tx
’ Proof: From Result 4,
',E flo.-(?.ﬂ) = nn-1)
|
Viewing this as a continuous function of p, we see that

L >0 K 0sp<

N

b [ n - n

; f."ﬁ'!l-c-(?-ﬁ)=“a_1) =0 p=g

, 3 <0 if % <psn

e | L

-

The result for integer p follows from the continuous case.

- Recall that £, o(p.n) gives the expected improvement when our strategy is to
s perform our one-time exploration at the last possible moment. Result 7 and Result 8

252

show that bebavior with respect to proportion of goa! nodes having value "1" is the

il A

- same for the player who spends bis money at the last moment as for the player who

spends his money as quickly as possible, except for the odd/even dispari‘v.

L4

-

< 4
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N Conjecture8: for k 22,

The topmost curve in Figure 4 illustrates Result 7 for n = 128

3
:i R - Ju(p.n) is an increasing functia of p for O0sp < % . dei:reasing for
< _ -

" " i %‘p < n, and convex throughout. In particular, for fixed n nnr; fixed k 2 2,
. Jix(p.n)islargest whenp = %

‘.

‘ This conjecture says that (except for f,(p.n)) the graph of f,(p.n) &s a
‘i function of p is convex and symmetric about g— . Computer results in Appéndix B
- verify the conjecture for n < 128. The results for n = 128 are graphed in Figure 4. 1t
5 seems highly likely that the conjecture is in fact true for larger values of n as well,
j fe., that all one-time k strategies behave similarly with respect to the make-up of the
b goal values.

:: 9.3.5. What Happens in Large Trees?
: Most game trees are very large. This section examines the behavior of f,(p,n)

Y B in large trees. The resuits answer the following questions. Suppose that we double
::. the number of goal nodes (is., add a level to the tree) while maintaining the same
; proportion of goal nodes with valus "1 How does this change f,(p.n)? Does the

behavior converge as the number of goal nodses gets large?
, Result 9: f,(2p.2n) = f,(p.n)  with equality iff p=0 or p=n.
: Prool: Appendix A (section 5.5).«

This result says that adding a level to the tree while maintaining the same
,,; proportion of goal nodes with value "1” causes the player to gain less (on average)
: from search, provided that the search is a single exploration of the two subtrees of
,.; the root prior to his first move. The result is believable: in the exp-unded tree the
player receives his information one step further from the goal nodes than he does in
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Figure 4: p us. f,(p.128), drawn as continuous curves.
Curves are (from bottom to top) for k = 1, 2, ... 7.
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the smaller tree, and Result 5 says the player is best off receiving his information

just above the goal nodes.

Result 10: [..‘,,(29,21:) < /b"(p.n) with equality iff p=0 or.;'p=n.

_: Proof: from Result 4, ~

, «

flqn(zpoz") = 2 (Z:n-_el)

2p(n-p)
n(2n-1)

n -

n(2n-2) . if0<Kkp<n

n—
nin-1)

= fign(p.,n) from Result 4 again.

Itp =0orp =n, fiua(2p.2n)=0 = fign{p.n).e

Again we add a level to the search tree while maintaining the same proportion of
goal nodes with value "1". This result says that in such a situation, behavior for the
player who searches at the last possible moment is like that of the player who
searches before his first move. In each case, the player expects to gain more from

search in the smaller tree.

Here, however, the reasoning is different. When we explore near the bottom of
the tree, the loss of search power in the larger tree occurs because of the increased
*“independence” of the goal nodes. In the smaller tree, if the left branch is not a goal
node with value "1", that fact increases the probability that the right branch is a
goal node with value "1" (because there are a fixed pumber of such goals). Hence if
the left branch fails to give us the hoped-for ';l'. the right branch has better than its

@ priori chance of doing so. The same is true in the larger tree, but the increase in
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probability is less (the two nodes are closer to independent), so the gain from search

is also less.

Conjecture 11: For 1<k <logn,

e,

TR
th

Ja(2p.2n) £ £,(p.n) with equality iff p=0 or p=n.

PR R

Results 9 and 10 established this statement for the two extremal strategies

(searching before the first move and searching just before the last move). It seems

likely that the statement holds for the in-between strategies as well. Computer

results in Appendix B establish the truth of this conjecture for n < 128,

Result 12: For any constant a between 0 and 1,

lim £ ,(an.n) =

Prool: from formula 2 of Result 2,

n - _ n/2+ 1 n/2-1
n/B
n/2+1 (n/2 -1
_nta lnyaet) Cnpg )
n (n72)
n/e
0 asnow
Use Stirling’s formula to demonstrate this convergence.
From Result8, f,(p.n) is maximized when p = !g'-n. Result 12 follows by

‘ dominated convergence.s i
In Result 12, we fix the proportion of “1's at a and explore at the root of
| increasingly deep trees. The result says that for large enough trees a single
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exploration of the two subtrees of the root of the game tree prior to the player’s first

move adds almost nothing to his expected score. This is quite predictable: the

player is too far from the goal nodes when he receives his information for it to awvail

T

:him at all. -~

-

Conjecture 13: For any constant a between 0 and 1,

-

and for any fixed positive integer k,

Liin-fh(‘n'n) =0

This conjecture is a slight extension of Result 12 and should follow from
Result 12 as a corollary. Since k 13 fixed, exploration takes place a long way from the
goal nodes (just as in Result 12), so one would expect search to add almost nothing

to the player's expected score.

Resull 14: For any constant a between 0 and 1,

'l.iin.f,,"(an.n) = a(l-a)

Proof: from Result 4,

Lim ﬂﬁ‘ﬁ ‘Bﬂ!

mfb.u(a"'n) = nes nin "'1)

. .hm_._ a!!-a}n
= a(l-a)e

This interesting result gives the convergenoe behavior for the player who
searches only st the last possible moment. His expected gain from that search is ?he
product of the fraction of goal nodes with value "1" and the fraction of goal nodes
with value "0".

