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Abstract

This thesis proposes a timing simulator (RSIM) based on a uniquely simple transistor model. RSIM
allows a designer to detcrmine both the functional and approximate timing characteristics of a MOS
network with more accuracy than gate-level simulation, and using larger circuits than are
accommodated by circuit analysis programs. In RSIM, transistors are modeled as resistors; the logic
states of a transistor’s terminal nodes determine its effective resistance. Using this model, a MOS
network is simulated as a network of resistors where each node’s value is determined by the resistance
of its connections to various inputs. Transition times are determined from the RC time constant
calculated for the node by cxamining the surrounding network; (R from the transistors, C from the
interconnect and gate capacitance). The network's behavior as inputs are given values is calculated by
an efficient event-driven algorithm.

Two changes to the underlying model are also investigated:

(1) further simplifying the transistor model to an on/off switch (which can be
thought of as a degenerate resistor). Several approaches to switch-level
simulation are developed, one particularly well-suited for implementation using
parallel hardware.

(2) modeling the behavior of a network of switches by a system of logic equations.
Various compilation strategies are evaluated for producing code that implements
the system of equations.
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CHAPTER ONE

INTRODUCTION

Simulation plays an important role in the design of integrated circuits. Using simulation, a
designer can determine both the functionality and the performance of a design before the expensive
and time-consuming stcp of manufacture. The ability to discover crrors early in the design cycle is
especially important for MOS circuits, where recent advances in manufacturing technology permit the
designer to build a single circuit that is an order of magnitude larger than ever before possible. This
thesis presents three new algorithms designed specifically for the simulation of large digital MOS

circuits.

Today’s MOS circuits offer special challenges to a simulation program, challenges that are not met
very well by current simulators. New integrated circuits can incorporate hundreds of thousands of
transistors; the shcer number of transistors dictates that a simulation algorithm use simple,
computationally cfficient transistor modcls. In addition, designers take advantage of the symmetry of
the MOS transistor to build circuit configurations with behavior beyond the ken of traditional logic

simulators. The new simulators introduced here are designed to mect these challengcs.

e




L.1. Ovenview of the thesis

To use a simulator, the designer enters a design into the computer. typically in the form of a hst
of circuit components where cach component connects 10 one or more nodes. A node serves as a wire,
transmitting the output of one circuit component to other components connected to the same node.
The designer then specifies the voltages or logic levels of particular nodes. and calls upon the simulator
to predict the voltages or logic levels of other nodes in the circuit. ‘The simulator bases its predictions
on models describing the operation of the components: a simulator is characterized by the types of
component models it employs. Two of the more popular approaches are:

e component models based on the actual physics of the component: for example. a
transistor mode! that relates current flow through the transistor to the terminal
voltages, device topology. and manufacturing parameters of the actual device.

e compenent maedels based on a description of the logic operation performed by the
component, e.g.. NAND and NOR gates.

The first type of model is found in circuit analysis programs such as ASTAP [Wecks73] or SPICE
[Nagel75] which try to predict the actual behavior of each component with a high degree of accuracy.
Current circuit analysis programs do the job well, perhaps too well; at no small cost, they provide a
wealth of detail. at sub-nanosecond resolution, about the voltage of cach node and the amount of
current through cach device. (For example, a properly calibrated circuit analysis program is able to
predict. within a few per cent. the amount of current that flows through an actual transistor.) This
level of detail would swamp the designer if collected for the entire circuit while simulating. say, a
microprocessor.  Fortunately, the designer is spared this fate, since the computational cost of circuit

analysis restricts its applicability to circuits with no more than a few hundred devices.

One solution to the problem of simulator performance is to adopt a simpler component model.
such as the gate-level model introduced above. This approach works well when dealing with
implementation technologies that adhere to gate-level semantics (e.g.. bipolar gate arrays). However,
MOS circuits contain bidircctional switching elements that cannot be modeled by the simple
composition of Boolean gates. Since many of the circuit techniques that make MOS attractive for 181
and ViSI applications take advantage of this non-gate like bchavior, it is important to model such

circuits accurately.

This thesis cxplores the possibility of providing the cssential information (functionality and
comparative timing) for large digital circuits by using modcls that bridge the gap between the gate-

level and detailed modcls discussed above. The goals to be met by these new modcls are summarized

B




in the following list:

(i) The underlying model must be computationally tractable for large circuits. ‘The
empirical nature of the verification provided by simulation suggests that it must
be applied cxtensively if the results arc to be uscful; timely simulation
encourages this.

(ii) Transistor-level simulation is necessary to accurately modcl the circuit structures
found in MOS designs. This allows the designer to simulate what was designed —
an advantage. since requiring scparate specification of a design for simulation
purposes only introduces another opportunity for error.

(iii) The results must be correct, or at least conservative; a misleading simulation that
results in unfounded confidence in a design is probably worse than no simulation
at all. Here. we must trade off the conflicting desires of accuracy and efficiency.

Two models are examined in detail by the thesis:

e a [inear model in which a transistor is modeled by a resistance in series with a
voltage-controlled switch, The state of the switch is controlled by the voltage of
transistor’s gate node.

o a swirch model, similar to the linear model, except that resistance values are limited
to onc of two quantitics: 0 for for n- and p-channel devices, and 1 for depletion
devices.

MOS circuits are easily transformed to usc either model, as illustrated by the following figure.

30.2 1
s4/64 B 8
—©C —C
A~ A~
44
(a) original circuit (b) lincar model (c) switch model

Figure 1.1. Two approaches 1o modeling a simple MOS circuit

The lincar model forms the basis for the RSIM simulator. In RSIM, networks of transistors and clectrical
nodes form an R-C nctwork (R for the transistors, C for the interconnect and gate capacitance): the
network's behavior under different inputs is calculated by a sclective-trace (event-driven) algorithm,
The comparatively fast “"pscudo circuit analysis™ that is possible with the lincar model allows the
designer to determine both the functional and approximate timing characteristics of a network. RSIM
gocs a long way towards mecting the three goals outlined above. The algorithm employed to estimate

the hehavior of a lincar network is much faster than a typical circuit analysis program. Resistors are




imherently bidirectional: the network analysis makes no a priorr assumptions about the direction of
current flow through cach resistor, Finaily, the results are at least qualitatively correct and. in gencral,
conscrvative — in some cases more conservative than designers themselves might like. With the

appropriate choice of mode! paramcters, the results can even be quantitatively uscful,

The switch model is a simplification of the lincar model that is useful when only a circuit's
functionality is of interest (ie.. no information on performance is wanted). 1.ike a traditional gate-level
simulator, a switch-level simulator bases its predictions on an abstraction of the actual circuit, but the
switch model is able to handle the bidirectional nature of MOS transistors much more successfully than
a gate-fevel model. The switch model is incorporated by ESIM. a simulator that has seen extensive use

i the last few years.

Certainly a major goal of RSIM and ISIM is to provide a fast, useful simulation of MOS circ
but the story does not end there. Another motivation for new simulation algorithms is the chang
nature of the design community. In order to cope with the increasing complexity of integrated cir
design, new design methodologies have developed (e.g.. [Mead80]) that impose constraints on the v -
circuits are constructed. One can no longer afford to hand-craft cach transistor. so rules of thumb are
created to aid in the choice of transistor sizes. Clever circuit configurations are avoided in favor of
circuits composed under the guidance of composition rules (e.g.. [Bell&1)]) that rule out arbitrary circuits

and the obscure electrical behavior they imply. T

k These new design methodologies have opened up the ficld of 18I design to a new breed of

"Mcad and Conway” designer, ie, a designer who is a sophisticated architect, but who is not a

specialist in 151 technology. An important aspect of the simulators described in this thesis is that their
underlying models are casily understood by this new breed of designer. The abstractions embodied by
the simulators are faithful enought to the actual clectrical behavior of a circuit that the achievement of
a successful simulation run indicates frcedom from a large class of potential failure modes. If a
simulation does point out an error. it does so in a manner that leads even the novice designer to a
good understanding of the circuit as actually designed and the ways in which it might differ from the

intended design.

However, the simulators are based on medels of actual behavior, As  vith any model,

tStatc-of-the-ant designs intentionally cxpiont the “obscure™ behavior of certain arcunts (e.g., sense amplifiers). ofica
to considerable commerciat advantage  RSIM and its refatives are not as useful for this type of design as convention-
al arrcunl analysis programs  But the professionals engaged in such well-focused designs are not the audicnce ad-
dressed by Mcad and Conway (and RSIM).




discrepancics are likely to exist between the model predictions and the actual behavior of a circuit.,

‘The ols described here attempt o be conservative, e, 10 give pessimistic predictions, but this cannot
be guaranteed. Thus. it s important that the designer become acquainted with the inner workings of
the models and their shortcomings. The wols perform a caleulation one could do by hand (only faster
and with greater accuracy and consistency) — they should nor be treated as black boxes. e models

prescnted here are simple enough (o enable any designer to gain the necessary understanding,

A final mouvation for new simulation technology is the desire to improve simulator performance.
It scems that digital computers ought o be well suited for the simulation of digital logic.
Unfortnately. current simulation schemes involve several lavers of interpretation (e.¢.. command
interpretation, access to the network daw base. model evaluation). and their performance suffers as a
result. Happily, much of this overhead can be climinated through the application of traditional
compilation technigques. This is the theme of the final section of the thesis, and the motivadon for the
development of CSIM, a combination compiler/simulator. ¢S1M compiles a network into a simulation
subroutine: the subroutine contains code to compuie the new value of each node from its old value
and the values of other nodes in the network. The compilation is particularly casy when the node is
the output of a logic gate, and the work presented here extends the compilation technique to any node
in a MOS circutt. Simulating the network entails executing the subroutine repeatedly until no nodes
change value. If the circuit is very active, Le. if many nodes change value cach tme the network 1s
simulated. the simulation subroutine computes new node values many times Jaster than the
corresponding event-driven simulation. There has been much interest recently in special purpose
hardware for simulation [Pfister82, Zycad83). It may be that such developments are premature. and

that substantially better simulation performance can still be obtained from general-purpose computers.

The relationship among RSIM, £SIM. and CS1M s illustrated in the table below.

I RSIM . ESIM_ | CSIM
e e e e s
node values .« logic-level - logic-level | logic-level

! (from voltages) | 1
modcl level y  ransisior | ransistor node equations
components | resistors & 1 switches & L cquaiins

! capacitors ( capacitors | (from switches)
scheduling i cvent-drisen 1\ cvent-driven compile-time
e T W — 4
relative speed | 1 | 5-3 1 -100

No one simulator has a speed advantage. for rcasons explained in subscquent chapters. It is not

unusual to usc all three simulators during the course of a design, since cach brings out a different




aspect of a circuit's behavior. ESIM is often used during the carly stages of a design when the designer

is fleshing out the logic. RSIM is used to determine which portions of the design arc in need of a
careful performance analysis; usually the performance of most of the circuit can be debugged with the
level of detail provided by RSIM. Finally, cSIM is useful for long simulation runs intended to verify the

functionality of the design through extensive diagnostics.

This thesis presents the new models and their accompanying simulators in detail, exploring the
ramifications of cach model and discussing the accuracy and uscfulness of their predictions. The next

section gives a brief outline of the remaining chapters.

1.2. Qutline of the remaining chapters

The thesis has three main parts. The first part focuses on the linear model and the RSIM
simulator.

Chapter 2 description of the switch/resistor transistor model incorporated by
RSIM: outline of the method for calculating a node’s value using the
lincar transistor model; propagation of changes through the network;
choosing model parameters; analysis of sample circuits using linear
model.

Chapter 3 justification of the lincar model by analysis of true behavior of MOS
logic gates: comparison of actual voltages and propagation delays
with RSIM's predictions; proposal for modifications to the model
based on insight gained during analysis: analysis of sample circuits
using updated model.

Chapter 4 details of converting the linear model into a workable simulation
algorithm; optimizations for improving simulator performance;
mechanisms for controlling the voltage and transition time predictions
for specific nodes; review of the successes and failures of the linear
model.

The second part (Chapter §) presents the switch-level model. The chapter begins with a
discussion of the representation of node values and cxplains why many extant simulators adopt a
representation that leads to unnccessary difficulties. Next, two switch-level algorithms are presented.
The first is a straightforward adaptation of the RSIM algorithm, replacing its resistance computations
with simpler oncs that reflect the resistance value constraints of the switch model. The second
algorithm is based on an entircly different approach; cach computation har dles a single transistor and
uses only local information (the type of the transistor and the states of its terminal nodes). The
computation is casy to understand and appeals to our intuition about the way transistors really

operate. ‘The simulation procceds by repeatedly computing new node values for the source and drain
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nodes of individual wansistors, choosing the transistors in any convenient order. The simulation is
complete when no further changes in the network state are possible. The termination of this
relaxation algorithm is proved, and the final network state is shown to be independent of the order in
which the individual computations are performed. The second algorithm is well suited for
implementation on the new parallel architcctures just now becomiag available; the approach discussed

here is a first cut at designing simulation algorithms tailored for use on parailel engines.

The third part (Chapter 6) investigates the possibility of using various compilation schemes to
improve the performance of the switch-level simulator. A technique is proposed for constructing a set
of equations for each node in the network. These equations relate the new value of a node to its
current value and the values of other nodes in the network. The network can be simulated by
cvaluating each node's equations in turn; scveral ways of ordering the nodes for evaluation are
discussed. The scction concludes with several examples of simulation routincs that were compiled
directly from the network data base. When executed, these routines result in a simulation several
orders of magnitude faster than otherwise possible.

The thesis concludes with a discussion of other work in the area of simulation and its relationship

to the ideas presented here,




CHAPTER TWO

A Linear Network Model for MOS Simulation

‘The clectrical model described in this chapter can be used as the basis for a logic-level simulation
of a network of MOS transistors. Other modcels are of course possible, ranging in accuracy and detail
from circuit analysis to high-level functional simulation. While the chosen model does not encompass
many of the operational details of real MOS networks (most notably, detailed transistor modeling) it is
adequate to cfficiently determine the basic functionality and the approximate timing characteristics of
a network. Short circuits, charge sharing, nodes with multiple drivers. bidirectional “pass* transistors,
and so on arc modeled correctly.

The first scction describes the switch/resistor transistor model incorporated by RSIM.  Using this
maodcl, a MOS network is simulated as a resistor network where cach node’s value 1s determined by the
resistance of its connections 1o various inputs. The second section outlines the method for calculating
the value of cach node. This is followed by an explanation of the use of component models to predict
the propagation of new input values through a nctwork. The fourth section discusses techniques for

choosing model parameters and compares RSIM'S predictions with those of a cireuit analysis program.

The chapter concludes with a summary of the model's ingredicnts,




2.1. RSIM's transistor modcel

‘The transistor model in RSIM can be quite simple since it is only used to predict the final logic
stite of a node and the length of time cach state transition takes. As an example of how the model
works, consider a simple inverter: one can think of the cffective resistance of its component devices at

any moment as

idspully Ids pulldo
Regpuityp = # Reg putidown = # (2.1)
pullup pulldown

The following figure shows the actual effective resistance of an inverter's pullup and pulldown as a

function of the inverter's output voltage (assuming no load current).

y
Reﬂ' r
pullup
Vds:pullup
—
s .
ds:pulldown _—/

pulldown

Vds:pulidown

Figure 2.1. Effective device resisiances in an inverter

Although the effective resistances of the transistors change as their tenninal voltages vary. it might be
possible to use "average channel resistances” to characterize the transistors’ behavior.

The other salient feature of a transistor's operation is its switch-like bchavior. With certain
voltages on a transistor's terminal nodes, it makes no connection at all between its source and drain
terminals — the transistor is "off". As the relative terminal voltages change, the transistor turns “on”,
conducting current between its source and drain terminals.  As illustrated in the previous figure. the
transistor is more "on" at some times than others, but the distinction among the different "on™ states

can be ignored for simplicity.

There are three basic types of transistor switches found in MOS circuits:




RN | R

drain drain drain
w{z m«»«;@ M[@
source source source
ON when gate =1 ON when gate = 0 always ON
OFI° when gate = 0 OF} when gate = }
(a) n-channcl switch (b) p-channel switch (c) depletion switch

Figure 2.2. Three iypes of MOS transistor swilches

The difference between n-channel and p-channcl switches is the logic Ievel which turns on the switch.
The depletion switch is always on: it is usually connccted to VDD in a way that provides a source of
current to keep its output node charged high., More precise distinctions between the switch types. and
the need for a depletion device (and why an ordinary switch does not suffice) are discussed in Chapter
3

One can build on the observations made above to construct a lincar transistor model for RSIM:

drain drain
T open Voate = 0
gate O~ - - closed "galc =1
gate o_.._, unknown Vaate = unknown
Rcff
source source
(a) n-channel transistor {b) RSIM modcl

Figure 2.3. RSIAf model for n-channel transistor

It is casy to tabulate the sort of connection that exists between the source and drain terminals as a

function of the gate voltage: ‘

Reg switch closed (vgare =1)
Ry = 00 switch open (Vgare =0) (2.2)
[Regoo)  switch unknown  (vgure =X)

Note that uncertainty about the state of the switch lcads naturally to an interval describing the

resistance of the source-drain connection. In fact, all the network calculations use interval arithmetic,

A s 12 - e e i £ A AL S A . S — =




and the bounds of the resulting intervals are used when converting voltages o logic slates. etc.: no

other mechanisms are needed 1o deal successfully with X states in the network. Maodels for other

types of ransistors differ n the way the position of the switch is determined from Veate !

drain drain

T opcn ‘v gate = 1
O -~ - =
gate closed ‘gale =0
unknown \gale =X
Reﬂ‘ Rer
b
source source
(a) p-channel transistor model (b) depletion transistor mode!

Figure 2.4. RSIA! models for p-channel and depletion transistors

The effective resistance Ry is determined separately for cach transistor and depends on

widrth, length  dimensions of the active transistor arca. Vanous non-lincar cffects
make Ry a more complicated function of the transistor geometry
than just length/width.

lype Most MOS circuits contain more than onc type of transistor, The
different types are distinguished by different values for  tharr
threshold voltage. Since the current conducted by g transistor s 4
function of its threshold volage and hence s type. the modehing
resistance also depends on the transistor type.

context Accuracy in choosing the effective resistance can be improved by
disunguishing scveral contexts in which a transistor may appear: for
example, an cnhancement transistor can be used as 4 pulldown or
source-follower in addition 1o its default pass gate configuration,
Surprisingly few contexts need to be recognized 10 encompasy a large
portion of digital MOS designs,

The determination of Ry is made once for cach transistor and doees not depend on any dyvnamic
propertics of the circuit to be simulated. During simulation the only device infonmation RSIM uses
about a transistor is its cffective resistance.

Actually RSIM uses not onc. but three cffective resistances for cach transistor.  To understand
why. recall that RSIM trics to predict the transition time and final voltage for a node. as shown in the

following figure.

|
|
!
|




node X starting point

S switching threshold

]
]
I —
! I final voltage
1

>V
>

ume

e - . - - e - - = - -

>
transiton time

Figure 2.5. Rejf is used to predict transition time and final voliage

One would like to calibrate the model to give accurate predictions for both quantitics. but that is

impossible with a single set of resistances. To solve this problem, RSIM uses three resistances for each

transistor:
Ranc when calculating the final voltage.
Ry niow when calculating the transition time for high-to-low transitions.

R nhigh when calculating the transition time for low-to-high transitions.
Two "dynamic” resistances are used so that the asymmetric behavior of pass devices can be accurately
predicted. Computations involving Ry are triplicated, one for cach of the threc actual resistances. so

subscquent calculations can use the appropriate value.

1.2. RSIM's node model
Voltages 1n this model are quantized into onc of three values; this corresponds to our intuition
for digital logic and greatly simplifies the simulation calculations. If all node voltages are normalized
to fall in the range {0. 1. then the possible quantized values are
0 logic low — voltages in the range [0, vipu]:
1 logic high — voltages in the range [vaen, 1J:

X ntermediate voltages,  [viow. Vign) or unknown voltages, 0. 1] — to be
conservative X is always interpreted as representing the larger interval;

where vy, and vign are the predetermined logic thresholds.
How 1s the value of a node determined? Using the transistor model described in the previous
scction, the original network is transformed into a network of resistors (formerly  transistors) and

capacitors (formerly nodes). 1f a node is not connected to any input, it is said 0 be charged with a

- a—
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logic state determined by the state of the last driven node it was connected to. If two or more charged
nodes in different logic states are connected then charge sharing occurs,  In this casc. all the connected
nodes reach the same logic state: this state is determined by the relative capacitances and initial logic
states of the nodes in the stage. For example. if a large (high capacitance} node such as a data bus
were connected by a pass transistor to a small node such as the input to a register ccll. then the small
node would “share” the charge of the large node as its final value regardless of the charge it had
initially. Even nodes that ultimately have a connection to an input participate in charge sharing: the
extent of their participation is governed by the relative sizes of the charge-sharing time constant and

the tume constant associated with the input connection.

Electrically connected nodes form natural groupings. called srages, bordered by input nodes
(usually vDD and GND). If nodes in a stage are allowed to share charge, all will rcach the same

voltage, Vpare, given by

2(‘,' zt‘,‘+ Ec‘,‘

1 nodes 1 nodes X nodes
Vshare:min = Vshare:max = ~ 23y
] 2 G
all nodes all nodes

where the sums arc over nodes in the current stage. Since nodes at logic state X contribute an
undctermined amount of charge to the result, Viare i an interval whose bounds represent the worst
casc assumptions about the actual values of X nodes. These bounds are compared with the logic

thresholds when calculating the charge-sharing value:

0 Vshare :max < Viow

Charge-sharing value = 1 Vshare:min 2 Vhigh (2.9)
X otherwise

This calculation is not strictly accuratc when the stage contains transistors with gates of X. Such
transistors might not make any connection at all; invalidating the various sums in cquation 2.3. An

alternative charge-sharing calculation that addresses this problem is discussed in Scction 4.1.1.

When one accounts for the resistance hetween nodes, it is difficult to calculate transition times
for any nodes that change valuc because of churge sharing. RSIM simply schedules any charge-sharing

transitions so they happen immediately. A more reasonable time constant might be (ER,)F oy where
i

the first term is the sum of all the resistances in the stage and




-18 -
G Charge-sharing value = }
0 and X nodes
Cyg = 2 « Charge-sharing value = 0 Q.5)
I and X nodes
0 otherwise

is the amount of capacitance in the stage that nceds to be charged/discharged to reach the charge-
sharing value. This time constant is surcly an upper bound on the time of any transition in the stage.

Note that transitions to X still happen immediatcly, a conscrvative assumption.

If a stage is connccted to one or more inputs, the inputs determine the final voltage of cach node
in the stage. The effect of inputs on a particular node is characterized by the Thevenin equivalent for

the stage (including the inputs at the boundary). regarding the given node as the output:

R(lr'ive

M\

thev cload

Figure 2.6. Fquivalent circuit for a network node

Vinev  a voltage interval [V _. V ] in the range [0. 1] specifying the possible voltages
the output node may have. This value is calculated using cach transistor's
Riaiic resistance.

Rarive a resistance interval [R _. R 4] in the rarge [0. ©0]. Three versions of this
value arc calculated: Rgnve:fow . USing Ravniow fOr cach transistor; Rarive:high.
using Ravnkugh: and Rgpve:y (sce scction 4.1.2). The appropriate version is
chosen depending on the final voltage predicted by Vogey.

Vinev and Rgrive arc generally intervals, since the cffective transistor resistances from which they are
derived might themselves lie in an interval. Chapter 4 describes how Vyyey. Clogd. and Rgrive are

estimated for nodes in actual networks.

It is somctimes uscful to categorize a node according to its cquivalent Rypye, Le.. how it affects

neighboring nodes to which it becomes connected by conducting transistors:

input (Rgrive = 0). Nodc is a designated input node (e.g.. VDD or GND). The value of
input nodes can only be changed by explicit simulator commands: the assumption is
that inputs supply enough current to be unaffected by connections (possibly shorts to
other inputs) made by transistors.
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driven (R ny,. < ). Node is part of a voluige divider between two inputs, e, it is
connected by transistors W other drisen or input nodes. Driven nodes can affect the
value of charged nodes without heing affected themselves, but may be forced o an X
state it shorted to a driven or input node that has a different logic level.

charged (Rgpe = 00). Node is connected. if at all, only 1o other charged nodes.
Until reconnected o some other part of the network. charged nodes maintain their
current logic state indefinitely (charge storage with no decay).

If Rynye 18 infinite, cquation 2.4 predicts the correct final value for the node and no further work is
needed. If Ryrive € 00, and the node is not an input, the final state of a driven node is calculated from
the Fpey interval {V -, Vi)

0 Vi< Viow

Final value = 1 V_ 2 vhigh (2.6)
X  otherwise

As an example, consider several different states of a NOR gate:

R1 %Rl Rl R1
A nor B
A —{ R2 R3 |— B R2 R2 {R3.00]
1
<~

(a) NOR gate B)A=B=0 ©A=1B=90 (dA=1B=X

Figure 2.7. Equivalent circuits for a NOR gate with different inputs

1 figure2.1(b)
- Ra
Vihev = m figure2l(c) .n
Ry || R; R
lR1+(R2||R3)' R1+R2] figure2.1(d)

If the final value of a node differs from its charge-sharing value, then the appropriate event is

scheduled R Ceyr scconds in the future, where
Rrive:high final value = 1

Ry = Rurive:tow Sinal value =0 2.8)
Rarive v Sinal value = X

T -
s ooy o _m“i_‘”( -
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I Sinal value = 1
0 and X' nodcs
Cyr = ¢ Sinal value = 0 (2.9)
1 and X nodes
¢ Sinal value = X
0 and 1 nodes

where the sums arc computed for nodes in the current stage. Note that transitions to X are not
immediate. but have a time constant related to the fastest transition the node can make. This means
that a momentary short-circuit, such as that shown in the following figure, does not necessarily cause a

nodc to become X: what happens depends on the relative sizes of the various time constants.

|
0-+10—4 1 I large capacitance

Figure 2.8. A momentary short-circuil does not necessarily cause an X value

If the dclay through the inverter is small compared to the time constant of the output node. no X
transition will be processed for the output node (one is scheduled, but is aborted when the pullup

turns off).

To better understand the interaction between the charge-sharing and final-value calculations,

consider the following example:

I * 1
I I
Figure 2.9. Sumple circuit for charge-sharing and final-valuc calculation

Assuming that Cp is initially charged low and that charge sharing happens immediately (an

assumpuon RSIM makes), there are several ditferent scenarios:

(4 <<Cp node A goes low immediately because of charge sharing with B. Then,
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both nodes are driven high by the pullup — node A at ume
Ri(C4+Ch)ind node Batume (R 1+ RXC4 +Cp).

C4>>Cp node B goes high immediately because of charge sharing with A; the
pullup has nothing to contnbute.

C4 = Cgp  both A and B go to X immediately and are then pulled up with the same
time constants as for (4 <<Cg.

If R is rcasonably smaller than R, then the assumption that charge sharing happens quickly is valid,
and these scenarios are satisfactory. As Ry approaches Ry in value, the time constants associated with
charge sharing approach those of the pullup, and the assumption of immediate charge sharing is a
relatively poor one.t Augmenting the charge sharing calculation as described in equation 2.5 would
improve the prediction in this casc.

In summary. calculating a node's value involves (wo separate computations, cach of which can
generate a new cvent:

(1) a charge-sharing event describing an immediate change in the node’s state caused
by the redistribution of charge among the capacitors for nodes in the current
stage. This type of event is gencrated when two stages are merged (ie., a
transistor turncd on).

(2) a final-value cvent describing what the final. driven state of the node will be.
This type of event is generated when Ry < 00,

Chapter 4 describes the way these two events are reconciled with each other and with pending events

to produce a final sct of transitions for a node.

2.3. RSIM'’s network model

The networkst simulated by RSIM are made up of two basic components:

(i) clectrical nodes which serve as wires. Each node has a capacitance that is the
sum of two contributions: (1) capacitance between other layers and the
conducting laycrs that make up the node: and (2) capacitance from the gate
junctions formed by the node.

(i) threce-terminal transistors (mosfets) which act as switches.  Each transistor
conditionally connccts two nodes (called the source and drain of the transistor)
depending on the voltage of the third node (called the gate of the transistor).

Some nodes (e.g.. VDD and GND) arc designated as inputs that supply the current necded to change the

+This illustrates the asvmumetry between the timing of transitions duc to charge sharing and those duc to the final
value calculation. ce.. R affects only the final value transion. This anomaly could be exploited to produce rather
izaree predictions, e @ node changes faster iMat is connected 1o a capacitor than if it s connected to an input’ As
a pracucal matter, arcut performance seldom depends on the tnmung of charge-shanng transitions, and these
anomalics are not significant.

\ctworks can be entered as schematies {1ennan®2] or extracted from layout information {Baker80]. ‘The latter ap-
proach provides fairly accurate estimates of the cipacttance of cach node
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volige of a node by charging/discharging the node’s capacitor.  As the voltage of a node changes.
switches controtled by the node open or close, making connections that cause the voltages of other
nodes to change. 1 is RSIM's job to predict the dynamic behavior of a network of nodes and switches,
estimating the voltage of cach node, the state of cach switch. and the charge/discharge rate when a
node changes value. From the designer's point of view, this translates into knowledge about the logic

level of each node and the transition time associated with cach change of logic level.

