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4 THE LARCH SHARED LANGUAGE

1110 Lambh FI of Longmane

The Latch Project In developing tools and techniques intended to aid in the productive use of
Ifual specifications of systemns containing computer programs. Many of its premises and goals are
diecumed in [Iluwg Horning, and Win& 821

We view a system a consisting of a state and mechanius for changing and extracting lnfbrmation
ftom that state. We choose to define the ilbnnation contained in the state without reference to
either how that information was created or how it will be used. Our specifications consist of two
parts. In one, we specif the properties of values that may appear in system states, and in the second,
the program modules that deal with those states.

A mqo component of the Larch Project as a faimily of specification languages. Each Larch
language ha a Component particular to a specific pornnglanguage and another component
coms to All programming languages. We call the former inaerf~we langapAs and the latter the
Awed hagaagt

We use the interfaice languages to specify proagram modules. Specifications of the interfae that
one module presenwt to other modules ohmn reY on notions specific to the programming language.
e. ts denotable values or its exception handling mechansms. Each interfaice language deals with
what can be observed about the behavior of programs written in a specific programming language.
Its simplicity or complexit is a direct consequence of the simplicity or complexity of the observable
state and stats truzformatleffi of that programmning luaguae

l1b shared liauae is algebraic. It is used to specify abstractions that are independent of both
the program stat and due programming language. lb operators defined by an algebraic specification
appear in specifications writen in mhe interface languages and inraoigabout suhspecifications.
but they are am directly availoble to users of Vpoms The role of shared language specifications
is similar to that of abstract models in some other styles of specification.

Sam important aspects, of the Larch fiamily of specification languages are:
Cwpeso~lfy efspwwici We emphasize the incremnenta construction of specifiarions

from other specifications. lbe importance of such mechanisms is discussed in [Durstall
and Ooguen 77t. Lach hen mechanism for building upon and decomposing
specificatons a well an for combining specifications.

Enmpos on premuaoo Reading specifications is an important activity. To assist in this
prces we use composition mechasnimis defined as operations on specifications, rather

than, on theories or models.
luw e m and intgrate! with wholi e Lambh languages are designed for interactive use.

They are intended to faicilitate the interactive consactiou and incremental checking of
seIfications. lbe decision to rely heavily on support tools hes influenced our language

deosiIn many ways.
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Seanic checkin& It is an too easy to write specifications with suprising implications. We

would like many such specifications to be detectably ill-formed. Extensive checking
while specifications are being constructed is an important aspect of our Opproach. Larch

was designed to be used with a powerful theorem prover for semantic checking to

supplement the syntacti checks commonly defined for specification languages. We
have been influenced here by our experience with Affirm [Musser 801.

Prognaming language dependencies localized We feel that it is important to incorporate many

programming-language-dependent features into our specification languages, but to
isolate this aspect of specifications as much as possible. This prompted us to design a

single shared language that could be incorporated into different interface languages in
a uniform way.

Shared language based on equation& The shared language has a simple semantic basis taken
from algebra. Because of the emphasis on composability, checkability and interaction,

however, it differs substantially from the "algebraic' specification languages we have
used in the past.

Interface languages based on predicate calculu Each interface language is based on assertions

written in typed first-order predicate calculus with equality, and incorporates
programming-language-specific features to deal with constructs such as side effects,

exception handlin& and iterators. Equality over terms is defined in the shared language;

this provides the link between the two parts of a specification.

StatM and Pm"'

We are still in the early phases of the Larch project. In addition to the work described in this

report, interface languages for CLU and Mesa have been designed. (Wing 831 contains a detailed

description of the semantics of the CLU interface language. The Mesa interface language has not

been documented, but we have used it, in conjunction with the shared language, to specify the
program level interface to the Cypress data base system. This is the largest specification we have

attempted,

A primitive checker fbr the Shared Language has been implemented [Kownacki 83]. In addition

to parsing specifications, this program checks various context sensitive constraints and provides

mechanisms for "expanding" assumptions, importations, and inclusions. This checker is an interim

tool. We designed our specification language in tandem with an editing and viewing tool. Many

language design decisions were influenced by the presumption that specifications would be produced

and read interactively using this tool. A first design is complete [Zachary 831, but implementation

has yet to begin.
We are in the process of implementing term rewriting software [Forgaard 831, [Lescanne 831 that

we hope will provide much of the theorem-proving capability needed for analyzing specifications.

The definition of the Larch Shared Language calls for a number of checks for which there can be

- s.
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no efective procedure. We have what we believe are useful procedures, based on sufficient or

necesary (but not both) conditions, for some of these checks, eg, consistency. We are working on

prcedures for the others, e4, checking constrains clauses. This is a difficult task. Diagnostics present

aasticulaly vexing problem: How should relatively complicated theorem-proving precedures report

ppblem to users who are not familiar with either their internal structure or the theory underlying
them?

It is always difficult to evaluate a language that has not been extensively used. The Larch Shared

Lag is especially hard to evaluate because it has been designed for use in an environment that

we have not yet built. In addition to the specification of Cypress. we have written a number of small

specifications. On the whole, we were pleased by the ease of constructing these specifications in

Larch, and with the specifications themselves. While consucting them, we uncovered several errors

by inspection; we are encouraged that most of these errors would have been detected automatically

by the checks called for in the language definition. It will be some time, however, before we can
draw any strong conclusions about the potential utility of Larch in software development.

4



INTRODUCTION 7

An troductio to the Larch Shared Language

I. Sipl Aibekpuc Speciications

Most of the constructs in the Larch Shared Language are designed to assist in structuring
q~ecifications for both reading and writing. The trait is our basic module of specification. Consider
the following specification for tables that store values in indexed places:

TableSpw: trait

new: - Table
add: Table, Index, Val -Table
*E#: Index. Table -- Booleval: Table, Index --* Val r

isEmpty: Table -- Bool
size: Table -. Card

coItras new, add, C. eval, isEmpty, size so that
for all [had!/: Index. m/" Val, t: Table]

eval(add(. in4 va, indl )= find= indl then val else eval(t, indl)

ind E new = false

ind E addt, il, va) = (ind = ind) I (ind E t)

size(new) = 0
size(add(t, in4 va)) = ifnd E t then size(O else size(t) + 1
isEmptyQ) = (size(t) = 0)

This example is similar to a conventional algebraic specification in the style of [Guttag and
Horning 80] and [Musser 801. The part of the specification following introduces declares a set of
operators (function identifiers), each with its signature (the sorts of its domain and range). These
signatures are used to sort-check terms (expressions) in much the same way as function calls are

type-checked in programming languages. The remainder of the specification constrains the operators
by writing equations that relate sort-correct terms containing them.

There are two things (aside from syntactic amenities) that distinguish this specification from a

specification written in our earlier algebraic specification languages:
A name, TableSpec, is associated with the trait itself.

The axioms are preceded by a constrains list.
The name of a trait is logically unrelated to any of the names appearing within it. In particular,

we do not use sort identifiers to name units of specification. A trait need not correspond to a single

"abstract data type," and often does not.
The constrain list contains all of the operators that the immediately following axioms are

intended to constrain. It is the responsibility of a specification checker to ensure that the specification
conforms to this intent. The constrained operators will generally be a proper subset of the operators
appearing in the axioms. In this example the constrains list informs us that the axioms are not to
put any constraints on the properties of If then else. false. 0. 1. +. I. and =, despite their occurrence

b~w .°-.. :-z. .----- --..-.... -- --:.:-- --.............-.......-........................'-'.....-."...."-."....-........,'.........•..,".
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in the axioms. The judicious use of comtrains lists is an important step in modularizing specifications.
We associae a theory with every tait. A theory is a set of well-formed formulas (wfrs) of typed I

Brat-order predicate calcilus with equations as atomic formulas.
The theory, call it Th. associated with a trait written in the Larch Shared Langfage is defined

by:
Axiomns Each equation, universally quantified by the variable declarations of the containing

constrains clause, is in Th.
Inequaulio" -(true = false) is in Th. All other inequations in Th are derivable from this one

. and the meaning of
F•w6i-ondr pevdkate calculus with equality: "I contains the axioms of conventional typed

first-order predicate calculus with equality and is closed under its rules of inference.
The equations and inequations in lb are derivable from the presence of axioms in the trait-never

from their absence. Th is deliberately small, because it is important to prove theorems before a
specification is complete, and we wanted to limit the circumstances under which the addition of new
operators and equations could invalidate previously proved theorems. Had we chosen to take the
theory asociated with either the initial or final interpretation of a set of equations (as in [ADJ 78]
amd [Wand 79). this monotonicity property would have been lost.

I Gutbg Richer Theories

While the relatively small theory described above is often a useful one to associate with a set of
aions, there are times when a larger theory is needed, e.g., when specifying an "abstract data type."
Go ited by and patitosed by give different ways of specifying larger theories.

Section 1 does not include an induction schema. This is an appropriate limitation when the set
of generators for a sort is incomplete. Saying that sort S is generated by a set of operators. Ops
mum that each term of sort S is equal to a term whose outermost operator is in Ops. One might,
for exampl, say that the natural numbers are generated by 0 and successor and the integers generated
by 0, mccemor, and pmecessor. Generated by adds an inductive rule of inference.

This inductive rule and the clause Table generated by [ new, add ] can be used to derive theorems

mchas
V. Tabe (i = ne)Iw(3 t-Idex[ indE ])

that would otherwise not be in the theory.

5'U

-- . .
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Section I allows equations to be derived only by direct equational substitution, not by the 0

absence of inequations. This is an appropriate limitation when the set of observers for a sort is

incomplete. Saying that sort S is partitioned by a set of operators, Ops, asserts that if two terms of
sort S are unequal, a difference can be observed using an operator in Ops. Therefore, they must be

equal if they cannot be distinguished using any of the operators in Ops. This rule of inference adds

new equations to the theory associated with a trait, thus reducing the number of equivalence classes

in the equality relation.