<<<<<<




.
Tl
.
-

Suppose we were to assign the goal nodes value "1” or 0" independently with

Pr("1") = a. We would expect Remult 14 to approximate (and, in the limit, equal)
behavior of last-minute search on such game trees. An easy calculation of the
- expected improvement by last-minute search on such trees does in'_:lact yield the

~

—same answer a(1-a) as given in Result 14. -

PRl
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4. Conclusions and Further Research

Given limited resources, what search strategy is best? We selected a model in

~

which to answer this question, wherein we made precise such concepts as "search

“strategy” and "resources”. No claim is made that the model is the onl;:phnlible one,

inor that it accurately represents real-world games or decision-making. The model
;al selected for three reasons. First, ié isolates that which we wish to study:
uncertainty arising from incomplete search. Second, the model is simple enough to
define the problem precisely and to allow hopes of obteaining analytic results. Third,
the trees allowed and evaluation function used are sufficiently generic to mode}

many interesting games played with many kinds of strategies.

The model features a division of “strategy” into "search strategy” and "move
strategy”: resources specified as number of node evaluations allowed; node
evaluations described as "exploration”, wherein the player learns the probability
mass function of possible outcomes were he to move at random beneath the
evaluated node; and the meta-player assumption that all assignments of goal node
values to goal nodes consistent with the given root blind search pmf are
equiprobable.

We analyzed a class of strategies called one-time k strategies, on a class of trees
called (p,.n) trees. For these trees with these strategies, we proved the following

results, among others.

1. A short formula, recursive in p. exists for £,(p.n). Fork 22, f,(p.n) can be

expressed as a short sum, each of whose terms includes an f, term.

2. The longer the player postpones search, the better the strategy. That is,
Js S fae.for 1€k <log n. Hence the optimal strategy (among those allowed in
the restricted case) is to explore at the leaves of the game tree.- Further, this
result [due in part to Bruce Ballard] applies sven if we allow the goal nodes to

bave values other than "0” and "1".
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S. The benefit from search is greatest in trees for which about half of the goal
nodes have value "“1” and half have value "0". More precisely, we can graph

Ju(p.n) as a continuous function of p. For k 2 2 (and ‘pproximn'f-;ely fork = 1),
b4

-

-

Js(p.n) is a concave function symmetric about p = 12"- .

In deep trees, search at the root gains nothing for the player. That is, the one-
time 1 strategy is no better than random (no-search) play. Search just above
the leaves (the one-time log n strategy) gains a (1-a), where a Is the fraction of

goea!l nodes with value "1".

The girdle we wore herein to obtain analytic results can be loosened in two
natural ways. First, we might consider trees with more than two possible goal values.
For example, we might consider a (p,n) tree with one or two (in general, r) goal
nodes allowed to have a third value. Second, we might consider more complicated
strategies. For example, we might consider allowing two (in general, £) explorations,
each at any level of the tree. Each of these extensions is under current
investigation.

The long-term goal of this research is to compute the optimal search strategy in
the unrestricted model. One hopes that progress toward that goal will help us better

understand our intuitive idea of “search with limited resources"”.
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6. Appendix A — Proofs

5.1. Proof of Result 1

" ‘vnl "0 '

;Relult 11 fa(pn) = fa(n-p.n).

[R]|

*Prool: Fix k and n throughoul ihe proof.

4

Recall that in the one-time k strategy, the player moves randomly to level k-1
of the tree, explores the two subtrees beneath him, moves to the subtree with higher
blind search expectation, and then moves randomly for the rest of the game. For
any (m,n) tree played according to the one-time k strategy, define the following

random variables.

A}, = fraction of "1"-valued goal nodes in the left subtree explored.
A5 = fraction of "1"-valued goal nodes in the right subtree explored.
B, = fraction of "0"-valued goal nodes in the left subtree explored.
By, = fraction of "0"-valued goal nodes in the right subtree explored.

These random variables are not independent of each other. However, because
the player is using a one-time k strategy in an (m.n) tree, their distributions
depend on only m, n and k. Sincen and k are fixed, we omit noting the dependence
onn and k.

Step 1:  (Al,.A,)™ (B, B}). where ® stands for "has the same (joint)
distribution as”. This is true because when we interchange the "1"s and “0"s in the
goal values of a (n~p,n) tree, we obtain a (p.n) tree for which "1"s are interpreted
as "0"s and vice-versa. AL, and AJ_, refer to the "1"s in a (n—p.n) tree, while 5}
and  refer to the "0"s in a (p.n) tree. Hence their joint distributions are identical.

Step 2: A ¢+ B, =1 (therefore A} =1~ B) since all goal nodes in the left
subtree have value either 1" or "0". Similarly, A7 =1 - B. )

Step 3 E[max i} - 8. 4 - 2) = Blmax {2 - 4. 2 - 4.

----------------------
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This symmetry result occurs because having one branch "bad” is (on average)

exactly balanced by its brother being "good”. More precisely:

(A |"N, l'! '

Elmax g - B, 4 - 2] - E[max(E -4 B - 4]

= Elmaz (4. 41) - & — (B + E[max (-4}, -45}))

AP0

LN
et Pt L ——
. . . " + . , .
, 4

I S
f

E [maz (45, 453) + E[min 4}, 453) - 2

{.j Z since max(-X,-Y) = - min(X,Y) for any random variables X and Y
a8 :
: =E[muz(A,‘,.A"{+nﬁnu;.A;§]—g”&
|
: SEl4 k) - B
5 [ since max(X,Y) + min(X,Y) = X+Y for any random variables X and Y
X .
i;l =E4] +Elg] - 2
i .
S" =2 +2_% since we moved randomly to level k -1 of the tree
s . . n n n .
20

=0
Step 4: The proof of Result 1 now proceeds as follows. By definition of f,.

