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CHAPTER ONE

INTRODUCTION

Simulation plays an important role in the design of integrated circuits. Using simulation, a

designer can determine both the functionality and the performance of a design before the expensive

and time-consuming step of manufacture. The ability to discover errors early in the design cycle is

especially important for MOS circuits, where recent advances in manufacturing technology permit the

designer to build a single circuit that is an order of magnitude larger than ever before possible. This

thesis presents three new algorithms designed specifically for the simulation of large digital MOS

circuits.

Today's MOS circuits offer special challenges to a simulation program, challenges that are not met

very well by current simulators. New integrated circuits can incorporate hundreds of thousands of

transistors; the sheer number of transistors dictates that a simulation algorithm use simple,

computationally efficient transistor models. In addition, designers take advantage of the symmetry of

the MOS transistor to build circuit configurations with behavior beyond the ken of traditional logic

simulators. The new simulators introduced here are designed to meet these challenges.



I.I. Oierievi of Ihe thesis

To use a simulator, the designer enters a design into the computer. t picall in the form of a list

of circuit components where each component connects to one or more oJ-c.s. A node serxes as a 'irc.

transmitting the otitput of one circuit conmponent to other components connected to the same nodc.

I [he designer then specifies the voltages or logic Ie els of particular nodes. and calls upon the simulator

to predict the voltages or logic leels of other nodes in the circuit. lhe simulator bases its predictions

on models describing the operation of the components: a simulator is characteriied M the types of

component models it employs. Two of the more popular approaches are:

" component models based on the actual physics of the component: for example. a
transistor model that relates current floA through the transistor to the terminal
voltages, device topology. and manufacturing parameters of the actual device.

* component models based on a description of the logic operation performed by the

component, e.g., NA\N) and NOR gates.

The first type of model is found in circuit analysis programs such as ASTAP [Weeks73] or SPICE

[Nagel75] which try to predict the actual behavior of each component with a high degree of accuracy.

Current circuit analysis programs do the job well, perhaps too well: at no small cost, they provide a

wealth of detail, at sub-nanosecond resolution, about the voltage of each node and the amount of

current through each device. (For example. a properly calibrated circuit analysis program is able to

predict, within a few per cent, the amount of current that flows through an actual transistor.) This

level of detail would swamp the designer if collected for the entire circuit while simulating. say, a

microprocessor. Fortunately, the designer is spared this fate, since the computational cost of circuit

analysis restricts its applicability to circuits with no more than a few hundred devices.

One solution to the problem of simulator performance is to adopt a simpler component model.

such as the gate-level model introduced above. This approach works well when dealing with

implementation technologies that adhere to gate-level semantics (e.g., bipolar gate arrays). However.

MOS circuits contain bidirectional switching elements that cannot be modeled by the simple

composition of Boolean gates. Since many of the circuit techniques that make MOS attractive for Isi

and vilS applications take advantage of this non-gate like behavior, it is important to model such

circuits accurately.

This thesis explores the possibility of providing the essential information (functionality and

comparative timing) for large digital circuits by using models that bridge the gap between the gate-

leel and detailed models discussed above. The goals to be met by these new models are summariied

• i
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in the following list:

(i) The underlying model must be computationally tractable for large circuits. lhc
empirical nature of the verification provided by simulation suggests that it must
be applied extensively if the results arc to be useful: timely simulation
encourages this.

(ii) Transistor-level simulation is necessary to ccuratcly model the circuit structures
found in NIOS designs. This allows the designer to simulate what was designed -
an advantage, since requiring separate specification of a design for simulation
purposes only introduces another opportunity for error.

(iii) The results must be correct, or at least conservative; a misleading simulation that
results in unfounded confidence in a design is probably worse than no simulation
at all. Here, we must trade off the conflicting desires of accuracy and efficiency.

Two models are examined in detail by the thesis:

" a linear model in which a transistor is modeled by a resistance in series with a
voltage-controlled switch. The state of the switch is controlled by the voltage of
transistor's gate node.

" a switch model, similar to the linear model, except that resistance values are limited
to one of two quantities: 0 for for n- and p-channel devices, and I for depletion
devices.

MOS circuits are easily transformed to use either model, as illustrated by the following figure.

B
5/10 30.2 44/64 B I

10/5 CC

A 10/5 A A

(a) original circuit (b) linear model (c) switch model

Figure 1.1. Two approaches to modeling a simple MOS circuit

The linear model forms the basis for the RSll simulator. In RSIM, networks of transistors and electrical

nodes form an R-C network (R for the transistors. C for the interconnect and gate capacitance): the

network's behavior under different inputs is calculated by a selective-trace (c~ent-driven) algorithm.

The comparatively fast "pseudo circuit analysis" that is possible with the linear model allows the

designer to determine both the functional and approximate timing characteristics of a network. RSIM

goes a long way towards meeting the three goals outlined above. "11e algorithm employed to estimate

the behavior of a linear nework is much faster than a typical circuit analysis program. Resistors are

1'i



inhcrently bidirectional: the network analysis makes no a priori assumptions about the direction of

current flow through each resistor. Finally, the results are at least qualitatively correct and, in general,

conservatise - in some cases more conservative than designers themselves might like. With the

appropriate choice of model parameters, the results can even be quantitatively useful.

The switch model is a simplification of the linear model that is useful when only a circuit's

functionality is of interest (i.e., no information on performance is wanted), Like a traditional gatc-lc el

simulator, a switch-level simulator bases its predictions on an abstraction of the actual circuit, but the

switch model is able to handle the bidirectional nature of MOS transistors much more successfully than

a gate-level model. The switch model is incorporated by FSIM. a simulator that has seen extensive use

ii, the last few years.

Certainly a major goal of RSI.M and ESIM is to provide a fast, useful simulation of MOS circ,

but the story does not end there. Another motivation for new simulation algorithms is the chanj

nature of the design community. In order to cope with the increasing complexity of integrated cir

design, new design methodologies have developed (e.g., [MeadSOJ) that impose constraints on the •

circuits are constructed. One can no longer afford to hand-craft each transistor, so rules of thumb are

created to aid in the choice of transistor sizes. Clever circuit configurations are avoided in favor of

circuits composed under the guidance of composition rules (e.g.. [BelIS]) that rule out arbitrary circuits

and the obscure electrical behavior they imply.t

These new design methodologies have opened up the field of I SI design to a new breed of

"Mead and Conway" designer. i.e., a designer who is a sophisticated architect, but who is not a

specialist in ISl technology. An important aspect of the simulators described in this thesis is that their

underlying models are easily understood by this new breed of designer. The abstractions embodied by

the simulators are faithful enought to the actual electrical behavior of a circuit that the achievement of

a successful simulation run indicates freedom from a large class of potential failure modes. If a

simulation does point out an error, it does so in a manner that leads even the novice designer to a

good understanding of the circuit as actually designed and the ways in which it might differ from the

intended design.

However, the simulators are based on modcls of actual behavior. As vith any model,

t"lStte-oif-hc-an dcsigns infcntionall) cxploit the "obscurc" bcha ior of certain circuits (',., sense amplifiers), ofAru
to considerable commercial advantave RSIM and its tclati'cs arc not as useful for this t%pc of design a. concntto-
al circuil analsis programs But the profcssionals cntiaged in such Aell-focucd designs are not the audicnc ad-
dressed bs Mead and Conwa, (and RSIM).
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discrepancies are likel. to exist between the model predictions and the actual beha ior of a circuit.

The tools described here attempt to he conscr\atie. ,.c.. to gisc pessimistic predictions, but this cannot

be guaranteed. Thus. it is important that the designer become acquainted w ith the inner oikings of

the models and their shortcomings. 'I lhe tools perform d. calculation one could do b5 hand (onl faster

and % ith greater accurac. and consstenc\) - th C should noi he ircated as black boxes. Ihe models

presented here are simple enough to enable an1 designer to gain the nccessar. understanding.

A final moti\ ation for new sim1ulation technolog. is the desire to impro\c e simulator perforniance.

It seems that digital computers ought to be well suited for the simulation of digital logic.

'nfortunatelN. current simulation schemes involve se eral la~ ers of interpretation (c.y.. command

interpretation, access to the network data base. model e'aluation). and their perfbnnance suffers as a

result. Ilappil , much of this o'erhead can be eliminated through1 the application of traditional

compilation techniques. This is the theme of the final section of the thesis, and tie moiation for the

development of CSiM, a combination compiler/simulator. CSIM compiles a network into a simulation

subroutine: the subroutine contains code to compuze the ne \alue of each node from its old value

and the 'alues of other nodes in the network. The compilation is particu)arl eass when the node is

the output of a logic gate, and the work presented here extends the compilation technique to any node

in a \tOS circuit. Simulating the net'work entails executing the subroutine repeatedl until no nodes

change value. If the circuit is %ery actie, ie.. if many nodes change alue each time the network is

simulated, the simulation subroutine computes new node \aluies man, times ,aster than the

corresponding e~ent-dri'en simulation. There has been much interest recentfl in special purpose

hardware for simuiation IPfister82. Z.cadS3]. It mna. be that such de'clopme'nts are premature. and

that substantially better simulation performance can still be obtained from general-purpose computers.

The relationship among RSi\i. FSIM. and C'sm is illustrated in the table below.

RSIM ESIM i CSIM
node values logic-lecl logic-level logic-level

(from voltages I
model lc el transistor transistor node equations
components resistors & sw itches & I equaawns

capacitor,.,acitors (from switches)
scheduling e, ent-drien ewent-dri'en compile-time
relati ve speed 1 .5 - 3 . 0

No one simulator has a speed advantage, for reasons explained in subsequent chapters. It is not

unusual to use all three simulators during the course of a design, since each brings out a different
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aspect of a circuit's behavior. ISIM is often used during the early stages of a design when the designer

is fleshing out the logic. RSIM is used to determine which portions of the design are in need of a

careful performance analysis: usually the performance of most of the circuit can be debugged with the

level of detail provided by RSlM. Finally. C'SM is useful for long simulation runs intended to verify the

functionality of the design through extensive diagnostics.

'his thesis presents the new models and their accompanying simulators in detail, exploring the

ramifications of each model and discussing the accuracy and usefulness of their predictions. The next

section gives a brief outline of the remaining chapters.

1.2. Outline of the remaining chapters

The thesis has three main parts. The first part focuses on the linear model and the RSIM

simulator.

Chapter 2 description of the switch/resistor transistor model incorporated by
RSIM: outline of the method for calculating a node's value using the
linear transistor model: propagation of changces through the network;
choosing model parameters, analysis of sample circuits using linear
model.

Chapter 3 justification of the linear model by analysis of true behavior of MOS
logic gates: comparison of actual voltages and propagation delays
with RSIM'S predictions: proposal for modifications to the model
based on insight gained during analysis: analysis of sample circuits
using updated model.

Chapter 4 details of converting the linear model into a workable simulation
algorithm: optimizations for improving simulator performance:
mechanisms for controlling the voltage and transition time predictions
for specific nodes; review of the successes and failures of the linear
model.

The second part (Chapter 5) presents the switch-level model. The chapter begins with a

discussion of the representation of node values and explains why many extant simulators adopt a

representation that leads to unnecessary difficulties. Next, two switch-level algorithms are presented.

The first is a straightforward adaptation of the RSIM algorithm, replacing its resistance computations

%ith simpler ones that reflect the resistance value constraints of the switch model. The second

algorithm is based on an cntircly different approach: each computation hariales a single transistor and

uses only local information (the type of the transistor and the states of its terminal nodes). The

computation is easy to understand and appeals to our intuition about the way transistors really

operate. The simulation proceeds by repeatedly computing new node values for the source and drain
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nodes of individual transistors, choosing the transistors in any convenient order. The simulation is

complete when no further changes in the network state arc possible. The termination of this

relaxation algorithm is probed, and the final network state is shown to be independent of the order in

which the individual computations are performed. 'he second algorithm is well suited for

implementation on the new parallel architectures just now becomiig available: the approach discussed

here is a first cut at designing simulation algorithms tailored for use on parallel engines.

The third part (Chapter 6) investigates the possibility of using various compilation schemes to

improve the performance of the switch-level simulator. A technique is proposed for constructing a set

of equations for each node in the network. These equations relate the new value of a node to its

current value and the values of other nodes in the network. The network can be simulated by

evaluating each node's equations in turn: several ways of ordering the nodes for evaluation are

discussed. The section concludes with several examples of simulation routines that were compiled

directly from the network data base. When executed, these routines result in a simulation several

orders of magnitude faster than otherwise possible.

Thc thesis concludes with a discussion of other work in the area of simulation and its relationship

to the ideas presented here.
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CHAITER TWO

A Linear Network Model for MOS Simulation

The electrical modcl describcd in this chapter can be used as the basis for a logic-lexel simulation

of a network of MOS transistors. Other models are of course possible. ranging in accuracy and detail

from circuit analysis to high-level functional simulation. While the chosen model does not encompass

man, of the operational details of real Mos networks (most nocabl . detailed transistor modeling) it is

adequate to cfficientl determine the basic functionality and the approximate timing characteristics of

a network. Short circuits, charge sharing, nodes with multple drisers. bidirectional "pass" transistors,

and so on are modeled correctly.

The first section describes the switch/resistor transistor model incorporated by RSIm. Using this

model, a \Ios network is simulated as a resistor network where each node*' aloe is determined by the

resistance of its connections to %arious inputs. The second section outlines the method for calculating

the value of each node. This is followed by an explanation of the use of component models to predict

the propagation of new input %alues through a network. The fourth section discusses techniques for

choosing model parameters and compares RSIM's predictions with those of a circuit analysis program.

The chapter concludes with a summary of the model's ingredients.
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2.1. RSINV' transistor model

The transistor model in RSIm can be quite simple since it is on used to predict dhe final logic

state of a node and the length of time clh statc Lransition takes. As an example of ho% the model

works, consider a simple inwerter: one can think of the effecti e resistance of' its component de\ices at

any moment as

Rtff:pu/lup = Idc:pullup Rff :puIIdo~n - Ids:pId/IJoI~, (2.1)
Vds: pullup Vds :pulldown

The following figure shows the actual effective resistance of an invertcr's pullup and pulldown as a

function of the inverter's output voltage (assuming no load current).

Reff

dpulldown

'ds:pulldown

Figure 2.1. Effective device resisiances in an inverter

Although the effective resistances of the transistors change as their terminal voltages vary. it might be

possible to use "average channel resistances" to characteriie the transistors' behavior.

The other salient feature of a transistor's operation is its switch-like behavior. With certain

voltages on a transistor's terminal nodes, it makes no connection at all between its source and drain

terminals - the transistor is "off". As the relative terminal voltages change, the transistor turns "on",

conducting current between its source and drain terminals. As illustrated in the pre ious figure, the

transistor is more "on" at some times than others. but the distinction among the different "on" states

can be ignored for simplicity.

There are three basic types of transistor switches found in NfOS circuits:
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drain drain drain

pte Oj Pic O gae 0

sou-ce source source

ON when gaie = 1 ON when gale = 0 always ON

OIl whcn gale = 0 OlF when gale I

(a) n-channcl switch (b) p-channel switch (c) dcplcuon switch

Figure 2.2. Three lypes of MOS transistor switches

The difference between n-channel and p-channel switches is the logic level which turns on the switch.

The depletion switch is always on: it is usually connected to VDD in a way that provides a source of

current to keep its output node charged high. More precise distinctions between the switch types. and

the need for a depletion device (and why an ordinary switch does not suffice) are discussed in Chapter

3.

One can build on the observations made above to construct a linear transistor model for RSIM:

drain drain

te 0- -closed Vgate = 1
gate 0- unknown = unknown

gI 1  Reff

source source

(a) n-channel transistor (b) RSIM model

Figure 2.3. RSIAI model for ti-channel transistor

It is easy to tabulate the sort of connection that exists between the source and drain terminals as a

function of the gate voltage:

R Reff switch closed (vsarc = 1)
Rd, 00 switch open (Vga,, = 0) (2.2)

[Rcf.oo] switch unknown (Vguge = X)

Note that uncertainty about the state of the switch leads naturally to an interval describing the

resistance of the source-drain connection. In fact. all tie network calculations use interal arithnetic.
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and the bounds of the resulting intersals are used "hen conerting %oltages to logic states. etc.: no

other mechanisns are needed to deal successfully %ith X states in the nci, ork. Models for other

t) pes of transistors difler in the Awa the position of the sv itch is determined from v.at, :

drain drain

gate
gate -- - closed gate 0

unknown %gate = X

Reff Reff

source source

(a) p-channel transistor model (b) deplction transistor model

Figure 2.4. RSII models for p-channel and depletion transistors

The effective resistance Rcff is determined separately for each transistor and depends on

width, length dimensions of the active transistor area. Various non-linear effects
make R,ff a more complicated function of the transtor geornctr.
than just length/width.

type Most MOS circuits contain more than one t pe of transistor The
different types are distinguished b\ diff'rent \,lues for their
threshold \oltge. Since the current conducted b\ a trinsistor is a
function of its threshold \oltage and hence its t. pc, the modeling
resistance also depends on the transistor t) pC.

conlext Accuracy in choosing the effectiw resistance can he improed h,
distinguishing se\eral contexts in which a tr,,n,,tor m,. ippear: for
example, an enhancement transistor can he tteCd ,i a ptilldiOn or
source- follower in addition to its defatilt pA, ge ci in figuraition.
Surprisingly few contexts need to be recogni/ed to cncomNpass a large
portion of digital \,OS designs.

The determination of R,ff is made once for each transistor and does not depend on in\ d namic

properties of the circuit to be simulated. During simulation the onl. de ice infonrination RsI\i use,,

about a transistor is its effective resistance.

Actually RSIM uses not one. but three effecti\e resistances for each transistor. lo undecrsand

why, recall that RSIM tries to predict the transition time and final \oltige for a node. as show n in the

following figure.
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"node -- v starting point

.s witching threshold

final voltage

Muetransiuoin time

Figure 2.5. R eff is used 10 predici iransifion lime and final voliage

One would like to calibrate the model to give accurate predictions for both quantities. but that is

impossible with a single sct of resistances. To solve this problem, RSIM uses thrce resistances for each

transistor:

Rstatic whcn calculating thc final voltage.

Rdinlo* when calculating the transition time for high-to-low transitions.

Rthnhigh %hen calculating the transition time for low-to-high transitions.

Iwo "dynamic" resistances are used so that the asymmetric behavior of pass devices can be accurately

predicted. Computations invol~ing Reff are triplicated, one for each of the three actual resistances. so

susqetcalculations can use the appropriate value.

2.2. RSINfIs node model

Voltages in this model are quanti/ed into one of three values: this corresponds to our intuition

for digital logic and greatly simplifies the simulation calculations. If all node voltages are normalized

to fall in the range 10. 11. then the possible quantized values are

0 logic low - voltages in the range 10.,i~I

I logic high - voltages in the range fivih, 1.:

X intermediate %0ltAges. 1176*- i11XhJ. or unknown voltages. 10. 1] - to be
conservatie X is always interpreted as representing the larger interval:,

where %,,. and vjj are the predetermined logic thresholds.

Hlow, is the value of a node detennined? Using the transistor model descArihed in the previouts

section. the original nectwork is transformed into at network of resistors (formerly transistors) and

copaicitor% (fornerly nodes). If a node is not conncted to all\ input, it is said to be charccvd %ith a
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logic state determined by the Stle of the last driven node it was connected to. If two or more charged

nodes in different logic states are connected then charge sharing occurs. In this case. all the connected

nodes reach the same logic state: this state is determined by tie relative capacitances and initial logic

states of the nodes in the stage. For cxample. if a large (high capacitance) node such as a data bus

were connected by a pass transistor to a small node such as the input to a rcgister cell. then the small

node would "share" thc charge of the large node as its final value rcgardless of the charge it had

initially. Even nodes that ultimately have a connection to an input participatc in charge sharing: the

extent of their participation is governed by the relative sizes of the charge-sharing time constant and

the time constant associated with the input connection.

Electrically connected nodes form natural groupings, called slages, bordered by input nodes

(usually VDD and GN). If nodes in a stage are allowed to share charge, all will reach the same

voltage, Vshare, given by

I ci ci + I cl

Vshare:min = I nodes Vshare:mat _I nodes X nodes (2.3

all nodes all nodes

where the sums are over nodes in the current stage. Since nodes at logic state X contribute an

undetermined amount of charge to the result, VsIr, is an interval whose bounds represent the worst

case assumptions about the actual values of X nodes. These bounds are compared with the logic

thresholds when calculating the charge-sharing value:

0 Vshare:max < Vlow

Charge-sharing value = I Vshare:mm Vhigj (2.4)

X otherwise

This calculation is not strictly accurate when the stage contains transistors with gates of X. Such

transistors might not make any connection at all; invalidating the various sums in equation 2.3. An

alternative charge-sharing calculation that addresses this problem is discussed in Section 4.1.1.

When one accounts for the resistance between nodes, it is difficult to calculate transition times

for any nodes that change value because of charge sharing. RSIM simply schedules an charge-sharing

transitions so they happen immediately. A more reasonable time constant might be (YR,)C-f where

the first tern is the sum of all the resistances in the stage and



- 18-

c, Charge-sharing value = I
0 and X nodes

C'ff= c l (harge-sharing value = 0 (2.5)
1 and X nodes

0 otherwise

is the amount of capacitance in the stage that needs to be charged/discharged to reach the charge-

sharing value. This time constant is surely an upper bound on the time of any transition in the stage.

Note that transitions to X still happen immediately, a conservative assumption.

If a stage is connected to one or more inputs, the inputs determine the final voltage of each node

in the stage. The effect of inputs on a particular node is characterized by the Thevenin equivalent for

the stage (including the inputs at the boundary), regarding the given node as the output:

Rdnve

Vthev 7 Cload

Figure 2.6. Equivalent circuit for a network node

Vlh,, a voltage interval [1/. V++ in the range [0. 11 specifying the possible voltages
the output node may have. This value is calculated using each transistor's
Rstatzc resistance.

Rdrve a resistance interval [R -. R +] in the rarge [0. 00]. Three versions of this
value are calculated: Rdrl,e:Io. using RdiIoH for each transistor; Rdrive:high,
using Rdnhgh : and Rdrtvc: x (see section 4.1.2). The appropriate version is
chosen depending on the final voltage predicted by th, ev.

V'ihev and Rdrie are generally intervals, since the effective transistor resistances from which they are

derived might themselves lie in an interval. Chapter 4 describes how te. Clod, and Rdrie are

estimated for nodes in actual networks.

It is sometimes useful to categorize a node according to its equivalent Rdri,., i.e.. how it affects

neighboring nodes to which it becomes connected by conducting transistors:

input (Rdrve = 0). Node is a designated input node (e.g.. V)D or GNn). The value of
input nodes can onl. be changed b) explicit simulator commands: the assumption is
that inputs supply enough current to be unaffected by connections (possibly shorts to
other inpuls) made by transistors.
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driven (Rjri.. < 00). Node is part of a \oltage dikider betwecn to inputs. id'.. it is
connected b. transistors to other dri\en or input nodes. I)ri~cn nodes can affect the
value of charged nodes \hithout heing ,ifl'cted diemscl'.es, htic may bc forced to an X
state if shorted to a dri\en or input node that has a differcnt logic level.

charged (Rjr,c = 00). Node is connected, if at all, onl. to other charged nodes.
Until reconnected to some other part of the network. charged nodes maintain their
current logic state indefinitely (charge storage with no decay).

If Rj,.,. is infinite, equation 2.4 predicts the correct final \aluc for the node and no further work is

needed. If Rdri,%c ( 00. and the node is not an input, the final state of a dri\cn node is calculated from

the Vh,,, interval IV-, /+J:

0 V + <_ V10 .
Final value = I V > Vhigh (2.6)

X otherwise

As an example, consider several different states of a NOR gate:

A nor B

A- R2 R3 B 2R kr 3 0

(a) NOR gate (b) A = B = 0 (c)A = .B=0 (d) A 1. B =X

Figure 2.7. Equivalent circuits for a NOR gate with different inputs

1 figure2.7(b)
R2

Vthev = 2  figure2.7(c) (2.7)R I + R 2

R2 II R3  R2  figure2.7(d)
Ri + (R 2 I R3)' R1 + R2

If the final value of a node differs from its charge-sharing value, then the appropriate e\cnt is

scheduled Rff CGff seconds in the future, where

Rdrvrc:jj,,h final value = I
R,ff= Rdrivelhow final value = 0 (2.8)

Rdr,.c: final value = X
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c, final value = I
0 and X nodes

ff= I c, final value = 0 (2.9)
1 and A nodes

I c , final value = X
0 and I nodes

where the sums arc computed for nodes in the currcnt stage. Note that transitions to X arc not

immediate, but have a time constant related to the fastest transition thc node can make. This means

that a momentary short-circuit, such as that shown in the following figure. does not necessarily cause a

node to become X: what happens depends on the relative sizes of the various time constants.

0 1 large capacitance

Figure 2.8. A momentay short-circuit does not necessarily cause an X value

If the delay through the inverter is small compared to the time constant of the output node, no X

transition will be processed for the output node (one is scheduled, but is aborted %hen the pullup

turns off).

To better understand the interaction between the charge-sharing and final-salue calculations,

consider the following example:

A A

Figure 2.9. Sample circuit fir charge-sharing and final-value calculation

Assuming that (I is initially charged low and that charge sharing happens immediately (an

assumption RSIM makes), there are seseral different scenarios:

(A <<('I node A goes low immediately because of charge sharing sith B. Then.
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both nodes are drisen high h the pullup- node A at time
R ((4 +( 1). and node It at time (R I+R2XCA +('B).

CA >>( B node It gocs high immediatel heuwsC of charge sharing with A. the
pulup has nothing to contribute.

CA = ('/1 both A and It go to X immcdiatcl. and are then pulled up with the same

time constants as for (4 <<CB.

If R 2 is reasonably smaller than R !. then the assumption that charge sharing happens quickly is valid.

and these scenarios are satisfactory. As R 2 approaches R I in value, the time constants associated with

charge sharing approach those of the pullup, and the assumption of immediate charge sharing is a

relatively poor one.t Augmenting the charge sharing calculation as described in equation 2.5 would

improsc the prediction in this case.

In summary, calculating a node's value involves two separate computations. each of which can

generate a new event:

(1) a charge-sharing event describing an immediate change in the node's state caused
by the redistribution of charge among the capacitors for nodes in the current
stage. This type of event is generated when two stages are merged (i.e., a
trans',stor turned on).

(2) a final-value event describing what the final, driven state of the node will be.
This type of event is generated when Rdrue < 00.

Chapter 4 describes the way these two events are reconciled with each other and with pending events

to produce a final set of transitions for a node.

2.3. RSIM's network model

The networks* simulated by RSIM are made up of two basic components:

(i) electrical nodes which serve as wires. Each node has a capacitance that is the
sum of two contributions: (1) capacitance between other layers and the
conducting layers that make up the node: and (2) capacitance from the gate
junctions formed by the node.

(ii) three-terminal transistors (mosfets) which act as switches. Fach transistor
conditionally connects two nodes (called the source and drain of the transistor)
depending on the voltage of the third node (called the gate of the transistor).

Some nodes (e.g.. VI) and GM)) are designated as inputs that supplb the current needed to change the

tl'his illusirates the assmme betecn the timing of transitions due to charge sharing and those due to (he final
value calculation Lc.. R2 affects onls the final salue transition This anomals could he exploited to produce rather
bi/arre predictions.. v.. a node changes faster if it is connccted to a Capacitor than if it is connected to an inpuil As
a practical matter. circuit performance seldom depends on the timing of charge-shanng transitlions, and these
anonalies arc nclA silnificant.
f\mctotks can he entered a schematics II ennang2l or extraetcd from la.out inforimation [lLaker80] "lhc latter ap-
prisich pro% ides faitl. accurate etLimaites of the capacitance of each node
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solhagc of a node b charging/diciharging the node's capacitor. As the %oltage of a node changes.

switches controlled by the node open or close, making connections that cause the %roltagcs of other

nodes to change. It is RSIM's job to predict tie dynamic beha ior of a net ork of nodes and switches,

estimating the soltage of each node. the state of each s~itch. and the charge/discharge rate whcn a

node changes %aluc. From the designer's point of %icw. this translates into knowledge about the logic

lecl of each nodc and the transition time associated with each change of logic level.

It is easy to build switch configurations that compute simple logic functions of node %alues. For

example:

not A A not A

A01

(a) constant 1 (b) nMOS inverter (c) cMOS incrter

Figure 2.10. Examples of switch configurations thai perfonn logic operations

The output node in figure 2.10(a) is connected to a depletion switch configured as a current source: its

value ir always a logic high. Such circuits are called pullups because their output nodes are always
"pulled-up" to logic high. In figure 2.10(b) a "pulldown" switch has been added, controlled by node

A. The pulldown is sized so that. when it is on, it conducts more current than the pullup supplies.

When A is 1, the output node is "pulled-down" to 0. Of course, when A is 0. the pulldown is off and

the pullup ensures that the output is 1: the net result is an inserter circuit. Figure 2.10(c) is an

inverter constructed from one p-channel and one n-channel device. Typically, the manufacturing

process can provide either p-channel devices or depletion devices, but not both. in the same circuit.

More complicated logic circuits are constructed using series and parallel switch configurations.
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drain drain

A 0-d

sourcc source

(a) connection if (A or B) (b) colCction if (A and B)

Figure 2.11. logic functions associated with series and parallel configurations

If the two-switch circuits shown abose replace the pulldown in figure 2.2(b). the result is a two-input

NOR or N.ND gate.

In all the circuits presented so far, the inputs are electrically isolated from the outputs, Le.. if the

output signal is cornpted somehow - by a short circuit, for example - the input signals are

unaffected. The isolation provided by the gate connection leads to a natural decomposition of the

network into stages made up of nodes and transistors. Nodes belong to different stages only if they

are guaranteed to be electrically isolated. For example, in the following circuit, nodes A, B. C. and 1)

are all isolated from one another. Node E is not isolated from 1), so it is in the same stage as D.

inputs outputs

A stgl B

C c0DIAB stage 2 C

stage 3
BCE

Figure 2.12. Simple circuit that has three stages

Note that \i)) and (Ni) (and, in fact, any input) are not treated as nodes in the ordinary sense when

checking to see if two nodes belong to the same stage. For example. node B is not considered to

connect to node C b a path involving G%1) and two of the pulldown transistors. Given a particular

node, a tree walk of the network is performed to find all other nodes in the stae. The tree walk first
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locates all "on" switches which ha~e a source/drain connection to the original node. Noddes connected

to the drain/source of those switches arc part of the same stage ais the original node. Ie tree walk

continues until it locates all nodes that can be reached from the original node bh a path of "on"

switches: this set of connected nodes and the "on" transistors that form the connections make up a

single stage. Note that the decomposition of the network into stages is a dynamic process. ie., one

that depends on the node values of the network.t" For example, the following circuit can be

decomposed into 2. 3 or 4 stages depending on the %aloc of nodes A and B.

C

F = A xor B

Figure 2.13. Circuit with multiple decompositions

Node F is always in a separate stage. If A=O and B=O, then C, D, and F all form a single stage: if

A= 1 and B = 0. then D is isolated from C and E: and so on.

