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ABSTRACT

In this report, we extend a simple graphical model for

analyzing radar homing interceptor engagements [11] to include the

radome refraction error effect and a refined miss distance

estimator. The residual radome error is treated as an additive

exponentially correlated noise with correlation time equal to the

interceptor response time. The miss distance is estimated as the

error in predicting the target cross-range position at intercept

at the range where the interceptor divert capability becomes just

insufficient to correct the distance difference between the

previous and the current predicted intercept points. The

analytical and numerical results show that the prediction error

is a strong function of the correlation time and the effect of

correlation generally increases the achievable miss distance

especially when the interceptor response time is larqe.
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I. INTRODUCTION

There is considerable interest in evaluating the performance

of homing interceptors using simple analysis techniques [1, 2].

The analytical results are generally good enough for system-level

studies and could be used as guides for complicated computer

simulations.

In [1], a simple graphical model for analyzing radar homing

interceptor engagements was presented. The model compares the

accuracy of the intercept point prediction and the interceptor

divert capability to estimate the final miss distance. At long

ranges, the interceptor can usually taKe out the prediction

error because of the long time remaining until intercept.

However, at sufficient close ranges, the interceptor is no longer

capable of fully correcting the prediction error and this

residual error is considered as a rough estimate of the miss

distance. In this model, the sensor error is treated as a white

noise and it is assumed that the interceptor responds to the

sensor prediction perfectly. (This has been called "divine

guidance.")

In this report, we extend the previous model [i to include

the boresight slope error effect and a refined engagement model.

The boresight slope error which is believed to be important to

the final miss distance is modeled as a correlated noise additive

-. .



to the measurement [3, 4]. The analytical and numerical results

show that the prediction error is a strong function of the

correlation time of the noise. Besides, the effects of

correlation generally increase the achievable miss distance,

especially when the interceptor response time is large.

The refined engagement model assumes that the sensor revises

the prediction of target position at intercept at each pulse and

the interceptor changes maneuver accordingly to get to the

predicted position. The miss distance is then regarded as the

prediction error at the range where the interceptor divert

capability becomes insufficient to correct the distance

difference between the previous and the current predicted target

positions.

In the next section, we first summarize the basic model

described in (1] in order to provide a foundation for the

following discussions. In Section 3, we describe the refined

sensor error model and the resulting prediction errors.

Section 4 describes the final miss distance model and presents

some numerical results. Finally, a conclusion is given. There

are two appendices containinq detailed derivations of the

statistical formula used in Sections ' and 4.



II. BASIC M4ODEL

In this section, we summarize the basic sensor; interceptor

and engagement models are presented in [I]. The homing sensor

tracks a target from acquisition range ra to a given range r

and predicts ahead to intercept (range=O). Based on a sequence

of measurements of the target cross-range position, z i

(i=I,..., N), at range r i with accuracy oi and assuming a

linear target trajectory model

z i = 0 + 1 r i + wi ()

where w i i=I,..., N is a sequence of uncorrelated zero-mean

A
noise, the general formula for the predicted position (a 0 ) and

A (A
the prediction error o(a0)= Var( 0) have been derived. Among

various radar error sources, we are particularly concerned with

the instrumentation error. For this error, ai=oe r i where

o 0 is the radar angular accuracy and a0 and Var (a 0 ) are

given by

N z. N z. N

2 N r ri~I r. i=1 1 i1 1

_____(2)
N i 1)2

2 N r
IN

i=1 r.
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and

2
Var(0)= N (3)

N 1 (3
-2 N r

i=l r. i- i
1

L 2spectively.

The interceptor response to a commanded acceleration is

modeled as a constant acceleration preceded by a pure time

delay, Tm, Thus, the divert capability of the interceptor at

range r is equal to

D = 1/2 a(r/vc - Tm) (4)

where vc is the closing velocity and a is the maneuver

acceleration limit.

During engagement, at an instantaneous range after

acquisition at which tracking stops and prediction starts, the

interceptor is commanded to erase the prediction error. In the

early stage of engagement, the divert capability of the

interceptor is usually more than enough to do so. However as r

decreases, the divert capability decreases faster than the

prediction error and so at some point the divert is just adequate

to take out the prediction error. Below this point, the divert

becomes insufficient. The corresponding prediction error at this

point is then considered as an estimate of the final miss

distance.

4



III. A BETTER SENSOR NOISE MODEL

In this section, we calculate the predicted target position

at intercept and the associated prediction error using a refined

sensor noise model which can take the radome refraction error

into account. We will follow the same notation as used in the

previous section.