Ia(n-p.n) = E[max{Al ,. A ;]] — dlind search ezpectation of a (n—p.n) tres

e E[maxt® - (1-5). & - 1-5))]

1
|
) = E[maxtg. 5] - 22 by Step 1
l
{




) ‘, A

"l..

-l L )
i I‘I‘I‘l
———

= E[mext® -4, B -4

= E[maxi -2, 4 -]

"

f = E[max{4}. A5}] - %
= f&(Pon)

5.2. Proof of Result 2
Result 2:

—2 (25

n %'/‘2’ J=lpseeil

Jip.n)

by Step 2

by Step 3

e, b

by definition of f,

215 (.7 )

4 241 n-p+l
= ".‘u';z) le + l 2 I (lp/2+1]) (l(n-p+1)/ 2])
0 if p=0 or p=n
i— it p=1 or p=n-1
3
:’5%’1(?'1.“) if 2<p £n-2 and p is sven
-zi-"(-’-l'n) if 3<p £n-3 and p iz odd
!
0 if p=0 or pa;
| J
l 'b .l 1.',1
S :ﬁ' -8]4»1 ’I:t: ] f1€psn-1

31
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Proot: (a) first formula. In the one-time k strategy, the player examines the
two subtrees of the root and moves to whichever subtree has more goal nodes with
value "1”. We divide the possible outcomes of the exploration into é_ases: case §
inenru the selected subtree has § goal nodes with value "1". The impx;':vement over
:Blind search expectation in case § is ("b.s.e.” stands for “blind search e;pectation"):

ezpected score incasej - b.s.e. ofa (p.n) tree

= bse.ofa(y. %) tree - bse ofa(p.n)tree

n/2 n
= L (2j-p] (*)
n .

We need to compute the weight of each case. The number of ways to select the j§

"1"s in the chosen subtree is (p ). The number of ways to select the remaining “0"s is

(n /2= ’) Further, the subtree selected could be either on the left or on the : Tignt
(except for the p/2 case, to be handled shortly). The number of ways to select any

subtree of the root is (“'/"2). The weight of case j is

(%) (057,

(nlz

(**

To get the first formula in Result 1, we multiply the improvement (°) in each

case by the weight (**) of each case, and sum over the cases. The % case has zero
improvement, so we may omit that case. The selected subtree must then bold more

than half of the p goal nodes with value “1", so the sum begins at cave § = I % +1 I,

The sum ends when we have exhausted either all the goal nodes with value "1"
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{ (b =p) or all the goal nodes in the subtree (5§ = -:—). Since (?) is interpreted as 0 {f
- I § > p. we can write the sum as if it continues until § = % . -
]) : (v) second formula. One can prove by induction on m the formula [;(NUT 73]
NS . i
Y : ,g (;) (t:j) [tr ~(r+2)i] = [m+1][e-m] (.7 1) (, 2,) (1)
: ‘ This formula bolds for all integersr, s, £, and m.

We have from the first formula in Result 2 that

o2 . p
Ii(p.n) I M:g:' (25 -1 (. j)
| - Vg -1 7))
2 } [ ]"(nlz)l n/2-1
& ' - '}ﬁ"[!‘- -n1 ) (P )
2 = F w2-s
} e -—4t _lo-[84y||n=pH ] ) ( 3
“ j "'(n'/‘z) 2 2 lp/z+1j l(n—p+1)/ el
| | This last step follows by applying (f) with r=p, s=n~p, t-? , and m.s-g— in the first
¥ |
, summation and mzl%I in the second summation.
- (c) third formula. First suppose p iz even, 2<p £n-2. Applying the second
SJ. , formula in Result 2, we get
| 4 p-1 n-p+2
l !l("l.ﬁ)- ”.(n';z) l 2 +1I ln I (lb”l)/z"'li) (l(n ’+z)/ gl)




4 -p+2 | p-1 -p+1
= I%I [n 2 l (p/2) ([nrpr]/ 2)

n*(n72)
P 2,
B ———— I ."_-L'.'g.l ( ) 2 ( ) n +1
T nt(,%5) |z]| prast) |75 [n-p]/z =X
= 4 b n-p n-p+1
n'(n';z) +1][ I(p/2+1) ([" p]/2) n-p I
= fip.n) nopil since p is even

A similar application of the second formule in Result 2 yields the appropriate
formula for odd p. The p =0, 1, n-1, and n cases also follow immediately by

applying the second formula in Result 2.

(&) Jourth formula. This follows directly from repeated applications of the third
formula in Result 2.«

5.8. Proof of Result 5

Result 5 [Ballard and Mutchler]: for 1<k <logn,

Nip.n) £ fh,(p.n)

with equality if p=Oorp=lorp=n~lorp=n

Further, the proof does not depend on the goal node values being restricted to

*0” and "1", and works for any complete n -ary tree.

Proel: Key ideas in this proof were supplied by Bruce Ballard after a conversation

with the author.

......
............
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o7 Result 4 establishes that equality holdsifp =0,1,n-1,orn. Let2<p <n-2.
{'

g Step 1: Showthat f,(p,n) < fe(p.n). )

3 Let the random variables X, Y, ¥ and Z be the number of goal nodes wit;h value "1" in
i3 = by

L the four subtrees having root at level 2 of the (p,n) tree, respectively. -

‘:{:' ! o .

- ceeens P

} | !

S l...