When RSIM simulates a network, it does its analysis stage by stage. Since the %alues of nodes in

a stage are closely related (the nodes are shorted together), it makes sense to calculate all the values at

the same time. By the same reasoning, all the transistors and nodes that influence the value of a

particular node are in the same stage as that node. Stages are the analogs of gates in a gate-level

simulator. In a gate network, each node's value is determined by a single gate, and the output of a

gate is electrically isolated from the inputs; the gate is the ideal unit of analysis. In MOS networks with

bidirectional devices, the traditional gate model is not adequate: hence the motivation for stages.

"Tbis differs from ie notion of "transistor group" introduced hb [lr)ant8l] A transistor group contains all nodes
that mighr become connected. ic.. a siagc with all switches considered to bc conducting. 1ransistor groups can be
quite large - for examplc. in circuits %kth barrel shiflers that potentially short together all bits in a data path -
whereas stages are usually quite small.
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inputIII iluences othcr (i~sif chic fittiet k fin tA~ 0 s:

SL

Input 0ilu

Figure~ 2.14. Twto wtavs IIn Khich an? input afft cts a ncuixork

Fhe simulator First recalcuklates the \aloes of nodes in staces connected to the input b\ the

son rce/drain connections, oft conduICting s\ itCheS ( fiUre 2.14(a) I. T hen. for each ss itch controlled b\

t-he input. stages on each side of' die s~itch are anals.'cd (FIgure 2.14(b)), If dic ss\ iich becomies

conducting beCaCMI of the neiA input %Aluc. the pieces of die net\Aork on either side form one large

stage. It' the s\Aitch just turned off, it partitions what %kas pretiouslsk one large stace into t's o smaller

stages.

If a nodc changes xaJILue as a reSUlt Of analyiing a Stage. RSIM calculates the transition time b\

estimating the length of time required to charge/discharge the node's cJacIince. 'l1ie namne of the

node, its ness Naloc, and thie estimaited timne Ashen the transition to the ne" same occurs aire all

remembhered as an event. T[he simu111lor maintains a list of pending cwents. keeping the list sorted by

timc, \kith the earliest ecent first.

When processing ness Input talties causes a node to change 'aloe, a news event is generated and

saw.d on the esent list. After all inputs hase been processed. the simulator processes esenits, starting

ssith the First element of the esent list. IFor each esent. the specified node is assigned its ness 'ae.

I hen, any suiges affected by this change C, ,Iio%% n in figure 2.14(b)) are anak~ ,ed. possilk generating

newk es ents. ss hichi are then added to the es ent list. Ihle simulator continues processing cx ents until

the cx ent list is, empts. Ilie nit\Aork is said ito hse "settled" at tis poinit. and the ness inpuit 'aloes

haw c c cortipletelt propaigaied lir nigh ili neissork.
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\otc tilait' It Io lode .iii11c \,i u , hen j S,, lC is jil,il\,,Cd. iio ne, I C .c 00 
,  

:11c , v e

'ol[,n, of Ith, TrIctio k that IcIllmln qlIle'.Celt ,,re not ,JlldllCd, SInc the O I 'nuL .1, o 11k l.:',/C,

J. te2 , l. '! 1', Ipotl, 0[ 0! , 1 ioic, ,11 tile 11eint hist, B ll iiiiti(I SIiIiLI.JU01i Ct 0 11r h, t[I Lh }li.d

por'l'i o 0 thi e tC[\kork. the cic t lhst n1 cchI rn1k'] i.lll C sI'Ilc, tie SI, ulrkr it) hIndle 1 ,ire s uiTUlts. I1

,iliornt ot : ,mputi ton required !or ,i M1tnll,ttion 'tcp i" proportioril to [he .11iot1it of IiLIi ,. It .

not the s/e of tie circuit.

lo get a better feeling for the ",, a change propagates through a netw ork. con,,idcl the

follom ing sinilaltion of the XOR circuit presented in figure 2.13. Nodes A and H are inputs: \,LICS for

the other nodes are determined by the simulator.

A A

B B

C C

t) I i

II I I I
I Il I I - - I

I I I I I I I

events: I 2 3 4 5 6 7 8 9 10

Figure 2.15. Wavefonns for simulation example

Event #1. Node A is set to I by the user. The simulator recalculates all stages
affected by A. in this case, the stage containing nodes C, 1), and E
(which form one stage because C and 1) are 1).

All three nodes are pulled down by the switch controlled by A, so events #2, #3, and #4 are

"heduled to set C. 1, and F to 0. Note that the simulator calculates a different transition time for

each node. C changes most quickly since it is connected directly to the pulldown. 1) is the slowest

since it discharges through the two pass de\ ices connecting it to the pulldown.

Event #2. C changes from I to 0, causing the stages containing D and E to be
analyzed.

At the time event #2 is processed, nodes 1) and E are still 1, although they both have events pending

for transitions to 0. When node C goes low. it partitions what was once one large stage into two stages

- one containing only I). the other containing both C and F. Analysis of the stage containing 1)

shows that I) is no longer pulled down, in~alidating tie upcoming transition. The simulator has
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sc cral choices:

(I) Notice that 1) is ctirrcntl% 1. So just remose the pendino cs, t for I1). I is ircs ls
in I) neser chainging \altle. 'Ihis Is not a had prediction it I) is ,<hcdulcd to
change substantall. aflter C.

(2) Schedule another event (#5) for node I). 1Ahich chanes
, 

Its \altie h,.k to 1: set
thc ceut time so that #5 happens after #4. IIhis choice IS best I' C and I) are
both scheduled to become 0 in close succession.

(3) Renm e ID's pending e\ ent as in (I). but report a glitch (an aborted (ransition) to
the user [Ilhompson741: a sort of compromise between (1) and (2). Some
simulators only report glitches if the aborted esent has been pending "long
enough" [Nahm80].

(4) Schedule another event as in (2) that changes ID's \lue back to 1. also change
the pending event to be a trinsition to X, or. alternatiel. remu,,e the pending
esent and schedule an immediate transition to X.

As one can see. Scheduling a new event is a thorn, issue when it insolves a node that alread has

e\ents pending. Since l's value does not really matter (it does not control an\ switches itself), the

first alternatie seems the most reasonable. Given the simplicity of the RSIM model, it probably does

not pay to oserly complicate the scheduling of events. The transition-time estimates are not accurate

enough to allow subtle distinctions to be made based on the relatise transition times of nodes, RSIM

,rOids choices (2). (3), and (4) since they inolve such distinctions. Note that a similar problem arises

for node F. It has an eent pending for a transition to the correct value (F is still going low), but the

event could be rescheduled to reflect a faster transition time since the pullup on node 1) no longer

impedes the transition. Chapter 4 details the exact choices made by RSIM under various circumstances.

Returning to the example:

Event #3. Node F is changed to 0. causing the stage containing node F to be
analy/ed. F is calculated to change \alue. so event #6 is scheduled.

Events #4.5. )iscussed in the preceding paragraph.

Event #6. F is set to 1. F does not affect any other stages. so no events are added
to the event list.

At this point, the event list is erpt , and the network has settled. If the user now changes node B to

1, a somewhat simpler sequence of e\ents ensues:

Fsent #7. Node B is set to I b) the user. causing the simulator to analye the
stage containing I). I) is predicted to go low. resulting i the scheduling
of event #8.

,vent #8. I) is set to 0, separating C and F into different stages which ate then
analyzed. C shows no change, but F is scheduled to go high (esent #9)
now that it is disconnected from C's pulldown.
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ent #9. F chnIIIcs to I. aind as .1 conseoqluct el is piedicid t0 chtlAnC t 0
(e'ent # 10). Note tht the lowA-to-hiph trnsition time can he er.
differcnt thin the high-to-lo, transition time: RSI\ Like,, it IccOunIt
the relati e si/es of the puulup and pulldown.

FLent # 10. .inal. F is set to 0.

Once again the exent list ii ermpt\, and the net ork has settled.

2.4. Calibrating and using the RSIMni model

From a practical viewpoint, the success of RSIM depends to a large degree on the choice of the

modeling resistance for each transistor. The principal goal of the calibration process is to clhoose

resistances that lead to accurate predictions. Actually, there are two separate -cts of resistances to bc

chosen: static and dynamic. Static resistances, used to estimate node oltges. are comparati' cly easy

to choose. When a circuit does not depend on device ratios for correct operation - e.g.. a pulled-up

node or a c,.OS gate - the values chosen for static resistances do not affecc the voltage computation.

since the nodes connect to only one polarity of input. When a circuit makes a connection to inputs of

different polarities - e.g., a nMos gate \,ith a logic-low output - the inter\cning nodes become part

of a \oltage di\ider. and the transistor resistances must be chosen to predict the di\ider's output

voltage. Since only the ratio of the pullup and pulldown devices is constrained, there is considerable

freedom in choosing the actual resistance values. Of course, inauspiciously chosen values can run

afoul of range and round-off problems in the computation, but such problems are easily avoided.

A more interesting problem is the choice of appropriate dynamic resistance \alues. One

approach invol,,es performing a series of experiments designed to measure the resistance of each type

of transistor in various circuit contexts:
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uImallb OX nilialls 0itl OV s OV

lpf lpf

(a) pullup (hN deplction source-follower (C) n-channel source-follower

initals 5\ inwalis 5V

10/5

(d) n-channel pulldown (el n-channel pulldown v./ threshold drop

Figure 2.16. Simple experiments for measuring channel resistances

Ideally. the experiments should be performed using actual circuits: Ahen this is impractical. a well-

calibrated circuit analysis program can be used to gather the needed measurements. -ach of the

experiments entails measuring the length of time required for the output it) rise or fall from its starting

voltage to the switching threshold. (Section 3.4.1 describes the reason for using single threshold, and

the method for choosing it.) If the load capacitance is known, an appropriate channel resistance can be

calculated, essentially inverting the computation performed by RSIM. Appendix 2 presents the

transistor resistances derived in this manner for a typical 51L nMOS process.

Unfortunately, while the experiments outlined above lead to usable predictions of circuit

performance, the predictions are not as accurate as one might like. The problem %kith the experiments

is that the resistance measurements are made in a rather artificial context. Factors important in

determining the behavior of a transistor in a particular circuit (e.g., shape of the input waveform.

Miller capacitances, etc.) are not measured by the proposed experiments. Since the simple RSIM model

does not account for these factors. they are missing completely from the calculations, leading to

inaccurate predictions. There are two alternatives:

(1) Modify the RSIM model to include effects deemed important Ahen making
performance predictions. It is difficult to start down this road and still keep the
model simple: carried to its lo' ical conclusion, this course of iction leads to a
circuit analysis program - the \er' thine RSIM tries to avoid. There are,
hovever, alternatives that fill short of ahandoning the simple model: these are
discussed at the end of Chapter 3.

-A , ', .
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(2) Conduct more sophisticated experimCnts using cmcu it configurations found in
actual designs.

An example of the second approach is the following experiment:

shape., npu %a~eformi load imnccr

pair delay

Figu re 2.17. Deriving resistances by measuring in tcrier pair dela.-

The delay through a pair of inserters involves both a rising transition (measuring the pullup resistance)

and a falling transition (measuring the pulldown resistance). The initial inwerter provides an

appropriate!, shaped input %a'eform: the last inerter provides a realistic output load. The measured

pair delay is arbitrarily split into a rising delay and a falling delay (say. a/A and 1/4 respectively), so that

the pullup and pulldown resistances can be calculated. This leads to good predictions for the chains of

inverting logic so common in NIOS designs. Similar experiments can be designed to measure other

resistances. The danger in this approach is that, because of the ad hoc nature of the experiments, the

resistances might be inappropriate for new circuit configurations. However, with a prudent choice of

circuits during calibration and design, this danger can be minimized.

The following examples are analyied using the simple calibration given in Appendix 2. The

results give a fee! for the performance of the "pure" resistance model, and also set the stage for the

model improvements suggested in Chapter 3. The calculation of node soltages is straightforward and

is not mentioned in the discussion below, which focuses on the calculation of transition times. The

first example is a path through a PLA:
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clock signal input buffcr poIl inc AND plane OR plane

case 1: 1 5/ 0/ s S/ /

A B

Figure 2.18. Sample circuit showing path through PIA

Transistor sizes are given in microns as width/length. When the clock signal goes high. the input

signal (buffered by the inverter on the left) propagates through the input buffer and the two PLA

planes. The following figure shows the equivalent resistor/capacitor network: resistances are given in

KQ and capacitances in pf.

74.4 744 330.2 30.2
A C D

8.7 1 ,1 4 A1 ,4
-702 -a05 2 2

Figure 2.19. Equivalent RC network for PLA circuit (shows dynamic resistances)

Note that the pullup for node C is recognized as a depletion source-follower without considering the

actual voltage on its gate. Since depletion devices are always on. the inverter which leads from node B

to the gate of the pullup is ignored by RSIM, and the timing for node C is al%4ays controlled by node B.

Also note that the resistance chosen for the pulldown for node B reflects the threshold drop of node

A.

When calculating Rd nI0o RSIM simply calculates the net resistance to ground, ignoring the

effects of any pullups. For example, a falling transition for node 11 takes (16)(.05) = 0.8ns. This

approach is not only simpler. but is conservative. (Adding the pullup resistance actuall% decreases the

fall time from the Thevenin point of view). Using this approach, the table shows the results of

propagating two different data %alues through the PI A. The time of each node's transition is shown

in nanoseconds, as predicted by RSIM and SPIC'.

II

: .. : - -.7_- _. ._ " " . " .. . . .. .. .. . . ,- - -, - -,, • 2 . . . .. . - ...
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A BI C 1) F

trnito 4 t jI

Cae RSIM 0.3 4.0 4.1 1. 14.9

SICI-' 0.8 3.5 6.8 15.5 20.7

Case 2 RSiM 1.6 [ 2.4 3.0 4 103

SPICE 0.6 1.9 3.3 6.4 12.1

The discrepancies between ie Rsi and SPicF predictions (-28% in case 1. -14%? in case 2) can be

traced to the fact that the current RSIM model does not account for the shape of ie input %a\cfonn

when analyzing a stage. This is particularly noticeable in case 1 for the transition of node F. The

long rise time of node D slows the falling transition of E to a considerable extent: a fact blithely

ignored by RSIM.

The second example is a section of the OM2 data path [Mead8O] consisting of the logic to drive a

register select line, a register cell, and a bus line. The path to be analyzed starts with the clock going

high. driving the select line high. finally causing the register cell to discharge the pre-charged bus line.

B selct fne D pre-charged bus
B selet lIne,

20/5 

clock C 05 2

\\ 15/5.
0- 1 5/085/35 27/5

register cell

Figure 2.20. Register select and bus drive circuitry from O2 data path

il: xamining the times in this example, one might be tempted to multiply the efective resistances by a constant factor
in an effort to improve the accuracy of the predictions. But not all predictions underestimate the true transition time,
and. as will be seen in Chapter 3. there are other improvemcnLs that can be made that address the root of the prob-
lem.

. .. -i ... . .. . . .. ... _ _ i -. ..= -- " ... .-- ..2 .. . .. 2
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7A ~ 30.2 B 3.2 1 4.7

27 224. 4 1. 2, F22 1 2,21

F291

Figure 2.21. Equivalent RC network for OA!2 data path example

The comparative analysis is given below; RSIM comes to within 9% of the SPICE prediction.

_ _ A B C ID

transition 4 t 4

RSIM 2.4 10.6 13.3 35.9

SPICE 2.6 9.1 19.6 39.6

2.5. Summary

The RSIM model can be summarized as follows:

* Transistors arc modeled as switches with series resistors. Three resistances are
chosen for each transistor and used to predict node voltages and transition times.
Resistance values are determined by experiments, either with actual circuits or
using a circuit analysis program.

* Using the transistor model, a network of transistors and nodes is simulated as a
network of resistors (from transistors) and capacitors (from nodes). A node's
value is determined by voltages calculated in two ways: (1) from charge sharing
with electrical neighbors, and (2) from the Thevenin equivalent circuit for pieces
of network connecting the node to the inputs. When a node changes value, the
timing for the transition is given by an RC time constant calculated using the
resistances and capacitances of the surrounding network.

The network is viewed as an assemblage of small stages, each simple enough that
its operation can be predicted in a straightforward manner. Information
propagates through the network as a series of events (changes in a node's value);
each event leads to an analysis of affected stages using the models described
above. The isolation between stages of digital circuits allows each stage to be
analyied separately: the relative independence of one stage from another is one
reason why the very rough approximations of RSINM are so serviceable.

Several factors important for making accurate performance predictions are missi,,b from both the RSIM

model and the simple calibration experiments proposed in section 2.4. Chapter 3 suggests some

modifications to the model that correct the more important oversights. Many implementation details

-i
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unspccified in this chapter arc discussed in Chapter 4. Chapter 4 also catalogs the successes and

failures of the RSIM model, as finally implemented.



- 35 -

CHAPTER THREE

Justification of the Linear Netisork Model

This chapter undertakes a performance analysis of logic gates and other digital circuits with the

goal of establishing a physical justification for the RSIM model. By comparing the resulting equations

with those proposed by RSIM, one can judge the accuracy with which the RSNM model predicts circuit

behavior. As an added benefit, insight into actual circuit operation helps to motivate model

modifications that improve the accuracy of the predictions.

The first section lays the groundwork for the analysis. presenting the first-order equations that

describe the operation of \1oS transistors. The second section describes the node voltages found in

commor digital logic circuits and compares the results to Rstm's predictions. [he next two sections

analy/e the propagation delay of logic gates and other network components. Finally. several

modifications to the RSIM model are proposed. and the resulting predictions are compared to those of

the original model.

3.1. Electrical models for mosfets and gates

flhe active component in a \iOS circuit is the uosfet. a type of trmnsistor. The mosfet has three

terminals: the source and drain (t o si mmnetric connections). and the gate. lBy conmention. the source

and d, in are chosen such that v'd,. the voltage of the drain with respect to the source., positi\. .

the %oll, iC of the vate A lt!i respect to the source. can he either positic or negti\e. I)epending on
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the rI-CLat, WoltagCs of th1C 1hrCe termin.i, the :nosfeCt conductS ,r\ ins amounts+ o f current hct'AeCn

the source and dr.iin teminls. lIC ,amoun1lt Of current conducted depends on the region in 'Ahklh the

mosfet operates. 'Ihere are three possible regions:

0 I, - I'll < 0 (off)

Kds ("g, - it) 0 < Vs - Ith _ V, (saturaled) (3.1)

K(gs Vth - -jd Vgs - ItM > Vds (linear)
2

where I'M is the threshold voltage of the mosfet and

K A (25 microamps (3.2)
= o 5 volt"-

is a constant that depends on the width w and length I of the particular mosfet under consideration.

The numeric estimate is for a typical nMOS process. These equations ignore second order effects on

ids .

In an nMos process, there are two types of mosfets. distinguished by the setting of their

thresholds:

tjpe of device threshold(VDD = 1)

n-channel 1le_ 0.14

depletion Vid _ -0.6

As we saw in Chapter 2. the simplest form of logic gate that uses these devices consists of:

a single depletion pullp with its gate and source attached to the output node and its
drain attached to VDD. id

one or more pulldown paths connecting the output node to ground, each path
containing one or more n-channel devices.
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n m A , and B A 'nor H

A-I A- I

Figure 3.1. nfOS logic gales

The depletion pullup is configured so that Vs:p, = 0: since the threshold of a depletion deviec is

negatile. Vgs:p, - vid > 0. and the pullup is neier off. Each n-channel pulldown is configured to be

on when its gate voltage exceeds vie and off otherwise. If all the n-channel devices in a particular

pulldown chain are conducting, the output load capacitance is discharged through the pulldown path

and the output voltage is lowered (vou = vo = logic low): otherwise the pullup pulls the output high

(lour = oh = logic high).

Equation 3.1 can be specialized for a depletion pullup. using the fact that vs:p, is always 7ero:

Kpu v,d I' I dI (1 - vou)

2
ipu = (1 - vour) (3.3)

PiXKpu( I V2I ( )(1-ou ) Iv'dI > (vow)

where y'u t is the voltage of the gate/source node of the pullup. Since the drain of the pullup is

connected to VDD. vds:pu = I - Your. To avoid confusion, the equattions will tc writtcn in terns of

I V"d I since vtd is negative. The current conducted by the n-channel pLulldow n in an inerter is given

by:

J0 Vin - vie < 0

Ipd - 2 (v. -- 1,1)2  0 < Vin - Ve, _< ,ou, (3.4)

2pd l',r- o
pd(Vn - Vte - o Vi - Vie > Vour

where %,,, is the voltage of the gate node of the pulldown. Note that the source of the pulidownt is

connected to ground (v m, vin pd) and the drain is connected to the in\erters output ( = v, :,j).
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I or pioper opci.inon of the n'%elter, the SINS Of' the pullup0 ind pulldo~ n are chosen so thait P > u

v, hen th1C puLIdO%% n is on.

Io understand the heha~i ior of ani in~ci ter in more detail. it is useful to plot !j, Of the

comiponent de. ices is i function of' the inmertcr's output %olt.tge:

linea hnca

icesn %In

(a) depletion puliup (b) enhancement pulidown

Figure 3.2. mnosfei I- V" characteristics

[he ij, of a depletion pullup depends only on v0, and thus a single curve suffies to show their

relationship. For thc nl-channel pUildown. there is a family of curves for id, corresponding to different

'.alues of i,.

The intersection of the ids curves for the pullup and pulldlown shows the inverter's output

v.oltage, given a particular input voltage:

ids ids '

Vin 

i

(a) vout =I When Vin <Vie (b)v~ out Vo when vin =1

Figure 3.3. rotis detennined bj-yP and 'pd

In fact, one can plot the D)C voltage transfer curve for an inverter, which shows the inv'erters output

voltage as a function of its input voltage.
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out

II pulidowkn - off pullup = linear

IfI pulidown - at pullup = inar

III pu 1do. n = a PU pu=u %at

in

Figure 3.4. Voltage tranisfer cunvefrr an inverler

The four regions (1- IV) of the cur~e correspond to various combinations of the pullup's and

pIl1doAn's operating rcgions. Note that the relationship between vn and iv,, sho~n in figures 3.3

and 3.4 applies %khen the \oltages are allowed to Stabilize: in a circuit \kith changing wolgecs. thC

relationship bet\% cen the v, and v,,t is considerably more complicated, ats \k ill be seen in section 3.4.

The next few sections use the equations presented hcre to de~elop equations for the quantities

predicted by Rwo~ - node woluges and transition times - so that thc RSI\I model can he e~aluated

and perhaps improved.

3.2. Node iltages

When v, < vr,. the n-channel pulldoksn conducts no Current: the depletion load continues to

conduct as long as v,, < 1. Therefore, the logic high Output voILuge of an in~crter is given by the

equation:

Voh =1(3.5)

\Nhen v,~ > vr., the n-channel puLl1down is on and the output node reaches an equilibrium %oltage v'j,

,Ahich is determined b) (1) the relati'e si/es Of the p111Lup and pulldoksn and (2) the gate %oltage oin

the puldown. v0 j is that woitage w~here the current of' the puildowni (at this point in its linear region)

is balanced by the Current of the pull1UP (in satUration):

Kpd1(1*Vrn -1",/ 2 (3.6)



- 40 -

It on assumes that v,- I (as is the ca.,e hen 1,,/, of the prc.OLs sta.gC is 1) arnd that

'.; << v I-,,. then

I "1 2 0.21

, R I . ( 3 .7 )

,Ahcre R Pd= , is the ratio of the si/es of the pullup and pulldown. R is chosen so ,is
Kp, "'P I'

to guarantcc that the to% output of a gate turns off the pulldo ns of gates connected to the output.

,e.. so that v,, is less than it,. by a comfortable margin; typicall R is chosen to be about 4 if v, = 1.

N, A insider the S1M inodel for all insetler:

LP vout R out

Rpd

(a) %, at logic low (h) %in at logic high

Figure 3.5. RSIAI inverter model

When v,, is low. the pulldown is off and the inverter is modeled with a single resistor. In this

configuration, RSIM predicts

voh :RSIM = 1 (3.8)

agreeing with equation 3.5. independent of the value chosen for Rp,. When v,, is high. the inverter is

modeled by a sultage divider. RSINI predicts

I:RSI = Rpd (3.9)v°IRSI -Rpd + Rp

One should choose Rp, and Rpd so that VoI:RS131 is the same as vj. as given h equation 3.7. Thus

the RSIM model can accurately predict the output voltages (if logic gates: in fact, there are two

unknowns and only one equation to satisfy, so there is some freedom in choosiv " e sttic resistance

values.
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Tll.ere are circuits for %hich RSIM does not properly predict node voltages. [or example. in the

following circuit, the voltuge of node B only reaches 1 - vu,:

R1R3 R4

0-R2 B R

A B

(a) sample circuit (b) equivalent rcslStor neiworks

Figure 3.6. Sample circuit illustrating voltage drop across pass transistor

N-channel devices configured the same way as the horizontal transistor in figure 3.6(a) are called

"pass" transistors, and are used to implement dynamic latches, various types of steering logic, and so

on. Figure 3.6(b) shows the equivalent resistor networks for the circuit. According to this model, the

voltage for node B should reach \'DD when node A is low. In the actual circuit. ho'ccr, the pass

transistor cuts off when B reaches 1 - v,, since, at that point. vgs:pas.i ' vti. In general, the source

voltage of a pass transistor never rises above a threshold-drop below its gate voltage. Thus dhe RSINM

model incorrectly predicts the voltage of node B.

In fact, the network analysis performed by RSIM does recogni/e that node 13 never reaches ND)I).

As shown by several examples in Chapter 2. the resistance for a pulldokn with a gate that has a

threshold voltage drop is not chosen in the same way as the resistance for a nonnal pulldoAn. In

other words, the value of R5 in figure 3.6(b) reflects the knowledge that node B has a threshold drop.

This knowledge could also be used to adjust the prediction of IWs oltage. but this is not currently part

of the calculation.

There are many other circuit configurations that are be.ond the ihlit\ of RSIlN to anal) e.

although most such circuits could not, in all fiirness. be called digit,d. One important cxception., ,hich

RSIM does not handle. but which occurs in performance-critical divgitil circuits. i called boutlstrapping.
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ffA

isolation Iransislor

h igre capacitance
coupling capactor

Figure 3.7. Bootstrap circuits lead to voltages greater than 'DD

Node A is small compared to node B. to which it is capacitielN coupled. The coupling capacitor need

not be explicit: often enough coupling is proxided by the gate/source oerlap capacitance of the

transistor controlled hb, A. Node A is driven high through a pass transistor, and in turn enables the n-

channel pullup that is controlled by A and connected to node B. Since the capacitance of A is small

compared to that of B, A reaches a significant xoltagc before the \oltage of node B begins to change:

the difference is usuall, around 3 \olts in common bootstrap configurations. As the voltage of node B

n:c;eases. the coupling capacitor mjintains this initial \oltawe difference hetween nodes A and B. and

so the Noltage of A increases correspondingl.. It is not unusual for node A to reach 8 ,olts or more.

This. of course, increases the \oltage on the gate of the pullup, Ahich in turn increases the current

flowing into node 11. The net result is that node It reaches its final %alue much more quick)\ than one

might expect. Just as important, the ,oltage of |B rises all the wax to V1' instead of stopping two

threshold drops below, as a simple analysis might predict.

Both the faster transition time and higher-than-expected voltage for node It are completely

missed by RSIM. Since such circuits are often used in time-critical portions of the network, it would be

nice for RSIM to make correct predictions in this case. Unfortunately, there is no simple change to the

simple RSIM model that achiees the desired result. Howcer, by systematically replacing bootstrap

circuits with more con\entional circuits siued to give the same perfonnance, RSIM can produce the

correct results. This technique is discussed in the section on escape mechanisms in Chapter 4.

In summary. RSIM

tThe pass deice throuigh %hieh node A is dren -oltes A from the dnming circilir. After the \oltaee of node A
reaches I - v 1e. the pass de'ic cui's off. and sta\s off no mtter lairc the \ollagc otr node A bccotmcs This is bL-
rause 1vg :/7o - I,, will he less than tie ,oiare on eiher he source or the drain
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(i) predicts the output %oltagc of logic gates ' ith acceptable accuracy.

(i) does not predict threshold drops introduced by pass transistors, but does perform
a static analysis of tie nct ,ork to recogni/c transistors %khose gates are Subject to
a threshold drop. and adjust the modeling resistance accordingly.

(iii) does not handle bootstrap and other more exotic circuits. IHowevcr. a pattern
matching/replaccment technique is asailable for substituting equisalent circuits
that simulate correctly.

3.3. Propagation delay: oeriew

When choosing a single number to characterize the timing behavior of a circuit, one often settles

for determining the propagation delay: a measure of the length of time required for a change in an

input value to be reflected in the output value. In digital circuitry, a significant change is one where

the signal changes from logic low to logic high or vice versa. For a particular transition it is common

to define "change" in relation to a threshold the signal is said to change when it crosses the threshold.

Consider the following single input, single output circuit:

T

0CIRCUIT

Figure 3.8. Test setup for measuring propagation delay

The propagation delay is defined as

1p = output - input (3.10)

where

toutput is the time when the output voltage crosses the output threshold voltage-

tinput is the time when the input voltage crosses the input threshold voltage.

'Ibis definition works well for a transition between 0 and 1: however, delays associated with a

transition to the X state are still not well defined since it is unclear whether the signals in question

cross the threshold or not. Aside from this technical difficulty, die notion of propagation delay

involving X's is rather muddy since X is not a "real" logic %alue, but more of an error state. '111c

simulation algorithm must assign some delay to such a transition, and RSIM conser ati\cl\ chooses the

fastest possible trmnsition of w hich the node is capable (see equations 2.8 and 2.9).
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I Ie next step is to ch(, se the Input Inad Ouiptlit thresholds, a choice that depenads oa the

particular circuit to be anal /ed. I here are t o nportant criteria for cho osiag thresholds:

(1) [he deli\ should ne er be negati\ e. [he thresholds should be chosen so that the
Input Al ,ls crosses its thresholr Mtlre die output does. 'he Silildltion
,ilgorithiii quite niiirall\ processes events in tie scheduled order: allo,ing a
negattie deli, might require backing-up a pre\ iousl\ processed cecnt.

(2) IYhe output threshold for a circuit should be chosen sAithout regard to its use.
allow, ing a single threshold to be chosen for all inputs and outputs. In that case.
oril\ one dela computatioa is needed for each signal transition.

Ibough these criteria are not compatible in general, they can both be met for the digital circuits of

interest here.

To simplify the analysis below, will restrict the class of input %aveforms considered. In his work

on waveforn bounding. Wyatt lWyatt83J observes that the transfer functions characterizing digital NIOS

circuitry meet certain criteria which guarantee that

if two monotonic trial wavefornis are chosen that bound the actual input waveform
(which also muist he monoloic), then the response of the circuit to the trial waveforms
will bound the actual output waveform.

Thus one can choose computationally convenient input wavefonns. e.g.. simple voltage ramps. and

determine the bounds on the propagation delay by analyzing ramps that bound the true input

waveform.

