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ABSTRA~~F

Most gae-playing program make each move after conducting only a partial

1 search of the game tree and applying a static evaluation function at the terminal

I:-nodes of that partial search. Given limited resou rces. what is the d ptimal partial
.,search to perform? This report presents a model for investigating this question.

-, Results (including the answer to the above question) are obtained for a restricted

, case of the modeL

•4:. 1

4'1

I

l- -. .

ooa



';I ;

1. bnroduction

Scarcity is the cornerstone of economic theory. With chip technology growing

by leaps and bounds, some deny the relevance of scarcity to computer problem

iZsolving. "Just buy a bigger machine," they say. Yet some search tasks, like the

" 1 - travelling salesman problem. chess-playing and optimal circuit design, have decision

trees so huge as to preclude complete search In any current technology. This

necessitates partial search, Implemented by applying a heuristic evaluation function

to certain interior nodes of the decision tree. The job of the evaluation function is to

provide information about the subtrees below the evaluated node.

This report is an investigation of the search strategy rather than the move

strategy, that is. which nodes should be evaluated as opposed to what decision

should be made. A simple search strategy is uniform depth 1 search: evaluate each

possible move directly. and select that which appears best. Such a strategy is like a

child to whom "tomorrow" is synonymous with all the future. As the child grows to

understand "next week" and "three years hence", so might our strategy expand to

uniform depth 2 search, depth 3 search, and so on.

The "oombinatorial explosion" (NM 80 of most search problems keeps the

S@ e@aroh depth embarrassingly small Fear of the "horizon effect" [TRUS 52]. wherein

Important Information lies just beyond the deepest level searched, encourages

abandonment of uniform search. Instead, certain "promising" lines are searched

deeply, while other possibilities are left unexplored. Such search Is patterned after

"nslght". a typically human thought process.

I These search strategies and others have long been known to the game-playing

oommunlty [BIER 78]. The question of which strategy is best, however, remains

t unanswered. This report presents a model for investigating where in the decision

tree limited searoh resources should be expended in order to aid decision-making.

An-ltic resulLs are obtained for a restricted case.

L I
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a. The8 Mod

LI. Ubat ewy good rodel should be able to do
7

We wish to study the situation wherein limited resouroes prevent complete

[ search to the end of the decision pro els. Perforce. uncertainty as to the

correctness of our choices enters the stage. Uncertainty arrives In decision-making

from many sources. including unpredictable opponents, other external events. errors

in the evaluation function, and incomplete search. Our model must isolate this last

* source of uncertainty.

Our model must also make clear the distinction between a search strategy and a

move strategy. The following example was suggested by conversations with Tom

* Truscott about minimum variance search [TRUS 79].

Prudence. appearing on "Let's Make A Deal". must choose either what is in the

box beside her or what Is behind the curtain on the stage. She knows (because she

J " " bribed a trusted stagehand before the show) that the box contains $2000 in cash.

Careful records of the last forty-six episodes of the show Indicate that the average

curtain-item has value $1417. although some Items behind the curtain have been

worth as much as $5000. Clearly. her maw strategy, based on current information.

must be to take the box. But her search strategy should be to further explore the

* (curtain, for example by signalling her thirteen-year-old cousin Ozzy to sneak behind

It. The model herein must define precisely the notion of strategy, with both it

components. Further. it should allow quantItatve comparison of strategies.

[ Z2
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; 82. playing am

We model a decision process by a one-player Same played on a game tree. The

same tree may have any shape desired; the shape is known to the player. Each of

the leaves (called goal nodes) of the game tree has a value, which nay be any real

. number. The player begins at the root and makes sequential irreversible moves

until he reaches a goal node. The value of that node is the score the player achieves.

The player is trying to maximize his expected score.

It remains to deolare what information the player may acquire from search of

the game tree. Fi'rst we enrich our vocabulary.

Definition: To move randomly at a node means herein that the probability the

*player moves to one child is the same as the probability he moves to any other

child of that node. Suppose a player moves randomly from node w until the end

of the game. Then the score the player will achieve Is a random variable X.

called the blind Hsarch value st node w. Its probability mass function (pmf) pN

* is caled the blind sarcb pmi of node w and Its expectationl[,,]Incaledthe

blind search exOectatioN .1 node w.

Definltion: To eaplore node w in the game tree means to be told the blind search

I pm! Pw of node w.

At any time during the Same. the player may explore any node In the tree. This

exploration models the generation of accurate, consistent. yet Incomplete

Information from search, Further, the exploration is generic in nature, being tied to
j

no particular Same.

To model limited resources, we associate a cost of S1 with each exploration o a

node. The player begins with a limited but known budget. Generously. we give the

player the blind search pint of the root of the game tree free of charge.

I



i Deffi ion: A search strategy is a collection of rule@ that specify which nodes of the

game tree are to be explored at what times. A mm strategy is y collection of

!• rules that specify what moves to make during the game. A straLe is the union

of a searah strategy and a move strategy.

The search and move strategies may be dynamic and may communicate. That is,

the result of one exploration or move may partially determine the succeeding

portion of the search and move strategies. The strategies may also be probabilistic.

The player is assumed to have a true random-number generator at his disposal.

Let us review the current status of our model Someone (say Zeus) has supplied

three game parameters:

1. the shape of the game tree,

2. the blind search pmt of the root of the tree, and

3. the player's budget.

The player knows the values of these three parameter. He brings with him a

strategy. as defined above.

-V At this point the player could play the game. achieving some fated result. But as

I many gamblers have found to their dismay. there Is a difference between the winning

play and the correct one (obtained by playing the odds). We are interested in

I,* evaluating the average, rather than actual, score yielded by the player's strategy. To

police and evaluate a strategy, we introduce a matm-phaer (NP).

The UP simulates the players strategy on each possible game tree. Recall that

many Same trees are possible from the player's viewpoint. because although the

player known the blind search psi of the root, he does not know which goal nodes

r have which goal values. The cards have been dealt but. not yet seen. For any

assignment of goal values to goal nodes consistent with the given root blind search
pmto the VP simulates the player's strategy to find an average (expected) score. This

iV
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@core is an average rather than a ingle number because of possible probabilistic

} Iaspects of the player's strategy. The average Is weighted according to the

probability distribution specified by the player in his strategy.I" r

" .•Once these average scores are computed, the MP averages them over all possible

S" g ame trees. How to weight this average has not yet been specified. It is reasonable.

glven the lack of additional information, to assume that all such game trees are

I equally likely. For emphasis, here is a precise statement of this assumption.

Meta-player assumption: Let a given game tree have shape #. and let its root have

pn P. Label its goal nodes u = ( 1, s. 9 g=). Let r be the set of all possible

assignments of goal values w = (in. vs. , .) to the goal nodes, consistent

with 9 and Pr. Wi azssume that all the elements of r are squaul likely.

3.4. A strategy unmasked

Enough of description! Watch the NP in action as he evaluates a strategy.

Zeus sends us a complete, binary, depth two tree. He says the root blind search

pmnfpr is:

p,(1i) = P,(0) = .--

The only trees consistent with these specifications are those with two goal nodes

having value "I" and two having value "W'. There are six such trees, pictured In

" !Figure 1.I

I . -.- .* - -. . . . . . . . .. . .. . . . .++,
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Prometheus moves to the child with larger expectation; If the expectations are

[ tied. he makes his first move randomly.

* 3 Prometheus makes his second move at random.

Note that Prometheus has used his god-given knowledge of root pmf p. in his

strategy.

To evaluate this strategy. the UP plays the game using the strategy on each of

the iz trees above. For example. an the first tree pictured. the search strategy

discloses that 'nX*] 0 and 3[Jj a 1. so Prometheus moves to node a. He then

moves to either node f or node g (at random). mcoring a "I" in either case. The MP

wecords that Prometheus! strategy yields a score of "1" on tree 1.

Next the UIP tries Prometheus! strategy o~n Tree 2 (the middle tree in the first

rv Inigure 1). This time

.I . .. I.- ..-: I ... . I.. I ... I.



I EXJ= -z[X 1 0.5

The player makes both of his moves at random in Tree 2, receiving a score of either

"I" or "0" but averaging a score of 0.5. The MP records that Prometheus' strategy

yields an expected score of 0.5 on Tree 2. Note that this is an expected (average)

* ,Scors. In none of the six trees In 1gure I oan the actual score be 0.5.

1 '" Analysis of Trees 3 through 5 is symmetric to that of Tree 2. Analy , of Tree 6 is

.4 symmetric to that of Tree 1. The meta-player assumption says that a ix trees are

weighted equally. The MP evaluation of this strategy is the average of evaluation

on each tree, le..