This rule and the clause Table partitioned by [E, eval can be used to derive theorems such as

add(add(t, in4 v), id, v) = add(add(, ind!. v), inM v).
that would otherwise not be in the theory.

3. Combiaing Independent Traits

Our example contains a number of totally unconstrained operators, e.g., false and +. Such traits

are not very usefuL The most straightforward thing to do would be to augment the specification with

additional clauses dealing with these operators. One way to do this is by trait importation. We might

add to trait TableSpec:

haports Cardinal, Boolean
The theory associated with the importing trait is the theory associated with the union of all of

the introduces and constrains clauses of the trait body and the imported traits.

Importation is used both to structure specifications to make them easier to read and to it roduce

extra checking. Operators appearing in imported traits may not be constrained in either the importing

trait or any other imported trait. This guarantees that imported traits don't "interfere" with one

another in unexpected ways. I.e., it guarantees that the theory associated with a trait is r conservative

extension of each of the theories associated with its imported traits. (An extension, Thl, of a theory,

Th2, is conservative if and only if every wff of the language of Th2 which is in Thl is also in Th2.)

Each imported trait can, therefore, be fully understood independently of the context into which it is

imported.

As a syntactic amenity, trait Boolean is automatically imported into all other traits.
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4Csmbhing Iheacdog Tait

While the modularity imposed by importation is often helpMA it can sometimes be too restrictive.
* It is often convenient to combine several traits dealing with diffrent aspects of the' time operator.

Ist is common when specilftn something that i s not easily thought of as an abstract data type.
Thtit hwchtdo involves the same union of clauises as trait importation, but allow the included
operalor to be irther constrained. Consider, for example:

Reflexive: trait
, ,ud-es, *re#: T, T-* Bool
cestrains rel so that for all I c TI

I rel I= tru
C Symmetric: trait

intrduce rl*: T, T - ool
ceumtruins rel so that for alif Ui, t2: T

i1 rel t2 = t2 red U

Transitive: trak
introfuces S.rel#: T, T-* Bool
cdostrans rel so tat for aill , 12, t3.-TI

(((I/ .rel 12) & (12 .rel 3)~ (U .rel t3)) =true

Eqivalence: trait
inhuies Refeive, Symmetric, Transitive

Equivalence has the same associated theory as the less structured trait
Equivalencel: trait

introdoces #.rel*: T T-* ool
cougrains rel so that for all [ U, t2, 13: T

i1 rel i1 = true
i1 .rel t2= t2 .rel i1
(((ti .rel t2) & (12 rel 3)-(U1 rel *3)=true

Any legal trait importation may be replaced by trait inclusion without either making the trait
illegal or changing the associated theory. It does involve the sacrifice of the checking that ensuires
that the imported traits may be undeustood indlependlently of the context in which they are used. We
use Importation when we can incorporate a theory unchanged. inclusion when we cannot.

.Rimming and Exdnde.o

Mwe specification of Equivalence in the previous section relied heavily on the coincidental use

of the operator .rel and the sort identifier T in three separate traits. In the absence of such happy
coincidences, renaming can force names to coincide, keep them from coinciding, or simply replace
thun with moren suitable names.
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Thle p e
Trw th [ x for y

sands for the trait Tr with every occurrence of y (which must be, .I-er a sort or opqao identifier)
replaced by x Notice that if y is a sort identifier this renaming may change the signatures associated

jth Sane opematr
Occasionally we wish to eliminate an operator altogether. The phrase

Tr whmt[opJ
stands for the trait Tr without the declaration of op and without each axiom, peerated by, and
ptitloned by in which op appear. We use without to remove an operator either so that we can later
add another operator with the same name and signature but different properties or merely because
it is superfluous and we want to spare readers the bother of looking at it.

If TableSpec contains the gemerate by and partitioned by of section 2, the specification

ArraySpec: trait
impouts InteprSpec
hchdn TableSpec without [ se

with [ defined for #E*. assign for add. read for evai.
Array for Table, Integer for Index ]

stands for

V ArraySpec: Usak
bqout IntegerSpec

new: --* Array
assign: Array. Inteer. Val -, Array
defined: Integer. Array --o Bool
read: Array, Integer --P Val
isEmpty: Array --* Bool

constrais new, assign, defined, read, isFmpty so that
Array generated by [ new. assign
Array partitioned by [ defined, read l
for all [ ind indl: Integer, w/: Val t: Array ]

read(assignQ(, MA va d, r ) =
If ind= mdl thea va else read(, indl)

defined(in. new) = false
deflned(ind, asPi . ind Y)) = ((md = dl) I defned(indi, t))

Notice that in this specification isEmpty is totally unconstrained. In section 7 we discuss a

checking mechanism that would call the lack of constraints on isEmpty to the specifier's attention.
This would, presumably, provoke him either to add the axioms

isEmpty(new) = true
isEmpty(assign(, ind. 4 ) = fa

to his specification, or to add isEmpty to the without clause.

The use of without rather than some sort of hiding mechanism (as in [Burstall and Goguen 811)
may thus involve some extra work for the specifier. In return for this work, users of the specification
are spared having to deal with the "hidden" operators, e.g., in proofs that use the specification. This

l "' "" "'/ ' ' ; " " ' " ' / -' " "''"" /" "/" " "°'/ ? / '" " "" """': "" : ' "' "' '



12 THE LARCH SHARED LANGUAGE

is conduom with our belief diat specifier should be encouraged to do things that will mae life
euler for users of dhik epecifications.

Mhedefinition of wilbea dmld make it clear than we are hieed operating on fie text of traits
(prmt~los rater than on thei amciated. theories. Consider adding these MOMpt axiom to

Tpbl e to form another trait. TableSpecl. TableSpec and TableSpedl have the same associated
10-fte but
Taespec wit size

and
TableSpecl without size

have rathe differet associated theories-in the late. isEmpty is Moly defined.
A fial point raised by the examples of this section is the importance of distinguishing between

the history of a specification (how it was construted) and the structre presented to a reader. A
reader familiar with TableSpec: might prefer to read the firs version of ArraySpec; other might find
it distractin to have to understand die more general structure before 1ndertandling ArraySpec.

ILAamdm

We often construt fary general specification that we anticipat will late be specialized in a
vaiety of ways. Consider, for exampk

MulSetSpec: trait

0J: -* MultiSet
inet: MultiSet. Elem - MultiSet
delete: MultiSet, Elem,- MultiSet
#ES: MultiSet, Elem . Bool

4~~~0 csrae.insert delete. C sohdo
MulidSet Wsted by [ 0. inset'
MultSet paitidemi by I delee CJ
for all [ ni: MultiSet. e. el: Elem I

e C {) = false
a.: c insert(im el) = (e = el) (e (Cm)

delete(j). e) = 11
delete(insert~m, e). e) =

ff e = el the m else inisert(delet el ei))

We might specialize tis to IntMultSet by renaming Elern to Integer and including it in a trait
* in which operators dealing with Integer are specified. e~g.,

lotMuliSet: Usai
a,. oporls IntegerSpec

inhis MultSetSpec: wth [Integer for Elem I
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Mwe interactions between MultiSetSpec and IntegerSpec: are very limited. Nothing in
Multdeifpec places any constraints on the meaning of the operators that occur in IntegerSpec, e.g.,
0,.+ and < Consider, however, extending M~ultiSetSpec to MultiSetSpecl by adffmg an operator

MultiSetSpeci: Usak
imponts MultiSetSpec, Cardinal

rangeCount: MultiSet, Elan. Elem -. Integer
*<*: Elan, Elan -s Bool

esuaraWn rangeCouint so that for all [e, e e3 Elem. m: MultiSetJ
ranigeCount({j, e. e2) = 0
rangeCouninsert(n% .3), el. e2)

rangeCountni, el. e4) + (if (el <.3 (e3 < 2) the. 1 else 0)
MultiSetSpecl places no constraints on the < operator. Suppose, however, that this is not what

we intend. We might have definite ideas about die properties that < must have in any specialization
e.g. that it should define a total ordering. We could specify' such a restriction by adding to

MultiSetSpeci the assumption (Ordered is defined in dhe Handbook section. on page 36):
a s... Ordered with [ Eem for TJ

In constructing the theory associated with MultiSetSpecl, the assumption would be treated as if
Ordered with [ Elan for T I had been included. Thi could be used to derive various properties of
MultiSetSpeci, e~g., that rangeCount is monotonic in its last argument

Whenever the augmented MultiSetSpecl is imported or included in another trait, however, die
assumption will have to be be dicharged. In

JntMultiSetl: trait
bwcbnis MultiSetSpeci with [ Integer for Elan J
imprts IntegerSpec

this would amount to showing that the (renamed) theory associated with Ordered is a subset of the
theory associated with IntegerSpec. Often. the assumptions of a trait are used to discharge the
assumptions of traits it haports or incles.

7. Cowmvsices

We have now looked at those parts of the Larch Shared Language that determine the theory
asociated with a valid trait That subset of the language contains some checkable redundancy; e.g..
asmimptions are checked when a trait is included or imported, and constrains lists are checked against
the axiomsasociated with diem. We now turn to apart ofte language whose only purpose is o
introduce checkable redundancy, in the form of assertions about the theory associated with a trait.I

There are two kinds of consequence assertions:
That the theory associated with a trait contains another theory.
That the theory assciated with a trait "adequately" defines a set of operators in terms of
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The Arat kind of awina made using lWes. Consider, for example, adding to t augmented

bwt~ Mr d [=- MultSet, el, e e: EsnmJ
(*2 < ed -* (ran Cumn( e l. e2)5 nageCount(im e, )

bileu cam be used to indicate intended cousequences of a specifiatim, both for checking and
to incme the f itaer's insiat The theory to be implied can be specified using the ful power of
t language e4g., by using guarad by and partitioned by, or by refrring to traits defined elsewhere.

The second kind of meartion is made using cnvets [ Ops . This asserts that each term is
provably equal toa tem that does not contain operators in Ops. (We do not require this for terms

contain variables of sorts appearing in gemerated by clauses.) Converts is used to say that the
e adequately defines a collection of operators.