3.4. Propagation delay: logic gates

In order to explore the timing behavior of MOS logic gates. this section analyies the behavior of

an niOS inverter with a simple voltage ramp on its input. The analysis is based on the first-order

equations for the component devices, presented in the previous section. The derivation is easily

extended to more complex gates by adjusting the parameters of the inverter's pulldown to model the

net pulldown-path resistance of the currently active pulldowns in the complex gate (see section 3.4.4).

The derivation also applies to cMos logic gates: the analysis of the law-to-high transition caused by a

p-channel pullup i very similar to the high-to-low transition caused by an n-channel pulldo\n. For

simplicity, only n\1OS gates are considered below.

For the purposes of the analysis, the inverter output is connected to a fixed capacitance that

models the load driven by the inverter.
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~~r~ rH 'load
C" lad out

Figure 3.9. Inverter circuit to be analyzed

At each moment, the output voltage and the current charging/discharging the load capacitance are

related by

ilood = Coa v,,, (3.11)
dt

Unfortunately, this differential equation is hard to use as it stands because ilod is a function of both

Vo,, and . However. if one can find a suitable approximation for iload that renoxes the dependency

on vour, then the change in output voltage over a given time period can be determined by integrating:

I
Cload(Al'out) = fo iload(tl) di (3.12)

The time needed for vou, to change a specified amount is calculated by first performing the integration

and then solving the resulting equation for t. This suggests the following plan of attack:

(i) Find suitable approximations for iload to remove the dependencies on vour.

(ii) Compute the output transition time using equation 3.12.

(iii) Subtract from (ii) the input transition time. giving de actual delay from input to
output. Rearrange the answer into an RC term (khat RSIM predicts) and an
error term.

This discussion starts with a small digression on choosing the appropriate threshold voltage.

3.4.1. Choosing the input/output threshold

To see if one can choose a single logic threshold and still guarantee that the predicted delay is

never negatike. it is useful to consult the \oltage transfer curve for an inverter:

7-7t
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%out

% in %out

/ I pulldown =off pullup = lincar

II pullduwn=.az pullup - lincar

choose threshold here III pulldown = sat pullup -sat

Itdl/sqr(R) (I) IV pulldown = linear pullup sat

/

01 I Vin

te %et I+ td/Isqr t(R) 1

Figure 3.10. Voltage transfer curte for inverter

The transfer curve shows the static behavior of the inverter: for any given input Noltage, it tells what

the output -oltge must be for the pullup and pulldown currents to balance. If the input changes

rapidly enough, the output voltage may lag behind. If the input is going from low to high, then the

tr,nsfer curxc shows tie mininum output %oltage for a gisen input oltage; for a high-to-low input

transition, the transfer curve shows the pnaxinuiwn output voltage for a given input voltage.

Since it is desirable for the input and output thresholds to be the same, the input/output

threshold voltage Vthrcsh is chosen to be the point on the transfer curve where Vrn = VOWt . '.Ibis means

that during a low-to-high input transition, if vi, < Vhresh, then Vout > I'thresh, no matter how fast or

slow the transition. In other words, the propagation delay is never negative. A similar argument

applies for the other transition. To estimate Vthresh. first notice that at the region l-region III

boundary,

Vin = Vie + Vtd and vour = 1 - I vrd (3.13)

If R = 4, then vnj = .44 and vou = .4, and so Vtrh.s is in region 11 (just barely). In this region the

pulldown is in saturation and the pullup is in the linear region:

(I Ve = KpU o ( - )2 (3.14)

"The earre choice of threshold has been made in sc cral other simulators [Koppe78. Nahm8O]
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Sett ing l'm u :- IvIh.sh -, 111d sob% ing for tvhrcsi yields Itreti = .439 -close enough to dhe 11 -111l

boundatry thait Elhe distinction is not important.

3.4.2. Loi-to-high output transition tim~e. tpIh.

To calculate tplli. an approximation for 1lood is needed. il,, is just thc difference between the

pullup current (tp,,) and the pulldown current (ipd). so one stratcg is to approximate the current

through each component individually. Recall that Vdiresh~ is ncar thc region I I - region IlIl boundary of

the in1-ert.or's voltage transfer curve, and notice that the part of the transition involved in the

prediction (v,,, rising from 0 to v1 h&,h) takes place almost entirely with thc invertcr operating in

regions lPi and IV. This means that the pullup is in saturation, Le.,

'P 2 I VldI
2 i (3.15)

Choosing a specific approximation for ipd is not as straightforward. Howe~er, a good starting point is

an approximation of the form shown in the following figure.

'pd 'load

'max imax

t -I
to off to off

(a) approximation for ipd (b) rcsulting approximation for iboad

Figure 3.11. Approxiiion of ipd for i p~h calculaionz

'off is the time at which vi, i. At this point in the development. there is not much one can say

about to. the time at which the pulldown current first starts to decrease. Certainly to = toff is an

upper bound (resulting in a step function for ipd). Similarly. to = 0 is a lower bound since that is the

time when the input voltage first changes. The choice of a specific value for /a will be discussed later.

With this approximation, the output transition time. ih. is given by

(load ( vih~rsh) = 0iloaj([) di (3.16)

where
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0 1<a

'IoaJ(I) inaxf < < loff (3.17)

rniax 'of

Solving equation 3.16 for ij, yields

Rpu Cload + -1 (off + I a) 1h ! 'off

= 1 (3.18)

1 2 Rpu (,load (,off -I a)] 2 + 'a f/i < 'off

where Rpu = 'hrs . Recalling that I,,m = 1hi - 'input.tmax

R.Cload + I(o + 1 a) - 'input Ip/ off - (input

'p1/i 1 1 (3.19)
[2 Rpu C/o'J (Ioff - t'A] 2 + Ia -input ip~h < 1fg - 'input

T'he following figure plots 'p1 itas a function of' lipt Note that there is a relationship among the

values Of (input, (off, and t, For this plot, a linear relationship is assumed for the values. Their exact

relationship is determined by the shape of the input waveform, a topic pursued below.

tplh

- plh f- t il
t nput

loa~d a ~nput

- - -~ a =0

>'input

Figure 3.12. tplh as akuncion of g.lp~

Several interesting observations can be made. When the input is a voltage step. 1off. 1,. and 'input are

all /cro. s0 ipI/i:sj,q RpuCload. i.e., a simple RC time constant - preisel) the prediction made by

the RsIM model.
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I o see A hat happens "lhen the input is not a step, noliec that

Ip!h Rpu( lod + I, (Ivjj + ia) -- ffnpu (3.20)

since

I2 RP,(C'J(lL'ff -ta + 'a - 'input < Rp,.Clo,,d + 2 (toff + ta) 'input (3.21)

%hcn ip h > 'off - 'input. (This can be verified by comparing the deri\atives of the two sides of the

inequality or by simpl extending the linear portion of the iplh curves - those portions above the

dotted line - in the plot above.) Equation 3.20 looks like the response for a step input delayed by an

amount that depends solely on parameters of the input waveform.

Figure 3.12 provides some insight into the choice of an appropriate value for t1. From the plot,

one can see that 'p/h eventually goes to zero for some choices of /, but increases indefinitely for other

choices. By determining whether 'plh goes to zero in an actual circuit, it is possible to narrow the

range of choices for ta. If the input changes slowly enough, one expects the output voltage to follow

the voltage transfer curve very closely. (This is essentially the definition of the voltage transfer curve.)

Thus, when v = Vthresh. it follows that ,,out = Vthresh since Vthrsh is the balance point of the inverter.

This implies tIph = 0 for sufficiently slow input transitions.

Examining the bottom term of equation 3.19, one can sec that tph is zero for slow input

transitions only if ta < inpu,.t In other words, if ta > tinput, the predicted propagation delay can

never be zero: the prediction will be longer than the true propagation delay. Thus. it is possible to

rewrite equation 3.20 using ta = tnput and still preserve the inequality.

1

'p/h < Rpu, Cload + U(toff - linput) (3.22)

This equation can be sirmplified still further with some assumptions about the input waveform.

tThe boitom term has the form lI'(t) + g(t) which reaches tero for large t onlt if g(l) is negati'e
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I n

tinput toff

Figure 3.13. Assumcd input %,avcform for lo%-to-highi output trnisition

If the input is a falling voltage ramp which starts at i 0 and reaches zero at t 6.then

(Irw Vthr,rch6 and leff (10 - vj, )6. Substitution into equation 3.22 yields

tpth Rpu (toaj + 6AiOjir'sj - vc) = pCl, + (0.15)6 (3.23)

"here the numerical estimate is computcd for a typical Sju nNMOS process. [hus RSINM potentially

underestimates tpl for a logic gate with a slow input transition (a large 6). As S decreases (a faster

irput transition), the accuracy of RSIM'S predictions increases. Note that Rp, is exactlb the resistance

maured b% the experiment proposed in figure 2.16(a).

3.4.3. 1-ugh-to-low output transition time. tphl.

In the previous section. the equation for Iplh was developed by overestimating the current

through the pulldown. leading to an upper hound for the low-to-high propagation delay. The same

technique can be used to estimate thc high-to-low transition time. In this case. howeser. one

wAJnS to underestimate the puildown current (and overestimate the pullup Current) to find an upper

bound for lh-

For the portion of the high-to-low output transition which is of interest (vfalling from I to

ithrc~h). the pUllup is in its linear region. As before. ip, can be approximated by the pullup's

saturation current, an overestimate, hut one consistent with the goals of this section. Also as before,

estimating the pulldown current is difficult. Consider the following diaigrami of various load lines for

%lost MOS circuits use miultiple-phase clockinE. with simple lovic circuits betucen latches controlled bN different
phase clock% lhis nieans that CliCL11 ilt crOmun1Ce is detcrrmii bh\ the rmitimm propiagation dcla% through the
simple lovtc: this is the (in] ' quat!%I cstmatid b ' HSM~ Other tcchnuooges- (I]I .'I CIsupport siirgIe-clock. ss 'n-
chronous designs in which muiniuil propltioii dela'.s cani he %er) important for correct circuit operation. This is
rare in MOS circuits~ and %Arch dcesiptis are not supported b) RSIM.
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the pulldown. lie trajectory of a load line shows ij as a function of time:

pd
fast transition

lmax

appros mation

I slok transition

Nthresh 1 out

Figure 3.14. Load lines for the pulldown for tarious input transitions

When the input transition is fast in comparison to the Output transition, the pulldokn turns on to its

maximum current capacity (the upper load line in figure 3.14). As 'o, drops, the current in the

pulldown also decreases, and the trajectory follows the maximum current curse until it reaches Ihr.sh.

When the input transition is slow, the output voltage falls fast enough to keep the pulldown and

pullup currents balanced (the bottom load line in figure 3.14). so the trajectory for ipd follows the iru

curve.

In the proposed approximation, ipd rises linearly to a maximum current equal to the actual

current through the pulldown when vi, = I and vou, = I'thresh. This certainly underestimates the

actual pulldown current for a fast transition, and is roughly equal to the pulldown current for a slow

transition, except for the last part of the transition. Fortunately, in this portion of the transition (near

the threshold), a small change in the input voltage causes a large change in the output \oltage, so only

a small amount of time is actually spent in the overestimated part of the transition. This

approximation leads to the following estimate for iload:

- iload

imax

ta  ti

Figure 3.15. [stimate of iojf!r iphI calculaion

" z - _ y . .. ' 7 - . . . . . . . .' - IIF l-, - - : .. .. . . . .



- 52 -

%here is the time at A hich t, I ]ind ,, is the lnin11um pulldOIA Lurrcnt nMlt: the pullup

current.

• ~~ threth KPU (.4
lmax = K,\a'(I - Vi . . .----- ) h - V 2 (3.24)

2 2

As before. i, Ail] be chosen to ensure that the estimate is an Lipper bound t) the actual propagation

delay.

The deration of a formula for Iph and the choice of ,, is very similar to that of the preious

section. so only the conclusion is presented here:

Iphl RpdjCIoad + I U1 - Input) (3.25)2325

where Rpd - . If the input is a rising voltage ramp that starts at t = 0 and reaches 1 at

t= . then

Iphl :5 RpjCload + (l - IVthreM) = RpdClod + (0.28)S (3.26)

As before. RSIM potentially underestimates tphl for a logic gate with a slow input transition (a large 8).

As 6 decreases (a faster input transition), the accuracy of RSI[fs predictions increases. Note that the

experiment proposed in figure 2.16(d) does not measure R,,. Instead, the experiment measures the

average resistance associated with the fast input transition shown in figure 3.14. omitting the

contribution of the pullup. This resistance is less than Rpd, although is it not clear by how much. This

net result is a tendency to underestimate tphl by the original RSINI model, calibrated as in Appendix 2.

3.4.4. Why analyzing inverters is sufficient

The results of sections 3.4.2 and 3.4.3 were deeloped for the nios inverter. This section

extends the results to NAN) and NOR gates as well. Equations are developed for the amount of

current flowing through the \OR and NAND pulldown configurations and then the results are

compared with the equations for a simple inverter.
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Inor inand

#1 2_ 

'Out
SI 2 nj #l~ I2 W

(at NOR pulldown configuratuon (b) NAND pulldo' n configuration

Figure 3.16. Currents through NOR and ,ANn transistor cotfgurations

The propagation delay of a NOR gate with a single activc puLldon is exactly that of an inxerter. If

both pulldowns are active simultaneously, ifor = il + i2, since the current through each pulldown can

be computed independently. Thus, when both pulldowns are on, and their gates are at the same

voltage (i.e., logic high), the total current through the pulldowns is

(ICI + K2)(Vin - vie -- )Vou t  (linear)
2

~nor = C +K (3.27)

2 (vn~ - y)2 (saturated)

which is equivalent to the current through a single pulldown sized so that

Ksinglepuldown = K1 + K2 (3.28)

As one might expect this is the formula for combining two conductances in parallel.

The analysis of a NAND gate is more complicated because the currents through the two

pulldowns are not independent. The currents through the pulldowns are given by

YOUt - VM

K1(Vin -vm - Vie - vout -vm) (linear)
2il = (3.29)

,,,n ve)2  (saturated)

2

i2 K2(vn -vie - -)vm (linear) (3.30)

......: - "- ; " ' , ' r : 
.
- = ---" : ' = : : .: : : z , , ,S - .' ' ._ I . .-' .. . .. 1 H ~ . , , , .. .. . - , 2 -
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,Ahere Vm is the voltage of the node that is common to the tkO pulldo Ins. I'Ao eqlhI101S Are needed

for the top ptlldo n, because tile puIldomn maq he in either its saturated or linear region, depending

on the reatike .alues of i, and io, Only one equation is needed for the botton pilildoIn, hccai,c

it is assumed that tm is never large enough for the bottom pulldown to become .aiur,itcd. Iii the

steady state il must equal 2. This gi~cs a set of equations to sol c for m : sUIhSUI ug the soliltion

into equation 3.29 yields the net current through the puildown. Ilic result is

K]K2 (Vi - Ve -- )vout (linear)

KI + K2 2
inand = (3.31)2

(K + K) (v,, - Vte) 2  (salurated)
2(K1 + K2)

This is the same amount of current as that for a single pulldown sized such that

Ksingle pulldown - (3.32)I1 + K2

Again, as one might expect, this is the formula for combining two conductances in series.

The conclusion to be drawn from equations 3.28 and 3.32 is that the current flowing through a

parallel or a series configuration of pulldowns can be modeled as the current flowing through a single

pulldown of the appropriate size. This means that the formulas for the propagation delay through an

inverter are directly applicable to more complex logic gates.

3.5. Propagation delay: source-folloers and pass transistors

The analysis wl;ch follows is not very rigorous: its purpose is to show that the RSIM models for

logic gates overestimate the propagation delay through a circuit containing pass transistors and

source-followers. Although better estimates would be desirable, the existing models are sufficient

given the relatively constrained use of these components in actual circuits.

A source-follower (so called because the voltage of the source node "follows" the voltage of the

gate node) is an n-channel device with its drain connected to VI)D.
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'load

max

0 -1 outputt

on 1

(a) source-follower circuit (h) approximation for iload

Figure 3.17. Source-follower circuil configuraiion

In the circuit shown in figure 3.17(a), the output voltage of the source-follower cannot rise higher than

a threshold drop below the voltage of its input. Thus, the maximum voltage for the output of a

source-follower is I - Vtie: this is why a depiction pullup (which can drie its output to vmf) is

preferred in an ordinary logic gate.

Since a source-follower can only pull a node up, only the propagation delay associated with the

low-to-high output transition needs to be analyzed. (A rising output transition corresponds to a rising

input transition: unlike most logic circuits, a source-follower does not invert the sense of its input).

During a very slow input transition, the output voltage tracks the input voltage, and the propagation

delay is equal to the time needed for the input to rise from Vthrcshi to Vdircsh + Vie. For a ramp input,

this implies tplh = (v,,)8 = (0.14)8 where 8 is the time needed for the input to rise from 0 to VDD.

For a fast input transition - one where the input reaches 1 before the output reaches Vthresh

the current through the source-follower can be approximated as shown in figure 3.17(b). ito, is the

time at which v, = vie, and Il is the time at which vi, = 1. imax is estimated by the average current

flowing through the source-follower during the transition:

_ - 1'thresh
imax = (I- e -2 )vthrh (3.33)

22

One can calculate tplh using an approach similar to that of section 3.4.2: the result is

Iplh = Rsf Clod + U(11 + /on) - input (3.34)
1
'thrcx h

where Rf = -- . If the input is assumed to be a voltage ramp with transit time 8. the final
e i r ax

equation for ip# , is
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RI ('/,,,j + (0.35)8 (nalls)
PTh : (0.14)3 (large 6)

.\ source-foll4cr is usutill. used to drihc a large output load. so Ahen 6 is small, thc RC term

dominates. Ihis suggests tha the two pieces of the equation can he reconciled as

'Pli = Rf('oa + (0.14)5 (3.36)

lhis equation is %cry similar to 3.23, which describes 1p1h for an ordinary logic gate. so no special

handling is needed for a source-follower.

In the analysis of section 3.4 and the first part of this section, each cxamined device had

essentially two terminals, since one terminal of each device connected to VI)I) or G'). Moreover,

input signals were applied to the gate node of the device. The analysis now turns to circuits that

contain three-terminal components, i.e., pass transistors. A pass transistor is any transistor not

configured as a pulndown, pullup. or source-follower: some examples of circuits containing pass

transistors are presented in section 3.2.

There are two basic configurations for a pass transistor: one with the gate node as input, and the

source and drain as outputs: the other with the source/drain as input, and the drain/source as output

(assuming that the gate is at logic highf). As the following table shows, when the gate of a pass

transistor is the input, the pass transistor behaves like one of the components analyzed earlier.

inpul source or
(gate) drain pass device acs as analyzed in

falls rises pulldown turning off section 3.4.2
falls falls enhancement pullup turning off -

rises falls pulldown turning on section 3.4.3
rises rises source-follower beginning of this section

The second pass transistor configuration presents a new analysis problem. Assume that the drain

connection is the input (which remains constant) and that the source node undergoes a transition. If

the drain undergoes a step transition from high to low at time 0, and the source follows, [Horowitz83]

suggests the best estimate for the voltage of the source is

Vouce(t) = 1 - tanh( ) (3.37)R pass Ctoad

t.lthough the analsis focuses on n-channel pass transistors. it can bc extended to p-channel pass transistors in a
%iraghironsard nmanner.
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This equation can rearranged to give the propagation delay:

'phl = RpaCloadtanh -(l - I'thrcsh) = (0. 63)Rpasj ('load (3.38)

Similarly, Horowitz suggests the best estimate for the voltage at the source, given a rising step it the

drain, is

"source(l) = 1 (3.39)
+ +1Rpass C load

which gives

Ipth Rpass Cload Vthresh - (0.79)Rpss Cload (3.40)Iplh~ ~~ ---Ra- ~a Vthr-eh

In both cases, the RC tiue constant of the RSIM model overestimates the propagation delay of a step

input. For a slow input transition, the source voltage tracks the drain voltage, resulting in essentially

zero propagation delay. (In this respect. the delay through a pass transistor is similar to the delay

through a logic gate.) Although no direct evidence is provided here, the circumstantial evidence

indicates that the predictions for propagation delay through a logic gate are upper bounds for the

propagation delay through a pass transistor, regardless of the speed of the input transition.

Pass transistors are often used in series within a switching-logic implementation of multiplexors,

etc.

1 1 1 1

A __L B JL C -. L D

input 0-fRI R2 R3 R4
I-C1 C2 C3 C4

Figure 3.18. Pass transistors connecied in series

Horowitz extends his estimates for the voltage of a particular node e to a chain of pass transistors by

replacing the RC terms in equations 3.38 and 3.40 with

TDe = ERkeCk (3.41)
k

where Rke is the resistance of the path common to node c and node k. Thus. his estimate for the
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delay associited Aith a filling transition oin node I) of figure 3.18 is

tphi = (0.63)[ R1(' + (RI+R 2)C2 + (RI+R 2 +R 3 )C 3 + (RI+R?+R 3 +R 4 )('4 (3.42)

If all the resistances are equal. and all the capacitances are equal, fphl= 6.3R('. The RSIM estimate

for the same transition is

tphl = ( RkX Ck) = 16RC (3.43)
k k

which overestimates the delay by a considerable margin. For a long chain of pass transistors, the RSIM

esdimate is xer pssimistic: fortunate]), performance constraints limit designers to chains of length

four or less. Nevertheless, performance prediction for a circuit containing pass transistors is clearly an

area where RSIM can be improved.t

3.6. Implications for the RSIM model

The analysis of the propagation delay of logic gates indicated that an RC time constant is a very

good estimate for the delay of a gate %hen the input waveform is a voltage step. The analysis

concludes that a simple RC time constant underestimates the actual propagation delay if the input

waveform is aisumed to be a voltage ramp with a rise/fall time of S. More accurate estimates for the

propagation delays are

[pth <_ RuCtoad + A :fall3.
'ph! S_ RpdCload + Ain:rzse (3.4)

where

1
Am:fall "-(Vthresh - Vte) (0.15)6

1 (3.45)
Am: rue I G - Vthresh)

6 = (0.28)8.
2

are offsets that depend only on parameters of the input waveform. Section 3.5 shows that these

equations are satisfactory tipper bounds on the propagation delay through other (non-gate) circuit

con figurations.

lit is siraihiforward modification of RSIM to make it use equations 3 38 and 340 instead of the lumped RC formnu-
la Ilowscr. thcc cquations only applN to circuits contalning a single dncr: until the thcor) is extended to include
mulitiplc-dricr confipurations. it seems sifa.s( io us c the conscrattc lumped RC approximation.
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The computation of the propagation delay would be easier if it involvcd onl) the r of the output

node. A rearrangement of the time accounting accomplishes this:

(1) Report the time of the output transition as happening at T time units after the
input transition.

(2) Schedule the event associated with the output transition for '- + A time units
after the input transition where A = (0.28)(total rise lime) for rising transitions,
and A = (.15)(total fall time) for failing transitions.

In other words, the effects of the input rise/fall time are factored in when the input transition is

scheduled, so the A terms in equation 3.44 can be omitted when computing subsequent T's. This

rearrangement is illustrated in the following figure.

IN IN

-4 RC + in -A in  RC -

our L our1

(a) according to equation 3.44 (b) proposed rearrangement

Figure 3.19. Rearrangemet of time accounting for transitions

The total rise and fall times of a transition are related to the RC time constant of the transition. When

the input is modeled as a ramp, the total rise/fall time is (2.3)T since T- is measured using vtresh = 0.44.

As a result, the transitions of a given node can be handled in the following way:

(1) Compute the RC time constant (r) for the node.

(2) Report the time of the transition as T" time units in the future.

(3) Schedule the associated event at
(1.6)7 time units in the future for a rising transition, or
(1.3)r time units in the future for a falling transition.

Note that 1.6 = 1 + (2.3)(0.28) and 1.3 = I + (2.3)(0.15). This scenario assumes that all

consequences of a rising transition involve a falling transition, and vice versa. This is not always the

case for a source-follower or a pass transistor, but the error involved (the difference between 1.6 and

1.3) is not large enough to be significant. The old scheme (accounting for the input transition time

during each delay computation) can be used if desired.

Now that the model incorporates some inforination about the input waveform, it is interesting to

revicw the examples presented in section 2.4. First the PI.A calculations:
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RSIM SPICE RSIM
node transition T predicts predicts schedules

transition transition event

A 4 0.3 0.3 0.8 0.4
B t 3.7 4.1 3.5 6.3

Case 1 C 4 0.9 7.2 6.8 7.5
I) 9.1 16.6 15.5 22.1
E 4 0.9 23.0 20.7 -

A 1.6 1.6 0.6 2.6
B 4 0.8 3.4 1.9 3.6

Case 2 C 0.6 4.2 3.3 4.6
D 4 1.3 5.9 6.4 6.3
E 6.0 12.3 12.1 -

As one can see. RSIM's estimates are now better, and they overestimate transition times with reasonable
consistency. (One expects overestimates because of the inequality in equation 3.44). The estimate for

Case 1 is 11% greater than the SPICE prediction; for Case 2, 2% greater. The story is similar for the

OM2 data path example:

RSIM SPICE RSIM
node transition predicts predicts schedules

transition transition event

A 4 2.4 2.4 2.6 3.1
B 8.2 11.3 9.1 16.2
C 2.7 18.9 19.6 23.2
D 4 22.6 45.8 39.6 -

RSIM's prediction is 15% greater than that of SPICE. Note that the event for node B is scheduled using

the rule for a rising transition - formulated assuming that any consequent transitions will be falling -

even though node C is also undergoing a rising transition. This accounts for much of the overestimate

by RSIM.

In conclusion, this chapter shows justification for the linear transistor model, especially if all

waveforms can be modeled as steps. Of course, transitions are not steps in actual circuit operation:

this fact motivated changes to the linear model, still allowing it to provide acceptable predictions of

circuit behavior.

- - - _ .- _
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CHAPTER FOUR

Simulation Using a Linear Network Model

This chapter focuses on various RSIN1 implementation issues. The first section presents a detailed

deLription of the simulation algorithm, with step-by-step accounts of the charge-sharing and final-

value computations. Several techniques for speeding up the computations are described in the second

section. The third section outlines some mechanisms available to the user for forcing the value and

timing predictions for given nodes. The chapter concludes with an evaluation of the strengths and

weaknesses of RSIM.

4.1. '11e RSINI simuhtion algorithm

RSINM uses the following simple recipe for simulating a circuit:

(i) Accept new input %alues from the user. Perform the new-value computation
(figure 4.2) for each ne, input value: this propagates the new value to nodes
connected to the input by tie source/drain connection of a transistor switch (see
figure 2.14(a)). In addition, schedule the appropriate event so that any
transistors affected by the new input value m ill be processed.

(ii) Process e\ents from the exent list, stopping (1) when the e\ent list is empty, (2)
when a node the user is tracing changes value, or (3) %khen the specified amount
of simulated time has elapsed.

(iii) I oop back to (i) to accept new inputs.

The main loop of the simolator (step (ii) above) is described in the following figure. The node
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,sociited %kith each eent is assivned its nse% due. and all stacs affcted b. the nie adle arc

located and processed. (An affected stage is one thit contains a sourcc/drain node - called a Sicd

node - of a transistor %hich has the e ent node as their gate.) [hc pioccssing of a stage has tmo

steps: first a charge-sharing computation for the stage. then a calculatiol of the find s aluC Of each

node in the stage. Before each of the tM o steps. the (OMIII. I1: Iflag of cach seed node i s set to indicate

that the stage containing the seed node needs processing. A stage is procescd onl if' its seed node

has the (O tvtif flag set: as part of the processing. COMt't IT flags for nodes in the current stage are

reset. This mechanism ensures that a stage is processed only once, esen if it contains more than one

seed node.

while e'ent list not empty {
n : = node associated with first event on event list
remove first event from event list
set n's value to the \alue specified by the event

/* do charge-sharing computation for each affected stage [see roction 4. 1.11 *1
for each transistor with n as gate node. set c'OMPL :t flag for source
for each transistor t with n as gate node

if t has just turned on and CO.\NILi- still set for source node
do charge-sharing computation for source

/* do new-value computation for each affected! stage [see figure 4.2] */
for each transistor with n as gate node, set COMPLI1: flag for source and drain
for each transistor with n as gate node {

if COMLu t" still set for source, do new-\ alue computation for stage containing source
if COMPUTE still set for drain, do newk-value computation for stage containing drainI

Figure 4.1. Main loop of RSIAI algorithm

Note that the charge-sharing computation deals only with the source stage of each transistor, but the

"nal-valuc computation deals with both the source and drain stages. This is because the charge-

sharing calculation only deals with transistors known to be on: therefore, the source and drain belong

to die same stage. and a stage computation involving the source automatically involves the drain.

The procedure for calculating the final value for each node in a stage is outlined in the following

figure.
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initialic connection list to ha e starting node as onl clement
set pointer to beginning of connection list
if starting node is an input, input found = true. else input found ' false

/* find all # odes in curremf stage */
while pointer not at end of connection list

n = node currently pointed at
for each "on" transistor %ith source connected to n

if drain is an input, inputflound : = true
else if drain not on connection list, add drain to end of list

}
advance pointer to next list element}

/* compute new final value for each node in stage */
if no inputs found, all done (charge-sharing has computed the correct value)
else for each node on connection list {

if node is an inpuL do nothing (its value is set by user)
compute final kalue for node [section 4.1.2]
reset VISITED) flag (set by final-value computation) for each node on connection list
reset node's COMPUTE flagI

Figure 4.2. Subroutine to compute new final value for eve' node in stage

The details of the charge-sharing and final-value computations are presented in the next two

subsections, followed by a description of event management in RSIM.

4.1.1. Charge-sharing computation

When a transistor turns on, its source and drain nodes become part of the same stage. As

explained in section 2.2. if the voltages of all the nodes in a stage are not alreadN identical, they

become so through charge sharing. In order to calculate the charge-sharing \alue for each node. RSIM

computes three summary capacitances from the capacitances of each node in the stage:

Chi~g total capacitance of nodes with current state of logic high.

Clo,, total capacitance of nodes with current state of logic low.

C, total capacitance of nodes with current state of X.

The summary capacitances are used to compute the charge-sharing value for the stage, as specified by

equations 2.3 and 2.4:

0 <h + CV. <
Ctn. + h+ ( .

chargc-.Aharing value I > %'h'g, (4.1)
(',/ + high + CA

," oll/criie
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.\n ent is s:heduled for eich node. specif~ ig an inmediate transitiun to the chirgce-hariing , LIe.

(See section 4.1.3 to find Out i[ hat happens to Ines, esents.)

Ihe chrge- h~ring cotlMput~itLIn Is outlIned in the [olloting figure. Ihe prokcdurc pcrforms a

tree Asalk of a stage startrig v,, ih , node passed as an argument from tie new - ,iLC pr'ed ILire. SinCe

the nodes In the stage do not require processing in ,a particulr order. the procedurc is implemented

wNithout recursion.

initialize )ist to haie starting node as only element
set pointer to beginning of list
reset capacitance accumulators

/* visit all nodes in stage compute summary capaciances */
wshile pointer not at end of list {

n : = node currentl. pointed at
add capacitance of n to appropriate accumulator
for each "on" transistor t with source connected to n {

if drain is an input or static(t) > maxres. do nothing
else if drain not on list. add drain to end of list

}
ad\ance pointer to next list elementI

/* make each node in stage have charge-sharing value */
compute charge-sharing value using equation 4.1
for each node on list {

reset node's COPl L, flag
schedule immediate transition to charge sharing value

I

Figure 4.3. Non-recursive routine f!r charge-sharing computation

If the resistance of a transistor is large enough, its source and drain nodes might not share charge - at

least not very quickly. he user can specify a maximum resistance parameter (maxres) that controls

.e scope of the charge-sharing calculation: the traversa] of nodes in a stage stops at transistors with a

resistance greater than ma.res. The COMPL'TI" flag indicates to the main RSIM loop which stages have

been processed by the charge-sharing calculation: the main loop uses the flag to ensure that the

charge-sharing calculation is performed only once for each stage.

