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3 J

]

3 The Larch Family of Languages b

Ad .
»

The Larch Project is developing tools and techniques intended to aid in the productive use of

5 firmal specifications of systems containing computer programs. Many of its premises and goals are -

discussed in [Guttag, Horning, and Wing 82]. >

We view a system as consisting of a state and mechanisms for changing and extracting information -

from that state. We choose to define the information contained in the state without reference to
cither how that information was created or how it will be used. Our specifications consist of two

parts. In one, we specify the properties of values that may appear in system states, and in the second, o

" the program modules that deal with those states. -
! A major component of the Larch Project is a family of specification languages. Each Larch -
language has a component particular to a specific programming language and another component >

i common to all programming languages. We call the former interface languages, and the latter the 5
; shared language. g
We use the interface languages to specify program modules. Specifications of the interface that :

one module presents to other modules often rely on notions specific to the programming language,
eg. its denotable values or its exception handling mechanisms. Each interface language deals with

what can be observed about the behavior of programs written in a specific programming language. 3
e Its simplicity or complexity is a direct consequence of the simplicity or complexity of the observable "~
- state and state transformations of that programming language. Y
The shared language is algebraic. It is used to specify abstractions that are independent of both -
the program state and the programming language. The operators defined by an algebraic specification !
appeas in specifications written in the interface languages, and in reasoning sbout such specifications, ‘
B but they are not directly available to users of programs. The role of shared language specifications E
- is similar to that of abstract models in some other styles of specification. ;
Some important aspects of the Larch family of specification languages are:

Composability of specifications. We emphasize the incremental construction of specifications N
from other specifications. The importance of such mechanisms is discussed in [Burstall .

and Goguen 77]. Larch has mechanisms for building upon and decomposing

specifications as well as for combining specifications.

X Emphasis on presentation. Reading specifications is an important activity. To assist in this o
”i process, we use composition mechanisms defined as operations on specifications, rather . }
” than on theories or models. B
Interactive and integrated with tools. The Larch languages are designed for interactive use.

§ They are intended to facilitate the interactive construction and incremental checking of
specifications. The decision to rely heavily on support tools has influenced our language .
design in many ways. v
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Semantic checking It is all too easy to write specifications with suprising implications. We
would like many such specifications to be detectably ill-formed. Extensive ~hecking
while specifications are being constructed is an important aspect of our gpproach. Larch
was designed to be used with a powerful theorem prover for semantic checking to
supplement the syntactic checks commonly defined for specification languages. We

. have been influenced here by our experience with Affirm [Musser 80).

Programming language dependencies localized We feel that it is important to incorporate many
programming-language-dependent features into our specification languages, but to
isolate this aspect of specifications as much as possible. This prompted us to design a
single shared language that could be incorporated into different interface languages in
a uniform way.

Shared language based on equations. The shared language has a simple semantic basis taken
from algebra. Because of the emphasis on composability, checkability and interaction,
however, it differs substantially from the “algebraic” specification languages we have
used in the past. .

Interface languages based on predicate calculus. Each interface language is based on assertions
written in typed first-order predicate calculus with equality, and incorporates
programming-language-specific features to deal with constructs such as side effects,
exception handling, and iterators. Equality over terms is defined in the shared language:
this provides the link between the two parts of a specification.

Status and Plans

We are still in the early phases of the Larch project. In addition to the work described in this
report, interface languages for CLU and Mesa have been designed. {Wing 83] contains a detailed
description of the semantics of the CLU interface language. The Mesa interface language has not
been documented, but we have used it, in conjunction with the shared language, to specify the
program level interface to the Cypress data base system. This is the largest specification we have

attempted.

A primitive checker for the Shared Language has been implemented {Kownacki 83). In addition ..':

to parsing specifications, this program checks various context sensitive constraints and provides ‘j

. mechanisms for “expanding” assumptions, importations, and inclusions. This checker is an interim I
tool. We designed our specification language in tandem with an editing and viewing tool. Many ﬁ

language design decisions were influenced by the presumption that specifications would be produced - :

’ and read interactively using this tool. A first design is complete [Zachary 83], but implementation -
has yet to begin. o

We are in the process of implementing term rewriting software [Forgaard 83), [Lescanne 83] that i!

we hope will provide much of the theorem-proving capability needed for analyzing specifications. T

The definition of the Larch Shared Language calls for a number of checks for which there can be
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e THE LARCH SHARED LANGUAGE

no effective procedure. We have what we believe are useful procedures, based on sufficient or
necessary (but not both) conditions, for some of these checks, eg., consistency. We are working on
procedures for the others, e.g., checking constrains clauses. This is a difficult task. Diagnostics present
a particularly vexing problem: How should relatively complicated theorem-proving precedures report
peoblems to users who are not familiar with either their internal structure or the theory underlying
them?

It is always difficult to evaluate a language that has not been extensively used. The Larch Shared
Language is especially hard to evaluate because it has been designed for use in an environment that
we have not yet built. In addition to the specification of Cypress, we have written a number of small
specifications. On the whole, we were pleased by the ease of constructing these specifications in
Larch, and with the specifications themselves. While constructing them, we uncovered several errors
by inspection; we are encouraged that most of these errors would have been detected automatically
by the checks called for in the language definition. It will be some time, however, before we can
draw any strong conclusions about the potential utility of Larch in software development.
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INTRODUCTION 7

An Introduction to the Larch Shared Language

1. Simple Algebraic Specifications

Most of the constructs in the Larch Shared Language are designed to assist in structuring
specifications, for both reading and writing. The (rait is our basic module of specification. Consider
the following specification for tables that store values in indexed places:

TableSpec: trait

introduces
new: —» Table
add: Table, Index, Val — Table
#€ #: Index, Table — Bool
eval: Table, Index — Val
isEmpty: Table — Bool
size: Table — Card
coastrains new, add, €, eval, isEmpty, size so that
for all { ind, ind!: Index, val: Val, 1: Table ]

eval(add(s, ind, val) , indl ) = if ind = indl then val else eval(s, indl)
ind € new = false

ind € add(s, indl, val) = (ind = indl) | (ind € 1)

size(new) = 0

size(add(s, ind, val)) = if ind € 1 then size(/) else size(s) + 1
isEmpty()) = (size(s) = 0)

This example is similar to a conventional algebraic specification in the style of [Guttag and
Homing 80] and [Musser 80]. The part of the specification following introduces declares a set of
operators (function identifiers), each with its signature (the sorts of its domain and range). These
signatures are used to sort-check ferms (expressions) in much the same way as function calls are
type-checked in programming languages. The remainder of the specification constrains the operators
by writing equations that relate sort-correct terms containing them.

There are two things (aside from syntactic amenities) that distinguish this specification from a
specification written in our earlier algebraic specification languages:

A name, TableSpec, is associated with the trait itself.
The axioms are preceded by a constrains list.

The name of a trait is logically unrelated to any of the names appearing within it. In particular,
we do not use sort identifiers to name units of specification. A trait need not correspond to a single
“abstract data type,” and often does not.

The comstrains list contains all of the operators that the immediately following axioms are
intended to constrain. It is the responsibility of a specification checker to ensure that the specification
conforms to this intent. The constrained operators will generally be a proper subset of the operators
appearing in the axioms. In this example the constrains list informs us that the axioms are not to
put any constraints on the properties of if then else, false, 0, 1, +. |, and =, despite their occurrence
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& in the axioms. The judicious use of coastrains lists is an important step in modularizing specifications. o
We associate a theory with every trait. A theory is a set of well-formed formulas (wff’s) of typed D
j? first-order predicate calculus with equations as atomic formulas. R
;3 The theory, call it Th, associated with a trait written in the Larch Shared LangBage is defined ]
& )
X by:

Axioms: Each equation, universally quantified by the variable declarations of the containing
: constrains clause, is in Th.

)

X Ineguation: ~(true = false) is in Th. All other inequations in Th are derivable from this one

and the meaning of =.

First-order predicate calculus with equality: Th contains the axioms of conventional typed ]
first-order predicate calculus with equality and is closed under its rules of inference. é

from their absence. Th is deliberately small, because it is important to prove theorems before a
specification is complete, and we wanted to limit the circumstances under which the addition of new
operators and equations could invalidate previously proved theorems. Had we chosen to take the
theory associated with either the initial or final interpretation of a set of equations (as in [ADJ 78] ~
and [Wand 79]), this monotonicity property would have been lost.

- 9
The equations and inequations in Th are derivable from the presence of axioms in the trait—never :_‘.j
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2. Getting Richer Theories
) While the relatively small theory described above is often a useful one to associate with a set of
3 axioms, there are times when a larger theory is needed, e.g., when specifying an “abstract data type.”
;» Geserated by and partitioned by give different ways of specifying larger theories.
' Section 1 does not include an induction schema. This is an appropriate limitation when the set
- of generators for a sort is incomplete. Saying that sort S is generated by a set of operators, Ops,
": amerts that each term of sort S is equal to a term whose outermost operator is in Ops. One might,
,‘ for example, say that the natural numbers are generated by 0 and successor and the integers generated
X by 0, successor, and predecessor. Generated by adds an inductive rule of inference.
. This inductive rule and the clause Table generated by [ new, add ] can be used to derive theorems
such as
Vi: Table [ (1 = new) | (ind: Index [ ind € 1]) ),
N that would otherwise not be in the theory.
i
N
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INTRODUCTION 9

Section 1 allows equations to be derived only by direct equational substitution, not by the
absence of inequations. This is an appropriate limitation when the set of observers for a sort is
incomplete. Saying that sort S is partitioned by a set of operators, Ops, asserts thatif two terms of
sart S are unequal, a difference can be observed using an operator in Ops. Thereforé, they must be
equal if they cannot be distinguished using any of the operators in Ops. This rule of inference adds
new equations to the theory associated with a trait, thus reducing the number of equivalence classes
in the equality relation.

This rule and the clause Table partitioned by [ €, eval ] can be used to derive theorems such as

add(add(t, ind, v), indl, v) = add(add(s, indl, v), ind, v),
that would otherwise not be in the theory.

3. Combining Independent Traits

Our example contains a number of totally unconstrained operators, e.g., false and +. Such traits
are not very useful. The most straightforward thing to do would be to augment the specification with
additional clauses dealing with these operators. One way to do this is by trait importation. We might
add to trait TableSpec:

imports Cardinal, Boolean

The theory associated with the importing trait is the theory associated with the union of all of
the introduces and coustrains clauses of the trait body and the imported traits.