,. X Y w 4

:

>

N Then by definition,

2\

‘ = X+Y WN+Z, _p

% Ji(p.n) = B "“’”n/z 'nlz‘ n
A l 2 -B
i = “E[maxiX-O-Y.’-!-Zl] py

) 1 : Since thé one-time 2 strategist makes his firat move at random,
2 Lpimag X, Yy 2], lplman 2. 2, 2
:;:j' Ja(p.n) = 2:[ Fyrakn u]" 2‘[ n/4'n/4 n
| 2 [ -2

‘| = e[ maxix, 1) + Elmaxiw. 23] - 2
: ) Henoe to show £,(p.n) < f4(p.n) it will suffice to show that
oy :
A B[max{X+Y, N+Z}] < B[max{X,Y}] +E[max{¥,Z})

N

\" .
s Now (X, Y)~(X.W) and (W.Z)~(Y.Z), where % stands for "has the same joint

D distribution”, so wmaz(X.Y)~maz(X.¥) and wmazr(W.Z)¥maz(Y.Z). Taking
> expectations, we get

| :

----------------------
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| *} E[max{X.Y]] = E[maz{X.#}] and E[max{¥.2j] = E[max{Y.Z{] (*)
;:' For any real numbers (hence any random variables), -
}‘tl z max{X+Y,W¥+Z] < max{X,¥] + max{Y.Z} so :'

, & o

E[max{X+Y, ¥+Z]] £ E[max{X,¥] + max{Y.Z})

‘ Further, this inequality is strict as long as Pr (X> ¥ and ¥Y<Z2) is non-zero. Since

2<p < n-2, such is the case here. We have

E[max{X+Y,W+2{] < E[max{X,¥] + max{Y.Z}]

I = E [max{X,W}] + E [max{Y,2}]
’ = E[max{X,Y]] + E [max{¥.Z]] by (*) above

As noted earlier, this suffices to conclude Step 1 of the proof.

o
.

Step 2: Showthat £,(p.n) < fau(p.n) if 2<k <logn.

» LA
e AR AN

o
P
Pty Pr———— mm—— S

Ja(p.n) = f, applied to a random subtree with root at level k -1

' + K fgepplied to a random subtree with root at level & -1
~
» (because £, < f, on any tree)
X
2 = fru(p.n)
0y
;' ! Further, the inequality is strict because there is a non-sero probability that the
) random subtree with root at level k-1 has between two and all but two goal nodes
- with value 1" o
4 | -
\"
x:.
o
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‘ 6.4. Proof of Result 6

__-a) Result 6:

':::l S Jip.n) > fi(p-2n) 2<p < z =

s ~ Ji{p.,n) > fi(pran) it %‘P £n-2

"‘- Ji(p.n) < fi(p-1n) if piseven

¢! 7i(p.n) > £y(p-1n) it p s odd

~ s In particular, for fized n, f,(p.n) is largest when p = ’e—'--l or p= -'2-‘-4.1,

3

:_“ Proof: (a) Suppose2<p < -E Thenp <n-p sop-2<n-p andp-1<n-p+l.

s It follows tbhat

-

'. o p-2 n—p

51 p-1 < m-p+r o004 *
p—1 n-p+l

- 1 p < nopez -

» -

1 ) For p =2, the result is trivial. For larger even p, Result 2 shows that

2 } Ji(p.n) = ﬁ%!:(r-hﬂ)

> ‘

x n- -1

z = u—p‘;-l #2 Ji(p-2n) using Result 2 again, on odd p -1

s

o

; n-p p-1

:jj _ But from (*), we have n-ptl p_® > 1,80 f,(p.n)> f:(p-2n) for even p. For

= odd p, Result 2 shows that _

| Fip.n) = Bogy(p-tm)

)

g

-

[y

-
-
o e
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Z~ | e ’1_’_1 ::J,; :; Ji(p-2.n) using Result 2 again, on even p -1

{

.-; I -

_ Smce (**) implies that pll :i :; > 1, we have that £,(p,n)> ¢ ,(E-Z.n) for odd
2 .:r~ E

'E: ;(b) It %‘p £ n -2, part (a) of this proof and the symmetry condition of Result 1
entail that £,(p.n) > £ ,(p +2,n).

' (c) It p is even, trom Result 2

= Si(pn) = B2Ro s (p-1m)

1"

- < f{p-1n) since 1%;%? <1

(d) Iif p is odd, from Result 2 we have

Ji(p.n) = ;{—lfx(p-lm)

TRE N .
vty g —— .

> fp-1,n) since ;P-T >1

L

|

2N 5.5. Proof of Result

: Result 9: f,(2p.2n) s‘f,(p.n) with equality iff p=0 or p=n.

. Prool: M p=0orp=n,the result follows from Result 4. Let 0 <p < n.
Sep 1: Show true for even p.

' . Busis case (p = 8):

Ji(4.2n) = %:; : :::f zln by repeated application of Result 2




VAL VA

i < ﬂ"’? "j 1 since —— < —11 z
. ¢-pHntn nok - :
- n 1 '

€ i if n = 3(true here)

= fi(2.n) by Result 2

Wlatee

e
v

,"

L ¢

>,

" .
't

n-2 3(n-1)

- 1
B(n—-:—) B(n--;-) n

Induction step: Assume true for p -2 (p even, p 2 4). Show true for p.

riep.an) = g s e Ji(zp-t.2n)

by repeated application of Result 2

2n-2p Bp-1 2n-2p+2 2p-3

by the induction hypothesis

Pn-2p 2p—1 Pn—2p+2 EBp-3 p-2 n-p+l .
" e e BT gy e O

by repeated application of Result 2
But eslculations show that the coefficient of £,(p.n) in the line marked (°) is

less than or equal to 1 precisely when p € % +1. Hence the induction stsp follows

forp < % For larger even p, the result follows from the symmetry condition in

Result 1.




.--‘.niﬁb‘_’i’:‘;‘_;"‘m_.‘s_—_._‘-l'_f_T‘H':..~‘.f-_

Siep 2: Show true for odd p.