Equation 4.1 leads to incorrect results when the surrounding network contains X transistors

(transistors with gates of X). A portion of the network that can be reached only through X transistors

might not be connected to the original node at all. and so should not make an actise contribution to

the node's charge-sharing value. An alternative (suggested by )ave Gross) is the use Of capacitance
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intcrstls to accumnulatc the contribltion of X connections. In this schCme, the capacitance

accumulators ha\e inltersal \Ldes, c.g,. (,ghz [(high.mnil ( lt,1h 1. 1 ieI nj. [helmliuTIm ,Jmue i is dhe

total ca1.pacItlice of' nodes gualrced to he connected to the currenT node; the lr miinm \lnle 'llso

include, the capacitance of nodes only reachable by X transistors. A separate charge-sharing

computation occurs for each node in the stage, as outlined in the foilo ing figure.

if node is input. ("j,,h = Chv C.( = 10,01
else {

local_(C)tyl := local_(/o,, local_C. := 10,0]
add node's capacitance to max and min of accumulator for node's 'alue
set VISI 1IF) flag for current node
for each "on" transistor. t. with source connected to current node f

if drain does not ha'e \ISIlIid flag set {
recursikel determine parameters for drain node
if %altue of gate node for t is not X {

local_(m'gh amin= local Ch11 h min + Clgh .min
local_('lo,.min = local Clo,.min + Clo,.min
local C, min = local_C,.min + Cmin

}
localCtgh. max = local-Cgh max + Chigh.max
local_(lo1 .max = local_Clo . max + (,.max
local (,.nmax := local_C,.max + Cx.max

}
}
set ('h'.h = localChgh, and so on

Figure 4.4. Subroutine to compute capacitance intervals

The results determine the maximum and minimum node xoltagc. which determine the charge-sharing

value for the node:

Ch,,.tnaTx "+ C. n.ax < <
0 Clo,.1tnr + ('11rhI.'Mill + C,.min li

charge-sharing value I 1 Chgh.>liin > (4.2)
Co ,.max + Chgh1 1.max + CG.max

X otherwise

Capacitances for nodes connected b X transistors contribute to the final salmC onl in a negatise

sense. i.e.. the. ma cause a node to go to X. but neser contribute to a %alue of 0 or 1. Leaming the

visi Ii I flag set as each new node is discovered ensures that each node is %isited only once. After

completing the charge-sharing computation for a node. its (-OMI'L I I flag is reset: the \ Si: fl)rgs for
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All nodes in the stage are also reset, in preparation for the next node's coMptItation.

One disad, antage of ihe inter al approach is that a separate calculation is performed for each

node in die sLige. %hereas the original scheme required onl\ One calculation per stage. In addition.

the interal calculation must be performed by a recursise tree walk to ensure die correct handling of X

transistors. rtunatel, this computation can be merged with the tree "alk described in the follo ing

section. so the incremental cost is fairly small.

4.1.2. Final- alue computation

The final. driven value of a node is determined b, the resistance of paths from the node to

various inputs. As we saw in chapter 2. a convenient way to characterize these paths is to calculate die

Theenin equivalent for the portion of the network that can be reached from the node of interest.

Equation 2.6 relates the final value of a node to Vthev, the "'hewenin equivalent voltage. The time

constant for a transition in the value of a node is also determined by the surrounding network; the

necessary parameters can be computed during the Thevenin calculation.

For computational convcnience. RS!M actually computes RH and RI., the resistances of a resistor

divider that represents the effect of the surrounding network.

[RllRHh]_ ..-- net resistance of all paths to VDD

IRL1 RI] 
7 1z... net resistance of all paths to GND

Figure 4.5. characteristic resistor divider for a node

RH and RI. might be resistance intervals (RH = [RHI, RH1] and RL [RLI, R-h]) if there are X

values in the surrounding network. The Thevenin equivalent voltage is easily calculated from the

characteristic divider:

RI4 Ri.h
[ I" -]R1, + RHh' RLh + RHI

For example. the lowest possible voltage is calculated using the least resistance to G\1) (specified by

RI.1) and tie greatest resistance to Vim (specified by Rlh,). Couching die computation in terms of

-- --- - - - -- - -- - -
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the characteristic resistance is ad~antagcous for se~eral reasons. Resistances to VI)D and (iA)

represent. in a natural . the connections made by tOs logic. as sho, n in chapter 3. With the aid

of some simple rules, it is cas. to incrementall. anal/e any %los net, ork in terms of its component

resist nces. Because resistances are directly related to the implementation. they can represent certain

circuit configurations - e.g., short circuits (Rt = RI, = 0) - that cannot be simply characteried

using the Thevcnin equi\alcnt. The remainder of the section dcscribes a trec %alk algorithm to

compute the parameters needed for determining a node's %alue and for scheduling the appropriate

transition.

The computation of Rif and RI proceeds by tracing paths to the inputs that are reachable from

the node of interest, and then calculating the resistance of each path, starting at the input and working

back toward the original node. Two rules are helpful for calculating path resistance. The first rule

specifies the apparent path resistances when a divider exists on the other side of a resistor:

(a) initial network (b) approximation

Figure 4.6. Reduction rule for resistor divider with series resistor

The parameters for the apparent resistances (A and B in figure 4.6(b)) cannot be determined exactly,

an approximation is therefore necessary. Appendix 3 explains why this is so, and derives the following

formulas for the approximation:

A; = PIt + RI + R / A, = P'h + RI-Ph + R--I
S Q(4.4)

B,= Q, + RI + R1- Bh = Qh + RI-Qh + Ri

The second nile is much simpler: it indicates how to merge the resistances of two separate paths to

obtain the net resisunce for both paths:
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[(..)] T IR.S] IC 11 R. 1) 11 S1

(a) dividcrs for two parallel paths (b) rcsulting divider

Figure 4.7. Reduction rule for combining two parallel paths

To compute the Thevenin equivalent for a particular node. one starts by locating all conducting

transistors connected to that node and then recursi'c)) analying the network on the other side of

each of the transistors. Each node is marked as its analysis begins: recursie calls ignore portions of

the network involving marked nodes. This keeps the analysis expanding outward, eventually

terminating at a dead-end (no paths leading to unmarked nodes) or an input. These particular circuits

are easy to analyze, as shown in the following figure.

RL = 0 RL = 00 RL=0

(a) low input (GND) (b) high input (VDD) (c) dead-end

Figure 4.8. Characteristic dividers for input nodes and dead-ends

The resistance of paths leading from a particular node are combined using the two reduction rules

above. Using the first nile, the results of a recursive call (shown as P and Q in figure 4.6) are

combined with the resistance of the conducting transistor leading to that piece of the network (shown

as R). to yield the net resistance of the path. 'Tis resistance is combined with the resistances from

other recursive calls using the second reduction rule. When all paths havc been accounted for, the

analysis for the node is complete. The resulting divider is the desired answer, or, is used as part of the

analysis of some other node if the analysis was performed because of a recursive call. The process is

diagramed in the following figurc.
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subnet

FM-1
(a) initial network (hI after recursi'e analsi of subnets

(c) after applying first reduction rule (d) after appl)ing second reduction rule

Figure 4.9. Network analysis by repeated rule application

The complete analysis procedure is outlined in the next figure. The results are stored in eight

global variables:

RH resistance interval for net resistance of all paths to VDD. Path resistance
computed using static resistance of each transistor.

RL resistance interval for net resistance of all paths to GND. Path resistance
computed using static resistance of each transistor.

Rd net resistance to VDD. computed using the dynamic-high resistance of each
transistor. Simple series/parallel calculation: paths containing X transistors
are ignored.

Rgnd net resistance to GD. computed using the dynamic-low resistance of each
transistor. Simple series/parallel calculation: paths containing X transistors
are ignored.

R, net resistance to all inputs, computed using the dynamic-high resistance to
high inputs, and dynamic-low resistance to low inputs. Simple series/parallel
calculation: includes paths containing X transistors.

Ch1 h total capacitance of nodes with current state of logic high.

CQo total capacitance of nodes with current state of logic low.

C, total capacitance of nodes with current state of X.

If the interval charge-sharing calculation is merged with this calculation, the upper limit of the

capacitance intervals in the charge-sharing calculation can be used in place of the three capacitance

accumulators just defined. The procedure also uses four stack-allocated local ariablcs to accumulate
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the first four quantities listed abovc, during the calculation for cach node.

if node is logic low input {
return with RH = R,.ad = 00 and RI. = Rgnd = R, = 0

else if node is logic high input I
return with RH = Rvdd = R, = 0 and RI. = Rgnd =0

} else j
local :Rd local Rgn "= local_R, localRH = localRI. = 0
add node capacitance to appropriate accumulator
set ISiiFi) flag for current node
for each "on" transistor t. with source connected to current node {

if drain does not have VISITiH) flag set I
recursively determine parameters for drain node
combine static(t) with RH and RI. using first reduction rule
combine result with local -IRH and localRL using second reduction rule
if value of gate node for t ! = X {

local_R, "= local_Rdd IJ (dynhigh(t) + Rdd)
local_Rgnd localRgnd (j {dynlow(t) + R8,d)

}
localR, "= local_Rx II (min(dynhigh(t),dynlow(t)) + R,)

}

} set Rvdd = local_R,.dd, RH = IocalRH, and so on

Figurc 4.10. Subroutine /0 compute parameters of resistor divider

Marking each node as it is visited (by setting its VISIT ED) flag) avoids cycles and keeps the tree walk

expanding outward from the starting node. If the network does contain cycles, the subroutine only

approximates the true resistance to VDD and GND. For example, consider the following logic gate

where the output (the pulled-up node) is the node of interest:

RI RI >R

R2 R5jiter R2 r R5 R R

RR6 R3 R4~ R6 R 3 hR6 MR3 R6

(a) circuit containing c)clcs (b) circuit as analyzed (c) circuit as analyzed if marks removed

Figure 4.11. Analysis of circuit containing cycles

Since the marks are not removed when the analysis of a path is completed, RSIM treats the cycle as if

the circuit were configured as shown in the circuit in figure 4.11(b). flI'is approximaion results in an

overestimate of the actual resistances. If a nme's mark were removed as the procedtire exited, all
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paths through the network would be explored (as shown in figure 4.11(c)): in this case. the resistance

would be underestimiated. leading to optimistic perfonnance predictions.

Cycles are relativcly rare in nxios designs: when they occur. the extra path is often redundant.

i.e.. the circuit is designed to work correctly if an, path in the cycle became the sole connection. lhis

means the approximation used by RSIM is usually not out of line with the designer's intentions. This

statement holds for cMios as well, with one notable exception - the cMOS pass gate:

Abar

A

Figure 4.12. A cMOS pass gate

In this circuit configuration, one device is sized to carry most of the load, and the other exists simply to

ensure no threshold drop across the gat-. In analyzing such a circuit, RSIM arbitrarily chooses the

transistor that makes the connection; the other transistor's contribution is ignored. This is satisfactory

if the transistor with the smaller resistance is chosen, but such is not always the case. To correct the

problem, the transistor list for each node can be arranged in order of increasing resistance; this ensures

paths of least resistance are examined and marked first. Note that this solution only works when the

paths in a cycle have a length of one transistor (as in the pass gate above). If the paths are longer,

there is no guarantee that the path of least total resistance will happen to start with the transistor that

has the least resistance.

After the various parameters are calculated, the final value of a node can be calculated using

equations 2.6 and 4.1:

0 'h < v/, or (old value=O and R11= 00)

final value = VI > 1'njh or (old value= I and RI.I = 00) (4.5)

X otherwise

The extra clause for "0" and "I" values prevents a node from being unnecessarily forced to X when it

has no connection to inputs of the opposite logic wtate. The appropriate event is scheduled Rcff(,.ff

seconds in the future, where
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Rgnd final value = 0

R = = Rvdd final value = 1 (4.6)

R, final value = X

Chigh + Cx fintal value = 0

(Cff = C,, + C, final value = 1 (4.7)
1Clo. + Chigh final value = X

The disposition of this event depends on the nature of any pending cvents and the node's current

value: see section 4.1.3 for the details of event management.

The user has some control over the final-value computation. The time constant for e'ent

scheduling can be forced to 1. implementing a unit-delay simulation. This is useful when a node value

is to be calculated using transistor resistances, but transition timing is not important. Another option is

flagging those events corresponding to transitions to X where the X value is specifically caused by a

ratio error (rather than other X's in the network). Such transitions are characterized by RIth < 00

and RLh < 00: if an X exists in the surrounding network, one or both of these parameters is infinite.

When a flagged event is processed, the transition is reported to the user as a ratio error. Because the

error report is delayed until the flagged event is processed, short-lived ratio errors (those caused by

small differences in propagation delays) are ignored, and the error reports reflect only significant ratio

errors. Of course, in some designs, even long-lived ratio errors might not affect correct circuit

operation, so the reporting is optional.

When RH/ = RL1 = 00, the node is not connected to any inputs, and the charge-sharing

computation described in the previous section correctly computes the node's final value. Ordinarily,

the final-value calculation does not schedule any events in this case, but the user can optionally

request the scheduling of a charge-decay event. A charge-decay e~ent sets the node value to X after a

specified interval which the user can set. At first glance, it might seem odd to schedule all decay

events using the same interval; a more suitable estimate might be based on factors such as the node's

capacitance. the number of transistors connected to the node, and so on. However, precise predictions

are not necessarily the most useful here. The actual decay time for NiOS circuits is in the millisecond

range. Since it is unlikely that a simulition spans that long a period of simulated time. a precise

accounting of the decay time never results in a decay! A more useful approach is ba.ed on the

observation that a designer usuafly intends for all dynamic nodes to be refreshed every few clock

cycles. When the decay time is set to an inter~al slightly larger than the intended refresh rate, the
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unrefreshed nodes decay quickly, and tie user receives a suitable error report. Thus. cven a short

simulation run catches a decay problem. This type of debugging experiment can be much more

cffective than a precise estimate in pinpointing a problem.

4.1.3. Ebent Management

Up to two events can be pending for a node:

(1) a charge-sharing (CS) event. CS events arc always immediate events, ie.. they
arc scheduled for the current simulated time.

(2) a final-value (FV) event, scheduled for sometime in the future.

Thus, up to two transitions are possible for a given node. Each event corresponds to a real transition,

i.e., the new value of a CS event always differs from the current value of the node, and the new value

of a FV event differs from that of the CS event (or the current node value if there is no pending CS

event). Since only two transitions can be pending at any moment, newly calculated events must be

merged with the pending events. Section 2.3 hinted at the issues involved: in general, RSIM makes its

choices based on the principle that the most recently calculated event best reflects the current network

configuration. Since no infonnation is available that explains why any pending events were created,

there is little (if any) reason to save a previously-calculated event in preference to the newer one.

The following figure describes the simple merging rules used by RSiM:

if merging new CS event {
abort pending CS and FV events
if new charge-sharing value is different from current node value

schedule new CS event
}
if merging new FV event {

if new value differs from CS value (or, if no CS event pending, current node value)
schedule new FV event

}

Figure 4.13. Merging a new event with pending events

A new CS event aborts a pending FV event because a new final-value computation always occurs after

the charge-sharing computations are complete. Although this approach is simple, it occasionally leads

to pessimistic predictions. For example. if one input of a two-input \OR gate turns on substantially

before the other, the propagation delay is actually determined by the time of the first input's

transition. With the merging scheme outlined above, the two events scheduled at the time the second

input turns on cause other cents to be aborted - those scheduled bec~iuse of the first input's

I



74-

transition. This occurs even if one of the aborted e~cnts is chcdulcd for an earlier time than tie

second event. In other words, with the merging schcme above, the propagation dela> of a NOR gate

might be incorrectly measured from the later input. Thcre is no simple fix to the merging rules aboC

that sohes this problem. The correct solution requires knoA ledge of both the new, CS ce~nt and the

new FV eent. so that pending eents can be sa~ed if they are compatible with both newer exents. If

the charge-sharing and final-value calculations are merged. as suggested at the end of section 4.1.1, it

should be straightforward to implement the correct merging scheme.

There are several alternatives for dealing with aborted events. The simplest approach is to

handle the event as if it were never scheduled, i.e.. do nothing. This is the approach RSIM adopts.

Another approach is motivated by the physical significance of an aborted event. Since the signal

changes between the transition start time (the time %hen the charge-sharing or final-%alue compuuttion

was performed) and the transition end time (the scheduled time of the event), the action of aborting

the event corresponds to a stop in mid-transition. Aborted transitions arc termed glitches

[lhompson74]: these malformed signals sometimes have significant impact on the operation of a circuit

and should be reported to the user. This report can be in the form of a forced transition to X. or just

a simple error message. Interestingly, a user who has the option to receive glitch reports almost always

disables that feature [Ulrich73]. The reason given is that the duration of an aborted transition is

usually short enough so that the actual signal does not change significantly: hence no glitch actually

occurs.t

Scheduling an event entails inserting it into the event list, placed according to its scheduled time.

An event list implemented as a simple list would impose a noticeable scheduling overhead. RSIM

adopts several techniques for reducing this overhead. It quantii.es simulated time. and rounds off each

event time to the nearest time quanta: in the current implementation, the time quanta is 0.1

,tanosecond. The event list is implemented in two pieces:

(1) an event array. Each array element is a doubly-linked list of events for a
particular time quanta.

(2) an overflow list, a doubly-linked list of events, sorted by event time.

'his organization is similar to that found in many conventional gate-level simulators [Vaucher75.

tSome researchers propose showing transitions between logic states as O-X-I or I-X-0. %here the initial transition to
X happens itamcdiately. Thus aborted e'cnts lcaic the node %aluc at X until sone subsequent event re-eslablishs a
Vcpitimatc logic state ihis suggestion doubles the number of cserns in a simulation" a cost which might outweigh the
ads antages

-i-------.- 11
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Ulrich76). The event lists are douhl -linked to allow quick removal of an aborted event fiom the list.

lhe data srttcturcs are diagramed in the following figure.

c'cnt array
"+I+ I -- ev'ent"' >.

+i +2

overfloA list

+N I
current time -- 0 Livnt"---> .

+1

+2

offset, in quanta, from current time

Figure 4.14. The event list is implemented with an event array and overflow list

The event array is managed as a circular buffer in which the N array elements hold events for the next

N time quanta. An array index indicates which array element corresponds to the current simulated

time. If a new event is scheduled for a time M quanta in the future, where Al <N. the event is added

to the end of the event list stored in array element (index + Af) mod N: no sorting or searching is

required. If hf>N, the event is inserted into the overflow list according to its scheduled time. The

array size is chosen so that most events are scheduled directly into the array. With a time quanta of

0.1 nanoseconds, a 128- or 256-element array captures most events in modern MOS designs. Note that

events are added to the end of an event list. This ensures that events are processed in first-in, first-out

order, ie.. in the order created. Thus. cause-and-effcct relationships are preserved.

To find the next event to process. the event array is searched starting at the current index, until

an event is found. Each increment of the index corresponds to advancing simulated time by one time

quanta. If the array is empty, simulated time is advanced to equal the scheduled time of the first

event on the overflow list: this event becomes the next one to processed. When an event is located

for processing, the overflow list is examined to find events whose scheduled times are less than N time

quanta away from the new simulated time. Such events are moved from the overflow list to the

i',ppropriate list in the event array. hllis preserves the first-in, first-out event ordering mentioned

above.
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4.2. Spcedinig up the sinnIation

No simulator is fast enough. Increased simulator performance is always in demand. eid-er to

achiece faster tumaround during the design process, or to allow more complete testing during

%crification. I'lis Section discusses seeral techniques for impro% ing the performance of the Algorithms

presented in the previous section.

It is not surprising to learn that, during event processing, most of the time is spent in the Final-

value calculation.j To compute the final value for a givcn node, the final-value computation must ',iSit

all the nodes in the current stage. Thus, if there are n nodes in the stage, processing the entire stage

takes 0(n) time. Since the remainder of the processing is proportional to the size of the stage, the

real bottleneck is the final-value computation. Performance can be improved by

(1) introducing a cache for final-value computations, with the intent of eliminating
the recalculation of parameters for subnetworks.

(2) reducing the number of nodes in the stage.

(3) reducing the cost of each calculation, for example, by substituting integer
arithmetic for floating-point. This alternative will not be discussed further,
except to note that a 32-bit integer has over 9 orders of magnitude of dynamic
range, sufficient for representing MOS resistances.

Clearly, the first improvement is most significant when n is large. The third improvement is important

when n is small and the dominant cost is the actual arithmetic. The second improvement works on

making (3) more important than (1). The improvements are discussed in turn below.

As it is currently formulated, the final-value procedure performs many redundant computations.

Consider the circuit diagram for a 5-node stage shown in (a) below, and one of its subcircuits, shown

in (b) below.

t1The discumsion in this section is limited to that portion of the simulator which propagates new values through the
network. RSIM has an intcrpreted ,ISP-likc command language which the designer uses to prepare new input
values and proccss the rcsults of a simulation step I)epending on the sophisti ation of the simulation environment
built by the user. a substantial portion of the total time can be spent in the command language interpreter. Of
course. there is room for improcnent here too. hut that is oulside the %Cope of this thesis.
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R3 D R4 1:

A B C D F

(a) 5-node stage (b) example subcircuin

Figure 4.15. Stage containing 5 nodcs and 4 transistors

When one traces the computations performed by the final-value procedure (see figure 4.10). it

becomes apparent that the parameters for a specific subcircuit are calculated several times. The

computations for nodes A. B. and C all need the same information about the subcircuit in figure

4.15(b); there is no reason to compute the information more than once.

The amount of redundant computation can be reduced by caching the result from each call to

the final-value procedurc.f Before each call, the cache is searched to see if the subcircuit was analyzed

previously; if so. the results are taken from the cache and not recomputed. If the cache has constant

access time, the cost of the final-value analysis for a stage is reduced to 0(n), a significant sa\,;ng

when it is large. In RSIM, the cache does not need to accommodate arbitrary amounts of information;

associating two cache entries with each transistor (one for the source, one for the drain) is sufficient.

The source cache retains the network parameters for the subnetwork connected to the drain node

(including the transistor), and the drain cache is similar. When the analysis of a subnetwork is

completed. the result is placed in the appropriate cache.

Subriet #1I subnct #2 subnect #1

source cache drain cache source cached filled

(a) circuit showing caches (b) circuit after analysis of subnet #2

Figure 4.16. Transistor cache scheme

In the figure above, once subnet #2 has been analyzed and the result saved in the source cache,

subsequent analyses involving the same transistor and subnct use the cached result. Pie following

t 11is caching tech nique is known in the I[SP communit) as mcnioization.
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figure shows the cache status after calculalont of the final %aluC tor node 1) of figure 4.1 5(a).

A __ _ B 1 c _1 ) _2

Figure 4.17. (ache status after final-value ca/culatton for node D

Subsequent anal.sis of node C. for example, requires ofnl. a single recursivc call (rather than four as

before).

There are several reasons why the transistor cache might not be the ideal solution. The amount

of information in each cache entry - 8 parameters - is quite large compared to the transistor data

base. This suggests that cache entries should be dnamically allocated ,khen needed. and returned

when the computation is complete. The combined costs of storage management and cache access

might exceed the cost savings realized on stages of modest size. These objections can be addressed by

associating cache enties with nodes instead, or using the cache only when the stage exceeds a

specified size.

However the cache is organized, its introduction has a substantial impact on the amount of

computation required for the final-value analysis of a stage. Another improvement mentioned at the

beginning of the section is reducing the number of nodes in a stage. The key element of this is the

notion of useless nodes, Le., nodes that do not connect to any transistor gates and hence whose values

are irrelevant. Such nodes commonly occur in a pulldown path containing more than one transistor,

such as the node marked by an asterisk in figure 4.18(a).

A' -R2+R

(a) nMOS logic gate (b) pulldown after removing useles node

Figure 4.18. Remo, g useless nodes from a stage

Section 3.4.4 mentions that a pulldown with more than one transistor is electrically equivalent to a

- ~ . .- ~-i
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single-transistor pulldoA n of the appropriate sue. Ihis suggCests that such a pulldoA n can be replaced

b) a circuit like the one shov, n in figure 4.18(b). All the nodes in the pulldo n except the output and

GN, are eliminated, and all the puildown transistors are replaced bi a single transistor. The gate value

of the single transistor is the logical conjunction of tie \alues of the gates of the original pulldo n

chain. In fact. RSIM uses a compact representation for the generali/ed \IOS gate:

A

null first pulldown

static R2 + R3

dynlow R2+R3

C

null
second pulldown

static R4

d.nlow R4

D

null
third pulldown

static R5

dynlow R5

null

static RI
pullup

d nhigh RI

Figure 4.19. Eflicicnt internal representation of an ni/OS logic gate

All transistors and nodes that make up the gate are eliminated, and the resulting gate structure is

associated with the output node. The output can still connect to other transistors that are not

recognized as part of a logic gate: only those transistors that implement a MOS logic gate are

compressed. The resisLince parameters of a gate structure are computed very efficiently by RSIM -

many times more quickly than the analysis of the cquivalent network.

The compression of gate circuits into the compact internal representation also results in a

considerable space saving. Somewhere between 40% and 80% of the transistors in most circuits are

eliminated when the gate structures are built. This resulting simulation runs roughly twice as fast as

the uncompressed network. [his optimization is prohahl the single ltrgest contrihutor to the ability
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of RSINI to deal with Ner, large .IOS circuits.

4.3. EIscape mechanisms

Presious sections of this chapter introduced mechanisms that alloA the user to adjust th

operation of the sinMuldtOr as a " hole. There arc Occasions. hok cser. %khen a large-scale adjustment is

inappropriate, and only the predictions for a single node need correction. This section discusses

seeral "escape" mechanisms proL ided b. ,SIM for adjusting the predictions for small groups of nodes

and transistors.

the modifications discussed here are ad hoc in nature: their motisation arises from purely

practical considerations. The mechanisms are not intended to alloy vholesale changes in the

simulation computation, but are prosided so the designer can correct particularly egregious or far-

reaching errors in the simulation of specific circuits. Since the mechanisms treat the s.mptoms and not

the disease, their effectiveness is limited to local improvements.

The are four user-adjustable parameters for each node:

%t ow the logic loA threshold for the node (specified in normalized voltage units).

VIIIGHI the logic high threshold for the node (specified in normalized voltage units).

ThPIu the low-to-high transition time for the node (specified in time quanta).

,TpiIl the high-to-low transition time for the node (specified in time quanta).

By adjusting the logic thresholds with Vt.OW and VIIIGH. the user can prevent predictions of X values

for circuits with non-standard pullup/pulldown ratios. This can be useful in a circuit where a node's

voltage swing is reduced for performance or other reasons (for example. in input buffers or bit-lines of

dynamic memory circuits).

The transition time parameters force the timing of all the node's transitions. These parameters

allow adjustment of the timing of critical nodes to agree with predictions of circuit analysis programs.

Clocks, for example, often are generated by special circuitry designed to drive the a capacitive load.

Intricate timing chains involving bootstrapping, etc. increase the speed of clock distribution circuitry to

acceptable leels. Most of these circuit techniques are beyond RSIM's ability to predict accurately;

incorrect predictions for critical signals can throw off the whole simulation. Using the transition time

parametes, the designer can force the rise and fall times of critical signals to their proper values,

improving the quality of the remainder of the simulation.

It is obvious how trmnsition time parameters affect the scheduling of events, but what about the
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timing of a node connected directly to a forced node by a source/drain connection? A workable

scenario treats a node with forced timings as an input, sctting its dynamic resistance

(Rjd. Rgnd. and R, ) and capacitance parameters to /ero. (Note that the Nalue calculation, which uses

static resistances, is unaffected,) 'he transition time for a node connected to a forced node is the sum

of the given transition time for the forced node and the RC time constant of the path from the forced

node.

R1 0 rise ume = pihA + R3 C
IA f R. B R l 4 fall time = ph A + R3 C

Rforced timings C 0

(a) original circuit with forced node (b) equinakni network for node B

Figure 4.20. How forced tinings affect neighboring nodes

If a node is connected to more than one forced node, the smallest forced time constant is used.

Neighbors of forced nodes always change value after the forced node - a reasonable prediction.

A much more powerful mechanism for forcing the desired prediction is modification of the

circuit itself, replacing troublesome configurations with others that simulate correctly. Piecemeal

modification of a large circuit can quickly lead to a loss of confidence in the simulation results,

especially if the replacements are performed in a haphazard manner. On the other hand, the

systematic identification and replacement of specific subcircuits, drawing from a library of approved

replacements, offers the opportunity to improve simulation accuracy for common subcircuits.

The pattern matching/replacement program MNACH, written by John Iler [ler83], provides an

efficient way to systematically modify pieces of large circuits. 'he circuit to be modified is identified

by a pattern specifying a prototype subcircuit Each node in the prototype is given a type which

controls what nodes it matches in the actual circuit:

(I) matched only by a circuit node with exactly the same connections specified in the
pattern.

(2) matched by a circuit node with at least the connections specified in the pattern,
but the circuit node may also have other connections.

(3) matched by a node with the same name.
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The pattern indicates Mchl prototypc nodes attach to each transistor in the protot pe. and can further

constrain the match bh giving an explicit si/e or resstance for each prototype transistor. The

replacement can modify parameters of existing circuit components. and add or delete components.

For example, the following figure shows a pattern and replacement for the bootstrap circuit discussed

in section 3.2.

type (3) nodL.s

A W/1- A -] /'/L'

type (2) node type (1) node - B B

type (2) node

(a) pattern (b) replacement

Figure 4.21. PatiernVreplacement for bootstrap circuit

MATCH is regularly used in at least one industrial environment to improve the predictions of

RSIM. ller suggests other uses for the program: gathering of circuit statistics, identifying common

circuit errors, and implementing circuit changes (ECO's) without requiring the regeneration of the

endre netlist. MATCH has proved to be a handy tool.

4.4. An evaluation of RSIM

RSIM has simulated a large number of designs, both in university and industrial environments.

Industrial designers are attracted to RSIM because of its ability to correctly predict the functionality of

most MOS circuits without designer intervention - a unique capability in a logic simulator efficient

enough to accommodate large designs. RSIM's timing estimates arc helpful in locating gross timing

errors in industrial designs, but the conservative nature of the estimates make them unsatisfactory for

fine tuning critical circuitry. In short. RSIM allows the verification of large industrial designs, at a level

of detail not obtainable with other simulators.