A omo problem with axiomatic systems is deciding whether there are "enough" axioms.
Cmvets provides a way of making a checkable statement about the adequacy of a set of axioms.
Consider. for exmple adding to TableSpec:

emveut[is mpcyj.

This says that each term containing isEmpty, such as isEmpty(new) or isEmpty(add(new), und mo),
is equal to another Mm, that does not contain isEmpty.

Now cosider adding to TableSpec the stronger ainertion:
Cmve [ WERpty, eval.

Terms containing subterms of the form eval(new. me) are not convertible to terms that do not contain

eval, so a error message of the form
eval(new, Wd not convertible

would be generated. This would present a problem if we did not wish to add an axiom to resolve
this incompleteness. We therefore provide a mechanism to allow specifiers to indicate that the
unconvertibility of certain terms is acceptable. If TableSpec were modifed to include

e s far all[ Ind- Index I eval(new, hid)
the checking associated with the coinverts would now require that the theory associated with TableSpec
mm contain either

an equadon. t = t1, where t1 has no occurrences of isEmpty or eval, or

an equation t' = t. where t' is a subterm of t. and tl is an instantiation of eval(new, ind).
This checking ensures that each term containing operators in the converts list is either defined

by the axioms (in terms of operators not in the list) or explicitly exempted. One use of converts is
to allow the specification checker to notice unintended effects of without. As suggested in section 6.
the filure of ArraySpec to fulfill the converts inherited from TableSpec would trigger error messages
of the form:

isEmpty(new) not convertible
isEmptyaugt irA =0)) not convertible.

;v.s N N . 9,,i , **. ,4.* .. _... .. ;-. % ...-.. ,-
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L MwheEhe md Equait

In Our ex11010l0s we made use of some apparently unconstrained operators: V dss. ik and =

with a varet of signatures In fact. the appefaac of these opeMn loos Ob the implicit
Whwmato of the traits IfnhenElse and Equality.

Wheneve a tam of the form Ifb tmhea d e t2 occurs in a trait we replac the mixf: symbol
I tdE ek by the prefix symbol IfbenElse. If tI and t2 we of theam son, TI. we also import
the trait UienElse with I Ti Air T ] into the enclosing trait.

Whenever aterm of thefoanmti = t2 Occun &naiutif tI and Q we of the smsort.Ti. we
aPPend the trait Equality wit ( Ti Wi T ] to the consequences of the enclosing trait.

Specrifications of these traits are:
Ifiben~ise: tUak

lifeem ifrhenEhse: Boot, T. T --* T
'C.4 eem s kilben~e s thafor a I 2Tj

iflhenEls(tnaie, r1, t2) a i
if~benEise(fie, U. t2) g 2

implies cosiverts ( iflenElseJ
Eqluality: trait

incim Equivalence with 1b fr .rel
coautraks = sostT prtled byL=I

9. Semise Futher Examples

The following series of examples is adapted from the Handbook chapter. We include them here
to illustrate some ways in which the facilities introduced above can be used. In reading these

specifications, keep in mind that they are not themselves ends. but rather means to write interace

Our spc fitions.i nasut~ ftoedaasritrstht"oti"eemns gSt
Bag, Queue, Stack. We have found it usefi both a a startig point for specification of various
kinds of continers, and a an assumption for generic operations. Tbe crucial part of the trait is the
generated by. It indicates that any term of sort C is equal to some term in which new and insert are
the only operators with range C--even if this trait is included in one that introduces additional
operators that return values of sort C. This means that any theorems proved by induction over new
and Isert will remai valid.

Container~ trait % C's contain Fs
inoam

new: -W C
.4insert: C. E-C

cestrakms C so that C generated by Inew, insert
The next example incorporates Container as an assumption. Notice that it constrains new and

insert a well a the operator it introduces. isEmpty. The converts indicates that this trait contains

Jre
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=on* &do= 00 aimpuatldy secify ieEipty. Becaue of the gemerated by, this can be proved by
hbmisl ownr Mmof sont C. umlu mew s the bi and iert(c, e) in the induction step.

-~es Vcamwf
hoeftms isfuuspty. C -* Bool

bEmM.y now, biset so dot for al e.- Ce EJ
-X tyMw) = true

PX Ilm (c, e)) = Mab
ho -smf I k*mty

MWe WO two Wasopls asuame Container. The exempts indicate that should these traits be
Muhim Wo a tr* dist claims the convertibility of next or rest, that trait neednt convert the terms
MonwW) Or uemW)4

-Container
==uei C -. E

O MeatO insert as dot for all e: EJ

mam mml3mew)

-o" e MW -*
e u reK mnet n dot for al[ e: E

MuIinserxmew, e)) = new
mem FMew)

The ama sa I specifies properties common to various data structures such as stacks. queues.
pility quouse, 9squeinsan d vectors. It augments Container by combining it with IsEmpty, Next
md R&aL The vu- -1- by indicates duat next. rest, and Wsmpty are sufficient to define equality
ovar mm of sort C. Vincs we have little information about next and rest. the pariiffoned by does
sot yet add much so d assomciated theory.

bsf bbupty, Next Rest
hbucontainer
g~m~ C a dotC pddsed by (net rm tisEmptyj

The mea eamle speciaizes, Enumerable by ftarther constraining next. rest, and insert. Sufficient
aom = give. to convert next and rest. The axioms that convert isEmpty are inherited fom the
0* BomeraiW which inherited them from the trait IsEmpty.
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PriarityQue: trait
asssss TotalOrder wfth [ Efu T
lechie Enumerable
eeMMirahmnextrest insert sothiat fr al qC .:E

nexo~neft e))
if isEmpty(4) dhes e
elseIf next(q) : e theanext(q) else e

rest(insert(q, e))=
if isEmpty(q) them new

'S eke If next(q): e ent. insert(rest(q), e) eke q
haplies casuverts [ next. rest, isEmptyj

In a trait, suchi a PriorityQuetie, that defnes an "abstract data type" there will generally be a
distinguished sort (C in this case) corresponding to the "type of interest" of [Outtag 75] or "data
sort"* of Iflurstall and Goguen 81]. In such traits, it is usually possible to partition the operators whose
range as the distinguished sort into "generators," those operators which the sort as generated by. and
"extensions," which can be converted into generators. Operators whose domain includes the
distnguished sort and whose range is some other sort are called "observers." Observers are usually
cnverib and the sort is usually partitioned by one or more subsets of the observers and extensions.

The next example illustrates a specialization of Container that does not satisf Enumerable. It
augments Container by combining it with IsEmpty and Cardinal. and introducing two new operators.
Notice that we Include Container, because we intend to constrain operators inherited from it, but
Import IsEmpty and Cardinal, because we do not intend to constrain any operator inherited from
them. Constrains C is a shorthand for a constrains clause listing all the operators whose signature
includes C. The partitioned by indicates that count alone is sufficient to distinguish unequal terms of
sort C. Converts [ is~mpty, count, delete I is a stronger assertion than the combination of an explicit
converts ( count, delete I with the inherited converts [(isEmpty j

Multiset: trait
assumus Equality with [ Elem for TI
haports IsEmpty, Cardinal
Includes Container with [ empty for new
introduces count~ Elem. C -* Bool

delete: Elem C--oC
constrains C so that

C partitioned by [ count
for all I c: C, el e2. El

count(empty, el) =0

count(insert(c, el), e2) =count(c. e2) + (if el e2 then 1 ekse 0)

delete(empty, el) = emptyI
delete(insert(c, el), e2)=

Vf e1 = e2 then c else insert(delete(c, e2), el)
Implies converts [isEmpty, count, delete
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The next exanple specifies a generic operator. It uses Enumerable as an assumption to delimit
the applicability of this operator to containers for which it is possi-ble to enumerate the contained
dements. (To understand why we asume Enumemable rather than Container,.mgn~Ifnn extOp

fIz a Multi~et) The eat indictates that we do not intend to Moly define the meazug of applying

eqtOp to containers of unequal same Notice that elemOp is totally ucntaedin this trait. This

pogvent smaing emany intrthat fmriaion cto Ctat a1 t th2: E tage
P~tis~esionew newrane

assesss Furabl~eJ

weisas ex ~ binin dom~ tor al ove Carinls fore2 E

hei. inetcl l [ner(.+ e2)isr*etc. elem~e e2)
hopIs"sCoamnmtatIethI**frOCop

hevaldiy o emplicon that + for C, C iscEuaiesesfrmterpaeeto

eNow by+e stcardze whos cosrining trait tove Cardinal)sml:t omuaiiy
.4.wsph. i

-4.erbl

bqb adia

ifil"e rdexesonwt 0+*free.4# o x~,Cr o

Comttv wt or0 o

.4evllt fteipiainta b or omttv esfmterpaeeto

de4 y+frsr arwoecntans i .. adnl mpyiscmuaiiy

LL
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Larch Shared Language Reference Manul

.Sucture of Mamml

In section I we present a grammar for the kernel subset of the Larch Shared Language.
In section 2 we define the context sensitive checking and the theory associated with each

specification written in the kernel subset.
In section 3 we extend the kernel subset by introducing mechanisms for specifying intended

comequences of a specification written in the kernel subset.
In sections 4-10 we define successive extensions of the language. We modify the grammar to

introduce additional aspects of the language and describe any additional context sensitive checking
required. We also provide a translation from the newly extended language to the previously defined
subset. The result of this translation is subjected to all the applicable checking. The theory associated
with any specification written in the full language is the same as the theory associated with its

Section 11 describes additional checks, defined in terms of the theories associated with traits,
that are associated with various language features. To be legal, a specification and each of the parts
from which it is built must satisfy these checks as well as the context sensitive checks described
earlier.

Finally, section 12 collects the reference grammar for the entire language.