Importation is used both to structure specifications to make them easier to read and to ir. roduce
extra checking. Operators appearing in imported traits may not be constrained in either the importing
trait or any other imported trait. This guarantees that imported traits don’t “interfere” with one
another in unexpected ways. Le., it guarantees that the theory associated with a trait is « conservative
extension of each of the theories associated with its imported traits. (An extension, Thl, of a theory,
Th2, is conservative if and only if every wff of the language of Th2 which is in Thl is also in Th2.)
Each imported trait can, therefore, be fully understood independently of the context into which it is
imported.

As a syntactic amenity, trait Boolean is automatically imported into all other traits.
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10 THE LARCH SHARED LANGUAGE
4. Combining Interacting Traits _
While the modularity imposed by importation is often helpful, it can sometimes be too restrictive.

It_hovamientwcombinesevenlmitsdgdingwith different aspects of the' $ame operator.
This is common when specifying something that is not casily thought of as an abstract data type.

Trait inclusion involves the same union of clauses as trait importation, but allows the included
operators to be further constrained. Consider, for example:
Reflexive: trait

introduces # rel#: T, T — Bool
constrains .rel so that for all [ ¢: T ]

f xel { = true
Symmetric: trait
introduces #.rel#: T, T — Bool
constrains .rel so that for all [ ¢/, ¢2: T )
t] xel 12 = 12 rel 1]
Transitive: trait
imtroduces #.rel#: T, T — Bool
constrains .rel so that for all [ ¢/, 12, 13: T )
(((¢ el 12) & (12 xel 13)) =» (1] .rel 13)) = true
Equivalence: trait
includes Reflexive, Symmetric, Transitive
Equivalence has the same associated theory as the less structured trait
Equivalencel: trait
introduces # rel#: T, T —» Bool
coastraius .rel so that for all [ ¢/, 12, 13: T )
tl rel 1l = true
tl xel 12 = 12 rel 1
(11 xel 12) & (12 xel 13)) = (1] .rel 13)) = true
Any legal trait importation may be replaced by trait inclusion without either making the trait
illegal or changing the associated theory. It does involve the sacrifice of the checking that ensures
that the imported traits may be understood independently of the context in which they are used. We
use importation when we can incorporate a theory unchanged, inclusion when we cannot

S. Reaaming and Exclusion

The specification of Equivalence in the previous section relied heavily on the coincidental use
of the operator .rel and the sort identifier T in three separate traits. In the absence of such happy
coincidences, renaming can force names to coincide, keep them from coinciding, or simply replace
them with more suitable names.
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INTRODUCTION 1

The phrase

Trwith[xfory]
mdsfordlemitTrwimeveryoocumnoeofy(whichmustbe\.J*.erasortoropiﬂoriden:iﬁer)
replaced by x. Notice that if y is a sort identifier this renaming may change the signatures associated
with some operators.

. + Occasionally we wish to eliminate an operator altogether. The phrase

Tr without [ op ]
stands for the trait Tr without the declaration of op and without each axiom, gemerated by, and
partitioned by in which op appears. We use without to remove an operator either so that we can later
add another operator with the same name and signature but different properties or merely because

J it is superfluous and we want to spare readers the bother of looking at it. :‘
3N If TableSpec contains the generated by and partitioned by of section 2, the specification :
N ArraySpec: trait X
imports IntegerSpec

; includes TableSpec without [ size )

- with [ defined for # € #, assign for add, read for eval, ]
';.ﬁ: Array for Table, Integer for Index ] »
2 stands for -
124 ArraySpec: trait

" imports IntegerSpec a

) introduces
- new: —» Array &
| “,;, assign: Array, Integer, Val — Array S
v\ defined: Integer, Array —» Bool k
s read: Array, Integer — Val
B isEmpty: Array — Bool

. constrains new, assign, defined, read, iSEmpty so that
;\4 Array generated by [ new, assign ]
Array partitioned by [ defined, read ]
“ for all [ ind, indl: Integer, val: Val, : Amray ]

read(assign(s, ind, val), indl) =
if ind = indl then val else read(s, indl)

"fz defined(ind, new) = false

defined(ind!, assign(t. ind. val)) = ((ind = indl) | defined(ind!, 1))
N Notice that in this specification iSEmpty is totally unconstrained. In section 7 we discuss a
- checking mechanism that would call the lack of constraints on iSEmpty to the specifier’s attention.
? This would, presumably, provoke him either to add the axioms
§ . isEmpty(new) = true

isEmpty(assign(t, ind, val)) = false
N to his specification, or to add isEmpty to the without clause.

The use of without rather than some sort of hiding mechanism (as in [Burstall and Goguen 81])

may thus involve some extra work for the specifier. In return for this work, users of the specification
are spared having to deal with the “hidden™ operators, e.g., in proofs that use the specification. This

A
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12 THE LARCH SHARED LANGUAGE

is consistent with our belief that specifiers should be encouraged to do things that will make life
casier for users of their specifications.

The definition of without should make it clear that we are indeed operating on (he text of traits
(presentations) rather than on their associated theories. Consider adding these isEmppty axioms to
TpbleSpec to form another trait, TableSpecl. TableSpec and TableSpecl have the same associated
theories, but

TableSpec without size
and
TableSpec] without size
have rather different associated theories—in the latter, iSEmpty is fully defined.

A final point raised by the examples of this section is the importance of distinguishing between
the history of a specification (how it was constructed) and the structure presented to a reader. A
reader familiar with TableSpec might prefer to read the first version of ArraySpec; others might find
it distracting to have to understand the more general structure before understanding ArraySpec.

6. Assumptions

We often construct fairly general specifications that we anticipate will later be specialized in a
variety of ways. Consider, for example,
MultiSetSpec: trait

introduces
{}: -» MultiSet
insert: MultiSet, Elem — MukiSet
delete: MultiSet, Elem — MultiSet
#€ #: MultiSet, Elem — Bool

comstraims {}, insert, delete, € so that
MultiSet gemerated by [ {}. insert ]
MultiSet partitioned by [ delete, € )
for all [ m: MultiSet, ¢, e/: Elem ]

e € {} = false
e€insert(im, el) = (e = el) | (e € m)
delete({}. o = {}
delete(insert(m, ¢), el) =
if e = el thea m else insert(delete(m, e/), ¢)
We might specialize this to IntMultiSet by renaming Elem to Integer and including it in a trait
in which operators dealing with Integer are specified, e.g.,
IntMultiSet: trait

imports IntegerSpec
includes MultiSetSpec with [ Integer for Elem )
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INTRODUCTION 13

The interactions between MultiSetSpec and IntegerSpec are very limited. Nothing in
MultiSetSpec places any constraints on the meaning of the operators that occur in IntegerSpec, ¢.g.,
0, +, and <. Consider, however, extending MulﬁSegSpec to MultiSetSpecl by adding an operator
rangeCount, '

MultiSetSpecl: trait
imports MultiSetSpec, Cardinal
introduces
rangeCount: MultiSet, Elem, Elem —» Integer

#< #: Elem, Elem — Bool
coastrains rangeCount so that for all [ e/, e2 e3: Elem, m: MultiSet ]

rangeCount({}. el, e2) = 0
rangeCount(insert(m, e3), el, e2) =
rangeCount(m, e/, e2) + (if (el < e3) & (e3 < e2) then 1 else 0)
MultiSetSpecl places no constraints on the < operator. Suppose, however, that this is not what
we intend. We might have definite ideas about the properties that < must have in any specialization,
e.g., that it should define a total ordering. We could specify such a restriction by adding to
MultiSetSpecl the assumption (Ordered is defined in the Handbook section, on page 36):
Ordered with [ Elem for T )
In constructing the theory associated with MultiSetSpecl, the assumption would be treated as if
Ordered with [ Elem for T ] had been included. This could be used to derive various properties of
MultiSetSpecl, e.g., that rangeCount is monotonic in its last argument.
Whenever the augmented MultiSetSpecl is imported or included in another trait, however, the
assumption will have to be be discharged. In
IntMultiSetl: trait
incindes MultiSetSpecl with [ Integer for Elem ]
imports IntegerSpec
this would amount to showing that the (renamed) theory associated with Ordered is a subset of the
theory associated with IntegerSpec. Often, the assumptions of a trait are used to discharge the
assumptions of traits it imports or includes.

7. Consequences

We have now looked at those parts of the Larch Shared Language that determine the theory
associated with a valid trait. That subset of the language contains some checkable redundancy; e.g.,
assumptions are checked when a trait is included or imported, and constrains lists are checked against
the axioms associated with them. We now turn to a part of the language whose only purpose is to
introduce checkable redundancy, in the form of assertions about the theory associated with a trait.

There are two kinds of consequence assertions:

That the theory associated with a trait contains another theory.
That the theory associated with a trait “adequately” defines a set of operators in terms of

......................................
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N

e other operators.

3\ ‘The first kind of assertion is made using implies. Consider, for example, adding to the augmented

, MukiSetSpecl,

-’; implies for all [m: MultiSet, e/, €2, e3: Elem]

w¥ (€2 < &3) =» (rangeCount(m, e/, e2) < rangeCount(m, e/, e3)) ;

Imgplies can be used to indicate intended consequences of a specification, both for checking and . q

to increase the reader’s insight The theory to be implied can be specified using the full power of ]
the language, .g., by using generated by and partitioned by, or by referring to traits defined elsewhere. ]

< b ’

The second kind of assertion is made using comverts [ Ops . This asserts that each term is
provably equal to a term that does not contain operators in Ops. (We do not require this for terms
containing variables of sorts appearing in gemerated by clauses.) Converts is used to say that the

g specification adequately defines a collection of operators.
N A common problem with axiomatic systems is deciding whether there are “enough™ axioms.
Coaverts provides a way of making a checkable statement about the adequacy of a set of axioms.
A Consider, for example, adding to TableSpec:
\i cemverts [ isEmpty ].
Al This says that each term containing isSEmpty, such as isEmpty(new) or SEmpty(add(new), ind, val)),
s is equal to another term that does not contain isEmpty.
b Now consider adding to TableSpec the stronger assertion:
‘s comverts [ isEmpty, eval }
' Terms containing subterms of the form eval(new, ind) are not convertible to terms that do not contain
':‘ eval, 50 an error message of the form
t eval(new, ind) not convertible
would be generated. This would present a problem if we did not wish to add an axiom to resolve
. this incompleteness. We therefore provide a mechanism to allow specifiers to indicate that the y
"»‘ unconvertibility of certain terms is acceptable. If TableSpec were modifed to include ’
# exempts for all [ ind: Index ] evalnew, ind) ;
= the checking associated with the comverts would now require that the theory associated with TableSpec
!‘I‘s an equation, t = t], where tl has no occurrences of iSEmpty or eval, or
M s - . . .. . .
X an equation t' = tl, where U’ is a subterm of t, and tl is an instantiation of evanew, ind). .
& This checking ensures that each term containing operators in the converts list is either defined o
- by the axioms (in terms of operators not in the list) or explicitly exempted. One use of converts is a
to allow the specification checker to notice unintended effects of without. As suggested in section 6, R
" the failure of ArraySpec to fulfill the converts inherited from TableSpec would trigger error messages
: § of the form:
- isEmpty(new) not convertible
) isEmpty(assign(s, ind, val)) not convertible.
7:'
3
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8. HThenElse and Equality

In our examples we made use of some apparently unconstrained operstors: if them else and =,
with a variety of signatures. In fact, the appearance of these operators leads fo the implicit
incorporation of the traits IfThenElse and Equality.