It is casy to build switch configurations that compute simple logic functions of node values. For

L _ggi

(a) constant 1 (b) nMOS inventer (c) cMOS inverter

cxample:

Figure 2.10. Fxamples of switch configurations that perfornt logic operations

The output node in figure 2.10(a) is connected to a depletion switch configured as a current source: its
value is always a logic high. Such circuits arc called pullups because their output nodes are always
"pulled-up™ to logic high. In figure 2.10(b) a "pulldown" switch has been added, controlied by node
A. The pulldown is sized so that. when it is on, it conducts more current than the pullup supplics.
When A is 1, the output node is “pulled-down” to 0. Of course. when A is 0, the pulldown is off and
the pullup cnsures that the output is 1: the net result is an inverter circuit. Figure 2.10(c) is an
inverter consiructed from one p-channel and onc n-channel device. Typically, the manufacturing
process can provide either p-channel devices or depletion devices. but not both, in the same circuit.

More complicated logic circuits are constructed using scries and parallel switch configurations.




drain drain

vorl
A°_+ l—oll
l B(‘”—{

source source

(a) connection if (A or B) (b) connection if (A and B)

3 Figure 2.11. Logic functions associated with series and parallel configurations

If the two-switch circuits shown above replace the pulldown in figure 2.2(b). the result 15 a wo-input
NOR Or NAND gate.

In all the circuits presented so far, the inputs are clectrically isolated from the outputs. ie. if the
output signal is corrupted somchow — by a short circuit. for cxample — the input signals are
unaffected. The isolation provided by the gate connection leads to a natural decomposition of the
network into stages made up of nodes and transistors. Nodes belong to different stages only if they
are guaranteed to be clectrically isolated. For example, in the foilowing circuit. nodes A, B. C. and D

are all isolated from one another. Node E is not isolated from DD, so it is in the same stage as D.

inputs outputs

v v
A B

C D
! _( B stage 2 o)
- E

e - >
B Ll Cc—> > E

Figure 2.12. Simple circuit that has three stages

Note that VDI and GND (and. in fact, any input) are not treated as nodes in the ordinary sense when
checking to see if two nodes belong to the same stage.  For example. node B is not considered to
connect 10 node C by a path involving GND and two of the pulldown transistors. Given a particular

node. a tree walk of the rotwork is performed to find all other nodes in the stage. The tree walk first




locates all “on™ switches which have a source/drain connection to the original node. Nodes connected
to the drain/source of those switches are part of the same stage as the original node. The uee walk
continucs until it locates all nodes that can be reached from the original node by a path of “on”
switches: this set of connected nodes and the "on” transistors that form the connections make up a
single stage.  Note that the decomposition of the network into stages is a dynamic process, Le., one
that depends on the node values of the network.¥ For cxample, the following circuit can be

decomposed into 2, 3 or 4 stages depending on the value of nodes A and B.

F=AxorB

1
4
L

Figure 2.13. Circuit with multiple decompositions

Node F is always in a separate stage. If A=0 and B=0, then C, D. and E all form a single stage; if

A=1 and B=0, then D is isolated from C and E: and so on.

When RSIM simulates a nctwork, it does its analysis stage by stage. Since the values of nodes in
a stage are closcly related (the nodes are shorted together), it makes sense to calculate all the values at
the same time. By the same reasoning, all the transistors and nodes that influcnce the value of a
particular node are in the same stage as that node. Stages are the analogs of gates in a gate-level
simulator. In a gate nctwork, each node’s value is determined by a single gate. and the output of a
gate is clectrically isolated from the inputs; the gate is the ideal unit of analysis. In MOS nctworks with

bidirectional devices, the traditional gate maodel is not adequate: hence the motivation for stages.

that might become connccted, ic.. a stage with all switches considered 10 be conducting. Transistor groups can be
quite large — for example, in circuits with barrel shifiers that potentially short together all bits in a data path —
whereas stages are usually quite small.
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Figure 214, Two wavs in which an input affects a network

The simulator first recaleulates the values of nodes in stages connected 0 the mput by the
source/drain connections of conducting switches (figure 2.14a)). Then. for cach switch controlled by
the mnput. stages on cach side of the switch are analyzed (figure 2.14(h)). If the switch becomes
conducting because of the new input value, the picces of the network on either side form one large
stage. 1f the switch just turned off, it partitions what was previously one large stage into two smaller
stages.

If a node changes value as a result of analyzing a stage. RSIM calculates the transition time by
estimating the length of tume required to charge/discharge the node's capacitunce. The name of the
node, #s new value, and the ostimated time when the transition o the new salue occurs are all
remembered as an evenrr. The simulator maintains a list of pending cvents. keeping the list sorted by
time, with the carliest event first.

When processing new input values causes @ nade to change value, a new event is generated and
saved on the event fist. After all inputs have been processed. the simulator processes events, starting
with the first element of the event tist. For cach event, the specified node is assigned its new value.
‘Then, any stages affected by this change (as shown in figure 2.14(b)) arc analyzed. possibly gencrating
new cvents, which are then added to the event hst. The simulator continues processing events unti
the cvent listis empty. The network s said o have “settled™ at this point, and the new input values

have been completels propagated through the network,
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Note that if no nedes change value when o stage s analyzed, no new events we gencrated
Portons of the network that remam gquieseent are not analvzed, sinee the simulator only analvzes
stagos attected byonpats or by nodes onthe event st By lnmitig sunudation ettort to the changiny
portions ol the network, the event hst mechanist enables the simulator o handle Lupe cocuts, The
amoeunt of computatton required tor g simulation siep i proportonal to the amount of cucutl activat,
not the size of the circut.

lo et a better feeling for the way a change propagdates through a network, consider the
followmg simulation of the XOR circuit presented in figure 2.13. Nodes A and B arc inputs: values for

the other nodes are determined by the simulator.,

A A
i

B [ B
| !

c ] ! C
| | |

p T T L] I .
I | [ | |

E T I I l, E
I R T |

v oo [ r ] F
LT Lo o

events: I 23 456 78 9 10

Figure 2.15. Waveforms for simulation example

Event #1.  Nodc A is sct to 1 by the user. ‘The simulator recalculates all stages
affected by A. in this casc. the stage containing nodes C, 1D, and E
{which form onc stage because C and D) are 1).

All three nodes are pulied down by the switch controlled by A, so events #2, #3, and #4 are
-~heduled to st C, D, and E to 0. Note that the simulator calculates a different transition time for
cach node. C changes most quickly since it is connected dircctly to the pulldown. D is the slowest
since it discharges through the two pass devices connecting it to the pulidown.

Event #2.  C changes from 1 to 0, causing the stages containing [ and E to be
analyzed.

At the time cvent #2 is processed, nodes D and E arce still 1, although they both have cvents pending
for transitions to 0. When node C goes low. it partitions what was once onc large stage into two stages
— onc containing only D, the other containing both C and E. Analysis of the stage containing D

shows that D is no longer pulled down, imalidating the upcoming transition.  ‘The simutator has




several choees:

(1 Notice that D is currently 1, so just remove the pending event for Do s results
mn 1) never changimg value. “This s not a bad predicton of 1) s scheduled o
change substantially after C.

(2) Schedule another event (#5) for node D, which changes ity value back o 10 set
the event time so that 25 happens after #£4. This choice 1s bestaf C and D are
hoth scheduled o become 0 1n close suceession,

(1Y Remove D's pending event as in (1), but report a glitch (an aborted transition) to
the user [Thompson74): a sort of compromise between (1) and (2). Some
simulators only report glitches if the aborted event has been pending “long
enough” [Nahm80}.

(4) Schedule another event as in (2) that changes 1Y's value back to 1. also change
the pending event w be a transition to X, or. alternatively. remove the pending
cvent and schedule an immediate transition to X.

As onc can sce. scheduling a new cvent is a thorny issue when it involves a node that already has
cvents pending. Since D's value does not really matter (it does not control any switches itsetf). the
first alternative scems the most reasonable.  Given the simplicity of the RSIM maodel. it probably does
not pay to overly complicate the scheduling of events. The transition-time cstimates are not accurate
cnough to allow subtle distinctions to be made based on the relative transition times of nodes; RSIM
avoids choices (2). (3). and (4) since they imvolve such distinctions. Note that a similar problem arises
for node E. 1t has an cvent pending for a transition to the correct value (E is still going low), but the
event could be rescheduled to reflect a faster transition time since the pullup on node D no longer

impedcs the transition. Chapter 4 details the exact choices made by RSIM under various circumstanccs.

Returning to the example:

Event #3.  Node E is changed to 0. causing the stage containing node F to be
analyzed. F s calculated to change value, so event #6 is scheduled.

Events #4.5. Discussed in the preceding paragraph.

Event #6. Fissctto 1. F does not affect any other stages. so no cvents are added
to the event list.

At this point, the event list is empty, and the network has settied. If the user now changes node B to
1. a somewhat simpler sequence of events cnsues:

Event #7.  Node B is set to 1 by the user, causing the simulator to analyze the
stage containing . D is predicted to go low, resutting in the scheduling
of event #8.

Event #8. D is set to 0, separating C and F into different stages which are then
analyzed. € shows no change, but Eis scheduled o go high (event #9)
now that it is disconnected from C's pulldown.,
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Event #9.  F changes o Land a8 a4 consequence s predicted o chunge 1o 0
(event #10). Note that the low-to-lugh ansition ume can be ven
different than the high-to-low wansition time: RSIM Lakes inte account
the relative sizes of the pullup and pulldown,

Fvent #10. Finally, Fis set to 0.

Once again the event listis empty, and the network has seutled.

24, Calibrating and using the RSIM model

From a practical viewpoint. the success of RSIM depends to a large degree on the choice of the
modeling resistance for cach transistor. ‘The principal goal of the calibration process 1s 10 choose
resistances that lead to accurate predictions. Actually, there are two separate sets of resistances o0 be
chosen: static and dynamic. Static resistances. used to estimate node voltages. are comparatively casy
to choose. When a circuit does not depend on device ratos for correct operation — e.g.. a pulled-up
node or a cMOS gate — the values chosen for static resistances do not affect the voltage computation.
since the nodes connect to only one polarity of input. When a circuit makes a connection to inputs of
different polarities — e.g., a nMOS gate with a logic-fow output — the intervening nodes become part
of a voltage divider. and the transistor resistances must be chosen to predict the divider's output
voltage. Since only the ratio of the pullup and putldown devices is constrained. there is considerable
freedom in choosing the actual resistance values. Of course. inauspiciously chosen values can run

afoul of range and round-off problems in the computation, but such problems are casily avoided.
A more interesting problem is the choice of appropriate dynamic resistance values. One
approach involves performing a series of experiments designed to measure the resistance of each type

of transistor in various circuit contexts:
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Figure 2.16. Simple experiments for meusuring channel resistances

Ideally. the cxperiments should be performed using actual circuits: when this is impractical. a well-
calibrated circuit analysis program can be used to gather the needed measurements. Each of the
experiments entails measuring the length of time required for the output 1o rise or fall from its starting
voltage to the switching threshold. (Section 3.4.1 describes the reason for using single threshold, and
the method for choosing it.) If the load capacitance is known, an appropriate channel resistance can be
calculated. cssentially inverting the computation performed by RSIM. Appendix 2 presents the

transistor resistances derived in this manner for a typical S5u nMOS process.

Unfortunately, while the experiments outlined above lead to usable predictions of circuit
performance, the predictions are not as accurate as one might like. The prablem with the experiments
is that the resistance measurements are made in a rather artificial context.  Factors important in
determining the behavior of a transistor in a particular circuit (e.g. shape of the input waveform,
Miller capacitances, cic.) are not measurcd by the proposed experiments. Since the simple RSIM model
does not account for these factors. they are missing completely from the caleulations, leading to
inaccurate predictions. There are two alternatives:

(1) Maodify the rRSIM model to include effects deemed important when making
performance predictions. 1t is difficult to start down this road and sull keep the
modcl simple; carried to its logical conclusion, this course of action leads to a
circuit analysis program — the very thing RSIM trics to avord.  There are,
however, alternatives that fall short of ahandoning the simple model: these are
discussed at the end of Chapter 3,
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(2)  Conduct more sophisticated  expernments using cireuit configurations found in
actual designs.

An cxample of the second approach is the following experiment;

shapes input waseform load inverter

v v ¥ v
S L r

Figure 2.17. Deriving resistances by measuring inverter pair delay

The delay through a pair of inverters involves both a rising transition (mcasuring the pullup resistance) ‘
and 4 falling transition (measuring the pulldown resistance). The initial inverter provides an
appropriately shaped input waveform: the last inverter provides a realistic output load. The mceasured
pair delay is arbitrarily split into a rising delay and a falling delay (say, % and ' respectively), so that
the pullup and pulldown resistances can be calculated. This leads to good predictions for the chains of
inverting logic so common in MOS designs.  Similar experiments can be designed to measure other

resistances. The danger in this approach is that, because of the ad hoc nature of the experiments, the

resistances might be inappropriate for new circuit configurations. However, with a prudent choice of
circuits during calibration and design, this danger can be minimized.

The following examples are analyzed using the simple calibration given in Appendix 2. The
results give a fee! for the performance of the "pure™ resistance model, and also sct the stage for the
model improvements suggested in Chapter 3. The calculation of node voltages is straightforward and
is not mentioned in the discussion below, which focuses on the calculation of transition times. The

tirst example is a path through a PLA:

e N
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clock signal wnput buffer poly linc AND plane OR plane

* A A LA
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! case 2: 0 075
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Figure 2.18. Sample circuit showing path through LA

Transistor sizes are given in microns as width/length. When the clock signal goes high. the input
signal (buffered by the inverter on the left) propagates through the input buffer and the wo PLA
planes. The following figure shows the equivalent resistor/capacitor network: resistances are given in

K and capacitances in pf.

Figure 2.19. Egquivalent RC network for PLA circuit (shows dynamic resistances)

Note that the pullup for node C is recognized as a depletion source-follower without considering the
actual voltage on its gate. Since depletion devices are always on. the inverter which Icads from node B
to the gate of the puliup is ignored by RSIM, and the timing for node C is always controlled by node B.
Also note that the resistance chosen for the pulldown for node B reflects the threshold drop of node

A.

When calculating Rgynjow. RSIM simply calculates the net resistance to ground, ignoring the

effects of any pullups. For example, a falling transition for node B takes (16)(.05) = 0.8ns. This

approach is not only simpler. but is conservative. (Adding the pullup resistance actually decrcases the
fall time from the Thevenin point of view). Using this approach, the table shows the results of
propagating two different data vatues through the PLA. The time of cach node’s transition is shown

in nanoscconds, as predicted by RSIM and SPICE.
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Cransition | 4 Lot |4 [
Case 1 R§IM | 03 Tl"ifdv | 49 [ 130 | 149 |
CSPICE | 08 35 | 68 | 155 | 207 |
Tlramsition |t 1 T e

Case 2 RyIM 1.6 4’ 24 130 | 43103

—4

SPICE

06 1'1‘.9 33 | 64 | 121

The discrepancics between the RSIM and SPICE predictions (-28% in case 1. -14% in case 2) can be
traced to the fact that the current RSIM model does not account for the shape of the input waveform
when analyzing a stage.t This is particularly noticcable in case 1 for the transition of node E. The
long rise time of node D slows the falling transition of E to a considerable extent: a fact blithely

ignored by RSIM.

The second example is a section of the OM2 data path [Mcad80] consisting of the logic to drive a
register sclect line, a register ccell, and a bus line. The path to be analyzed starts with the clock going

high. driving the select line high. finally causing the register cell to discharge the pre-charged bus line.

pre-charged bus
B select line
10/5 5710

1
.26
I register cell

Figure 2.20. Register select and bus drive circuitry from OM2 data path

tExamining the times in this example, onc might be tempted to multiply the ceffective resistances by a constant factor
n an cffort to improve the accuracy of the predictions. But not all predictions underestimate the true transition time,
and. as will be scen in Chapter 3, there are other improvements that can be made that address the root of the prob-
lem.
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Figure 2.21. Lquivalent RC network for OM?2 data path example

The comparative analysis is given below; RSIM comes to within 9% of the SPICE prediction.

A B C D

transition 4 * t 4
RSIM 24 | 106 | 133 | 359
SPICE 26 91 | 196 | 396

2.5. Summary

The RSIM model can be summarized as follows:

e  Transistors arc modeled as switches with series resistors. Three resistances are
chosen for each transistor and used to predict node voltages and transition times.
Resistance values are determined by experiments, cither with actual circuits or
using a circuit analysis program.

o  Using the transistor model, a network of transistors and nodes is simulated as a
network of resistors (from transistors) and capacitors {from nodes). A node’s
valuc is determined by voltages calculated in two ways: (1) from charge sharing
with electrical ncighbors, and (2) from the Thevenin equivalent circuit for picces
of network connecting the node to the inputs. When a node changes value, the
timing for the transition is given by an RC time constant calculated using the
resistances and capacitances of the surrounding network.

e  The network is viewed as an assemblage of small stages, cach simple enough that
its operation can be predicted in a straightforward manner. Information
propagates through the network as a series of cvents (changes in a node’s value);
cach cvent leads to an analysis of affected stages using the models desceribed
above. The isolation between stages of digital circuits allows cach stage to be
analyzed scparately: the relative independence of one stage from another is one
reason why the very rough approximations of RSIM are so serviceable.

Scveral factors important for making accurate performance predictions are missiiiy, from both the RSIM 1
model and the simple calibration experiments proposed in section 24. Chapter 3 suggests some ;

maodifications to the model that correct the more important oversights. Many implementation details |

i PO —— - —— . N S A
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unspecified in this chapter are discussed in Chapter 4. Chapter 4 also catalogs the successes and

failures of the RSIM madel. as finally implemented.
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CHAPTER THREE

Justification of the Linear Network Model

This chapter undertakes a performance analysis of logic gates and other digital circuits with the
goal of establishing a physical justification for the RSIM model. By comparing the resulting equations
with those proposed by RSIM, one can judge the accuracy with which the RSIM model predicts circuit
behavior. As an added benefit. insight into actual circuit operation helps to motivate model

modifications that improve the accuracy of the predictions.

The first section lays the groundwork for the analysis. presenting the first-order equations that
describe the operation of MOS transistors.  The second section describes the node voltages found in
common digital logic circuits and compares the results to RSIM's predictions. The next two sections
analyse the propagation delay of logic gates and other network components. Finally, several
maodifications o the RSIM model are proposed. and the resulting predictions are compared to those of

the original model.

3.1. Flectrical models for mosfets and gates

The active component in a MOS circuit is the mosfer. a type of transistor. The mosfet has three
terminals: the source and drain (two syminetric connections). and the gate. By comvention, the source
and drain are chosen such that vy, the voltage of the drain with respect to the source, positive. vy,

the voltage of the gate with respect o the source. can be cither positive or negative.  Depending on
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the relatnve voltages of the three termimals, the mosfet conducts vanving amounts of current between
the source and dram termimals. The amount of current conducted depends on the region in which the

mosfet operates. There are three possible regions;

0 Yes — Vih <90 ()
s = Lz((vg_‘ — ) 0< v — v s Asaturated ) (3.1
Vds .
K{vgs — vih — —2-)\115 Yes = Vi > Vs (linear)

where vy is the threshold voltage of the mosfet and

microamps) (3.2)

W w
= —uC, = —(25
k=gl ® @07

is a constant that depends on the width w and length / of the particular mosfet under consideration.

The numeric estimate is for a typical nMOS process. These cquations ignore sccond order effects on
ids.
In an nMOS process. there are two types of mosfets. distinguished by the setting of their

thresholds:

type of device  threshold (VDD = 1)

n-channel Vi = 0.14

depletion Vg -06

As we saw in Chapter 2, the simplest form of logic gate that uses these devices consists of:

a single deplction pullup with its gate and source attached to the output node and its
drain attached to VDD, 'nd

one or more pulldown paths connecting the output node to ground, each path
containing onc or morce n-channel devices.
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not A Er:}& A nand B A nor B

v \ |
B
h
<
Figure 3.1. nAOS logic gates

The depletion pullup is configured so that vgs:p, = 0: since the threshold of a depletion device is

negative, vgs:py ~ v > 0. and the pullup is never off. Each n-channcl pulldown is configured to be

on when its gate voltage exceeds v, and off otherwise. If all the n-channcl devices in a particular
pulldown chain are conducting, the output load capacitance s discharged through the pulldown path
and the output voltage is lowered (vour = vor = Jogic low); otherwise the pullup pulls the output high

(vour = von = logic high).

Equation 3.1 can be specialized for a depletion pullup, using the fact that vgs.p, is always zero:

K
Su |Vld|2 | vig | < (I ~vpy)
by = (-v (3.3)
"pu('vtdl - “‘fﬂxl_vow) l"!dl > (1-vou)

where vy, is the voltage of the gate/source node of the pullup. Since the drain of the pullup is
connected 10 VOD. vgspu = 1 — voyur. To avoid confusion. the equations will be written in terms of

Jvig | since vy is negative. The current conducted by the n-channel pulldown in an inverter is given

by:
0 Vin — vie <0
. K
Ipd = ‘ipi(vin = Ve )2 0 < vin—vee L Vour (34)
v
Kpd(Vip — Ve — 'O“;L)"nul Vin = Vie 2 Vour

where vy, is the voltage of the gate node of the pulldown. Note that the source of the pulldown is

connected to ground (vin = veepg) and the drain is connected o the inverter's output (vy = v pr ).




- 18 -

For proper aperation of the mverter, the sizes of the pallup and pulldown are chosen so that 1,y > 1,

when the pulldown 1s on.

fo understand the behavtor of i inverter in more detail. 10 18 useful 0 plot 1y of the

component deviees as a function of the inverter's output voltage:

‘s ‘T Vs lincar i
sat hincar
€« —>
]
1
]
L Cal
Fvgl 1 ‘out
(a) depletion pullup (b) enhancement puildown

Figure 3.2. mosfet -V characieristics

The iz of a depletion pullup depends only on vy, and thus a single curve suffices to show their
retationship. For the n-channel pulldown. there is a family of curves for iz corresponding to different

values of vjy.

The intersection of the ig curves for the pullup and pulldown shows the inverter's output

voltage. given a particular input voltage:

igs 4 igs A
'inzl
1 - __}
1 Yout ol 1 Vout
(a) Yout = 1 when Vin < Vie (b) Vout = Yol when Vin T 1

Figure 3.3. v out determined by ';pu and '.p d

In fact, one can plot the DC voltage transfer curve for an inverter, which shows the inverter's output

voltage as a function of its input voltage.
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out
1
|
i pulldown = of pullup = hinear
H pulldown = sat pullup = hincar
@ 1l pulidown = sat pullup = sat
A pulidown = lincar pullup = sat
7 Vi
1

Figure 3.4. Voltage transfer curve for an inverter

The four regions (I-IV) of the curve correspond to various combinations of the pullup’s and
pulldown’s operating regions. Note that the relationship between vy, and vy, shown in figures 3.3
and 3.4 applics when the voltages are allowed to stabilize: in a circuit with changing voltages, the
relationship between the vy, and vy, is considerably more complicated. as will be scen in section 3.4,
The next few sections use the cquations presented here to develop equations for the quantities
predicted by RSIM — node voltages and transition times — so that the RSIM model can be evaluated

and perhaps improved.

3.2. Node voltages
When v, < v,. the n-channel pulldown conducts no current; the depletion load continucs to
conduct as long as vy, < 1. Therefore, the logic high output voltage of an imverter is given by the

equation:
vor = 1 (3.5)

When vy, > vy, the n-channcl pulldown is on and the output node reaches an equilibrium voltage vy,
which is determined by (1) the relative sizes of the pullup and pulldown and (2) the gate voltage on
the pulldown. vy is that voltage where the current of the pulldown (at this point in its lincar rcgion)

is balanced by the current of the pullup (in saturation);

Vol Kpu )
Kpdltm Ve =~ War = 0 v | (3.6)

-
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It one assumes that vy = 1 (as is the case when ay of the previous stage s 1) and that

Vol << - Ve then

U I 1172 Sy (] 30
o 3R l] ")'[(-) R o
I3 l ' .
where R = M= P M o ine ratio of the sizes of the pullup and pulldown. R is chosen o as
Koy Wou pgd

W guarantee that the low output of a gate turns off the pulldowns of gates connected to the output,

te., so that vy s less than v, by a comfortable margin; typically R is chosen to be about 4 if v, = 1.

Now consider the RS$IM model for an inverter:

Rpu Rpu
Yout Yout
de
@y, a logic low (b) Vit logic high

Figure 3.5. RSIM inverter model

When v, is low, the pulldown is off and the inverter is modeled with a single resistor. In this

configuration, RSIM predicts

Voh:RSIM =1 (3.8)
agreeing with cquation 3.5, independent of the value chosen for Rp,. When vy is high. the inverter is
modcied by a voltage divider. RSIM predicts

Rpa (3.9)

Vol RS =
ol :RSIM Rod + Rpu

One should choose Rpy and Rpg S0 that voi:psqar is the same as vo. as given by equation 3.7. Thus
the RSIM model can accurately predict the output voltages of logic gates: in fact, there are two

unknowns and only onc cquation to satisfy, so there is some freedom in choosin | ¢ static resistance

values.
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There are crcuits for which rRsIM does not properly predict node voltages. For example. in the

following circuit, the voltage of node B only reaches 1 - v,:

.
R1 R4
R3

]
1
°_|‘{>° Il |J] R2 B RS

A B

(a) sample circuit (b) equivalent resistor networks

Figure 3.6. Sample circuit illustrating voltage drop across pass transisior

N-channel devices configured the same way as the horizontal transistor in figure 3.6(a) arc called
"pass” transistors, and are used to implement dynamic latches, various types of steering logic, and so
on. Figure 3.6(b) shows the cquivalent resistor networks for the circuit. According to this model, the
voltage for node B should rcach vDD when node A is low. In the actual circuit. however, the pass
transistor cuts off when B reaches 1 — vy, since. at that point. vgg.pass = vpe. In general, the source
voltage of a pass transistor never rises above a threshold-drop below its gate voltage. Thus the RSIM

model incorrectly predicts the voltage of node B.

In fact, the network analysis performed by RSIM does recognize that node B never reaches vbh.
As shown by several examples in Chapter 2. the resistance for a pulldown with a gate that has a
threshold voltage drop is not chosen in the same way as the resistance for a nomnmal pulldown. In
other words, the value of RS in figure 3.6(b) reflects the knowledge that node B has a threshold drop.
This knowledge could also be used to adjust the prediction of B's voltage. but this is not currently part
of the calculation.

There are many other circuit configurations that are beyond the ability of RSIM 1o analyze,

although most such circuits could not. in all fairness. be called digrtal. Oneimportant exception, which

rsIM docs not handle. but which occurs in performance-cntical digital circunts, is called boutstrapping.




small beotstrap node

%

—
A
|
pero—t Ly ]
/\/ B
i [}
wolalen transisior
/‘/ large capaciance
coupling capacilor I

Figure 3.7. Bootstrap circuits lead to voltages greater than vDD

Node A is smalt compared to node B, to which it is capacitively coupled. The coupling capacitor need
not be explicit; often enough coupling is provided by the gate/source overlap capacitance of the
transistor controlled by A. Node A is driven high through a pass transistor. and in turn cnables the n-
channel pullup that is controlled by A and connected to node B. Since the capacitance of A is small
compared to that of B, A rcaches a significant voltage before the voltage of node B begins to change:
the difference is usually around 3 volts in common bootstrap configurations. As the voltage of node B
incredses, the coupling capacitor maintains this initial voltage difference between nodes A and B, and
so the voltage of A increases correspondingly.t 1t is not unusual for node A to reach 8 volts or more.
This. of course, increases the voltage on the gate of the pullup, which in turn increases the current
flowing into node B. The net result is that node B reaches its final value much more quickly than one
might expect. Just as important, the voltage of B rises all the way 0 vDD instead of stopping (wo

threshold drops below, as a simple analysis might predict.

Both the faster transition time and higher-than-cxpected voltage for node B are completely
misscd by RSIM. Since such circuits are often used in time-critical portions of the network. it would be
nice for RSIM to make correct predictions in this case. Unfortunately. there is no simple change to the
simple ®RSIM model that achicves the desired result. However, by systematically replacing bootstrap
circuits with morc conventional circuits sized to give the same performance. RS$IM can produce the

correct results. This technique is discussed in the section on escape mechanisms in Chapter 4.
In summary, RSIM

+The pass device through which node A s driven 1solates A from the dnvng circwitry Afier the voltage of node A
reaches 1 - vy, the pass device cuts off. and stars off no matter large the voltage on node A becomes  This 1 be-
ciuse Vpipass — Ve will be less than the sollage on cither the source or the drain
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(i) predicts the output voltage of logic gates with acceptable accuracy.

(i) does not predict threshold drops introduced by pass transistors, but does perform
a static analysis of the network o recognize transistors whose gates are subject to
a threshold drop, and adjust the modcling resistance accordingly.

(i) docs not handle bootstrap and other more exotic circuits. However, a patiern
matching/replacement technique is available for substituting equivalent circuits
that simulate correctly.