Timing estimates appear to be more important for academic users who, more often than not,

not paid as much attention to the performance of each individual circuit component. RSIM makes

a good breadboard for locating performance bottlenecks and experimenting with potential solutions.
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Since transition timings automatically reflect output loadings and device sizes, the naive user's

attention is focused on critical portions of the design. RSIM is a good companion for the novice

designer because of its ability to qualitatively model much of the behavior of mOS circuitry.

RSIM advances the state of the art of simulation in several ways. 'he linear model embodied by

RSIM is a systematization of a common rule-of-thumb for estimating circuit performance. The

simulator was originally developed simply to automate the calculation of RC time constants, and to

reap the benefits of applying the same timing criteria uniformly to the entire circuit. The analysis of

propagation delay in Chapter 3 justifies the use of the linear model as a simple approximation and

extends the rule-of-thumb to include the affects of the input waveform timings on gate propagation

delay. RSIM breaks new ground by combining logic-level simulation with the ability to automatically

estimate transition times directly from the electrical properties of the circuit components. While the

results are less accurate than circuit analysis, the designer is compensated by an increase in

computation speed by several orders of magnitude. RSIM represents a first cut at a stylized form of

circuit analysis which attempts to model the significant effects at far less cost than traditional analysis

techniques. The proven utility of RSIM augurs well for further developments in the area between logic

simulation and circuit analysis.

The introduction of intervals to characterize the operation of circuit components controlled by

X-valued signals is a novel technique for merging electrical analysis with the logical concept of

unknown signal values. The use of intervals allows one to easily compute the electrical consequences

of unknown node values, resulting in predictions more satisfactory than those obtainable from

conventional logic simulators or circuit analysis programs.

There is, of course, plenty of room for improvement in RSIM! For example, interconnect is not

modeled at all. As a circuit's physical size decreases, the transmission delay introduced by the

interconnect is as large as the propagation delay of the gates. Certain layout techniques, such as a

long run of polysilicon, are inherently slow and might become the fatal flaw in an otherwise carefully

tuned design. [Penfield81] offers some computationally reasonable models for predicting transmission

deiays: these models are well-suited for incorporation into RSIM. His analysis, along with that of

[Horowitz831, offers some insight into the correct modeling of pass gates and distributed capacitances.

(The lumped approximation used by RSIM can be very pessimistic.) Along the same lines, the

development of better time constants for charge-sharing events would improve the modeling of circuits

containing both large and small capacitances.
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Another class of problems is introduced by the one-pass nature of the computations. In order to

limit the amount of computation needed for each prediction, the algorithms are constrained to make

only one pass over the surrounding network. While most MOS circuits are trees, and hence amenable

to a one-pass analysis, circuits that contain cycles are not handled correctly. The proposed solution -

choosing a single path through the cycle to represent the cycle's resistance - is definitely ad hoc:

performing the correct series/parallel analysis would be preferable.

There is also a need to consider the effects of deviations in device performance from that

predicted by first-order theory. Some effects (channel length modulation, body effect, short channel

effects) might best be handled during the calibration process. Other effects (Miller capacitance) may

lead to further modifications in the model or calculation of device parameters in order to ensure

conservative predictions. Finally, there is the possibility that work on waveform bounding [Wyatt83],

which seeks to obtain closed-form equations for the waveform of each node of a circuit, can provide a

replacement for the linear model presented here.

ih
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CHAPTER FIVE

Simulation Using a Switch Network Model

If a designer is only interested in the logical properties of a circuit, Le., those properties

independent of performance issues, it is possible to simplify the linear model of the previous chapter

even further by modeling each transistor as an on/off switch whose state is determined by the type of

transistor and the state of its gate node. This chapter discusses the switch model from two points of

view: first, as a special case of the linear model, and then as a self-contained model. But first, a small

digression on the representation of node values is in order.

5.1. Representing node v'alues

The success or failure of a logic-level simulator often hinges on the choice of the set of possible

node values. If the set is too small, the actual node value may not be prcciscly described by any one

of the available Nalues and the simulator must choose an approximation. Usually the approximation

involves some variant of the X (unknown) %aluc %hich ina. carry logical implications beyond what the

network itself imposes - such a choice is termed either "conser~ati e" or "pessimistic" depending on

one's point of view. If the set is large, it becomes difficult to establish whcther the simulator's

calculations are correct in all cases. Relying on the accumulated e idence of many simulation runs

%hen arguing correctness licks the rigor that leads to total confidence in the algorithm. This section

develops criteria for evaluating a set of node Values.

.I
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ll'cre arc three major influences on the choice of the node-%aluc set:

(1) the need to report node %alues to the user;

(2) the need to determine the statc of each network component from the values of
its terminal nodes: and

(3) the nced to represent intenncdiatc values during an incremental simulation

calculation.

If only the first two influences are considered. a three-value set - 0, 1. and Xt - will suffice for

logic-level simulation. Users and component models cannot reasonably expect more information than

provided by this set, since most logic-level algorithms cannot support more detailed deductions from

arbitrary mOS networks with any degree of accuracy. it is the third influence that leads to all the

complication.

Almost all logic simulators analyze a network piece by piece, modifying their estimates for node

values as the effect of each piece of the network is determined. Until the new-value computation is

completed, the intermediate node values serve as accumulators that store all the information the

simulator has about the effects of network pieces already examined. Thus, distinct values are needed

for all qualitatively different intermediate states: e.g.. a node currently at logic high might have that

value because examination of the network to date revealed that it was (i0 storing charge, (ii) connected

to a depletion pullup. or (iii) being precharged by an enhancement device. The simulator must

distinguish among these possibilities, since the final value of node may be different in each case if, for

example, further network processing discovers a pulldown for the node. The exact number of values

needed depends on the details of the simulation computation: most simulators fall into one of the two

categories discussed below. As will be seen, the two categories are distinguished by their approach to

X values.

'll might be useful to distinguish V. an unknoun. but lcgitimatc logic %alue (rg.. the ouiput of a pair of cross-
coupled in'ccrs) from other i',pIs or X %alue, V %alucs are %ell behavcd in logic operations. for example. 11 +
-'1 = I if the value of I is . bui equals X if thc value of 11 is X Such disiinctions mighi be imponant dunng ini-
iiahation [Siccn,%.3l dc.-cnbtc a simulator thai uses this distinction to improc its predictions for certain simplc log-
ic circuil.
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5.1.1. (ross-product %aluC sets

One intuitivly iappealing approach to choosing a set of node values is to think of each %alue as

haing several distinct attributes chosen from independent categories. Thus, for example. one might

characterize a node's logic state and the "strength" of the value separately. The logic state is uually

one of 0, 1, or X: sometimes a high-impedance state, Z. is included to represent the output of tri-state

logic gates [Flake80, Holt8l]. The strength indicates what sort of network connection exists between

the source ,f the value and the current node:

input. Node is a designated input (e.g., VDI) or GMI)). The value of an input node can
only be changed by explicit simulator commands - the assumption is that inputs
supply enough current to be unaffected by connections (possibly shorts to other
inputs) made by transistor switches.

driven. Node is connected by closed switches to inputs or other driven nodes. Driven
nodes can affect the value of weak or charged nodes without being affected
themselves, but may be forced to an X state if shorted to an input or driven node that
has a different logic level.

weak. Node is connected to an input node by a depletion-mode transistor. Weak
nodes can affect charged nodes without being affected themselves, but are forced to a
driven state when connected to another driven or input node. A ,kcak node returns
to the appropriate %keak suite when completely disconnected from driven or input
nodes (i.e., a weak node can ne~er enter the charged state).

charged. Node is connected, if at all, only to other charged nodes. Until reconnected
to some other part of the network, charged nodes maintain their current logic state
indefinitely (charge storage with no decay). This is the default state of all non-weak
nodes.

Other strengths can be included to model the effects of differently sized transistors, node capacitors,

etc.

The plethora of 9-, 12-. and 16-state logic simulators (see [Ncwton8O]) use values chosen from

the set formed by the cross product of the various value attributes. For example, a 9-state simulator

might use

logic state

0 1 X

driven I)1. I)H )X

strength weak WI. WII WX

charged Cf. CH CX
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Note that in this fonnulation, X is treated as sort of a third logic value on a par with 0 and 1:

presumably X's are generated by thc simulator to model invalid combinations of O's and l's. The

implication is that one can determine if a value should he X without an coI. idcration of strengths.

(Rcmember that the main motivation of forming the cross product is that the various attributes are

independent). Th1is can lead to pessimistic predictions, as is shown in an example below.

It is useful to order the possible signal values according to their relative strengths. Intuit, ely,

value A is stronger than value I written A > B, if value A predominates when both signals are shorted

together. Of course there are situations where neither value emerges unscathed - for example, when

two signals of the same strength but opposite logic states are shorted - in which case neither signal is

sait, to be stronger than the other. The notion of strength can be formalized using a lattice of node

values, for example:

DX

DH DL

WX

Wil WL

CX

CH CL

A

Figure 5.1. Lattice of node values for a 9-state simulator

The node value A is used to represent the null signal, ie., no signal at all.

Referring to the lattice, given two values A and B, A > B if A is not equal to B and there is an

upward path through the lattice that starts at B and reaches A. For example

DX is greater than all other signals.

)H is greater than WL. but

WL is not greater than WH.

The least upper bound (l.u.h.) of two values A and B, written A U B, is defined to be the value C

such that

(i) C > A

(ii) C > B

(iii) for every value I). if I) > A and I) > B. then I) > C.

-Z
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Examining the lattice above, it is easy to see that dhe IAu.b. always exists for an two node values.

Note that if A > I1. A U B = A: the lu.b. captures our intuition about what should happen when two

signals of different strengths are shorted together. With the appropriate placement of X %,lues in the

lattice, the l.u.b. can be used to predict the outcome when an) two signals are shorted.

The interpretation of X values captured by the lattice above is quite appropriate for describing

the logic state of nodes involved in a short circuit:

DX = DH U DL

Figure 5.2. A short circuit leading to an X value

Assuming the two transistors are the same size, the middle node's value is the result of merging two

equal strength signal values. According to our lattice, this merger yields an X value. Short circuits are

the mechanism by which X's are introduced into a network previously containing only 0's and l's.

However. the situation is not as straightforward when one considers connections formed by

transistors with a gate signal of X. The resulting values cannot be computed directly using the U

operation on the source and drain signals, and once that hurdle has been surmounted, there is some

difficulty in choosing which value to use from the cross-product value set. Consider the following

analysis of a node with stored charge and connection to two transistors.

CL CL _ xC

DII 1)l1 Wit

(a) (b) (c)

Figure 5.3. Incremental aalysis of a simple ntwork

Before any connections to the node ha~e been discovered (figure 5.3(a)), the node maintains the

charge of its last driven value, sy, logic low: the simulator would assign the node a value of CL..

After the first transistor is discovered (figure 5.3(b)), the facts change:
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(i) lecause ot tile X on the gate of the transistor, one cannot be cert.in Ahat tN)pc
of Connection exists between the node in question and the I)l on the other side
of the transistor. I hus, the new logic suite of tLC node should be X.

(ii) The strength of the new value is uncertain, but clearl. "wAeak" or "charged"
tOIld be inappropriate since they undecs(a the strenigth in tile case %here the

unklown gate value was actually a 1.

Since a weak or charged value could be overridden by an enhancement pulldown discovered later on.

mistakenly leading to )L value. the simulator has no choice but to select a driven value. The

conclusion: IX is die only state a~ailable that handles all eventualities in a conscrxati~e fashion. Of

course, with knowledge of what the rest of the network contains. the simulator could make a more

intelligent choice, but this is beyond the ken of an incremental algorithm.

By the time a connection to a depletion pullup is discovered (figure 5.3(c)). the die has been cast:

the previously chosen )X value overrides any contribution by the pullup (DX U anything = )X).

While this answer is not wrong. it is more conservative than required: at this point the logic state of

the node should be 1. The pullup guarantees a logic 1 with the unknown connection to DH, only

leaving doubts about the strength of the value (somewhere between weak and driven).

Proponents of cross-product value sets might point out that the analysis would have generated a

different answer if the transistors had been discovered in a different order. The somewhat

embarrassing ability to produce two different answers for the same network, both correct, is caused by

the fact that the merge operation is not associative when connections are made through transistors

with X gates. In fact, most incremental simulators that use cross-product value sets perform the

incremental analysis in an order that yields a reasonable answer on the example above. Unfortunately,

it is usually possible to confound them with more complex circuits containing X's: while such circuits

are not commonplace, they often crop up dvring network initialization when all nodes start off at X."

In conclusion, it is possible to build effective simulators using cross-product %alue sets: however,

they can make conservative predictions on circuits that contain X's. In practice, this leads to difficulty

in initializing some circuits and to occasional over-propagation of X values.

tlliryanilil ippests using an incremental calculation onty for stubneiworks of nodes connccted b non-X transistors.
Once these %alues have been computed. a separaic computaimn nierges slnets connected b) X transistois. Since
thk% computation has global knowledge of the network, it can a~oid the problenis mentioned here.
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5.1.2. Interal aluc sts

The difficulties with the cross-product value set arise because of its separation of the notion of

strength and logic state. Once a node value is set to an X \aluC at some strength, it cannot return to a

normal logic state unless overpowered by a stronger signal: if a node is set to the strongest X aluC, it

stays at that value for the rest of the computation. As in the example above, this leads to conscrvati~e

predictions when the strongest X value is chosen because of the lack of suitable alternatives.

Specifically the difficulty came about because the simulator had to pick the highest strength to be on

the safe side- there was no value available that would indicate that the logic low signal which

contributed to the intermediate X value was of very low strength and hence might be overridden by

later network components.

This suggests a different approach to constructing the set of possible nodes values, one based on

intervals. First one starts with a set of node values with a range of strengths and 0/1 logic states, for

example. the six non-X states used above: {DH, DL, WH. WL, CH, CL}. Then additional values are

introduced by forming intervals from two of the basic values: if there are six basic values, then there

are ) = 15 such intervals, leading to a total of 21 node values altogether.

Intervals represent a range of possible values for a node. The size of the range is related to the

strength of its end points. If we arrange the six basic values in a spectrum ranging from the strongest

1 (DH) to the strongest 0 (DL), the possible node values can be shown graphically:

D11 0

logic high WH 0

CH0

logic low WL 0 j
DL 0

Figure 5.4. The 21 node values of the inte ,al value sei

Intervals that do not cross the center line correspond to a valid logic state: intervals above the line

represent logic high %alues, and those below the line, logic loA. lnterxals that cross the center line

represent X values. (The X %alues of the previous section corre%pond to intervals with equal strength

end points: )X = [)1.I)111. WX = IWI.,WHI, and CX = ICI.C I].) Thus. X values result from

anihiguitly about which of the base %alocs best represents the true node alue. As will lie seen below.
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this is wore satisf.actor, than thinking of X as a dird, independent logic state.

When the simulator merges two node %alues. it chooses the smallest interval that co'ers all the

possible node states. loweer, unlike the cross-product \,lue set. the inter\al set can represcnt X

values , ithout loosing track of the strengths of the signals that lead to the X values. Consider the

problems raised by figure 5.3(b). Using an interal 'alue set. the resulting node %alue is naturall.y

represented by [CIl)H]. an interval that corresponds to an X logic stIte. When the pullup is

discokcred (figure 5.3(c)). the simulator can narrow this interal to tWILl)YI] since the pullup

overpowers the weaker CL value. This corresponds to a logic high signal - a sensible answer.

An algebra for calculating the result of merging two interval node values is developed in

[Flake83]: a different approach is adopted in section 5.4.1 where a detailed description of the merge

operation can be found. With an interval value set, the merge operation is commutative and

associative, and the network can be processed in any order without affecting the final node values.

The extra 12 values introduced by the interval value set are needed to carry sufficient information

about how the current value was determined, to ensure that the final answer is independent of the

processing order.

The examples above suggest the following conjecture about the correct size of a node value set.

Assuming that one has s different signal strengths and two logic levels (0 and 1), then 2s + (2s) values

are needed to ensure that the signal algebra is well-formed. In simulators with too few states, some

states take on multiple meanings: for example, the DX value in the cross-product value set is used to

describe nodes that fall into 5 separate values ..1 interval value set:

i1)1 .1)1 [WLDHI iCI.,J)HJ [WH,DI.J [CH.,DIj

This lack of expressi," power on the part of cross-product value sets is what leads to pessimistic

predictions for node values in certain networks.

5.2. Developing the switch model

Switch models of MOS circuits are of interest since a switch is the simplest component that meets

the criteria outlined in Chapter 1: switches are inherentl bidirectional and the logic operations they

implement can he computed with acceptable efficiency in large networks.

Randy Bryant [Bryant79]. one of the first to apply switch-level simulation to MOS transistor

networks, viewed the network as divided into equivalence classes. Two nodes are equivalent if they

are connected by a path of closed switches. Nodes in the same equi\alence clss as V'n)n are assigned a
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logic high st.lie. thoC equi\alcnt to G\mI). a logic low, state. A pulltip (,I depletion-mode transistor

wlhich is Olwss on in tle sitch model) Pics the node ito hich it is attached a spccial propert. : if an

Cqui\alcme class of nodes doe, not contain either \ 1)1) or (,\[). hut dOes conta1ill J pulled-up node. all

the nodes in the class are assigned a logic high staie. Final,, if an equnis alence class contains neither

an input nor a pulled-up node. it is "storing charge" and maintains kh,ttewer logic state it had last.

The simulator based on this sAitch model itcrati,.el. calculates the cquialence classes for all the

nodes in tie network until twAo sLICCCSsi\e calculations return the same result (i.e.. no nodes change

state). LUnfortunatel\ thIS pure switcll model has some deficiencies:

(i) Switches in ind.:-ninmt states (those with "gate" nodes of X) make the
equisalence cacultion somewhat more difficult. The desired computation is
inefficient since It ins ol\Cs a combinatorial search: all combinations of on/off
assignments to switches in the X state need to be insestigated to detenine
whether a switch's state makes a difference. If the netsork is unaffected by a
switch's stite, the switch can be ignored: otherwise all affected nodes are
assigned the X state.

(ii) The equivalence calculation is much more time consuming than necessary since it
deals with the whole circuit rather than focusing onl\ on tie parts which change.

(iii) In certain circuits transistor "siue" is important. and the notion of size cannot he
expressed in the pure switch mdcl. A pullIp is a trivial example: \ie\ed as a
switch it was always on. but more "weakly" than the "strong" switches in the
pulldown. The size of transistors also determines the "strength" of various driser
circuits: for example. it is common for the write amplifier of a static mclnory to
force a value into a memory cell b. simply ocerpowering the weaker gate in the
cell itself.

The remainder of this chapter inestigates different approaches to solving the first two problems

ou.tlined abose. The third problem is addressed with some success by RSIM which uses siLe

information not only to calculate node values but to provide timing information as weli.t

The following sections present two different formulations of the switch model:

* a model where each node \aluc is computed via a "global" examination of the
network. If the network has no explicit feedback, each node salue is co'iputed
cxactly once. but this calculation is more expensive than tie one below.

* a model based on "local" interactions %%here the simulator eXImines the source and
drain nodes of each transistor and updates the state of one or both nodes. The
examination /update prcess continues until there are no further updates to be
made. i.e.. the netw ork has "relaxed" into its final state. Under this scheme each
calculation is trivial but it node aILIe might be computed more than once e en

tflr',,an [lil antill proposes esicndinr the sv,itch modet in ricludc a hicrarch'\ of ,,iti h , a tFc ica a iton of ihe
a d / soiUtion for pullups His thesi' dciclop an alchra, i ti e spiri of Boolean al ch i. Ior dealing S nillt a h i i ,h
such ncIi orks
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%hen there is no explicit feedback in the circuit.

I SIm (the author's sA itch-le el simulator) is a hbrid of these t\ o formulations. I SIM implements a

global IIOJc-',aLuc calculatJon using a node-,alue representation close to the one used by the local

simulator. This results in a c.iIctLation %cr similar to that implemented b) RSIM. except that abstract

"logical" resistances (R:ff = 0. 1, and 00) are substituted for the "real" resistances used in RSI.M.

Since this type of simulation algorithm is discussed at length in Chapter 4. it will not he pursued here.

Instead. the remainder of this chapter focuses on the ncA formulations introduced above.

The local formulation is attractive because it appeals to our intuition about how transistors really

work. The high degree of potential parallelism in the update calculation makes it a very attractive

algorithm for many of the ne parallel architectures now under development: the combination of

parallel hardware and intrinsically parallel algorithms may be the key to overcoming the capacity

limitations of current simulation techniques.

5.3. The global switch model

The global simulator calculates a node's value by computing the effect of each input on the node

Of interest. The simulation is global in that each node value is based directly on the values of the

inputs to which it is connected. Thus, the values of non-input nodes do not enter into the

computation. This means that 0. 1, and X will suffice as final node values: a node state need only

capture the logic state of the node and no strength information is necessary.

5.3.1. Node values in the global switch model

Each transistor switch in the network is assigned a state determined from the transistor's type

and the current value of its gate node. This state models the switch-like qualities of the source-drain

. nnection without trying to capture any more detailed information about the connection - a

simplification of the linear model presented in earlier chapters.

The state of a transistor switch summarizes the type of connection that exists between its source

and drain nodes. For MOS circuits, the possible switch states are:

open no connection, the state of a non-conducting n-channel (gate = 0) or p-
channel (gate = 1) transistor.

closed source and drain shorted. the state of a conducting n-channel (gate = 1)
or p-channel (gate = 0) transistor.

unknown uncertain connection between source and drain, the state of an n- or p-

-- --- ----
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&tihinel irans%tor %%hosc gate is X.

ic,tk the ,tae of a depletion transistor. l)epletion de ices are al~a~s assigned
thOis ,ac. cgardless of the state of their gate nodes.

I he rel,.itionhp het, een a stilch', state. !is tpes. and its gate %alUe is sUmnmariied in the follo4 ing

figure.

dram logic(ga~e) n-channel p-channel deplelion

T I closed open %eak
gate . - 0 open closed weak

X unknown unknown weak

source

Figure 5.5. Switch state as a function of transistor ttpe and gate voltage

In the global simulator, the %alue of a node is determined by the inputs to which it is connected

and the states of the intervening switches. During the calculaion of a node's value, the simulator uses

the interxal node-value set presented in figure 5.4. When the calculation is complete, the resulting

interal is used to determine the final logic state of the node, using the follosing table.

final logic state = 0 final logic state = I final logic state = X
CL I)H IDH.CI.]
[CL.WI.] [DH.WH] [I)H.WLI
ICI.,).1 [I)HCHI [DH.I)L]
WL WH [WH.C1.1
IWL.,DL [WH.CH] [WH.WL.j
DL CH [WH.DL]

[CH.C I
[CH.WI]
[CHI)IL]

Table 5.1. Relationship between final logic state and computed interval value

The calculation of a node's %alue begins by discovering all the inputs which can be reached from the

node by paths of closed. weak, and unknown switches. If no inputs can be reached, the final logic

state of the node is determined by a charge sharing calculation described in the next section. If one or

more inputs can be reached, their ,ontribution to the node's value is determined b an incremental

calculation which starts at the inputs and works its way back toward the node.

The Nalue of a logic low input is )I.: the %alue of a logic high input is i)H. As the calculation

works back toward the node of interest, it computes an effectise alue that indicates the effects of

intervning smitches on the original input %alue. The effect of a smkitch on a alue it transmits is
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specified b the 5wttch function:

Input

%alue = s'itcha. inpul '.%alue)

Figure 5.6. I.Octiec value of an input afier passing throug/ a switch

hlle effect of a switch on a xalue is a function of the value and the s% itch's state:

valueswitch stale
a open closed weak unknown

DH X I)H WH I[H.Aj
[l)H.WH A II)HWiI] WH Il)HA
[I)H.CH] A I)HCft] [WHCHJ j])H.J
[i)H.CI. A [i)H.CI.] [WH.CI] [flH.CLj
[I)H.WI] X [DH.WI.] [IH.WI] [I)H.WI]l[IDIU .! X [I)HDI] [NNI.WI.I [I)H.,jo

WH I X WH AH [WH.A
[WIL.CHI , A (AH.CI1 ["41.C111 [Wtl.Aj
[w I .(_l A IwI~I.I [\\Ito.('-. I\Ali.Cf.]
[Wll. ,1. % JAI wL.WIl WH.AVI-) IWH.'WI.}

[WH.DIl] X [WHl)I.] [VH.WI I [MMH.i)]
CH X CH CH [CH.AI
[CH.CLI X ICH.CI] [CH.CLI ICHKCI.I
ICH.'I-I X ICH.WI.J IC 1W!]i IC lWI .
[CII.!)!] A (CUHDI1 (CH .WL 1 (CH.D1.I
CL A CL Cl. [A.C I
ICI..W.] A lCL.W.. I ..W JA.wl.]
ICli)l.I x [CL.l)l.! ICI..wI] IA.I)I
Wl A WL WI. Ix.WL.I[wlI ;1,1 [WM-.)I.I wt. [.~

I)L A DL WI [A.I)l]

Table 5.2. switch(u, valuc) as a function of a and value

A new alue, A. is introduced to describe the value transmitted by an open (non-conducting) switch.

.e.. no value at all. The valuc A is weaker than CH or Cf.. and corresponds to a logic state of X.

When two paths merge, their effectike \alue is determined using the U operation introduced in

section 5.1.1.
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NalueA 61 s'ilch(a 1 aLc ) ' h( .

value 1  02 switch(a,. aluc 1 ) h

(a) two %alus 10 nierge (b) %alues including cffcci of switchcs (c) niergcd kaluc

Figure 5.7. Aerging the values for two paths whichjoin

The U operation is defined using the lattice shown in the following figure.

[DIL(DLl

DH DLI I
[DII.WL] [Wi .DL]

[I)II.WII] [WHI.WL] [WL.DLI

[DI.CL] Wi1 WL [CHL.DL]I I I/I
[Dl Lid I] [Il L.C'L [CiI.%'I.] [CLDL]1

[DIxA] [WVILCII] [CIICLI [CLYWI] IXDL]

[WII,] Ci1 CL [XWL]

[CLII, ,XCL]

Figure 5.8. Lattice for intenal-node value set

Following the procedure outlined in figure 5.7. the contributions of all inputs connected to the node of

interest can be reduced to a single interval. This interval is merged (using U) with the contribution

from the node's current logic state

CL if current logic state = 0
contribution of current logic state = CH if currenit logic state = 1 (5.1)

[CH,CI. I if current logic state = X

to give the final interval characteriting the node's new logic state.

As an example of how the new-valhe calculation works, consider the follo ing circuit:
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x output

Figure 5.9. Example circuit

Assume that the current logic state of the output is 0. The ncw-value calculation for this circuit is

shown in the following figure.

DII w ek W11 CL
-J- CL CL DL '--O Lunknown Dunknown unknown

ldosed

(a) (b) (c)

Figure 5.10. New-value calculation for circuit in figure 5.9

The final interval for the output node is CI. U [ADL] = [CL,DL] which corresponds to a logic low

state. llis makes sense: the previous state of the output node was logic low, so the uncertain

connection to the inverter does not affect its logic state, just the strength with which its driven. Note

that it is important to merge the values of paths that join before continuing with the calculation since

switch(a. a U /) switch(a. a) U switch(a, fl) (5.2)

when using this particular value set and switch function. For example, if the WH and DI. values had

been merged after transmission by the switch in the unknown state, the final interval for the output

node would have been II)H.W.] which corresponds to an X logic state. The calculation described

here performs all possible merges befjre transmitting the result through the appropriate switch.

r
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5.3.2. The global simulation algorithm

This section outlines the basic steps for prop.:ging new information about the inputs to the rest

of the network, recadculating node \alucs (where necessar ) using te global UIIe CalcouLition in ie

preious section.

When a node changes %alue, it can affect the network in one of two ways:

1i) directlz, through source/drain connections of conducting transistors.

(ii) indirectly, by affecting the state of transistor switches controlled by the changing
node. [his is turn can cause the source and drain nodes of those switches to
change value.

The global simulator accounts for these two effects using to different mechanisms. )irectly affected

nodes are handled implicitly by the new-valuc computation which recomputes new alucs for all

directly affected nodes whcnccr a node changes value. This is a reasonable organi/ation: if A directly

affects B. then B directly affects A: it makes sense to compute both values at the same time since they

are closely related. Direct effects are not handled implicitly, however, when the user changes the

value of an input node. In this case. the simulator invokes the nCw-valuc computation on ,he input,

not to recompute the input's Nalue (which is set by the user), but to recompute the %alues of all

directly affected nodes.

The indirect effects of a %alue change are managed by an event list that identifies all transistor

switches that have changed state. Actually, the event list keeps track of the nodes that have changed,

but this is equivalent since the network data base maintains a list of transistors controlled by each

node. The simulator operates by removing the first node from the event lisL and then performing a

new-%alue computation for the sources and drains of all transistors controlled by that node. The new-

alue computation accounts for all the direct effects of the new transistor state and adds events to the

event list if indirect effects are present. This process continues until the event list is empty, at which

point the network has "settled" and the simulator waits for further input.
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while event list not empty {
n : = node associated with first event on event list
remove first event from event list
for each transistor with n as gate node {

set COMI'LAi1 flag for sourcc and drain

for each transistor with n as gate node I
if COMPIL I1 still set for source, compute new value for source [fig. 5.14]
if COMPi,' I: still set for drain, compute new value for drain

I
}

Figure 5.11. Main loop of global simulation algorithn

Finding nodes affected by an event is straightforward: rccomputation of values is needed for the

sources and drains of all transistors with the changing node as gate. For example. if the node marked

(*) in the following figure changes, nodes B and C need recomputation.

0 () X

Figure 5.12. Event for node (*) involhes noJes B and C

Of course, node D also needs to be recomputed, as will be discovered during the processing of B and

C (see below).

To recompute the value of a given node. the simulator first makes a conection list containing all

nodes connected to the first node by a path of conducting transistors. The idea is to start with a node
known to be affected by an event, and then find that node's electrical neighbors, and so on. halting

whenever an input is reached. In the example above, if the (*) node's value is 1. the connection list

for node B contains nodes B. C. and 1). If the () node's value is 0. the connection list for node B

contains only node B. Node A is not included in the list in either case because it is not connected to

node 11 by a path of conducting transistors. In the code belo%. %hich computes the connection list for

a given node. the terms "source" and "drain" are u.c. to distinguish one tenninal node of a transistor

from the other, and do not imply anything about the terminals' relative potential.

V7
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initidi/e list to ha e starting node as only element
set pointer to beginning of list
IN1L I I OAD:= falsC
reset capalcitance a.ccumulators

Shile pointer not at end of list [
n := node currently pointed at
add capacitance of n to appropriate accumulator
for each "on" transistor with source connected to n {

if drain is an input INI'T IOUNl) : = true
else it drain not on list, add drain to end of list

}
advance pointer to next list element

Figure 5.13. Non-recursive routine to build connection list

In addition to the connection list. the routine sets INPUT IOUND to true if the tree walk discovered at

least one input, and maintains three capacitance accumulators, one for each logic state. The

connection list drives the new-value computation:

make connection list starting with given node [fig. 5.13]
if no inputs found, do charge sharing
else for each node on connection list {

compute inter~al Nalue for node [fig 5.151
determine ncw logic state using Table 5.1
if different from old logic state {

update logic state to new value
enqueue new event

}

reset COMPUTE flag for each node on connection list

Figure 5.14. Subroutine to compute new valuefor node

If no inputs are found while building the connection list (INPUT FOUND is false), the group of nodes is

completely isolated from any inputs and a charge sharing computation determines the nodes' new

values. Assuming that all the node capacitors are shorted together, the resulting voltage is

voltage of shorted capacitors = E at logic high
o- ,d[aler calhcitors

Capacitors with a logic state of X are assumed to be charged high when computing the maximum

possible voltage, and charged low when computing the minimum voltage:

0 Ct,,h + - r < 0.2
(totalI

(harg' .haring value I > 0.8 (5.4)
( 6-fd

• ; ~~~~~~~~- I i l i .. m .. I Ii [ [
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where Cltal is the sun of die capacitanCe accumulators. (lujh is the accuntlator corresponding to

logic high. and (x is the accumulator corresponding to logic X.