(1.0 + 0.5 + 0.5 + 0.5 + 0.5 + 1.0)- 6:
3

In no game does Prometheus actually receive a score of _His strategy works
3"

better than this average on some trees and worse on others. When we compare two

1 - strategies, we will not claim that one strategy outperforms the other on all possible

games. but only that one has higher average score than the other.

I

1.

S * '*.t . .. *' . .



s. Deutrictlng the Model to Limited trategies on 0-1 RNu7 Trees

2 5 8.1. The Restrictions

In this section. we restrict the model in three ways.

1. '.. All trees are finite complete binary trees.

2 . "0" and "" are the only two goal values allowed.

S. The only strategies allowed are thohe of the following form

a. The player moves randomly until he reaches node v at depth k-1

(D & k -1 < depth of tree).

b. The player explores the two depth k children of node w. From the

probability distributions received, he computes the blind search

expectation of each of these children.

c. The player moves to the child whose blind search expectation Is the larger

of the two.

L The player moves randomly for the rest of the game.

Call such a strategy the Oe-h k strtegy.

Note that in our model a finite complete binary 0-1 tree can be described by two

parameters:

P a number of goal nodes with value "1". and

vt = number of goal nodes.

This Justifies the foowing definition."I

*1

J
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Defmltion: A (p,wi) tree is a complete binary tree with n goal nodes of which p

have value "1" and the rest have value "0 ".

*, INote that the blind search expectation of a.(p.R) tree is the average goal node

_value, Ie.

The blind search expectation of a tree is the stick by which we measure the

player's performance. It is the outcome we would expect the player to average if he

were to play the game many Limes with no information to guide him. The question

thus arises: Bw much wdi nJWormation help the p ayer? The function in the next

definition tells how much the player is helped by information, in this restricted

version of the game.

+-'. 1 Defnition: The random variable I(k.pnY) Is the improvement for a (pn) tree that a

player gains over its blind search expectation by using the one-time k strategy.

"" I Lot fh (p. n) denote its expected value Z (i( p.)].

The randomness in the random variable 1(kp.n) arises from two sources: the

1. randomness In the player's strategy and the random (p.n) tree selected. The

!: .former randomness obeys a uniform distribution when the player is using a one-time

& strategy. The latter randomness obeys the uniforqi distribution given by the

!4.:meta-player assumption. is.. that all (p.%) trees are equally likely.

- ta(pw) does not give an actual moore the player will receive in any particular

- Instance of a game played on a (p.n) tree. His strategy will work better in some

I Itances and worse In others. /b(pv.) is an average over all possible games played

oen (P ,) trees.

* a.

: ' -. . .. -...... - ..-" " ' ' ' --' -.--' + --.+ --.-.-.----" " i" : " " +



10

8.3. Reults and Conjectures

This section answers many interesting questions about the strategies in this

restricted model. For each statement labelled '1esult", its proof eitber follows the

statement or Is in Appendix A. The statements for which no explici proof appears

1 are labelled "Conjecture" and are supported by the computer results in Appendix B.

Unless otherwise stated, results about nI(pv) are for integers k, p. ni, with n aI.F
power of 2 (n * 2). 0 p and 1 : !6 log n. Throughout. (Z) denotes "m choose

IV" and is interpreted as 0 if z < I. Logarithms are base 2. The symbol • denotes the

" - end of a proof.

sI.i. computational Results

On the average, bow much should the player expect to gain by doing a single

Iexploration of two adjacent subtrees at level k of a (p .n) tree? That is. how does

one compute Ia (p,)? The results of this section give formulas for doing that

computation. These results justify the programs written to compute J (p,nt) and

tJ(p.R) for various values of k.p andn.

amaki: At(p.yi) = ,(n-P. )-

f :P. Appendix A (section 5.1).-

*.IThis expresses the 0-1 symmetry. Recall that p and n-p are the number of

goal nodes with values "1" and "0" respectively. This result says that the

)Imqprovement gained from. ingle exploration of two adjacent uubtrees In a tree with

p 1"s Is emctly the same (on average) as that gained in a tree with p "0's.

This result does not say that the average score achieved Is the same In the two

". [eases. It says only that the expected *wsaas from the two (different) no-search

Scores Is the sare. Note that the result applies no matter when the one-time

"" OMloration Is performed.

1,.4 ,.,,.. :- , ,2 ,.;-:-' ,b .,-:-.-. -,.-. . - . - . - : . : . : . . . . . . . , : - , . . . . . ...-.. . ., .•. . . .. . . . - . .



"*. Most of the following formulas are true for all values of p. but the programs use

Result I to halve the computational effort.

Begunl2:

Sjut 3 /2-j
.~ In (n/ 2) [/2+1J , ,,(J

0 H p=O or p--n
1 i p=1 or p--n-I

Il II(p-.n) f 2 p .-2 and p it mmn

1-a(p -L n) i 3:p an -3 and pis odd

I 1

0 If =0 or p =n

It ff 1 I g- P-4 -1  J +-

V.V

I' Proe: Appendix A (section 5.2).

"; 1Theme formulas ive ways to oompute j(p.9). The next result wiRll give (p.a)

In terms of 1 .

'• " The first formula in Result 2 is the naive oomputation of J(p.n). Its proof ba

Ilustrative of the combinatorial meaning of f jp.n). Exploring at the root of the

tree means splitting the goal nodes Into two haWes and choosing the baf with more

"1( 1"-valued goal nodes. In the first formula, the denominator ( )s the number of
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'4 ways to divide the n goa nodes into two halves. The sum is over the cases when j

ones and ni/2 - j zeros are in the selected half. The last two "choose" terms In the

formula give the number of ways to do the split in case J. The improvement in each

case is the 2j -p term inside the sum times the - term outside the miur. The factor

NI ., of 2 exists because of the symmetry of the cases and the fact that whichever half has

more "I"-valued goal nodes is selected.

The first formula is a short mum* but suffers from including terms with large

integers. In particular, s too large for a PDP 11/70 double variable (54 bits)

when n X 255 (depth 1 trees).

The second formula is a closed-form version of the first formula. It eliminates

the short sum but suffers the same difficulty with large integers. Its proof consists

only of combinatorial tricks applied to the first formula.

The third formula gives the recursive definition used by the programs to

I compute f 1(p.ui). The basis case is whenp is 1; the recursion is onp. f (p.,n) is

easily computed by this formula even for very large trees. Note the difference and

symmetry of the odd/even cases. Result 8 states more clearly how f a(p.ua) changes

as a function of p. The proof of the third formula is by induction using the second

formula. The difference in the odd/even cases occurs because the terms truncated

in the second formula depend on whether p is odd or even.

The fourth formula In Result 2 Is a non-recursive application of the third

" I formula.

+ .'+"-' "" + "+ " --.'.4, 1-' ''+'''+ II. ''-, ' -+?i,+++ " -''."
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•1 Resul 3: for k a 2.

(n Inc ( n-

Proof: In the one-time k strategy, the player explores two randomly selected

adjacent subtrees. each with root at level k of the (p.vn) tree. and moves to

whichever subtree has more goal nodes with value "1". In other words, the player

moves to a random node u at level k-1. and applies the one-time 1 strategy to the

subtree with root u.

Divide the possible outcomes Into cases: case J means the node u subtree has

goal nodes below It with value "1". Since node u is at level k -1. the expected

Improvement over blind search n case j is f (J.m), where m = size of the node w

subtree = --.

We must weight each case appropriately. The number of ways to select the

goal nodes with value "1" in the node u subtree I (2). The number of ways to select

* I the remaining goal nodes In the node u subtree Is (V 1. There are (M1 ways to

select a subtree with root at level k -1, so the weight of case J i

* (P) CLP)

MI

Multiplying the expected result for each case by the weight of that case and

I" sumoime. over 11 the oases yields Result S.

This formula expresses J,' (p.n) In terms of f1. For p .,n/2. the non-zero

terms of the sum are those for whlch ieus between 0 and min (m.p). Forp >n/2.

L , L
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the non-zero terms are those for which J lies between max (0. m - (n-p)) and m. In

I either case. the formula is a short sum. Note that the sum is longest (Vn is largest)

when k = 2.

L - The t j terms are easily computed from Result 2. However. the .combinatorial

-tenmi In fj (p.) may still be quite large. For example, f, requires (,,) which is

too large for a PDP 11/70 double variable (64 bits) when n 9! 256 (depth 8 trees).