3.3. Propagation delay: overview

When choosing a single number to characterize the timing behavior of a circuit, onc often settles
for determining the propagation delay: a measure of the length of time required for a change in an
input value to be reflected in the output value. [n digital circuitry, a significant change is one where
the signal changes from logic low to logic high or vice versa. For a particular transition it is common
to define “"change™ in relation to a threshold: the signal is said 1o change when it crosses the threshold.

Consider the following single input, single output circuit:

T

O———— CIRCUIT =
Vip I 1 I Yout
<

Figure 3.8. Test setup for measuring propagation delay

The propagation delay is defined as

Ip = loutpur — linpur (3.10)
where

loutput is the time when the output voltage crosses the output threshold voltage:

linput is the time when the input voltage crosses the input threshold vollage.

This definition works well for a transition between 0 and 1; however. delays associated with a
transition to the X state are still not well defined since it is unclear whether the signals in question
cross the threshold or not. Aside from this technical difficulty. the notion of propagation delay
involving X's is rather muddy since X is not a “"real” logic value, but more of an crror state. The
simulation algorithm must assign some delay to such a transition. and RSIM conservatively chooses the

fastest possible transition of which the node is capable (sce cquations 2.8 and 2.9).

]
|
l




Ihe next step s o choose the anput and output thresholds, a choice that depends on the
particular circuit to be analyzed. There are two important criteria for choosing thresholds:

(D) Ihe delay should never be negative. e thresholds should be chosen so that the
mput always crosses it threshold betore the output does. The simulation
deonithm quite naturally processes events in the scheduled order: allowing a
nepative delay might require backing-up a previously processed event.

(2)  The output threshold for a circuit should be chosen without regard 10 its use,
allowing a single threshold to be chosen for all inputs and outputs. In that case,
only one delay computation s needed for cach signal transition.

though these criteria are not compatible in general, they can both be met for the digital circuits of
interest here.

To simplify the analysis below, will restrict the class of input waveforms considered. In his work
on waveform bounding, Wyatt [Wyau83] observes that the transfer functions characterizing digital MOS
circuitry meet certain criteria which guarantee that

if two monotonic trial waveforms are chosen that bound the actual input waveform
(which also must be monotonic), then the response of the circuit 1o the trial waveforns
will bound the actual outputr waveform.

Thus one can choose computationally convenient input waveforms, c.g.. simple voltage ramps, and
determine the bounds on the propagation delay by analyzing ramps that bound the true input

waveform.

3.4. Propagation delay: logic gates

In order to cxplore the timing behavior of MOS Togic gates. this section anafyzes the behavior of
an nMOS inverter with a simple voltage ramp on its input. The analysis is based on the first-order
cquations for the component devices. prescnted in the previous section. The derivation is casily
¢xtended to more complex gates by adjusting the parameters of the inverter’s pulldown to mode! the
net pulldown-path resistance of the currently active pulldowns in the complex gate (see section 3.4.4),
The derivation also applics to ¢MOS logic gates; the analysis of the fow-to-high transition caused by a
p-channcl pullup i very similar to the high-to-low transition caused by an n-channcl pulldown. For

simplicity, only nMOS gates arc considered below,

For the purposcs of the analysis, the inverter output is connected 1o a fixed capacitance that

modecls the load driven by the inverter.
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1 load Yout
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Figure 3.9. Inverter circuir to be analyzed

At cach moment, the output voltage and the current charging/discharging the load capacitance are

related by

dv
itoad = Cload _d?;i 3.11)

Unfortunately, this differential equation is hard o use as it stands because ijpeq is a function of both
vour and . However, if onc can find a suitable approximation for i,y that removes the dependency

on vy, . then the change in output voltage over a given time period can be determined by integrating:

!
Cload (Bvour) = fO iload (1) dt 3.12)

The time needed for vgy, to change a specified amount is calculated by first performing the integration
and then solving the resulting equation for «. This suggests the following plan of attack:

(i) Find suitable approximations for /e to remove the dependencics on vyy,.

(ii) Compute the output transition time using equation 3.12.

(iii) Subtract from (ii) the input transition time, giving the actual delay from input to
output. Recarrange the answer into an RC term (what RSIM predicts) and an
error term,

This discussion starts with a small digression on choosing the appropriate threshold voltage.

3.4.1. Choosing the input/output threshold

To see if one can choose a single logic threshold and still guarantee that the predicted delay is

never negative, it is useful to consult the voltage transfer curve for an inverter:




Py
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1 pulldown = off pullup = lincar
Il pulldown = sat pultup - hincar
N 1l pulldown = xat pullup = sat
Fivgl
b gl7sar(R) ﬂ IV pulldown=lincar  pullup =sat

ol

Yie \m+|\ld|/sqn(R) 1

Figure 3.10. Voltage transfer curve for inverter

The transfer curve shows the static behavior of the inverter: for any given input voltage, it tells what
the output voltage must be for the pullup and pulldown currents to balance. If the input changes
rapidly enough, the output voltage may lag behind. If the input is going from low to high, then the
transfer curve shows the minimuwm output voltage for a given input voltage; for a high-to-low input

ransition, the transfer curve shows the maximum output voltage for a given input voltage.

Since it is desirable for the input and output thresholds to be the same, the input/output
threshold voltage vearesn is chosen to be the point on the transfer curve where v;; = voy .1 This means
that during a low-to-high input transition, if vi; < Vyyresh. then vgy; > vepresh. NO matter how fast or
slow the transition. In other words, the propagation delay is never ncgative. A similar argument
applies for the other transition. To estimate vpresk. first notice that at the region H—region 11l

boundary,

v
Vin = Ve + 'JV%J' and Vour = 1 - lvldl (313)

If R = 4, then vip = .44 and vy, = .4, and SO vipresy 1S in region 11 Gust barcly). In this region the

pulldown is in saturation and the pullup is in the lincar region:

1-v 2
"_21"_(",»,, ~ e = k| via [ (1 = vour) — ‘—‘2""” ) (3.14)

ffﬁc same choice of threshold has been made in several other simulators {Koppel78. Nahm80).
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Seting vy = Vour = Verosh. and solving for vpesn yields vgrea = 439 — close enough o the 1111

boundary that the distinction is not important.

3.4.2. Low-to-high output transition time, [plh'

To calculate 1574, an approximation for gy is nceded. ijpgy is just the difference between the
pullup current (1p,) and the puildown current (ipg). S0 one strategy is to approximate the current
through cach component individualily. Recall that vy, is near the region I1-region HH boundary of
the inverter's voltage transfer curve, and notice that the part of the transition involved in the
prediction (voy, rising from 0 to vyeesn) takes place almost centircly with the inverter operating in
regions 1Tt and 1V. This mcans that the pullup is in saturation, Le.,

u = 2 11 = iman (3.15)
Chousing a specific approximation for ipg is not as straightforward. However. a good starting point is

an approximation of the form shown in the following figure.

Ipd 1oad
1\
imax | ' ‘max |
] [}
o ]
) t . >t
la Loff la loff
(a) approximation for ipd (b) resulting approximation for i] o0ad

Figure 3.11. Approximation of ip d for Ip Ih calculation

log s the time at which v, = v, At this point in the development, there is not much one can say
about /4. the time at which the pulldown current first starts to decrease. Certainly 14 = 155 is an
upper bound (resulting in a step function for ipg). Similarly, 1, = 0 is a lower bound since that is the

time when the input voltage first changes. The choice of a specific value for 14 will be discussed later.
With this approximation, the output transition time, 15, is given by

h
Cioad (Vihresh) = j;) itoad(1) di (3.16)

where




o
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0 1 <1,
. . -1
load (1) = fmad —-——>-) S Y (317
lof = la
Tmax lof <1

Solving cquation 3.16 for 1, yiclds

Rpu Cioad + ';_(/oﬂ‘ + lq) Ih 2 log
tp = 1 (3.18)
[ZRpu(‘load(’o[["a)]2 + la th < log

Vthresh

where Rp, =
Imax

. Recalling that t;n = th — tinpur.

Rpy Cload + ’;‘(’oj] + ta) = linpu pth 2 loff — linpur
ih = 1 3.19)
[2Rpucluad(’oﬂ “’a)lz + la = linpur Ipin < lof — lnpu

The following figure plots 1y as a function of 155y, Note that there is a relationship among the
values of tippur. fogr . and 14. For this plot. a lincar relationship is assumed for the values. Their exact

relationship is determined by the shape of the input waveform, a topic pursued below.

bih

A

— = 'pih = Yot linput

RpuCload ﬂ

Figure 3.12. ’plh as a function of ’inpul

Several interesting observations can be made. When the input is a voltage SIep. fog. 14. and ljppur are
all rero. so tph:sup = Rpy Cloaa . ie., a simple RC time constant — precisely the prediction made by

the RSIM model.

.
e SRS ol




Lo see what happens when the input is not a step, notice that

. 1
ot S Rpu Croad + ‘,(/u/]‘ + la) = bnpu (3.20)

sInee

1
. 1
2R py Croad gy ‘la)]:’ + 1o = tmpur S Rpu Cloud + Sy + 1a) = linput (3.21)

when fun >ty ~ tinpue. (This can be verified by comparing the derivatives of the two sides of the
inequality or by simply cxtending the lincar portion of the fp, curves — those portions above the
dotted line — in the plot above.) Equation 3.20 looks like the response for a step input delayed by an

amount that depends solcly on parameters of the input waveform.

Figure 3.12 provides some insight into the choice of an appropriate valuc for ¢,. From the plot,
one can sce that 7 eventually goes to zero for some choices of 4. but increases indefinitely for other
choices. By determining whether 7,7 goes to zero in an actual circuit. it is possible to narrow the
range of choices for 4. If the input changes slowly enough, one expects the output voltage to follow
the voltage transfer curve very closely. (This is essentially the definition of the voltage transfer curve.)
Thus, when vip = Viesh. it follows that vour = Venresh SINCC viiresn is the balance point of the inverter.

This implies 15, = 0 for sufficiently slow input transitions.

Examining the bottom term of equation 3.19, onc can sec that fpp is zero for slow input

transitions only if g < linpy,.T In other words. if 14 2 finpur. the predicted propagation delay can

never be zero; the prediction will be longer than the true propagation delay. Thus. it is possible to

rewrite equation 3.20 using g4 = finpy, and still preserve the inequality.
1
toih & RouCload + E(Iojf = linpur) (3.22)

This equation can be simplified still further with some assumptions about the input waveform,

T'Iﬁc bmtéfr{ term has the form [f(l)]“‘2 + p(t) which rcaches scro for large t only if p(t) is ncgative




Figure 3.13. Assumed input waveform for low-to-high output transition

If the input is a falling voltage ramp which starts at + = 0 and rcaches zero at + = §, then

Leput = (1~ vyresp)d and 1oy = (1 ~ v, )8, Substitution into equation 3.22 viclds
Ipth € RpuCload + %(“rhn'sh = e} = Rpu Clond + (0.15)8 (3.23)

where the numerical estimate is computed for a typical Su nMOS process. Thus RSIM potentially
underestimates 7y, for a logic gate with a slow input transition (a large §). As § decreases (a faster
irput transition). the accuracy of RSIM's predictions increases. Note that Rp, is exactly the resistance

measured by the experiment proposed in figure 2.16(a).

3.4.3. High-to-low output transition time, tphl'

In the previous section, the equation for £y was developed by overestimating the current
through the pulldown, leading to an upper bound for the low-to-high propagation delay. The same
technigue can be used to cstimate Zpy. the high-to-low transition time. In this casc. however, one
wants to underestimate the pulldown current (and overestimate the pullup current) to find an upper

bound for pp. T

For the portion of the high-to-low output transition which is of interest (v, falling from 1 to
vihresh ). the pullup is in its lincar region. As before, ipy can be approximated by the pullup’s
saturation current; an overcstimate, but one consistent with the goals of this section.  Also as before,
estimating the pulldown current is difficult. Consider the following diagram of various load lines for
T™Most MOS arcuits use muluple-phase clocking. with simple lopic circuits between latches controlled by different
phase clocks  This mcans that cireunt perfomuince 1s deternuned by the mavimum propagation delay through the
smple logic: this is the only quaniiy esiimated by RSIM Other technologies (P FCEHY suppont single-clock. syn-

chronous designs in which nunimum propagation delays can be very impontant for correet circunt operation. This is
rare i MOS circuits. and such designs arc not supported by RSIM.
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the pulldown. ‘The tajectory of a load line shows £,y as a function of time:

A fast uransition

appronimation =~

| ~

1slow transition

¥thresh 1 Yout

Figure 3.14. Load lines for the pulldown for various input transitions

When the input transition is fast in comparison to the output transition. the pulldown turns on to its
maximum current capacity (the upper load line in figure 3.14). As v, drops. the current in the
pulldown also decreases, and the trajectory follows the maximum current curve until it reaches vepresh .
When the input transition is slow, the output voltage falls fast enough to keep the pulidown and
pullup currents balanced (the bottom load line in figure 3.14). so the trajectory for ipy follows the ip,

curve.

In the proposed approximation, ipg rises linearly to a maximum current equal to the actual
current through the pulldown when v;; = 1 and vou, = vresp. This certainly underestimates the
actual pulidown current for a fast transition, and is roughly equal to the pulldown current for a slow
transition, except for the last part of the transition. Fortunately, in this portion of the transition (near
the threshold), a small change in the input voltage causcs a large change in the output voltage. so only
a small amount of time is actually spent in the overestimated part of the transition. This

approximation leads to the following estimate for ipgq:

- iload

Imax

- - = =

la Y

Figure 3.15. Fstimate of iy, . for Tkt calculation




where £ 18 the tume at which v, = 1 and /5,0 18 the maamum patldown current minus the pullup

current.

. Vihresh Kpu 3
Imax = K,)d(] T Ve T ‘;“)\'Ihrmh Y v | (3.29)

-~ <

As before, 74 will be chosen to ensure that the estimate is an upper bound to the actual propagation
delay.
The derivation of a formula for fp, and the choice of 74 is very similar o that of the previous

scction. so only the conclusion is presented here:

Ion < de(load + ’;‘(’1 - 1mpul) (3.25)
where Rpy = ]——lv"'—'c—‘i If the input is a rising voltage ramp that starts at 1 = 0 and reaches 1 at
max
1 = §, then
tpht £ Rpd Cload + %(1 = Viresh) = Rpd Cipag + (0.28)8 (3.26)

As before. RSIM potentially underestimates £y for a logic gate with a slow input transition (a large 8).
As & decreases (a faster input transition), the accuracy of RSIM's predictions increases. Note that the
experiment proposed in figure 2.16(d) does nof measure Rpg. Instead. the experiment measures the
average resistance associated with the fast input transition shown in figure 3.14, omitting the
contribution of the pullup. This resistance is less than Rpg. although is it not clear by how much. This

net result is a tendency to underestimate fpp by the original RSIM model. calibrated as in Appendix 2.

3.4.4. Why analyzing inverters is sufficicnt
The results of scctions 3.4.2 and 3.4.3 were developed for the nMos inverter. This section
extends the results to NAND and NOR gates as wcll. Equations are developed for the amount of

current flowing through the NOR and NAND pulldown configurations and then the results are

compared with the cquations for a simple inverter.
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tay NOR pulldown configurauon (b) NAND pulldo~n configuration

Figure 3.16. Currents through NOR and NAND transistor configurations

The propagation delay of a NOR gate with a single active pulldown is exactly that of an inverter. If
both pulldowns are active simultaneously, inor = i} + 2. since the current through cach pulldown can
be computed independently. Thus, when both pulldowns are on, and their gates are at the same

voltage (ie., logic high), the total current through the pulldowns is

Vour

(k1 + k) (vinp — Ve — T)vow (linear)
Inor = + (3.27)
El—z‘ﬂ("m ~ vie)? (saturated)
which is equivalent to the current through a single pulldown sized so that
= (3.28)

Ksingle pulldown = K1 + K2

As onc might expect. this is the formula for combining two conductances in parallel.
The analysis of a NAND gate is more complicated because the currents through the two

pulldowns arc not independent. The currents through the pulldowns are given by

Kivin — vm ~— v — Xﬂ"—'—z_—vi)(vou, - Vm) (linear)
n = 3.29)
%‘—(V,,, - ¥m — Vre)2 (saturated)

~.
[
|

k) vig — Ve — 12'1)»,, (linecar) (3.30)




where v is the voltage of the node that is common o the two pulldowns. Two equations are needed

for the top pulldown, because the pulldown may be in cither its saturated or lincar region. depending
on the relative values of vy, and vy, Only one equation is needed for the bottom pulldown. becatse
it is assumed that vy, is never large enough for the bottom pulldown o become caturated. o the
steady state /| must equal /3. ‘This gives a set of equations 1o solve for vy, o substituting the solution

nto equation 3.29 yiclds the net current through the pulldown. The result is

K1K2 Vour

(Vi — Vie — Wour (linear)
K] + K3
ingnd = K1K3 R (3.31)
" (Vin — V) saturated
Ax; + KZ)(Vm Vie) ( )
This is the same amount of current as that for a single pulldown sized such that
_Kik2 (3.32)

K n =
single pulldown K1 + K3

Again, as one might expect. this is the formula for combining two conductances in series.

The conclusion to be drawn from equations 3.28 and 3.32 is that the current flowing through a
parallel or a series configuration of pulldowns can be modeled as the current flowing through a single
pulldown of the appropriate size. This means that the formulas for the propagation delay through an

inverter are directly applicable to more complex logic gates.

35. Propagation delay: source-followers and pass transistors

The analysis which follows is not very rigorous; its purpose is to show that the RSIM modcls for
logic gates overestimate the propagation delay through a circuit containing pass transistors and
source-followers.  Although better estimates would be desirable, the cxisting models are sufficient

given the relatively constrained use of these components in actual circuits.

A source-follower (so called because the voltage of the source node “follows™ the voltage of the

gate node) is an n-channcl device with its drain connected to VDD,
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(a) sourcc-follower circuit (b} approuimation for ilnad

Figure 3.17. Source-follower circuir configuration

In the circuit shown in figure 3.17(a). the output voltage of the source-follower cannot rise higher than
a threshold drop below the voltage of its input. Thus, the maximum voltage for the output of a
source-follower is 1 — v, this is why a depletion pullup (which can drive its output o vDD) is

preferred in an ordinary logic gate.

Since a source-follower can only pull a node up, only the propagation delay associated with the
low-to-high output transition needs to be analyzed. (A rising output transition corresponds to a rising
input transition; unlike most logic circuits, a source-follower does not invert the sense of its input).
During a very slow input transition. the output voltage tracks the input voltage, and the propagation
delay is equal to the time nceded for the input to rise from vyesh 10 Vearesh + V. FOTr a ramp input,
this implics 1pip = (v,)8 = (0.14)8 where § is the time needed for the input to risc from 0 to VDD.

For a fast input transition — one where the input reaches 1 before the output reaches vipresh —
the current through the source-follower can be approximated as shown in figure 3.17(b). 1, is the
ume at which v, = v, and 11 is the time at which v;; = 1. inay is cstimated by the average current

flowing through the source-follower during the transition:

. 3 Vehresh

imax = (1 = ve = 5 Wb (3.33)
One can calculate 75/, using an approach similar to that of scction 3.4.2; the result is

otk = Ry Cloag + ‘.}‘(’] + fon) = linpur (3.34)

v, . . . . .
where Ry = Ythresh " 1f the input is assumed to be a voltage ramp with transit time 8. the final

I'max

cquation for fpp, is
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Ry Crogqy + (0.35)8 (small§)

Iph = (0.19)8 (Jurge 8) (3.39)

A source-follower ts usually used to drive a large output load. so when 8 is small, the RC term

dominates. This suggests that the two picees of the equation can be reconciled as
Ioih = Ry Croqq + (0.14)8 (3.36)

This cquation 1s very similar 10 3.23. which describes 1, for an ordinary logic gate. so no special

handling is needed for a source-follower.

In the analysis of section 3.4 and the first part of this section, cach examined device had
essentially two terminals, since one terminal of cach device connected to VDD or GND. Morcover,
input signals were applied to the gate node of the device. The analysis now turns to circuits that
contain three-terminal components, ie., pass transistors. A pass transistor is any transistor not
configured as a pulldown, pullup. or source-follower: some cxamples of circuits containing pass
transistors are presented in scction 3.2.

There are two basic configurations for a pass transistor: one with the gate node as input, and the
source and drain as outputs; the other with the source/drain as input, and the drain/source as output
(assuming that the gate is at logic hight). As the following table shows, when the gate of a pass

transistor is the input, the pass transistor behaves like one of the components analyzed carlier.

input  source or

(gate) drain pass device acts as analyzed in

falls riscs pulldown turning off scction 3.4.2

falls falls enhancement pullup turning off —

rises falls pulldown turning on section 3.4.3

riscs rises source-follower beginning of this section

The second pass transistor configuration presents a new analysis problem. Assume that the drain
connection is the input (which remains constant) and that the source node undergoces a transition. 1f
the drain undergoes a step transition from high to low at time 0, and the source follows, [Horowitz83)

suggests the best estimate for the voltage of the source is

Vsouree(t) = 1 ~ m"h(?—’(—i;;) 3.30)
pass

tAlthough the analysis focuscs on n-channel pass transistors, it can be extended to p-channel pass transistors in a
strmghtforward manncr.




This equation can rearranged to give the propagation delay:

Ipht = Rpass(‘loadwnh—]“ = Vihresh) = (0~63)Rp(1.i§ (‘Ioad (1.38)

Similarly, Horowitz suggests the best cstimate for the voltage at the source, given a rising step at the

drain, is
1
Ysource(1) = 1 — — (3.39)
— +1
Rpass(load
which gives
Vihresh
tpth = Rpass Cload *';L;TJ = (0.79)Rypass Cload (3.40)

In both cases, the RC uie constant of the RSIM model overestimates the propagation delay of a step
input. For « slow input transition, the source voltage tracks the drain voltage. resulting in cssentially
zero propagation delay. (In this respect. the delay through a pass transistor is similar to the delay
through a logic gate.) Although no direct evidence is provided here, the circumstantial evidence
indicates that the predictions for propagation delay through a logic gate are upper bounds for the

propagation dclay through a pass transistor, regardless of the speed of the input transition.

Pass transistors are often used in series within a switching-logic implementation of multiplexors,

etc.
1 1 1 1
4 A L 8 A ¢ 1. o
i t ! ]
input O-J_L

Figure 3.18. Pass transistors connected in series

Horowitz extends his estimates for the voltage of a particular node ¢ to a chain of pass transistors by

replacing the RC tenins in cquations 3.38 and 3.40 with

TDe = ;chck 341

where Ry is the resistance of the path common to node e and node k. Thus. his estimate for the
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delay assoctated with a falling transition on node 1) of figure 3.18 is
oy = (06 R1CT + (R1+RICr + (R1+RI>+RNC3 + (R 1+ RI+R3+R3C4]  (342)

If all the resistances are cqual. and all the capacitances are equal. fppr = 6.3RC. The RSIM cstimate

for the same transition is

o = (RN Ch) = 16RC (3.43)
I3 k

which overestimates the delay by a considerable margin. For a long chain of pass transistors, the RSIM
estimate is very pessimistic; fortunately, performance constraints limit designers to chains of length
four or less. Nevertheless, performance prediction for a circuit containing pass transistors is clearly an

area where RSIM can be improved.

3.6. Implications for the RSIM model

The analysis of the propagation delay of logic gates indicated that an RC time constant is a very
good estimate for the delay of a gate when the input waveform is a voltage step. The analysis
concludes that a simple RC time constant underestimates the actual propagation delay if the input
waveform is assumed to be a voltage ramp with a rise/fall time of §. More accurate estimates for the

propagation delays are

toth < RouCload + Ajn:fait

Ipht < deCIoad + Ain:rise (3:44)

where

Binfann = ‘;‘(Vlhresh — ve)8 = (0.15)8
1 (3.45)
Am:rixe = 'i(l = Vihresh )8 = (028)8

are offsets that depend only on parameters of the input waveform. Scction 3.5 shows that these
cquations are satisfactory upper bounds on the propagation delay through other (non-gate) circuit

configurations.

T s straight forward modification of RSIM to make it use equations 3 38 and 340 instcad of the lumped RC formu-
la However. thexe cquanions only apphy lo circusts contaning a single dnver; until the theory is extended to include
multiple-driscr configurations, it scems safest to use the conservative lumped RC approximation.




The computation of the propagation delay would be casier if it involved only the 7 of the output

node. A rearrangement of the time accounting accomplishes this:

(1) Rcport the time of the output transition as happening at 7 time units after the
input transition.

(2) Schedule the event associated with the output transition for ¢ + A time units
after the input transition where A = (0.28)(rotal rise time) for rising transitions,
and A = (0.15)rowal fall time) for falling transitions.

In other words, the cffects of the input rise/fall time arc factored in when the input transition is
scheduled, so the A terms in cquation 3.44 can be omitted when computing subsequent 7's. ‘This

rearrangement is itlustrated in the following figure.

—{RC + 4, l— —{a, | RC ke
ouT l ouT I
(a) according to equation 3.44 (b) proposed rearrangement

Figure 3.19. Rearrangement of time accounting for transitions

The total rise and fall times of a transition are related to the RC time constant of the transition. When
the input is modeled as a ramp, the total risc/fall time is (2.3)r since 7 is measured using vy esh = 0.44.
As a result, the transitions of a given node can be handled in the following way:

(1) Compute the RC time constant (r) for the node.

(2) Report the time of the transition as 7 time units in the future.

(3) Schedule the associated event at
(1.6)r time units in the future for a rising transition, or
(1.3)r time units in the future for a falling transition,

Note that 16 =1 + (2.3)0.28) and 1.3 =1 + (2.3K0.15). This scenario assumes that all
consequences of a rising transition involve a falling transition, and vice versa. This is not always the
casc for a source-follower or a pass transistor, but the crror involved (the difference between 1.6 and
1.3) is not large enough to be significant. ‘The old scheme (accounting for the input transition time

during cach delay computation) can be used if desired,

Now that the model incorporates some information about the input waveform, it is interesting o

review the examples presented in section 2.4, First the PLA calculations:
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RSIM SPICE RSIM
node | transition T predicts predicts | schedules
transition | transition event
A + 0.3 0.3 0.8 0.4
B * 37 4.1 35 6.3
Case 1 C ¥ 0.9 7.2 6.8 7.5
D U 9.1 16.6 15.5 221
E 4 0.9 23.0 20.7 -
A T 1.6 1.6 0.6 26
B 4 038 34 1.9 36
Case 2 C t 0.6 42 33 4.6
D { 1.3 59 6.4 6.3
E t 6.0 12.3 12.1 —

As onc can sec. RSIM's estimates are naw better, and they overestimate transition times with reasonable
consistency. (One expects overestimates because of the incquality in equation 3.44). The estimate for
Case 1 is 11% greater than the SPICE prediction; for Case 2, 2% greater. The story is similar for the

OM2 data path example:

RSIM SPICE RSIM
node | transition T predicts predicts | schedules
transition | transition event
A & 24 24 2.6 31
B + 8.2 11.3 9.1 16.2
C ) 27 18.9 19.6 232
D 4 226 45.8 39.6 —

RSIM's prediction is 15% greater than that of SPICE. Note that the event for node B is scheduled using
the rule for a rising transition — formulated assuming that any consequent transitions will be falling —
even though node C is also undergoing a rising transition. This accounts for much of the overestimate
by RSIM.

In conclusion, this chapter shows justification for the lincar transistor model, especially if all
waveforms can be modeled as steps. Of course, transitions are not steps in actual circuit operation;
this fact motivated changes to the linear model, still allowing it to provide acceptable predictions of

circuit behavior.
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CHAPTER FOUR

Simulation Using a Linear Network Model

This chapter focuses on various RSIM implementation issues. The first section presents a detailed
description of the simulation algorithm. with step-by-step accounts of the charge-sharing and final-
value computations. Several techniques for speeding up the computations are described in the second
section. The third section outlines some mechanisms available to the user for forcing the value and
timing predictions for given nodes. The chapter concludes with an evaluation of the strengths and

weaknesses of RSIM.

4.1. The RSIM simulation algorithm

RSIM uscs the following simple recipe for simulating a circuit:

(i) Accept new input values from the user. Perform the new-value computation
(figurc 4.2) for cach new input value: this propagates the new valuce to nodes
connected to the mput by the source/drain connection of a transistor switch (sce
fipure 2.14(a)). In addition, schedule the appropriate event so that any
transistors affected by the new input value will be processed.

(i1) Process events from the cvent list, stopping (1) when the event list is empty, (2)
when a node the user is tracing changes value, or (3) when the specified amount
of simulated time has clapsed.