60A
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1. KumvI SPUx

I.I. Sj~w*i cmMM

Sateative separator
• is optional
zero of mOC e's

e.,  zero or more e's, separated by commas

C+ one or more e's

Sopha alpha is a nonterminal symbol
alpha is a terminal symbol
parentheses as terminal symbols

(e) parentheses for grouping syntactic expressions

1.2. Gnswnuw

trait .' traitld " trait treitBody
traitaody simpleTrait
simpleTrait = {opPart} propPart*
opPat := htrdces opDcIO

opOcl : opld : sIgnature

signature = domain -. range

domain : sortldO,
range = lorm

propPart = Om props

props =generators" pantflonso axioms*

generators = aorl gmatud by1isat,

partions = sortld pueimd bylt,
b" = by I sortdop; !
oatdOp = opMoc

axioms = fw al I varDc', equatfon*
varI = varid', : sortld

equation = term = term
farm ::=ortedo0 { ( rm*, ') varld

opid : alphaNumeric + I opForm

opForm :::(,)opSym (DopSym) 

OPSym ::= oecaICher. I + alphaNumeric

tra:= alphNumeric
aotld := alphaNumeric +

vard = alphaNumeric +

Comment stmar with % and terminate with end of line. They may appear after any token.
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L. Skk Tr~Ia

2.. Conext s=aW,. c/eckin

-. °

~shfnplTra t:
SThe s of verd's, sortlcfs and oplds appearing in a trait must be disjoint.
Every sotd appearing anywhere in a simpleTraft must appear in its opPart.

Every sonredOp appearing anywhere in a simpleTrat must appear in its opPart.

Opac o
Each opForm must have the sone number of O's s tie number of occurrences of sortid's in

the domain.

generators:
The range of each sotedOp mus be die sortid of the generators.

At 1 one soetedOp in each byliat must have a domain in which the sortid of the generators

doe not occur.

The domain of each sortedOp must include ie aoid of the partition.

The range of at least one sortedOp in each b0llt must be different from the sortid of the

axioms:
Eac vad used in a term mus appear in eacdy one varDcl.

No v erd may occur more tan once in I varD , ".

equatintk: "

The sats of both teem's must be the same, where
T st of a term of die foArm sotoedOp { ( term*. ) I is the range of the sortedOp.
1Th san of. term of the form varld is the sortid of the varcl in which the varld is declared.

term:.

in sortedOp ( term, ) die domain of the sortedOp must be the sequence of the sorts of

teoms im term*,.

4fe:::

- w~~* -~ *. -. '~ ~ ~ . .- ~ * * *.--.-.
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U Aoia thuy

We iMociae a theory with each trait. Tis seclon defines the theory ssociated with a

alAPTraIt.
- A teoy is a subet of the language:

WV::- term = term

I "prt on;r.M formula"
I "first order quantified (with sorts) formula"

We adopt the conventional meanings of the equality symbol (:), the propositional connectives

(A. L -, m. _4 and the quantifiers (V and 3).
T1e subset of wff that is the theory, call it Th. associated with a simpleTrait is defined by:

Axiomr Each equation, univerM y quantified by the varDcrs of its containing axioms, is in
Th1.

Iaequ1-ao -(Ue:--.ool = false:-.*Bool) is in Th.
Firs order predicate cakuhs with equality: b contains the axioms of conventional typed

first-order predicate calculus with equality and is closed under its rules of inference.
Induction. If the trait has a generators with sortid S and a bylist by [opl, .... opnJ and P(s)

is a wff with a free variable. s, of sort S, lb contains the wif

VS S1 P(s)
ift fr each opm in op ... op.

Q "W P(op(x1 .... xk)) is in Tb. where

k is the arity of opi,

the xjs are variables that do not appear free in P, and

Qj is the conjunction of P(zA, for each j such that the j argument of op,

is of sort S.

Reduction." If the trait has a partitions with sortid S and a bylist by [opi, ..., opJ, l contains

the wff

V1s, s2: S] (Q - s1 = s2)
where Q is the conjunction, for each oRj in [opi..... opal and each j such that the j*

argument of op1 is of sort S, of

Vi|I: Sl, ..... k: Sk] (Subst(opi, j, t1) = Subsopt, j, t2 )), where

Si,. Sk is the domain of opi, and

Substop, j, t) is op(x.. xO with t substituted for xj.

4, d_

4. , ... ,,m
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3. Consequences and Exemizoms

Exempts and consequences affect only the checking (see section 11.5) and do not affect the
theory. We add to the grammar the productions:

traitml tratid: trait traitBody {consequences} {exempts}

consequences ::= implies conseqProps (converts)
conseqProps.-" props
converts co nmverts conversion*,

conversion :: = softedOpt ,
exempts :: = exempts exemptTermso
exemptTerms ::= {for all I varDcl*, I } term*,

3.1. Context sensitive checking

conseqProps:
If the props of the conseqProps is appended to the propPart of the containing trait, the

resulting trait must satisfy the checks of section 2.

exempms
Each term must satisfy the checks of section 2.1.

,4. Cotrain Clauses

Constrains clauses affect only the checking (see section 11.4), not the theory. We add to the
grammar the productions:

propPart :: = (asserts I constrains ) props
constrains :: -constrains (sortd sortedOp*, )so that

4.L Translation

constrains:
Replace the constrains by assemrt

, . , ::,-" i • ,. .• .2,'' ,'.- .2, ",.', ", ' ." . :.".". .,. . .. ".. ., . • . - . .. "-",
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5 klld Sinam MAn Paria OpFoWin

In the kernel language each sorted~p is an opDcl. Here we relax this restriction to allow
omitted and partial signatuires and omitted #s. We add to the grammar the produscfon:

* asted~p ::=opid { .range)

5:1. Context wensiive checking

There must be a unique mapping from occurrences of sortedOp's to opDcl's of the traitBody
such that the translation described in section 5.2. produces a legal traitBody and for each sorted~p,
opol pair.

The opkf's match iLe.,
They are the same, or
They are both opForms and the one in the sortecl~p is the same as the one in the

opDcl with all #'s removed.
If the sortecl~p includes -'range, it is the same as the range of the opDcl.

5.2. Translation

The checking ensures that each occurrence of a sorted~p corresponds to a unique opDcl. The
trianslation is simply to replace it by that opDcl.

6.Mixtix Operators

* In the language presented thus far, all operators are treated as either nullary or prefix. Here we
relax that restriction. We replace the grammar for term by:
term ::=secondary I if secondary then secondary else term
secondary ::=(opSym 1primary ( opSym primary ){opSym)
primary ::=sorted~p { (term*,') I arld I'term)

&L1 Translation

equation:
It is necessary to resolve the grammatical ambiguity between the =connective in equations

and the = opSym. In any equation the first occurrence of = that is not bracketed by parentheses
or within an Kf dien elme is the equation connective, the remainder are opsyrnS. Parentheses can be
used to enforce any desired parsing.

0I
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4'i

term.

Translate each term of the form If b dien t! else t 2 into a term of the form iflhenElse(b, ti, t2).

secondary:

Translate each secondary containing opSym's into a primary of the form opid "1 term*, "

what opld is derived by replacing each primary in the secondary by *.

term*, is the sequence of primarys.

primary:
After the previous translations have been performed, remove the outer parentheses from

primary's of the form "( term ').

7. Doolew Tm as Equadous

It is convenient to use terms of sort Bool as axioms. We add to the grammar the production:

equation = term

7.1. Context sensitive checking

The term must be of son BooL.

7.2 Transiion

Replace the term by the equation

term -- true

-'p'

I.

* I,

%4'

" :'-A
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.il Exteul Rde

We add to the kernel grammar the productions:

traitBody = externals simpleTrait

eiternals = {assumes} {importsJ {includes)

aasume :: = ainues traitRelf,

imports =h sport traltRet',
includes : = inchdes traitRet,

tratRef..-'"- traitid

* "i conseqProps :: = traitRef', props

&l. Context sensitive Chcking

externals:

Recursive externals are not permitted; i.e., the traitid of the containing trait may not appear in

an externals, nor in any partial translation of a traitRef in its externals.

82. Translation

The mslation of a trait is derived bottom-up; i.e., before a trait with traitRefs is translated,

each of its traitRefs is replaced by the transladon of the trait labeled by that traitRers traitid. Let

T be a trait whose simpleTrait is S and let E consist of the translations of the traitRers in Ts

externals. The translation of T consists of:
An opPart containing S's opOcIs and Fs opOcls,

A propPart* containing S's propPart's and B's propPart's.

An exempts containing Ts exemptTerms and Fs exemptTerms, and

A consequences containing the props of

Ts conseqProps,
the propParts of the translations of the traitRefs in Ts conseqProps, and

Fs consequences.

L .1
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9. MsdllatlmS

We add to the grammar the productions:
traftRet = traltid {exclusion} {renaming}

*ilusion :: ithout I oldOp*,

renaming w kw ( sortRename I opRename ), j
secrtRename = sortld for oldSort

oldSort.- sortld

opRename :: = opid for oldOp

oldOp ::: sortedOp

9.1. Context sensitive checking

traitRet:

No sortedOp may occur more than once as an oldOp.
No sortld may occur more than once as an oldSort.

Each oldSort must appear in an opDcl in the translation of the trait labeled by the traitld.

There must be a unique mapping from oldOp's to opDcrs of the translation of the trait labeled

by the traltid, such that for each oldOp, opDcl pair:

The opld's match (see section 5.1).

If the oldOp includes domain, it is the same as the domain of the opDcl.
If the oldOp includes --* range, it is the same as the range of the opDcl.

9.1 Traraloion

The translation of the trait labeled by the traitld of the traitRef is modified by applying first

the exclusion, then the opRename's, and finally the sortRename's:
1 For each oldOp in the exclusion, delete each bylist, equation, and term containing the

opDcl to which it maps and then delete all remaining occurrences of that opDcl.
Then, simultaneously, for each opRename, replace the opid part of each occurrence of the

opDcl to which the oldOp maps by the opid of the opRename.
Finally, simultaneously, for each sortRename, replace each occurrence of its oldSort by its

eortid.

a- - i.:
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It hlk I.cottlin of Doem, fflaunEe, am E*qat

Three traits, Boolean, IfnnenEbe, and Equality, are implicitly incorporated into various other

trsi to amure uniform meaning for the operators they constrain.