Busizscase (p = 1):

g

-2

[

J«(2en) =

y

R o

3
|
[

g
'
[
3|

A
A L

= £i(1n)

1 . s
=1 on by two applications of Result 2

P .,

Induction step:  We will show true for odd p > 1, using Step 1 as the “induction

bypothesis”. Let p > 1 be odd.

by Result 2
using Step 1, since 2p ~2 is even

by Result 2
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6. Appendix B --- Computer Results

Depth of 0-1 tree =1

Number Improvement from learning about level
of 1°s 1

[N
Pty

e e

¥ ol

o
o
o
o
o
o

{
1
f | ber of goal nodes = 2
i
1
1

R Y RV )

N
s

o SR RO N « D Ny
e L = p—— et

- i
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Depth of 0-1 tree = 2

Number of goal

nodes = 4

-

Number Improvement from learning about level

of 1’s 1

0 0.0000
1 0.2500
2 0.1667
3 0.2500
4 0.0000

j "',-"F"("{::a NG

2

0.0000
0.2500
0.3333
0.2500
0.0000

...........
.........

TIRUNEL A

......
..................




Depth of 0-1 tree =3
Number of goal nodes = 8
Number Improvement from learning about level

Sof 1’s 1 2 3

TIEUREL PR

0.0000 0.0000 0.0000
0.1250 0.1250 0.1250 .
0.1071 0.1786 0.2143
0.1607 0.1964 0.2679
0.1286 0.2000 0.2857
0.1607 0.1964 0.2679
0.1071 0.1786 0.2143
0.1250 0.1250 0.1250
0.0000 0.0000 0.0000

, ¥ od

OO VA WN-O

£ PPt

BARLE

hY




(AN

1)
LA AR

. of 1l’s 1
T 0  0.0000
- 1 0.0625
) 2 0.0583
3 0.0875
4 0.0808
-3 0.1010
6 0.0918
7 0.1071
8 0.0952
9 0.1071
10 0.0918
11 0.1010
12 0.0808
13 0.0875
14 0.0583
15 0.0625
16 0.0000

Depth of 0-1 tree

2

0.0000
0.0625
0.0917
0.1089
0.1214
0.1307
0.1370
0.1405
0.1416
0.1405
0.1370
0.1307
0.1214
0.1089
0.0917
0.0625
0.0000

AT AT A TR T TN L

= 4
Rumber of goal nodes = 16

Number Improvement from learning

3

0.0000
0.0625
0.1083
0.1411
0.1637
0.1788
0.1882
0.1933
0.1949
0.1933

.0.1882

0.1788
0.1637
0.1411
0.1083
0.0625
0.0000

4

0.0000
0.0625
0.1167
0.1625
0.2000
0.2292
0. 2500
0.2625
0.2667
0.2625
0. 2500
0.2292
0.2000
0.1625
0.1167
0.0625
0.0000

-------
......

about level

t .ll" l““l ‘l."

.............
.....

'''''''
......

.....
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2 Depth of 0-1 tree =5

Number of goal nodes = 32

. of 1’s 1 2 3 4 S

N
: Number Improvement from learning about level
‘\
Ay

P,

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0313 0.0313 0.0313 0.0313 0.0313
2 0.0302 0.0464 0.0544 0.0585 0.0605
3 0.0454 0.0567 0.0720 0.0821 0.0877
4 0.0438 0.0648 0.0856 0.1024 0.1129
5 0.0547 0.0716 0.094 0.1198 0.1361
6
7
8
9

¥ Ay by i"‘.‘f-‘s.

0.0527 0.0772 0.1052 0.1347 0.1573
0.0615 0.0820 0.1125 0.1472 0.1764
0.0590 0.0860 0.1186 0.1577 0.1935
w 0.0664 0.0895 0.1237 0.1665 0.2087
- 10 0.0635 0.0923 . 0.1280 0.1736 0.2218
f‘i 11 0.0699 0.0947 0.1315 0.1793 0.2329
3 12 0.0666 0.0966 0.1343 0.1838 0.2419
e 13 0.0721 0.0980 0.1365 0.1872 0.2490
~ 14 0.0683 0.0990 0.1380 0.1895 0.2540
b l 15 0.0732 0.0996 0.1389 0.1909 0.2571
N 16 0.0689 0.0998 0.1392 0.1913 0.2581
. 17 0.0732 0.0996 0.1389 0.1909 0.2571
18 0.0683 0.0990 0.1380 0.1895 0.2540

L a

5 19 0.0721 0.0980 0.1365 0.1872 0.2490
- ’ 20 0.0666 0.0966 0.1343 0.1838 0.2419
N 21 0.0699 0.0947 0.1315 0.1793 0.2329

A 22 0.0635 0.0923 0.1280 0.1736 0.2218
22 0.0664 0.0895 0.1237 0.1665 0.2087
. 24 0.0590 0.0860 0.1186 0.1577 0.1935
K/ 25 0.0615 0.0820 0.1125 0.1472 0.1764
O 26 0.0527 0.0772 0.1052 0.1347 0.1573

(- 27 0.0547 0.0716 0.0964 0.1198 0.1361
A'I 28 0.0438 0.0648 0.0856 0.1024 0.1129
iy 29 0.0454 0.0567 0.0720 0.0821 0.0877

30 0.0302 0.0464 0.0544 0.0585 0.0605
? I 31 0.0313 0.0313 0.0313 0.0313 0.0313
. 32 0.0000 0.0000 0.0000 0.0000 0.0000

3
N
2
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Depth of 0-1 tree = 6

Yire

Number of goal nodes = 64

- \i",

Number Improvement from learning about level
of 1’s 1 2 3 4 S ré

| : mm———- - - - - 2 -

. WP .: ..‘*"
AL UL LR LN

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156
2 0.0154 0.0233 0.0273 0.0293 0.0303 0.0308
3 0.0231 0.0288 0.0363 0.0412 0.0439 0.0454
4 0.0227 0.0333 0.0436 0.0517 0.0567 0.0595
2 0.0284 0.0372 0.0496 0.0610 0.0687 0.0732
7
8
9