(i) [ oop back to (i) to accept new inputs,

The main loop of the simulator (step (i) above) is described in the following figure, ‘The node

-;_:“ - - — ca e~ _—— e Ty . .- '
a N o7
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assectated with cach event s assigned s new value, and all stages affected by the new value are

located and processed.  (An aftected stage 1s one that contains o source/dram node — called & seed
node — of a transistor which has the event node as their gate))  The processing of 4 stage has wo
steps: first a charge-sharing computation for the stage. then o caleulation of the finat value of cach
node n the stage. Before each of the two steps. the COMPUTT flag of cach seed node 1s set o indicate
that the stage containing the seed node needs processing. A stage is processed only if ity seed node
has the COMPUTL tlag sct; as part of the processing. COMPU (T flags for nodes in the current stage are
resct.  This mechanism ensures that a stage is processed only once. even if it contains more than one

sced node.

while ¢vent list not empty {
n := node associated with first event on event list
remove first event from event list
set n's value to the value specified by the event

/* do charge-sharing computation for each affected stage [see < oction 4.1.1] */
for cach transistor with n as gate node. sct COMPUTE flag for source
for cach transistor t with n as gate node
if t has just turned on and COMPUTE still sct for source node
do charge-sharing computation for source

/* do new-value computation for each affected stage [see figure 4.2] */

for cach transistor with n as gate node, set COMPUTE flag for source and drain

for cach transistor with n as gate node {
if COMPUTE still set for source, do new-value computation for stage containing source
if COMPUTE still set for drain, do new-value computation for stage containing drain

Figure 4.1. Main loop of RSIM algorithm

Note that the charge-sharing computation deals only with the source stage of cach transistor, but the
inal-value computation deals with both the source and drain stages. This is because the charge-
sharing calculation only dcals with transistors known to be on; therefore, the source and drain belong

to the same stage, and a stage computation involving the source automatically involves the drain,

The procedure for calculating the final value for cach nodc in a stage is outlined in the following

figure.
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inttialize connection list to have starting node as only clement
set pointer to beginning of connection list
if starting node is an input. input_found ;= true, clse input_found = false

/* find all nodes in current stage */
while pointer not at end of connection list {
n := node currently pointed at
for cach "on” transistor with source connected to n {
if drain is an input, input_found ;= true
else if drain not on connection list, add drain to end of list

}

advance pointer to next list clement

}

/* compute new final value for each node in stage */
if no inputs found. all done (charge-sharing has computed the correct value)
clse for each node on conncction list {
if node is an input, do nothing (its value is set by user)
compute final value for node [section 4.1.2]
resct VISITED flag (sct by final-value computation) for cach node on connection list
resct node’s COMPUTE flag

Figure 4.2. Subroutine 1o compute new final value for every node in stage

The details of the charge-sharing and final-valuc computations are presented in the next two

subsections, followed by a description of ¢vent management in RSIM,

4.1.1. Charge-sharing computation

When a transistor turns on, its source and drain nodes become part of the same stage. As

explained in scction 2.2, if the voltages of all the nodes in a stage arc not already identical. they

become so through charge sharing. In order to calculate the charge-sharing value for cach node, RSIM
computes three summary capacitances from the capacitances of cach node in the stage:

Chign  total capacitance of nodes with current state of logic high.

Ciow  total capacitance of nodes with current state of logic low.

Cy total capacitance of nodes with current state of X,

The summary capacitances arc used to compute the charge-sharing value for the stage. as specified by

cquations 2.3 and 2.4:

0 ‘ ("II}:h~+ Cy < Viow
Cron + (hu;lx + :
1 charge-sharing value = | 1 -—.»——*-{ > Vhigh (4.1)
Cion + (Iugh + (¢,
X otherwise 1

i
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An event s seheduled for cach node. specifying an immediate transition o the charge-sharing value,

(Sce section 4.1.3 1o find out what happens 1o new events.)

e charge-sharing computation s outhned in the following figure. the procedure performs a
tree walk of a stage starting with o node passed as an argument from the new-value procedure. Since
the nodes mthe stage do not require processing in o particular order. the procedure is implemented

without recursion.

inittalize list to have starting node as only clement
sct poimter to beginning of list
reset capacitance accumulators

/* visit all nodes in stage. compute summary capacitances */
while pointer not at end of list {
n ;= node currently pointed at
add capacitance of n to appropriate accumulator
for cach "on" transistor t with source connected to n {
if drain is an input or static(t) > maxres. do nothing
clse if drain not on list, add drain to end of list

}

advance pointer to next [ist element

}

/* make each node in stage have charge-sharing value */
compute charge-sharing valuc using equation 4.1
for cach node on list {

reset node’s COMPUTE flag

schedule immediate transition to charge sharing value

)
i

Figure 4.3. Non-recursive routine for charge-sharing computation

If the resistance of a transistor is large cnough, its source and drain nodes might not share charge — at
lcast not very quickly. The user can specify a maximum resistance parameter (maxres) that controls
*.c scope of the charge-sharing calculation: the traversal of nodes in a stage stops at transistors with a
resistance greater than maxres. The COMPUTE flag indicates to the main RSIM loop which stages have
been processed by the charge-sharing calculation; the main loop uses the flag to cnsure that the

charge-sharing calculation is performed only once for cach stage,

Equation 4.1 leads to incorrect results when the surrounding network contains X transistors
(transistors with gates of X). A portion of the network that can be reached only through X transistors
might not be connected to the original node at all. and so should not make an active contribution to

the node’s charge-sharing value.  An alternative (suggested by Dave Gross) is the use of capacitance




intervals o accumulate the contribution of X connections.  In this scheme, the  capacitance

accumulators have interval values, eg Copre = [Cpggnonin Cpyggyomax ] The mumimum value is the
total capacitance of nodes guaranteed 1o be connected o the current node: the maxnnum value also
mcludes the capacitance of nodes only reachable by X transistors. A separate charge-sharing

computation occurs for cach node in the stage, as outlined in the following figure.

if node is input, Cryy = Crow = C = [9,0]
clse {
local_Ciyen 1= local_Cpoy = local_Cy 1= [0.0]
add nodc’s capacitance o max and min of accumulator for node’s value
sct VISITED flag for current node
for cach "on" transistor. . with source connected to current node {
if drain does not have VISITED flag set §
recursively determine parameters for drain node
if value of gate node for tis not X {
local_Cep.min = local_Cpygp.min + Cpgp.min
local_Cppy .min : = local_Cppp .min + Cppy min
local (', min:= local Cy.min + Cy.min
}
local_Ciygp.max : = local_Cpgp.max + Cpgp.max
local_Cppy .max : = local_Cpp, .max + Cpoy .max
local (', .max := local_C, .max + Cy.max

}

set Crip = local_Cpgp. and 50 on

Figure 4.4. Subroutine to compute capacitance intervals

The results determine the maximum and minimum node voltage. which determine the charge-sharing

value for the node:

0 Cpgh.max + Cy.max
- s - - Vi
Clow.min + Cpgp.min + Cy.min ow
) Chigh.min
charge-sharing value = 1 e > Vhigh (4.2)
Ciow-max + Cpgp.max + Cx.max
X otherwise

Capacitances for nodes connected by X transistors contribute to the final value only in a ncgative
sense. i.c.. they may cause a node to go to X, but never contribute to a value of 0 or 1. Teaving the
VISITED flag sct as cach new node is discovered cnsures that cach node is visited only once. After

completing the charge-sharing computation for a node, its COMPUTE flag is reset: the vViSHED flags for
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all nades in the stage are also reset, in preparation for the next node’s computation,

One disadvantage of the interval approach s that 4 separate calculation is performed for each
node in the stage. whereas the original scheme required only one caleulation per stage.  In addition.
the interval caleulation must be performed by a recursive tree walk to ensure the correct handhng of X
transistors,  Fortunately, this computation can be merged with the tree walk described in the following

section, so the incremental cost is fairly small.

4.1.2. Final-value computation

‘The final, driven value of a node is determined by the resistance of paths from the node to
various inputs. As we saw in chapter 2, a convenient way to characterize these paths is to calculate the
Thevenin cquivalent for the portion of the network that can be reached from the node of interest.
tquation 2.6 relates the final value of a node to Vipey. the Thevenin cquivalent voltage. The ume
constant for a transition in the value of a node is also determined by the surrounding network; the
necessary parameters can be computed during the Thevenin calculation.

For computational convenicnce. RSIM actually computes RH and R1., the resistances of a resistor

divider that represents the cffect of the surrounding network.

S net resistance of all paths to VDD
[RHl.RHh]

[Rl‘!'m‘h] " Z— net resistance of all paths to GND

Figure 4.5. characieristic resistor divider for a node

RH and RL might be resistance intervals (RH = [RH;, RHp)and RL = [RL;. Rl )) if there are X
values in the surrounding network. The Thevenin equivalent voltage is easily calculated from the
characteristic divider:

RL; Rl
RL; + RHy " RLy + RH,;

Vihev = [ V1. Vi ) = | } (4.3)

For cxample. the lowest possible voltage is calculated using the least resistance to GND (specified by

R/ ;) and the greatest resistance to vDD (specified by RHj). Couching the computation in terms of




the charactenstic resistance is advantageous  for several reasons.  Resistances 0 VDD and GND

reprosent. in g natural way, the connections made by MOS logic. as shown in chapter 3. With the aid
of some simple rules, it is casy o incrementally analyze any MOS network in terms of its component
resistances. Because resistances are directly related to the implementation. they can represent certain
circuit configurations — ... short circuits (RH = Rl = 0) — that cannot be simply characterized
using the Thevenin equivalent. The remainder of the scction describes a tree walk algorithm to
computc the parameters needed for determining a node’s value and for scheduling the appropriate

transition.

The computation of RH and R/ proceeds by tracing paths 1o the inputs that are reachable from
the node of interest, and then calculating the resistance of cach path, starting at the input and working
back toward the original node. Two rules are helpful for calculating path resistance. ‘The first rule

specifies the apparent path resistances when a divider exists on the other side of a resistor:

PPy R, R,] (ALAL
(a) initial network (b) approximation

Figure 4.6. Reduction rule for resistor divider with series resistor

The parameters for the apparent resistances (4 and B in figure 4.6(b)) cannot be determined exactly,
an approximation is therefore necessary. Appendix 3 explains why this is so, and derives the following

formulas for the approximation:

Py + R1£"— + R[ﬁ

P
A1=P1+R[+R15$- An

Py o “44)
Br=0r+ R + RI—Q,i By = QOn + ng’i + RI&
Py O Py

The second rule is much simpler: it indicates how to merge the resistances of two separate paths to

obtain the net resistance for both paths:
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(a) dividcrs for two paraliel paths (b} resulting divider

Figure 4.7. Reduction rule for combining two parallel paths

To compute the Thevenin equivalent for a particular node. one starts by locating all conducting
transistors connected to that node and then recursively analyzing the network on the other side of
cach of the transistors. Fach node is marked as its analysis begins: recursive calls ignore portions of
the network involving marked nodes. This keeps the analysis expanding outward, cventually
terminating at a dead-end (no paths leading to unmarked nodes) or an input. These particular circuits

are casy to analyze, as shown in the following figure.

RH = o RH=0 RH = o0
RL =10 RL = o0 RL = o0
(a) low input (GND) (b) high input (VDD) (c) dead-end

Figure 4.8. Characteristic dividers for input nodes and dead-ends

The resistance of paths Icading from a particular node are combined using the two reduction rules
above. Using the first rule, the results of a recursive call (shown as P and Q in figure 4.6) are
combined with the resistance of the conducting transistor Icading to that picce of the network (shown
as R). to yicld the net resistance of the path. This resistance is combined with the resistances from
other recursive calls using the sccond reduction rule. When all paths have been accounted for, the
analysis for the node is complete. The resulting divider is the desired answer, or, is used as part of the
analysis of some other node if the analysis was performed because of a recursive call. The process is

diagramed in the following figure.

S m - . S
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4

(a) inital network (b) after recursive analysis of subnets

(c) after applying first reduction rule (d) after applying sccond reduction rule

Figure 4.9. Network analysis by repeated rule application

The complete analysis procedure is outlined in the next figure. The results are stored in cight

global variables:

RH resistance interval for net resistance of all paths to vDD. Path resistance
computed using static resistance of cach transistor.

RL resistance interval for net resistance of all paths to GND, Path resistance
computed using Static resistance of cach transistor.

Ryqs  net resistance to vbD, computed using the dynamic-high resistance of cach
transistor.  Simple scries/parallel calculation; paths containing X transistors
arc ignored.

Rgng  net resistance to GND, computed using the dynamic-low resistance of cach
transistor.  Simple scrics/parallel calculation; paths containing X transistors
are ignored.

Ry net resistance to all inputs, computed using the dynamic-high resistance to
high inputs. and dvnamic-low resistance to low inputs. Simple scries/parallel
calculation; includes paths containing X transistors.

Chigh  total capacitance of nodes with current state of logic high.

Crow  total capacitance of nodes with current state of logic low,

Cx total capacitance of nodes with current state of X.
If the interval charge-sharing calculation is merged with this calculation, the upper limit of the
capacitance intervals in the charge-sharing calculation can be used in place of the three capacitance

accumulators just defined. The procedure also uses four stack-allocated local variables to accumulate
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the first four quantitics listed above, during the calculation for cach node. .

if node is logic low input {
, return with RH = Ryyy = @ and Rl = Rypy = R, =0
i } else if node is logic high input {
return with RH = Ryyy = R, = Oand Rl = Rypg = 00
} clse {
local_Rygy 1= local_Rgny 1= local_R, := local_RH := local_Rl.:= 00
add node capacitance to appropriate accumulator
set VISITED flag for current node
for cach "on” transistor. L with source connected to current node §
if drain does not have visiTep flag set {
recursively determine paramecters for drain node
combine static(t) with RH and R1. using first reduction rule
combine result with locul_RH and local_RL using second reduction rule
if valuc of gate node fort 1= X {
local_R,g2 := local R4 || (dynhigh(t) + Ryg)
local_Rgng 2= local_Rgng || (dynlow(t) + Rgng)

}
local_Ry := local_Ry || (min(dynhigh(t).dynlow(t)) + Ry)
}
}

sct Rygs = local_R,z. RH = local_RH, and so on

Figure 4.10. Subroutine 1o compute parameters of resistor divider

Marking cach nodc as it is visited (by sctting its VISITED flag) avoids cycles and kecps the tree walk
expanding outward from the starting node. If the network does contain cycles. the subroutine only
approximates the true resistance 10 VDD and GND. For example, consider the following logic gate

where the output (the pulled-up node) is the node of interest:

Rl Rl%
cither R2 or RS R2 R4 R4 RS
R3 R4 Ré R3 R6 R} R6
(a) circuit containing cycles (b) circuit as analyzed (c) circuit as analyzed il marks removed

Figure 4.11. Analysis of circuit containing cycles

Since the marks arc not removed when the analysis of a path is completed, RSIM treats the cycle as if
the circuit were configured as shown in the circuit in figurc 4.11(b). This approximation results in an

overestimate of the actual resistances. If a node’s mark were removed as the procedure exited, all
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paths through the network would be explored (as shown in figure 4.11(c)): in this case, the resistunce
would be underestimated. leading to optimistic performance predictions.

Cvcles are relatively rare in nMOS designs: when they occur. the extra path is often redundant,
Le., the circuit is designed to work correctly if any path in the cycle became the sole connection. ‘This
means the approximation used by RSIM is usually not out of line with the designer’s intentions. This

statement holds for ¢MOS as well, with one notable cxception — the cMOS pass gate:

>
8
8

AL

Figure 4.12. 4 cMOS pass gate

In this circuit configuration, one device is sized to carry most of the load, and the other exists simply to
ensurc no threshold drop across the gat~. In analyzing such a circuit, RSIM arbitrarily chooses the
transistor that makes the connection; the other transistor's contribution is ignored. This is satisfactory
if the transistor with the smaller resistance is chosen, but such is not always the case. To correct the
problem, the transistor list for cach node can be arranged in order of increasing resistance; this ensures
paths of least resistance arc cxamined and marked first. Note that this solution only works when the
paths in a cycle have a length of one transistor (as in the pass gate above). If the paths are longer,
there is no guarantee that the path of least total resistance will happen to start with the transistor that

has the least resistance.

After the various paramcters are calculated. the final value of a node can be calculated using

equations 2.6 and 4.1:

0 Vyp < viow or (old value=0 and RH; = o0)
Sinal value = 1 Vi > viigh or (old value=1 and R1.;=00) 4.5)
X otherwise

The extra clause for "0" and "1" values prevents a node from being unnccessarily forced o X when it
has no connection to inputs of the opposite logic state. ‘The appropriate cvent is scheduled Ry Copr

scconds in the future, where

. . s e .
o] : - ower N
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Reng Sinal value = 0
Ry = Ryiq final value = (4.6)
l Ry Sinal value = X
Chigh + Cx final value = 0
Cor = Cion + C, Sinal value = 1 4.7
Ciow + Chigh  final value = X

‘The disposition of this cvent depends on the nature of any pending cvents and the node’s current

value; sec section 4.1.3 for the details of event management,

The user has some control over the final-value computation. The time constant for event
scheduling can be forced to 1. implementing a unit-delay simulation. This is useful when a node value
is to be calculated using transistor resistances, but transition timing is not important. Another option is
flagging those events corresponding to transitions to X. where the X value is specifically caused by a
ratio error (rather than other X's in the network). Such transitions arc characterized by RH, < 00
and RLy < 00; if an X exists in the surrounding network, one or both of these parameters is infinite.
When a flagged event is processed, the transition is reported to the user as a ratio error. Because the
error report is delayed until the flagged cvent is processed, short-lived ratio errors (those caused by
small differences in propagation delays) arc ignored, and the error reports reflect only significant ratio
crrors, Of course, in some designs, even long-lived ratio crrors might not affect correct circuit
operation, so the reporting is optional.

When RH; = RI1; = 00, the node is not connected to any inputs, and the charge-sharing
computation described in the previous section correctly computes the node’s final value. Ordinarily,
the final-value calculation does not schedule any cvents in this case, but the user can optionally
request the scheduling of a charge-decay event. A charge-decay event scts the node value to X after a
specified interval which the user can set. At first glance, it might scem odd to schedule all decay
events using the same interval; a more suitable estimate might be based on factors such as the node’s
capacitance. the number of transistors connected to the node, and so on. Howcever, precise predictions
are not nccessarily the most useful here. The actual decay time for MOS circuits is in the millisccond
range. Since it is unlikely that a simulation spans that long a period of simulated time, a precise
accounting of the decay time never results in a decay! A more uscful approach is based on the
obscrvation that a designer usually intends for all dynamic nodes to be refreshed cvery few clock

cycles. When the decay time is sct to an interval slightly larger than the intended refresh rate, the




unrefreshed nodes decay quickly. and the user receives a suitable crror report.  Thus, cven a short

simulation run catches a decay problem. This type of debugging experiment can be much more

cffective than a precise estimate in pinpointing a problem.

4.1.3. Fvent Management

Up to two cvents can be pending for a node:

(1) a charge-sharing (CS) cvent. CS events arc always immediate cvents, Le., they
are scheduled for the current simulated time.

(2) a final-value (FV) cvent, scheduled for sometime in the future,
Thus, up to two transitions are possible for a given node. Each event corresponds to a real transition,
ie.. the new value of a CS event always differs from the current value of the node, and the new value
of a FV cvent differs from that of the CS event (or the current node value if there is no pending CS
event). Since only two transitions can be pending at any moment, newly calculated events must be
merged with the pending events. Section 2.3 hinted at the issues involved: in general, RSIM makes its
choices based on the principle that the most recently caleulated event best reflects the current network
configuration. Since no information is available that explains why any pending cvents were created,

there is fittle (if any) reason to save a previously-calculated event in preference to the newer one.
The following figure describes the simple merging rules used by RSIM:

if merging new CS event §
abort pending CS and FV cvents
if new charge-sharing value is different from current node value
schedule new CS event

}
if merging new FV event {
if new value differs from CS value (or. if no CS event pending, current node value)
schedule new FV event

Figure 4.13. Merging a new event with pending events

A new CS event aborts a pending FV event because a new final-value computation always occurs after
the charge-sharing computations are complete.  Although this approach is simple, it occasionally lcads
to pessimistic predictions. For example. if onc input of a two-input NOR gate turns on substantially
before the other, the propagation delay is actually determined by the time of the first input's

transition.  With the merging scheme outlined above, the two events scheduled at the time the second

input turns on cause other cvents to be aborted — those scheduled because of the first input's




transition. This occurs even if one of the aborted events is scheduled for an ecarlier time than the

sccond event. In other words, with the merging scheme above, the propagation delay of & NOR gate
might be incorrectly measured from the later input. ‘There is no simple fix to the merging rules above
that sohves this problem. The correct solution requires knowledge of both the new CS cvent and the
new FV event. so that pending events can be saved if they are compatible with both newer events, If
the charge-sharing and final-value calculations are merged. as suggested at the end of section 4.1.1, it

should be straightforward w implement the correct merging scheme,

‘There are several alternatives for dealing with aborted events. The simplest approach is to
handle the cvent as if it were never scheduled, ie. do nothing. This is the approach rSIM adopts.
Another approach is motivated by the physical significance of an aborted event. Since the signal
changes between the transition start time (the time when the charge-sharing or final-value computation
was performed) and the transition end time (the scheduled time of the event), the action of aborting
the event corresponds to a stop in mid-transition. Aborted transitions arc termed glitches
[Thompson74]; these malformed signals sometimes have significant impact on the operation of a circuit
and should be reported to the user. This report can be in the form of a forced wransition to X. or just
a simple error message. Interestingly, a user who has the vption to receive glitch reports almost always
disables that feature [Ulrich73). The reason given is that the duration of an aborted transition is
usually short enough so that the actual signal does not change significantly: hence no glitch actually
occurs.}

Scheduling an event entails inserting it into the event list. placed according to its scheduled time.
An cvent list implemented as a simple list would impose a noticcable scheduling overhead. RSIM
adopts several techniques for reducing this overhead. It quantizes simulated time. and rounds off cach
cvent time to the ncarest time quanta: in the current implementation, the time quanta is 0.1
aanosccond. ‘The event list is implemented in two pieces:

(1) an event array. Fach array eclement is a doubly-linked list of cvents for a
particular time quanta,

(2) an overflow list, a doubly-linked list of cvents, sorted by event time,

This organization is similar to that found in many conventional gate-level simulators [Vaucher7S,

FSome rescarchers propose showing transitions between logic states as 0-X-1 or 1-X-0. where the itial transition to
X happens immediately. Thus aborted events leave the node value at X until some subsequent event re-cstablishes 8
lepitimate lopic state. This suggestion doubles the number of cvents in a simulation: a cost which might outwcigh the
advantagcs.
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Ulrich76). The cvent lists are doubly-linked to allow quick removal of an aborted event from the list.

The data structures are diagramed in the following figure,

cvent array

+i+1 —t1—>cvent—>
+i+2
~ ~
3 3 overflow list
+N-2 [ —TF—saemn—cem—> .
+N-1
current time ——> 0 ~—1—cvent—> .
+1
+2
+i\f:é-—'>evem
A

offset, in quanta, from current time

Figure 4.14. The event list is implemented with an event array and overflow list

The event array is managed as a circular buffer in which the N array elements hold events for the next
N time quanta. An array index indicates which array clement corresponds to the current simulated
time. If a new event is scheduled for a time M quanta in the future, where Af <N, the event is added
to the end of the cvent list stored in array clement (index + M) mod N: no sorting or searching is
required. If M >N, the cvent is inscrted into the overflow list according to its scheduled time. The
array size is chosen so that most events are scheduled directly into the array. With a time quanta of
0.1 nanoscconds, a 128- or 256-clement array captures most ¢vents in modern MOS designs. Note that
events are added to the end of an event list. This ensures that events are processed in first-in, first-out

order, ie., in the order created. Thus, cause-and-cffect relationships are preserved.

To find the next event to process. the event array is scarched starting at the current index, until
an cvent is found. Each increment of the index corresponds to advancing simulated time by one time
quanta. If the array is empty, simulated time is advanced to equal the scheduled time of the first
event on the overflow list: this event becomes the next one to processed. When an event is located
for processing, the overflow list is examined to find events whose scheduled times arc less than N time
quanta away from the new simulated time. Such events are moved from the overflow list to the
appropriate list in the cvent array. This preserves the first-in, first-out event ordering mentioned

above,

i -~ e l— e —eam e —_—— - B sl e
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4.2. Speeding up the simulation

No simulator is fast enough. Increased simulator performance is always in demand. eitier to
achieve faster turnaround during the design process, or to allow more complete testing during
verification. This section discusses several techniques for improving the performance of the algorithms

presented in the previous section,

It is not surprising to Icarn that, during cvent processing, most of the time is spent in the final-
valuc calculation.t To compute the final value for a given node. the final-value computation must visit
all the nodes in the current stage. Thus, if there are n nodes in the stage, processing the cntire stage
takes O(n?) time. Since the remainder of the processing is proportional to the size of the stage, the
real bottlencck is the final-value computation. Performance can be improved by

(1) introducing a cache for final-value computations, with the intent of eliminating
the recalculation of parameters for subnetworks.

(2) reducing the number of nodes in the stage.

(3) reducing the cost of cach calculation, for example, by substituting integer
arithmetic for floating-point. This alternative will not be discussed further,
except to note that a 32-bit integer has over 9 orders of magnitude of dynamic
range, sufficicnt for representing MOS resistances.

Clearly, the first improvement is most significant when n is large. The third improvement is important
when # is small and the dominant cost is the actual arithmetic. The second improvement works on

making (3) more important than (1). The improvements arc discussed in turn below.

As it is currently formulated, the final-value procedure performs many redundant computations.

Consider the circuit diagram for a 5-node stage shown in (a) below. and one of its subcircuits, shown

in (b) below. !

$The discussion in this section is limited 1o that portion of the simulator which propagates ncw valucs through the
network. RSIM has an interpreted 1.1SP-like command language which the designer uses 1o prepare new input
values and process the rosults of a simulation siep Depending on the sophistication of the simulation environment
built by the uscr. a substantial portion of the total time can be spent in the command language interpreter. Of
course. there is room for improrement here too. but that is outside the scope of this thesis.

— oo o T
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(a) 5-node slage {b) example subcircuit

Figure 4.15. Stage containing 5 nodes and 4 transistors

When one traces the computations performed by the final-value procedure (see figure 4.10), it
becomes apparent that the parameters for a specific subcircuit are calculated several times. The
computations for nodes A, B, and C all need the same information about the subcircuit in figure i

4.15(b); there is no reason to compute the information more than once.

The amount of redundant computation can be reduced by caching the result from cach call to

the final-value procedure.t Before cach call, the cache is searched to see if the subcircuit was analyzed

previously; if so. the results are taken from the cache and not recomputed. If the cache has constant
access time, the cost of the final-value analysis for a stage is reduced to O(»), a significant saving
when n is large. In RSIM, the cache does not need to accommodate arbitrary amounts of information;
associating two cache entrics with cach transistor (one for the source, one for the drain) is sufficient. h
The source cache retains the nctwork paramecters for the subnetwork connected to the drain node
(including the transistor), and the drain cache is similar. When the analysis of a subnetwork is

completed. the result is placed in the appropriate cache.

A4 L
] L P L
source cache drain cache source cached filled
(a) circuit showing caches (b) circuit after analysis of subnet #2

Figure 4.16. Transistor cache scheme

In the figure above. once subnet #2 has been analyzed and the result saved in the source cache,
subscquent analyses involving the same transistor and subnet usc the cached result. The following

| +This caching technique 18 known in the LISP community as memoization.




.78.

figure shows the cache status after calcutation of the final value for node 1D of figure 4.15(4).

A L s L ¢ L »n 4 ¥

I [ ' i

Figure 4.17. Cache stawus afier final-value calculation for node D

Subsequent analysis of node C. for example. requires only a single recursive call (rather than four as
before).

There are several reasons why the transistor cache might not be the ideal solution. The amount
of information in each cache entry — 8 paramecters — is quite large compared to the wansistor data
base. This suggests that cache entries should be dynamically allocated when needed. and returned
when the computation is complete. The combined costs of storage management and cache access
might exceed the cost savings realized on stages of modest size. These objections can be addressed by
associating cache entrics with nodes instead. or using the cache only when the stage exceeds a

specified size.

However the cache is organized, its introduction has a substantial impact on the amount of
computation required for the final-value analysis of a stage. Another improvement mentioned at the
beginning of the scction is reducing the number of nodes in a stage. The key element of this is the
notion of uscless nodes, ie.. nodes that do not connect to any transistor gates and hence whose values
are irrelevant. Such nodes commonly occur in a pulldown path containing more than one transistor,

such as the node marked by an asterisk in figure 4.18(a).

L

A re
-] c[re D[ rs "Q:D——{ R2 + R3
B[ rs

(a) nMOS logic gate (b) pulldown after removing useless node

Figure 4.18. Remo: .. g useless nodes from a stage

Scction 3.4.4 mentions that & pulldown with more than onc transistor is clectrically equivalent to a
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single-transistor pulldown of the appropriate size. This suggests that such a pulldown can be replaced
by a circuit like the one shown in figure 4.18(h). Al the nodes in the pulldown except the output and
GND are climinated. and all the putldown transistors are replaced by a single transistor. The gate value
of the single transistor is the logical conjunction of the values of the gates of the original pulldown

chain. In fact. RSIM uses a compact representation for the generalized MOS gate:

A

B

aull > first pulldown

static R2+R3

dynlow R2+R3

C

null

second pulldown
static R4

dynlow R4

D

null
— > third pulldown
static RS

dynlow RS

null

static R1

pullup

dvnhigh R1

Figure 4.19. Efficient internal representation of an ndMQS logic gate

All transistors and nodes that make up the gate arc climinated. and the resulting gate structure is
associated with the output node. The output can still connect to other transistors that are not
recognized as part of a logic gate: only those transistors that implement a MOS logic gate are
compressed. The resistance parameters of a gate structure are computed very cfficiently by RSIM —
many times more quickly than the analysis of the cquivalent network.