I4L. Transll ion

Append the traltRef Boolean to the Imports of each trait except Boolean.

Append the traitRef IfrhenElse with [ T1 for T ] to the imports of each trait containing a term

of the form N b theatl else t2 in which tl and t2 have the same sort, T1.
Append the traitRef Equality with [ T1 for T I to the traitRef' of the conseqProps of each

trait (except Equality) containing a term of the form t1 = t2 in which tj and t2 have the same sort.

1"a. Bulti'"hl TiSi10.1 W, j Rs/,b VW

Boolew: Urai

true: -. Bool
false: . Bool
-#: Boo[ --. Booi
0&0: Boot Bool - Bool
#I*: Bool Bool --. Bool
#I'*: Boot, Bool - Bool
#.equal#: Boot Bo --. Bool

mom Boot poerAt by [ true. false !for an [ "001! :

-true = false
- lae = true
(true b) = b
(fi & b) = false
(mue b)= true
(fe I b)= b
(true ,, b) = b
(falh e sb) = tre

(me .equat b) = b
(false .equal b) = -b

Ue ts [ -, , I, -. .equal !
IfnhnEbe: rait

htrduc iflbenElue: Boot, T, T -- T
mm for ad [ U. t2: T -

iflhenEl*true. Ui, M2 = t/

lffenE false. U. M t2

S-t [ iffhenElse ]
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Equality: ft
khndoce S=#: T. T . Boo[
am T prtlasildby I ]

fera U ( xy. T
~(x= z)

(x=,) (y=)

((x=y) (,= z)) - (x= )

iL. smaw be!ki

In addio to the syntfactic constraint specified above, we require that each trait be loglly

Conistnt duum the amptuions of the traits it as built ftom, be a conservative extension of' its

Imports., be propery k and imply its consquences.

ILL Coubamy

A tratBody is conuiume if its amociad theory does not contain the equation

true:-,OBool = false:--*Dool

IL Assuuptions

Let A(T) be al of the asume* of the traits imported or included in T, and R(T) be the result
of tranlating T after removing the ausume. A() is dicharged by T if the theory associated with

the translation of each traitRef of A(l) is a subset of the theory aisociated with R(T).

113. Imports

The theory associated with a trait must be a conw, vattve extension of the theory associated with

the tranlation of each traltRef in its imports; i.e.. if trait TI imports 12 and W is a wff of T2, W

is in the theory amociated with T1 if and only if it is in the theory associated with 12.

11.4. Constraints

A propPart is properly-constraining if it implies properties of only the operators in its constrains.

The occurrence of a sortld in a constrains stands for the list of all sortedOp's in the containing

trait's opPart whose signatures include that sortid.

Let T be a trait and P be the propPart constrains sortedOp O so that props. P is

properly-constraining in the trait consisting of T plus P if and only if each wff in the theory associated

with T plus P is also in e theory associated with T or else contains ops in sortedO0p*.

Note that. since the trislation of a traitRef converts constrains to asserts, this check is performed

only on traits in which comtins appears explicitly.

"/ ~~~~~~~~~~~~~... ... ....,........ ,.......-....,. ,,.,....,,- '.",",,-,-.......... ,- -,.,. ... ,.,., ..
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ILI Conqvences

A trait implies its consequences if the theory associated with its conseqProps is a subset of

the theoy associated with the trait and the I sortedOp*. I in each converts is convertible.

Cenvertibility is defined using the theory and exempts of a trait.

censeqProp&

The theory associated with conseqProps must be a subset of the theory of the trait in which

the consequences appears. The theory associated with a conseqProps is the theory associated with

the traitbody:

inckdes traitRet, opPart asserts props

where traitRet, and props fbrm the conseqProps. and opPart is the opPart of the trait in which

the consequences appears.

Note that an exclusion, but not a renaming, can invalidate a consequence that has been locally

conversion:

Let C be a conversion. For each term. t. that contains no variables of any sort appearing in a

generators in the containing trait, the theory of the containing trait must either

contain an equation t = u,
where u contains no sortedOp appearing in C's sortedOp', or

contain an equation t' = u.

where t' is a subterm of L, and u is an instantiation of a term appearing in an exempts

of the containing trail

ILI

4 ~ .U -. .-. . .. .. * -

.........
,:'t . , , , , ,.,J , .: . .. ,. . . .. ' " . , .. . . " . , . ,. ., .., . . , '.." • .... . . . ,. ... S , , . ., . .- . '"
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1It Rernc Grammsar for The Lach Shared anguage

traitm traltid : trai tralt~ody (consequences) (exempts)
traitBody =external#saimpleTrait

extern"l = assumnes) (imports) [includes)
aSIUMe. = amss traitRet4,
Imports =imports traitRoet,
Includes =Includes traitRel*,
traltRet traftid (exclusion) [renaming)
exclusion without I[oldOpj
renaming =with I(sortRename IopRename)*
sortRename =softid for oldSort
oldSort =sortid
opRename =opid for old~p
oldOp =sorted~p
sorted~p =opDcl I opid ( range)I
aim pleTreit =(oppart) propparto
opPart inhtroduces opDcl*
opDcl =opid :signature
signature =domain - range
domain = ortldO,
range sortid
pro pPart = asserts I constrains )props
constrains =constrains ( sortid I sorted~p*, )so that
props =generators* part itions* xos
generators =sortid generated bylist*,
partitions =sortid partitioned bylist ,
byliat =by I sorted~p*,
axioms =for nil ( varDcli* equation*
varDcl =vardO, sortid
equation term { - term)I
term =secondary I If secondary then secondary else term
secondary I opSym Iprimary ( opSym primary )* IopS yin
primary =sortedOp ( 'term*.') I Ivarid I'term'
opid =alphaNumeric. + opForm
opForm (*opSym(opSym)(*
opSym = peclaiChar + e lphaNumeric.+
traitid =alphaNumeric +
sortid = lphaNumeric +
vs rid =alphaNumeric.+
consequences =implies conseqProps (converts)
conaeqPropa traltRel', props
converts =converts conversion*.
conversion =jsortedOp, I
exem pts exempts exam ptTorms*
exempt Terms = for all IvarDcl, I term*.
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Towards A Larch Shared Language Handbook

Basc popeies of single operatoms includng binary relations

.4 Associative, Commutative, Idempotent, Relation, Totalltelation, Reflexive, Ifeflexive,

Transtive., ReftexiveTransitive, Symmetric, Antisymmetric, Equivalence

Orderin relations

PatialOrder, Total~rder, OrderEquivalence, OrderEquality, PartialOrderWithEquality.

ToWaOrderWitbiquality. DerivedOrden, PartiaflyOrderedL Ordered

Group theory

'I; Lefidentity, RightIdentity, Identity, LeftInverse, RightInverse, Inverse, Abelian, Semigroup,

Monoid, Group, AbelianSemigroup, AbelianMonoid. AbelianGroup, Distributive

Simp~le numeric opes

'4 Ordinal, Cardinal, Cardinal2

Simple data structures

Pair, Triple, Finiteldapping

Container properties

Container, Singleton, LsEmpty, Size. AdditiveSize, Join, ElementEquality, Member.

ElemCount. Delete, Containment, Next, Resm Remainder, Index

Container classes

* Set~asics. BasBasics~ CollectionExtensions. SetIntersection, Set, Bag, Enumerable,

InsertionOrdered, Stack. Queue, Dequeue, Sequence, SubSequence, String, PriorityQueue

Generic operators on continers

CoerceContainer, Reduce, SomePass, AllPass, Sift PairwiseExtension, Pointwiselmage
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Neadhuaw stucxawe

BinaryTree, BasicGrap, Connectivity. Graph

Rings fleW and awn

Ring. RingWithUnit, Inflxlnverse, Integer, Field, Rational

Extrenialound. SemuaumI

EiwiwaWe dasa typs

Enimerated, Rainbow, Character

DipayW ftrb

Coordinate, Illumination, Boundary, Transform, Displayable. Picture. Contents. Component.

ComponentCoercion. View. Display

' .: .1.2:.'N :.... . - ; ; ''. ' '; '..; g .\ .¢ ..'.. ..... • "' ,. . . . .. ..
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This collection of traits is a companion to the Larch Shared Language Reference Manual. We

hope that it will serve three distinct purposes:
Provide a set of components that can be directly incorporated into other specifications,

Provide a set of models upon which other specifications can be based, and
Help people to better understand the Larch Shared Language by providing a set of illustrative

examples.

In line with our first goal, we have tried to isolate the "smallest useful increments" of specification

that it might be reasonable to use in other specifications. In particular, we have tried to provide traits

that will make it convenient to specify the weak assumptions that characterize many of the more

widely applicable specifications. This is particularly evident in the sections titled "Container
properties" and Container classes." The traits in these sections are smaller and more numerous than

is typical in "from scratch" specifications. This sometimes leads to a somewhat overstructured

appeara

In line with our second goal, in addition to traits that we expect to be directly incorporated in
specifications we have included a number of traits intended primarily as patterns. The section titled
"Generic operators on containers" contains several such traits. Because of the arity of the operators,

it will frequently be awkward to incorporate these traits.
In line with our third goal we have stressed familiar examples. Since they describe well-understood

mathematical entities, many of the traits, e.g., Integer. are atypically complete. In general, we expect

most specifications to supply constraints, rather than complete definitions. The section on Display

traits is more typical in this respect.
The support tools envisioned for Larch are not yet available. Transcriptions of traits in this

chapter have been mechanically checked for some properties: some errors may not have been detected
and some transcription errors may have crept in. They should be given the same sort of credence as

carefully written programs that have not been checked by a compiler.
Comments on the clarity of these specifications and on their "correctness" (relative to generally

accepted definitions of the names used) are welcome. We also solicit contributions of further widely
useful traits--either accompanied by specifications. or as challenges to specifiers.

If a generic trait constrains only one interesting sort. the identifier T is used to denote it.