I The problem in calculating fk(p,ft) lies not in the time required to compute the sum

but rather in difficulties in representing quotients whose numerator and

denominator are both quite large.

8.32. Specal Cases

This proposition gives simple formulas for fjl(p. n) and h(p.,t) in three special

oases. The first two cases are cases for which all or all but one of the goal nodes are

the same. The third special case is a nice formula for exploration at the bottom of

the Same tree.

Rms_.4: J,(,.o ) = k(n, ) = 0

Sj(-S) a ,(U,-1.1) =1-

Sf ,(p.) (n-) forn t4

Prod: The first formula follows Immediately from Result 2 and Result 3. The ( ) or

On _j terminResult3Isalways0lfp 0mrpaexceptforthe 0or =m

ease, for which I,(J.'w) a 0 by Result 2.

" The second formula also follows from Result 2 and Result 3. If p = 1. the sum In

Result 3 consists of two summands, the first of whioh is zero and the second of which

Is almily found from Result 2. The p -1 case oan be computed similarly or by



using the symmetry in Result 1.

The third formula follows from Result 3 and the other two formulas in this

result If k = log n, the sum In Result 3 consists of three summands ( 2 = 2). The J

-term in each is computed from the first two formulas in Result 4..

The first formula above says that trees whose goal values are ell "O"s or all "l"s

do not improve upon closer examination. Trees with all "0s are hopeless and those

wlth all "I"s are perfect already.

From the second formula we see that exploring trees with a single black sheep
,*1

enables the player to double his expected score, which improves from - "It

seems surprising that the improvement is Independent of the level k of exploration.

The last formula above gives the Improvement gained by exploring at the last

possible moment, that is. just before the player's last move. The formula is

pleasantly simple. Result 7. Result 10 and Result 14 further explain the behavior of

Iiimg,(p.vL). Each Is an easy corollary to Result 4.

Other special cases for ', can be similarly computed from Result 3. However. as

m, In Result 3 increases linearly. the number of terms In the Result 8 sum increases

e exponentlally. Application of Result 3 to increasingly large subtrees becomes

computationally dimcult quite quickly.

SiB Whih On*-Urn k Mrteg Is la?

The player Is most Interested In how he should play to maximize his game score.

le wants the answer to the question: Gven a (p.n) free. and giwn tht the player

ain "splore huo sa~acet subtrees emactl owe i the game but wust make lsl other
moves biMdft. %wn shdd the player do that exploraftio?

The corollary to Result 5 answers this question. Result 5 is the stronger

* Istatement of monotonlolty.
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MAt 5 [Balard and Mutcber]: for 1 € k < log a.

1 I j(p.n) • ,,pn

with equality if p=0 orp l orp --n orp --n.

I ~ Further, the proof does not depend on the goal node values being restricted to

4 f "0' and "1", and works for any complete n-ary tree.

Corolary, [Balard and Mutchler]: for I i k < log n.

with equality iff p=O orp=I orp--n -1 orp--n.

Further, the proof does not depend on the goal node values being restricted to

"0" and "1", and works for any complete n-ary tree.

tPoof: The proof of Result 5 is in Appendix A (section 5.3). The key ideas in It were

iproduced by Bruce Ballard following a conversation with the author. The corollary is

an immediate consequence of the result..

, 1 Result 5 Is the strongest result in this report. It says that the player does better

/ r' (on average) at each moment of the game to put off his single exploration until the

next move. up to his last move. The corollary Is immediate: the player should do his

!1.~ single exploration at the last possible moment, is.. just before the player makes his

-l last move. This authoritatively answers the question of which of the strategies

9 Iallowed In this restricted modal Is best.

This result does not say that for avry tree, the player necessarily wll do better

to postpone his exploration. For example, consider the second through fifth trees of

I lFqgure 1 in Section 2.4. If the player explores before his first move and then makes

his second move at random, he will see that both halves yield an average score of 0.5.

which he will achieve (on average). In those tour trees, If he makes his first move
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randomly and then explores the two goal nodes beneath hin, he will always find a

goal node with value "1", for an average score of 1.0. In those four trees, the player

is better off postponing the exploration until prior to his second move.

.. But now look at the first and last trees of Figure I In Section 2.4.r-In those, if the

player explores before his first move he will move toward the halt with all "I"s, for an

"average score of 1.0. But if he postpones exploration until after his first move, half

J of the Ume he will find only "0"s below him, for an average score of 0.5. The player is

better off in the first and last trees to explore before his first move.

Result 5 says that if we average each technique over all possible trees. assuming

that each such tree Is equally likely, then the player does better (on average) to do

his exploration at the lower level of the tree.

Much of the strength of this result lies in it not depending on the values of the

* goal nodes being restricted to "0" and "I". The proof of the result Involves no

combInatorics. It uses only a fundamental property of the "maximum" function and

I " the linearity of expected value.

This result suggests that a similar result might hold if the player Is allowed to do

more than one exploration. Further investigation of this extension will be

forthcoming.

8.4. For What Thm Does Search MNot Help?

The player is also interested in knowing for which trees search is most helpful.
Result 4 says that search doesn't help at all if the goal nodes are all the same.

SResults S through 1 answer the question: i %" t game free shoud the pltays be

moat waiu g to pay for the r$ht to ezore? Ih temsw of our model. vust happen to

I f(p.n) aup vsesfrom Oton. %^Uek ndn ra held fited? _

I
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5.'' lsut6

,(p.~)>9 > (P-. ) if 2 ap a

of (p.-n) ) of(p+ .2-) If Sap an-2

f a(P.T) < f j(p-Lni) Uis ven

of (p.u) > f(p-1.n) if p s -o

-Pmvutkar rf ,l ,sn f (p n) is rgt tWh p = -1 or p = +1.

Proof: Appendix A (section 5.4)..

,5', IThis result states two things. First. if we look at only even p or at only odd p.

- then f,(p.f) Increases as p Increases until p reaches midway ( ); then f 1 (p,9)

" decreases as p continues to increase to %. This relationship is Illustrated for

Ia a Igo in gure 2.

The seoond relationship given by this result is that j's(p,n) is bigger for odd

value of p than for either even neighbor. That i. for odd p.

4s, i(p-1.ft' ) and 1'(pn) > ,(p+lL)

" This relationship is illustrated for 9 a 128 in Figure 8.

fSuppose that prior to his first move the player wil do a single exploratiou of the

two subtree. beneath the root of the Same tree. For such a player. Result S means

.' I that be expects to learn more In trees whose goal nodes are about halt "l's and half

"os than in trees whose goal nodes are predoninanUy "ls or predominanUy 'os.

I, iThe proofs of the statements is Result 6 use the third formula In Result . The

lI." proofs do not explain the odd/even difference. However. one would expect more
*5+

° I



1. .04 I

-0 56 128
Figure 2 p w. f,(p. 128). drawn.as continuous curves.

a. Top curve Is for oddp. Bottom curve Is for evenp.

.04

r0 56 128
I lip..t p . a(p. IN8). drawn an a continuous curve.
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Improvement in (p.n) trees with p odd than in those with p even. since only in the

I even case Is It possible for the player to explore and nonetheless achieve no

Improvement In expected result. (This happens If the two halves o- the tree each

K L contain exactly half of the goal nodes with value "1".)

I ~ 3Result: for fixed n *4.

f",,(p.n) is an increasing function of p for Osp s-. decreasing for

22

ra s ni. and convex throughout. In particular, for fixed n a! 4, f U,(p.) is

largest when p = -.

I Prod: From Result 4.

SIjr..(p.v) = -)
a (n -)

' Viewing this as a continuous function of p. we see that

I .0 if S <

I f ft= 0 0 Upa

( Also. -2,I.(,.I) C< 0.

The result for Integer V follows from the continuous case..

Recall that fJk. (p.n) gives the expected Improvement when our strategy is to

I perform our one-time exploration at the last possible moment. Result? and Result 5

.. show that beh.vior with respect to proportion of goal nodes having value "1" Is the

same for the player who spends his money at the last moment as for the player who

4' spends his money as quickly as possible, except for the odd/even disparj'v.

II

,: +~~~~~~~~~~~~~~~~~~~~~~~~~~.... ..+:+.. .., ... .. ;.-... ....,..----..,... . -. ......... :..:............ +..:....... .... ........... :.: .':-:---.
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The topmost curve in Figure 4 illustrates Result 7 for n = 128.

Conjecture 8: for k a: 2.