The compression of gate circuits into the compact internal representation also results in a
considcrable space saving. Somewhere between 40% and 80% of the transistors in most circuits are

climinated when the gate structures arc built. 'This resulting simulation runs roughly twice as fast as

the uncompressed network. This optimization is probably the single lirgest contributor to the ability
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of RSIM 1o deal with very large MOS circuits.

4.3. Escape mechanisms

Previous sections of this chapter introduced mechanisms that allow the user o adjust the
operation of the simulator as a whole, There are occasions. however, when a large-scale adjustment is
inappropnate. and only the predictions for a single node need correction. This section discusses
several "escape” mechanisms provided by RSIM for adjusting the predictions for small groups of nodes
and transistors.

‘the modifications discussed here are ad hoc in naturc: their motivation arises from purely
practical considerations. The mechanisms are not intended to allow wholesale changes in the
simulation computation, but are provided so the designer can correct particularly cgregious or far-
reaching errors in the simulation of specific circuits. Since the mechanisms treat the symptoms and not

the discase, their effectivencss is limited to local improvements.

The are four user-adjustable parameters for cach node:

viow  the logic fow threshold for the node (specified in normalized voltage units).

VHIGH the logic high threshold for the node (specified in normalized voltage units).

TPLH  the Jow-to-high transition time for the node (spccified in time quanta).

TPHL  the high-to-low transition time for the node (specified in time quanta).
By adjusting the logic thresholds with vi.OW and VHIGH. the user can prevent predictions of X values
for circuits with non-standard pullup/pulidown ratios. This can be uscful in a circuit where a node’s
voltage swing is reduced for performance or other reasons (for example. in input buffers or bit-lines of
dynamic memory circuits).

The transition time parameters force the timing of all the node’s transitions. These parameters
allow adjustment of the timing of critical nodes to agree with predictions of circuit analysis programs.
Clocks, for example, often are gencrated by special circuitry designed to drive the a capacitive load.
Intricate timing chains involving bootstrapping. ctc. increase the speed of clock distribution circuitry to ,
acceptable levels. Most of these circuit techniques are beyond RsIM's ability to predict accurately;
incorrect predictions for critical signals can throw off the whole simulation. Using the transition time
parameters, the designer can force the rise and fall times of critical signals to their proper values, g

improving the quality of the remainder of the simulation.

It is obvious how transition time parameters affect the scheduling of cvents, but what about the
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tming of a node connccted directly 1w a forced node by a source/drain connection? A workable
scepanio treats a node  with forced tmings as an  input, sctting its  dynamic resistance
(Ryusg. Rgng. and R\) and capacitance parameters to sero. (Note that the value calculation. which uses
static resistances., is unaffected.) The transition time for a node connected to a forced node is the sum
of the given transition time for the forced node and the RC time constant of the path from the forced

node.

(_’ Rl 1 0 mise ume = tplh, + R3C

A L B B
R3 /'/ fall tme = tphl, + R3C

} ! ! phl, 3
U]
R2 0

-‘{g forced timings I ¢ I ¢

(a) onginal circuit with forced node {b) equnnalent network for node B

Figure 4.20. How forced timings affect neighboring nodes

If a node is connected to more than one forced node. the smallest forced time constant is used.

Neighbors of forced nodes always change value after the forced node — a reasonable prediction.

A much more powerful mechanism for forcing the desired prediction is modification of the
circuit itself, replacing troublesome configurations with others that simulate correctly. Piccemeal
modification of a large circuit can quickly lead to a loss of confidence in the simulation results,
especially if the replacements are performed in a haphazard manner. On the other hand, the
systematic identification and replacement of specific subcircuits, drawing from a library of approved

replacements. offers the opportunity to improve simulation accuracy for common subcircuits.

The pattern matching/replacement program MATCH, written by John Iler [iler83). provides an
efficient way to systematically modify picces of large circuits. The circuit to be modificd is identificd
by a pattern specifying a prototype subcircuit  Fach node in the prototype is given a type which
controls what nodes it matches in the actual circuit:

(1) matched only by a circuit node with exactly the same connections specified in the
pattern.

(2) matched by a circuit node with at Icast the connections specified in the pattern,
but the circuit node may also have other connections.

(3) wmatched by a node with the same name.




i
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The pattern indicates which prototype nodes attach to cach transistor in the prototype. arnd can further
constrain the match by giving an explicit size or resistance for cach prototype  transistor.  The
replacement can modify parameters of existing circuit components. and add or delete components.
For example. the following figure shows a pattern and replacement for the bootstrap circuit discussed

in section 3.2.

type (3) nodes

VAN

A4
A °/7‘J_1—;—/ W/l A 0——" w/L
1ype (2) node  type (1) node —0 B B
type (2) node
{a) pattern {b) replacement

Figure 4.21. Pattern/replacement for bootstrap circuit

MATCH is regularly used in at least one industrial cnvironment to improve the predictions of
RSIM. Her suggests other uses for the program: gathering of circuit statistics, identifying common
circuit errors. and implementing circuit changes (ECO’s) without requiring the regeneration of the

entire netlist. MATCH has proved to be a handy tool.

4.4. An evaluation of RSIM

RSIM has simulated a large number of designs, both in university and industrial environments.
Industrial designers are attracted to RSIM because of its ability to correctly predict the functionality of
most MOS circuits without designer intervention — a unique capability in a logic simulator efficient
enough to accommodate large designs. RSIM's timing cstimates are helpful in locating gross timing
errors in industrial designs, but the conservative nature of the estimates make them unsatisfactory for
finc tuning critical circuitry. In short. RSIM allows the verification of large industrial designs, at a level

of detail not obtainable with other simulators.

Timing cstimates appcear to be more important for academic users who, more often than not,
< not paid as much attention to the performance of cach individual circuit component. RSIM makes

a good breadboard for locating performance bottlenecks and cxperimenting with potential solutions.
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Since transition timings automatically reflect output loadings and device sizes, the naive users
attention is focused on critical portions of the design. RSIM is a good companion for the novice

; designer because of its ability o qualitatively model much of the behavior of MOS circuitry.

RSIM advances the state of the art of simulation in scveral ways. The lincar model embodicd by
RSIM is a systematization of a common rulc-of-thumb for estimating circuit performance. The
simulator was originally developed simply to automate the calculation of RC time constants. and to
reap the benefits of applying the same timing criteria uniformly  the entire circuit. The analysis of
propagation delay in Chapter 3 justifies the use of the linear model as a simple approximation and
extends the rule-of-thumb to include the affects of the input wavceform timings on gate propagation
delay. RSIM breaks new ground by combining logic-level simulation with the ability to automatically
estimate transition times directly from the clectrical properties of the circuit components. While the
results are less accurate than circuit analysis, the dcsigner is compensated by an increase in
computation spced by several orders of magnitude. RSIM represents a first cut at a stylized form of
circuit analysis which attempts to model the significant effects at far less cost than traditional analysis

techniques. The proven utility of RSIM augurs well for further developments in the arca between logic

simulation and circuit analysis.

The introduction of intervals to charactcrize the operation of circuit components controlled by
X-valued signals is a novel technique for merging electrical analysis with the logical concept of
unknown signal values. The use of intervals allows one to easily compute the clectrical consequences
of unknown node values, resulting in predictions more satisfactory than those obtainable from

conventional logic simulators or circuit analysis programs.

There is, of course, plenty of room for improvement in RSIM! For example, interconnect is not
modecled at all. As a circuit's physical size decreases, the transmission delay introduced by the
interconnect is as large as the propagation delay of the gates. Certain layout techniques, such as a
long run of polysilicon, are inhcrently slow and might become the fatal flaw in an otherwise carefully
tuned design. [Penfield81] offers some computationally reasonable models for predicting transmission
delays; these models are well-suited for incorporation into RSIM. His analysis, along with that of
[Horowitz83], offcm'somc insight into the correct modeling of pass gates and distributed capacitances.
(The lumped approximation uscd by RSIM can be very pessimistic.) Along the same lines, the
development of better time constants for charge-sharing cvents would improve the modeling of circuits

containing both large and small capacitances.
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Another class of problems is introduced by the one-pass nature of the computations. In order 1o
limit the amount of computation needed for cach prediction, the algorithms are constrained to make
only one pass over the surrounding network. While most MOS circuits arc trees, and hence amenable
to a one-pass analysis, circuits that contain cycles arc not handled correctly. The proposed solution —
choosing a single path through the cycle to represent the cycle's resistance — is definitely ad hoc;

performing the correct series/parallel analysis would be preferable,

There is also a necd to consider the effects of deviations in device performance from that
predicted by first-order theory. Some effects (channel length modulation, body effect, short channel
effects) might best be handled during the calibration process. Other effects (Miller capacitance) may
lead to further modifications in the model or calculation of device parameters in order to ensure
conservative predictions. Finally, there is the possibility that work on waveform bounding [Wyatt83],
which seeks to obtain closed-form equations for the waveform of each node of a circuit, can provide a

replacement for the linear model presented here,




CHAPTER FIVE

Simulation Using a Switch Network Model

If a designer is only interested in the logical properties of a circuit. iLe., those propertics
independent of performance issues, it is possible to simplify the lincar model of the previous chapter
even further by modeling cach transistor as an on/off switch whose state is determined by the type of
transistor and the state of its gate node. This chapter discusses the switch mode! from two points of
view: first, as a spccial case of the linear model, and then as a self-contained model. But first. a small

digression on the representation of node values is in order.

5.1. Representing node values

The success or failure of a logic-level simulator often hinges on the choice of the set of possible
node values. If the set is too small, the actual node value may not be preciscly described by any one
of the available values and the simulator must choose an approximation. Usually the approximation
involves some variant of the X (unknown) value which may carry logical implications beyond what the
nctwork itself iimposes — such a choice is termed cither "conservative™ or "pessimistic” depending on
one's point of view. If the set is large. it becomes difficult to establish whether the simulator's
calculations are correct in all cases. Relying on the accumulated evidence of many simulation runs

when arguing correctness licks the rigor that leads to total confidence in the algorithm. This section

develops criteria for evaluating a set of node valucs.
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There are three major influences on the choice of the node-value set:
(1) the need to report node values 1o the user;

(2) the need w determine the state of cach network component from the values of
its terminal nodes: and

(3) the nced to represent intermediate values during an incremental simulation
calculation.

If only the first two influences are considered. a three-value set — 0, 1. and X1 — will suffice for
logic-level simulation. Users and component models cannot reasonably expect more information than
provided by this sct, since most logic-level algorithms cannot support more detailed deductions from
arbitrary MOS nctworks with any degree of accuracy. It is the third influence that leads to all the

complication.

Almost all logic simulators analyze a network piece by picce. modifying their estimates for node
values as the cffect of each piece of the network is determined. Until the new-value computation is
completed, the intermediate node values serve as accumulators that store all the information the
simulator has about the cffects of network pieces already cxamined. Thus, distinct values are needed
for all qualitatively different intermediate states: c.g.. a node currently at logic high might have that
value because examination of the network (o date revealed that it was (i) storing charge, {ii) connected
to a depletion pullup, or (iii) being precharged by an enhancement device. The simulator must
distinguish among thesc possibilitics, since the final value of node may be different in each case if, for
cxample, further network processing discovers a pulldown for the node. The exact number of values
nceded depends on the details of the simulation computation; most simulators fall into one of the two
categorics discussed below. As will be seen, the two categories are distinguished by their approach to

X values.

Flt might be useful 1o disunguish X' an unknown, but icgitimate logic value (e g.. the output of a pair of cross-
coupled inverters) from other tpwes of X values X7 values are well behaved in fogic operations, for example. B +
B = 1 if the value of B is X', but cquals X f the value of Bis X Such distinctions might be important dunng ini-
ualization. [Stevens8 3] desenbes a simulator that uses this distinction to improve 1ts predictions for certain simpic log-
iC Circuits.
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S.L.L. Cross-product value sets

One intuitively appealing approach o choosing a set of node values is to think of cach value as
having several distinct attributes chosen from independent categories. Thus. for example. one might
characterize a node’s logic state and the "strength” of the value separately. The logic state is usually
onc of 0, 1, or X: sometimes a high-impedance state, 7. is included to represent the output of tri-state
logic gates [Flake80, Holt81]. The strength indicates what sort of network connection exists between
the source f the value and the current node:

input. Node is a designated input (e.g., VDD or GND). ‘The value of an input node can
only be changed by explicit simulator commands — the assumption is that inputs
supply cnough current to be unaffected by conncctions (possibly shorts to other
inputs) made by transistor switches.

driven. Node is connected by closed switches to inputs or other driven nodes. Driven
nodes can affect the value of weak or charged nodes without being affected
themselves. but may be forced to an X state if shorted to an input or driven node that
has a different logic level.

weak. Node is connected to an input node by a depletion-mode transistor. Weak
nodes can affect charged nodes without being affected themscelves, but are forced to a
driven state when connected to another driven or input node. A weak node returns
to the appropriate weak state when completely disconnected from driven or input
nodes (ie.. a weak node can never enter the charged state).

charged. Node is connected, if at all, only to other charged nodes. Until reconnected
to some other part of the network, charged nodes mainwin their current logic state
indefinitely (charge storage with no decay). ‘This is the default state of all non-weak
nodes.

Other strengths can be included to model the effects of differently sized transistors, node capacitors,
elc.

The plethora of 9-, 12-. and 16-state logic simulators (see [Newton80]) use values chosen from
the set formed by the cross product of the various value attributes. For example, a 9-state simulator

might use

logic state

0 1 X E

driven | DL | DH | DX

strength weak WL | WH | WX

charged | CL. | CH | CX

i
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Note that in this formulation, X is treated as sort of a third logic value on a par with 0 and 1;
presumably X's are generated by the simulator to mode! invalid combinations of 0's and 1's. The
implication is that one can Jdetermine if a value should be X without any cor ideration of strengths.,
(Remember that the main motivation of forming the cross product is that the various attributes are

independent). This can Iead to pessimistic predictions, as is shown in an example below.

It is uscful to order the possible signal values according to their relative strengths. Intuitively,
valuc A is stronger than value B. written A > B, if value A predominates when both signals are shorted
together. Of course there are situations where neither value emerges unscathed — for example, when
two signals of the same strength but opposite logic states are shorted — in which case ncither signal is

saiu to be stronger than the other. The notion of strength can be formalized using a lattice of node

values, for example:

Figure 5.1. Lattice of node values for a 9-state simulator

The node value A is uscd to represent the null signal, ie., no signal at all.

Referring to the lattice. given two values A and B, A > B if A is not equal to B and there is an
upward path through the lattice that starts at B and reaches A. For example
DX is greater than all other signals,
DH is greater than W1, but
WL is not greater than WH.

The least upper bound (Lub.) of two values A and B, written A U B, is defined to be the value C

such that
(i) C2>2A
(i) C>B

(iii) for cvery value D, if 12 > Aand D 2> B. then D > C.
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Examining the lattice above, it is casy to sce that the Lu.b. always cxists for any two node values.

Note that if A > B, A U B = A: the Lu.b. captures our intuition about what should happen when two
signals of different strengths are shorted together. With the appropriate placement of X values in the

lattice, the Lu.b. can be used to predict the outcome when any two signals are shorted.

The interpretation of X values captured by the lattice above is quite appropriate for describing

the logic state of nodes involved in a short circuit:

.
.

DX = DH U DL

Figure 5.2. A short circuit leading to an X value

Assuming the two transistors are the same size, the middle node’s value is the result of merging two
cqual strength signal values. According to our lattice. this merger yiclds an X value. Short circuits are
the mechanism by which X's are introduced into a network previously containing only 0's and 1's,
However, the situation is not as straightforward when one considers conncctions formed by
transistors with a gate signal of X. The resulting values cannot be computed directly using the U
operation on the source and drain signals, and once that hurdle has been surmounted, there is some
difficulty in choosing which valuc to use from the cross-product value set. Consider the following

analysis of a node with stored charge and connection to two transistors,

T T - Cfo—”:T‘ H’i i

DH DH WH

(a) (b) (c)

Figure 8.3. Incremental analysis of a simple network

Before any conncctions to the node have been discovered (figure 5.3(a)). the node maintains the

charge of its last driven value. say. logic low: the simulator would assign the node a value of CI.

After the first transistor is discovered (figure 5.3(b)). the facts change:
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(1) Because of the X on the gate of the transistor, one cannot be certan what type
of connection exists between the node in question and the DH on the other side
of the transistor.  Thus, the new logic stite of the node should be X.

(i1) ‘The strengih of the new value is uncertiin, but clearly "weak™ or “charged”
would be inappropriate since they understate the strength in the case where the
unknown gate value was actually a 1.

Since a weak or charged value could be overridden by an enhancement pulldown discovered later on,
mistakenly leading to DL value. the simulator has no choice but to select a driven value. The
conclusion: DX is the only state available that handles all eventualitics in a consenvative fashion. Of

course, with knowledge of what the rest of the network contains, the simulator could make a more

intelligent choice, but this is beyond the ken of an incremental algorithm.,

By the time a conncection to a depletion pullup is discovered (figure 5.3(c)). the die has been cast:
the previously chosen DX value overrides any contribution by the pullup (DX U anything = DX).
While this answer is not wrong. it is more conservative than required; at this point the logic state of
the node should be 1. The pullup guarantees a logic 1 with the unknown connection to DH, only

leaving doubts about the strength of the value (somewhere between weak and driven).

Proponents of cross-product value scts might point out that the analysis would have generated a
different answer if the transistors had been discovered in a different order. The somcwhat
embarrassing ability to produce two different answers for the same network, both correct, is caused by
the fact that the merge operation is not associative when connections arc made through transistors ﬂ
with X gates. In fact, most incremental simulators that usc cross-product value scts perform the
incremental analysis in an order that yiclds a rcasonable answer on the example above. Unfortunately,
it is usually possible to confound them with more complex circuits containing X's; while such circuits

are not commonplace, they often crop up during network initialization when all nodes start off at X,

In conclusion, it is possiblc to build effective simulators using cross-product value scts; however,
they can make conservative predictions on circuits that contain X's, In practice, this leads to difficulty

in initializing some circuits and to occasional over-propagation of X values.

+{Bryam81] suggests nsing an incremental calculation only for subnetworks of nodes connccted by non-X transistors.
Once these values have been computed, a separate computaticn merges subnets connected by X transistors.  Since
this computation has global knowledge of the nctwork, it can avoid the problems mentioned here.

s e S——
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5.1.2. Interval value sets

The difficultics with the cross-product value set arise hecause of its separation of the notion of
strength and logic state. Once a node value is set o an X value at some strength, it cannot return to a
normal logic state unless overpowered by a stronger signal; if a node is set to the strongest X value. it
stays at that value for the rest of the computation.  As in the example above. this leads to conservative
predictions when the strongest X value is chosen because of the lack of suitable alternatives.
Specifically the difficulty came about because the simulator had to pick the highest strength to be on
the safe side; there was no value available that would indicate that the logic low signal which
contributed to the intermediate X value was of very low strength and hence might be overridden by

later network components.

‘This suggests a different approach to constructing the set of possible nodes values, one based on
intervals. First one starts with a set of node values with a range of strengths and 0/1 logic states, for
example, the six non-X states used above: {DH, DL, WH, WL, CH, CL}. Then additional values are

introduced by forming intervals from two of the basic values; if there are six basic values, then there
are (g) = 15 such intervals, leading to a total of 21 node values altogether.
Intervals represent a range of possible values for a node. The size of the range is related to the

strength of its end points. If we arrange the six basic values in a spectrum ranging from the strongest

1 (DH) to the strongest 0 (DL), the possible node values can be shown graphically:

pH © I ?
logichigh  WH ° I
CH °

logic low WL ° I I

Figure 54. The 21 node values of the interval value set

Intervals that do not cross the center line correspond to a valid logic state: intervals above the line
represent logic high valucs, and those below the line, logic low. Intervals that cross the center line
represent X values. (The X values of the previous section correspond to intervals with equal strength
cnd points; DX = [DLDH]. WX = [WLWH] and CX = [CL.CH]) Thus, X values result from

ambiguity about which of the base values best represents the true node value,  As will be seen below,




this is more satisfuctory than thinking of X as a third, independent logic state.

When the simulator merges two node values, it chooses the smallest intersal that covers all the
possible node states. However. unlike the cross-product value set. the interval set can represent X
values without Toosing track of the strengths of the signals that lead 1o the X values. Consider ¢
problems raised by figure 5.3(b). Using an interval value set. the resulting node value is naturally
represented by {CL.DH]. an interval that corresponds to an X logic statc. When the pullup is
discovered (figure 5.3(c)). the simulator can narrow this internval to [WH.IDH] since the pullup

overpowers the weaker CL. value. This corresponds to a logic high signal — a sensible answer.

An algebra for calculating the result of merging two interval node values is developed in
[Flake83): a different approach is adopted in section 5.4.1 where a detailed description of the merge
operation can be found. With an interval value set, the merge operation is commutative and
associative. and the network can be processed in any order without affecting the final node values.
The extra 12 values introduced by the interval value set are nceded to carry sufficient information
about how the current value was determined. to ensure that the final answer is independent of the

processing order.

The examples above suggest the following conjecture about the correct size of a node value set.

Assuming that one has s different signal strengths and two logic levels (0 and 1), then 25 + (225) values

are needed to ensure that the signal algebra is well-formed. In simulators with too few states. some
states take on multiple meanings; for cxample, the DX value in the cross-product value set is used to
describe nodes that fall into 5 separate values .. interval value set:

[DL.DH] [WI.DH] [CL.DH] [WH.DIL] [CH.DL]
This lack of expressive power on the part of cross-product value sets is what leads to pessimistic

predictions for node values in certain networks.

5.2. Developing the switch model

Switch modecls of MOS circuits are of interest since a switch is the simplest component that meets
the criteria outlined in Chapter 1: switches arc inherently bidirectional and the logic opcrations they
implement can be computed with acceptable cfficiency in large networks.

Randy Bryant [Bryant79]. one of the first to apply switch-level simulation to MOS transistor

networks. viewed the network as divided into cquivalence classes, Two nodes are cquivalent if they

are connccted by a path of closed switches. Nodes in the same cquivalence class as VDD are assigned a
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logic high state: those equivalent to GNDLa ozic Tow state. A pallup (o depletion-mode transistor
which s always on in the switeh model) gives the node o which it is attached o special property: if an
cquivalence class of nodes does not contain cither ADD or GND, but does contain a pulled-up node. all
the nodes in the class are assigned o logic high state. Finally, if an cquivalence class contains neither

an input nor a pulled-up node. 1t 1s "storing charge” and maintains whatever logic state it had last.

The simulator based on this switch model iteratisely calculates the equivalence classes for all the
nodes in the network until two successive calculations return the same result (Le.. no nodes change
state). Unfortunately this pure switch model has some deficiencies:

(1)  Switches in indcemminate states (those with "gate” nodes of X) make the
cquivalence calculation somewhat more difficult. The desired computation is
incfticient since it mvolves @ combinatorial scarch: all combinations of on/off
assignments o switches in the X state need to be investigated to determine
whether a switch's state makes a difference.  If the nemwork is unaffected by a
switch's state, the switch can be ignored: otherwise all affected nodes are
assigned the X state.

(i) The equivalence calculation is much more time consuming than necessary since it
dcals with the whalc circuit rather than focusing only on the parts which change.

(iii) In certain circuits transistor "size" is important. and the notion of size cannot bhe
expressed in the purce switch medel. A pullup is a trivial example: viewed as a
swilch it was always on, but more "weakly" than the "strong™ switches in the
pulldown. ‘The size of transistors also determines the “strength” of various driver
circuits: for example. it is common for the write amplifier of a static memory to
force a value into a memory cell by simply overpowering the weaker gate in the
cell itself.

The remainder of this chapter investigates different approaches to solving the first two problems
outlined above. The third problem is addressed with some success by RSIM which uses size

information not only to calculate node values but to provide timing information as well.§

The following sections present two different formulations of the switch model:

e a modcl where cach node value is computed via a "global” examination of the
nctwork.  If the nctwork has no explicit feedback. cach node value is computed
exactly once. but this calculation is more expensive than the one below,

e a model based on "local”™ interactions where the simulator examines the source and
drain nodes of cach transistor and updates the state of one or both nodes. The
cxamination/update process continues vntit there are no further updates to be
made. Le. the network has "relaxed™ into ity final state. Under this scheme cach
calculation is trivial but a node value might be computed more than once cven

+Anant [Brnam81] proposes extending the switch model 1o include a hicrarchy of switch sizes a genetalizanion of the
ad hoc solution for putlups  His thess develops an algebra, mn the spinit of Boolean al_cbra. for deahing formally wih
such networks




AD-A186 116

UNCLASSIFIED

SIMULATION TOOLS FOR DIGITAL LSI {LARGE SCALE
INTEGRATION) DESIGN(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR COMPUTER SCIENCE C J TERMAN SEP 83
MIT/LCS/TR-304 NOOO14-75-C-0661 F/G 9/2




"'" |0 & i 2

—— _ “ é

=
T

flL

L

22 s s

MICROCOPY RESGUUTION TEST (pidke”




-94 -

! when there s no explicit feedback in the circuit.

1SV (the author's switch-level simulator) is o hybrid of these two formulations. [SIM implements a

global node-value calculation vsing a node-value representation close to the one used by the local

simulator, This results in a calculation very similar to that implemented by RSIM, except that abstract

"logical” resistances (Reg = 0. 1, and 00) arc substituted for the "real” resistances used in RSIM.
Since this type of simulation algorithm is discussed at length in Chapter 4. it will not be pursucd here.

Instcad. the remainder of this chapter focuses on the new formulations introduced above,

The local formulation is attractive because it appeals to our intuition about how transistors really
work. The high degrec of potential parallelism in the update calculation makes it a very attractive
algorithm for many of the new parallel architectures now under development; the combination of
parallel hardware and intrinsically parallel algorithms may be the key to overcoming the capacity

limitations of current simulation techniques. i

5.3. The global switch model

The global simulator calculates a node’s value by computing the effect of cach input on the node
of interest.  The simulation is global in that each node value is based directly on the valucs of the
inputs to which it is connected. Thus, the values of non-input nodes do not enter into the
computation. This means that 0. 1, and X will suffice as final node values; a node statc nced only

capture the logic state of the node and no strength information is necessary.

5.3.1. Node values in the global switch model

Fach transistor switch in the network is assigned a state determined from the transistor’s type
and the current value of its gate node. This state models the switch-like qualities of the source-drain
.onnection without trying to capture any more detailed information about the connection — a

simplification of the lincar model presented in carlicr chapters.

The state of a transistor switch summarizes the type of connection that cxists between its source .
and drain nodes. For MOS circuits, the possible switch states are: '

open no conncction, the state of a non-conducting n-channel (gate = 0) or p-
channel (gate = 1) transistor.

closed source and drain shorted. the state of a conducting n-channel (gate = 1)
or p-channel (gate = 0) transistor.

unknown uncertain connection between source and drain, the state of an n- or p- "
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channel transistor whose gate is X,

Wik the stte of a depletion transistor, Depletion devices are always assigned
this state. regardless of the state of their gate nodes.

The relationship between g switch's state. s tpes. and its gate salue is summarized in the following

figure.

drain logic(gdie) n-channel  p-channel  depleton
T 1 closed open weak
gate & - - 0 open closed weak
X unknown unknown weak
source

Figure 5.5. Switch stute as a function of transisior type and gate voltage

In the global simulator, the value of a node is determined by the inputs to which it is connected
and the states of the intervening switches. During the calculation of a node’s value, the simulator uses
the interval node-value sct presented in figure 54. When the calculation is complete, the resulting

interval 1s used to determine the final logic state of the node, using the following table.

Sfinal logic state = 0 | final logic state = | | final logic state = X
CL DH [DH.CL]
[CL.WL] [PH.WH]} [(DH.WL]
(Ci.DL] {DH.CH] [DH.DL]
wi. WH [WH.CL ]}
(WL.DL]) [WH.CH] {(WH. WL
DL CH {WH.DL]

[CH.CL]
([CH.WL]
[CH.DL)

Table 5.1. Relationship between final logic state and computed interval value

The calculation of a node’s value begins by discovering all the inputs which can be rcached from the
node by paths of closed. weak, and unknown switches. If no inputs can be reached. the final logic
state of the nodc is determined by a charge sharing calculation described in the next section. 1f onc or
more inputs can be reached. their contribution to the node’s value is determined by an incremental

calculation which starts at the inputs and works its way back toward the node.