Whenever a term of the form if b thes t1 else {2 occurs in a trait we replace the mixfix symbol

. if thea else by the prefix symbol ifThenElse. If t1 and 12 are of the same sort, T1, we also import

malrOrs

s

AL

2; the trait IfThenElse with [ T1 for T ] into the enclosing trait.
4 Whenever a term of the form t1 = 2 occurs in a trait, if t] and (2 are of the same sort, T1. we
£ append the trait Equality with [ T1 for T ] to the consequences of the enclosing trait
Specifications of these traits are:

& [fThenElse: trait
i " imtroduces ifThenElse: Bool, T, T = T
3] coastrains ifThenElse so that for all [ ¢/, 12: T ]
£ ifThenElse(true, ¢/, 12) = 1l

ifThenElse(false, 1/, 1) = 12
3 implies coaverts [ ifThenElse ]
E Equality: trakt
u includes Equivalence with [ = for .rel ]

constrains = s0 that T partitioned by | = ).

9. Some Further Examples

AP EF

The following series of examples is adapted from the Handbook chapter. We include them here
to illustrate some ways in which the facilities introduced above can be used. In reading these

= specifications, keep in mind that they are not themselves ends, but rather means to write interface :
:3 specifications. . y
: Our first example is an abstraction of those data structures that “contain™ elements, e.g.. Set, :
Bag, Queue, Stack. We have found it useful both as a starting point for specifications of various

kinds of containers, and as an assumption for generic operations. The crucial part of the trait is the -
2 generated by. [t indicates that any term of sort C is equal to some term in which new and insert are :
& the only operators with range C—even if this trait is included in one that introduces additional :
P~ operators that return values of sort C. This means that any theorems proved by induction over new .
- and insert will remain valid. -
o Container: trait % C's contain E's .
4 new: — C
L insert: C,LE —» C

-
2

coastrains C so that C generated by [ new, insert ]

'$-. The next example incorporates Container as an assumption. Notice that it constrains new and
% insert as well as the operator it introduces, iSEmpty. The converts indicates that this trait contains
$ I.
b X
'P .
}Ka{.’.ﬁ ' PR N ey T et T % et R _-,"-. e e T T T T T e T T e L e -~
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16 THE LARCH SHARED LANGUAGE

encugh axioms to adequately specify isEmpty. Because of the gemerated by, this can be proved by
induction over terms of sort C, using new as the basis and insert(c, ¢) in the induction step.
IsEmpty: tsalt
assumes Container ,
intveduces isEmpty: C — Bool '
constrains isSEmpty, new, insert so that for all [ ¢: C, e E ]
isEmpty(new) = true
isEmpty(insert(c, ¢)) = false
implies comverts [ isEmpty ]

The next two examples assume Container. The exempts indicate that should these traits be
included into a trait that claims the convertibility of next or rest, that trait needn’t convert the terms
seut(aew) or resi(sew).

Next: tralt
sssumes Container
intreduces aext: C —» E
constrains next, insert so that for ali [ e: E ]
nexi(insert(new, o)) = ¢
exsmpts aexi(new)
Rest: tralt
assumes Container
intreduces rest: C - C
censtrains rest, insert so that for ali [ e: E ]
rest(inseri(new, ¢)) = new
exompts resi(new)

The next example specifies properties common to various data structures such as stacks, queues,
priority queuss, sequeaces, and vectors. It augments Container by combining it with IsSEmpty, Next,
and Rest The pastitiened by indicates that next, rest, and iSEmpty are sufficient to define equality
over werms of sort C. Since we have little information about next and rest, the partitioned by does
aot yot add mwuch to the amociated theory.

Esumerable: trait
imports SEmpty, Next, Rest
inciudes Container
coustrains C se that C partitioned by [ next, rest, isEmpty ]

‘The next example specializes Enumerable by further constraining next, rest, and insert. Sufficient
axioms are given to convert next and rest The axioms that convert iSEmpty are inherited from the
trait Esumerable, which inherited them from the trait ISEmpty.
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PriorityQueue: trait
assumes TotalOrder with [ Efor T |
includes Enumerable
Mahmt.reu.msensothtfonll[q C. eE]

next(insert(q, ¢)) =
if isSEmpty(q) thea ¢
else if next(q) < e thea next(g) else ¢
rest(insert(q, ¢)) =
if isEmpty(q) then new
else if next(g) < e then insert(rest(g), e) else ¢
implies converts [ next, rest, isEmpty }

In a trait, such as PriorityQueue, that defines an “abstract data type” there will generally be a
distinguished sort (C in this case) corresponding to the “type of interest” of [Guttag 75] or “data
sort” of [Burstall and Goguen 81). In such traits, it is usually possible to partition the operators whose
range is the distinguished sort into “generators,” those operators which the sort is generated by, and
“extensions,” which can be converted into genmerators. Operators whose domain includes the
distinguished sort and whose range is some other sort are called “observers.” Observers are usually
convertible, and the sort is usually partitioned by one or more subsets of the observers and extensions.

The next example illustrates a specialization of Container that does not satisfy Enumerable. It
augments Container by combining it with IsSEmpty and Cardinal, and introducing two new operators.
Notice that we include Container, because we intend to constrain operators inherited from it, but
import ISEmpty and Cardinal, because we do not intend to constrain any operator inherited from
them. Constrains C is a shorthand for a constrains clause listing all the operators whose signature
includes C. The partitioned by indicates that count alone is sufficient to distinguish unequal terms of
sort C. Coaverts [ iSEmpty, count, delete ] is a stronger assertion than the combination of an explicit
converts [ count, delete ] with the inherited converts [ isEmpty |.

MultiSet: trait
assumes Equality with [ Elem for T }
imports ISEmpty, Cardinal
includes Container with [ empty for new ]
introduces count: Elem, C — Bool
delete: Elem, C —» C
constrains C so that

C partitioned by [ count ]
forall [c:C, el e2:E]

count(empty, e/) = 0
count(insert(c, e/), €2) = count(c, e2) + (if e/ = e2 then 1 else 0)

delete(empty, e/) = empty
delete(insert(c, e/), e2) =
if el = e2 then ¢ else insert(delete(c, e2), el)
implies converts [ isSEmpty, count, delete ]
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M
The next example specifies a generic operator. It uses Enumerable as an assumption to delimit

the applicability of this operator to containers for which it is possible to enumerate the contained
3 elements. (To understand why we assume Enumerable rather than Container, imagine:defining extOp
f..‘f far a MultiSet.) The exempts indictates that we do not intend to fully define the meanjng of applying

extOp to containers of unequal size. Notice that elemOp is totally unconstrained in this trait. This
-~ peevents us from having many interesting implications to state at this stage.
i PairwiseExtension: trait
e assumes Enumerable
1 introduces
elemOp: EE—E

extOp: C,C—»C

comstrains extOp so that for all [ ¢/, ¢2: C, el, e2: E )
extOp(new, new) = new

extOp(insert(c/, e/), insert(c2, e2)) = insert{extOp(c/, c2), elemOp(el, e2))

implies comverts [ extOp ]

| exempts forall{c: C, e E ]
oy extOp(new, insert(c, ¢)),
:‘E{ extOp(insert(c, ), new)
' Now we specialize PairwiseExtension by binding elemOp to + over Cardinals:
i PairwisePlus: trait

. assumes Enumerable

) impeorts Cardinal
e imcludes PairwiseExtension with [ # + # for elemOp, # + # for extOp, Card for E ]
;} implies Commutative with [ # + # for O, C for T )
3 The validity of the implication that + for sort C is commutative stems from the replacement of
; elemOp by + for sort Card, whose constraints (in trait Cardinal) imply its commutativity.
'?:
e,

>,

ok

X
A
'
b
¥




REFERENCE MANUAL 19

Larch Shared Language Reference Manual

6. Structure of Manual

In section 1 we present a grammar for the kernel subset of the Larch Shared Language.

In section 2 we define the context sensitive checking and the theory associated with each
specification written in the kernel subset.

In section 3 we extend the kernel subset by introducing mechanisms for specifying intended
consequences of a specification written in the kernel subset.

In sections 4-10 we define successive extensions of the language. We modify the grammar to
introduce additional aspects of the language and describe any additional context sensitive checking
required. We also provide a translation from the newly extended language to the previously defined
subset. The result of this translation is subjected to all the applicable checking. The theory associated
with any specification written in the full language is the same as the theory associated with its
translation.