'#4(p.n) is an increasing functl.. of p for OD ; !--, decfor

rf

a n, p and convex throughout. In particular, for fixed n and fixed k a 2,

j(p. n)is largest when p 2

This conjecture says that (except for f 1 (pn)) the graph of .f(p.n) as a

function of p is convex and symmetric about S. Computer results in Appendix B

verify the conjecture for n ! 128. The results for ni = 128 are graphed in Figure 4. It

seems highly likely that the conjecture is in fact true for larger values of n as well,

' j le., that all one-time k strategies behave similarly with respect to the make-up of the

goal values.

- 8.3.5. 'What H1appens in Large Trees?

Most game trees are very large. This section examines the behavior of' f(p.n)

[ .' in large trees. The results answer the following questions. 9sppose that we double

he number of goal nodes (ie.. add a level to the tree) ui*ae m&WainOg the ame

Sproporton of goal nodes wvUh w ea ".! Jw does this change J'a(p.n)? Does the

ftbehL r converge as the number of goal nodes gets large?

, ]sxultS: fj,(p,2n) •f j(p, n) with equality iff p O or p--w.

I: Ptroo: Appendix A (section 5.5).

This result says that adding a level to the tree while maintaining the same

proportion of goal nodes with value "I" causes the player to gain less (on average)

If from search, provided that the search is a single exploration of the two subtrees of

the root prior to his first move. The result is believable: in the expanded tree the

player receives his information one step further from the goal nodes than he does in

f t . . . . . f . -.- --. f ft . . t- - f
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S1.the smaller tree. and Result 5 says the player is best off receiving his information

just above the goal node.

eahl10: fkgO(2p,2n) z fjbS.(pn) with equalityiff p=O oi,--p--n.

"1 ro t: from Result 4.

S- ,.(ep.2n) =R (2 -2p)

2r (2n -1)

" , -I 2t - 1)

(n-P) if O<p <n
ft (2i-E).

l n (n -1)

a jj(p ,n) fromResult 4 qain.

I pfp 0 orp = f b,-(2 2n) = 0 =/f ,(P.-). -

Again we add a level to the search tree while maintaining the same proportion of

goal nodes with value "I". This result says that In such a situation, behavior for the

-. player who searches at the last possible moment Is like that of the player who

searches before his first move. In each case. the player expects to gain more from

search in the smaller tree.

Here, however, the rseasoning is different. When we explore near the bottom of

j the tree, the loss of search power in the larger tree occurs because of the increased

,* "Independence" of the goal nodes. In the smaller tree. if the left branch is not a goal

node with value "1". that fact increases the probability that the right branch is a

Sgoal node with value "1" (because there are a fixed number of such goals). Hence if

the left branch fails to give us the hoped-for "1". the right branch has better than Its

( *pw.m 6P chance of doing so. The same is true in the hlrer tree. but the increase in

"r "-.".''°"" ' '' , " " " t ' ' """ "-"'"" "' "" .. " • -
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probability is less (the two nodes are closer to independent), so the gain from search

is also less.

Conjecture 11: For 1 k a log n.

.. I&(2p.2n) c f'&(pn) with equalityiff pO-- or p=n.

Results 9 and 10 established this statement for the two extremal strategies

(searching before the first move and searching just before the last move). It seems

likely that the statement holds for the in-between strategies as well. Computer

results in Appendix B establish the truth of this conjecture for n g 128.

Result 12: For any constant a between 0 and 1.

lim f 1 (a,.nt) = 0

Proof: from formula 2 of Result 2.

!f ,r ( M +  1,, 1 4L (+ 1e n / 2 +  I )  IL / , )
= [/2+1 R (R/24- 1 f/-2 __ 4  4 n + 1 %/4

1%g+4 n/ 1~ TL/4YL/ + I n/

"0 an n,

Use Stirling's formula to demonstrate this convergenoe.

From Result G, J1I(p.n) is maximized when p = 1+i. Result 12 follows by

dominated convergence. •

In Result 12. we fx the proportion of "Ve at a and explore at the root of

I Increasingly deep trees. The result says that for large enough trees a single

y.'~



Sexploration of the two subtrees of the root of the game tree prior to the player's nrst

move adds almost nothing to his expected score. This is quite predictable: the

player is too far from the goal nodes when he receives his information for it to avail

-him at all

-spjecture 13: For any constant a between 0 and 1.

and for any Axed positive integer k.

limf %(an,n) = 0

This conjecture is a slight extension of Result 12 and should follow from

Result 12 as a corollary. Since k is fixed, exploration takes place a long way from the

goal nodes (just as in Result 12). so one would expect search to add almost nothing

to the player's expected score.

~Relt 14: For any constant a between 0 and 1.

- li-(an.n) ,,(1-a)

Noel: from Result 4,

U = lira l-, )im.

,.- - 1

I This interesting result gives the oonvergenoe behavior for the player who

searches only at the last possible moment. His expected gain from that search is the

product of the fraction of goal nodes with value "1" and the traction of goal nodes

with value "0".
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Suppose we were to assign the goal nodes value "1" or "0" independently with

Pr("r') = a. We would expect Result 14 to approximate (and. in the limit, equal)

behavior of last-minute search on such game trees. An easy calczlation of the

" expected improvement by last-minute search on such trees does intfact yield the

-same answer a(I-a) as given in Result 14.1 4

.5"

I
(."

'4:
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4. Conclusions and Further Research

SGiven limited resources, what search strategy is best? We selected a model in

which to answer this question, wherein we made precise such concepts as "search

1- strategy" and "resources". No claim is made that the model is the onlyplausible one,

:nor that it accurately represents real-world games or decision-making. The model

was selected for three reasons. Irrst, it isolates that which we wish to study:

: unoertainty arising from incomplete search. Second, the model is simple enough to

define the problem precisely and to allow hopes of obtaining analytic results. Third,

the trees allowed and evaluation function used are sufficiently generic to model

many interesting games played with many kinds of strategies.

The model features a division of "strategy" into "search strategy" and "move

I strategy"; resources specified as number of node evaluations allowed, node

evaluations described as "exploration". wherein the player learns the probability

I. mass function of possible outcomes were he to move at random beneath the

evaluated node; and the meta-player assumption that all assignments of goal node

values to goal nodes consistent with the given root blind search pmf are

equiprobable.

We analyzed a class of strategies called one-time k strategies, on a class of trees

called (p.n) trees. For these trees with these strategies, we proved the following

results, among others.

1. A short formula, recursive in p. exists for f 1 (p.i). For k X 2. j(p,.t) can be

expressed as a short sum, each of whose terms includes an ' 1 term.

j 8. The longer the player postpones search, the better the strategy. That is.

Is • Iaia.for 1 s; ( log n. Hence the optimal strategy (among tha allowed in

the restricted case) in to explore at the leaves of the game tree- Further. this
I

result [due In part to Bruce Balard) applies even if we allow the goal nodes to

have values other than "0" and "1".

.•ue • . •. o . " .. . . . o . . . ... . . . . . .-. . . . . . . . .
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S. The benefit from search Is greatest in trees for which about balf of the goal

nodes have value "I" and half have value "0". More precisely, we can graph

-a(p.tR) as a continuous function ofp. Fork & 2 (and approximalely fork = 1),
I :.

z fb(p .w) is a concave function symmetric aboutp = .

; 4. In deep trees, search at the root gains nothing for the player. That is, the one-

-N time 1 strategy is no better than random (no-search) play. Search just above

the leaves (the one-time log n strategy) gains a (I-a). where a Is the fraction of

goal nodes with value "1".

The girdle we wore herein to obtain analytic results can be loosened in two

natural ways. First, we might consider trees with more than two possible goal values.

For example, we might consider a (p,n) tree with one or two (in general, r) goal

nodes allowed to have a third value. Second. we might consider more complicated

strategies. For example, we might consider allowing two (in general, t) explorations,

each at any level of the tree. Each of these extensions is under current

Investigation.

The long-term goal of this research is to compute the optimal search strategy in

the unrestricted model One hopes that progress toward that goal will help us better

understand or intuitive Idea of "search with limited resources".

-- z

I

- - . . . . .

',-..o.... ., • ....... ........ . . .. . .- . ... , .. . . . . . .i i i : . ... '
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5. Appendix A - Proofs

4. 5.1. Proo of ltesult I

LOU :Rsut: Ia(p.ft) = f (n -P. n).

Proof: Fix k and n throughoui Lhe proof.

Recall that in the one-time k strategy, the player moves randomly to level k -1

of the tree. explores the two subtrees beneath him, moves to the subtree with higher

blind search expectation, and then moves randomly for the rest of the game. For

any (re.n) tree played acoording to the one-time k strategy, define the following

random variables.

4, : fraction of "l"-valued goal nodes in the left subtree explored.