The value of a logic tow input is DI.: the value of a logic high input is DH. As the calculation

works back toward the node of interest, it computes an cffective value that indicates the effects of

intervening switches on the original input value. The cffect of a switch on a value it transmits is

Y
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specified by the swuek funcuion:

mnput
.
N o TN
N

value = wulch(al. imput value)

Figure 8.6. Fffective value of an input after passing through a switch

The effect of a switch on a value is a function of the value and the switch’s state:

/ switch state

vaiue open [ closed | weak unknown
DH A { DH WH [DH.A]
[DHWH] | A | [DH.WH] | WH [DH.A]
[DHCH) | A | [DH. uu [WH.CH] | [DHA]
DHCI] || A | [DHCL] IIWH.CI.] (DH.CL)
[DHWI] | X [DHWL) | WHWL) | (DHWL]
DHDL] | A [I)H DU | (WHWI] | [DH.DL]
WH | A | WH | Wi [WH.A]
[WHCH] | A (WH.CH] | [WH.CH] | [WHAA]
(WHCL] | A L WHCL] | [WHCL] | [WH.CL]
IWHWL) | A [WHLWL]  [WHWE) | {WH. WL
[WHDL] || A | [WHDL] | [WH.WI] | [WH.DL)
CH A | cCH CH | ICHA]
[CHCI] | A |{CcHCI) | [CHCL) @ [CHCL)
[CHWL] i A | [CHWI] | [CH.WL] | [CH.WI]
(CHDL] | A '[CHDI] | [CHWL] | [CH.DL]
Cl. A | CL Cl. A\CI}
CLWI] | A | [CLWI) | [CLWI] | [AWI]
Lot | A (Lot | ICLwi] | (AL
Wi A | WL Wi AWi)
WLDL] || A | (WLDI] | WL ADI]
DL A DL wi A.DL)

Table 8.2. switch(o,valuc) as a function of o and value

A new value, A. is introduced to describe the value transmitted by an open (non-conducting) switch,

ie..no value at all. ‘The value A is weaker than CH or C1.. and corresponds to a logic state of X.

When two paths merge, their effective value is determined using the U operation introduced in

section 5.1.1.
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value — switch(o , value )
A L4 ! A switchto | value, » U

,w,uch(oz.\ aluc“)

oy swuch(o?_‘\aluc“)

(a) two values 1o merge (b) values including cffect of switches (c) merged value

\'aluc“

Figure 5.7. Merging the values for two paths which join

The U operation is defined using the lattice shown in the following figure.

{DH.DL

DH DL

[DILWL]  [WH.DLJ

AN

(DHWH] {WHWL] [WL.DL]
[DH.CL) wi WL [CH.DL]
DILCH]  [WHCL]  [CHWL]  [CLDIL)
SN /N /XN /\
[DHA]  [WHCH] [CHCL) [CLWL]  [ADL)

WHA] cH cL A.WL)

[CHA] ACL]

Figure 5.8. Lattice for interval-node value set

Following the procedure outlined in figure 5.7, the contributions of all inputs connected to the node of
intcrest can be reduced to a single interval. This interval is merged (using U) with the contribution

from the node’s current logic state

ClL if current logic state = 0
contribution of current logic state = CH if current lugic state = 1 .1
[CH.CL] if current logic state = X

10 give the final interval characterizing the node’s new logic state.

As an example of how the new-value calculation works, consider the following circuit:
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Figure 5.9. Example circuit

Assume that the current logic state of the output is 0. The new-value calculation for this circuit is

shown in the following figure.

4
DH '-—I;;—'— I WH l !
L R R BN
1 —0
—L unknown cL unknown a DL unknown L
DL —] close dL——' DL

@) (b) ©
Figure 5.10. New~value calculation for circuit in figure 5.9

The final interval for the output node is C1. U [A.DL] = [CL.DL] which corresponds to a logic low
state. This makes sense; the previous state of the output node was logic low, so the uncertain
connection to the inverter does not affect its logic state, just the strength with which its driven. Note

that it is important to merge the valucs of paths that join before continuing with the calculation since
switch(o, a U B) # switch(o. a) U swirch(o, B) ‘ (5.2)

when using this particular value set and switch function. For cxample, if the WH and DL. values had
been merged affer transmission by the switch in the unknown state, the final interval for the output

node would have been [IDH.WL], which corresponds to an X logic state. The calculation described

here performs all possible merges before transmitting the result through the appropriate switch.

|




5.3.2. The global simulation algorithm

This section outlines the basic steps for propegating new information about the inputs to the rest
of the network, recaleulating node values (where necessary ) using the global value caleulation in the

previous section,

When a node changes value, it can affect the network in one of two ways:
(i) dircctly. through spurce/drain connections of conducting transistors.

(i) indircctly, by affecting the state of transistor switches controlled by the changing
node. This is turn can cause the source and drain nodes of those switches to
change value.

The global simulator accounts for these two effects using to different mechanisms. Directly affected
nodes are handled implicitly by the new-value computation which recomputes new values for all
directly affected nodes whenever a node changes value. This is a reasonable organization: if A directly
affects B. then B directly affects A: it makes sense to compute bath values at the same time since they
are closely related. Direct effects are not handled implicitly, however, when the user changes the
value of an input node. In this case, the simulator invokes the new-value computation on Jhe input,
not to recompute the input’s value (which is set by the user), but to recompute the values of all

directly affected nodes.

The indirect effects of a value change are managed by an evenr list that identifics all transistor
switches that have changed state.  Actually, the event list keeps track of the nodes that have changed,
but this is cquivalent since the network data base maintains a list of transistors controlled by cach
node. The simulator operates by removing the first node from the event list. and then performing a
new-value computation for the sources and drains of all transistors controlled by that node. The new-
valuc computation accounts for all the direct effects of the new transistor state and adds cvents to the
event list if indirect effects are present.  ‘This process continues until the cvent list is empty, at which

point the network has "scttied” and the simulator waits for further input.

PP S




while event list not empty { i
n = nade associated with first event on cvent list i
remove first event from event list i
for cach transistor with n as gate node {

set coMmpU T flag for source and drain
}

for cach transistor with n as gate node {
if COMPUTE still set for source. compute new value for source [fig. 5.14]
if COMPU TE still set for drain, compute new value for drain

Figure S.11. Main loop of global simulation algorithm

Finding nodes affected by an cvent is straightforward: recomputation of values is needed for the
sources and drains of all transistors with the changing node as gate. For example, if the node marked

(*) in the following figure changes, nodes B and C necd recomputation.

L Figure 5.12. Event for node (*) involves nodes B and C

Of course, node D also needs to be recomputed. as will be discovered during the processing of B and
C (sec below).

To recompute the value of a given node. the simulator first makes a connection list containing all
nodes connccted to the first node by a path of conducting transistors. The idea is to start with a node
anown to be affected by an event, and then find that node’s clectrical neighbors, and so on, halting
whenever an input is reached. In the example above, if the (*) node’s value is 1, the conncction list .
for node B contains nodes B, C. and D. If the (*) node’s value is 0. the connection list for node B
contains only node B. Node A is not included in the list in cither case because it is not connected to
node B by a path of conducting transistors. In the code below, which computes the connection list for

a given node, the terms "source™ and "drain” arc u.oJ to distinguish one terminal node of a transistor |

from the other, and do not imply anything about the terminals’ relative potential.
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mitialize list to have starting node as only clement
set painter Lo beginning of list
INPLIT YOUND = false
reset capacitance accumulators
while pointer not at end of list §
n 1= nodc currently pointed at
add capacitance of n to appropriate accumulator
for cach "on" transistor with source connected to n {
if drain is an input, INPUT FOUND 1= true
else it drain not on list, add drain to end of list
}

advance pointer to next list clement

}

Figure 5.13. Non-recursive routine io build connection list

In addition to the conncction list, the routine sets INPUT FOUND to true if the tree walk discovered at
least on¢ input. and mainwins three capacitance accumulators, one for cach logic state. The

conncection list drives the new-value computation:

make connection list starting with given node [fig. 5.13]
if no inputs found. do charge sharing
clse for cach node on connection list {
compute interval value for node (fig 5.15]
determine new logic state using Table 5.1
if different from ald logic state {
update logic statc to new value
enqueue new cvent
}
}

resct COMPLUTE flag for cach node on connection list

Figure 5.14. Subroutine to compuie new value for node

If no inputs are found whilc building the connection list (INPUT FOUND is false). the group of nodes is

completely isolated from any inputs and a charge sharing computation determines the nodes’ new

values. Assuming that all the node capacitors are shorted together, the resulting voltage is
2(‘(1[!{1(‘!7()’5 at logic high

voltage of shorted capacitors = 2‘ T capacitors (5.3)
[2{1}

Capacitors with a logic state of X are assumed to be charged high when computing the maximum

possible voltage. and charged low when computing the minimum voltage:

Chpen + C
0 "M TX <02
Crotal
e
charge sharing value = 1 fvh s 08 (5.4
( 1ol
Y cilorwse




where Cragyr is the sum of the capacitance accumulators, Cpyep is the accumulator corresponding 1o

logic hugh. and Cy is the accumulator corresponding to logic X.

If ane or more inputs arc found (INPUT FOUND 1S truc). the value of cach node is determined in
accordance with the procedure described in the previous scction. The interval value is caleulated for
cach node in wrn and the node’s new logic state is computed using Table 5.1. New events are added
o the end of the event list whenever a node changes value. If a changing node is already on the

event list, nothing happens (the node is not moved to the end of the list).

For efficiency. each affected node’s value is only computed once while processing a given event.
The connection list cnsures that all affected nodes are recomputed: the COMPUTE flag ensures that
once a node has appeared on some conncction list, it will not be resubmitted for processing during the

currcnt cvent.

The computation of a node’s value is easily described by a recursive procedure which analyzes

the surrounding network:

if node is logic low input {
return DL
} else if node is logic high input {
return DH
} else {
10CAL v ;= value specified by equation 5.1
sct VISITED flag for current node
for cach "on" transistor, . with source connected to current node {
if drain does not have VISITED flag set {
rec-usively determine interval value for drain node
LOCAL IV := LOCAL IV U switci{a,. drain’s interval value)
}
}
resct VISITED flag for current node
return 10CAL IV

Figure 5.15. Subroutine to compute interval value for node

The variable LOCAL 1V is a stack-aflocated local variable of the subroutine. Returning to the cxample
in figure 5.12, assuming that the (*) node's value is 1, and that the old values for B, C, and D are

B=1,C =0 and ) =0, the following calls arc made when computing the new value for node C:
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compute_params{C) |
1OCAl IV = CL
computc _params(1))
1OCAl IV = CL
compute_params(VII1))
return DH
TOCAI IV = CL U WIH =WH
compute_params(GND)
return DL
LOCAL IV = WHU DL = DL
return DL
10CAL IV = Cl UADI] = [CL.DI]
compute_params(B)
[OCAL IV = Cl
return CH
LOCAL IV = [C1.DIJU CH = [CH.DL]
return {CH,DL]

Figure 5.16. Trace of interval value compuiation for example in figure 5.12

Marking each visited node (by setting its VISITED flag) avoids cycles; this keeps the tree walk
expanding outward from the starting node. The VISITED flags are resct as the routine backs out of the

trec walk, so all possible paths through the network are eventually analyzed.

(a) original circuit {b) circuit as scen by tree walk

Figure 5.17. The tree walk traces out all possible paths

If the network contains cycles, the tree walk might lead to more computation than a scries/parallel

analysis; this is a problem for circuits containing many potential cycles (such as barrel shifters),

especially during initialization when many of the paths are conducting because control nodes are X.
‘T'o speed up the calcufation, a node’s VISITED flag can be left set. restricting the scarch to a single path

through a cyclic network. 'This technique produces correct results only if paths Ieading away from a
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nade arz explored in order of increasing resistance. ce.. one must ensure that the first ume o pode s
reached. it s by the path of least rewistance. Of course. the flags must be reset ance the entire
computation s complete: fortunately, the connection list provides o handy way of finding all the nodes
that are visited without resorting to yet another tree walk.  Another alternatine for speeding up the

calcutation s the caching technique described in section 4.2.

5.3.3. Interesting properties of the global algorithm

The cvent list serves to focus the atiention of the global simulator: new values are computed
only for nodes which appear on the event list or which are clectrically connected to event-list nodes.
Portions of the network that are quicscent are not examined by the simulator. Algorithms  « have
this property are said to be selective-trace or event-driven algorithms and generally run taster
than algorithms which are not event driven [Szygendal5).§

An interesting implication of selective trace is that special care must be taken to ¢ . .nat
"constant” nodes, such as the output of an inverter with its input tied to GND. are processed at least
once (otherwise they will have the wrong values). One technique is to treat VDD and G\D as ordinary
inputs when first starting a simulation run — sort of a power-up sequence as VDD and GND change
from X to 1 and O respectively. Computing both the direct and indirect consequences of changes in
VDD and GND might involve a tremendous amount of computation since the whole circuit is affected;

often only computing the indircct consequences is a sufficient and less costly alternative,

Although there is no explicit mention of time in the global simulator, the first-in, first-out (111°0)
processing of cvents imposes some ordering on the changes of node values. This ordering is similar to,
but not the same as, the unit-delay ordering used by many gate-level simulators, In an cvent-driven
unit-delay algorithm. the output of cach gate that had an input change is recomputed using the current
.alues of the input nodes. The new output values are saved and imposed on the network only after
processing all gates. The net effect is that cach computation cycle (representing a unit of time)
propagates information through one level of gate, fe. cach gate has unit delay. Because changes in

node values arc imposed all at once. values change simultancously, which can lead to problems in

TExeeptions to this rule are some hardware-based simulation algomhms. such as programs run on the Yorklown
Simulfation Fngine (Pfister82] The buidders of the YSE pomnt out that simulations might well run slower because the
cxtra communcation and branching needed 1o implement selective trace would compromise the paralichism and pipe-
hamng used to great advantage in the YSE However, il sufficiently farge portions of the circutts could be ignored,
the mverhead of selectine trace could be worth the investment (see Chapler 6).
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circuits containing feedback paths,

The global simulator implements & pscudo unit-delay algoridun, New cvents are added 1o the
end of the event st so the oldest changes are processed before any consequences of those changes
are processed. Thus 1110 event management leads to the same sequence of gate cvaluationy as 4
unit-delay algorithm. - However. because  the global algorithm  changes values in the network

incrementally rather than all at once. it is possible to find circuits that behave ditferently under the two

simulators:

1-0—1—.

1=0—]—..

(a) unit delay (b} pseudo uni:-delay

Figure 5.18. Circuit that distinguishes unir-delay from psewdo unir-delay

A 0-1 transition on the input causcs a unit-delay algorithm to loop forever. The global algorithm
predicts only onc transition — the output of whichever gate it processes first. Neither answer is
completely correct; the actual circuit enters a meta-stable state on a 0-1 ir,ut transition, eventually
settling to a particular configuration determined by subtle differences in the gains of the two gates. It
will not remain in the meta-stable state forever, so an infinite oscillation is a poor prediction. On the
other hand. the final configuration chosen by the global simulator depends on the order of some list in
the network data base. The predicted outcome is the same cach time, not neccessarily the best
prediction. ¥ The global simulator does not offer a general solution to the oscillation problem; both

simulators will oscillate on the following circuit,

+{BryaniR1] sugrests that the oscillation can be detected and the offending nede values replaced by X, but the tech-
nique for determining the number of oscillations to allow yiclds answers so large for circurls of any substantial size
that this 18 not 3 very practical alternative

.
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=) O—¢

Figure 8.19. Circiar wlich causes both simulators 1o oscillate

Along the same lines. the global simulator predicts that the output of the circuit below will

oscillate when the input changes from 1 10 0.

;[EVL 0 (= 1—20—
o i
g P \l\ node which is both an input and output

Figure 5.20. Circuit with a node that is both an input and output

The actual output quickly rises to the halance point of the pullup/pulldown combination. In a logic-
level simulation, this corresponds to finding a solution to the equation @ = —3a which has the solution
a = X (a reasonable logic-level representation for the balance point). This example is drawn from a
larger class of circuits where a node is both an input and output of the circuit. Since the new-value
computation uscs current transistor states (determined by current node values) to predict the new
values, it is impossible to predict the value of a node that depends on its own value. This limitation

has not proven to be a problem in practical circuits.

3.4. The local switch model

It is interesting to speculate about replacing the tree walk performed by the global simulator with
a strictly local computation.  After all, the models of transistor behavior presented in Chapter 3 show
that a transistor is controlled by the voltages of its three terminal nedes, ie. cach transistor operates
independently, basing its behavior on only local information available at its terminals, ‘The simulation
model described in this section works in much the same way. ‘The basic operation involves updating
the terminal node values of a transistor switch using only information about their previous values and

the state of the switch.
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Relaxation-based algorithing leave one a littke nervows. Will the relaxation termimate?  Doces the
final answer depend on the order in which the indiviaeal computations are perfonmed?  These

questions are answered below, after o deseription of the algerithm itself.

S4.1. Node values in the local switch model

The set of node values and the computation developed for the global simulator must be adapted
for use by the local simulator. The necessity for an adaptation is explained at the end of section 5.4.2.
(The discussion 1s postponed until after the local simulation algorithm has been presented. when it will

be easier to explain why the global simulator’s techniques do not work in the local simulator’s context.)

In the local simulator, a node value is a pair
<high.low>

that separately lists what type of connection exists to cach of the two possible input signals. The high
component summarizes what is known about paths to VDD, and the low component describes paths to
GND. Ignoring for the moment switches with gates of X, four types of connections can be
distinguished for cach component:

00 no paths to inputs, no charge storage,

S charge storage.

1 there is a path to the appropriate input. but it passes through onc or more
depletion switches.

0 there is a path of conducting n-channcl (gate = 1) and p-channel (gate = 0)
switches to the given input.

A switch with a gatc of X may or may not make a connection; the resulting path is characterized by an
interval describing the range of alternatives. (‘2‘) = 6 intervals are nceded to describe all possible

combinations of paths.

The value of vDD is <0,00> and of GND is <00.0>; somc other cxamples are shown in the

following figure.
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! ! 1

(a)<1. 0> (b) <|0.1). > (c)<S. >

Figure 5.21. Exuamples of node values in the local simulator

This organization provides for many more valucs than actually necded by the simuliator: many of the
values make distinctions that are not important in determining a nodc’s logic state.  For example. <1,0>
and <S.0> both represent values corresponding to pulled-down nodes — it does not matter what the
high component contributes if it is weaker than the low component. ‘The advantage of this notation is

the ease of computing what a given signal looks like from the other side of a transistor switch:

1 X 0
L 4 A 1
aom B R BN am J e, A0 ., <1.0> J ey
(ar <1, 0» (b} <{1.90], [0.00]> ©) <L (d) €00,00>

Figure 5.22. </,0> value as seen across various transistor switches

This will prove very uscful in describing the update operation below.

Using the technology developed in section 5.1.1. a lattice can be constructed that indicates the

relative ordering of the various component values:
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Figure 5.23. Latiice for the ten possibic component values

The U operation can be used to calculate the result of considering two paths in parallel:
<hp > U <<hyp 12> = <hiUhnhUL> (5.5)

Fach component is merged scparately according to the lattice given above. Similarly, two values can

be ordered by comparing their components:

<hp 1> < <h, 1> iff hh<hyand h <1 (5.6)

A logic state can be associated with a value <h.1> using the following table:

h

|0 011 [0S} [0.00] 1 (18] [1.oo] § (S0} o0

0 ( X X X X 0 0 0 0 0 0
01 | X X X X X X X 0 0 0
sl 'x  xX X X X X X X X o0
10.00) X X X X X X X X X X
;1 b X X X X X X 0 0 0
(18] ’1 X X X X X X X X 0
Jloo] | 1 X X X X X X X X X
S , 1 1 X X 1 X X X X 0
[s.00] | 1 i X X 1 X X X X X
o |1 1 1 X 1 1 X 1 X X

Table 8.3. Logic state associated with <h >
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54.2. The local simulation algorithm

The local simulator implements a rclaxation-based calculation for propagating input values

through the network. The calculation has three major steps:

Step 1. Determine the state of cach transistor switch from its type and the logic
state of its gate node. If no switches arc found that changed state since
the last examination, the network is said to have "scttled” and the
simulator waits for more input.

Step 2. Reset cach non-input node value to its charged value. a value that
corresponds to the node’s last logic state but does not have sufficient
strength to force the value of any neighboring nodes.

Step 3. Repeatedly pick a transistor and update the values of its source and drain
nodes according to the formula given below, continuing until the
relaxation is complete (no node changes value as the result of an update).
Upon completion, return to Step 1.

Each of these steps is described in more detail below.

Figure 5.5 shows how a switch's state is determined from its type and the logic state of its gate
node. Once determined, the switch state remains stable through Steps 2 and 3 even if the gate
changes value. This arrangement is necessary for the correct operation of the simulator since a node’s
value might temporarily be incorrect during the relaxation computation while information continues to
propagate towards the node from various inputs. For example, the output of a NAND gate may
momentarily appear to be pulled-up, because the near-by pullup affects the node’s value before
information can propagate from GND up the pulldown chain. Since there are no guarantees about the
ordering of updates, a node's value is known to be correct only when the relaxation process

terminates.

Step 2 makes sure that the relaxation starts off with a clean slate; when this step is complete,
only input nodes have values that can cause the values of neighboring nodes to change. This ensures

tl.at values for non-input nodes are determined exclusively by the values of the input nodes.

<00, §> current logic state = 0
charged value = <S§, 00> current logic state = 1 $.7
<§,5$> current logic state = X

If a node is not connected to any input, the charged value is an accurate representation of its final
value. The update calculation performs a rudimentary charge sharing computation; a charged node

can become connected to another charged node with the same logic state, and still maintain its value.

Conncction to a charged node with a different logic state results in both node values becoming <S,S).




Note that precharge/discharge circuits are simulated correctly.

An update operation invohes the source and drain nodes of a single transistor switch. The new
values of the source and drain arc calculated from their old values and the state (o) of the switch:
: \'s’aurcc = Vsource U switch(o. Vgrain)

i "d'ram = Vgrain U swilch(e. vsouree) (38)
;
The function switch(e.value) formalizes our intuition about the effect on a value as it passes through a

switch in a given state (sce figure 5.22). The new value of a terminal node is the result of merging its

old value with the old value of the other terminal node after it has passed through the switch.

o0 o = open
_ <h, I> o = closed
switchlo. <h.1>) = <h + [0,00}, 1 + [0,00]> o = unknown (5.9)
<h + [L1L7 +{1.1)> o = weak
where "+ " is the scries operation described in the following table:
+ 100 N S]] [ pS] @] (SS] [S] (00,0

_________________________________________________________________________________________________

00] |00

01 1104 [0.1]

s} s {os]  [os)

[0.00] ; {0.00] [0.0]) [0.00]  [0.90]

(BT I | I 18§ 18]  [1eo] [

1s] [0S sl 0S| el s 1§

(Looj :([Leo] ([Leo] ([Loo] [1e0] [lLoo] ([Leo]  [1.00]

[5S] (S8} ISS]  [SS]  [S®©] [SS]  [SS]  [S.0] (S

[S.0] ' [Seo] (Se0] ([Seof (S0 [§0] [S.0] [S.0] [S.0]  [S.00]
(00,00] ' [00,00] ([00,00] (00,00} ([0000] ([00,00] ([00,00] ([00,00] {[00.00] [00.00] [0000]

Table 54. Series operation for local simulator

In general, the local algorithm’s predictions arec morc pessimistic than those of the global

simulator. The following figure illustrates the analysis performed by the local simulator for the circuit

shown in figure 5.9. (The global simulator's analysis is shown in figure 5.10)
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- 1
1 r—J_L—-O <00 .S> 1 1r————-r——l———-¢ <[1.00}. [0S
A1 1
oy —  L— cop ~J L]
(a) original configuration (b} afler network setties

Figure 5.24. [local sonulator analysis for circuit in figure 5.9

As shown in figure 5.24(b), the local simulator predicts the logic state of the output node to be X — a
pessimistic answer. (the global simulator predicts a logic state of 0.) On the other hand. the local
simulator cannot simply adopt the value sct and computation of the global simulator. The reason why

is illustrated by the following figure.

1 4 L
, X = X s X
DH —Jilﬁ L DH 21 L DH #1 L
1 — L, 1 | S ) S 1 T
CL [CL.DL) [WItDI1)
L *3 L # L 3
N R S R B N

DL 4 DL =" 42 DL == 4

(a) onginal configuration (b) update order: #1. #2. .. (c) update order: #1. #3, .

Figure 5.25. Global simulator’s computation using update operations

The figure shows the final node values (i.e. the values after the network has settled, and further
updates make no change to the network), assuming that the first few updates were performed in
different orders. Figure 5.25(b) shows the final node values if switch #1 is updated first, followed by
switch #2. Figure 5.25(c) shows the final node values if switch #1 is updated first, followed by

switch #3. As one can sce. the value of the output node differs in the two examples.

If the local simulator’'s predictions of the final node vaiues are to be independent of update

order, it must be the case that
switchlo, a U B) = swirch(a. a) U swilch(o, B) (5.10)

In other words, it cannot matter if carly cstimates of a node’s value (a) are transmitted to neighboring

nodes before additional information (8) arrives.  Unfortunately, cquation 5.10 is in dircct conflict with

cquation 5.2 which indicates that order makes a difference in the analysis of certain circuits (such as t




PP

- 13-

the one an figure 5.9) when wsing the global simulator’s value set. Thus. the local simulator cannot

simply adopt the global simulator's value set,

54.3. Interesting propertics of the local algorithm

In order to answer the questions raised when first introducing the local algorithm, some
definitions will be uscful. 1.¢ct S be the set of switch-state vectors o103 - - - 6, where 7 is the number
of transistor switches in the network. Similarly, let 'V be the set of node-value vectors vyva -+ vy

where # is the number of nodes in the network. Then SXV is the sct of possible network states.

Definition. lect X and Y be network states. X > Y if Sy = Sy and Vy 2> Vy

where comparison between vectors is done component by component,

The update operation changes one network state to another; one writes X — Y if a sequence of zero
or more updates changes the network state X into the network state Y. X —p ¥ means that m or

fewer updates will change X into Y.

The update operation can potentially change two elements of the node-value vector; the switch-
state vector is never affected by an update. Not every update causes the network state to change. For
example, if the update chooses an open switch, the resulting network state will be the same as the
original state. In the presentation below, it is useful to distinguish those updates that result in a

change in the network state from those that do not:
Definition. Let X and Y be nctwork states. X = Y ifX =) Yand X = Y.

In fact, X = Y implies ¥ > X, a simple consequence of equation 5.9 and the definition of U. A
stable network state is onc which does not change as the result of any update:
Definition. Let X be a network state, X is stable if, for any network state ¥, X — Y
implics X = Y.
It follows directly from this definition that a state is stable if and only if no = opcrations are possible
on the state. Once a stable state is reached. the relaxation process can safely be terminated since
further updates will not change the network state.  This suggests the following metric for measuring
how far the relaxation process has to go:

Definition. 1 ct XY be a network state. order(X) is defined to be the largest integer m
such that there exist states Y. ... Ym where X = Y= .. = )},

-




‘The termination of the relaxation process is assured by the following theorem:

‘Theorem 5.1. For any network state X, order(X') is finite.

The proof is based on the obscrvation that there are only finitely many network nodes and possible
node values. This means for any given network state X, there are finitely many states Y such that
¥ > X. Since cach = operation produces a state strictly greater than its predecessor, one can

perform the = operation only finitely many times before all the possible states are cxhausted. 11

For a given starting network state, Theorem 5.1 tells us that a stable state can be rcached with
only a finitc number of => operations. In fact, one can prove that there exists a unique stable state
for any network state, but first we must lay a little more groundwork.

Lemma 5.2. Iet Wand X be network states. If order(W') = m and W = X, then
order(X) < m.
Suppose that order(X)> m, then there exists a sequence of =>  opecrations
W= X=Y = - = Yoderx) Thisimplics order(W) > m +1. a contradiction. #
Lemma 53. (Church-Rosser property) Let W, X, and Y be network states. If
W —; X and W -] Y, then there exists a network state Z such that X = Z and
) R4
Appendix 1 presents a proof based on a case by case analysis of the possible choices for X and Y,

demonstrating for cack casc a scquence of updates that lead to a common state Z.

This sets the stage for proving the uniquencss of the stable state. For readers acquainted with
the lambda calculus, the follaowing theorem has a familiar ring. There are many similaritics between
the update operation and A-conversion; the discussion of normal forms and thc Church-Rosser
thcorem found in [Curry74] inspired the concept of stable states and the existence and uniqueness

theorems presented here.

Theorem 54. lect W, X, and Y be nctwork states. If W = X and W - Y, then

there cxists a network statc Zsuchthat X — Zand ¥ = Z.
The proof proceeds by induction on the order of W. If order(W') = 0. then W is stable and so
W=X=Y =7. Without loss of gencrality, if order(1¥) > 0, onc can assume X > W and
Y > W since if this were not the case, the result follows trivially, If order(W') = 1. the result follows

as a direct consequence of [emma 5.3. To show for arder(W’) = n 41, first note that there exist

states 4 and Bsuchthat W = 4 — XY and W = B — }. 'lhen, by Lemma $.3. there also exists a
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state Csuchthat 4 » Cand B = C.

order = n+1
1 W
A/ \B\ ;r{<n
x/ \C/ N, |
N\
\/

Figure 5.26. Relationship between states in proof for Theorem 5.4

Using Lemma 5.2, note that the orders of A4, B, and C are all less than n+1. Thus, by the induction
hypothesis, there exists a state D such that X ~» D and C — D. Similarly, there exists a state E such
that ¥ = F and C — E, also by the induction hypothesis. Finally, by a third appeal to the
induction hypothesis, there exists a state Zsuchthat D = Zand E - Z. 1

Taken together, Theorems 5.1 and 5.4 imply the following corollary:

Corollary 5.5. Let X be a network state. There exists a unique network state Y such
that Yisstableand X = -.- = Y,
Thus, the relaxation process terminates for any starting network configuration, yielding the same stable

state regardless of the order chosen for performing the updates.