If a trait constrains a "containing" sort and ap "element" sort, the identifiers C and E are used.

If a trait constrains a single binary operation, the infix symbol * 0 * is used.

If a trait constrains a single binary relation, the infix identifier # 0 # is used.
If there would be no information in a constrains (e.g., because there is only one operator),

Assert is used.
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Bask Pr"qe of She Opertor, Iu dfg Biury Relations .

Associative: trait
winr- as #0*: T T -T

austs for al [ x y, z: T (x 0 y) O z= xO ( 0 z)
Commutative: trait

#0#rodue *0*: T. T - Ran e
asserts for l [ x, y: T x0y=y0x

Idempoten: trait
introdums op: T --w T

aerts for all [ x. T op(op(x))= op(x)

Relation: trait
itroduces *# : T, T -. Bool

TotalRelation: trait

icludes Relation
mer foral [ x, y: T (x ® y) I( 0 x)

Reflexive: trait

inchdes Relation
merts for all [ x: T x x

Irreflexive: trait

includes Relation
amerts for all [ x: T -(x x)

Transitive: trait
leacines Relation
asserts for all [ x, y, z. T ((x y)& O )). (x z)

ReflexiveTransitive: trait
ncludes Reflexive, Transitive

Symmetric: trait
includes Relation
asserts for all [ x.y: T ] (x(y)= (Y ox)
lwplies Commutative with [ for 0. Bool for Range]

Antisymmetric: trait
ihcludes Relation
aserts for all [ x. y: T ~((X (M & (. G
implies Irreflexive

Equivalence: trait

lucludes ReflexiveTransitive with [ .eq for 0 ],
Symmetric with [eq for ]

P'
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Ordlrhg Relatin

PartialOrder trait
impots ReflexiveTransitive wthLfor G

TotalOrder. trait
mcliii. PartialOrder, Totalitelation with [ for (M

OrderEquivalence: trait
asumes PartialOrder
itrodices *.eq#: T. T - Bool

econstrains .eq so that for all x. y.:T (x eq y) =(x <-y) & (y x)
implies Equivalence
converts [.eqj

OrderEquality: trait
-sue PartialOrder

V hachudes OrderEquivalence with I=for .eq 1Equality
PartialOrderWithEquality: trait

inchades Partial~rder, OrderEquality
TotalOrderWithEquality: trait

luchads TotalOrder, OrderEquality
DerivedOrders: trai

-sue PartialOrder
Introduces

tv< 0: T. T - Bool
*L*#:TT - Bool

*:T.T - Bool
.. costrans< sothat for all x, y.:T (x <y) =((x :)A& (-(y :x)A)

comutim; sothat for afl xy.:T (x >y) = (y :x)
cosrans > w that for al xy.-T I (x y) = (Y <X)
implies Transitive with < for 40

Transitive with [> for (M1
Antisymmetric with I< fo- (M,
Andsymmetric with (> for S31
PaztialOrder with[ for :5

Paralyertsl<trait

imports PartualOrderWithEquality
fudides DerivedOrders
Implie PartialOrderWithEquality with [ : for :5 1

.4' Ordered: trait
V imports TotalOrderWithEquality

hachadles DerivedOrders
.4. implies PartiallyOrdered. TotalOrderWithEquality with [ : for <
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Growp Theory *
Leftidentity: trait

introduces
#O#: T, T -T
unit: --* T

asserts for all [ x: T unit 0 x = x
Righindenuty: trait

introduces
#0#: T, T "*T'"
unit: - T

asserts for all [ x: T x 0 unit = x
Identity: trait includes LeftIdentity, Rightddentity
LetInverse: trait

assumes LeftIdentity
introduces inv: T - T
asserts for all [ x: TJ inv(x) ) x unit

RightInverse: trait

assumes Rightddentity
introduces inv: T -* T
asserts for all x: T] x 0 inv(x) = unit

Inverse: trait

assumes Identity
includes LeftInverse. RightInverse

Abelian: trait imports Commutative with [T for Range

Semigroup: trait includes Associative, Equality

Monoid: trait includes Semigroup, LeftIdentity

Group: trait
includes Monoid, LeftInverse
implies RightIdentity, Rightlnverse

AbelianSemigroup: trait includes Abelian, Semigroup

AbelianMonoid: trait

includes Abelian, Monoid
implies Rightldentity

AbelianGroup: trait includes Abelian, Group

Distributive: trait
introduces

#+#: T. T - T
*#: T, T - T

asserts for all [ x, y. z: T ]
x*(y + z) = (x*y) + (x'z)
(y + z)*x = (y*x) + (z*x)

...................................
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Simple MNumeic Types
i! "

Ordinal: trait
* in~~clude Puarthlrdr with [=for .eq, Ord for T I

* ~OrderE~uivalence witM for .eq, Ord for T
introduces

first: - Ord
-' succ: Ord --w Ord

-~~ asserts Ord generated by I fRMt suc J
Ord parttioned by f :5
for all [ x. y:- Ord

flrst x
-(Succ(x) :5 first)

4 scc(x) 5 ) x Y
imPlies TOWaOrderWithEqualitY with [Ord for TJ
converts

Cardinal: trait
imports Ordinal with [0 for first, Card for Ord -
i rl DerivdOrders with [ Card for T O
Introduces

1: -Card
2+ 0+ : Card, Card -. Card

#:Card, Card --P Card
#: Card, Card -- Card

constrains 1 so that 1 = succ(0)
constrains + so that for all I x, y: Card

x+ st cc(y) su-(x+

X*succ(y) = x + (x*y)
constrains 9 so that for ali [ x, y.Card

-cc(x) succ(y) = x 9 y
implies Cardinal2

Card generated by1, +,
Card partitioned by .-1 by by < by >
for al [x. Car) Card x <y = ((x e y) 0)

converts [< >

1"--*r "

....................... + .: Card. Car --.... '-
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Cardinal2: trait % Alternate definition for comparison
..hk AbeianMonoid with [+ for 0, 0 for unit, Card for T,

AbelanMonoid wh [ for 0, 0 for unit, Card for T

Distributive with [ Card for T ,
Ordered with [ Card for T ]

hdreduces
#e#: Card, Card -. Card
-.cc: Card -- Card

auertsCard mweateby[O. 1. +J
for al [ x y:. Card

x < (x + 1)
(x + y)O e = xOex=O
ac(x)= x + 1

hlesCardinal

V.*

'-4

II
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Shople Dt Strctures

Pair. U1it
hgredeces

(#, 5): T1, 1"2 - C
*.first C -- T1
*.second: C -. 12 T2

amertsCmratedi <#. #>1
C partitom by [ .frst, second]
for al [. Ti, x T21

<t S>.flrs = f
<t O.second = s

Imlis converts I .first, second ]
Triple: trait

( , >: T1 T, T T3 -C

#.frst: C --o Ti
#.second: C -o 172
S.third: C --P T3

aserts Cmersted by[<, #, *> I
C pA toedb [ .AM, second, .third 
forda( T, .'T2, :T3

<fs, t>.flrst = f
(f. s. t.second = s
<& s, t.third = t

Ohs com [ .irst .second, .third ]
FiniteMappin: trait

ames Equality with [Index for T ]
e odces

new: --vC
bind: C. Index, E --o C
#[#]:C. Index --o E
defined: C, Index -. Bool

asmerts C gnerated by I new, bind ]
C partitioned by [ #[#I defined I

costrahs C s that
for all [ c: C., 4d: Index. e: EJ

bind(c, il, eXt = if i = il then e else c[i
-defined(new. a)
defined(bind(c. i, e), ) = (a = il) [defined(c, 1)

implies converts [ #[IJ] defined I
exempts for an k Index I newliJ

S. ...
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CSNtwaker Pepesrtes

Container. trait

mew: C
iert C, E- C

-aat c rmat" by [ new. insert

Singleton: trait
ass es Container
ktoduces singleton: E -. C
cmtraim singleton so that for all [ e: El

uingletoe) = insert(new. e)Im ee [naf sinsleton
IsEmpty: traitmyr

asmes Container
SH.ces isEmpty: C - Bool
ast for 0 1 c C -E]WEmpty(new)

-sNEmpty(inset(c. e))implie cmeteb ( ismpt y

Size: trait
asues Container
inmou Cardinal

hiroacussize: C --a Card
coustais size so that

size(new) = 0
AdditiveSize: trait

-sme Container
ncludes Size

cometrains size, insert so that for all c: C. e: E ]
siz(insert(c, e)) = sie(c) + 1

Implies couverts [ size -

Join: trait
asmes Container

trodu- #.join*: C, C - C
comutras .join so that for all I c, cl: C, e: E ]

c .join new = c
c .join insert(c, e) = insern(c .join cl, e)

implies couverts I .join I
ElementEquality: trat imports Equality with [E for T ]
Member. trait

assumes Container. ElementEquality
introduces # C #: E, C- Bool
constrains E. insert so that for all [ c: C. e. el: E]

-(e IE new)
e E insert(c. el) = (e = el) I (e E c)

implies converts [ C ]
-,
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ElemCount: Utr

annimes Container. ElementEquality
mports Cardinal
hroduca count C. E -. Card
contras count, insert so that for all e,el: E. c: C

count(new. e) = 0
count(insert(c, e). el) = count(c. e) + (if e = i the. 1 else 0)

11pies converts [ count
Delete: Uit

assumes Container
1rho '--delete: C, E C
constrains delete so that for all [ e: E ] delete(new, e) = new

Containment: trait
asumnes Container
iachides PartialnyOrdered with [ C for <, D for >. for <. )for :. C for T]
ostrais C so tat for all [ e:E, c: C c insert(c. e)

kplies for all [ c: C] new Q; c

Next: trait
asnmes Container
inroduces next: C - E
constrains next, insert so that for all [ e: E ] next(insert(new, e)) = e
exempts next(new)

Rest trait
ainames Container A
introduces rest: C -. C
constrains rest, insert so that for all [ e: E ] rest(insert(new, e)) = new
exempts rest(new)