Section 11 describes additional checks, defined in terms of the theories associated with traits,
that are associated with various language features. To be legal, a specification and each of the parts
from which it is built must satisfy these checks as well as the context sensitive checks described
carlier.
Finally, section 12 collects the reference grammar for the entire language.
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1. Kernel Syntax

1.1. Symtactic conventions

- alternative separator

{e} e is optional

O zero or more ¢'s

e°, zero or more ¢’s, separated by commas
e+ one or more ¢’s :
alpha alpha is a nonterminal symbol

alphs alpha is a terminal symbol

1) parentheses as terminal symbols

© parentheses for grouping syntactic expressions
1.2. Grammar

trait ::= traitid : trait traitBody

traitBody ::= simpleTrait

simpleTrait ::= {opPart} propPart*

opPart ::= imtroduces opDc/®

opDc! 1= opld . signature

signature ::= domain —» range

domain = sortid®,

range o= sortid

propPart .= asserts props

props ::=generators® partitions® axioms®
generators ::= sortid geaerated bylist®,
partitions :.= sortid partitioned bylist®,

byfiet ::= by [ sortedOp®, )

sortedOp ::= opDcl

axioms for all [ varDc/®, ] equation®
varDel = varkd®, : sortid
equation
term

opid

= term = term
::= gortedOp { °( term*, ") } | varid
::= alphaNumeric + | opForm

opForm = {# }opSym(# opSym)* { #}
opSym ::= speciaiChar+ | . alphaNumeric +
trakid ::= alphaNumeric +

sortid ::= alphaNumeric +

varkd .= giphaNumeric +

.............
..........
.........

Vet
s »

Comments start with % and terminate with end of line. They may appear after any token.

~ et
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2. Simple Traits
2.1. Contexi sensitive checking

mrnﬂ:
* The sets of varid's, sortid’s and opid's appearing in a trait must be disjoint.
*  Bvery sortid appearing anywhere in a simpleTrait must appear in its opPart.
Every sortedOp appearing anywhere in a simpleTrait must appear in its opPart.

opDcl:
Each opForm must have the same number of #°s as the number of occurrences of sort/d’s in
the domain.

generators:

The range of each sortedOp must be the sortid of the generators.

At least one sortedOp in each bylist must have a domain in which the sort/d of the generators
does not occur.

partitions:

‘The domain of each sortedOp must include the sort/d of the partitions.

The range of at least one sortedOp in each bylist must be different from the sortid of the
pertitions.

axioms:
Each varid used in a term must appear in exactly one varDcl.
No varid may occur more than once in | varDc/®, }.

oquetion:
The sorts of both term’s must be the same, where
The sort of a term of the form sortedOp { °( term®, °) } is the range of the sortedOp.
The sort of a term of the form varld is the sortld of the varDc¢! in which the varid is declared.

term:
In sortedOp { '( term®, V) } the domain of the sortedOp must be the sequence of the sorts of
the terms in torm®, .
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2.2, Associated theory

L We associate a theory with each trait. This section defines the theory associated with a
2 simpleTrait.

~ A theory is a subset of the language:

) wif ::= term = term

% " | “propositional formula”

i | "first order quantified (with sorts) formula”

N We adopt the conventional meanings of the equality symbol (=), the propositional connectives
(& | ~, =, ...), and the quantifiers (V and 3).

The subset of wif that is the theory, call it Th, associated with a simpleTrait is defined by:

d Axioms: Each equation, universally quantified by the varDc/'s of its containing axioms, is in
A, Th
X Ineguation: ~(true:—>Bool = false:—*Bool) is in Th.

A First order predicate calculus with equality: Th contains the axioms of conventional typed
: first-order predicate calculus with equality and is closed under its rules of inference.

- Induction: If the trait has a generators with sortid S and a bylist by [op,, .... 0pal, and P(s)
7 is a wff with a free variable, s, of sort S, Th contains the wff
¥ V[s: S] P(s)

if for each op; in fop;, . . . . opy)

. Q; =» P(opi(xy, ... xp)) is in Th, where

k is the arity of op;,

) the x;’s are variables that do not appear free in P, and

Q; is the conjunction of P(x;), for each j such that the j* argument of op;
is of sort S.

\ Reduction: If the trait has a partitions with sortid S and a bylist by [opy, ..., opg). Th contains
the wif

3 Vs, 2:S](Q = 5 = 5)
v where Q is the conjunction, for each op; in [op;, . . . . opy] and each j such that the j*
o argument of op; is of sort S, of

: V[x;: S . . .. xx: Sy] (Subst(op;, j, t1) = Subst(op, j, ty)), where
,: Sy, . . ., Sy is the domain of op;, and
4 Subst(op, j, t) is op(xj, . . . , x) with t substituted for x;.
)

]
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N
7 | 3. Consequences and Exemptions , E;
.\-’ e
:::: Exempts and consequences affect only the checking (see section 11.5) and do not affect the
: theory. We add to the grammar the productions:
-:3 trait ;1= traitld : trait traitBody {consequences} {exempts}
c@nsoquences = implies conseqProps {converts}
conseqProps = props
converts = comverts conversion®,
conversion = [ sortedOp*, ]
exempts 1= exempts exemptTerms®
26 exemptTerms ::= { for all [ varDcr®, | } term®,
o,
o 3.1. Context sensitive checking
%
A
R conseqProps:
If the props of the conseqProps is appended to the propPart of the containing trait, the
j resulting trait must satisfy the checks of section 2.
}3 exempts:
Each term must satisfy the checks of section 2.1.
B
o .
1 N Constrains clauses affect only the checking (see section 11.4), not the theory. We add to the 3
grammar the productions: ?
N propPart ::= ( asserts | constrains ) props ;
N constrains ::= coustrains ( sort/d | sortedOp*, ) so that ]
AN S
<
A\ 4.1. Translation -
> ;
o constrains:
- Replace the constrains by asserts.
¥
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5. Implicit Sigaatures and Partial OpForms

In the kernel language each sortedOp is an opDc/. Here we relax this restriction to allow
a_niuedandpartialsigmmmandomitted #°’s. We add to the grammar the production:
8OrtedOp 2= opld { —» range }

S:1. Context sensitive checking

There must be a unique mapping from occurrences of sortedOp’s to opDcl's of the traitBody
such that the translation described in section 5.2. produces a legal traitBody and for each sortedOp,
opDcl pair:

The opl/d's match, i.e.,
They are the same, or
They are both opForms and the one in the sortedOp is the same as the one in the
opDcl! with all #°s removed.
If the sortedOp includes — range, it is the same as the range of the opDcl.

3.2. Translation

The checking ensures that each occurrence of a sortedOp corresponds to a unique opDcl. The
translation is simply to replace it by that opDcl.

6. Mixfix Operators

In the language presented thus far, all operators are treated as either nullary or prefix. Here we
relax that restriction. We replace the grammar for term by:
term secondary | if secondary then secondary else term
secondary ::= { opSym } primary ( opSym primary )* { opSym }
primary sortedOp { '( term*,’) } | varid | °( term °)

6.1. Translation

equation:

It is necessary to resolve the grammancal ambiguity between the = connective in equations
and the = opSym. In any equation the first occurrence of = that is not bracketed by parentheses
or within an if then else is the equation connective, the remainder are opSyms. Parentheses can be
used to enforce any desired parsing.

1
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term:
Translate each term of the form if b then t; else t; into a term of the form ifThenElse(b, t;, to).

secondary: -
Translate each secondary containing opSym’s into a primary of the form opl/d °( term*, °),
where

opid is derived by replacing each primary in the secondary by #.
term®, is the sequence of primary's.

primary:
After the previous translations have been performed, remove the outer parentheses from
primary’s of the form '( term °).

7. Boolean Terms as Equations

It is convenient to use terms of sort Bool as axioms. We add to the grammar the production:
equation ::= term

7.1. Context sensitive checking

The term must be of sort Bool.

7.2. Transiation

Replace the term by the equation
term = true
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§. External References
We add to the kernel grammar the productions:
traitBody i = externals simpleTrait
externals ::= {assumes} {imports} {includes}
assumes = assumes traitRef®,
in;ports ::= imports traitRef®,
includes = includes traitRef*,
traitRef = traitld
conseqProps = traitRef*, props

8.1. Context sensitive checking

externals:
Recursive externals are not permitted; i.e., the trajtid of the containing trait may not appear in
an externals, nor in any partial translation of a traitRef in its externals.

8.2. Translation

The translation of a trait is derived bottom-up; i.e., before a trait with traitRefs is translated,
each of its traitRefs is replaced by the translation of the trait labeled by that traitRef’s traitid. Let
T be a trait whose simpleTrait is S and let E consist of the translations of the traitRefs in T's
externals. The translation of T consists of:

An opPart containing S's opDc/s and E’s opDcls,

A propPart® containing S’s propPart’s and E’s propPart's,

An exempts containing T's exemptTerms and E's exemptTerms, and

A consequences containing the props of
T's conseqProps,
the propParts of the translations of the traitRef’s in T's conseqProps, and
E’'s consequences.
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9. Modifications
We add to the grammar the productions:
traitRef ::= traitld {exclusion} {renaming}
exciusion = without [ 0/00p*, ] ‘
renaming = with [ ( sortRename | opRename )*, )
. sortRename ::= sortld for oldSort
oldSort ii= sortid
opRename :.= opld for 0/dOp
oldOp ::= sortedOp

9.1. Context sensitive checking

traitRef:
No sortedOp may occur more than once as an 0/dOp.
No sortid may occur more than once as an o/dSort.
Each o/dSort must appear in an opDc/ in the translation of the trait labeled by the trait/d.
There must be a unique mapping from 0/dOp’s to opDc/'s of the translation of the trait labeled
by the trait/d, such that for each o/dOp, opDc! pair:
The opld's match (see section 5.1),
If the 0/dOp includes domain, it is the same as the domain of the opDcl.
If the 0/dOp includes — range, it is the same as the range of the opDcl. h

9.2. Translation

The translation of the trait labeled by the trait/d of the traitRef is modified by applying first !
the exclusion, then the opRename’s, and finally the sortRename’s:
For each o/dOp in the exclusion, delete each bylist, equation, and term containing the ,
opDcl! to which it maps and then delete all remaining occurrences of that opDc/.
Then, simultaneously, for each opRename, replace the op/d part of each occurrence of the
opDcl to which the o/dOp maps by the opid of the opRename.
Finally, simultaneously, for each sortRename, replace each occurrence of its o/dSort by its
sortld.
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10. Imglicit Incorporation of Boolean, IfThenElse, and Equality

Three traits, Boolean, IfThenElse, and Equality, are implicitly incorporated into various other
traits to assure uniform meanings for the operators they constrain.

y =

'r .
NI AP S5 N

S

%
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16.1. Translation

Append the traitRef Boolean to the imports of each trait except Boolean.

Append the traitRef 1fThenElse with [ T1 for T ] to the imports of each trait containing a term
of the form if b thea t; else t; in which t; and t; have the same sort, T1.