If one or more inputs are found (INI'UI IOt\i is tnic). the UIlIe of each node is determined in

accordance with the procedure described in the previous section. The inter~al %alue is calculat'd for

each node in turn and the node's new logic state is computed using Table 5.1. Nc% e~ents are added

to the end of the cent list whenever a node changes value. If a changing node is already on the

event list, nothing happens (the node is not moved to the end of the list).

For efficiency, each affected node's value is only computed once while processing a given eent.

The connection list ensures that all affected nodes are recomputed- the coxwurfr flag ensures that

once a node has appeared on some connection list, it will not be resubmitted for processing during the

current event.

The computation of a node's value is easily described by a recursive procedure which arlalyzes

the surrounding network:

if node is logic low input {
return DL

} else if node is logic high input {
return DH

}else {
lOCAL IV := value specified by equation 5.1
set VISHrI D flag for current node
for each "on" transistor, t with source connected to current node {

if drain does not have VISITED flag set I
recirsively determine interval value for drain node
LOCAL IV := LOCAL.IV U swiclh(at, drain's interval value)

}
I
reset VISIE.D flag for current node
return I OCAL IV

IJ

Figure 5.15. Subrowine to compute ierval value for node

The variable LOCAL IV is a stack-allocated local variable of the subroutine. Returning to the example

in figure 5.12, assuming that the (*) node's value is 1, and that the old values for 1). C. and D are

B = 1, C =0, and D =0, the following calls are made when computing the new value for node C:
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coIpute_parans(C)
lOCAl IV = CL

computeparams(i))
lOCAl IV = CI.
comlpute_params(VDl))

return )H
I o0CM IV = Ct U WII = Wit
computeparams(GN D)

return 1)I.
1OCAl IV = WII U DL = DIL
return DL

I OCAL IV = Cl U [X.DI.] = ICI.DI.]

computeparams(B)
LOCAL IV = CH
return CH

I OCAl. IV = ICI ,DI.] U CIt = CIIDIt]
return [CH,DI.]

Figure 5.16. Trace of interval value computation for example in figure 5.12

Marking each visited node (by setting its VISITED flag) avoids cycles: this keeps the tree walk

expanding outward from the starting node. The VISITEDi flags are reset as the routine backs out of the

tree walk, so all possible paths through the network are eventually analyzed.

-- I - o

A 02 A3 005 03 A 5  A 03

(a) original circuit (b) circuit as seen by tree walk

Figure 5.17. The tree walk traces out all possible pat/is

If the network contains cycles, the tree walk might lead to more computation than a series/parallel

analysis: this is a problem for circuits containing many potential cycles (such as barrel shifters),

especially during initialization %hen many of the paths are conducting because control nodes are X.

To speed up the calculation. a node's VIslI[rt) flag can be left set, restricting the search to a single path

through a cyclic network. This technique produces correct results only if paths leading away from a
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node ,r. explored in order of incre,.sing resistance. Lc.. one must ensure that the first time , nidc is

reached, it is by the path of least resistance. Of course. the fides mus( he reset once the entire

computaItion is complete: fortunatelh. the connection list pro% idc,, a hand\ k,,i of flndir all the nodes

that are visited without resorting to ,et another tree walk. Another lhernatit\c for speeding Ip the

calculation is the caching technique described in section 4.2.

5.3.3. Interesting properties of the global algorithin

The event list serves to focus the attention of the global simulator: nc% values are computed

only for nodes which appear on the event list or which are electrically connected to e\ent-list nodes.

Portions of the network that are quiescent are not examined by the simulator. Algorithms have

this property are said to be selective-trace or event-driven algorithms and gencrally nun rr taster

than algorithms which are not event driven [Szygcnda75].t

An interesting implication of selective trace is that special care must be taken to e , .nat

"constant" nodes, such as the output of an inverter with its input tied to GND. are processed at least

once (otherwise they will have the wrong values). One technique is to treat vt) and GND as ordinary

inputs when first starting a simulation run - sort of a power-up sequence as VDD and GND change

from X to I and 0 respectively. Computing both the direct and indirect consequences of changes in

\DD and GNi) might involve a tremendous amount of computation since the whole circuit is affected:

often only computing the indirect consequences is a sufficient and less costly alternative.

Although there is no explicit mention of time in the global simulator, the first-in, first-out (1:IF:O)

processing of esents imposes some ordering on the changes of node values. This ordering is similar to.

but not the same as. the unit-delay ordering used b mans gate-lesel simulators. In an esent-driven

unit-delay algorithm, the output of each gate that had an input change is recomputed using the current

.alucs of the input nodes. The new output values are saved and imposed on the network only after

processing all gates. The net effect is that each computation cycle (representing a unit of time)

propagates infonation through one level of gate, ie.. each gate has unit delay. Because changes in

node %alues are imposed all at once. values change simultaneously, which can lead to problems in

tIxccptions to this rule arc wnc hardkare-bascd simulation algonithms. such as programs run on the Yorktown
Simuulation Irine [Wfiscr82l [be builders of the NS|: point out that simulations rntuhi wcll run slower because the
cstra comniucation and branching! needed to Implennt sleciu'e irace would compromise the parallelism and pipe-
liniing used to greal ad'aniatuc in the ')SI. Ilo .. cr. i" Sufficzcnit[ larc portions of the circuit. could he ignored,
the oserhead oi sclectie trace could he worh the in% estnmcnt (Scc (bapter 6).

--- ------
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circuits containing feedback paths.

The glbal simulator implecents a pseudo unil-delms algorithm. Nct cxcnt are added to the

end of the eent list, so the oldest changes are prx:csscd before an consequence,, of those changes

are protcesscd. Thus. Ill 0 C\ ct management leads to the same sequence of gate C\ aluat(ng as a

unit-delay, alorithm. loc\er. because the global algorithm changes ,alucs in the netw ork

incrementall. rather than all at once. it is possible to find circuits that behase differentl under the t,o

simulators:

0--0-1 0--,0

01 00-1 0-'-..

-0

(a) unit delay (b) pseudo u'-dcla.

Figure 5.18. Circuit tat distinguishes unit-dela) from p~cudo unit-delda)

A 0-1 transition on the input causes a unit-delay algorithm to loop forescr. The global algorithm

predicts only one transition - the output of Ahichever gate it processes first. Neither answer is

completely correct, the actual circuit enters a meta-stable state on a 0-I ir, ut transition, e\entually

settling to a particular configuration determined by subtle differences in the gains of the two gates. It

Aill not remain in the meta-stable state forever, so an infinite oscillation is a poor prediction. On the

other hand, the final configuration chosen by the global simulator depends on the order of some list in

the network data base. The predicted outcome is the same each time, not neccssarily the best

prediction." The global simulator does not offer a general solution to the oscillation problem, both

simulators will oscillate on the following circuit.

tlBran19ll su , tcs that the o~cillation can he detected and the offending node Nalucs replaced h% X, but the tech-
niquc for dcennning the 11 1 n Cr of oscillations to allow .ields answers so large for circuits of an. substantial sue
that this is not a %r} practical aliernause

I,*
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Figure 5.19. Circuit w]u('h causcs bot/ imuluwohrs to oscillate

Along the same lines. tie global simulator predicts that the output of the circuit below will

oscillate when the input changes from 1 to 0.

-I
-I node which is both an input and output

Figure 5.20. Circuit with a node hat is both an input and output

Tie actual output quickly rises to the balance point of the pullup/puldo n combination. In a logic-

leel simulation, this corresponds to finding a solution to the equation a = -a which has the solution

a = X (a reasonable logic-level representation for the balance point). This example is drawn from a

larger class of circuits where a node is both an input and output of the circuit. Since the new-%alue

computation uses current transistor states (determined by current node salues) to prcdict the new

Nalues. it is impossible to predict the value of a node that depends on its own %alue. This limitation

has not proven to be a problem in practical circuits.

5.4. The local sitch model

It is interesting to speculate about replacing the tree walk performed by the global simulator %ith

a strictly local computation. After all, the models of transistor behavior presented in Chapter 3 show

that a transistor is controlled b the %oltages of its three terminal nodes, ie.. each transistor operates

independently, basing its behaiot' on only local information available at its terminals. "lie simulation

model described in this section works in much the same wa.. The basic operation in~olhes updating

the tenninal node alues of a transistor switch using onl in formation about their previous values and

the state of the switch.
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Relaxation-hased ,ilorithins Iea~c one a lte nervous Will the relax.itin nerininitle )oes the

final answer depend on the order in %hich the indi ... d computatiOnS arc perrbrncd? I hese

questions are answered bclow, after a description of the ag;,ithin itself.

5.4.1. Node %alucs in the local si*ch model

The set of node %alues and the CompLtation de'clopcd for the global simulator must be adapted

for use by the local simulator. The necessity for an adaptation is explained at die c!id of section 5.4.2.

(Ihe discussion is postponed until after the local simulation algorithm has been presented, when it A ill

be easier to explain wh. the global simulator's techniques do not %ork in the local simulator's context.)

In the local simulator, a node value is a pair

<high.low>

that separately lists what type of connection exists to each of the two possible input signals. The high

component summarizes what is known about paths to VD, and the low component describes paths to

GND. Ignoring for the moment switches with gates cf X. four types of connections can be

distinguished for each component:

00 no paths to inputs, no charge storage,

S charge storage.

1 there is a path to the appropriate input, but it passes through one or more
depletion switches.

0 there is a path of conducting n-channel (gate = 1) and p-channel (gate = 0)
switches to the given input-

A switch with a gate of X may or may not make a connection; the resulting path is characterized by an

4interval describing the range of alternatives. (2) = 6 intervals are needed to describe all possible

combinations of paths.

The value of VDD is <0,00> and of GND is (00.0>: some other examples are shown in the

following figure.
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CL 
CI Cli

(a) 1, 0> (b) <10.1]. S> (C) <S. S>

Figure 5.21. :'xwnples of node values in the local simulator

This organization provides for man), more values than actually needed b. the simulator: man), of the

%alues make distinctions that are not important in determining a node's logic state. For example. (1,0)

and <S.O> both represent %alues corresponding to pulled-do%,n nodes - it does not matter %hat the

high component contributes if it is weaker than the low component. The ad~antage of this notation is

the ease of computing what a given signal looks like from the other side of a transistor switch:

I X 0

< 0) _ Q.0> _ . C.0 _1.0 _ ..1

(a) 0,. 0> (b) <[1.001, P001o> (C) C1.1 (d) <00.00>

Figure 5.22. < 1,O> value as seen across various transistor switches

This will prove very useful in describing the update operation below.

Using the technology developed in section 5.1.1. a lattice can be constructed that indicates the

relative ordering of the various component values:

-!- ~ - - ~-r, --.~-
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0

fI]

I [os]--1 1o-. 'Sl

.. .. l.s) IO,001

S] I. l

S -0

I
00

Figure 5.23. latice for the ten possibi, component values

The U operation can be used to calculate the result of considering t~o paths in parallel:

<h1 , 11> U <h2 , 12> = <hl U h2 , 11 U 12> (5.5)

Each component is merged separately according to the lattice gi'cn abo~e. Similar]), two %alues can

be ordered by comparing their components:

<ht, 11> < <h:, 12> iff hi < h2 and 11 12 (5.6)

A logic state can be associated with a value (h,l> using the following table:

h
0 [0.1] (0.S] (o.o- 1001 1l IS I I.-ol S (.00] 00

0 X X X X 0 0 0 0 0 0

10.1] X x x x x x x 0 0 0
(o s1 x x x x x x x x x oI0.s] lx X X X X X X X X 0
10 01 x x x x x x x x x x
1 1 X X X X X X 0 0 0
(IS] 1 X X X X X X X X 0
11-co] I x x x x x x x x x
S .011 X X X 1 X X X X X

, So 1 1 X X 1 X X X X 0

00 1 1 X 1 1 X 1 X X

Table 5.3. logic statt associated with <h>
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5.4.2. The local simulation algorithm

The local simulator implements a relaxation-based calculation for propagating input values

through the network. The calculation has three major steps:

Step 1. Determine the state of each transistor switch from its type and the logic
state of its gate node. If no sAitches arc found that changed state since
the last examination, the network is said to have "settled" and the
simulator waits for more input.

Step 2. Reset each non-input node value to its charged value, a %alue that
corresponds to the node's last logic state but does not have sufficient
strength to force the value of any neighboring nodes.

Step 3. Repeatedly pick a transistor and update the values of its source and drain
nodes according to the formula given below, continuing until the
relaxation is complete (no node changes value as the result of an update).
Upon completion, return to Step 1.

Each of these steps is described in more detail below.

Figure 5.5 shows how a switch's state is determined from its type and the logic state of its gate

node. Once determined, the switch state remains stable through Steps 2 and 3 even if the gate

changes value. This arrangement is necessary for the correct operation of the simulator since a node's

xalue might temporarily be incorrect during the relaxation computation while information continues to

propagate towards the node from various inputs. For example, the output of a NAND gate may

momentarily appear to be pulled-up, because the near-by pullup affects the node's value before

information can propagate from GND up the pulldown chain. Since there are no gudrantees about the

ordering of updates, a node's value is known to be correct only when the relaxation process

terminates.

Step 2 makes sure that the relaxation starts off with a clean slate, when this step is complete,

only input nodes have values that can cause the values of neighboring nodes to change. This ensures

tiat values for non-input nodes are determined exclusively by the values of the input nodes.

<00, S> current logic state = 0

charged value = <S, 00> current logic state = 1 (5.7)
<S, S> current logic state = X

If' a node is not connected to any input, the charged value is an accurate representation of its final

value. The update calculation performs a rudimentary charge sharing computation, a charged node

can become connected to another charged node with the same logic state, and still maintain its value.

Connection to a charged node with a different logic state results in both node values becoming <S,S>.
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Note that precharge/discharge circuits are sirnulted correctly.

An update operation in~olhes the source and drain nodes of a single transistor switch. 'lbc new

%alucs of the source and drain arc calculated from their old %alues and the suce (a) of the switch:

Isourcu = sour'c( U switch(a. i'drain)

Vdramn Vdratn U swiich(a. 'soujre) (5.8)

The function switch(a.value) fornalizes our intuition about the effect on a value as it passes through a

switch in a given state (see figure 5.22). The new value of a terminal node is the result of merging its

old value with the old value of the other terminal node after it has passed through the switch.

00 a = open

<h, 1> a = closedswitch(a, <h, I>) = <h + 10,001, 1 + [0,001> a = unknown (5.9)

<h + [1,11, 1 + 11,1]> a = weak

where "+ is the series operation described in the following table:

+ [0.01 [0.1] [0S] [0,001 [1.11 [I.S] [1.001 IsS] [S-001 [00.00]

100.0 10.10
[0.11 [0.1 [0,11
[o1sl [oS] [.s] [0.s
[0o0] [0.0o [0.o001 10.001 t0.001

[1.[00 [1-001 [.001 [1001 [1.00] 1.00] (1.001 [1.00

IS.S] [S.S] (S.SI [SS) [.001 IS.S] [S.Sl [s-001 IS.S]
[s.00] IS.001 [s.001 {S.00] [S.S00 [S,00] [s.00] [s5Oo] [.00] (S.00]
[00.001 [00.00] [00oo [00.001 [00,001 [00.00] 100.001 [00.001 [00.001 [00001 00.001

Table 5.4. Series operation for local simulator

In general, the local algorithm's predictions are more pessimistic than those of the global

simulator. The following figure illustrates the analysis performed by the local simulator for the circuit

shown in figure 5.9. (The global simulator's analysis is shown in figure 5.10)

SEEM-



- 112-

<0,00> x 0.00> x

<00.,0> <00

(a) onginal configuration (b) after netork sttles

Figure 5.24. Local simulator atalysis for circuit in figure 5.9

As shown in figure 5.24(b), the local simulator predicts the logic state of the output node to be X - a

pessimistic answer. (The global simulator predicts a logic state of 0.) On the other hand, the local

simulator cannot simply adopt the value set and computation of the global simulator. The reason why

is illustrated by the following figure.

xI X DI1 #1 -D--X DH 1

#3" CL #3 ICL.DL] #3 [WlD.I ]
D)L -- DL _---2 #2 -

#2 --- #2

(a) original configuration (b) update order: #1. #2 ... c) update order: #1. #3.

Figure 5.25. Global simulator's computation using update operations

The figure shows the final node values (i.e., the values after the network has settled, and further

updates make no change to the network), assuming that the first few updates were performed in

different orders. Figure 5.25(b) shows the final node values if switch # 1 is updated first, followed by

switch #2. Figure 5.25(c) shows the final node values if switch #1 is updated first, followed by

,witch #3. As one can see, the value of the output node differs in the two examples.

If the local simulator's predictions of the final node vaiues are to be independent of update

order, it must be the case that

switch(o. a U ) = switch(a. a) U switch(o, f) (5.10)

In other words, it cannot matter if early estimates of a node's value (a) are transmitted to neighboring

nodes before additional information (fl) arrives. Unfortunately, equation 5.10 is in direct conflict with

equation 5.2 which indicates that order makes a difference in tie analysis of certain circuits (such as
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the one in figure 5.9) when using the global simulator's %alue set. Thus. the local simulator cannot

simply adopt the global simulator's value set.

5.4.3. Interesting properties of the local algorithm

In order to answer the questions raised when first introducing the local algorithm., some

definitions will be useful. Let S be the set of switch-state %ectors 0102 "'' at where t is the number

of transistor switches in the network. Similarly. let V be the set of ,tode-%alue vectors V .2. n

where n is the number of nodes in the network. Then SXV is the set of possible network states.

Decfinition. Let X and Y' be network states. X > Y if Sxt = Sy and Vk > Vy
where comparison between vectors is done component by component.

The update operation changes one network state to another; one writes X- Y if a sequence of zero

or more updates changes the network state X into the network state 1'. X -, ' means that m or

fewer updates will change X into Y.

The update operation can potentially change two elements of the node-value vector: the switch-

state vector is neer affected by an update. Not every update causes the network state to change. For

example, if the update chooses an open switch, the resulting network state will be the same as the

original state. In the presentation below, it is useful to distinguish those updates that result in a

change in the network state from those that do not:

Definition. Let X and Y be network states. X Y if X -i Y' and X * Y.

In fact, X =* Y implies Y' > X, a simple consequence of equation 5.9 and the definition of U. A

stable network state is one which does not change as the result of any update:

Definition. Let X be a network state. A' is stable if, for any network state 1" X -- Y
implies X = Y.

It follows directly from this definition that a state is stable if and only if no =. operations are possible

on the state. Once a stable state is reached, the relaxation process can safely be terminated since

further updates will not change the network state. [his suggests the following metric for measuring

how far the relaxation process has to go:

Definition. I ct X be a network state. ordcr(') is defined to be the largest integer m
such that there exist states )' .... Ym where A )'j - " " '.

t*
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The termination of the relaxation process iS assured by the following theorem:

Theorem 5.1. For any network state X order(A') is finite.

The proof is based on the observation that there are only finitely many network nodes and possible

node %alucs. This means for any given network state X. there arc finitcl many states Y such that

Y > X. Since each =*- operation produces a state strictly greater than its predecessor, one can

perform the = opcration only finitely many times before all the possible states are cxhausted, I

For a given starting network state, Theorem 5.1 tells us that a stable state can be reached with

only a finite number of => operations. In fact, one can prove that there exists a unique stable state

for any network state, but first we must lay a little more groundwork.

Lemma 5.2. Let W and X be network states. If order(W) = ?? and 14 = X, then
order(X) < m.

Suppose that order(X) > m, then there exists a sequence of = operations

W =: X = I y=, ... =*. YordertX). This implies order(W) >_ m + 1, a contradiction. I

Lemma 53. (Church-Rosser property) Let W X. and Y be network states. If
W -"1 X and 14' -1 Y, then there exists a network state Z such that X - Z and
Y - Z.

Appendix I presents a proof based on a case by case analysis of the possible choices for X and Y,

demonstrating for each case a sequence of updates that lead to a common state Z.

This sets the stage for proving the uniqueness of the stable state. For readers acquainted with

the lambda calculus, the folh)wing theorem has a familiar ring. '['here are many similarities between

the update operation and -conversion: the discussion of normal forms and the Church-Rosser

theorem found in [Curry74] inspired the concept of stable states and the existence and uniqueness

theorems presented here.

Theorem 5.4. Let If, . and Y be network states. If W - X and W - Y, then
there exists a network state Z such that X - Z and Y -- Z.

[he proof proceeds by induction on the order of W. If order(W) = 0. then W" is stable and so

W = X = Y = Z . Without loss of generality, if order(W) > 0. one can assume X > W and

Y > 14 since if this were not the case, the result follows trivially. If order(W) = 1. the result follows

as a direct consequence of [emma 5.3. To show for "rder(WI') = n + 1, first note that there exist

states A and 8 such that If' = A - A' and If = B - 1. 'Iben, by Lemma 5.3. there also exists a
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state C such that A - C and B - C.

order n+ 1I/w\ --I

D \/E

z

Figure 5.26. Relationship between slates in prooffor Theorem S. 4

Using Lemma 5.2, note that the orders of A, B, and C are all less than n + 1. Thus, by the induction

hypothesis, there exists a state D such that X - D and C - D. Similarly, there exists a state E such

that Y - E and C - E, also by the induction hypGthesis. Finally, by a third appeal to the

induction hypothesis, there exists a state Z such that D - Z and E - Z. I

Taken together. Theorems 5.1 and 5.4 imply the following corollary:

Corollary 5.5. Let X be a network state. There exists a unique network state Y such
that YisstableandX - Y.

Thus, the relaxation process terminates for any starting network configuration, yielding the same stable

state regardless of the order chosen for performing the updates.

One of the attractions of the local algorithm is the opportunity it affords for parallel processing,

especially during the relaxation process. Allowing parallel updates introduces the problem of merging

conflicting node values at the end of the updates. The simplest solution is to allow updates to happen

simultaneously only if they operate on separate portions of the network state. With this restriction,

each node is involved in at most one update operation, and the potential for conflict is avoided. If the

number of available processors is a lot smaller than the number of nodes in the network, there is only

a small probability of a processor lying idle, because there are an insufficient number of allowable

updates.

Parallel implementations that avoid conflicting updates are covered by the existence and

uniqueness results obtained above, since it is easy to convert the set of updates performed at any time

step into an equivalent sequence of sequential updates. This approach has sufficient parallelism to

keep many current parallel architectures quite busy. However, there are architectures on the drawing
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boards with Nery large numbers of processors: it is intresting to Speculate about algorithms that can

usefully employ as many processors as. sa, there are transistors in the network.

To explore the possibilities, imagine a mUlti-processor constructed of the follow ing elements:

%ource -qdrain A f

gate C

(a) transistor element (b) node element

Figure 5.27. Simulator processing elements

Both types of elements synchronize their operation to a four-phase global clock:

Phase 1. The transistor element samples the values of its source and drain
connections and calculates new %alues using internal information about its
type and current state.

Phase 2. The newly updated values arc driven on to the source and drain
connections by the transistor elements.

Phase 3. Each node element samples one of its three connections and computes
the least upper bound of the sampled value and its stored state. The
connections can be sampled in any convenient order; the only
requirement is that a connection not be ignored indefinitely.

Phase 4. The node elements drive their connections with the value computed
during Phase 3.

Note that the node element is particularly capricious: it ignores two of its three connections in any

given cycle. This complicates the notion of an update since there is no guarantee that the two node

elements attached to the source and drain connections of a transistor element will be listening when

the results of an update arc made available. It becomes especially confusing when one of the elements

is listening and one is not, which results in "half" an update. Of course, one can conceive of less

bizarre node elements, but if it is possible to prove correct operations under the proposed conditions, a

much wider class of parallel architectures will be appropriate for the local algorithm.

The elements are wired together in a way that mirrors the topolog of the network to be

simulated; multiple node elements are used to model network nodes with a large number of

connections.
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VDD

B

GND A

(a) circuit schematic (b) element interconnect

Figure 5.28. Example wiring diagram for simulator elements

By providing one processor per transistor and node, this implementation exhibits al! the parallelism

one could reasonably expect. Steps 1 and 2 of the local algorithm are accomplished in a single clock

cycle. During Step 3, an update calculation for each transistor is performed every clock cycle. A

wired-or'ed signal visiting all the node elements can detect when the relaxation process is complete; a

similar signal connected to all transistor elements can indicate when the network has settled.

This scheme is not as fanciful as it seems - the Connection Machine project [Hillis8l] now

underway at the M.I.T. Artificial Intelligence Laboratory has an architecture well suited to an

implementation similar to the one described above. Fully configured, its one million elements would

be able to simulate sizeable circuits at very high speeds. However, the real purpose in proposing this

architecture is to provide a vehicle for analyzing the operation of the local algorithm in a parallel

environment.

A key insight into the design of a parallel engine is that the value stored by each node element

must be non-decreasing with time, Le., if vi1 ..... vi, are the values of node element i at successive clock

cycles, then vi, < ... < vi. The "ratcheting" of node values up the lattice, which was crucial in

showing termination of the relaxation in a sequential implementation, must be preserved in the parallel

implementation. With this in mind. consider adding a communications link between two node

elements:

..
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VDD

GND

T

Figure 5.29. Simna ion engine incorporating communicauion link

Since the system must already accommodate the unpredictabic behavior of node elemecnts, the

demands on the link are minimal: messages cannot be garbled and the network cannot become

partitioned indefinitely. Htowever, messages can be dropped or delivered in any order since these

failures do not affect the monotonicity of a node's value.

Two important questions remain to be answered about parallel implementations that allow

conflicting updates:

(1) Is there an analog for Lemma 5.3?

(2) Does this parallel implementation give the same answer as the sequential
implementation?

The author's speculation is that both questions can be answered affirmatively. This belief is based on
the obserFations that no information is lost that cannot be recalculated, and the operation of the

switches and merging of results remains unchanged. Given that the order in which the propagation

happens was shown to be irrelevant by Theorem 5.4, it seems unlikely that the slightly more baroque

propagation mechanism of a parallel implementation would seriously change the picture

implmenttion

-- h. author' spclto is that bot qusin can be= anwee afimtiey This_ "belief is.. base on... .

.. ....... obseradon that no inorato is lost11 tha cantb luaean h praino h
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CHAPTER SIX

Simulation Using a Pre-compiled Network Model

The simulation algorithms presented in previous chapters rely on examination of the surrounding

network to determine the value of a -given node. The surrounding network is re-examined every time

the node's value needs recalculation. This chapter investigates breaking this process into two steps: a

single complete network analysis which builds a set of four logic equations for each node, indicating

the types of connections between the node and VDD or GND; and simulation, where the value of each

node is determined by evaluating its equations built during the first step. Not only is the overhead of

a tree walk avoided each time a node value is calculated, but evaluating logic equations is also a very

fast operation for most computers.

Each step is discussed in a separate section. The first section describes the derivation of logic

equations for each network node - even those which are not directly outputs of MOS logic gates. The

second section presents several approaches for building a logic simulator based on the evaluation of

the node equations.
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6.1. Reducing siitch paths to logic equations

he ,,Aitih-1cel algorithm in Chapter 5 determines the %aluc of a node fromn Information about

the node's current conncction. to \t)l) and J'I he infornation is rcPathe, cd cah tume a ne'A ,aluc

i, .al:ulatCd for the node. In mot cases, onal a small number of potential paths e:,,t from a t.,sde to

t alnd (,A I isl gc', , that It iioht he coton ilci, ilt d I:eriniiie d f ' Ti.. 'he o diti ns for

%0l'h , i p th t,,o. sa 3 ,  ",). [o(r esnpic tt.e (otpt of , ",ile , i r'at, \ A:\0d i is pulled

dO 11 if either \ II i,, non-). .1 he ex 1e.c ," a lldo n path ani be detr m i.Cd h., C"lUt[ti the

expression "A OR B": a search of the netssork is not required to dis.toer vAh:.h puldo, ns are

currentls conducting.

l'his section describes the deri'ation of a set of four Boolean equations for each node:

Dt 11 An expression indicating under N hat conditions a path of conducting n-
channel and/or p-channel des ices exists from node A to VDD.

DI.4 An expression indicating under that conditions a path of conducting n-
channel and/or p-channel des ices exists from node A to G.D.

i"11A same as DHA. except the path contains at least one depletion device.

JVLA same as DI.A. except the path contains at least one depletion device.

If an expression ealuates to true (1), the corresponding path exists: if the expression e\aluates to false

(0). no path exists. Since nodes can ha.e X values, expressions insolving node \alues can evaluate to

X: in this case, the corresponding path may or may not exist. The equations invoh'e the ordinary

Boolean operators AND ("-"), OR ("+"), and NOF (" ). These operations are easily extended to

accommodate X values:

AND 0 1 X OR 0 1 X NOT

0 0 00 00 1 X 0 1
1 0a x 1 11 1 1 0
X 0 X X X X I X XX

The algorithm for constructing logic equations is similar to that for computing the Thevenin

equivalent for a node (see section 4.1.2). The algorithm begins with an expanding tree walk, stopping

when an input or dead-end is reached. During the tree walk. all switches are assumed to be on, since

the tree walk is perfonned before any node values are calculated. (During simulation, the actual state

of the switch is represented symbolically in the equation.) The algorithm continues by retracing the

steps of the tree walk back toward the original node: during this process, the equations are built. The

equations for the terminal nodes are trivial; the following table is the analogue of figure 4.8:



- 121 -

'rnimal niodc D/I D/ WI 11T

DD 1 0 0 0
GM) 0 1 0 0

dead-end 0 0 0 0

Merging the equations for t o (or more) paths Alhich join at a given node occurs in several steps.

DI \ I .) .A
I1 \ IN A

'WI IA  Wit! A
WI A Wl, 'AF IA D* I ) I B

WA J W A DIA DIB

1)1 WA +WIFBDI! B  DIt'B WL.A , WL.DL B DL'B A

WHB WH.BWLB  B W.

(a) two paths to merge (b) after incorporating switches (c) final path equations

Figure 6.1. Merging the equations for two paths which join

The process begins by modifying the equations for each path to reflect the contribution of the switch

in series with the path (figure 6.1(b)). The necessary formulas appear below. For example, DH is the

new equation deri~ed b. combining DH with gate, the value of the switch's gate node.