0.0279 0.0405 0.0548 0.0692 0.0798 0.0863
0.0325 0.0435 0.0593 0.0765 .0.0%02 0.0990
0.0320 0.0462 0.0634 0.0830 0.0998 0.1111
0.0359 0.0487 0.0670 0.0888 0.1087 0.1228
2 10 0.0353 0.0509 . 0.0703 0.0941 0.1170 0.1339
& 11 0.0388 0.0529 0.0733 0.0989 0.1247 0.1446

12 0.0381 0.0548 0.0761 0.1032 0.1318 0.1548
) 13 0.0413 0.0565 0.0786 ©0.1071 0.1383 0.1644

N 14  0.0405 0.0581 0.0809 0.1107 0.1444 0.1736
K 15  0.0433 0.0596 0.0831 0.1140 0.1499 0.1823
X 16 0.0425 0.0609 0.0851 0.1170 0.1550 0.1905

o 17 0.0451 0.0622 0.0869 0.1197 0.1596 0.1982
18 0.0442 0.0633 0.0885 0.1222 0.1638 0.2054
19 0.0466 0.0644 0.0900 0.1245 0.1676 0.2121

Y ’ ’ 20 0.0456 0.0653 0.0914 0.1266 0.1711 0.2183
ﬁg 21 0.0479 0.0662 0.0927 0.1285 0.1742 0.2240
oy 22 0.0467 0.0670 0.0938 0.1302 0.1770 0.2292

23 0.0489 0.0676 0.0948 0.1317 0.1795 0.2339
24 0.0477 0.0683 0.0957 0.1330 0.1816 0.2381
N 25 0.0497 0.0688 0.0965 0.1342 0.1835 0.2418
= 26 0.0484 0.0693 0.0972 0.1352 0.1851 0.2450
O i 27 0.0502 0.0697 0.0977 0.1360 0.1864 0.2478
28 0.0489 0.0700 0.0982 0.1367 0.1875 0.2500
29 0.0506 0.0702 0.0986 0.1373 0.1884 0.2517
: 30 0.0492 0.0704 0.0988 0.1376 0.1890 0.2530
» 31 0.0508 0.0705 0.0990 0.1379 0.1893 0.2537
N 32 0.0493 0.0705 0.0990 0.1379 0.1894 0.2540
. 33 0.0508 0.0705 0.099 0.1379 0.1893 0.2537

% 34 0.0492 0.0704 0.0988 0.1376 0.1890 0.2530
> 35  0.0506 0.0702 0.0986 ©0.1373 0.1884 0.2517
] 36 0.0489 0.0700 0.0982 0.1367 0.1875 0.2500
3 37 0.0502 0.0697 0.0977 0.1360 0.1864 0.2478
7y 38 0.0484 0.0693 0.0972 0.1352 0.1851 0.2450
2] 39 0.0497 0.0688 0.0965 0.1342 0.1835 0.2418
. 40  0.0477 0.0683 0.0957 0.1330 0.1816 0.2381
i3 41 0.0489 0.0676 0.0948 0.1317 0.1795 0.2339
: 42  0.0467 0.0670 0.0938 0.1302 0.1770 0.2292
T 43  0.0479 0.0662 0.0927 0.1285 0.1742 0.2240
< 44 0.0456 0.0653 0.0914 0.1266 O0.1711 0.2183
N

‘B

4

4
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0.0466
0.0442
0.0451
0.0425
0.0433
0.0405
0.0413
0.0381
0.0388
0.0353
0.0359
0.0320
0.0325
0.0279
0.0284
0.0227
0.0231
0.0154
0.0156
0.0000

0.0644
0.0633
0.0622
0.0609
0.0596
0.0581
0.0565
0.0548
0.0529
0.0509
0.0487
0.0462
0.0435
0.0405
0.0372
0.0333
0.0288
0.0233
0.0156

0.0000.

-

0.0900
0.0885
0.0869
0.0851
0.0831
0.0809
0.0786
0.0761
0.0733
0.0703
0.0670
0.0634
0.0593
0.0548
0.0496
0.0436
0.0363
0.0273
0.0156
0.0000

0.1245
0.1222
0.1197
0.1170
0.1140
0.1107
0.1071
0.1032
0.0989
0.0941
0.0888
0.0830
0.0765
0.0692
0.0610
0.0517
0.0412
0.0293
0.0156
0.0000

0.1676
0.1638
0.159%6
0.1550
0.1499
0.1444
0.1383
0.1318
0.1247
0.1170
0.1087
0.0998
0.0902
0.0798
0.0687
0.0567
0.0439
0.0303
0.0156
0.0000

-------
e e

47

0.2121
0.2054
0.1982
0.1905
0.1823
0.1736
0.1644
0.1548
0.1446
0.1339
0.1228
0.1111
0.0990
0.0863
0.0732
0.0595
0.0454
0.0308
0.0156
0.0000

"""""""""""""""""""""
-----------------
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Depth of 0-1 tree = 7
Number of goal nodes = 128
Number Improvement from learning about level

of 1’s 1 2 3 4 5 £e 7

-

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 O0.0000
0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078

Py

0

1

2 0.0078 0.0117 0.0137 0.0146 0.0151 0.0154 0.0155
3 0.0116 0.0145 0.0182 0.0206 0.0220 0.0227 0.0231
4 0.0115 0.0169 0.0220 0.0260 0.0284 0.0298 0.0305
5 0.0144 0.0189 0.0251 0.0307 0.0345 0.0367 0.0378
6
7
8
9