Append the traitRef Equality with [ T1 for T ] to the traitRef* of the conseqProps of each
trait (except Equality) containing a term of the form t; = t; in which t; and t; have the same sort,
Tl

A Sgh-Sapriad e .

10.2 Built-in traits

Boolean: trait
introduces
true: — Bool
false: —» Bool
~ #: Bool — Bool
#&#: Bool, Bool - Bool
#|#: Bool, Bool — Bool
#=o #: Bool, Bool = Bool
# .equal#: Bool, Bool — Bool
: asserts Bool gemerated by [ true, faise )
. for all [ b Bool ]
~true = false
; ~false = true
(rue & D) = b
4 (false & b) = false
. (true | b)) = true
’ (false | b)) = b
(true =» b) = b
(false =» }) = true
(true .equal b) = b
(false .equal b) = ~b
implies comverts [ ~, &, |, =», .equal ]
IfThenElse: trait
introduces ifThenElse: Bool. T, T = T
by asserts for all [ ¢/, 12: T )
; ifThenElse(true, ¢/, 2) = 1l
' ifThenElse(false, ¢/, (2) = 12
implies couverts [ ifThenElse )

.04 D
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Equality: trait
introduces #=#:T, T — Bool
asserts T partitioned by [ = ]

I 3 RIS

forall[x y z2T)
(x=x)
(x=y) = (=0

) (x=)) & (y=2)) = (x=2)
2
K 11. Semantic Checking

N In addition to the syntactic constraints specified above, we require that each trait be logically X
o consistent, discharge the assumptions of the traits it is built from, be a conservative extension of its g
j'.-q imports, be properly constraining, and imply its consequences. :
:f\_. ]
X 11.1. Consistency
g A traitBody is consistent if its associated theory does not contain the equation

true:~Bool = false:~»Bool ‘]
i 11.2. Assumptions '

Let A(T) be all of the assumes of the traits imported or included in T, and R(T) be the result

%:' of translating T after removing these assumes. A(T) is discharged by T if the theory associated with
.;-: the translation of each traitRef of A(T) is a subset of the theory associated with R(T).

RK

11.3. Imports

3 The theory associated with a trait must be a conservative extension of the theory associated with
: 1 the translation of each traitRef in its imports; i.c., if trait T1 imports T2 and W is a wff of T2, W
3 is in the theory associated with T1 if and only if it is in the theory associated with T2.

30 11.4. Constraints
3

ifj_ A propPart is properly-constraining if it implies properties of only the operators in its constrains.

The occurrence of a sort/d in a constrains stands for the list of all sortedOp’s in the containing
trait’s opPart whose signatures include that sort/d.

Let T be a trait and P be the propPart constrains sortedOp®, so that props. P is
properly-constraining in the trait consisting of T plus P if and only if each wff in the theory associated
with T plus P is also in the theory associated with T or else contains ops in sortedOp*®.

Note that, since the translation of a traitRef converts constrains to asserts, this check is performed
only on traits in which constrains appears explicitly.

LIS . SRR AN
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11.5. Consequences

A trait implies its consequences if the theory associated with its conseqProps is a subset of
the theory associated with the trait and the [ sortedOp®, ] in each converts is convertible.
Cenvertibility is defined using the theory and exempts of a trait.

conseqProps:

The theory associated with conseqProps must be a subset of the theory of the trait in which
the consequences appears. The theory associated with a conseqProps is the theory associated with
the traitbody:

includes traitRef*®, opPart asserts props

where traitRef®, and props form the conseqProps, and opPart is the opPart of the trait in which
the consequences appears.

Note that an exclusion, but not a renammg, can invalidate a consequence that has been locally
checked.

conversion:
Let C be a conversion. For each term, t, that contains no variables of any sort appearing in a
generators in the containing trait, the theory of the containing trait must either
contain an equation t = u,
where u contains no sortedOp appearing in C’s sortedOp*, or
contain an equation t’ =
where t’ is a subterm of ¢, and u is an instantiation of a term appearing in an exempts
of the containing trait
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trait
traitBody
externals

assumes
imports
includes
traitRet
exclusion
renaming
sortRename
oldSort
opRename
oldOp
sortedOp

simpleTrait
opPart

opDcl
signature
domain
range
propPart
constrains
props
generators
partitions
bylist
axioms
varDc!

equation

term
secondary
primary
opid
opForm
opSym
traitld
sortid
varid

consequences

conseqProps
converts
conversion

exempts
exemptTerms

*
]

0 o
-
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12. Reference Grammar for The Larch Shared Language

traitid : trait traitBody {consequences} {exempts}
externals simpleTrait
{assumes} {imports} {includes}

assumes traitRef*,

imports traitRef®,

includes traitRef*,

traitid {exclusion} {renaming}
without [ 0/dOp®, ]

with [ ( sortRename | opRename )*, )
sortid for oldSort

sortid

opld for oidOp

sortedOp

opDcl | opld { — range }

{opPart} propPart*
introduces opDc/*

opld : signature
domain - range
sortld®,

sortld

( asserts | constrains ) props

constrains ( sort/d | sortedOp*®, ) so that
generators® partitions® axioms*®

sortid generated bylist®,

sortid partitioned bylist®,

by [ sortedOp*, |

for all [ varDc/®, ] equation®

varld®, : sortid

term { = term }

secondary | if secondary then secondary else term
{ opSym } primary ( opSym primary )* { opSym }
sortedOp { '( term*,’) } | varid | °( term °)
alphaNumeric + | opForm
{#}opSym ( # opSym )* { # }

specialChar + | . alphaNumeric +

alphaNumeric +

alphaNumeric +

alphaNumeric +

implies conseqProps {converts}

traitRef*, props
converts conversion®,
[ sortedOp®, )

;1= exempts exemptTerms*
::= { for all [ varDc/*, ] } term®,
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Towards A Larch Shared Language Handbook
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Basic properties of single operators, including binary relations A ﬁ
.j Associative, Commutative, Idempotent, Relation, TotalRelation, Reflexive, Irreflexive,
: Transitive, ReflexiveTransitive, Symmetric, Antisymmetric, Equivalence »
‘ Ordering relations q
o .
A K
‘% PartialOrder, TotalOrder, OrderEquivalence, OrderEquality, PartialOn_lerWitthuality.
TotalOrderWithEquality, DerivedOrders, PartiallyOrdered, Ordered
A Group theory d
"l fj;
“% Leftldentity, Rightldentity, Identity, LeftInverse, Rightinverse, Inverse, Abelian, Semigroup, ':lj
X Monoid, Group, AbelianSemigroup, AbelianMonoid, AbelianGroup, Distributive i
: Simple numeric types -
} Ordinal, Cardinal, Cardinal2 >
L] ‘:J
) Simple data structures

Pair, Triple, FiniteMapping

Gl bl 5SS

] Conzainer properties

G Container, Singleton, IsEmpty, Size, AdditiveSize, Join, ElementEquality, Member,

| :’3 ElemCount, Delete, Containment, Next, Rest, Remainder, Index

Y

Container classes

v SetBasics, BagBasics, CollectionExtensions, Setlntersection, Set, Bag, Enumerable,
) InsertionOrdered, Stack, Queue, Dequeue, Sequence, SubSequence, String, PriorityQueue

Generic operators on containers

13

O

Y KRGO

CoerceContainer, Reduce, SomePass, AllPass, Sift, PairwiseExtension, PointwiseImage

.........

YN R



Nonlinear structures
BinaryTree, BasicGraph, Connectivity, Graph
Rings, fields and numbers

Ring, RingWithUnit, InfixInverse, Integer, Field, Rational

XX

- ExtremalBound, Semilattice, Lattice

A Enumerated data types

R Enumerated, Rainbow, Character

N Display traits

s§ Coordinate, Hlumination, Boundary, Transform, Displayable, Picture, Contents, Component,

%]
(4
oy S

ComponentCoercion, View, Display

¥
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Preface

This collection of traits is a companion to the Larch Shared Language Reference Manual. We
hope that it will serve three distinct purposes:
Provide a set of components that can be directly incorporated into other specifications,
Provide a set of models upon which other specifications can be based, and
L0 Help people to better understand the Larch Shared Language by providing a set of illustrative
examples.

In line with our first goal, we have tried to isolate the "smallest useful increments” of specification
that it might be reasonable to use in other specifications. In particular, we have tried to provide traits
that will make it convenient to specify the weak assumptions that characterize many of the more
widely applicable specifications. This is particularly evident in the sections titled “Container
properties” and Container classes.” The traits in these sections are smaller and more numerous than
is typical in "from scratch” specifications. This sometimes leads to a somewhat overstructured
appearance.

In line with our second goal, in addition to traits that we expect to be directly incorporated in
specifications, we have included a number of traits intended primarily as patterns. The section titled
"Generic operators on containers™ contains several such traits. Because of the arity of the operators,
it will frequently be awkward to incorporate these traits.

In line with our third goal we have stressed familiar examples. Since they describe well-understood
mathematical entities, many of the traits, e.g., Integer, are atypically complete. In general, we expect

A PR P

2N :
:3;2 most specifications to supply constraints, rather than complete definitions. The section on Display :
v traits is more typical in this respect. "‘

The support tools envisioned for Larch are not yet available. Transcriptions of traits in this
chapter have been mechanically checked for some properties; some errors may not have been detected

o«
s

:;’ and some transcription errors may have crept in. They should be given the same sort of credence as

i) carefully written programs that have not been checked by a compiler.

N Comments on the clarity of these specifications and on their "correctness” (relative to generally

s accepted definitions of the names used) are welcome. We also solicit contributions of further widely

m useful traits—either accompanied by specifications, or as challenges to specifiers.

ford

»

7 If a generic trait constrains only one interesting sort, the identifier T is used to denote it. -
If a trait constrains a "containing” sort and ar “"element” sort, the identifiers C and E are used. ©
o If a trait constrains a single binary operation, the infix symbol # O # is used. )
% If a trait constrains a single binary relation, the infix identifier # ® # is used. ;
5 If there would be no information in a constrains (e.g.. because there is only one operator), '

>
o

h‘.: asserts is used.

......................