One of the attractions of the local algorithm is the opportunity it affords for parallel processing,
especially during the relaxation process. Allowing parallel updates introduces the problem of merging
conflicting node values at the end of the updates. The simplest solution is to allow updates to happen
simultaneously only if they operate on separate portions of the network state. With this restriction,
each node is involved in at most one update operation, and the potential for conflict is avoided. If the
number of available processors is a lot smaller than the number of nodes in the network, there is only
a small probability of a processor lying idle, because there are an insufficient number of allowable

updates.

Parallel implementations that avoid conflicting updates are covered by the existence and
uniqueness results obtained above, since it is easy to convert the set of updates performed at any time
step into an equivalent sequence of sequential updates. This approach has sufficient parallelism to

keep many current parallel architectures quite busy. However, there are architectures on the drawing
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boards with very large numbers of processors: it is interesting o speculate about algorithms that can ;

uscfully employ as many processors as. say. there are transistors in the network.

To explore the possibilities. imagine a multi-processor constructed of the following clements:

source drain A B

gate C

(a) transistor element (b) node clement

Figure 5.27. Simulator processing elements

Both types of elements synchronize their operation to a four-phase global clock:

Phase 1.  The transistor element samples the values of its source and drain
connections and calculates new vatues using internal information about its
typc and current state.

Phase 2. The newly updated values arc driven on to the source and drain
. p .
conncctions by the transistor elements,

Phasc 3. Fach node clement samples one of its three connections and computes
the lcast upper bound of the sampled value and its stored state. The
connections can be sampled in any convenient order; the only
requirement is that a connection not be ignored indefinitely,

Phasc 4.  The node clements drive their connections with the value computed
during Phase 3.

Note that the node element is particularly capricious; it ignores two of its three connections in any
given cycle. This complicates the notion of an update since there is no guarantee that the two node
elements attached to the source and drain connections of a transistor element will be listening when
the results of an update arc made available. [t becomes especially confusing when one of the clements
is listening and one is not. which results in "half” an update. Of course, one can conceive of less
bizarre node elements, but if it is possible to prove correct operations under the proposed conditions, a

much wider class of parallel architectures will be appropriate for the local algorithm. '

The clements are wired together in a way that mirrors the topology of the network to be
simulated; multiple node clements are used to model nctwork nodes with a large number of

connections. f

R
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(a) circuit schematic (b) clement interconnect

Figure 5.28. Example wiring diagram for simulator elements

By providing one processor per transistor and node, this implementation exhibits al! the parallelism
one could reasonably expect. Steps 1 and 2 of the local algorithm are accomplished in a single clock
cycle. During Step 3, an update calculation for each transistor is performed every clock cycle. A
wired-or'ed signal visiting all the node clements can detect when the relaxation process is complete; a

similar signal connected to all transistor clements can indicate when the network has settled.

This scheme is not as fanciful as it seems — the Connection Machine project [Hillis81] now
underway at the M.LT. Artificial Intciligence Laboratory has an architecture well suited to an
implementation similar to the one described above. Fully configured, its one million clements would
be able to simulate sizeable circuits at very high speeds. However, the real purpose in proposing this
architecture is to provide a vehicle for analyzing the operation of the local algorithm in a parallel

environment.

A key insight into the design of a parallel engine is that the value stored by cach node element

must be non-decreasing with time, Le., if vi, ..., v;, are the values of node element i at successive clock
cycles, then v; £ -+ < vj. The "ratcheting” of node values up the lattice, which was crucial in

showing termination of the relaxation in a sequential implementation, must be preserved in the parallel

implementation.  With this in mind. consider adding a communications link between two nodc

elements:




Figure 5.29. Simulation engine incorporating communication link

Since the system must already accommodate the unpredictable behavior of node clements, the
demands on the link are minima!; messages cannot be garbled and the network cannot become
partitioned indefinitely. However, messages can be dropped or delivered in any order since these

failures do not affect the monotonicity of a node’s value.

Two important questions remain to be answered about parallel implementations that allow
conflicting updates:
(1) Is there an analog for Lemma 5.3?

(2) Docs this parallel implementation give the same answer as the sequential
implementation?

The author’s speculation is that both questions can be answered affirmatively. This belief is based on
the observations that no information is lost that cannot be recalculated, and the operation of the
switches and merging of results remains unchanged. Given that the order in which the propagation
happens was shown to be irrclevant by Theorem 5.4, it secms unlikely that the slightly more baroque

propagation mechanism of a parallel implementation would seriously change the picture,
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CHAPTER SIX

Simulation Using a Pre-compiled Network Model

The simulation algorithms presented in previous chapters rely on examination of the surrounding
network to determine the value of a-given node, The surrcunding network is re-examined every time
the node’s value needs recalculation. This chapter investigates breaking this process into two steps: a
single complete network analysis which builds a set of four logic equations for each node, indicating
the types of connections between the node and vDD or GND; and simulation, where the value of cach
node is determined by evaluating its equations built during the first step. Not only is the overhead of
a treec walk avoided each time a node value is calculated, but evaluating logic equations is also a very

fast operation for most computers.

Each step is discussed in a separate section. The first section describes the derivation of logic
equations for each network node — even those which are not directly outputs of MOS logic gates. The

sccond scction presents several approaches for building a logic simulator based on the evaluation of

the node equations.
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.

6.1. Reducing switch paths to logic equations

Phe switch-level algonthm in Chapter 5 determines the value of 4 node from imformation about
the node's current connections 0 ADD and b, The mformation 1s regathered cach tme o« new value
s caleulated for the node. In most cases. only a simall number of potenuad paths exst fram o nade w
VO and oND s suggests that might be cconomical to determine ahead of tme the conditions for
which a path oxvists toosay G Dy For example. the output of g Nok zate with npats A and Bos pulied
Jownof either A or s non-t, -the existence of a pulldown path can be determined by evaluating the
cypression "A OR B": a scarch of the network i not required o disconver which pulldowns are

currently canducting.

I'his section describes the derivation of a set of four Boolean equatons for cach node:

DH4  An cxpression indicating under what conditions a path of conducting n-
channel and/or p-channel devices exists from node A to VDD,

DI 4 An cxpression indicating under what conditions a path of conducting n-
channel and/or p-channel devices ¢xists from node A to GD.

WH,4 same as DH 4. except the path contains at least one depletion device.,

WL, same as DI 4. except the path contains at least one depletion device.
If an expression evaluates to true (1), the corresponding path exists: if the expression evaluates 1o false
(0). no path exists. Since nodes can have X values. cxpressions involving nods values can evaluate to
X; in this case, the corresponding path may or may not exist. The equations involve the ordinary
Boolean operators AND (™), OR ("+"), and NOT (""). These operations are ecasily extended to

accommodate X values:

axp 0 1 X oR [0 1 X NOT
0 [0 0 O 00 1 X 0 |1
1 (0 1 X 1 (1 1 1 1 {0
X |0 X X X 1X 1 X X | X

The algorithm for constructing logic equations is similar to that for computing the Thevenin
cquivalent for a node (sec section 4.1.2). The algorithm begins with an cxpanding trec walk, stopping
when an input or dead-end is reached. During the tree walk, all switches are assumed to be on, since
the tree walk is perfonned before any node values are calculated. (During simulation, the actual state
of the switch is represented symbolically in the equation.) The algorithm continucs by retracing the
steps of the tree walk back toward the original node: during this process, the equations are built. The

cquations for the terminal nodes are trivial; the following table is the analogue of figure 4.8:
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ternnnal node  DH - DI WH Wl
VDD 1 0 0 0
GND 0 1 0 0
dead-end 0 0 0 0

Merging the equations for two (or more) paths which join at a given node occurs in several steps.

-
D D,
L G e Pla b
Wi, ! wil',
’ A N DH, + DI
WL, WLy J :1\ _B
DI, - DI
3\ Wi, + WHg
Diy DH'g WL'A - WLy
DLy DL'g >
WH ! WH"
B B B
Wlg WL'g )
(a) two paths to merge (b) after incorporating switches (¢) final path equations

Figure 6.1. Merging the equations for two paths which join

The process begins by modifying the cquations for each path to reflect the contribution of the switch
in series with the path (figure 6.1(b)). The necessary formulas appear below. For example, DH is the

new equation derived by combining DH with gate, the valuc of the switch's gate node.

DH - gate n-channel switch

DH = DH - —gate p-channel switch 6.1)
0 depletion switch
DL - gate n-channel switch

DL = DL - gate p-channel switch (6.2)
0 depletion switch

The equations for the “strong” paths (above) are straightforward; when the connection is made by
regular switch, the path equation and the the switch's gate value are combined using AND. If the
connection is made with a depletion device, the strong path is terminated. Equa‘.ons for "weak™ paths
(below) are slightly more complicated since a depletion switch changes a strong path into a weak one.
These formulas also reflect the fact that a strong path overpowers a weak path, Le., cquations for weak
paths are forced to 0 if a strong path is present. The reason for this extra complication will be clear in

an example below.

rbmeiagy
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i
‘ gate - WH - DL n-channel switch
WH = —gate - WH - DI p-channel switch (6.3)
DH + (WH - DI) depletion switch
’ gate - Wl - "DH n-channel switch
Wit = =are - Wl - —DH prchannel swuch (6.4)
DI+ (W1 -—DH) depletion switch

After the equations for each path are modified to include the scries switches. they are combined (using
OR) to derive the final equations for the node. as shown in figure 6.1(c). When the analysis for a node

is complete. the four equations characterize all paths from the node to VDD and GND.

surrounding

netwerk
w |
: DL —‘, E
(a) original network (b) network after analysis is complete

Figure 6.2. The four equations characterize all paths from node

In other words, for each node, the surrounding network (figure 6.2(a)) has been reduced to an
- uivalent, but much simple network (figure 6.2(b)). All the information about paths in the original
network is now stored in the node equations, where it can be efficientdy utilized. For example, to

determine if a node is pulled-down, all one has to do is evaluate the DL equation — no examination

of the network is necessary.

The value of node can be determined from the values of the four equations and the node’s

previous value, by table lookup:




JOIRER e Y 00 .

i A

DH/WH

00 01 [1).¢ 10 1 1X X0 X1 XX
00 prey 1 prev+ X 1 1 i pres = X 1 prey + X
01 0 X X 1 1 1 X X X
0X prev ' X X X 1 I 1 X X X
10 ‘. 0 0 0 X b X X X X
DIl/WL 11 0 0 0 X X X X X X
X 0 0 0 X X X X X X
X0 prev - X X X X X X X X X
X1 0 X X X X X X X X
XX prev ' X X X X X X X X X

Table 6.1. Node value table for equation-based simulation
There are a few special cases which can be summarized more concisely.t For most nodes in nMOS
circuits, DH = WL = 0, ie. conncctions to VDD are made only through depletion pullups, and
depletion devices are not used elsewhere in the circuit. In this case, the value of a node is given by a

single equation:
node value = (WH + previous value) - DL (when DH = WL = 0) (6.5)

Equation 6.5 can be simplified further for a node that is directly pulled up (WH = 1), ie, a node

which is the output of a logic gate:
node value = DL (when DH = WL = 0and WH = 1) (6.6)

In most cases, therefore, calculating the value of a node requires evaluating only a single equation.

Some examples will help illustrate the analysis. First, consider an inverter with a pass gate

connected to its output.

- B
1 DH =0
c{ DL=B'A
WH =B —A
A-| WL =0

Figure 6.3. Logic equations for output of inverter with series pass gate

+Current hardware simulation engines [Pfister82, Zycad83] implement all functions through table lookup. so they can
implement the function tabled above as efficiently as. say, Boolean operations. This is not true of most general-
purpose machines; hence the motivauon for finding simpler representations where possible.




Using cquation 6.5, the value of C is given by C = (B-—A + C) —(B - A). The value of this

cquation is tabled below for the yvarious values of 4 and B.

B

C'j' 0 1
0 C 1 C+X
A C 0 C-X
X1 C X X

When B s 0. the pass gate is turned off, and C retains its ofd value. When #is 1L the pass gate is on,
and C is the complement of A. Finally. when B is X, C is also X, except when the output of the
inverter is the same as the previous value of €. In this case, the output retains its old ralue. which
makes sense since there is nothing forcing it to change. This last statement is true only because
WHe = B- DA the ™4 term forces the pullup equation to 0 when the pulldown of the inverter is
active. I the WH cquation did not reflect the contribution of the pulldown, ie, if WHc = B, the

value € would be unnecessarily forced to X when the value of B was X.

The next example is the XOR gate presented in Chapter 2.

1. b

1

F=AxorB

1
i U
C

Figure 6.4. XOR logic gate

The equations for each node appear in the following table.
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node DH Dl WH WL
C 0 A+DCB 1 0
D 0 B+C>A 1 0
E 0 CB+I>A 1 0
F 0 E 1 0
These equations might seem incorrect at first — it is not at all obvious that 7 = 4x20r B. However

simplifying the the equations for ¢ and D shows:
C="A+D-C-By="A+(B+C-4)-C-B)="4 6.7

and similarly, » = =3 B. These results can be used to rewrite the equation for Fin terms of 4 and 8:
F="E=C-B+D-A="A4-B+"B-4=Ax0R8B 6.8)

In actual use, the equations are not simplified. The above substitutions do verify, however, that the

equations compute the correct value for F.

Some circuit configurations have very simple connection paths during actual operation of the
circuit, but the circuits can appear very complicated when no information is known about the values of
various control lines. This is especially true of a circuit containing nMOS switching logic, such as a
barrel shifter or tally circuit. If no information is available about the values of the control lines in a
barrel shifter, it appears to short together all the incoming and outgoing data bits. The logic equations
for a node in such a circuit can become very large — in some cases, large enough to be impractical.
The analysis procedure monitors the size of the equations under construction. If they grow too large,
the procedure is aborted and the node is flagged. At simulation time, the value of a flagged node is
determined using the normal switch-level simulation algorithm.t Flagging a small number of nodes
eases the analysis of the remainder of the circuit. (The number of flagged nodes has been less than
1% of the total number of nodes in all the designs processed to date.) Using this technique, the speed-
up in simulation afforded by the use of logic equations can be cnjoyed by circuits even where 100%

conversion to equations is not possible.

Keeping track of gate expressions for transistors crossed during the inital, expanding phase of

the trce walk allows the cquation-building algorithm to climinate duplicate AND terms in the results.

purpose compulers, but can be next to impossible for special-purpose hardware.
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A B A A B
A 4 L A
J 1L LT L J L
(a) onginal circuit (b) reduced circuit

Figure 6.5. On-the-fly elimination of duplicate AND terms

This minor optimization can reduce equation size substantially in some circuits, Consider. for example,

a tally circuit from [Mcad80].

Figure 6.6. Tally circuit

This tally circuit has three inputs: 4, C, and E. A ually circuit counts the number of 1-inputs; Z0 = 1
when no inputs are high, Z1 = 1 when exactly one input is high, and so on. The equations produced

for the outputs appear somewhat complicated, for example:
DLz) = B{(A+D(C+F+E-FY+C(D+E+F-E)) + A(B+C+D(C+E+F-E)) (69
WHz, = B(D-E+C-F+A-C-E) + A-D(F+C«E +B‘E)) (6.10)

These equations are hard to verify as they are, but they can be simplified by removing B, D, and F.
(Again, the simulator does not simplify the equations, but this is the casicst method for us to use to

verify the operation of the algorithm.) Using the identities 8 = =4, D = =C, and F = —F, the
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cquations reduce to:
DlLyzy = 2A4CL + 2A-CF + 4C + ACE (6.11) |
WHz, = 1A CE + nA-CE + ACE (6.12)
Substituting these formulas into equation 6.5 gives
Z1 = A0CE + DA4-C=E + 2ACE (6.13)

As expected, Z! is true if exactly one input is high. Of course, evaluating this Jast cquation would be
much faster than using the original equations, 6.9 and 6.10. Unfortunately, cquation simplification is a

very time consuming operation; the computational investment required to process all the equations for

a large circuit would probably not be recovered by decreased simulation time. In addition, the
equations for most nodes are simple, and simplification beyond that suggested by cquation 6.6 (a

simplification which is easily recognized) does not result in much improvement.

6.2. Compiling logic equations for simulation

It is easy to build a simulator that uses the node equations developed in the previous section.
The simplest approach [Denneau82} is to allocate two node-value arrays; onc to hold the current
values of each node, and the other to collect new node values as they are computed. Each node is
assigned an index which can be used to access its current value in the first array, or to store its new
value in the second array. A simulation subroutine for the network is built by gencrating code that
calculates the value of each node, where the code for one node is followed by the code for the next.
(Since new node values are kept separate from the current node values, the order in which nodes are
processed by the compiler does not matter.) A single simulation step, which propagates new input
values to other nodes in the network, is implemented as follows:

(1) For cach input node, set its current-value array entry to the designated input
value.

(2) Execute the simulation subroutine. This fills the new-value array.

(3) Compare the current-value and new-value arrays. If their contents are identical,
the nctwork has settled and the simulation step is over. Otherwise copy the
new-value array to the current-value array, and return to siep (1),

This simulation algorithm has scveral interesting properties. Each cxecution of the simulation

subroutine corresponds to onc step of a unit-delay simulator. Node values are updated all at once in :
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step (3); hence, the simulator implements a true unit-delay algorithm as described in section 5.3.3.
Note that no special handling of input nodes is required when generating code — the new values
calculated for input nodes in step (2) are overridden by user-specified values in step (1), Note also
that the calculations of the simulation subroutine are not event driven; the implications are discussed
below,

The value of a node is computed from its four node equations. using the code generated by one
of the following alternatives:

(1) IfDH = Wl = 0and WH = 1, emit code that calculates the node value using
equation 6.6.

(2) If DL = WL = 0and WH # 1, emit code that calculates the node value using
cquation 6.5,

(3) Otherwise, emit code which cvaluates each of the four node equations, and then
concatenates the resulting values with the previous value of the node to create an
index into Table 6.1. As an optimization, the code generator can check for other
special cases {constant values for WH and H'l) and gencrate accesses to smaller
tables if appropriate.

Code 1s generated for each equation using standard compilation techniques. The logic irstructions of
the target machine are used for expression evaluation. (Some provision must be made to incorporate
| X values in a way that still permits use of the native logic instructions; sce the example at the end of
this section.) Access 10 a node’s current value requires only an indexed reference into the current-value

array: storing generated values requires an indexed reference to the new-value array.

There are some inefficiencies inherent in this approach. An extra execution of the simulation
subroutine is performed during cach simulation step — “extra” in the sense that the last exccution
produces the same result as the one before (that is how the simulator identifies it as the last
exccution). In addition, the value of each node is calculated during each call to the simulation

<tbroutine, even if the inputs to the node’s equations have not changed.

This last objection can be addressed by making a more intelligent choice about the order in
which node values are calculated, by identifying the nodes that affect node A's value (i.e., nodes that
appear in the equations for A) and then generating code to compute the values of these nodes before
generating code to compute the value of A [Casc78, Denncau82]. In addition, references to a node's
’ current value are directed to the new-value array if a new value for the node was computed carlier in

the subroutine. For example, the circuit in the following figure has scveral cascaded logic gates.
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Figure 6.7. Cascaded logic gates

Under the new organization, the compiler generates code for nodes 4 and B before generating code
for node F, and so on. The resulting code propagates a new input value from A to H in a single
execution, (The earlier scheme would have required three calls to the simulation subroutine to achieve

the same effect.)

To implement this scheme, the compiler assigns a numeric level to cach node. The level of input

nodes is defined to be 0; the level of a non-input node a is
level(a) = 1 + max( level of nodes affecting a ) (6.14)

Referring 10 the example in figure 6.7, if nodes A through D arc inputs, level/(F) = 1 and
level(H) = 3. Codec is first gencrated for level 1 nodes. then level 2 nodes, and so on. When
compiling an cquation, if a node value is needed. the node’s level determines where that value comes
from. The valuc of a level 0 node is taken from the current-value array, and the value of a node with
a level greater than 0 is :aken from the ncw-value array. (New values are stored in the new-value

array, as always.)

The definition of a node's level in equation 6.14 runs into some difficulty if the circuit has

feedback. Consider, for example, the following circuit:

1 o—

J o—f L

Figure 6.8. Circuit with feedback

In attempting to assign a level to node K. one discovers that the definition is circular, Le., the level of
node K is defined in terms of itself. The compiler solves this problem by arbitrarily splitting a node

that is in the feedback loop into two nodes. One copy is treated as an input, and the other as a




e e

-130 -

normal n2twork node. Both are assigned the same index so that the input value is updated each time
the new-value array is copied to the current-value array. Thus, the circuit in figure 6.8 is compiled as

if it had the following configuration:

treated as input
\,\ | value fed back dunng step (3)

= IDr I St

Figure 6.9. Feedback circuit as it appears 1o the compiler

For the purposes of compilation, the feedback loop is broken: the value is actually fed back during
step (3) above when the new-value array is copied to the current-value array. This means that a
circuit containing feedback might require more than a single execution of the simulation subroutine
before the network scttles. As it turns out, most MOS circuits contain feedback loops since charge
decay requires that storage nodes be refreshed. A clocked feedback loop offers special compilation

opportunities, which are discussed below.

Compiling nodes by level ensurcs that only a single execution of the simulation subroutine is
needed to settle the network, assuming the network contains no feedback. The new organization
introduces other differences from the original compilation strategy. Node values are not updated all at
once in this scheme; the simulation subroutine implements a pscudo unit-delay simulation. Input
nodes must be assigned a level of 0, which means nodes must be declared as inputs before the
compilation process begins. This eliminates the possibility of interactive debugging, where one wants
the capability to consider any node as an input. Typically, the designer uses the original compilation
strategy when initially checking out the circuit, and then uses compilation-by-level when performing

long verification runs.

Most node-value references are satisfied using the new-valuc array in the compilation-by-level
scheme. This suggests that is might be worthwhile to climinate the storage overhead and copying tjme
involved for managing two arrays by merging them into a single array. This is straightforward,
provided a new technique is developed for detecting when the simulation step is complete. If the
circuit has no feedback, only a single exccution of the code is nceded. When there is feedback, a
single exccution also suffices, if the current and new value of split nodes (e.g.. K and K in figure 6.9)
agrec. Only when the old and new values are different is another exccution required. This can be

arranged by comparing the two values before the new value is stored into the array. If the

- m— e meen




comparison shows them to be unequal, a flag is set to indicate that another execution is nceded. Note
that the whole simulation subroutine is re-executed; this is simpler than trying to untangle interlocking

feedback loops to determine the subset of the code that must be re-exccuted.

With this improvement, the compilation-by-level scheme produces a simulation subroutine that:
(1) uscs a single node-value array.

(1) evaluates nodes in a reasonable order: the values of a node’s inputs are
calculated before the value of the node itself is calculated.

(i) deals with feedback by splitting some node in the feedback loop into an input
node (assigned level 0) and a regular node. Both nodes are assigned the same
index, su when the value of the regular node is recomputed it updates the value
of the input node also. Before storing the value of a split node into the node-
value array, it is compared with the current value; if the values are different a
flag is set

(iv) uses the flag described in step (iii) to indicate when another iteration is necded.
If the flag is set during an execution of the code, another iteration is performed;
otherwise, the subroutine is finished.

The following is an extended example which illustrates the result of a compile-by-level for a single bit

in a nMOS counter. The circuit diagram for the counter bit is shown in the following figure.

PHI2

PHIL —eoout

— OUT

CIN o— ¢ [
F

Figure 6.10. Circuit diagram for a one-bit counter

The target machine for this example is the DEC VAX-11. A node value is 2-bit quantity (logic low =
, 0, logic high = 3, X = 1) stored in a byte location; the node-value array is implemented as an array
of bytes. Logical AND} and OR instructions produce the desired answers with this value encoding.

However, using this encoding, the complement instruction does not correctly implement the NOT i

which implements an AND-COMPLEMENT operation. This introduces a few circumlocutions in the generated code.
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operation, so NOT is performed by table lookup. The index of each node is indicated symbolically in

the code below (the index of node 4 is written “:A™).

. r10 = pointer to value array

. ntbl

table giving NOT of value

, xtbl = table giving bit complement of value
. xntbl = table giving bit complement of NOT of value

step:
cirl
clrl
movd

1. movd
bisbl
movb
bich3
bisb2
bisbld

movb
movd

movb
bisb3
movb
bicb3
bisb2
bicb3

movh
movb

movb
bicb3
movb

movb
bich3
movb

movb
bich3
movb

movb
movb

movb
bich3
cmpb
beql
movb
clird

bbcs
rsb

r0
rl
#1,iterate flag

_PHIZ2(r10},r"
ntb1(r0), OUT(r10),r0
0uT(r10),r1

xtbi(rl), PHI2(r10).r1
_IN(r10),r1
xtbl(r1),r0, IN(r10)

_IN(r10),r0
ntbl1(r0), A{(ri0)

_PHII(r10),r0
ntbi(r0), A(r10),r0

._A(r10),r1

xntb1(r1), PHI1(r10),rt
_B{r10),r1
xtb1(r1),r0, B(rl0)

_B(r10),r0
ntb1{r0), C(ri0)

_C(r10).,r0
xtb1(r0), CIN(r10},r0
ntbV(r0)._D(r10)

_C(r10),r0
xtb1{r0), D(r10),r0
ntbl(r0),_E(r10)

D{r10),r0
xtb1{r0), CIN(r10),r0
ntbi(r0),_f(r10)

_b(r10),r0
ntb1{r0), COUT(r10)

_E(r10),r0
xtb1(r0), F(r10),r0
ntb1(r0),_OUT(r10)
t<4

ntb1{r0), OUT(r10)
iterate_flag

#1,1terate_flag,1b

$0 regs can be used index registers

nonzero indicates no iteration needed

rQ = !phi2 + out = 1{phi2 ® ltout)
rl = (phi2 * out) + in
in=r0®rl

8 =1in

r0 = !phil +a = I(phil *® la)

ri = (phit®* la)+b

b=r0%r1
c=1b

4= 1{c*cin)
e =1(c*d)

f =1(d*cin)
cout = !d

check (e ® f) against old value

it different, save new value
and set iterate flag so we do it again

check flag, iterate if set

The code is a relatively straightforward implementation of the cquations for each node. Nodes PHII,

PHI2, and CIN arc designated as input nodes. Note that the feedback loop is broken by splitting

- gy 3 =




node QU7 an arbitrary choice. The resulting simulation is several orders of magnitude moere efficient

than 4 standard switch-level simulation. For example, the value of 8 is calculated in six instructions;
the value of C in only two. The code is also relatively compact compared to the usual network data

base.

Although compiling by level greatly reduces the amount of wasted computation. there are still
occasions when the values of nodes are unnecessarily calculated. Some input transitions have little
cffect on node values; eg., when PHII or PHI2 in the one-bit counter above change from 1 to 0.
‘This suggests that the performance of the simulator can be improved by generating multiple simulation
routines, where each routine corresponds to a fixed value for one or more inputs. This is pa~icularly
advantageous when the inputs selected for special processing have a major impact on the circuit to be
simulated. For example, in a circuit using two clocks, three separate simulation routines can be
generated: one gencrated assuming both clocks are low (called, say, CLOCK00), and the other two
generated assuming one of the clocks was high (CLOCK10 and CLOCKO1). A four-phase clock cycle is

simulated by executing the simulation subroutines in the correct order:

jsb clock10 ; PHI1 high
jsb clock00 . both clocks low
Jsb clock01 : PHI2 high
jsb clock00 ; both clocks low

To generate a input-specific simulation routine, the user specifies which nodes are inputs, and for each
input

(1) gives the input’s logic value, and

(2) indicates whether the input is stable or has just changed to the specified value.
The compiler applics several optimizations during code generationf: constant folding based on
knowledge of input node values, and compile-time selective trace that ignores nodes whose values
remain unchanged. (The stable/changing specification is used by the selective trace optimization.) The
selective trace is especially effective in reducing the amount of generated code.

in the examples below, PHI! and PHI2 are specified as changing inputs, and CIN an

unchanging input. The first example — the code generated for the one-bit counter with both ciocks

low — illustrates just how cffective the optimizations can be:

:ﬂhc optimizations are inspired by those found in traditional optiminng compilers [Harnson77, Wulf75]. Because of
the branch-free nature of the code and the penasive influence of clock signals, many of the optimizations are much
more cffectve in this domain than in tradiional compilation problems
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clock00: ; code for phil = 0, phi2 = 0, cin =1
clrd  _PHI1(r10) cphil =0
clird _PHI2(r10) i phi2 = 0
rsb

The values of PHII and PHI2 are set by the code since they are specified as changing inputs. (The
value an unchanging input is assumed to be sct by the user, or by code cxecuted carlier.) Node B is
determined to be unaffected by the change in PHI/, as arc nodes /N and PHI2. In fact, the compile-

time sclective trace does not find any nodes that change value, except for the changing inputs.