0.0143. 0.0207 0.0279 0.0350 0.0402 0.0433 0.0450
0.0167 0.0223 0.0304 0.0388 0.0455 0.0497 0.0521
0.0165 0.0238 0.0326 0.0424 0.0505 0.0559 0.0591
0.0186 0.0252 0.0347 0.0456 0.0553 0.0619 0.0659

10 0.0185 0.0265. 0.0366 0.0486 0.0597 0.0677 0.0726
f 11 0.0203 0.0277 0.0383 0.0513 0.0639 0.0733 0.0792

‘ 12 0.0201 0.0289 0.0400 0.0539 0.0679 0.0788 0.0856
13 0.0218 0.0299 0.0415 0.0563 0.0717 0.0840 0.0920

o 14 0.0216 0.0309 0.0430 0.0585 0.0752 0.08%90 0.0982
{ 15 0.0232 0.0319 0.0444 0.0606 0.0786 0.0939 0.1043
16 0.0230 0.0328 0.0457 0.0626 0.0818 0.0986 0.1102
17 0.0244 0.0337 0.0470 0.0645 0.0848 0.1031 0.1161
18 0.0242 0.0345 0.0482 0.0663 0.0877 0.1075 0.1218
19 0.0255 0.0353 0.0494 0.0680 0.0904 0.1117 0.1274
20 0.0253 0.0361 0.0505 0.0697 0.0930 0.1157 0.1329
21 0.0265 0.0368 0.0515 0.0712 0.0955 0.1196 0.1382
22 0.0263 0.0375 0.0525 0.0727 0.0978 0.1234 0.1435
23 0.0275 0.0382 0.0535 0.0741 0.1001 0.1270 0.1486
24 0.0272 0.0388 0.0544 0.0755 0.1022 0.1304 0.1535
25 0.0284 0.0395 0.0553 0.0768 0.1042 0.1338 0.1584
26 0.0281 0.0400 0.0562 0.0781 0.1062 0.1370 0.1631
; 27 0.0292 0.0406 0.0570 0.0793 0.1081 0.1401 0.1678
[ 28 0.0289 0.0412 0.0578 0.0804 0.1098 0.1430 0.1722
29 0.0299 0.0417 0.0585 0.0815 0.1115 0.1458 0.1766

30 0.0296 0.0422 0.0592 0.0826 0.1132 0.1486 0.1809
31 0.0306 0.0427 0.0599 0.0836 0.1147 0.1512 0.1850
32 0.0303 0.0431 0.0606 0.0846 0.1162 0.1536 0.189%0
a3 0.0312 0.0436 0.0612 0.0855 0.1176 0.1560 0.1929
34 0.0309 0.0440 0.0619 0.0864 0.1190 0.1583 0.1966
35 0.0318 0.0444 0.0624 0.0872 0.1203 0.1605 0.2002
36 0.0315 0.0448 0.0630 0.0881 0.1215 0.1625 0.2037
37 0.0323 0.0452 0.0635 0.0888 0.1227 0.1645 0.2071
38 0.0320 0.0455 0.0640 0.0896 0.1238 0.1664 0.2104
39 0.0328 0.0459 0.0645 0.0903 0.1249 0.1682 0.2135
40 0.0325 0.0462 0.0650 0.0910 0.1259 0.1699 0.2165
3 41 0.0333 0.0465 0.0654 0.0916 0.1269 0.1715 0.219%4
‘ 42 0.0329 0.0468 0.0659 0.0922 0.1278 0.1730 0.2222
43 0.0337 0©0.0471 0.0663 0.0928 0.1287 0.1745 0.2248