Basic Properties of Single Operators, Including Binary Relations

Associative: trait

introduces #O#. T, T—-» T

asserts forall[ x, y, 22 T xO0»0z=x0@x02
Commutative: trait

introduces #O#: T, T —» Range

assertsforall [ x, y: T ) xOy=yOx
Idempotent: trait

introduces op: T - T

asserts for all [ x: T ] op(op(x)) = op(x)

Relation: trait
introduces #® #: T, T — Bool
TotalRelation: trait
imcludes Relation
asserts for all [ x, y: T ] x®»iO® X
Reflexive: trait
includes Relation
asserts for all [ x: T ) x® x
Irreflexive: trait
includes Relation
asserts for all [ x: T ] ~(x ® x)
Transitive: trait
includes Relation
asserts forall[ x, y, 2: T ) (x®N&E(YDB2)) = (xB® 2)
ReflexiveTransitive: trait
includes Reflexive, Transitive
Symmetric: trait
includes Relation '
asserts for all [ x, y: T } x®y=0(0®x
implies Commutative with [ ® for O, Bool for Range ]
Antisymmetric: trait
includes Relation
asserts forall | x, ): T ) ~(x®N&(® X))
implies Irreflexive
Equivalence: trait
includes ReflexiveTransitive with [ .eq for ® ],
Symmetric with | .eq for ® ]

.
.
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10 L
: PartialOrder: trait A
W imports ReflexiveTransitive with [ < for ® ] .
2 TotalOrder: trait ' B
' includes PartialOrder, TotalRelation with [ < for ® | 5—;
: OrderEquivalence: trait i
< assumes PartialOrder - ."
F2. introduces #.eq#: T, T — Bool o
b constrains .eqso that forall [ x, ' T] (xeqy) = (x <& WY LX) ")
) implies Equivalence 5.4
: coaverts [ .eq ] ’
Z:: OrderEquality: trait X
X assumes PartialOrder . :-‘."
W - includes OrderEquivalence with [ = for .eq ], Equality o
Y PartialOrderWithEquality: trait '
+ includes PartialOrder, OrderEquality
X TotalOrderWithEquality: trait
X includes TotalOrder, OrderEquality
5
2 DerivedOrders: trait
assumes PartialOrder
N introduces
#»<#£:T, T— Bool
#>#:T.T - Bool
s #>#: T, T — Bool
coastrains < sothatforall[x, y: T) (x <)) = (x < N & (~(y £ X))
constrains > sothatforall[ x, ' T] (x2 ) = (¥ < x)
- coustrains > o thatforall [ x, y: T) (x> y) = (y < x)
;. implies Transitive with [ < for ® ],
Transitive with [ > for ® ],
5 Antisymmetric with [ < fo-r ® ],
Antisymmetric with [ > for ® ],
PartialOrder with [ > for < |
- comverts [ <, 2, > |
2 PartiallyOrdered: trait
N imports PartialOrderWithEquality
y includes DerivedOrders
implies PartialOrderWithEquality with [ > for < |
! Ordered: trait
N imports TotalOrderWithEquality
29 inchides DerivedOrders
N implies PartiallyOrdered, TotalOrderWithEquality with [ > for < }
>
b
1 J
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l Group Theory _ .j
Lefidentity: trait o
i - introduces
i #20#: T, T—>T ek
unit; = T "B
‘ . asserts for all [ x: T ] unit O x = x :
i, RightIdentity: trait b
'l introduces :::;jl
i #0#: T, T->T -]
; vnit: =» T =
asserts for all [ x> T} x O unit = x o
Identity: trait includes LeftIdentity, RightIdentity R
LeftInverse: trait N
assumes LeftIdentity
introduces inv: T — T

asserts for all [ x: T ] inv(x) O x = unit
RightInverse: trait

assumes Rightldentity
introduces inv: T —» T
asserts forall [ x: T ] x Q inv(x)

Inverse: trait

assumes Identity
includes Leftlnverse, Rightlnverse

Abelian: trait imports Commutative with [ T for Range ]
Semigroup: trait includes Associative, Equality
Monoid: trait includes Semigroup, Leftldentity
Group: trait g

includes Monoid, LeftInverse

implies Rightldentity, RightInverse
AbelianSemigroup: trait includes Abelian, Semigroup
AbelianMonoid: trait

includes Abelian, Monoid

unit

,
Bt LAl

et e e
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implies Rightldentity '.':T;:E

AbelianGroup: trait includes Abelian, Group “_i

’ Distributive: trait N
introduces o

#+#: T T—T R

#%2: T T—-T s

asserts forall [ x, y, 2. T ) A

x*(y + 2) = (x*) + (x*2) NI

0+ 2)°x = (*x) + (#*x) ﬂ!
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2' «
) Simple Numeric Types
3 Ordinal: trait
.?; includes PartialOrder with [ = for .eq, Ord for T },

¥ OrderEquivalence with [ = for .eq, Ord for T )
v introduces
o first: ~ Ord
o> succ: Ord - Ord
N mettsOrdgenel.utedby[ﬁrst.wcc]
\ Ord partitioned by [ < ]
k' forall[ x, y:Ord ]
first € x
~(succ(x) < first)

: succ(x) < succ(y) = x S y
>, implies TotalOrderWithEquality with [ Ord for T ]
N converts [ <, = ]

N Cardinal: trait
' imports Ordinal with [ 0 for first, Card for Ord ]
X includes DerivedOrders with [ Card for T ]
N introduces
= 1: = Card
. # + #: Card, Card —» Card
N #*#: Card, Card = Card
#O© #: Card, Card — Card
[ constrains 1 so that 1 = succ(0)
Py constrains +. * so that for all { x, y: Card ]
[« x+0=x
'_E x+.moc(y)—suco(x+y)
¥ x*0 =
x‘suoc(y)—x+(x‘y)

o constrains © so that for all | x, y: Card ]

: 0©0x=0
3 x©0=1x
- succ(x) © succ(y) = x O y
implies Cardinal2

Card generated by [ 1, +, © ]
- Card partitioned by [> L, by [= L, by [ <L by [ > ]
e forall[x, y:Card ] x <y = (x © y) = 0)
kel converts [ 1, ©, +,*, =, £, 2. <, >
i3
&
e
~;
bl




Cardinal2: trait
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% Alternate definition for comparison

includes AbelianMonoid with [ + for O, 0 for unit, Card for T },
AbelianMonoid with [ * for O, 1 for unit, Card for T },
Distributive with [ Card for T ),
Ordered with [ Card for T )

|
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Simple Data Structures
introduces
<#,#>T1,T2—-C
#fi: C—» Tl
# .second: C — T2
asserts C generated by [ <#, #> ]
C partitioned by [ .first, .second ]
forall[ £ T, s T2]
<E O.first = f
{f, second = s
' implies converts [ .first, .second ]
'; Triple: trait
introduces
d <2 #>:TLT2LT3I—»C
‘ #first: C = T1
# second: C — T2
# third: C - T3
asserts C generated by [ <#, #, #> ]
C partitioned by [ .first, .second, .third ]

forall[ £ T1, s T2, ¢ T3]
&f, s, Ofirst = f
£f, s, Dsecond = s
{f,s, D.third =t
implies converts [ .first, .second, .third }

FiniteMapping: trait
assumes Equality with [ Index for T ]
introduces

pew: — C

bind: C, Index, E = C

#(#]: C, Index = E

defined: C, Index — Bool
asserts C generated by [ new, bind )

C partitioned by [ #[#], defined ]
coustrains C so that
5 forall[ c: C, i il: Index, e E ]
) bind(c, i/, e)i] = if i = il then e else 1]
‘ ~defined(new, i)

defined(bind(c, i/, e), ) = (i = il) | defined(c, i)

implies converts [ #[#), defined ]
exempts for all [ i Index | new(]]

.........
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‘. Container Properties %

o introduces

- pew: = C L

| = insert: C,E - C a

. asserts C generated by [ new, insert ] %

¥ Singleton: trait N

,; assumes Container -

) introduces singleton: E — C N

= coastrains singleton so that for all [ e: E ]

. singleton(e) = insert(new, ¢)

: implies coaverts [ singleton )

~ ISEmpty: trait

iatroduces isEmpty: C — Bool
’ asests forall [c: C, e: E )

4 sEmpty(new)

o ~isEmpty(inser(c, ¢))

J implies converts [ isEmpty )

| AP CA A NY:  t IR AR AN

assumes Container
; imports Cardinal
2 introduces size: C - Card
A coustrains size so that
5 size(new) = 0
AdditiveSize: trait

- assumes Container

: includes Size

coustrains size, insert so that forall [ ¢: C, e: E ]
size(insert(c, ¢)) = size(c) + 1

implies converts [ size )

- Join: trait

WAL © | IO IR

b A
e 4 SBAAS

i assumes Container
2 introduces # join#:C,C —» C
| constrains .join so that forall[ ¢, ¢c/: C, e E ] -l
! ¢ .join new = ¢ .
SN ¢ join insert(c/, e) = insert(c .join cl, e) e
implies coaverts | .join ] q
! ElementEquality: trait imports Equality with [ E for T ) =
- Member: trait =
h assumes Container, ElementEquality f-_j
i introduces #€#: E, C — Bool hEY
) constrains €, insert so that forall [ c: C. e, e/ E ] L
£ ~(e € new) o
e € inseri(c, e/) = (¢ = el) | (¢ € ©) 5
A implies converts [ € | e
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2N f
i J
=od 4
. ElemCount: trait Iﬁ
s assumes Container, ElementEquality ]
Ry imports Cardinal
SN introduces count: C, E — Card
N comstrains count, insert so that for all [ e, e/: E, ¢: C )
Ay count(new, ¢) = 0
count(insert(c, ¢), e/) = count(c, €) + (if ¢ = el thea 1 else 0) :
o implies converts [ count } i
; assumes Container
Y imtroduces delete: C,E - C
comstrains delete so that for all [ e: E ] delete(new, ¢) = new '
414 Containment: trait
"C Container
B includes PartiallyOrdered with [ C for <, D for >, C for <, 2 for >, C for T | .
‘ 3 coustrains C so that forall [ e: E, ¢: C ] ¢ C inseri(c, ¢) 1
oo implies for all [ ¢: C ] new C ¢
o Next: trait !
- assumes Container :
s imtroduces next: C —= E .
R coastrains next, insert so that for all [ e E ] next(insert(new, ¢)) = e )
Ea® 4 exempts next(new) a
Rest: trait
N assumes Container ~ .
45: introduces rest: C = C ]
g comstrains rest, insert so that for all [ e: E ] rest(insert(new, ¢)) = new .
. exempts rest(new) 3
. Remainder: trait
XN assumes Container. Rest
% imports Cardinal L
0o introduces remainder: C, Card — C
A coastrains remainder so that for all [ ¢: C, i: Card ]
- remainder(c, 0) = ¢
o remainder(c. i + 1) = remainder(rest(c), )
) ;" implies converts [ remainder ]
o Index: trait
2, assumes Container, Next, Rest
imports Cardinal
introduces #[#]: C, Card — E
24 comstrains #[#] so that for all [ ¢: C, i Card ]
ot d1] = next(c)
N 4G + 1) = resuefq
.3 implies converts [ #[#] ]
% exempts for all [ ¢: C ] 0]
ks
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FLe

e

’ Bag: trait

‘.{: assumes ElementEquality

2 imports BagBasics

o includes CollectionExtensions

3 implies Abelian with [ U for O, C for T

- converts [ size, delete, count, €, U, {#}, isEmpty, =, C, D, C, 2]