DH • gate n-channel switch
DH = DH - 'gate p-channel switch (6.1)

0 depletion switch

DL • gate n-channel switch
DL = DL - 'gate p-channel switch (6.2)

0 depletion switch

The equations for the "strong" paths (above) are straightforward; when the connection is made by

regular switch, the path equation and the the switch's gate value are combined using AND. If the

connection is made with a depletion device, the strong path is terminated. Equa',ons for "weak" paths

(below) are slightly more complicated since a depletion switch changes a strong path into a weak one.

'hese formulas also reflect the fact that a strong path overpowers a weak path, ie., equations for weak

paths are forced to 0 if a strong path is present. The reason for this extra complication %ill he clear in

an example below.

. .. . - - " . .. . . . . - - - - -- 7 .- - - - . . . .. - - " " _ ,_
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gate •H'I -DL n-channel switch
it'tt = -gate - tH - -DI. p-channel switch (6.3)

D11 ( OVH --DI.) depletion switch

gate • IfT • -DH n-chamel shitch

' = " -g~ac • W1/. t p-c/,uicl slitch (6.4)
I + (Ill I 1)11) hpli'tion Sittth1

After the equations for each path are modified to include the series s~itches. the are combined (using

OR) to derie the final equations for the node, as shovn in figure 6.1(c). When the analysis for a node

is complete. the four equations characterize all paths from the node to VDD and GND.

DHI

WHA
networkA

DL

(a) original network (b) network after anal) sis is complete

Figure 6.2. The four equations characterize all paths from node

In other words, for each node, the surrounding network (figure 6.2(a)) has been reduced to an

, uivalent. but much simple network (figure 6.2(b)). All the information about paths in the original

network is now stored in the node equations, where it can be efficiently utilized. For example, to

determine if a node is pulled-down, all one has to do is evaluate the DL equation - no examination

of the network is necessary.

The value of node can be determined from the values of the four equations and the node's

previous value, by table lookup:

--- I N~m . ... ..- -I-
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I)11/WII

00 Ol Ox I0 11 iX XO Xl XX

00 pre% I pro + X 1 1 1 pre% X 1 pr. X

01 0 X X 1 1 I X X X
OX pre "X X X I I I X X
10 0 0 0 X X X X X X

DI/WL 11 0 0 0 X X X X X X

IX 0 0 0 X X X X X X
XO pre- "X X X X X X X X X

Xi 0 X X X X X X X X
XX pre% X X X X X X X X X

Table 6.1. Node value table for equation-based simulation

There are a few special cases which can be summarized more concisely.'[ For most nodes in nmOS

circuits, DH = WL = 0, ie.. connections to VDD are made only through depletion pullups, and

depletion devices are not used elsewhere in the circuit. In this case, the value of a node is given by a

single equation:

node value = (WH + previous value), -"DL (when DH = WL = 0) (6.5)

Equation 6.5 can be simplified further for a node that is directly pulled up (WH = 1), Le, a node

which is the output of a logic gate:

node value = -DL (when DH = WL = 0 and WH = 1) (6.6)

In most cases, therefore, calculating the value of a node requires evaluating only a single equation.

Some examples will help illustrate the analysis. First, consider an inverter with a pass gate

connected to its output.

DH =0

C DL= BA

A- LWH=B --AA WL=O

Figure 6.3. Logic equations for output of inverter with series pass gate

tCurrent hardware simulation engines [Pfister82, Zycad83] implement all functions through table lookup, so they can
implement the function tabled above as efficiently as. say. Boolean operations. This is not true of most general-
purpose machines: hence the motivation for finding simpler representations where possible.
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Using equation 6.5, the value of C is given by C = (B -A + C) (B A A). The %alue of this

equation is tabled belo' for the xarious xalLjcs of A and B.

B

C' 0 1 X

0 C I C+X

A I C 0 C'X
X C X X

When B is 0. the pass gate is turned off, and C retains its old value. When /Y is 1. the pass gate is on.

and C is the complement of A. Finally, when B is X, C is also X, except when the output of the

mxerter is the same as the previous value of C. In this case, the output retains its old \alue. which

makes sense since there is nothing forcing it to change. This last statement is true only because

Hc = B -'A " the -A term forces the pullup equation to 0 when the pulldown of the inverter is

acute. If the tll equation did not reflect the contribution of the pulldown, i.e., if WHc B, the

\alue C %ould be unnecessarily forced to X when the value of B was X.

The next example is the XOR gate presented in Chapter 2.

D

0F =A xor B

BD

Figure 6.4. 1OR logic gate

The equations for each node appear in the following table.

- . ... .
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node DH DI. W' 1 'L

C 0 A+I)'C'B 1 0
1) 0 B+C'I)A 1 0
E 0 C'1+I)'A 1 0
F 0 1 1 0

I hose equations might sern incorrect at first - it is not at all oh\ imu, that I AOR B. I lowe~er

simplif\ ing the the equations for C and D shows:

C = -(A + D. C B) = -(A + -(B + C A) C B) = -A (6.7)

and similarly, D = -B. These results can be used to rewrite the equation for Fin terms of A and B:

F = -E =C.B + D.A = -A • B + -B. A = A XOR B (6.8)

In actual use, the equations are not simplified. The above substitutions do verify, however, that the

equations compute the correct value for F.

Some circuit configurations have very simple connection paths during actual operation of the

circuit, but the circuits can appear very complicated when no information is known about the values of

various control lines. This is especially true of a circuit containing n.xfos switching logic, such as a

barrel shifter or tally circuit. If no information is available about the values of the control lines in a

barrel shifter, it appears to short together all the incoming and outgoing data bits. The logic equations

for a node in such a circuit can become very large - in some cases, large enough to be impractical.

The analysis procedure monitors the size of the equations under construction. If they grow too large,

the procedure is aborted and the node is flagged. At simulation time, the value of a flagged node is

determined using the normal switch-level simulation algorithm.t Flagging a small number of nodes

eases the analysis of the remainder of the circuit. (The number of flagged nodes has been less than

1% of the total number of nodes in all the designs processed to date.) Using this technique, the speed-

up in simulation afforded by the use of logic equations can be enjoyed by circuits even where 100%

conversion to equations is not possible.

Keeping track of gate expressions for transistors crossed during the initial, expanding phase of

the tree walk allows the equation-building algorithm to eliminate duplicate AND terms in the results.

"Reversion to ordinary switch-level simulation for especially complicated circuits is easily accomplished by general-
purpose computers, but can be next to impossible for special-purpose hardware.
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A B A AB

(a) onginal circuit (b) reduced circuit

Figure 6.5. Oin-fhe-fly climination of dupwic .4A'D IrIs

[his minor optimization cin reduce equation size substmntiall) in some circuits. Consider. for exaimple,

a tally circuit from [Mead8O].

Z3

ZO

F-D - B -,

E C A

Figure 6.6. Tally circuit

This tally circuit has three inputs: A, C, and E. A tally circuit counts the number of 1-inputs: ZO = 1

",hen no inputs are high, Z1 = 1 when exactly one input is high, and so on. The equations produced

for the outputs appear somewhat complicated, for example:

DLzI B.(A +D.(C +F+E.F)+C.(D +E+F.E)) + A(B +C +D.(C +E+F.E)) (6.9)

WHzj = B.(D.E+C.F+A.C.E) + A.D.(F+C.(E+B.E)) (6.10)

These equations are hard to verify as they are, but they can be simplified by removing B, D. and F.

(Again. the simulator does not simplify the equations, but this is the easiest method for us to use to

verify the operation of the algorithm.) Using the identities R -A, D = -C. and F = ",E, the
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equations reduce to:

DLZI = -A.-C.-E + -A.C(F + A.C + A.-C.E (6.11)

WHZI = -A.-C.F + -A.C.-E + A.-C.-E (6.12)

Substituting these fiormulas into equation 6.5 giies

Z1 = A.('.-'E + -A.C."l + -A."C.E (6.13)

As expected. ZI is true if exactly one input is high. Of course, evahating this last equation would be

much faster than using the original equations, 6.9 and 6.10. Unfortunatel., equation simplification is a

very time consuming operation: the computational investment required to process all the equations for

a large circuit would probably not be recovered by decreased simulation time. In addition, the

equations for most nodes are simple, and simplification beyond that suggested by equation 6.6 (a

simplification which is easily recognized) does not result in much improvement.

6.2. Compiling logic equations for simulation

It is easy to build a simulator that uses the node equations developed in the previous section.

The simplest approach [Denneau82] is to allocate two node-value arrays; one to hold the current

values of each node, and the other to collect new node values as they are computed. Each node is

assigned an index which can be used to access its current value in the first array, or to store its new

value in the second array. A simulation subroutine for the network is built by generating code that

calculates the value of each node, where the code for one node is followed by the code for the next.

(Since new node values are kept separate from the current node values, the order in which nodes are

processed by the compiler does not matter.) A single simulation step, which propagates new input

values to other nodes in the network, is implemented as follows:

(1) For each input node, set its current-value array entry to the designated input
value.

(2) Execute the simulation subroutine. This fills the new-value array.

(3) Compare the current-value and new-value arrays. If their contents are identical,
the network has settled and the simulation step is over. Otherwise copy the
new-value array to the current-value array, and return to step (1).

This simulation algorithm has several interesting properties. Each execution of the simulation

subroutine corresponds to one step of a unit-delay simulator. Node values are updated all at once in



128 -

step (3); hence, the simulator implements a true unit-dela algorithm as described in section 5.3.3.

Note that no special handling of input nodes is required Ahcn generating code - the new %alues

calculated for input nodes in step (2) are overridden by user-specified %alues in step (1). Note also

that the calculations of the simulation subroutine are not event drien: the implications are discussed

below.

Vhe %aluC of a node is computed from its four node equa0ions, using the code generatcd by one

of the following alternatives:

(1) If D11 = ILT = 0 and 'H 1, emit code that calculates the node value using
equation 6.6.

(2) If DL = 111 = 0 and WI/ 1 1, emit code that calculates the node %alue using
equation 6.5.

(3) Otherwise, emit code which evaluates each of the four node equations, and then
concatenates the resulting values with the presious salue of the node to create an
index into Table 6.1. As an optimization. the code generator can check for other
special cases (constant values for H'H and HL) and generate accesses to smaller
tables if appropriate.

Code is generated for each equation using standard compilation techniques. The logic ir:structions of

i'lc target machine are used for expression evaluation. (Some provision must be made to incorporate

X values in a way that still permits use of the native logic instructions: see the example at the end of

this section.) Access to a node's current value requires only an indexed reference into the current-salue

array; storing generated values requires an indexed reference to the new-value array.

There are some inefficiencies inherent in this approach. An extra execution of the simulation

subroutine is performed during each simulation step - "extra" in the sense that the last execution

produces the same result as the one before (that is how the simulator identifies it as the last

execution). In addition, the value of each node is calculated during each call to the simulation

'broutine, even if the inputs to the node's equations have not changed.

This last objection can be addressed by making a more intelligent choice about the order in

which node values aire calculated, by identifying the nodes that affect node A's value (i.e., nodes that

appear in the equations for A) and then generating code to compute the values of these nodes before

generating code to compute the value of A [Case78. Denneau821. In addition, references to a node's

current value are directed to the new-value array if a new value for the node was computed earlier in

the subroutine. For example, the circuit in the following figure has several cascaded logic gates.
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Figure 6.7. Cascaded logic gates

Under the new organi/ation, the compiler generates code for nodes .A ind B before generiting code

for node , and so on. The resulting code propagates a new input %alue from A to /I in a single

execution. (The earlier scheme would have required three calls to the simulation subroutine to achieve

the same effect.)

To implement this scheme, the compiler assigns a numeric level to each node. The level of input

nodes is defined to be 0: the level of a non-input node a is

level(a) = 1 + max( level of nodes affecting a ) (6.14)

Referring to the example in figure 6.7, if nodes A through D are inputs, level(E)= 1 and

level(H) = 3. Code is first generated for level 1 nodes, then level 2 nodes, and so on. When

compiling an equation, if a node value is needed, the node's level determines where that value comes

from. The value of a level 0 node is taken from the current-value array, and the value of a node with

a level greater than 0 is :aken from the new-value array. (New values are stored in the new-value

array, as always.)

The definition of a node's level in equation 6.14 runs into some difficult) if the circuit has

feedback. Consider, for example, the following circuit:

4K

i L

Figure 6.8. Circuit with feedback

In attempting to assign a level to node K. one discovers that the definition is circular, ie., the level of

node K is defined in terms of itself. The compiler solves this problem by arbitrarily splitting a node

that is in the feedback loop into two nodes. One copy is treated as an input, and the other as a
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normal network node. Both are assigned the same index so that the input value is updated each time

the new-Nalue array is copied to the current-value array. Thus, the circuit in figure 6.8 is compiled as

it it had the folloing configuration:

treated as input

\" N  I %alu. fed back during step (3)

K

Figure 6.9. Feedback circuit as it appears to the compiler

For the purposes of compilation, the feedback loop is broken: the value is actuatll. fed back during

step (3) above when the new-value array is copied to the current-value array. This means that a

circuit containing feedback might require more than a single execution of the simulation subroutine

before the network settles. As it turns out, most .MOS circuits contain feedback loops sincc charge

decay requires that storage nodes be refreshed. A clocked feedback loop offers special compilation

opportunities, which are discussed below.

Compiling nodes by level ensures that only a single execution of the simulation subroutine is

needed to settle the network, assuming the network contains no feedback. The new organization

introduces other differences from the original compilation strategy. Node values are not updated all at

once in this scheme: the simulation subroutine implements a pseudo unit-delay simulation. Input

nodes must be assigned a level of 0, which means nodes must be declared as inputs before the

compilation process begins. This eliminates the possibility of interactive debugging, where one wants

the capability to consider any node as an input. Typically, the designer uses the original compilation

strategy when initially checking out the circuit, and then uses compilation-by-level when performing

long verification runs.

Most node-value references are satisfied using the new-value array in the compilation-by-level

scheme. This suggests that is might be worthwhile to eliminate the storage overhead and copying time

involved for managing two alTays by merging them into a single array. This is straightforward,

provided a new technique is developed for detecting when the simulation step is complete. If the

circuit has no feedback, only a single execution of the code is needed. When there is feedback, a

single execution also suffices, if the current and new value of split nodes (e.g., K and K in figure 6.9)

agree. Only when the old and new values are different is another execution required. This can be

arranged by comparing the two values before thL new value is stored into the array. If the
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comparison shows them to be unequal, a flag is set to indicate that another execution is needed. Note

that the whole simulation subroutine is re-executed; this is simpler than trying to untangle interlocking

feedback loops to determine the subset of the code that must be re-executed.

With this improvement, the compilation-by-level scheme produces a simulation subroutine thAt:

(i) uses a single node-\alue array.

(it) evaluates nodes in a reasonable order: the values of a node's inputs are
calculated before the %alue of the node itself is calculated.

Oii) deals %ith feedback by splitting some node in the feedback loop into an input
node (assigned level 0) and a regular node. Both nodes are assigned the same
index, so when the %alue of the regular node is recomputed it updates the value
of the input node also. Before storing the value of a split node into the node-
value array, it is compared with the current value; if the values are different a
flag is set.

(iv) uses the flag described in step (iii) to indicate when another iteration is needed.
If the flag is set during an execution of the code, another iteration is performed;
otherwise, the subroutine is finished.

The following is an extended example which illustrates the result of a compile-by-level for a single bit

in a nMos counter. The circuit diagram for the counter bit is shown in the following figure.

PHI2

INI

P---o COL7"

IN ......... ...

A
OUT

CIN
F

Figure 6.10. Circuit diagram for a one-bit counter

The target machine for this example is the DEC VAX-11. A node value is 2-bit quantity (logic low =

0, logic high = 3, X = 1) stored in a byte location; the node-value array is implemented as an array
of bytes. Logical ANDt and OR instructions produce the desired answers with this value encoding.

However, using this encoding, the complement instruction does not correctly implement the NOT

-tihe VAX ds not. in fact. have an AND instruction Instead, a "bit clear" (BIC in VAX parlance) is provided.
which implcments an AND-COMPLIMENToperation 'iis introduces a few circumlocutions in the generated code.
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operation, So NOI is performed by tablc lookup. The index of each node is indicated symbolically in

the code below (the index of node A is written "'A").

r10 pointer to value array
ntbl table giving NOT ofvalue
xtbi table giving bit complement of value
xntbl =table giving bit complement of NOT ofvalue

step:
clrl rO so rags can be used index registers
clrl r]
movb at. 1terate-flag nonzero indicates no iteration needed

1: movb -PHI2(r1O).rO
bisb3 ntbl(rO)._OUT(rlO),rO rO =!phi2 + out = I(phi2 t out)
movb -OUT(rlO).rI
bicb3 xtbl(rI),_PHI2(rIO).rI
bisb2 _IN(rIO),rl ri (phiZ ' out) + in
bisb3 xtbl(rl),rO,_IN(rIO) in =rO * ri

movb -IN(rO),rD
moyb ntbl(rG)._A(rlO) a =tin

movb -PHII(rIO),fO
bisb3 ntbl(rO),_A(rIO),rO rO =!phil + a = J(phil l a)
movb _A(rlO).rI
bicb3 xntbl(rl)._PHII(rIO),rI
bisb2 _B(rlO),rl rl = (phil 1 l1a) +b
bicb3 xtbl(rI).r0,-8(rlQ) b =rO 0 rl

movb 5B(rlO).rO
movb ntbl (rO)._C( rlO) c- lb

movb -C(rlO),rO
bicb3 xtbl(rO)._CIR(rlO),rQ
movb ntbl(rO)._O(rlO) d = I(c * cin)

movb -C(r10).rO
bicb3 xtbl(rO).-D(rlO).rO
movb ntbl(rO),_E(rIO) e = I(c * d)

movb D(rlO).rO
bicb3 xtbl(rO),_CIM(rIO).rO
movb ntbl(r0),_f(rlO) f' =I(d 0 cin)

movb OD(rlO),rO
movb ntbl(rO)._COJT(rlO) cout =Id

movb -E(rlO).rO
bicb3 xtbl(rO),_F(rlO),rO
cmpb ntbl(rO),_OUT(rlO) check I (e 0 f) against old value
beql 2f'
movb ntbl(rO)._OUT(rIC) it' different, save new value
clrb iterate-flag .and set iterate flag so we do it again

2:

bbcs 0I.iteratejflag.lb check flag, iterate it set
rsb

The code is a relatively straightforward implementation of the equations for each node. Nodes PHIl,

P1112, and CIN arc designated as input nodes. Notc that the feedback loop is brokcn by splitting
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node O17, an arhitrary choice. The resulting simulation is several orders of magnitude more efficient

than a standard s~itch-le~cl simulation. For example, the value of B is calculated in six instructions.

the %alue of C in only two. lhe code is also relativcly compact compared to the usual network data

base.

Although compiling bN lexel greaty reduces the amount of wasted computation, there are still

occasions when the values of nodes are unnecessarily calculated. Some input transitions have little

effect on node %alues; e.g., when PHIl or PHI2 in the one-bit counter above change from 1 to 0.

This suggests that the performance of the simulator can be improved by generating multiple simulation

routines, where each routine corresponds to a fixed value for one or more inputs. This is pa-icularly

advantageous when the inputs selected for special processing have a major impact on the circuit to be

simulated. For example, in a circuit using two clocks, three separate simulation routines can be

generated: one generated assuming both clocks are low (called, say, CLOCKOO), and the other two

generated assuming one of the clocks was high (CLOCKIO and CLOCK0). A four-phase clock cycle is

simulated by executing the simulation subroutines in the correct order:

Jsb clocklO PHIl high

jsb clockOO both clocks low
jsb clockOl PH12 high
jsb clockO; both clocks low

To generate a input-specific simulation routine, the user specifies which nodes are inputs, and for each

input

(1) gives the input's logic value, and

(2) indicates whether the input is stable or has just changed to the specified value.

The compiler applies several optimizations during code generation): constant folding based on

knowledge of input node values, and compile-time selective trace that ignores nodes whose values

remain unchanged. (The stable/changing specification is used by the selective trace optimization.) The

selective trace is especially effective in reducing the amount of generated code.

In the examples below, PHI! and PHI2 are specified as changing inputs, and CIN an

unchanging input. The first example - dhe code generated for the one-bit counter with both clocks

low - illustrates just how effective the optimizations can be:

i'Thc optimizations are inspired by those found in traditional optimizing compilers [llarnson77, Wul(75] Because of
the branch-free nature of the code and the pcrkasie influence of clock signals, mans of the optimizalions are much
more effecutc in this domain than in traditional compilation problems
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clockOO: code for phtl = 0. phi2 = 0. cln = I

clrb -PHIl(r10) phil = 0
clrb PHI2(rlO) phi2 = 0
rsb

The values of PHI1 and PH12 are set by the code since they are specified as changing inputs. (The

value an unchanging input is assumed to be set by the user, or by code executed earlier.) Node, B is

determined to be unaffected by the change in PHIl, as are nodes IN and P1112. In fact, the compile-

time selective trace does not find an nodes that change value, except for the changing inputs.

The next code sequence, corresponding to PHI] going high. is somewhat longer, since that is the

transition when the circuit performs most of its work.

clocklO: code for phil = 1. phi2 = 0. cin = I
clrl rO so reg can be used as index register
movb #3._PHIl(rlO) phil = I

clrb _PHI2(rlO) ph12 = 0
movb A(rlO)._B(rlO) b = a
movb _B(rlO).rO

movb ntbl(rO)._C(rlO) c = 1b
movb _C(rlO).rO

movb ntbl(rO),_D(rlO) d = 1(c * cin) Ic

movb O(rlO).rO
movb ntbl(rO),_COUT(riO) cout = Id

movb _C(rlO).rO

bicb3 xtbl(rO), D(rlO).rO
movb ntbl(rO)._E(rlO) e = (c d)
movb _D(rlO),rO
movb ntbl(rO).F(rlQ) f = f(dcin) = Id
movb _E(rlO),rO

bicb3 xtbl(rO)._F(rlO).rO
movb ntbl(rO)._OUT(rlO) out = I(e 0 f)
rsb

A node that connects to the rest of the network through a single pass transistor (e.g., node B in the

counter) is treated specially by the compiler, because such nodes are so common in MOc0s networks.

When the pass transistor is turned on by fixed-value input, the gene'ated code is particularly efficient

(a single move in the example above).

The last code sequence, corresponding to PHI2 going high, is relatively short: the compile-time

selective trace finds only a few nodes whose values needed to be computed.

clock0l: code for phil = 0. phi2 = 1, cin =

clii rO so reg can be used as index register

clrb .PRil(rlO) phil = 0
movb #3,_PHI?(rlO) phi2 = I

movb _OUT(rlO)._IN(rlO) in = Out
movb _IN(rlO).rO
movb ntbl(rO),_A(tlO) a = fin

rsb

Simulation of a four-phase clock cycle using these three routines requires executing only 36 VAX

instructions. The earlier compiled code sequence requires 39 instructions for a single simulation step.
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for a total of more than 150 executed instructions Alhen himulating a full clock c)cle. Input-specific

subroutines result in a considerable improvement.

Although the impact of compile-time selective trace makes it a worthwhile optimization, only so

man. input-specific routines can be generated. Assuming that all combinations of inputs are possible,

the number of routines needed grows exponentially with the number of fixed inputs. Thus, while

computations caused by the changing of a few inputs can be reduced to the b,ire minimum, many

unnecessary computations are still performed. For example, in a 10-bit counter, the nodes comprising

the higher data bits are recomputed during each clock cycle, even though those nodes actually change

value far less frequently. Presumably, the appropriate checks could be inserted into the code, resuling

in branches around sections of code that do not need to be executed. In the counter example, when

the carry-in of a data bit is Lero, the code for its level and all higher le'els does not need to be

executed. However, a very sophisticated compiler would be needed to handle this situation. It is

unclear what further gains will be possible in the search to reduce unnecessary computation.

In summary, the compilation techniques discussed in this chapter are ,ell-suited for producing

code that implements a fast switch-level simulation of a stable design. The potential increase in

simulation speed allows more exhaustive checkout than is possible with interactive (and slower)

simulators. Compilation-based simulation is most appropriate for a circuit with a high degree of circuit

activity; if each circuit component is active during each simulation step, there is very little unnecessary

computation by the simulation subroutine. On the other hand, for a large circuit with little activity, an

e\ent-driven interactive simulator might actually outperform a compiled simulation. Fortunately, not

many designers strive for designs in this latter category.

•~~~~~~~~~~~~~~~~~~ --------------............,... ... ... .:. _ .-- .
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CHAPTER SEVEN

CONCLUSIONS

The models and simulators presented in this thesis were developed to fill the need for simulation

tools suitable for large MoS designs. At the outset of the project, there were surprisingly few

alternatives; even today, much of the work in the area of simulation tools concentrates on refurbishing

traditional gate-level simulators and circuit analysis programs. (The current state of these efforts is

outlined at the end of the chapter.) The work reported here takes a different approach, seeking to

develop new algorithms, guided by the following goals:

(1) The algorithms must be suitable for the logic-lexcl simulation of large digital MOS
circuits; "large" meaning circuits containing 10.000 to 50,000 transistors.

(2) Important aspects of MOS behavior (bidirectionality, charge sharing/storage,
pullup/pulldown ratios, etc.) should be modeled in a useful way.

(3) Performance estimates should be calculated directly from the actual parameters
of the circuit components. Ideally, the caiculations are based on the same rules
of thumb used by designers when estimating circuit performance.

Tie RSIM simulator meets all three goals, while maintaining a reasonable balance between simulator

performance and accuracy of predictions. Rather than performii., .. detailed simulation of each

transistor's operation, RSIM uses the linear model to directly predict the logic state of each node and to

estimate transition times when nodes change state. The net effect is a trade of some prediction

accuracy for an increase in simulation speed. When the linear model is conservatively calibrated, its

predictions can be used to identify problem circuits in need of more accurate analysis. Usually, a large
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percent,,ge of a Circuit passes the scrutiny of RSIM. and so the expcnssc - .oiated ith dettilcd

si1la.,1tion of the thole circuit is a'oidcd. In addition to scruing a, the basis for simulatii. the linear
model can be used in timing analxsis and might ser\c to quicki generate initial na'. forms for a

relaxation-based circuit analysis program.

RSIM has been in use in both university and industrial environments since the spring of' 1982.

)uring that time it has simulated several hundred designs, ranging in si/c from \Cry small to

approximately 40.000 transistors. Because RSIM is fast enough to simulate a vhole circuit, it often

unco\ers circuit flaws that hawe fallen between the cracks during the simulation of smaller pieces of

the design. The trend shows that RSIM is \iewed as a companion to circuit analysis, using it for all

logic-level \erification and preliminary timing analysis, and resorting to circuit analysis for those paths

identified as critical by RSIM.

The simulation algorithm is embedded in a tliSP-like command language ['erman82] that has

been used to write quite elaborate programs to drive the simulation and process the results. Since

programs to prepare simulation input are much less tedious to construct than the input itself, designers

have been able to conduct more tests than they might otherwise do. For example, it is a simple matter

to use a set of test vectors that drive a register-transfer-level simulation as input to an RSIM run, and

compare the predictions of the two simulations, all under program control.

With careful calibration, RS[M's predictions for combinational logic are within 30% of those of

spiCy. For circuits relying on analog behavior (sense amplifiers, bootstrapped nodes, etc.) or chains of

pass devices, the predictions are less accurate. To compensate, several "escape" mechanisms exist

which allow the designer to specify the logic thresholds and transition times for individual nodes so

that the results of more detailed simulations can be incorporated into RSIM. Usually this mechanism

need be invoked for only a few critical nodes (e.g., clock driver outputs). Another alternative is to

identif\ subcircuits and replace them with logically equivalent circuits that can be simulated easily: a

network preprocessor iler831 that performs subcircuit matching and replaccmecnt is a~ailablc and has

been used to good effect. With these enhancements, RSIM has proved to be a fairly reliable filter for

detecting circuits in need of more careful analysis.

For those stages of the design process that do not require perforimance information, a switch

model might be more appropriate than a linear model. A switch-level simulation is particularly useful

in the early stages of a design Ahen one is experimenting with the organi/ation of the logic, and siuing

each devicC would be distracting. Tihe switch models presented in this thesis are straightforward,
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especial. in the treatment of X Ualues and their effect on the network. The switch model as

embodied in Ism (which uses the global algorithm outlined in Chapter 5) is quite coMpatihle , ith the

linear model used InI RsI\s. In fact. in the current implementation both models exist side h' side and

one can choose either model Ahen propagating a set o( changes through the netmork. "[his flex.ibilit,

is useful during initialh/ation of a netw ork. when performance information is not a major concern.

Simulator performance is alwa. s an important issue, one that has been addressed throughout the

thesis. Chapter 4 describes seeral techniques for speeding up the RSIM algorithm: using a compressed

representation of logic gates and caching subnetwork calculations decreases the execution time of RSIM

b. a factor of two or more. The local switch algorithm presented in Chapter 5 is ideal for

implementation on parallel architectures. l.ike many relaxation algorithms, it can effectiely utili,e

man\ processors, and so holds the promise of large performance impromements in simulation when

parallel processors mo\e out of the experimental stage. A different approach for improving the

performance of switch-leel simulauon is described in Chapter 6, which proposes performing the

network analysis once. before simulation, and using the results to compile a set of logic equations for

each node. When esaluated in the proper order bh a conentional computer. the resulting switch-le~el

,iulation is man. Limes faster than simulation using traditional techniques. The node equations can

also be used to de'elop instruction sequences for special-purpose simulation hardwkare - e.g.. the

YorktoAn Simulation Engine, or the Zccad mulu-processor - extending the benefits of high-speed

gate evaluation to arbitrary Sos networks J1iariilai83].

The remainder of this chapter discusses other work in the area of simulation related to the topics

of concern in this thesis. These topics include:

* algorithms for fast circuit analysis: circuit anahsis using simplified models
" mixed-mode simulation
* logic-level simulation using pre-detennined transition delays
* models for estimating circuit performance
" other switch-level simulation algorithms

Each of these areas is discussed below.

The most detailed and accurate network simulration is pro\ ided b% circuit analysis programs, such

as ASIAI' [Wceks73] or S1I%-: [Nage1751. The capacit. limitation of circuit anial\sis is a prime nioti\ation

for the devclopment of simpler simulation models: recent iniprocments in circuit anil.sis algorithms

are making inroads into the traditional performance problems of circuit analsis. I)eiice models are

the heart of a circuit analysis program. ilie models are isu.illy anal. tic: they contain forniilis that

predict de ice perforance from in formation about \olt,,ge histories. ph.sic.il properties of natrials.
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etc. In a circuit, the behavior of a particular device might be determined by several electrical nodes

which, in turn, are affected by other devices: Le.. a system of circuit equations is needed to describe

the behavior of the circuit as a whole. To make finding a solution computationally feasible, most

circuit analysis programs proceed in two steps:

(1) The circuit is partitioned so that, at a particular time step, the change in voltage
on each node is approximated as a linear function of the node voltages (and their
derivatives). It is during this step that device models must be evaluated.

(2) Solving the resulting set of equations numerically (see [SV80]).

These two steps can be quite time consuming, although for large circuits the second step becomes the

dominant factor [Newton80]. RSIM reduces both costs by using a very simple device model whose

effects can be predicted without the need for expensive numerical techniques.