Remainder: trait

assmines Container. Rest
imports Cardinal
introduces remainder: C. card - C
constramins remainder so that for ail [ e: C. i: Card ]

remainder(c. 0) = c
remainder(c. i + 1) = remainder(rest(c), i)

hoplies converts ( remainder ]
Index: trait

asinmes Container. Next. Rest
imports Cardinal

introduces #[#I: C. Card - E
Nomtins #[#l so that for all [ c: CL" Card]

cl] = next(c)
4(i + 1)] = res cXtl

hpues converts #[#] ]
exempts for all [ C: C I cO]

"

4,- -, - -.. ' ., - ,., -% ,,.¢ ., , , ,,,- -. q ,. ' - ',,. -' ' '" "'' ,. ,. . ' - .. , . ' ..- " '' - :.. -. " . '-"" . . - " • . . "
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Bag: trait
amm Elnetquality
imports BagBasics

ddmes CollectionExtensions
hoplesAbelian [ U for O, C forT
cvets [ size delete, count, E. U, {#}, isEmpty, C. , I, J

Enumerable: trait
Imports IsEmpty. Next, Rest
includes Container
coasbras C so that C partitioned by [ next, rest, isEmpty ]

InsertionOrdered: trait % For assuming "Stack or Queue"
ucmuidl Enumerable

nltrodoces sEIFO: -. Bool
constrains next, rest, insert so that for all [ c: C. e: El

next(inser(c. e)) = if isEmpty(c) [ isFIFO then e else next(c)
rest(insert(c, e)) = if isEmpty(c) isFIFO then c else insert(rest(c), e)

implies converts [ next, rest J
Stack: trait

includes InsertionOrdered with [push for insert, top for next, pop for rest,
true for isFIFO ]

implies for all [ stk. C. e: E ]
top(push(sdr, e)) = e
pop(puxsh(sk e)) = stk

Queue: trait
includes InsertionOrdered with [first for next, false for isFIFO ]
implies for all [ 4: C, e: E .

first(insert(q, e)) = if isEmpty(q) then e else first(q)
rest(insert(q, e)) = If isEmpty(q) then new else insert(rest(q), e)

Dequeue: trait
includes Stack with [ insert for push, first for top, rest for pop ]

Stack with [ enter for push, last for top, prefix for pop J
constrains C so that for all [ c: C, e, el: E I

insert(new, e) = enter(new. e)
insert(enter(c, 0), el) = enter(insert(c, el), e)

imlies Queue, Queue with [ enter for insert, last for first, prefix for rest ]
converts [insert, first, last, rest. prefix], [enter, first, last rest, prefix ]

Sequence: trait
imports Dequeue, AdditiveSize
includes Index with [ first for next 1,

Join with [ li for .join ]
" impliesC partito by size, #[

SubSequence: trait
imports Sequence
Icludes Remainder with I # for remainder ],

Remainder with # 1[...#] for remainder, prefix for rest

", .%* ,, ,, :.. . , . - . . . . . . - - . + . . - ... .. . . . . . . ., . . -
* II - 11 -* . * . * - - "
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%s.|

ceuahke CNI

Setlmics: trait
ais -lment uality. Container With [Ufor new
imkei Size with [)for new ~

Member with for new
A--dlce de: C. E - C

oemirak C s dta

C *Aiunte , e)) size(s) + (If e C tm 0 ehe 1)
elht C lete(, e) = (eCEE s) (-(e = el))

h oes Dele with I {} fr new I
comments [I e. dele,. Cou

Blci st r ait
assams ElementlEquality., Container with [ for new "
Imports AddiveSize with 1 for new ,

Cnmaimnt with [) for new l
h es emli with [ for new
tInt o delete: C. E -C
- C W thatC pwiie by [ count]

for aH .C[, el: Ei
count(delete(b, e), el) coun(b, el) - (If si) el de 1 else 0)

boainu Delete wtq [ () for new
cmvorts [ size delete, count E

Cohlectioe Ctensions: trait
IsS e lmntqaiy Container with [ }for new]

Iqmw sElmpty with [ for new ],
Sineleton with [ }for new, {#} for sigeton ].
Containment with [ { for new ],

Join with [ U} for new, U for join
inchsz Equality with C for T I
hml ovats [ { #}. isFJpty, U I

Setintersection: trait
,. asumuSetBasics

hovilus n: c. , --0 c
constrains C so tat for al! [ . sl: C. c el: E]

e C is n' sn) = (e E. s) & (e E sl)
converts 1 n}

Set: trait
as e EiementJluality
hmprts SetBasics, Sed~ntersection
leWeds Collection~xtensions
hplsAbelian with [U for 0, C for T ]

Abelian with n " for 0, C for T I
cesvots [size, delete, c, n', U, {#,isEmpty. , C, ::), Q ;
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Stn trait

import Character
Iacluides Sequence with [ length for size, Char for E ]

PriorityQueue: trait
asumes Total)rder with [ E forT I

inchdes Enumerable
e.Mtrahu neit reM, insert so that for all [q: C, & E

next(insert(q, e)) = If isEmpty(q) then e
else if next(q) 5 • them next(q) else e

rest(insert(4 e)) = If isEmpty(g) then new
Jee if next(q) < •the insert(resz(q), e) else q

imies coverts [ next, ret isEmpty I

Gemnrc Operator..a Conta iers

SCo ataine. trait

aammes Container with [ DC for C L
Container with[ RC for C

introduces coerce: DC - RC
constrain coerce so that for all [ dc: DC, e: E I

coerce(new) = new
coerce(insert(dc, e)) = inser(coerce(dc), e)

impies converts [ coerce l
Reduce: trait

assumes Enumerable.
Rightidentity with [E for TJ,
Associative with [ E for T]

introduces reduce: C --. E
constrain reduce so that for all [ c: C]

reduce(c) = if isEmpty(c) then unit else next(c) 0 reduce(rest(c))
implies converts I reduce ]

SomePlA: trait
assumes Container
introduces

test: E, T --o Bool
somePass: C. T --w Bool

costras someass so that for all [c C e:E, ,: T]
-somePass(new, t)
somePass(insewr(c, e), t) = test(e, t) I somePass(c t)

implies converts f somePass I

.0.

4i

4% ~ . ; g,,..,..":' '- 'i';-.";- ,."/:.-- .'-* ... ':"';,;"i"2. -. "--i..,.-"."'..
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-ume Container

test E. T -* Bool
AM= a C. T --o-Bool

COgRaUMMalPM so ddatfr AIc.C.E , t:TI
aflPas(new. t)
alPau(inmert(c, 4), 1) =testAe 1) & apasgc, 1)

Sift trait
-sume Container

Introduces
tes: ET- Bool
sift: C, T- C

co.mais sift so that for al c. C. , . TI
sift(new, i)=new
sift(inser~c, e), t) = If test(e, 1) then insert(sift(c, t), e) *lse sift(c. t)

iwailes comwerts [ sift

PairwiseExtension: trait
a-smes InsertionOrdered
Introduce

exOp: C. C -*C
elemfOp: F. E - E

constrains extOp so that for A ci, c2: C. el, e2. EI
* ext~p(new, new) = new

exOP~inscrkci. el). insert(c2. e2)) =inserU2ext~p(cI. c2). elem~p(ei, e2))
baples -ov [ extOp
exeas for Al [c:- C, e: El

ext~p(new, insert(c. e)),
ext~p(insert(c. e), new)

Pointwiselmag: trait
soes Container with [ DC hor C, DE for E I

Container with [ RC for C. RE for El
introduces

ext~p: DC -v RC
point~p: DE - RE

constrains excOp so that for all[ U DC. de.: DE
ext~p(new) = new
ext~pinsert(dc. de)) =insert(ext~pdc), point~p(de))

* iwpfles convertsI extOp
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NSMdHi SWtoma"

BinaryTre: trait

-mm Cardil

(#):,E --& C
<#.#X C C - C

*Jeft C -- C
#.Al((mr C -- C

sze: C -& Crd
isLes: C-. Bool
content C --* E

Ceomaks C s tat
C g[<#a>.#. >!
C prtImd by [ .ef, jht. content isLeaf
foral [ d. r C. c E

(04. fr>).left = 1
(Q. ( r>).rht = Ir
size(<.) = I
size<14 1v0) =sizeMI + sizeM,
-isLeaf!(<d ir>)

content(e>) = e
WONu for an e fW:cisLa) =(s (t)= 1)
cmvet .left, right, size, isLeaf, content ]
exempts for A [ s4 l: C. c E ] (<e>)Jeft, (<e>).right, content((d, I>)

BaicGraph: trait
anmies Equality with [ Node for T ]
lmports Set with [NodeSet for C, Node for E ],

Pair with [ Edge for C, Node for T1, Node for !2 ]
htrodum

empty: -. Graph
addNode: Graph. Node --* Graph
addEdge: Graph, Edge - Graph
nodes: Graph --w NodeSet
adj: Node, Graph -* NodeSet

comtrahas Graph so that
Graph generated by [ empty, addNode. addEdge ]
Graph partidone by [ nodes. adj ]
for al [ g: Graph. e: Edge, #, n: Node]

nodes(empty) = {}
nodesaddNode(& n)) = insert(nodes(g). n)
nodes(addEdg(& e)) = insert(insert(nodes(g), e.fIrst), e.second)
adjl, empty) = {J
ad# addNode(& nl)) = adj(n s)
admn addEdge(g, e)) =

If n = (e.ftrst) then insert(adj(n, g). e.second) else adj(n, g)
Imlis coverts [ nodes. adi i