> Enumerable: trait

N imports ISEmpty, Next, Rest

% includes Container

A coastrains C 0 that C partitioned by [ next, rest, isEmpty ]
InsertionOrdered: trait % For assuming "Stack or Queue”

includes Enumerable

\) introduces iSFIFO: — Bool

Z? comstrains next, rest, insert so that for all [ c: C, e: E]

:;«\_r’ next(insert(c, ¢)) = if isSEmpty(c) | iSFIFO then ¢ else next(c)

N rest(insert(c, €)) = if isSEmpty(c) | iSFIFO then ¢ else insert(rest(c), ¢)
* implies converts [ next, rest ]

w1 Stack: trait

e
.. \i includes InsertionOrdered with [ push for insert, top for next, pop for rest,
o true for isFIFO |

W implies for all [ stk: C, e E ]

" top(push(stk. €)) = e

pop(push(stk, ¢)) = stk
‘;‘Q Queue: trait
b includes InsertionOrdered with [ first for next, false for iSFIFO ]

) impliesfor all [ ¢ C, e: E ]
3 first(insert(q, ¢)) = if iSEmpty(q) then e else first(q)
rest(insert(q, ¢)) = if iSEmpty(q) then new else insert(rest(q), ¢)

pa Dequeue: trait
32 includes Stack with [ insert for push, first for top, rest for pop ],
%4 Stack with | enter for push, last for top, prefix for pop ]

! constrains C so that for all [ c: C, ¢, e/- E ]
- insert(new, ¢) = enter(new, ¢)

. insert(enter(c, e), e/) = enter(insert(c, el), ¢)
25 implies Queue, Queue with [ enter for insert, last for first, prefix for rest ]

N
‘:; converts [ insert, first, last, rest, prefix), [ enter, first, last, rest, prefix ]
S Sequence: trait

z" imports Dequeue, AdditiveSize

‘ includes Index with [ first for next ],

A Join with [ || for .join ]

) implies C partitioned by [ size, #[#] |

.
- 'I'I A

Z" SubSequence: trait
A imports Sequence

includes Remainder with [ #[#...] for remainder ],
Remainder with [ #[...#] for remainder, prefix for rest ]
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p Container Classes
i SetBasics: trait
b assumes ElementEquality, Container with [ {} for new }
includes Size with [ {} for new ], ‘
Member with [ {} for new )
. istroduces delete: C,LE - C
constrains C 50 that
C partitioned by [ € ]

forall [s:C, e el:E])
size(inseri(s, €)) =size(s) + (if ¢ € s then 0 else 1)
el € delete(s, ) = (el € ) & (~(e = el))

implies Delete with [ {} for new ]
converts [ size, delete, € ]
N BagBasics: trait
2 assumes ElementEquality, Container with [ {} for new ]
q imports AdditiveSize with [ {} for new ],
i ElemCount with [ {} for new ]
e includes Member with [ {} for new ]
" introduces delete: C,E — C
N coustrains C so that
L4y C partitioned by [ count ]
4 forall [ b:C, ¢ el: E]
count(delete(d, e), e/) = count(b, e/) — (if e = el then 1 else 0)
iaplies Delete with [ {} for new ]
! converts [ size, delete, count, € }
3 CollectionExtensions: trait
f?’ assumes ElementEquality, Container with [ {} for new ]
) imports ISEmpty with [ {} for new },
, Singleton with [ {} for new, {#} for singleton ],
(¥ Containment with [ {} for new ),
! v Join with [ {3 for new, U for .join ]
! includes Equality with [ C for T ]
3 implies converts [ {#}, isEmpty, U |
- Setintersection: trait
27 assumes SetBasics
~ introduces N: C,C - C
3; coastrains C so that for all [ 5 s/: C, e el: E]
o e€(Nsl)=(e€s)& (e € sl
Ry converts[ N )
— Set: trait
assumes ElementEquality
imports SetBasics, SetIntersection
includes CollectionExtensions

implies Abelian with [ U for O, Cfor T ),
Abelian with [ N for O, C for T ]
comverts [ size, delete, €, N, U, {#}, isEmpty, =, C, D.C, 2]
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A String: trait

e imports Character

% includes Sequence with [ length for size, Char for E ]
‘ PriorityQueue: trait

3 TotalOrder with [ E for T ]

N includes Enumerable

N . constrains next, rest, insert so that for all [ ¢: C, e E ]
N next(insert(q, e)) = if iSEmpty(q) thea e

v else if next(g) < e then next(g) else e
EF /s rest(insert(q, ¢)) = if iSEmpty(q) then new

o else if next(q) < e then insert(rest(g), ¢) else ¢

?' implies converts [ next, rest, isSEmpty ]

i/»\

assumes Container with [ DC for C ,

- Container with [ RC for C ]

o introduces coerce: DC — RC

ER constrains coerce so that for all [ dc: DC, e: E ]

_-3;.} coerce(new) = new

T : coerce(insert(dc, e)) = insert(coerce(dc), ¢)

implies converts [ coerce ]

& Reduce: trait

.-_:if assumes Enumerable,

- Rightldentity with [ E for T ],

-. Associative witk [ E for T )

introduces reduce: C — E
constrains reduce so that for all [ ¢: C ]

< reduce(c) = if iSEmpty(c) then unit else next(c) O reduce(rest(c))
o~ implies converts [ reduce )

-ﬁ SomePass: trait

Y assumes Container

- introduces

o test: E, T — Bool

: somePass: C, T — Bool

N constrains somePass so that for all [¢: C, e E, - T ]

Pt ~somePass(new, 1)

W somePass(insert(c, e), /) = test(e, 1) | somePass(c, ¢)

implies converts [ somePass )

N
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2 :
» "
“ AllPass: trait s
3 intreduces 3
3 test: E, T — Bool ]
X allPass: C, T — Bool _ 1
¥ counstrains allPass so that forall [¢: C, ¢ E, ¢ T o
8 allPass(new, ()
xd allPass(insert(c, e), 1) = test(e, {) & allPass(c, /) - B
o implies converts [ allPass ] i
Sift: trait ]
Container 4

introduces
test: E, T — Bool

A sift: C, T = C %
N constrains sift so that for all [c: C, e E, # T N
sifi(new, f) = new *
R sifi(insert(c, €), 1) = if tesi(e, ¢) then insert(sift(c, t), e) else sift(c, 1) >
implies converts [ sift ] »
P PairwiseExtension: trait
:; InsertionOrdered "

extOp: C,C—»C 1::

b elemOp: E.E = E "
constrains extOp so that for all [ ¢/, c2: C, el, e2: E ] ‘
extOp(new, new) = new
extOp(insert(c/, el), insert(c2, e2)) = insert(extOp(c/, c2), elemOp(el, e2))
implies converts [ extOp ]
exempts forall[c: C, e E ]
extOp(new, insert(c, ¢)),
extOp(insert(c, ¢), new)
1_ Pointwiselmage: trait S
5 assumes Container with [ DC for C, DE for E ], 5
R Container with [ RC for C, RE for E ] : -
- extOp: DC — RC -
- pointOp: DE — RE
gned coustrains extOp so that for all [ dc: DC, de: DE ]
N extOp(new) = new
R extOp(insert(dc, de)) = insert(extOp(dc), pointOp(de))
implies converts [ extOp ]

352000 WS

il
4
N
)
* ~
,
Y X
8| o
3 2
b X
La
‘)..
3
b w2 ‘ h ot Sl 2 ) AR St L RS SR ER S C A R ST R L RN N AL N IR I N . - . .

1}“«"; ‘) R \ 3 '.‘\ . h"- !,l_ W W Y ‘!~\‘.\l'\ \-...\ . .-\. e o T Ay A OO




LI AN P S A LR SUAASACARRE AL AN SIS WA OVEALA LRI ISR M A A A0 AR R KRR R AR A
!
] HANDBOOK 47
;".;
A Noulinear Structures
g BinaryTree: trait
X imports Cardinal .
) istroduces .
g <#»@>E—-»C -
<#,#:C,C—»C -
- - #lef:C - C e
3 #right: C —» C '
- size: C — Card
A isLeaf: C— Bool
; content: C ~ E
coastrains C 30 that
, C generated by [ <#), <#., #> )
X C partitioned by | .left, .right, content, isLeaf ) e
b forall[ i i C. e E] -3
~ «d, m)Jeft = d -
:: (Kd, m).right = ¢r >
i size®) =1 '
" size(<d, ) = size(t]) + size(tr)
- isLeaR<e®)
oo ~isLeafR<d, ) :
Y content(<e>) = ¢ :
4 implies for all [ - C ) isLeaR(#) = (size(?) = 1) :
: comverts [ .left, .right, size, isLeaf, content )
exempts for all [ 1/, ir: C, & E ] (K&)left, (&).right, content(<s], D) |
2 BasicGraph: trait .
g} assumes Equality with [ Node for T | \
", imports Set with [ NodeSet for C, Node for E ], >
) Pair with [ Edge for C, Node for T1, Node for T2 | ;
introduces
g empty: — Graph F
:1 addNode: Graph, Node ~ Graph ‘
Al addEdge: Graph, Edge — Graph o
3 nodes: Graph — NodeSet
! adj: Node, Graph — NodeSet
il coustrains Graph so that
e Graph generated by [ empty, addNode, addEdge ] .
B Graph partitioned by [ nodes, adj ) %
E for all [ g Graph, e: Edge, n, n/: Node ] 3
P nodes(empty) = {} g
nodes(addNode(g, n)) = insert(nodes(g), n) 3
nodes(addEdge(g, ¢)) = insert(insert(nodes(g), e.first), esecond)
& adj(n, empty) = {} _ .
g . adj(n, addNode(g n/)) = adj(n, g) .
3 adi(n. sddEdge(g, o)) = ;
1;} if n = (e.first) then insert(adj(n, g). e.second) else adj(n, g)
v implies comverts | nodes, adj ] ;