i 44 0.0333 0.0474 0.0667 0.0934 0.1295 0.1758 0.2274
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45 0.0340 0.0476 0.0670 0.0939 0.1303 0.1771 0.2298
46 0.0336 0.0478 0.0674 0.0944 0.1310 0.1783 0.2320
47 0.0343 0.0481 0.0677 0.0949 0.1317 0.1795 0.2342
48 0.0339 0.0483 0.0680 0.0953 0.1324 0.1805 0.2362
49 0.0346 0.0485 0.0683 0.0957 0.1330 0.1815 0.2381
50 0.0342 0.0487 0.0685 0.0961 0.1336 0.1824 0.2399
51 0.0349 0.0488 0.0688 0.0964 0.1341 0.d833 0.2416
52 0.0344 0.0490 0.0690 0.0967 0.1346 0.1841 0.2431
53 0.0351 0.0491 0.0692 0.0970 0.1350 0.1848 0.2445
54 0.0346 0.0493 0.0694 0.0973 0.1354 0.1854 0.2458
55 0.0353 0.0494 0.0695 0.0976 0.1358 0.1860 0.2470
56 0.0348 0.0495 0.0697 0.0978 0.1361 0.1865 0.2480
$7 0.0354 0.0496 0.0698 0.0980 0.1364 0.1870 0.2490
58 0.0349 0.0496 0.0699 0.0981 0.1366 0.1874 0.2498
59 0.0355 0.0497 0.9700 0.0983 0.1369 0.1877 0.2504
60 0.0350 0.0498 0.0701 0.0984 0.1370 0.1880 0.2510
61 0.0356 0.0498 0.0702 0.0985 0.1372 0.1882 0.2514
62 0.0350 0.0498 0.0702 0.0985 0.1373 0.1884 0.2517
63 0.0356 0.0499 0.0702 0.0986 0.1373 0.1884 0.2519
64 0.0351 0.0499 0.0703 0.0986 0.1373 0.1885 0.2520
65 0.0356 0.0499 0.0702 0.0986 0.1373 0.1884 0.2519
66 0.0350 0.0498 0.0702 0.0985 0.1373 0.1884 0.2517
67 0.0356 0.0498 0.0702 0.0985 0.1372 0.1882 0.2514
68 0.0350 0.0498 0.06701 0.0984 0.1370 0.1880 0.2510
69 0.0355 0.0497 0.0700 0.0983 0.1369 0.1877 0.2504
70 0.0349 0.049¢ 0.0699 0.0981 0.1366 0.1874 0.2498
71 0.0354 0.0496 0.0698 0.0980 0.1364 0.1870 0.2490
72 0.0348 0.0495 0.0697 0.0978 0.1361 0.1865 0.2480
73 0.0353 0.0494 0.0695 0.0976 0.1358 0.1860 0.2470
74 0.0346 0.0493 0.0694 0.0973 0.1354 0.1854 0.2458
75 0.0351 0.0491 0.0692 0.0970 0.1350 0.1848 0.2445
76 0.0344 0.0490 0.069 0.0967 0.1346 0.1841 0.2431
77 0.0349 0.0488 0.0688 0.0964 0.1341 0.1833 0.2416
78 0.0342 0.0487 0.0685 0.0961 0.1336 0.1824 0.2399
79 0.0346 0.0485 0.0683 0.0957 0.1330 0.1815 0.2381
80 0.0339 0.0483 0.0680 0.0953 0.1324 0.1805 0.2362
el 0.0343 0.0481 0.0677 0.0949 0.1317 0.1795 0.2342
82 0.0336 0.0478 0.0674 0.0944 0.1310 0.1783 0.2320
83 0.0340 0.0476 0.0670 0.0939 0.1303 0.1771 0.2298
84 0.0333 0.0474 0.0667 0.0934 0.1295 0.1758 0.2274
-1 0.0337 0.0471 0.0662 0.0928 0.1287 0.1745 0.2248
86 0.0329 0.0468 0.0659 0.0922 0.1278 0.1730 0.2222
87 0.0333 0.0465 0.0654 0.0916 0.1269 0.1715 0.2194
s 0.0325 0.0462 0.0650 0.0910 0.1259 0.1699 0.2165
89 0.0328 0.0459 0.0645 0.0903 0.1249 0.1682 0.2135
90 0.0320 0.0455 0.0640 0.0896 0.1238 0.1664 0.2104
91 0.0323 0.0452 0.0635 0.0888 0.1227 0.1645 0.2071
92 0.0315 0.0448 0.0630 0.0881 0.1215 0.1625 0.2037
93 0.0318 O0.0444 0.0624 0.0872 0.1203 0.1605 0.2002
94 0.0309 0.0440 O0.0619 0.0864 0.1190 0.1583 0.1966
95 0.0312 0.0436 0.0612 0.0855 0.1176 0.1560 0.1929
96 0.0303 0.0431 0.0606 0.0846 0.1162 0.1536 0.1890
97 0.0306 0.0427 0.0599 0.0836 0.1147 0.1512 0.1850
98 0.0296 0.0422 0.0592 0.0826 0.1132 0.1486 0.1809
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99
100
101
102
103

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

0.0299
0.0289
0.0292
0.0281
0.0284
0.0272
0.0275
0.0263
0.0265
0.0253
0.0255
0.0242
0.0244
0.0230
0.0232
0.0216
0.0218
0.0201
0.0203
0.0185
0.0186
0.0165
0.0167
0.0143
0.0144
0.0115
0.0116
0.0078
0.0078
0.0000

0.0417
0.0412
0.0406
0.0400
0.0395
0.0388
0.0382
0.0375
0.0368
0.0361
0.0353
0.0345
0.0337
0.0328
0.0319
0.0309
0.0299
0.0289
0.0277

0.0265 -

0.0252
0.0238
0.0223
0.0207
0.0189
0.0169
0.0145
0.0117
0.0078
0.0000

0.0585
0.0578
0.0570
0.0562
0.0553
0.0544
0.0535
0.0525
0.0515
0.0505
0.0494
0.0482
0.0470
0.0457
0.0444
0.0430
0.0415
0.0400
0.0383
0.0366
0.0347
0.0326
0.0304
0.0279
0.0251
0.0220
0.0182
0.0137
0.0078
0.0000

0.0815
0.0804
0.0793
0.0781
0.0768
0.0755
0.0741
0.0727
0.0712
0.0697
0.0680
0.0663
0.0645
0.0626
0.0606
0.0585
0.0563
0.0539
0.0513
0.0486
0.0456
0.0424
0.0388
0.0350
0.0307
0.0260
0.0206
0.0146
0.0078
0.0000

0.1115
0.1098
0.1081
0.1062
0.1042
0.1022
0.1001
0.0978
0.0955
0.0930
0.0904
0.0877
0.0848
0.0818
0.0786
0.0752
0.0717
0.0679
0.0639
0.0597
0.0553
0.0505
0.0455
0.0402
0.0345
0.0284
0.0220
0.0151
0.0078
0.0000

SR Dt Sk Sk BRESR A frn g un o A-a Sen B 4 B

0.1458
0.1430
0.1401
0.1370
0.1338
0.1304
0.4270
0.1234
0.1196
0.1157
0.1117
0.1075
0.1031
0.0986
0.0939
0.0890
0.0840
0.0788
0.0733
0.0677
0.0619
0.0559
0.0497
0.0433
0.0367
0.0298
0.0227
0.0154
0.0078
0.0000

¢.1766
0.1722
0.1678
0.1631
0.1584
0.1535
0.1486
0.1435
0.1382
0.1329
0.1274
0.1218
0.1161
0.1102
0.1043
0.0982
0.0920
0.0856
0.0792
0.0726
0.0659
0.0591
0.0521
0.0450
0.0378
0.0305
0.0231
0.0155
0.0078
0.0000
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