• A
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Cznnectivity: trai
asese Equality with [Node for T L famc~raph

reach: NodeSet. Graph -* NodeSet
ailReach: NodeSet, NodeSet. Graph -. Bool
connected: Graph - Bool

constrains reach, allReach, connected so that
for ail [ VGraph, e.: Edge, ns. nil: NodeSet. or Nodel

meach& empty) = 1)
reach~ns. addNode(g, n)) = reach(ns, S)
allReach({}. n&~ S)
allReach(insert(mnsa) nsl, M)=
allReach(ns. nsI, S) & (ns) Q reach(n}. g))
connected(g) = allReach(nodes(g). nodes(g), S)

liies converts [ ajiReach. connected
Graph: trait

muons; Equality with [Node for T
hoports BasicGraph
hduioes Connectivity,

Connectivity with [ stronglyConnected for connected, padhReach for reach,
all'athReach for aliReach

constrais reach, allReach, connected so that
for all [ V Graph, e.: Edge, nr NodeSetJ

reach(nx addEdge(& e)) = reach(ns g) U
(if (c.first) C ns thou insei reach({(e.second)j. g). (esecond))
else if (esecond) E as then insert(reachff(e.fimst)) g). (e.flrst))
else()

constrains pathReach. allPathReach, stronglyConnected so that
for all [ V Graph, e.: Edge, as: NodeSet

pathResch(ns. addEdge(& e)) = pathReach(nx S) U
(if (e.flms) E as

4 then insewrO(pathfeach({(esecond)j, g). (ejsecond))

boples couverts [ reach, aliReach, connected, pathReach. allPadhReach.
stronglyConnected



- - .r.l r - --, ° , -.... . - - -- - - b--' -' - j, - , - .• - -

HANDBOOK 49

3kw, Fle, am Nmmus

Ring: trai
hdches AbelianGroup with[ + r 0, 0 for unit, -# for inv,

Smftmup wkth for0,
Disriutive

RingWithUnit at
"-dus Ring, Identity with [ for 0, for unit ]

Inflxluvem: traft
Sames Inverse
htrhcu *0*: T, T T
cotrahs #0* so dugt r al x. y:T]

x0y= x 0 inv(y)
Imples convartsa 0#

Inte.er trait
hdcades RingWithUnit with [ Int for Ti,

Ordered with [ Int for T ],
Infihnversewih [ + for 0. - for inv, -for 0, Int for T

a st Intgemrteiby[1, +. -
fr aN [ x: Int]

-~ x < (x + 1)
uo es Raional wdout Ith I,nt for Rl

covers [10.,# # = ,> <, >]
Field: bidt

-, he es RinW-ithUnit
Itrodces #'I: T [x T
coastras * " so that for al [ x: T]

(x 0 0) I ((xY(x')) = 1)
esempts 0-1

Rational: trait

lckes Field with [ R for TJ
Ordered with [ R for T L
Infixlnvere with [+ for O, - #for inv, - for 0, R for T,
Infixlnveme with [ for 0, #-l for inv, / for 0, R for T ]

R gemrated by[1, +, -,
for aD [ .y., z: R

0.<1

((x + z) < (Y + z)) = (x < y)
(x = 0) I ((o < (x")) = (o < x))

hud sconverts(O., -,, 0. . < >1

' ' '.. '" *' ***f% <,:t'- %' *~~;y " .' .;,----:- .-- , -'- ',:/ .:-. a a-- . i - -.' ,-.
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EzutBma&knd trai

imehuds AbelianSenaigroup with I glb for 0j
coustrahu 40b so that for Ai [ x. y. z:-T

(x 41b y) < x
((zg 4 A) 4 (5 y))ms'(z:9 (x .glb A)

Semilattice: trait
hicudd. Pata~~rerd

Exutrenalflound.
Extrmaiflund with [~for :9, .lub for .glbJ

hotodom es: -o T
coustaus -L so that for all x. T

immilhs AbelianMonid with -L for unit, .Iub for 0
Lattce: trait

illd.e Somilaflice
hutodoces T: -oT
coinstrams T s that for AD x T

hoplies Lattice with [T for i, -L for T. 4glb for Jub, .lub for 41bb,
2:for~s :5for 2!, >for < for >

-222
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aMuserated Data Types

Enumerate& trait
hmports Ordinal
Iedu Ordered

last: --T
succ: T --* T
pred: T -.- T'"

ord: T -- Ord
aerts T generated by first, succ J

T partitomed by [ ord ]
foral[x.y:T]

ord(first) = first
ord(succ(x)) = if x = last them ord(last) else succ(ord(x))
pred(succ(x)) = if x = last then pred(last) else x
x : y = ord(x) :5 ord(y)

Implies T generated by [ last pred J
for all ( x. TI

succ(pred(x)) = if x = first then succ(first) else xfirst S x "'
x lat "

mwertsl =,. 2:. < >
Rainbow: trait

inlhies Enumerated with [Color for T ]iWuducus"'
red: --vColor ""
orange: - Color
yellow: . Color
green: - Color
blue: --. Color
violet: -- Color

sserts
Color gnerated by [ red, orange, yellow, green, blue. violet ]
first = red
last violet
succ(red) = orange
succ(orange) = yellow
succ(yellow) = green
succ(green) = blue
succ(blue) = violet

imles converts [ pred. last, ord, = , !, <, >, red, orange, yellow, green, blue.
violetL

M su fR ord = , , <, >, red, orange, yellow, green, blue, violet ]
Charater. trat hnludes Enumerated with [ Char for T ]

% For each pI language there will be mappings from character and string constants to

% terms in dfe duuaed language. Because of the variety of character orderings and notations for

% consants, these defnidom are not likely to be portable across programming languages.

o.

/ 11 .. ... I1 1 1 n ... I' I - ,' t'" " t' -, , . . . ., , ' ' ; t -; % ' 
' ; t'; " U.
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Display Trait

% The folowing traits represent a fairly straightforward translation of the specificatiQns in

%."Formal Specification as a Design Tool" (CSL-80-1). We have not attempted to improve the

%-,letp presented there, merely to translate it into Larch.

Coordinate: trait introduces minus: Coordinate, Coordinate - Coordinate
Illumination: trait introduces combine: Illumination, Illumination --* Illumination

Boundary: trait introduces apply: Boundary, Coordinate - Bool

Transform: trait introduces apply: Transformation, Coordinate -. Coordinate
Displayable: trait

introduces
appearance: T, Coordinate -. Illumination
in: T. Coordinate --o Bool

Picture: trait
assumes Boundary, Transform, Illumination,

Displayable with [ Contents for T ]
iucles Displayable with [ Picture for T ]
introduces makePicture: Contents, Boundary, Transformation -, Picture
constrains Picture so that

Picture generated by [ makePicture ]
for all [ cn." Contents, b: Boundary, t: Transformation, cd Coordinate ]

appearance(makePicture(cn, b, O, cd) =
appearance(cn, apply(t, ca))

in(makePicture(c# b, 0. ca) = apply(b, ca)
implies converts [ appearance: Picture, Coordinate -- Illumination.

in: Picture, Coordinate - Bool ]
Contents: trait

assumes Coordinate, Illumination, Displayable with [ Component for T ]
incldmes Displayable with [ Contents for T ]
introduces

empty: --* Contents
addComponent: Contents, Component. Coordinate -. Contents

constrains Contents so that
Contents generated by [ empty, addComponent J
for all [ cn." Contents, cm: Component. cA cdl: Coordinate ]

appearance(addComponent(cn, cm, cdl), cd) =
if in(cm, minus(cA cdl))
then (if in(cn, cd)

then combine(appearance(cm, minus(cd cdl)),
appearance(cn, cd))
else appearance(cm, minus(cA cdl)))

else appearance(cn, cd)
-in(empty, ca)
in(addComponent(cn, cm, cdl), cd) -

in(cm, minus(cO, cdl)) I in(cn, cd)
implies converts [ appearance: Contents, Coordinate -- Illumination.

in: Contents. Coordinate -- Bool I
exempts for all [ cd" Coordinate ] appearance(empty, cd)

9 . . . ". '.'.-'. ..',,>: ',..,.9.5 ~ *~ * 5 . x . .9 .. :; -G G ..
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Cmponment: Utr
u Displayable wih I View fr T L
Displayable with I Text for T ,.
Displaya"e wi t F re T

incuded ComnponentCoezvion with [ View hr T, coerceView for coerce,'
C p entCoeion with [ Text for T, coerceText for coerce ,
Compomt..oeln on wft Fgure for T, coerceFqgure for coerce I

CAmponentCoercion: ak

hedsDisplayable with [ Component for T-
introduces coerce: T -& Component
constrais Component so that for all [ v T, cdt Coordinate ]

appearance(coetce(a) ca) = appearan cd)
inoerce CO), = irt. ca)

View: trait

assmes Displayable wit [ Picture for T 3,
Equality with ( Pictureld for T I
Container with I Idlist, for C. Pictureld for E 3
Coordinate

hcludes Displayable with View for T -

empty: --w View
*. addPicture: View, Coordinate, Pictureld, Picture - View

findPictures: View, Coordinate -- [dUst
deletePicture: View, Pictureld - View

comstrahs View so that
View generated by [ empty, addPicture ]
for all [ v: View, c4 cdl: Coordinate. A idl: Pictureld, p: Picture.

appearance(addPicture(', cd, 14 p), cd) =
If in(p, minus(c4 cdl)) then appearance(p, minus(cd, cdl))
eke appearance(v, cd) ,'

-in(empty, cd)
in(addPicturev, cdl, AA p), cO = (in(p, minus(c4 cdl)) I in(v, cd))
flndPictures(empty, cd) = new ,-
flndPictureaddPicture(v, cdl, i4 p), ca) =

If in(p, minus(cd. dl)) then insert(id findPictures(v, cd))
else flndfictures(v. ca)

deletePicturempty, ) = empty
deletePicture(addPictur(v, cdl, I. p), i) =

if d.eq idl then v else addPicture(deletePicture(v, id), c,4 idl, p)
naplies converts [ findPictures, deletePicture, "

appearance: View, Coordinate - muminaion.,
in: View, Coordinate - Bool ]

exepts for all I cd" Coordinate I appearance(empty, cd)

Display: trait
2111 Boundary, Transform. Illumination. Coordinate,

Equality with [ Pictureld for T I
Container with [ IdList for C, Pictureld for E ]

hmues Picture. Contents. Component. View
':?

a..%
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