= fraction of "I"-valued goal nodes in the right subtree explored.

. fraction of "O"-valued goal nodes in the left subtree explored.

,- . = fraction of "D"-valued goal nodes in the right subtree explored.

These random variables are not independent of each other. However, because

Ithe player Is using a one-time k strategy In an (mi) tree. their distributions

* "depend on only w&. n and k. Since n and k are fixed, we omit noting the dependence

on n and k.

Stop 1: (AA-, Ar-) * (4. ;). where ft stands for "has the same (joint)

- distribution as". This is true because when we interchange the "l's and "Os In the

j" 0goal values of a (a -p.n) tree, we obtain a (p.n) tree for which "I"s are interpreted

as "O"s and vice-versa. AL, and A:-, refer to the "1"I in a (n-p.n) tree, while 4

. I land A refer to the "W's in a (p.%t) tree. Hence their joint distributions are Identical.

Map Z . 4 + (therefore 4 ince all goal nodes in the left

subtree have value either fet or "0". amilarly, * z 1 -J.

step a I mx P _ a _z = p - .p--
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V.' This symmetry result occurs because having one branch "bad" is (on average)

Sexactly balanced by its brother being "good". More precisely:

= ["maxt4, ] + E[ i ,Al] - -

n n

= [m Ax., +m 4.A ] -E.
n

I- since max(X.Y) + mln(X.Y) fX+Y or any random variables X and Y

.+i
- -[4] + - -

- + 4 . - f since we moved randomly to level k -1 of the tree
i, ft R

=0

Step 4: The proof of Result 1 now proceeds as follows. By definition of j'b.

-Vi)= N jnaxig-, 4.,1] - blnd asrch expcttin of (u-p.n) tree

Z [maz4 , 1.;] - _P by Stop

a Z [mazi 2P-.- (1-4)2P- -(-;

.....
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E [maxi- , - byStep2

*1 --
aE [maxJ4 P--., A-11 by Step 3

."-= (p,) by definition oflb

52. Proof of Rmunlt 2

Result 2:

::~ 2,.. -2 -'p It' .- 'P ;€.2
2)".{.- j. -,,, (2-] " - --

4 9v1 g'I'mi n -/P-

2) + 1 1lp/2 + 1 ) I(l-;+)/ 21

:: 0 fp= or p=n

1 If p1 or p=n-t

if 2Scp scn-2 and jp i swi'n

." ( ;2 ',(p1,i) 3 Vsp at-S and p 6 odd

S 0 fp=0 or p=n

S.- ., . ., •. ". . . . ..

!,''--"-"~~~~I P-' + -- "" -" -'"-" " "" "-""""" -' " -
lei Sol'" " ]" ' "" -'P"4i " . "-" " " - : : : ; '
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* Proof: (a) jfrst firmuda. In the one-time k strategy, the player examines the

two subtrees of the root and moves to whichever subtree has more goal nodes with

value "I". We divide the possible outcomes of the exploration into eases: case

means the selected subtree has j goal nodes with value "1". The irnpr-vement over

ilind search expectation in case j is ("b.s.e." stands for "blind search expectation"):

"xpected scare in cases - b.s.c. of a (p. n) tree

Sba... o/ra (J. !-) tree - b.. ofa (p, n) tree

S= _.L__. - _
n/2 n

YIL

We need to compute the weight of each case. The number of ways to select the j

. ~" In the chosen subtree is (v). The number of ways to select the remaining '"s is

(/2 -j)" Further. the subtree selected could be either on the left or on the right

(except for the p / 2 case, to be handled shortly). The number of ways to select any

:J subtree of the root Is (OL2). The weight of case j is

1,(/) -j 1..)
i. ,,/2

* I

To get the first formula in Result 1. we multiply the improvement (I) n each

case by the weight (") of each case., and sum over the cases. The 2 case has zero

Improvement. so we may omit that case. The selected subtree must then bold more

than half of the p goal nodes with value "I1. so the sum beins at casei + 1

The sum ends when we heve exhausted either all the goal nodes with value "I"

thIoewthveII

- . . .
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(j = p) or all the goal nodes in the subtree ( =-. Since (1?) is interpreted as 0 if

J > p. we can write the sum as if it continues untilj = .-.

(b)seconid formula. One can prove by induction on m the formula (CNUT 73]

.I- " tr -(r+&)j] = [mi +11 It-m],, , 1) (tm, )

This formula holds for all integers r, s, 1. and m.

We have from the fLrst formula in Result 2 that

S,(p.ft) n - j )=,-
n (n/ 2 (2j-p](~j

[SP -nil (1p f-t -p,
- "(al-/( i d ,2_i

so 2 j /-

4 0____ f + f-

1?i -P21 t[n -,I -. a j .;"
uI(gg [oI1 I k1  J "i+i~~Ii-1/J I

This last step follows by applying (t) with r p. an -p. t =- -. and mu=hSIn the Ant

, sunmMItion and m = a In the second surmation.

(e) third formula. 7irst suppose p In even. tap n-2. Applying the second

, I formula in Result 2. we get

:..?,P 2' (,1 s (P-I)/2 + il nj ._P ) / el'
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4 [lp)  (p-I) [n-p+l/ -
)

n 2 1 p/2 [n2+ p +2] 2

z1 -C 4 P- nV__- n --! + I

= 2(p1t2) n-p+ 1incep is even
--p

A similar application of the second formula in Result 2 yields the appropriate

formula for odd p. The p = 0. 1, ft-1. and ni cases also follow immediately by

applying the second formula in Result 2.

(d) fourth formula. This follows directly from repeated applications of the third

formula In Result 2..

5.8. Proof Of Resllt 5

Iomhl5 [Bamfa and Mtchl]r: for Itk <logn,

a(,.v) s fa%#(p.v)

with equality 1ff p =0 or p =1 or p =n -1 or p-

Further. the proof does not depend on the goal node values being restricted to

) "0" and "I", and works for any complete n -ary tree.

Prod. Key Ideas In this proof were supplied by Bruce Ballard after a conversation

vth the author.

I

*', ;' .- ' .. . " . . . . . . . . . . . .

... ... . . . . .. . . . .. . ....... . . . .. .'."........ .... ..... ..... ..... ... . . -. .
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Result 4 establishes that equality holds if p 0. 1. vL -1. or n. Let 2 zp s n-2.

Soip I: Showthat f(pn) <f (pu).

Lot the random variables X. Y. W and Z be the number of goal nodes with value "1" in

A".. the four subtrees having root at level 2 of the (p.n) tree, respectively.

4. I
• .. I ... ... . --

S I I* I
x Y w z

Then by definition,

fI(pn) = EI MaxI+Y V+z l- -
- n /2 vs/2 ItJ

a ZE[ maxx+ Y. W+ZIP-

RR

Ji " since the one-time 2 strategist makes his &art move at random.

Z:: "a 4' -A , - Z + nVj -'A-
1'n/ 9%/ f'1.t=,',]+ t.,.] -2 t4 ;4-

!- E[mazX.Y3jh+[Vzt.Zi]

. Hnoe to show f,(p.n) < f.(p,%) it wll sutce to show that

z (iaz+ r. w +zj] < 9 [MZIX.r3l +K z [mazi.Z1]

RNow (X.Y)m(X.IW) and (Wt)m(Yj). where N stands for 'has the same joint

Lmtribution". so m (X.m)wmu(X.W) and maz(W.Z)ftmsz(Y.Z). Taking

I ezpectatons, we got

SAd

i!S

54 o 4 4.
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E[maxlX.Yl] = E[maxX.Wl] and E[mnaxW.Zj] = E[maxjY.Zj] Ce)

For any real numbers (hence any random variables).
I ..

"- axlX + Y. W + ZI !C max|X. W1 + maz Y,Z so

. 3 [maxjX+Y. W+Zl] I E[maxjX. W1 + nmax[ Y.Z]

Further, this inequality is strict as long as Pr (X> V and Y<Z) in non-zero. Since

2 s p & n-2. such is the case here. We have

- [max|X+Y. W+Zj] < E[maxX,W1 + max|Y.Zf]

= E [maxjX. WI] + E [maxiY.Zj]

= E [max[X. Y3] + E [maxi W,Z3] by (0) above

) As noted earlier, this suffices to conclude Step 1 of the proof.

Stop 2: Show that f,(p. n) < k + (p. n) if 2 ic k < log n.

:: (

. 11 applied to a random subtree with root at level k-1
t~il j* applied to a random subtree with root at level k -l

(because fj I i g on any tree)

I Further, the inequality is strict because there is a non-sero probability that the

2: random uubtree with root at level k -1 has between two and all but two goal nodes

with value "T.