The cost of model evaluation can be reduced by replacing the analytic device models with tables

relating device current to terminal voltages (Chawla75, Fan77]. These tabl-s can be derived from a

one-time evaluation of the original analytic models, or filled directly from device measurements. In

these simulators, the current charging/discharging of each node capacitor is determined from the

present node voltages; thus, the change in node voltage for each time step can be calculated directly

and the cost of solving a set of simultaneous equations is avoided. Another approach to reducing the

cost associated with dealing with large matrices of equation coefficients uses a relaxation technique

[Lelarasmee8l, Newton83] to successively approximate the voltage waveform for each node in the

circuit. The solution for each node is computed separately, using the estimates of other node voltages

computed during earlier iterations. Again, this avoids the cost of solving a large set of simultaneous

equations. It is also possible to skip the recalculation of a node's waveform during a particular

iteration if it can be determined that the estimates for the surrounding network have not changed

substantially since the last iteration (ie., selective-trace comes to circuit analysis). These techniques can

speed up circuit analysis by an order of magnitude or more, but the programs are still limited to

circuits with a few thousand components.

Recent work on simulators has tried to combine the computational advantages of gate-level

simulation with the precision afforded by circuit analysis; this has lead to a new family of mixed-mode

simulators: [Chen78, Gardner79, Hi1179, AgrawalS0, Newton80]. The designer can specify gate-level or

functional simulation for simple or previously-verified pieces of the circuit, reserving the expense of

circuit analysis for critical sections of the design. There are two problems that remain to be solved in

mixed-mode simulators: conversion between the different representations of node values used by the



- 140-

different levels. and the relateJ problem of choosing which type of simulation should be used for each

subcircuit. lhc designer car, introduce errors into the simulation by an unfortunate choice of level at a

critical point in thc circuic special care must be exercised to axoid discontinuitics and other pitfalls of

the numerical solution techniques. like circuit analysis, mixed-mode analysis still requires the touch of

an expert lest it produce misleading results.

Clearly, it is only a matter of time before mixed-mode simulation becomes true hierarchical

simulation in which the results of detailed low-le'el simulation are automatically summariied for use in

subsequent high-lcel simulations. A hierarchical system would also decide what level of simulation is

appropriate for each subcircuit. Viewed in this light. RSIN can be thought of as the first step toward

automatic identification of critical subcircuits. With a foot in both worlds. RSIM provides an easy path

for descending into circuit analysis or for abstracting toward higher-level logic functions.

Another approach to timing simulation that retains the speed advantages of gate-lexel simulation

is determining the transition delays for each node before simulation begins. Some gate-level

simulators [Szygenda72. Case78] allow the user to assign node delays. This type of simulator can be

extended to handle SIOS networks, after a fashion [Shcr'kood8l. Mcl)crmott82]. The result is a system

that can quickly calculate estimates for signal delays in a network. Unfortunately, the delays are not

calculated automatically (and hence are prone to error or wishful thinking on the part of the designer).

and are approximate at best for pass transistor circuits so common in MOS circuits. A more effective

technique for pre-computing delays is the use of the results of actual measurements or circuit analysis

runs [Pilling73, Nahm8O]. The delays are measured/calculated for "standard" gate configurations, and

the results used to estimate the performance for the actual configuration of each node in the network.

[Nahm8O] mentions several shortcomings of this approach. Circuits with multiple inputs are difficult to

analyze since a particular input transition is chosen when performing the analysis: also, the effect of

overlapping input transitions, the slope of the input waveform, and dynamic changes in the output

,)ad are not considered. (Interestingly, all these problems are solved in a straightforward way by RSIM,

at no great loss in execution speed, as evidcnced by the perforrmance figures quoted by Nahm.)

fOkasaki83] suggests overcoming these problems by expanding the set of "standard" configurations to

include most of those commonly found in Nfos circuits (complex and/or gates, pass gates, etc.). The

price for the increase in accuracy is a corresponding increase in the complexity of the model for each

gate: his simulator spends a fair amount of time determining which pre-computed delay should be

used. given the current configuration of the network. In sunlary., the performance %ariations
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introduced b non-standard circuit configurations, and changes in the netN4ork due to changing node

%alues seem to offset any advantages offered b) pre-determined transition dclalys.

Not much has been published about models that are suitable for quicklh dctermining the

transition times for particular network configurations. A s~itched linear The~cnin model is decribed

in [Glasscr80]: a simulator based in part on this model is described in [famura83]. Multiple resistances

are used to describe each transistor: conceptually, the appropriate resistance is selected by a rotary

switch controlled by the transistor's gate voltage. Each resistance is chosen to model the actual

channel resistance in a particular region of device operation. The linear model presented in this thesis

can be viewed as a simplification of Glasser's model, with only two possible switch positions selecting

between resistances of Reff and 00. A simple version of the linear model also appears in

[OtIsterhout83] and [Jouppi83]: both indicate that the model improvements suggested in Chapter 3 are

needed in order to improve prediction accuracy. [florowitz83] presents a simple model that describes

the performance of a network of pass gates: his model is discussed in section 3.5.

One simulator with many of the same aspirations as the switch-level simulators described in

Chapter 5 is MOSSIM, written by Randy Bryant [Bryant81]. MOSSIM uses a switch transistor model

similar to that presented here, but its calculations are organized differently since (1) node values are

represented using a cross-product value set and (2) the analysis is based on a static decomposition of

the network. A major difference in the simulation calculation comes in the handling of X values and

their effect on the surrounding network. Bryant handles such values in a separate stage of the

computation, using global knowledge of the network configuration to resolve values of subnetworks

connected by X transistors. (Other differences between the two approaches are discussed in Chapters

2 and 5.) The extra complexity of his algorithms results in some degradation in simulator performance

over that achieved by the simulators described here.
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APPENDIX ONE

Proof of Lemma 5.3

Lemma 5.3. Let 11: X, and Y be network states. If W -1 A' and W -1 Y, then
there exists a network state Z such that A' -- Z and Y - Z.

Recalling how the update operation works, it is not hard to believe that the Lemma is true. The value

of a node indicates the resistance of paths from the node to VDD and GN). An update exchanges path

information across a switch, and the U operation ensures that information is never lost (the indicated

resistance to an input can never increase). Intuitively. an update only adds information about possible

paths to the network state, so no matter what switch is chosen for an update, one can also go back to

other switches latter on.

The proof is straightforward, demonstrating how a state Z can be constructed for each possible X

and Y. The proof depends on some simple properties of the U operation and the switch function:

AUA = A
A UB = BUA
a U swiich(a, a) = a (AI)
Swilch(o. si'ilch(a. a)) = switch(a, a)

switch(a, a U P3) = swilch(a, a) U swiich(o, /3)

which can be verified directly from the definition of U and equation 5.9.

If the two updaites leading to states X and Y inol~e only one switch. X = Y and the I emma is
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tri'iall) true. If two separate switches are in~oIhed, thcrc are three cases to conwidcr A iich differ in

the number of nodes affected.

A it B

C 1) 
C A

(a) Case I (b) Caw. 2 (c) Case 3

Figure Ai.1. Three cases in proof of lemma 5.3

For notational convenience, define the functions f and g to describe the effects of switch 1 and 2

respectively:

f(a)=switch(al, a)

g(a)-switch(02, a) (Al.2)

Each of the two updates is labeled by the switch it operatcs on: for example, S1 refers to an update

involving switch 1. A sequence of updates is written as SSj, %hich is taken to mean update S.

followed by update S1.

Case 1: no nodes in common. As the following diagram indicates, when the updates ha~e no nodes in

common, they result in the same state when applied in either order.

S1 S2

x Y

S2 z Si

Figure Al.2. State diagram when no nodes in common
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This is shown by considering the %alues for nodes A. I. C. and I) after each update:

S - A R1) It U IRA) C 1)

S~,__A U R13) j Rl (A) C U V(D) ic) ~
S, A Bt C U () )

L~S A L1 IO I) B UA) C U p(I)) 1) U p(C)

['he final states of the two sequences are the same. demonstrating the desired network state, Z.

Case 2: one node in common. As the following diagram indicates. "hen the updates have one node in

common. SIS 2S I is equivalent to S2S IS2.

x Y
S21 IS1

P Q

Figure AI.3. Siate diagram when one node in common

This is shown by considering the values for nodes A. B. and C after each update:

sequence i A B C

Sl AU RD) BU RA) C

SS' A U iB) B U RA) U g(C) C U g(B U M)

SS A IO U b U RA) U V(C)) B U RA) U g(C) U iA U RB)) C U g(B U RA)

S, A BUg(C) CUgilB)

S.S A U iB U g(C)) B U g(C) U RIA) CU g(B)
S2SIS? A U IIB U giC)) B U g(C) U IA) U g(C U g((U C) URAI)

Using the identities in equation A1.1. the final values of A. B, and C for each sequence can be

simplified to

Afinal = A U fI(B U f(g(C))

Bfinal = B U g(C)Uf(A) (A1.3)

Cfnal = ( U g(R) U g( (A))

The final states of the two sequences are the same. demonstrating the desired network state, Z.

Case 3: tAo nodes in common. As in Case 1. when the updates have no nodes in common, they result

in the same state %hcn applied in either order. "Ilis is shown bh considering the 'alLies for nodes A

g- 7
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and B after each update:

Is -Lq uc n cc7A It

S A U A~ 1)It U RA)

S, A U , 0 It U p(A)

A U AIb U gA)) 1 B U g(A) J RlA U g(B)

Again, using the identities in equation Al.I. the final \alues of A and B for each sequence can be

simplified to

Afinal = A U f(B) U g(B) (A.4)

Bfinal = B U g(A)U f(A)

The final states of the two sequences arc the same, demonstrating the desired network state, Z. I

_ _ _ __ _ -~.~- - -~-.
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APPENDIX fWO

RSIM Calibration Tables for a 5p nMOS Process

RSIM'S transistor model relies in part on three modeling resistances for each transistor in the

network:

Rstatic for calculating Vthev,-

Rdnloi for calculating the transition time for high-to-low transitions, and

Ris nhgh for calculating the transition time for low-to-high transitions.

Thcse resistances are chosen for each transistor on the basis of its geometry, type, and usage in the

circuit. 'he static resistance is chosen to obtain a good prediction for the 0-output voltage of a logic

gate. Actually this constrains only the ratio of the n-channel and pullup static resistances. so there is

zonsiderable freedom in choosing these values.

The dynamic resistances for each transistor type are specified in the following diagram, Because

of their special nature. depiction devices configured as pullups arc treated separately from other

depiction dcices.

" /- -
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transistor t~p e R Rd.nlo iihigh

n-chl.inel ablc, A2. 1 & .N2.2 I able A2.3

deplction I (see text) [Iable A2.4

pullup - I able A2.5

The tables appear at the end of this appendix. Rd.nl(,, is not needed for a pullup. but might be

needed for other configurations of depletion dc ices (c.g.. if one appeared in a pulldoAn path). If

desired. a er, high Rd, n/o, can be specified for depiction de\ices to flag the use of a depletion de ice

in a pulldown path.

The tables below were prepared b, analyiing the simple SICI experiments proposed in section

2.4. As mentioned in that section, more sophisticated experiments might be more appropriate for

designers who wish to push RSI.M to its limits. These tables are used b examples in the thesis: for

actual simulation, some of the values should be derated (increasing the rcs.istncC) to ensure

conservative estimates.

The experiments were run using version 2G.5 of sPIC17 with the following desice models (a

typical 511 nMOS process):

MODEL ENH NMOS (LEVEL=2 VTO=1.0 PHI=0.55 GAMMA=0.4 CGSO=4.5E-10 PB=0.85

JS=IE-18 CJ=7.2E-5 CJSW=3.6E-1O TOX=IE-7 NSUB=I.OE15 XJ=1E-6 LD=0.7E-6

UO=690UCRIT=1E5UEXP=0.12MJ=0.5 MJSW=0.27)

MODEL DEP NMOS (LEVEL=2 VTO=-3.3 PHI=O.55 GAMMA=0.47 CGSO=4.51-10 P8=0.85

JS=IE-18 CJ=7.2E-5 CJSW=3.6E-10 TOX=IE-7 NSUB=I.OE15 XJ=IL-6 LD=0.7E-6

UO=690 UCRIT=IE5UEXP=0.12MJ=0.5 MJSW=0.27)

Rise time is measured as the length of time needed for an output to rise from 0 NoILS to 2.134 volts -

the balance point of a 4:1 inscrtcr built using this process. (Section 3.3.1 explains %h.i the balance

point is chosen as the threshold.) Fall time is the length of time needed for an output to fall from 5

volts to the threshold.

Note that widths and lengths are shown in microns. and the table \,alues are in units of KU2 per

square of channel: one must multiply the appropriate table cntr b% the number of squares( of channel

(length+ width) to get a transistor's rcsistance. For table entries marked "". no %aluc is available

because of a SPICF bug.
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R I cngth

enh 5~ 10) 20 30- 40 750F 1 00-
8.7 13.0 16.2 17.] 17.5 7.8 18.4

1o &.8 137 102 1. 17.6 117.8 1.
20 8.8 13.8 16.3 17.3 17.8 18.0 i 18.9

Width 30 9.0 13.8 16.5 17.4 17.9 18.2 19.V
40 9.6 14.0 16.6 67 " 18.1 18.5 19.6
50 10.0 14.0 16.8 17.7 18.3 1 18.7 I 20.0

100Y). 10.. 15.0 17.0 18.7 19.3 19 8 j2 •,

Table A2.1. (hantici restsizce (A'/D) for n-channel pulhdowns

R Length
enh-thresh S- 10 20 30 640 50 -0i0

5 16.0 26.3 31.5 33.3 341 34.6235.6
10 16.6 26.9 . 32.1 33.7 34.6 35.0 35.9
20 17.6 28.0 32.9 14.4 35.V .5 35

Wid th 30 18.6 28.8 33 34. 8 354 35.8 364
40 19.2 29.6 33.8 35.1 35.7 36.0 36.6

0 20.0 '30.0 34.3 35.3 35.9-36.2 36.8
100 22.0 31.0 35.5 36.3 . 36.8 3.0 -37.6_I

Table .\2.2. Channil resisiance (A'Q/0) for n-chanwl pullduKs ISil/i threshold drops

R ~I ength

enh-sf 10 20 30 i 40 50 100

5 12.6 22.8 28.8 31.2 32 33.5 36.7
10 12.8 23.1 29.5 32.2 34.0 35.4 40.5
20 12.8 23.6 30.8 34.3 26.9 139.0 48.1

Width 30 13.2 24.3 -32.1 36.5 39.8 42.7 55.7
40 : 13.624.8 336 38.5 42.7 46.4 63.3

50 14.0 25.5 35.0 40.7 45.6 50.1 70.9
100 14.0 28.0 41.5 51.3 60.3 168.6

Table A2.3. Channel resislance (KS2/0) for n-channel source-followers

...... ... . .. I --:: ' .....
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Ri I cngth
Rdcpsf 5 10 20 30 40 50 100

5 3.0 4.3 5.0 5.3 5.4 -- 56 _ 6.01
10 -3.0 4.3 5.1 5.4 5.7 5.9 6.6
20 - 4.4 5.3 5.8 6.2 60.4-- 7.8

Width 36- 4.5 5.6 6.2 6.6 7.0 8.91
40 4.8 5.8 6.5 7.1 7.6 10.1

50 * 5.0 6.0 6.8 7.5 8.2 11.3
10o 7 7.5 8.7 10.0 1I.72 17.2

Table A2.4. Channel resistance (KQi2/) fuor depIctown source-fillowers

R___ Length -

Rdep 7T 1i1 20 30 40 50 100

5 8.8 ' 15.1 18.6 19.9 10.4 20.8 I 21.6

10-- 88 15.2:18.7 _-19.9 5 25 20.8 21.6
20 15.2 18.8 20.0 20.6 21.0 21.7

Width 30 * 15.3 18.9 20.1 21.0 21.81
40 1 15.5 19.0 20.1 20.8 21.1 21.9

50 15.5 19.0 ,U0. 3 20.9 . 21.3 22.0
100 . •1 9.5 20.7 21.5 21.8 ! 22.51

'Fable A2.5. Channel resistance (K2/0) for depletion pullups
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APPVNI)lX IHRF-F

Approximation for Resistor Divider and Series Resistor

As part of the incremental computation for thde Thexcnin equivalent of a nctwork. it is necessry

to approximate a resistor divider and series resistance (figure A3.1(a)) by a simple resistor divider

(figure A3.1(b)).

(PI-PhI JAIRN]

(a) initial network (b) approximation

Figure A3.. Initial resistor network and desired approximalion

As usual, each resistance is potentially a resistance interval. An exact choice for the modeling

resistance is impossible (as will he shown below) so the goal of this appendix is the choice a suitable

approximation.

Consider a resistor divider with pullup resistance P and pulldown resistance Q.

-



(a) resastor div'ider (b)TIhe~cntn equivalent

Figure A3.2. Resistor divider and Thevenin equi'alenl

'he parameters of the Thevenin equivalent are

Vthev ndR.y (A 3. 1)
P+Q an Rgev=PIQ

which can be rearranged as linear equations relating Rthev. and Vohev:

R thev = P Vthev and Rthev = Q (1 Vthcv) (A3.2)

If P and Q are intervals - P = [P1, Ph] and Q =[Q1, QhI - then the Thcecnin parameters also are

intervals:

1VheQ Q and Rthev = IPI I1QPhI IQh I (A3.3)

If one plots the Thevenin parameter values (Rthe. vs. Vte) as P and Q are varied independently

over their respective intervals, equation A3.3 suggests the resulting area would be rectangular, but this

is not the case, as is illu~strated by the following figures.

Q, P1

1 thcv thvte

(a) P. Q constant (b) P constant. Q varying (c) P arving. Q cnsant

Figure A3.3. Thei'cnin plots as P and Q are varied vote ai a iuie

Equation A3.2 tells uts that if, say, Q is held constant and /I i% %aried. the plot i% a straiight lie (if slope
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Q. Mhich, if extended. .Otld intcIcct the Rj,, axi, t I ,, .- (,c figo re A.I .()). VW Cien btih I

and Q are %aried (see figure \3.4). the plot prod LCS j diamnnd-shapcd qiiatdril.atchd. and int a

rectangle.

Rthc,

Qh Ph
[p11Ph]- p hl'Qh

[Ol'Ohl Q ,l P1

0' ' &\ '1Vthe%

Q1 + Ph hh 
+ P1

Figure A3.4. Thevenm ploi as P and Q are varied sumuhaneoul)

Although the limits of R,1, and I'th, are the ones shown in equation A3.3. certain combinations of

'helcenin parameters pennitted by tie equation are clearly ruled out b the diagram above.

If a series resistance R is now added, the resulting The~enin plot is shown in the following

figure.

Rthev

Rh + PhllQh

[Ol'Oh] R1 + P 1.Q{ " Rh-R 1

____ t hev
QI + Ph Oh + P

Figure A3.5. Thevenin plot when series reaistance is added

The result is not a plot of a resistor divider at all. In order to approximate the circuit by a divider, a

decision is needed concerning which infonmation to preserve with the approximation.

Since the approximalion under development is used to calculate 1 , it is important to preserve
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information about the maximum and minimum of the circuits voltage. This constraint fixes the right

and left vertices of die diamond. The top and bottom vertices are constrained by he choice of

resistance information to preserve: since it is better to oscrestimate than to underestimate resistances,

the minimum value of R,I,., is prcserved. lhc resulting divider is shown graphicall) in the following

figure. The voltage constraints arc shown as dashed vertical lines: the resistance constraint as the

circled vertex.

Rthev Bh Ah

[AI'Ah] _. Bv icies from fig. A3.5
A35

(BBI.RRl + P111Q1  Al

dh Vthe

Q1 + Ph Oh + P1

Figure A3.6. Thevenin plot showing approximating divider

The values for Al and BI are determined by the second constraint and equation A3.2:

RI + (QI I F Pt) = A Q and RI + (Qj IIPt) = B(1 2- ) (A3.4)P, + Qt PI + Q1

This fixes the two lines that form the bottom half of the diamond. Next, the values of Ah and Bh are

chosen so that the left and right vertices of the diamond have the same Vth,, coordinates as in figure

A3.5:

Bt (__ Bh Qh
___- andQ ABh- (A3.5)Ah + BI Pha + Q1 and A + Bh -PI + Qh A35

Solving equations A3.4 and A3.5 for the parameters of the approximating divider yields:

PI Ph Ph
A, = P1 + R +R--I Ah = h + R - + Ri-

(A3.6)

BI= Q + RI + RIl Rh = Qh + RI----+ RI--h-
I), Q1 P,
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Note that all resistances are greater than the minimum resistance of the series resistor (RI). A

different choice of what resistance information to preserve (as was made in early versions of RSIM),

might cause Ai and BI to be less than RI, leading to pessimistic voltage predictions for some nMos

circuits.



155

RFlFER ENCiKS

I Agrawa]8OJ V. AgraA al. cl al. "A Mixed-mode Simulator." Proceeding.s of 17th IDesign
IfutomIatton (onfercnce. Junec 1980.

jBakcr8Ol C. Baker. Artwork Aia ' sis Tools for VLTSI Circuits. M.I.T. Laboratory for
Computer Science ]R-239, May 1980.

[Barzilai831 Z. Bartilai, et a!. "Simualating Pass Transistor Circuits using Logic Simulation
Machines," Proceedings oj 20th Design Automation Conference, June 1983.

[Bell81] A. Bell. M. Stefk. and L. Conway. The Deliberate Engineering of Afethodologies for
Integrated S 'stemn Design. K now ledge- Based VI.Sl Design Group, Xerox PARC.
Memo KIJ-VJSI-81-3 (working paper), April 1981.

[Bryant79j R. B~ryant, Phi) thesis proposal, M.I.T. D~epartment of Electrical Engineering and
Computer Science. December 1979.

(Bryant~l] R. Bryant, Logic Simulation of At OS LSI, M.I.T. Laboratory for Computer
Science TR-259, 1981.

ICase78I G. Case. "SAI.OGS-1V - A Program to Perform Logic Simulation and Fault
Diagnosis," Proceedings of 15th Design Automnation Conference, June 1978.

IChawla7Sl B. Chawla. H. Gummel, and P. Kozak, "MOTIS - An MOS Timing Simulator",
IEEE Transactions on Circuits & Ssteins. Vol. CAS-22, No. 13. December 1975.

[Chcn78] R. Chen and J. Coffman, "Multi-Sim, A lDynamic Multi-Level Simulator,"
Proceedings of 151h Design Automation Conference, June 1978.

[Curry74] H. Curry and R. Feys, Comtbinatory Logic, North-Holland Publishing Company.
Amsterdam, 1974.

[Denneau82J M. IDenneau. "The Yorktown Simulation Engine," Proceedings of 19th Design
Autoniation Conference, June 1982.

tFan771 S. Fan. M. Y. Hseuh. A. Newton. and D. Pederson, "MOl'lS-C: A New Circuit
Simulator for MOS [.51 Circuits." Proceedings IEEEI International Syvlposiuml oil
Circuits and SYstems. April 1977.

[Flakc8OJ P. Flake. P. Moorby. and G. Musgrave, "Logic Simulation of Bi-directional Tri-
state Gates." Proceedings of IEEEL International (onj~'rence onl Circu its and
Compuiers, October 1980.

fFlake831 P. Hlake. P. Moorby. and G, Musgravc, "An Algebra for Logic Strength
Manipulation." Proceedfings of 20th Design Automnation (Thifircnce. June 1983.

[Gardner79l R. Gardner and P. Weil. "Hiierarchical Modeling and Simulation in VISTA,"
Proceedings of 16th Design Automation Confierence. June 1979.



- 156-

[GlasscrJ80 I Glasser. The Analog.., Ihavior of I~igial Imncgratcd ( ircuitl.%, M..I VI SI Mcnio
No. 80-36. I)ecember 1980.

[I Iarrison77] W. Harrison. "A Ncw StrategN for Code Generation - the Gencral Iurpose
Optimi/ing Compiler," lProcceditlgs o I('lUrtl .-1( .A1 .S yIIl)ONtl411 Ol flit I'rllCiplh/s of
Progratinning languages 1977.

[Hi1179] I). Htill and W. %anClcemput. "SAII.FI: A lool for Gcnerating Structurl,. Multi-
le\cl Simulations" Pru(c ,mgs oj'161h Design Automat n ( oitcrem C, June 1979.

[Hillis81] W. 1). Hillis. The (onnection Machine. M.I.'. Artificial Intelligence I-aborator\
Memo No. 646. September 1981.

[Holt81] I). Holt and I). Hutching,. "A MOS/I.SI Oriented Logic Simulator," Proceedings
of 18th Design Automation Conference. June 1981.

[Horowitz831 M. Horowitz, "Timing Models for MOS Pass Networks." Proceedings of the Il:'l-'
International Sy)mposiumt on (ircuits and .S)stems 1983.

[11er83] J. Ilcr, A Vl.SI Circuit Recognizcr f! rIlthancing Simulator Accuracv. MS Thesis.
M.I.T. Department of Electrical Engineering and Computer Science, January 1983.

[Jouppi83] N. Jouppi, "TV: An nMOS Timing Analyzer," Proceedings oif the Third Caltech
V.SI Conference. 1983.

[Koppc178] A. Koppel, S. Shah, and P. Puri, "A High Performance I)elay Calculation Software
System for MOSFET 1)igiud L.ogic Chips." Proceedings oj 15th Design Automation
Conference, June 1978.

[I.elarasmee8l] F. l.elarasmee. A. Ruchli. and A. Sangiovanni-Vincentelli. The l'aivefoirm
Relaxation Method fir Time Doinain Analysis of Large Scale Integrate Circuits.
Memorandum No. UCB/ERL M81/75, Electronics Research Laboratory.
University of California. Berkeley, June 1981.

[Mcl)ermott82] R. McDermott, "Transmission Gate Modeling in an Existing Th11ree-value
Simulator," Proceedings of lVth Design Automation Conference, June 1982.

[Mead80] C. Mead and .. Conway, Introduction to VIl.S Systems, Addison-Wesley,
Massachusetts, 1980.

[Nagc175] I.. Nagel, SPIC2: A Computer Program to Simulate Semiconductor Circuits, 'RL
Memo No. FRI.-M520. University of California. Berkeley, May 1975.

[Nahm80] H. Nham and A. Bose, "A Multiple )elay Simulator for MOS I.SI Circuits",
Proccedings of 17th Design Automation Conference. June 1980.

[Newton80] A. Newton, Timing. logic and ,l i.ed-mode Simulation fo r I arge . OS Integrated
Circuits. NATO Advanced Study Institute on Computer )esign Aids for V[.SI
Circuits. Sogest-Urbino, Italy. July/August 1980.

--



157 -

[New ton83I A. Nc ton and A. Sangio anni- \incentlli, I oin-ba.w,! / ,,'rn a.S"tu/at n.
Universic of California,. ferkeley. 1983.

(Okasaki83] K. Okasiki. 1. Mori'a. and "1. Yahara. "A Multiple Media I )c1,., '4imulator foir
MOS I.SI Circuits." 1'roceeding oJ'20th Iesign A utomaII ( omifY rc, c. JUne 1983.

jOusterhout83] J. Oustcerhout. "Cr.stcal: A Timing Anal%,er for nMOS VISI Circuits." /'ro(cc,/:ngs
'i/he Third ('atech I'.S1 Conference, 1983.

[Penfield8l] P. Penfield and J. Rubinstein, Signal Delay in RC Tree .etvKrks , \.. VLSI
Nlerno No. 81-40, January 1981.

[Pfistcer82] G. Pfister, "The Yorktown Simulation Engine: Introduction," Proceedings of 9lth
Design Automation Conference, June 1982.

[Pilling73] 1). Pilling and H. Sun, "Computer-Aided Prediction of Delays in L.S1 Logic
S% stems," Proceedings of Oth Design Automtun I1 ,rk.shop, June 1973.

jSV80 A. Sangiosanni-Vincentelli, Circuit Simulation. NA 10 Advanced Stud, Institute on
Computer Design Aids for VLSI Circuits, Sogesta-Urbino, Ital), jul./August 1980.

[Sherwood8l] W. Sherwood, "A MOS Modelling Technique for 4-State "'rue-\'alue Hierarchical
Logic Simulation." Proceedings of 18th Design Automation Conference, June 1981.

[Stevens831 P. Stevens and G. Arnout, "BIMOS. an MOS oriented multi-lcvel logic simulator,"
Proceedings of 20th Design Automation Conference. June 1983.

[Szygenda72] S. Szygenda. "TEGAS2 - Anatomy of a General Purpose Test Generation and
Simulation System for Digital Logic," Proceedings of 9th ACA! Design Automation
Workshop, June 1972.

[Szygcnda75] S. Szygenda and E. Thompson, "Digital Logic Simulation in a Time-Based, Table-
)riven Environment," IEEE Computer, Vol. 8. March 1975.

ITamura83] E. Tamura. K. Ogawa, and T. Nakano, "Path Delay Analysis for Hierarchical
Building llock Layout System." Proceedings of 20th Design Ataxomation Conference,
June 1983.

(Terman8l] C. Tcrman, User's Guide to NET, PRESIM. and RNL, M.I.T. Laboratory for
Computer Science. September 1982.

[Thompson74] E. 'hompson. et aL "Timing Analysis for Digital Fault Simulation Using
Assignable )elays," Proceedings of l1th Design Automation Conference. June 1974.

[Ulrich73I F. Ulrich and T. Baker, '"The Concurrent Simulation of Nearly Identical Digital
Networks," Proceedings of lOth Design Atamilatlim 11 orkshop. June 1973,

IUlrich76j F. Ulrich. "Non-integral I:vent Timing for Digiial Logic Simulation," Prn'eedings
of 1311i Design Automation Conference, June 1976.



- 158 -

[Vaucher75] J. Vaucher and P. Dural, "A Comparison of Simulation Ekcnt list Algorithms."
('ommunications f the A('AI, April 1975.

[Wccks73] W. Weeks, et al, "Algorithms for ASTAP - A Network Analysis Program." /I.F/
Transaction on Circuit Theory, Vol. C1-20, November 1973.

[Wulf75] W. Wulf. et al, The Design of an Optimizing Compiler, American Iscier, New
York, 1975.

[Wyatt83] J. Wyatt. et al. "Waveform Bounding for VLSI Timing," Proceedings IEIE
International Conference on Computer Design. October 1983.

[Zycad83] I.E-IO00 Series Logic Evaluator Intermediate Form Specification, Release 1.0,
Zycad Corporation, Roseville, MN, 1983.

~ ,-~- -



OFFICIAL DISTRIBUTION LIST

2 Director
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

3 Office of Naval Research
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Robert B. Grafton

Code 433

2 Dr. E.B. Royce
Head, Research Department
Code 38, Naval Weapons Center
China Lake, CA 93555

6 Director
Naval Research Laboratory
Washington, D.C. 20375
Attn: Code 2627

2 National Science Foundation
Office of Computing Activities
1800 G. Street, NW
Washington, D.C.
Attn: T. Keenan, Program Director

12 Defense Technical Information Center
Cameron Station
Arlington, VA 22314

1 Captain Grace Hopper, USNR
NAVDAC-OOH o e
Department of the Navy

Washington, D.C.- 20374

I;