e
.
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A Ak, Rl

Connectivity: trait
assumes Equality with [ Node for T ), BasicGraph
introduces

reach: NodeSet, Graph — NodeSet
2 allReach: NodeSet, NodeSet, Graph — Bool
connected: Graph — Bool i
coastrains reach, allReach, connected so that M
; for all [ g Graph, e: Edge, ns, nsl: NodeSet, n: Node ] G
. reach(ns, empty) = {}
y reach(ns, addNode(g, n)) = reach(ns, g) o
y allReach({}, ns, g ~
’ allReach(insert(ns, n), nsl, g) = Y
allReach(ns, nsl, g) & (nsl C reach({n}, g))
connected(g) = allReach(nodes(g), nodes(g), g)
implies converts [ allReach, connected ] s
: Graph: trait | =
assumes Equality with [ Node for T ]
imports BasicGraph
includes Connectivity,
Connectivity with [ stronglyConnected for connected, pathReach for reach,
allPathReach for aliReach ]
Y coustrains reach, allReach, connected so that
¥ for all [ g Graph, e: Edge, ns: NodeSet ]
reach(ns, addEdge(g, €)) = reach(ns, g) U
(if (e.first) € ns then insert(reach({(e.second)}, g), (e.second))
else i{g(e.second) € ns then insert(reach({(e.first)}, g), (e.first))
eise {}) -
coustrains pathReach, allPathReach, stronglyConnected so that s
for all [ g Graph, e: Edge, ns: NodeSet ]
pathReach(ns, addEdge(g, ¢)) = pathReach(ns, g) U
(if (e.first) € ns
f :l: {i;l;ert(pathkeach({(esecond)}. 8), (esecond))
) implies comverts [ reach, allReach, connected, pathReach, allPathReach,
stronglyConnected ] )

e o T
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Riags, Fields, and Numbers
Ring: trait
hclndsAbelianGroupwitll[ + for O, Ofotumt. ~ # for inv ),
Semigroup with [ * for O ),
Distributive
RingWithUnit: trait
includes Ring, Identity with [ * for O, 1 for unit ]
InfixInverse: trait

sssumes Inverse
introduces #Q#: T, T~ T
constrains #O# so that forall[ x, y: T
x@ y=x0 invy)
implies converts [ #Q # ]
Integer: trait

includes RingWithUnit with [ Int for T ),
Ordered with [ Int for T ],
InfixInverse with [ + for O, — # for inv, — for @, Int for T ]
asserts Int generated by [ 1, +, — # ]
forali[ x: Int]
x<(x+1)
implies Rational without [ "1, 7 ] with [ Int for R ]
couverts [0, *, #—-#, =, <, 2>, <, >]
Field: trait
hchdakmgWithUmt
introduces #°1: T - T
coastrains *, ! so that for all { x: T ]
(x = 0) | ((x*(xY)) = 1)
exempts 0
Rational: trait
includes Field with [R for T ],
Ordered with [ R for T ],
InfixInverse with [ + for O, — #formv —for@Q,Rfor T}
InfixInverse with [ * for O, #°! for inv, 7 for @, R for T ]
asserts
R generated by [ L +, —#, ]
forall[ x 5 2z R]
0<1
((x+z)<b'+z»=(x )
(x-O)l((0<(x )) 0 < x)
implies converts [0, *, # - #,/, =, £, 2, <,>]
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Lattices

ExtremaliBound: trait
assumes PartialOrder
includes AbelianSemigroup with | .glb for O ]
comstrains .gib so that forall [ x, y, - T )

(xghby) <x

(z€ )& (z < )=z < (xgldby)

Semilattice: trait
includes PartiallyOrdered,

ExtremalBound,

ExtremalBound with [ 2> for <, .lub for gib ]
introduces 1L: —» T
coustrains L so that for all [ x: T )

x2 1l
implies AbelianMonoid with [ L for unit, .lub for O ]

Lattice: trait
inclvdes Semilattice
introduces T: —» T
coastrains T so that for all [ x: T )

x<T
implies Lattice with [ T for .L, L for T, gIb for .lub, .lub for glb,

>for <, S for 2, > for <, < for > ]
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ord(first) =
ord(succ(x)) = if x = last then ord(last) else succ(ord(x))
pred(succ(x)) = if x = last then pred(last) else x
x <y = ord(x) < ord(y)
implies T generated by [ last, pred ]
forall[ x:T]
succ(pred(x)) = if x = first then succ(first) else x
firt < x
x & last
comverts [ =, <. 2. <, > ]
Rainbow: trait
includes Enumerated with [ Color for T ]
imtroduces
red: —» Color
orange: - Color
yellow: —» Color
green: — Color
blue: — Color
violet: -+ Color
asserts
Color generated by [ red, orange, yellow, green, blue, violet ]
first = red
last = violet
succ(red) = orange
succ(orange) = yellow
succ(yellow) = green
succ{green) = blue
succ(blue) = violet
implies oonve;"ts [ pred, last, ord, =, <, 2, <, >, red, orange, yellow, green, blue,
violet

[ suce, first, ord, =, €, 2, <, >, red, orange, yellow, green, blue, violet ]
Character: trait includes Enumerated with [ Char for T )
% For each programming language there will be mappings from character and string constants to
% terms in the shared language. Because of the variety of character orderings and notations for
% constants, these definitions are not likely to be portable across programming languages.
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Display Traits

% The following traits represent a fairly straightforward translation of the specificatiqns in

% “Formal Specification as a Design Tool” (CSL-80-1). We have not attempted to improve the
N % design presented there, merely to translate it into Larch.

Coordinate: trait introduces minus: Coordinate, Coordinate — Coordinate

IMumination: trait introduces combine: Illumination, Illumination -+ Illumination
Boundary: trait introduces apply: Boundary, Coordinate — Bool

Transform: trait introduces apply: Transformation, Coordinate — Coordinate

e e

PR

A A

N
K~

Displayable: trait
K introduces
5: appearance: T, Coordinate — Illumination
R~ in: T, Coordinate — Bool
X Picture: trait

e assumes Boundary, Transform, Illumination,

Displayable with [ Contents for T ]

N includes Displayable with [ Picture for T ]
-3 introduces makePicture: Contents, Boundary, Transformation — Picture
el constrains Picture so that

oy Picture generated by [ makePicture )
- for all [ cn: Contents, b: Boundary, 1: Transformation, cd: Coordinate }
. appearance(makePicture(cn, b, 1), cd) =

& appearance(cn, apply(t, cd))
) :.- in(makePicture(cn, b, 1), cd) = apply(b, cd)

W implies converts [ appearance: Picture, Coordinate — Illumination,

20 in: Picture, Coordinate — Bool ]
) Contents: trait

R assumes Coordinate, Illumination, Displayable with [ Component for T ]
3 includes Displayable with [ Contents for T ]

“-‘S introduces

" empty: —» Contents
N addComponent: Contents, Component, Coordinate — Contents

constrains Contents so that

e, Contents generated by [ empty, addComponent ]

R for all { cn: Contents, cm: Component, cd, cdl: Coordinate ]

. appearance(addComponent(cn, cm, cdl), cd) =

N if in(em, minus(cd, cdl))
Y then (if in(cn, cd)
i then combine(appearance(cm, minus(cd, cdl)),
o appearance(cn, cd))

L else appearance(cm, minus(cd, cd/)))

o else appearance(cn, cd)
2. ~in(empty, cd)
in{addComponent(cn, em, cdl), cd) =

N in(cm, minus(cd, cdl)) | in(cn, cd)
2 implies converts [ appearance: Contents, Coordinate — [llumination,
PN in: Contents, Coordinate = Bool )
R 3 exempts for all [ cd: Coordinate ] appearance{(empty, cd)




Component: trait
assumes Displayable with [ View for T ]
Displayable with [ Text for T },
Displayable with [ Figure for T )
includes ComponentCoercion with [ View for T, coemeVnewforcoeme].
ComponentCoercion with [ Text for T, coerceText for coerce },
ComponentCoercion with { Figure for T, coerceFigure for coerce ]

ComponentCoercion: trait

assumes Displayable
incindes Displayable with [ Component for T ]
introduces coerce: T — Component

constrains Component so that for all [ & T, cd: Coordinate )
gppunnce(coaee(t). cd) = appearance(l, cd)
in(coerce(s), cd) = in(4, cd)

View: trait

assumes Displayable with [ Picture for T },
Equality with [ Pictureld for T ),
Container with [ IdList for C, Pictureld for E },
Coordinate

includes Displayable with [ View for T ]

introduces

empty: — View
addPicture: View, Coordinate, Pictureld, Picture — View
findPictures: View, Coordinate — IdList
deletePicture: View, Pictureld —» View
constrains View so that
View generated by [ empty, addPicture ]
for all [ v: View, cd, cdl: Coordinate, id, idl: Pictureld, p: Picture ]
addPicture(v, cdl, id, p), cd) =
if in(p, minus(cd, cdl)) then appearance(p, minus(cd, cdl))
else appearance(v, cd)
~in(empty, cd)
in(addPicture(y, ¢dl, id, p), cd) = (m(p minus(cd, cdl)) | in(v, cd))
findPictures(empty, cd) = new
findPictures(addPicture(v, cdl, id, p), cd) =
if in(p, minus(cd, cdl)) then insert(id, findPictures(v, cd))
else findPictures(v, cd)
deletePicture(empty, id) = empty
deletePicture(addPicture(v, cdl, idl, p), id) =
if id .eq idl then v else addPicture(deletePicture(v, id), cd, idl, p)
implies converts [ findPictures, deletePicture,
appearance. View, Coordinate — [flumination,
in: View, Coordinate = Bool ]
exempts for all [ cd: Coordinate ] appearance(empty, cd)

Display: trait
assumes Boundary, Transform, Illumination, Coordinate,
Equality with [ Pictureld for T ],
Container with [ IdList for C, Pictureld for E ]
includes Picture, Contents, Component, View
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