I,"
R.-

['°.

:",#- ° ' ," . . .. . . .." '- .-. ' -=... . . . .."% " -". .. " . -. .. '-". - ". . .- " - ."" ". ".



A' 6.4. Proof of Remut 6

Bet 6:

f fip.IL) > f (p-2. n) If 2 i p i

f 1 (p,,) > fi(p+2,n) if Sc n-

f.1 7 1 (pIL) > f (p-1.ft) if "New

hparicu/ar.ftfl zeR .fI(pR ) isargesturn p = i-1 or p =

Proof: (a) Suppose 2 Sp T-. Thenp 9-p gop-2 <n-p andp-I <9L-p+1.

21 It follows that

*1.. l,.d .
.jp- '1z  n-,D+l

For p a2, the result is trivial. For larger even p.* Result 2 shows that

: :-~ £- ir(p-LVL) using Result 2 Main. on oddp-l

But from(1". we have t-V P-1> 1,9 so j(p.) > f(p-2m) for wonp. For
o R-pdi p-oJ odd p. Result 2 shows that

1 2(1p,,) *-j-f,(P-1.,)

. ..
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"p-i,,-p2 €,c(p-2.-) using Result 2 again. on evenp-i
-t."", moe ") Ue, ~ap- n-p +1

.ince ()implies that -P + > 1.we have that fn(P'n) > f --- 2"n) for odd
p- up+-,(.R (p.2w
P I +

S4b) If • p a n-2, part (a) of this proof and the symmetry condition of Result 1

entail thatf j(p,v ) >J' (p +2.n).

(a) If p is even. from Result 2

f,(p.n) = -P+--I(

f f(p-,~n) since - 1

(d) If p in odd. from Result 2 we have

f ,(p.&) = P jfz(p-.va)

> f1 (p-,n) mince

5.5. Proof Of Result 9

XsMItL ,f(2p.2n) i f j(p,) with equality lff p=O or pn.

Prod: If p =0 or p--n. the result follows from Result 4. Let 0 <p 9.

Stp J: Show true for enp.

9 .)= - ZnB I by repeated application of Result 2I IEn -3 2 Rn-1 Int

| ",-

* *.. . * ,~*' . - , - . . , . , _ , . • • - - . q .



U w-2 A(! L )
( -1) 3(n-

4 2

6- I1
-=', i . 1 - m i-nce -< -

S-if n X. 3 (tarue here)

o f 1 (2.ni) by Result 2

-idueton sfep: Assume true for p -2 (p even, p at 4). Show true for p.

7~2.Y =2n-2y p -1 2n-2p2 2-3 f1(p-.)2,,. +12 - j On2+3 2p-4 -,

I by repeated application of Result 2

<An-B Bp -j~ In- g+2 ?a- Ip-n
-% 2n-Bp+l Bp-2 2wi-p+3 2p-4

by the Induction hypothesis

y -f f-2 n- 12 2 ft- 3 . -, ,- + n1,!(P .w ()

,o 2

by repeated application of Result 2

But calculations show that the coeffcient of I I(p.%) in the lie narked ()Is

I.as than or equal to I precisely when p t - + 1. Hence the Induction step fo11m

for p • . For larger even p. the result follows from the symmatry condlton In

I URemit 1.

* 2 ' . : 6', t. .- *. '""' ,''' """ . .- -". . "- ". .- . . . . . -- . - - - - " ." -" - - - . - - -. . - -. • .- -. •
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D'p?: Show true for oddp.

Amua can = I):

f(3.R) * I-2 I -f
f A890 a - by two applications of Result 2

:::t . n-. vt

*I

,' umotion stop: We will show true for odd p > 1. using Step 1 as the "induction

* S hypothesis". Let p > I be odd.

f1 1(2p. un) = nZ~ ip- I 4fz(p - . n) by Result 2

< 2nBp ,+1 P-2 1(p- I n)using Step 1. since 2p -2 i. even:.!I

4,1,-,P1- 1 o byResult2

L= -Bp~ 20- jpu

IL f. u''- t

!I
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6. Appendix B --- Computer Results

Depth of 0-1 tree = 1

.1 Number of goal nodes - 2

- Number Improvement from learning about level
ofl's 1

0 0. 0000
1 O. SO00

0.0000

*'I1

-'I

I°

41

*)
SI,

,- .;; 4. ... 4. . - , .-,-
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Depth of 0-1 tree - 2

Number of goal nodes a 4

NUmber Improvement from learning about level
of I's 1 2

0 0.0000 0.000011 0.2500 0.2500
2 0.1667 0.3333
3 0.2500 0.25001 4 0.0000 0.0000

i

q

r
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Depth of 0-1 tree = 3

Number of goal nodes - 8

Number Improvement from learning about level
of l9s 1 2 3

. 0 0.0000 0.0000 0.0000
1 0.1250 0.1250 0.1250
2 0.1071 0.1786 0.2143
3 0.1607 0.1964 0.2679
4 0.1286 0.2000 0.2857
5 0.1607 0.1964 0.2679
6 0.1071 0.1786 0.2143
7 0.1250 0.1250 0.1250
a 0.0000 0.0000 0.0000

*I

I'

I

1'

II

1
I1
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Depth of 0-1 tree w 4

Number of goal nodes - 16

Number Improvement from learning about level
',, of I's 1 2 3 4

0 0.0000 0.0000 0.0000 0.0000
- 1 0.0625 0.0625 0.0625 0.0625

2 0.0583 0.0917 0.1083 0.1167
3 0.0875 0.1089 0.1411 0.1625
4 0.0808 0.1214 0.1637 0.2000

: i 5 0.1010 0.1307 0.1788 0.2292
6 0.0918 0.1370 0.1882 0.2500
7 0.1071 0.1405 0.1933 0.2625
8 0.0952 0.1416 0.1949 0.2667
9 0.1071 0.1405 0.1933 0.2625

10 0.0918 0.1370 .0.1882 0.2500
11 0.1010 0.1307 0.1788 0.2292
12 0.0808 0.1214 0.1637 0.2000
13 0.0875 0.1089 0.1411 0.1625
14 0.0583 0.0917 0.1083 0.1167
15 0.0625 0.0625 0.0625 0.0625
16 0.0000 0.0000 0.0000 0.0000

.2I

I.'

i,f,

. I

",.." ".' " , . ."" ; ' - '"''' '' ""'" i 
.
" "' ' " " " ." . ," i"
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. Depth of 0-1 tree - 5

Number of goal nodes - 32

Number Improvement from learning about level
,|of l's 1 2 3 4 5r~ [

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0313 0.0313 0.0313 0.0311 0.0313
2 0.0302 0.0464 0.0544 0.0585 0.0605

- 3 0.0454 0.0567 0.0720 0.0821 0.0877

4 0.0438 0.0648 0.0856 0.1024 0.1129
5 0.0547 0.0716 0.0964 0.1198 0.1361
6 0.0527 0.0772 0.1052 0.1347 0.1573
7 0.0615 0.0820 0.1125 0.1472 0.1764
8 0.0590 0.0860 0.1186 0.1577 0.1935
9 0.0664 0.0895 0.1237 0.1665 0.2087

10 0.0635 0.0923 0.1280 0.1736 0.2218
11 0.0699 0.0947 0.1315 0.1793 0.2329
12 0.0666 0.0966 0.1343 0.1838 0.2419
13 0.0721 0.0980 0.1365 0.1872 0.2490
14 0.0683 0.0990 0.1380 0.1895 0.2540
15 0.0732 0.0996 0.1389 0.1909 0.2571
16 0.0689 0.0998 0.1392 0.1913 0.2581
17 0.0732 0.0996 0.1389 0.1909 0.2571
18 0.0683 0.0990 0.1380 0.1895 0.2540
19 0.0721 0.0980 0.1365 0.1872 0.249020 0.0666 0.0966 0.1343 0.1838 0.2419
21 0.0699 0.0947 0.1315 0.1793 0.2329

22 0.0635 0.0923 0.1280 0.1736 0.2218
23 0.0664 0.0895 0.1237 0.1665 0.2087
24 0.0590 0.0860 0.1186 0.1577 0.1935
25 0.0615 0.0820 0.1125 0.1472 0.1764
26 0.0527 0.0772 0.1052 0.1347 0.1573
27 0.0547 0.0716 0.0964 0.1198 0.1361