The next code sequence, corresponding to PHI1 going high. is somewhat longer, since that is the

transition when the circuit performs most of its work.

clockiO: ; code for phil =1, phi2 =0, cin =1
clrl ro0 ; 50 reg can be used as index register
movb #3, PHI(r10; s philt =1
clird _PHI2(r10) ;phi2 =0
movb _A(r10),_B(r10) ib=a8
movb _B(r10),r0
movb ntb1(r0),_C(r10) ic=1b
movb _C(ri0),r0
movb ntb1(r0),_D(r10) ;d=1!{c*cin) =lc
movb _D(r10),r0
movb ntb1(r0),_COUT(r10) ; cout = 1d
movb _C(r10),r0
bicb3d xtbl(r0), D(r10),r0
movb ntbi(r0), E(rl10) ;8= 1{c*d)
movb _D(r10),r0
movb ntdi(r0), F(riQ) T =1i(d®cin} = ¢
movb _E(r10),r0
bicb3d xtb1({r0), F(r10),r0
movb ntb1{r0),_0UT(r10) iout = 1(e*f)
rsb

A node that connects to the rest of the network through a single pass transistor (e.g, node B in the
counter) is treated specially by the compiler, because such nodes are so common in MOS networks.
When the pass transistor is turned on by fixed-value input, the gencrated code is particularly efficient
(a single move in the example above).

The last code sequence, corresponding to PHI2 going high, is relatively short; the compile-time

selective trace finds only a few nodes whose values needed to be computed.

clock01: . ; code for phil = 0, phi2 =1, ¢cin=1
cirl ro . $0 reg can be used as index register
clird _PHI1(r10) i philt =0
movb #3, PHI2(r10) s phi2 =1
movb _ouT(r10),_IN(r10) i in = out
movb _IN(r10).r0 \
movb atb1(r0),_A(r10) ;8= 1lin
rsb

Simulation of a four-phase clock cycle using these three routines requires executing only 36 VAX

instructions. The earlier compiled code scquence requires 39 instructions for a single simulation step, 5
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for a total of more than 150 executed instructions when simulating a full clock cycle. Input-specific

subroutines result in a considerable improvement.

Although the impact of compile-time selective trace makes it a worthwhile optimization, only so
many input-specific routines can be generated.  Assuming that all combinations of inputs are possible,
the number of routines needed grows exponentially with the number of fixed inputs. Thus, while
computations caused by the changing of a few inputs can be reduced to the bare minimum, many
unnecessary computations are still performed. For example, in a 10-bit counter, the nodes comprising
the higher data bits are recomputed during cach clock cycle, even though those nodes actually change
value far less frequently. Presumably, the appropriate checks could be inserted into the code, resulting
in branches around sections of code that do not nced to be exccuted. In the counter example, when
the carry-in of a data bit is zero, the code for its level and all higher levels does not need to be
executed. However, a very sophisticated compiler would be needed to handle this situation. It is

unclecar what further gains will be possible in the scarch to reduce unnecessary computation.

In summary, the compilation techniques discussed in this chapter are well-suited for producing
code that implements a fast switch-level simulation of a stable design. The potential increase in
simulation speed allows more exhaustive checkout than is possible with interactive (and slower)
simulators. Compilation-based simulation is most appropriate for a circuit with a high degree of circuit
activity; if each circuit component is active during each simulation step. there is very little unnecessary
computation by the simulation subroutine. On the other hand, for a large circuit with little activity, an
event-driven interactive simulator might actually outperform a compiled simulation. Fortunately, not

many designers strive for designs in this latter catcgory.
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CHAPTER SEVEN

CONCLUSIONS

The models and simulators presented in this thesis were developed to fill the need for simulation
tools suitable for large MOS designs. At the outset of the project, there were surprisingly few
alternatives; even today, much of the work in the area of simulation tools concentrates on refurbishing
traditional gate-level simulators and circuit analysis programs. (The current state of these efforts is
outlined at the end of the chapter) The work reported here takes a different approach, seeking to
develop new algorithms, guided by the following goals:

(1) The algorithms must be suitable for the logic-level simulation of large digital MOS
circuits; "large” meaning circuits containing 10.000 to 50,000 transistors.

(2) Important aspects of MOS bechavior (bidirectionality, charge sharing/storage,
pullup/pulldown ratios, etc.) should be modeled in a useful way.

(3) Performance estimates should be calculated directly from the actual parameters
of the circuit components. Ideally, the caiculations are based on the same rules
of thumb used by designers when estimating circuit performance.

The RSIM simulator meets all three goals, while maintaining a reasonablce balance between simulator
performance and accuracy of predictions. Rather than performin, .. detailed simulation of each
transistor's operation, RSIM uscs the linear model to directly predict the logic state of each node and to
estimate transition timcs when nodes change state. The net effect is a trade of some prediction
accuracy for an increase in simulation speed. When the lincar model is conscrvatively calibrated, its

predictions can be used to identifv problem circuits in need of more accurate analysis. Usually, a large
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percentage of a crrewit passes the scrutiny of RSIM, and so the expense assaciated with detanled

simulation of the whole circuit is avoided. In addition 1o serving as the basis for simulation. the lincar
model can be used in tming analyvsis and might serve o quickly gencrate initial waseforms for a
relaxation-based circuit analysis program.

RSIM has been in use in both university and industrial environments since the spring of 1982
During that time it has simulated several hundred designs. ranging in size from very small to
approximately 40,000 transistors. Because RSIM is fast cnough to simulate a whole circuit, it often
uncovers circuit flaws that have fallen between the cracks during the simulation of smaller picces of
the design. The trend shows that RSIM is viewed as a companion to circuit analysis. using it for all
logic-level venfication and preliminary timing analysis, and resorting to circuit analysis for those paths

identified as critical by RSIM.

The simulation algorithm is embedded in a Lisp-like command language [I'erman82) that has
been used to write quite elaborate programs to drive the simulation and process the results. Since
programs to preparc simulation input are much less tedious to construct than the input itsclf. designers
have been able to conduct more tests than they might otherwise do. For example, it is a simple matter
to usc a set of test vectors that drive a register-transfer-level simulation as input to an RSIM run, and

compare the predictions of the two simulations, all under program control.

With careful calibration. RSIM's predictions for combinational logic are within 30% of those of
SPICE. For circuits relying on analog behavior (sense amplifiers, bootstrapped nodes. etc.) or chains of
pass devices, the predictions are less accurate. To compensate, several "escape” mcechanisms exist
which allow the designer to specify the logic thresholds and transition times for individual nodes so
that the results of more detailed simulations can be incorporated into RSIM. Usually this mechanism
need be invoked for only a few critical nodes (e.g.. clock driver outputs). Anaother alternative is to
identify subcircuits and replace them with logically equivalent circuits that can be simulated casily; a
network preprocessor {ller83] that performs subcircuit matching and repliacement is available and has
been used to good cffect. With these enhancements, RSIM has proved to be a fairly reliable filter for
detecting circuits in need of more careful analysis,

For those stages of the design process that do not require performance information. a switch
madel might be more appropriate than a lincar modcel. A switch-level simulation is particularly useful
in the carly stages of a design when one is experimenting with the organization of the logic, and sizing

cach device would be distracting.  The switch models presented in this thesis are straightforward,




ospeckatly i the treatment of X values and therr effect on the network. ‘The switch model as
embodied i ESIM (which uses the global algorithm outlined in Chapter §) 1s quite compatible with the
Iincar model used v RSIM. In fact. in the current implementation both models exist side by side and
one can choose either model when propagating a set of changes through the network. This flexibility

is uscful dunng mitialization of a network, when perfonmance information is not a major concern.

Simulator performance is always an important issuc. onc that has been addressed throughout the
thesis. Chapter 4 describes several techniques for speeding up the RSIM algorithm: using a compressed
representation of logic gates and caching subnetwork calculations decreases the cxecution time of RSIM
by a factor of two or more. The local switch algorithm presented in Chapter § is ideal for
implementation on parallel architectures. like many relaxation algorithms, it can cffectively utilize
many processors, and so holds the promise of large performance improvements in simulation when
parallel processors move out of the cxperimental stage. A different approach for improving the
performance of switch-level simulation is described in Chapter 6, which proposes performing the
network analysis once, before simulation, and using the results to compile a set of logic equations for
each node. When cevaluated in the proper order by 4 conventional computer, the resulting switch-level
simualation 1s many umes fuster than simulauon using traditional techniques. The node equations can
also be used to develop instruction sequences for special-purpose simulavon hardware — e.g. the
Yorktown Simulation Enginc, or the Zyvcad mulu-processor — extending the benefits of high-speed

gaie evaluation to arbitrary MOS networks |Barzilai83).

The remainder of this chapter discusses other work in the area of simulation related to the topics
of concern in this thesis. These topics include:

e algorithms for fast circuit analysis; circuit analysis using simplified models
e mixed-mode simulation

o logic-level simulation using pre-determined transition delays

e modecls for estimating circuit performance

e other switch-level simulation algorithms

Each of these arcas is discussed below.,

The most detailed and accurate network simulation is provided by circuit analysis programs, such
as ASTAP {Weeks73] or spict: [Nagel75]. The capacity limitation of circuit analysis is a prime motivation
for the development of simpler simulation models: recent improvements in circuit analysis algorithms
are making inroads into the traditional performance problems of circuit anahvas, Device models are
the heart of a circuit analysis program, The models are usually analytic: they contain formulas that

predict device performance from information about voltage histories. physical propertics of muterials,
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ete. In a circuit, the behavior of a particular device might be determined by several electrical nodes
which, in turn, are affected by other devices: Le., a system of circuit equations is needed to describe
the behavior of the circuit as a whole. To make finding a solution computationally feasible, most
circuit analysis programs proceed in two steps:

(1) The circuit is partitioned so that, at a particular time step, the change in voltage
on cach node is approximated as a linear function of the node voltages (and their
derivatives). 1t is during this step that device models must be evaluated.

(2) Solving the resulting sct of equations numerically (sce [SV80]).
These two steps can be quite time consuming, although for large circuits the second step becomes the
dominant factor [Newton80). RSIM reduces both costs by using a very simple device model whose

effects can be predicted without the need for expensive numerical techniques.

The cost of model evaluation can be reduced by replacing the analytic device models with tables
relating device current to terminal voltages {Chawla75, Fan77]. These tabl~s can be derived from a
one-time evaluation of the original analytic models, or filled directly from device measurements. In
these simulators, the current charging/discharging of each node capacitor is determined from the
present node voltages; thus, the change in node voltage for each time step can be calculated directly
and the cost of solving a set of simultaneous equations is avoided. Another approach to reducing the
cost associated with dealing with large matrices of equatioﬁ coefficients uses a relaxation technique
[Lelarasmee81, Newton83) to successively approximate the voltage waveform for each node in the
circuit. The solution for each node is computed separately, using the estimates of other node voltages
computed during earlier iterations. Again, this avoids the cost of solving a large set of simultaneous
equations. It is also possible to skip the recalculation of a node’s waveform during a particular
iteration if it can be determined that the estimates for the surrounding network have not changed
substantially since the last iteration (i.e., selective-trace comes to circuit analysis). These techniques can
speed up circuit analysis by an order of magnitude or more, but the programs are still limited to

circuits with a few thousand components.

Recent work on simulators has tried to combine the computational advantages of gate-level
simulation with the precision afforded by circuit analysis; this has lead to a new family of mixed-mode
simulators: [Chen78, Gardner79, Hill79, Agrawal80, Newton80]. The designer can specify gate-level or
functional simulation for simple or previously-verified pieces of the circuit, reserving the expense of

circuit analysis for critical sections of the design. There arc two problems that remain to be solved in

mixed-mode simulators: conversion between the different representations of node values used by the
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different levels, and the relate § problem of choosing which type of simulation should be used for cach
subcircuit. The designer car. introduce crrors into the simulation by an unfortunate choice of level at a
critical point in the circuic; special care must be exercised to avoid discontinuitics and other pitfalls of
the numerical solution techniques. 1.ike circuit analysis, mixed-mode analysis still requires the touch of

an cxpert lest it producc misicading results.

Clearly, it is only a matter of time before mixed-mode simulation becomes true hicrarchical
simulation in which the results of detailed low-level simulation are automatically summarized for use in
subscquent high-level simulations. A hierarchical system would also decide what level of simulation is
appropriate for each subcircuit. Vicwed in this light, RSIM can be thought of as the first step toward
automatic identification of critical subcircuits. With a foot in both worlds, RSIM provides an casy path

for descending into circuit analysis or for abstracting toward higher-level logic functions.

Another approach to timing simulation that retains the speed advantages of gate-level simulation
is determining the transition delays for each node before simulation begins. Some gate-level
simulators {Szyvgenda72. Casc78] allow the user to assign node delays. ‘This type of simulator can be
extended to handle MOS networks, after a fashion [Sherwood81. McDermott82]. The resuit is a system
that can quickly calculate estimates for signal delays in a network. Unfortunately. the delays are not
calculated automatically (and hence are prone to error or wishful thinking on the part of the designer).
and are approximate at best for pass transistor ctrcuits so common in MOS circuits. A more effective
technique for pre-computing delays is the use of the results of actual measurements or circuit analysis
runs [Pilling73. Nahm80). The delays arc measured/calculated for "standard” gate configurations, and
the results used to estimate the performance for the actual configuration of each node in the nctwork.
[Nahm80] mentions scveral shortcomings of this approach. Circuits with multiple inputs are difficult to
analyze since a particular input transition is chosen when performing the analysis; also, the cffect of
overlapping input transitions, the slope of the input waveform. and dynamic changes in the output
vad are not considered. (Interestingly, all these problems are solved in a straightforward way by RSIM,
at no great loss in cxecution speed, as cvidenced by the performance figures quoted by Nahm.)
fOkasaki83] suggests overcoming these problems by expanding the set of “standard™ configurations to
include most of those commonly found in MOS circuits (complex and/or gates, pass gatces, cic.). ‘The
price for the increase in accuracy is a corresponding increase in the complexity of the model for cach
gate: his simulator spends a fair amount of time determining which pre-computed delay should be

used. given the current configuration of the network.  In summary, the performance variations




introduced by non-standard circuit configuraticns, and changes in the network duc to changing node

values seem to offset any advantages offered by pre-determined transition delays.

Not much has been published about models that are suitable for quickly determining the
transition times for particular network configurations. A switched linear Thevenin model is described
in [Glasser80): a simulator based in part on this model is described in [Tamura83]. Multiple resistances
arc uscd to describe cach transistor; conceptually, the appropriate resistance is sclected by a rotary
switch controlled by the transistor's gate voltage. Fach resistance is chosen to model the actual
channel resistance in a particular region of device operation. The linear model presented in this thesis
can be viewed as a simplification of Glasser's model. with only two possible switch positions selecting
between resistances of Rpy and ©0. A simple version of the linear model also appears in
[{Ousterhout83] and [Jouppi83]; both indicate that the model improvements suggested in Chapter 3 are
needed in order to improve prediction accuracy. [Horowitz83] presents a simple model that describes

the performance of a network of pass gates; his model is discussed in section 3.5.

One simulator with many of the samc aspirations as the switch-level simulators described in
Chapter § is MOSSIM, written by Randy Bryant [Bryant81]. MOSSIM uses a switch transistor model
similar to that presented here, but its calculations are organized differently since (1) node values are
represented using a cross-product value set and (2) the analysis is based on a static decomposition of
the network. A major difference in the simulation calculation comes in the handling of X values and
their effect on the surrounding network. Bryant handles such values in a scparate stage of the
computation, using global knowledge of the network configuration to resolve values of subnetworks
connected by X transistors. (Other differences between the two approaches are discussed in Chapters
2 and 5.) The extra complexity of his algorithms results in some degradation in simulator performance

over that achieved by the simulators described here.
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APPENDIX ONE

Proof of Lemma 5.3

Lemma 53. let W X, and } be network states. If W —; X' and B = ¥, then

there cxists a network state Zsuchthat X’ — Z and ¥V — 7.
Recalling how the update operation works, it is not hard to believe that the ].emma is true. The value
of a node indicates the resistance of paths from the node to vDD and GND.  An update exchanges path
information across a switch, and the U operation ensures that information is never lost (the indicated
resistance to an input can never increase). Intuitively, an update only adds information about possible
paths to the network state, so no matter what switch is chosen for an update, one can also go back to 1
other switches latter on.

The proof is straightforward, demonstrating how a state Z can be constructed for cach possible X

and Y. The proof depends on some simple propertics of the U operation and the switch function:

AUA = 4 :
AUB = BU 4 f
a U swirch(o, a) = a (A1]) '
switch{a, switch(e. a)) = swirch(o. a)

switch(a, a U B) = switch(o. a) U swiich(o. B)

which can be verified directly from the definition of U and cquation 5.9.

|
| If the two updates leading to states X and Y invale only one switch, X' =) and the | emma is !
I




trivially true. If two separate switches are involved, there are three cases w consider which differ in

the number of nodes affecied.

(a) Casc 1 (b) Case 2 (c) Case 3
Figure ALL. Three cases in proof of 1enuna 5.3
For notational convenience, define the functions fand g to describe the cffects of switch 1 and 2
respectively:

fla)=switch(o1, a)

gla)=switch(o, a) (AL2)

Each of the two updatcs is labeled by the switch it operates on: for example, S, refers 1o an update
involving switch 1. A scquence of updates is writien as $,5,, which is taken to mean update S,.

followed by update §;.

Case 1: no nodes in common. As the following diagram indicates, when the updates have no nodes in

common, they result in the same state when applied in cither order.

sx/w\sz
X Y
NpE

Figure A1.2. State diagram when no nodes in common




- 144 -

This is shown by considering the values for nodes A, B, C. and D after cach updatc:

e ucce l A B C D
e e tE e R ) e e
..§J. o AU B B U RA) C D

S5, AUMBY | BURA)Y | CUpdn | DU O)
F;;: e —=m— eSS S e

S, A B cCuUgn | DU

S’Sl 1 AL IR BU RA) C U e DU gCy

The final states of the two sequences are the same, demonstrating the desired network state, 7.

Case 2: one node in common. As the follewing diagram indicates. when the updates have once node in

common, $15:5 is equivalent to $2515.

SI/W\S2
X Y
52| | sl

P Q
51\ Z/sz

Figure A1.3. State diagram when one node in common

This is shown by considering the values for nodes A, B. and C after each update:

sequence { A B C
5 [ AURB) BU flA) C
S, | AURB BU fIA) U #(C) C U gB U RAN

$,5,8, | AURBIUAB U A U (O

BURA U YU RA U RBY

C U (B U RA)

Sy A BU gQ) CUgh)
5.5, AU RB U g(C) BU g(C) U flA) )
$,55, | AURBU gC) BU g(C) U RA) U g(C U gB | CU B U gB U ) U AN

Using the identitics in equation Al.l, the final values of A, B, and C for cach scquence can be

simplificd to

Afinat = AU F(BYU f(g(C))
Bfnat = B U glCYV f(4A) (A13)
China = C U g(B)U g(f(A)

‘The final states of the two sequences are the same. demonstrating the desired network state, 7.

Case 3: two nodes in common.  As in Case 1, when the updates have no nodes in common, they result

in the same state when apphed in cither order. This is shown by considering the values for nodes A
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and B after cach update: "
!
I sequence I A o B
F:—?::‘if_f‘, ST ToTotTe T oD T pmmmmem R L T oI sty
r—sl [ AURB CHURA)
. T o - T —
LSSy AURBIUKBU A | BUD YA D ABY |
ISy AU ) U A
e i
L S1S; | AUAB U A) I BU gAY U RA U g(B)

Again. using the identities in equation Al.l, the final values of A and B for cach scquence can be

simiplified to

AU f(B)U g(B)
B Ug(A)U f(4)

A  final

Bfinal (A1.4)

The final states of the two sequences are the same, demonstrating the desired network state, Z. 1
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APPENDIX TWO

RSIM Calibration Tables for a Sp nMOS Process

RSIM's transistor model relies in part on three modeling resistances for each transistor in the

network:
Rswnc for calculating Vpey.
Raynton for calculating the transition time for high-to-low transitions, and
Rasnhigh for calculating the transition time for low-to-high transitions,
These resistances are chosen for each transistor on the basis of its geometry, type, and usage in the
circuit. The static resistance is chosen to obtain a good prediction for the O-output voltage of a logic
gate.  Actually this constrains only the ratio of the n-channel and pullup static resistances. so there is
considerable frecedom in choosing these values.

The dynamic resistances for cach transistor type arce specified in the following diagram. Because

of their special nature, depletion devices configured as pullups are trcated scparately from other

depletion devices.
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The tables appcar at the end of this appendix. Rgniow is not needed for a pullup, but might be
needed for other configurations of depletion devices (e.g.. if one appeared in a pulldown path). If
desired. a very high Ry niow can be specified for depletion devices to flag the use of a depletion device
in a pulldown path.

The tables below were prepared by analyzing the simple SPICE experimients proposed in section
2.4. As mentioned in that section, more sophisticated experiments might be more appropriate for
designers who wish to push RSIM to its limits. These tables are used by examples in the thesis: for
actual simulation, some of the values should be derated (incrcasing the resistance) 1o cnsure

conservative estimates.

The experiments were run using version 2G.S of SPICE with the following device models (a
typical Su nMOS process):

MODEL ENH NMOS (LEVEL=2 VTI0=1.0 PHI=0.55 GAMMA=0.4 (GSO=4 .5E-10 PB=0.85
JS=1£-18 CJ=7.2(-5 CJISW=3.6£-10 TOX=1E-7 NSUB=1.0£15 XJ=1f{-6 LD=0.7E-6
U0 =690 UCRIT=1E5 UEXP=0.12MI=0.5MISW=0.27)

MODEL DEP NMOS (LEVEL=2 VT0=-3.3 PHI=0.55 GAMMA=0.47 CGS0=4 .5¢-10 PB=0.85
JS=1€-18 C€J=7.2t-5 CISW=3.6E-10 TOX=1£-7 NSUB=1 0E15 XJ=1E-6 LD=0.7£-6
U0=690 UCRIT=1E5 UEXP=0.12MJ=0.5MISW=0.27)

Rise time is measured as the length of time needed for an output to rise from 0 volis to 2.134 volts —
the balance point of a 4:1 inverter built using this process. (Scction 3.3.1 cxplains why the balance
point is chosen as the threshold.) Fall time is the length of time needed for an output to fall from §
volts to the threshold.

Note that widths and Iengths are shown in microns. and the table values are in units of K2 per
squarc of channcl: one must multiply the appropriate table entry by the number of squares of channel

(length+width) to get a transistor’s resistance.  For table entries marked "*". no value is available
g 2

because of a SPICE bug.
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Table A2.1. Channel resistance (K2/Q1) for n-channel pulldowns

R . length

enh-thresh ' "5 7 10 120 [ 30 T 40 | 50 | 100

T T 5T 060 263 35 334l j 346 | 356
10 166 269 @ 321 | 337 346 350 | 359
; TU20 176 280 1 329 1 34 351 1355 1 355
Width 30 186 288 | 335 | 348 354 | 358 [ 364
‘ L 40 192 296 | 338 | 351357 1360 | 366 |
© S0 T 200 300 343 353 359 ﬁﬁz 36.8 |

| (1007|220, 310 | 355 3.3 %38 310 | 376

»
l
|
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Table A2.2. Channel resistance (KQ/Q) for n-channel pulldowns with threshold drops

| : length
cohsf -5 710 | 20 ' 30 : 40 | SO | 100
‘ 228 | 288 | 312 [ 325 | 335 | 367

. 231 1295 | 322 40 354 | 405
20 128 236 7308 0 343 0269 | 390 | 481
' Width | 0T 132243 1321 ] 365 1398 [ 427 | 557
| T30 136 238 1336 [ 385 1427 [464 | 633
S0 140 1255 | 350 1 40.7 | 456 | SO.1 | 709

7100 7140, 280 [ 415 [ 513 [603 | 686 | - |

Table A2.3. Channel resistance (KQ/0) for n-channel source-followers
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Table A24. Channel resistance (KQ/Q) for depletion source-followers

ST 10 20 , 30 [ 40 [ 50 [100

S 188 151 | 186 1 199 | 204 208 | 216
. 10 1 88 1152 [ 187 199 | 205 = 208 | 216
| (20 * 152 188 200 | 206 | 21.0 | 217
Width [ 30 : * 153 189 201 ; 207 | 210 | 218

! 140 % 1155 1190 201 1208 [ 211 [ 219!
L | S0, * 1155190 203 220 |

Rdep

1 1.ength
: A

e

1209 1213 ]
(100 ] * | * 195 207 1215 218 [ 225/

Table A2.S. Channel resistance (K2/0) for depletion pullups

.- B g — —
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APPENDIX THREE

Approximation for Resistor Divider and Series Resistor

As part of the incremental computation for the Thevenin equivalent of a network. it is necessary
to approximate a resistor divider and series resistance (figure Ad1(a)) by a simple resistor divider

(figure A3.1(b)).

[ApAy)

(B, B,

(a) initial network (b) approximation

Figure A3.1. 7nitial resistor network and desired approximation

As usual, cach resistance is potentially a resistance interval. An cxact choice for the modcling
resistance is impossible (as will be shown below) so the goal of this appendix is the choice a suitable

approximation,

Consider a resistor divider with pullup resistance P and pulldown resistance Q.
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(a) resistor divider {b) Thevenin equivalent

Figure A3.2. Resistor divider and Thevenin equivalent
The parameters of the Thevenin cquivalent are

Pfg and R = P |1 Q (A3.1)

Viher =

which can be rearranged as linear equations relating Ry and Vipey:
Rihey = P Vipey and  Repev = Q (1 = Vipew) (A32)

If Pand Q are intervals — P = [Py, Pp]land Q = [Q;. On] — then the Thevenin parameters also are

intervals:

o o

o+ P on v B} 4 Roe = 1P QL PA T On] (A3.3)

Vihew = 1

If one plots the Thevenin parameter values (Ripey vs. Viney). @ P and @ are varied independently
over their respective intervals, equation A3.3 suggests the resulting arca would be rectangular, but this

is not the case, as is iflustrated by the following figures.

Rl.hcv Rmcv Qh

v(hcv

(a) P. Q constant (b) P constant, Q varying (¢) Praning. Q constant

Figure A3.3. Thevenin plots as P and Q are varied one at a time

Equation A3.2 tells us that if, say. Q is held constant and 7 is varied. the plotis a straight line of slope
q ¢ P

, .
e e e e
i
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Q. which, if extended. would intersect the Ry, ants at by - 1 tsee figure AV ). When both P
and @ arc vaned (see figure A4 the plot produces 4 dumond-shaped Quadrilateral. and not a

rectangle.

(PP PoliQy

Q,Qp)
PIQ,

Ql + Ph Oh + Pl

Figure A3.4. Thevenin plot as P and Q are varied simulianeously

Although the limits of Ry and e are the ones shown in cquation A3.3. certain combinations of

Thevenin parameters permitied by the equation are clearly ruled out by the diagram above.

If a scrics resistance R is now added. the resulting Thevenin plot is shown in the following

figure.
thev
R, + Byly T
PP
(P Py [RiR)
Ry -R
QQ b N
| h] Rl + Pl"Ql b T
i - { iy vV
Q Yh 17 Tthev

Q|+Ph Oh+P]

Figure A3.5. Thevenin plot when series resistance is added

The result is not a plot of a resistor divider at all. In order to approximate the circuit by a divider, a

decision 1s needed concerning which information to preserve with the approximation.

Since the approximation under development is used 1o calculate 3. it is important to prescrve
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information about the maximum and minimum of the circuit’s voltage. This constraint fixes the right
and left vertices of the diamond. The top and bottom vertices are constrained by the choice of
resistance information (o preserve: since it is better to overestimate than to underestimate resistances,
the minimum value of Ry, is preserved. The resulting divider is shown graphically in the folowing
figure. The voltage constraints are shown as dashed vertical lines: the resistance constraint as the

circled vertex.

[ArA)

(By B R, + PlIQ, [

Q,+Py, QP

Figure A3.6. Thevenin plot showing approximating divider

The values for 4; and B; are determined by the second constraint and equation A3.2;

RI+(Q1HPI)=AI7;I—?_L@* and Rl+(Q1||P1)=BI(1—-1—,I—%L61-) (A3.4)

This fixes the two lines that form the bottom half of the diamond. Next, the values of 4, and By are
chosen so that the left and right vertices of the diamond have the same V., coordinates as in figure

AlS:

B, ] By On
= d = A3.
Ap + B Py + Q4 an At + By Pr+ Qg (A33)
Solving equations A3.4 and A3.5 for the parameters of the approximating divider yields:
Py Py Py
A = P+ R + Rj— Ap = Pp + Ri— + R—
! ! ! IQI h h ! P IQI A6
_ O _ Qn On '
B/-Q/+R/+R/PI Bh—Qh+R1Q,+R/PI
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Note that all resistances are greater than the minimum resistance of the scrics resistor (Ry). A ;
different choice of what resistance information to preserve (as was made in carly versions of RSIM), P

might cause A; and B; 1o be less than Ry, leading to pessimistic voltage predictions for some nMOS

circuits.
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