P 28 0.0438 0.0648 0.0856 0.1024 0.1129
29 0.0454 0.0567 0.0720 0.0821 0.0877
30 0.0302 0.0464 0.0544 0.0585 0.0605
31 0.0313 0.0313 0.0313 0.0313 0.0313
32 0.0000 0.0000 0.0000 0.0000 0.0000

I

I
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Depth of 0-1 tree w 6

umber of goal nodes - 64

Umber Improvement from learning about level
- of I's 1 2 3 4 5 F6

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156
2 0.0154 0.0233 0.0273 0.0293 0.0303 0.0308
3 0.0231 0.0288 0.0363 0.0412 0.0439 0.0454
4 0.0227 0.0333 0.0436 0.0517 0.0567 0.0595
5 0.0284 0.0372 0.0496 0.0610 0.0687 0.0732
6 0.0279 0.0405 0.0548 0.0692 0.0798 0.0863
7 0.0325 0.0435 0.0593 0.0765 .0.0902 0.0990
8 0.0320 0.0462 0.0634 0.0830 0.0998 0.1111
9 0.0359 0.0487 0.0670 0.0888 0.1087 0.1228

10 0.0353 0.0509 0.0703 0.0941 0.1170 0.1339
11 0.0388 0.0529 0.0733 0.0989 0.1247 0.1446
12 0.0381 0.0548 0.0761 0.1032 0.1318 0.1548
13 0.0413 0.0565 0.0786 0.1071 0.1383 0.1644

1 14 0.0405 0.0581 0.0809 0.1107 0.1444 0.1736
is 4 15 0.0433 0.0596 0.0831 0.1140 0.1499 0.1823
16 0.0425 0.0609 0.0851 0.1170 0.1550 0.1905
17 0.0451 0.0622 0.0869 0.1197 0.1596 0.1982
18 0.0442 0.0633 0.0885 0.1222 0.1638 0.2054
19 0.0466 0.0644 0.0900 0.1245 0.1676 0.2121,20 0.0456 0.0653 0.0914 0.1266 0.1711 0.2183I
22 0.0467 0.0670 0.0938 0.1302 0.1770 0.2292
23 0.0489 0.0676 0.0948 0.1317 0.1795 0.2339
24 0.0477 0.0683 0.0957 0.1330 0.1816 0.2381
25 0.0497 0.0688 0.0965 0.1342 0.1835 0.2418

-. 26 0.0484 0.0693 0.0972 0.1352 0.1851 0.2450
- 27 0.0502 0.0697 0.0977 0.1360 0.1864 0.2478

28 0.0489 0.0700 0.0982 0.1367 0.1875 0.2500
29 0.0506 0.0702 0.096 0.1373 0.18 0.2517
30 0.0492 0.0704 0.0988 0.1376 0.1890 0.2530
31 0.0508 0.0705 0.0990 0.1379 0.1893 0.2537
32 0.0493 0.0705 0.0990 0.1379 0.1894 0.2540

* 33 0.0508 0.0705 0.0990 0.1379 0.1893 0.2537
34 0.0492 0.0704 0.0988 0.1376 0.1890 0.2530
35 0.0506 0.0702 0.0986 0.1373 0.1884 0.2517
36 0.0489 0.0700 0.0982 0.1367 0.1875 0.2500
37 0.0502 0.0697 0.0977 0.1360 0.1864 0.2478
38 0.0484 0.0693 0.0972 0.1352 0.1851 0.2450
39 0.0497 0.0688 0.0965 0.1342 0.1835 0.2418
40 0.0477 0.0683 0.0957 0.1330 0.1816 0.2381
41 0.0489 0.0676 0.0948 0.1317 0.1795 0.2339
42 0.0467 0.0670 0.0938 0.1302 0.1770 0.12292
43 0.0479 0.0662 0.0927 0.1285 0.1742 0.224044 0.0456 0.0653 0.0914 0.1266 0.1711 0.2183

,,,: , ,;,)-4*,.. ....-.. %. .- M... ,. .. . *. . .**.
I • .. ." 

"
' " 
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45 0.0466 0.0644 0.0900 0.1245 0.1676 0.2121
46 0.0442 0.0633 0.0885 0.1222 0.1638 0.2054
47 0.0451 0.0622 0.0869 0.1197 0.1596 0.1982
48 0.0425 0.0609 0.0851 0.1170 0.1550 0.1905

I1 49 0.0433 0.0596 0.0831 0.1140 0.1499 0.1823
50 0.0405 0.0581 0.0809 0.1107 0.1444 0.-1736
51 0.0413 0.0565 0.0786 0.1071 0.1383 0.m1.644

1 52 0.0381 0.0548 0.0761 0.1032 0.13198 0548
53 0.0388 0.032 0.0733 0.0989 0.147 0.'-446
54 0.0353 0.0509 0.0703 0.0941 0.1170 0.1339
55 0.0359 0.0487 0.0670 0.0888 0.1087 0.1228
56 0.0320 0.0462 0.0634 0.0830 0.0998 0.1111
57 0.0325 0.0435 0.0593 0.0765 0.0902 0.0990
58 0.0279 0.0405 0.0548 0.0692 0.0798 0.0863
59 0.0284 0.0372 0.0496 0.0610 0.0687 0.0732
60 0.0227 0.0333 0.0436 0.0517 0.0567 0.0595
61 0.0231 0.0288 0.0363 0.0412 0.0439 0.0454
62 0.0154 0.0233 0.0273 0.0293 0.0303 0.0308
63 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156
64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

.,

I

I
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Depth of 0-1 tree = 7

Number of goal nodes - 128

Number Improvement from learning about level
of I's 1 2 3 4 5 f 6 7

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078
2 0.0078 0.0117 0.0137 0.0146 0.0151 0.0154 0.0155
3 0.0116 0.0145 0.0182 0.0206 0.0220 0.0227 0.0231
4 0.0115 0.0169 0.0220 0.0260 0.0284 0.0298 0.0305
5 0.0144 0.0189 0.0251 0.0307 0.0345 0.0367 0.0378
6 0.0143- 0.0207 0.0279 0.0350 0.0402 0.,0433 0.0450
7 0.0167 0.0223 0.0304 0.0388 0.0455 0.0497 0.0521
8 0.0165 0.0238 0.0326 0.0424 0.0505 0.0559 0.0591
9 0.0186 0.0252 0.0347 0.0456 0.0553 0.0619 0.0659

10 0.0185 0.0265 0.0366 0.0486 0.0597 0.0677 0.0726
11 0.0203 0.0277 0.0383 0.0513 0.0639 0.0733 0.0792
12 0.0201 0.0289 0.0400 0.0539 0.0679 0.0788 0.0856
13 0.0218 0.0299 0.0415 0.0563 0.0717 0.0840 0.0920
14 0.0216 0.0309 0.0430 0.0585 0.0752 0.0890 0.0982
15 0.0232 0.0319 0.0444 0.0606 0.0786 0.0939 0.1043
16 0.0230 0.0328 0.0457 0.0626 0.0818 0.0986 0.1102
17 0.0244 0.0337 0.0470 0.0645 0.0848 0.1031 0.1161
18 0.0242 0.0345 0.0482 0.0663 0.0877 0.1075 0.1218
19 0.0255 0.0353 0.0494 0.0680 0.0904 0.1117 0.1274
20 0.0253 0.0361 0.0505 0.0697 0.0930 0.1157 0.1329
21 0.0265 0.0368 0.0515 0.0712 0.0955 0.1196 0.1382
22 0.0263 0.0375 0.0525 0.0727 0.0978 0.1234 0.1435
23 0.0275 0.0382 0.0535 0.0741 0.1001 0.1270 0.1486
24 0.0272 0.0388 0.0544 0.0755 0.1022 0.1304 0.1535
25 0.0284 0.0395 0.0553 0.0768 0.1042 0.1338 0.1584
26 0.0281 0.0400 0.0562 0.0781 0.1062 0.1370 0.1631
27 0.0292 0.0406 0.0570 0.0793 0.1081 0.1401 0.1678
28 0.0289 0.0412 0.0578 0.0804 0.1098 0.1430 0.1722
29 0.0299 0.0417 0.0585 0.0815 0.1115 0.1458 0.1766
30 0.0296 0.0422 0.0592 0.0826 0.1132 0.1486 0.1809
31 0.0306 0.0427 0.0599 0.0836 0.1147 0.1512 0.1850
32 0.0303 0.0431 0.0606 0.0846 0.1162 0.1536 0.1890
33 0.0312 0.0436 0.0612 0.0855 0.1176 0.1560 0.1929
34 0.0309 0.0440 0.0619 0.0864 0.1190 0.1583 0.1966
35 0.0318 0.0444 0.0624 0.0872 0.1203 0.1605 0.2002
36 0.0315 0.0448 0.0630 0.0881 0.1215 0.1625 0.2037
37 0.0323 0.0452 0.0635 0.0888 0.1227 0.1645 0.2071
38 0.0320 0.0455 0.0640 0.0896 0.1238 0.1664 0.2104
39 0.0328 0.0459 0.0645 0.0903 0.1249 0.1682 0.2135
40 0.0325 0.0462 0.0650 0.0910 0.1259 0.1699 0.2165
41 0.0333 0.0465 0.0654 0.0916 0.1269 0.1715 0.2194

• 42 0.0329 0.0468 0.0659 0.0922 0.1278 0.-1730 0.2222
43 0.0337 0.0471 0.0663 0.0928 0.1287 0.1745 0.2248
44 0.0333 0.0474 0.0667 0.0934 0.1295 0.1758 0.2274

) * *~ - -
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45 0.0340 0.0476 0.0670 0.0939 0.1303 0.1771 0.2298
46 0.0336 0.0478 0.0674 0.0944 0.1310 0.1783 0.2320
47 0.0343 0.0481 0.0677 0.0949 0.1317 0.1795 0.2342
48 0.0339 0.0483 0.0680 0.0953 0.1324 0.1805 0.2362
49 0.0346 0.0485 0.0683 0.0957 0.1330 0..815 0.2381
50 0.0342 0.0487 0.0685 0.0961 0.1336 0.1824 0.2399
51 0.0349 0.0488 0.0688 0.0964 0.1341 0.4833 0.2416

j 52 0.0344 0.0490 0.0690 0.0967 0.1346 0.-4841 0.2431
53 0.0351 0.0491 0.0692 0.0970 0.1350 0.1848 0.2445
54 0.0346 0.0493 0.0694 0.0973 0.1354 0.1854 0.2458
55 0.0353 0.0494 0.0695 0.0976 0.1358 0.1860 0.2470
56 0.0348 0.0495 0.0697 0.0978 0.1361 0.1865 0.2480
57 0.0354 0.04% 0.0698 0.0980 0.1364 0.1870 0.2490
58 0.0349 0.0496 0.0699 0.0981 0.1366 0.1874 0.2498
59 0.0355 0.0497 0.0700 0.0983 0.1369 0.1877 0.2504
60 0.0350 0.0498 0.0701 0.0984 0.1370 0.1880 0.2510
61 0.0356 0.0498 0.0702 0.0985 0.1372 0.1882 0.2514
62 0.0350 0.0498 0.0702 0.0985 0.1373 0.1884 0.2517
63 0.0356 0.0499 0.0702 0.0986 0.1373 0.1884 0.2519
64 0.0351 0.0499 0.0703 0.0986 0.1373 0.1885 0.2520
65 0.0356 0.0499 0.0702 0.0986 0.1373 0.1884 0.2519
66 0.0350 0.0498 0.0702 0.0985 0.1373 0.1884 0.2517
67 0.0356 0.0498 0.0702 0.0985 0.1372 0.1882 0.2514
68 0.0350 0.0498 0.0701 0.0984 0.1370 0.1880 0.2510
69 0.0355 0.0497 0.0700 0.0983 0.1369 0.1877 0.2504
70 0.0349 0.0496 0.0699 0.0981 0.1366 0.1874 0.2498
71 0.0354 0.0496 0.0698 0.0980 0.1364 0.1870 0.2490
72 0.0348 0.0495 0.0697 0.0978 0.1361 0.1865 0.2480
73 0.0353 0.0494 0.0695 0.0976 0.1358 0.1860 0.2470
74 0.0346 0.0493 0.0694 0.0973 0.1354 0.1854 0.2458
75 0.0351 0.0491 0.0692 0.0970 0.1350 0.1848 0.2445
76 0.0344 0.0490 0.0690 0.0967 0.1346 0.1841 0.2431
77 0.0349 0.0488 0.0688 0.0964 0.1341 0.1833 0.2416

" 78 0.0342 0.0487 0.0685 0.0961 0.1336 0.1824 0.2399
79 0.0346 0.0485 0.0683 0.0957 0.1330 0.1815 0.2381
80 0.0339 0.0483 0.0680 0.0953 0.1324 0.1805 0.2362
81 0.0343 0.0481 0.0677 0.0949 0.1317 0.1795 0.2342
82 0.0336 0.0478 0.0674 0.0944 0.1310 0.1783 0.2320
83 0.0340 0.0476 0.0670 0.0939 0.1303 0.1771 0.2298
84 0.0333 0.0474 0.0667 0.0934 0.1295 0.1758 0.2274
85 0.0337 0.0471 0.0663 0.0928 0.1287 0.1745 0.2248
86 0.0329 0.0468 0.0659 0.0922 0.1278 0.1730 0.2222
87 0.0333 0.0465 0.0654 0.0916 0.1269 0.1715 0.2194
as 0.0325 0,0462 0.0650 0.0910 0.1259 0.1699 0.2165

t 89 0.0328 0.0459 0.0645 0.0903 0.1249 0.1682 0.2135
9o 0.0320 0.0455 0.040 0.0896 0.1238 0.1664 0.2104
91 0.0323 0.0452 0.0635 0.0888 0.1227 0.1645 0.2071
92 0.0315 0.0448 0.0630 0.0881 0.1215 0.1625 0.2037
93 0.0318 0.0444 0.0624 0.0872 0.1203 0.1605 0.2002
94 0.0309 0.0440 0.0619 0.0864 0.1190 0.1583 0.1966
95 0.0312 0.0436 0.0612 0.0855 0.4176 0.1560 0.1929
9 0.0303 0.0431 0.0606 0.0846 0.1162 0A536 0.1890
97 0.0306 0.0427 0.0599 0.0836 0.1147 0.1512 0.1850
98 0.02% 0.0422 0.0592 0.0826 0.1132 0.1486 0.1809
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( 99 0.0299 0.0417 0.0585 0.0815 0.1115 0.1458 C.1766
100 0.0289 0.0412 0.0578 0.0804 0.1098 0.1430 0.1722
101 0.0292 0.0406 0.0570 0.0793 0.1081 0.1401 0.1678
102 0.0281 0.0400 0.0562 0.0781 0.1062 0.1370 0.1631
103 0.0284 0.0395 0.0553 0.0768 0.1042 0.1338 0.1584
104 0.0272 0.0388 0.0544 0.0755 0.1022 0.1304 0.1535

I 105 0.0275 0.0382 0.0535 0.0741 0.1001 0.3270 0.1486
.. . 106 0.0263 0.0375 0.0525 0.0727 0.0978 0.-4234 0.1435

107 0.0265 0.0368 0.0515 0.0712 0.0955 0.1196 0.1382
108 0.0253 0.0361 0.0505 0.0697 0.0930 0.1157 0.1329
109 0.0255 0.0353 0.0494 0.0680 0.0904 0.1117 0.1274
110 0.0242 0.0345 0.0482 0.0663 0.0877 0.1075 0.1218
111 0.0244 0.0337 0.0470 0.0645 0.0848 0.1031 0.1161
112 0.0230 0.0328 0.0457 0.0626 0.0818 0.0986 0.1102
113 0.0232 0.0319 0.0444 0.0606 0.0786 0.0939 0.1043
114 0.0216 0.0309 0.0430 0.0585 0.0752 0.0890 0.0982
115 0.0218 0.0299 0.0415 0.0563 0.0717 0.0840 0.0920
116 0.0201 0.0289 0.0400 0.0539 0.0679 0.0788 0.0856
117 0.0203 0.0277 0.0383 0.0513 0.0639 0.0733 0.0792
118 0.0185 0.0265 0.0366 0.0486 0.0597 0.0677 0.0726
119 0.0186 0.0252 0.0347 0.0456 0.0553 0.0619 0.0659
120 0.0165 0.0238 0.0326 0.0424 0.0505 0.0559 0.0591
121 0.0167 0.0223 0.0304 0.0388 0.0455 0.0497 0.0521
122 0.0143 0.0207 0.0279 0.0350 0.0402 0.0433 0.0450
123 0.0144 0.0189 0.0251 0.0307 0.0345 0.0367 0.0378
124 0.0115 0.0169 0.0220 0.0260 0.0284 0.0298 0.0305
125 0.0116 0.0145 0.0182 0.0206 0.0220 0.0227 0.0231
126 0.0078 0.0117 0.0137 0.0146 0.0151 0.0154 0.0155
127 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078
128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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