It has been pointed out that the radome refraction error

could cause instability of the interceptor [3] and should be

compensated by an on-board computer usinq pre-calibrated look-up

tables. Even after compensation, the residual error is still

expected to influence the performance of the interceptor. This

cesidual radome error is modeled as an exponentially correlatei

noise in the look anale domain [4]. By propeL choice of error

nagnitude and correlation distance, it is possible to match the

appropriate boresite slope error distribution. In simulation,

this correlated noise can be generated by passing a white

sequence through a first order Markov process filter.

We assume that noises additive to the target cross-range

position measurements due to radome refraction are also

exponentially correlated but in the range or time domain. That

is

E [wi w] = o. . (5a)

1 J 1]
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p = exp (-At/Tc) = exp (-1/(prf*T)) (5b)

where At, equal to 1/prf, is the pulse interval and Tr is theC

correlation time. If the interceptor does not maneuver by

changing its angle of attack, the T +-. If the interceptor doesC

maneuver, then a reasonable assumption for T is that it isc

equal to the missile response time, T This is because the
mm

look angles are likely to be correlated within T m due to lack of

maneuver change but tend to vary significantly over a period

longer than r due to the new maneuver.m

Accordinq to this error model, it is shown in Appendix I
A A

that 0 and Var(O 0 ) are given by

A
a0 = a {f(r, r) f(z, 4) - f(r, z) f(r, j)} (6)

A 2 2

Var( 0 ) = 0a (1-P a f(r, r) (7)

where

= f(, f(r, r) - f 2 (r, j)1

(N-1 __ U - ~V U V
f (u , v ) = 2I r K ) r + ri + l + N 2

_ r 1 1+1 JirN

= (1,..., 1), r = (r1 ,..., rN), z = (zi,..., ZN)

6
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when a. = a, r Here a, might represent the magnitude of the
1

residual radome refraction error or the radar range-independent

(instrumentation) error. To be more explicit, var(a 0) in (7) can

be rewritten

A 
a0 (1 -p)

Var (o =2

jZ 2+~ ~(N + -4 .)1N(E - __

i=l ri ri+l rN i=1 r1 N

(7a)

Note that when P=0 (or r =0), the case of uncorrelated noise,c

the above two equations reduce to (2) and (3) as expected.

Figure 1 shows the prediction error as a function of the

instantaneous range r for several values of T using a set ofc

nominal values for r a(5 km), v c(5 km/s), prf(100) and ae( 2 rnr).

It is clear that at long ranges the correlation degrades the

prediction accuracy but starts to improve it near intercept.

This behavior can be explained as follows: The effects of

correlation are twofold. On one hand, higher correlation means

fewer independent samples and so larger a(a). On the other

hand, with short time to intercept, the higher correlation

imposes strong proportionality constraints among samples [5] and

reduces the dependence of 80 on the noise. In the limiting case

where p=1 (or" Tc=), for any given wl, the subsequent noise

samples are testricted to be

7
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a.
1

w. = w i2.,

and (1) can be written as

wI

z. = 0 + (8 + ) r.1 0 1 1

A
Clearly, the noise does not affect 80 and therefore a0 is always

A
equal to 80 and o(80)=0. At long ranges, the number of available

samples is small and so the first effect might dominate for

moderate values of p. Near intercept, many samples become

available. The first effect is less important and is overwhelmed

by the second effect. In fact, it can be shown that for

r<<v c/prf,

A - 2

U 0 a a r 1-p (8)

However, this corresponds to the region after the last

measurement.

Figures 2 and 3, in comparison to Figure 1, show the effect

of prf on the prediction error while a, is kept constant.

Generally speaking, higher prf tends to reduce the prediction

error for the case Tc = 0 but not for the other cases.
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IV. MISS DISTANCE MODEL

The intercept point predicted by the homing sensor changes

from pulse to the pulse. At the Nth pulse, the interceptor

responds to the revised prediction by maneuvering to take out the

A A
difference between a0 (N) and 0(N-1) within the remaining time

until intercept. In other words, the interceptor is commanded to

chase the predicted intercept point. During the engagement

process, the instantaneous miss distance becomes smaller and

smaller as the interceptor approaches the target. At some point

the divert capability of the interceptor becomes insufficient to

respond to the chanqe in predicted target position. At this

critical point, the prediction error can no longer be reduced and

it is considered as an estimate of the final miss distance.

The one-pulse position change at Nth pulse is a random
A A

variable. Let A N= 0 (N)-a 0 (N-1). Then, the variance of AN as

shown in Appendix 2, is given by

A A
Var(A N ) = Var( (N-1)) - Var(O 0 (N)) (9)

and it can be computed using the formula for Var(a0 in Eq. (3).

Statistically, the one-a value of AN is considered as the

distance which should be taken out by the interceptor after the

Nth pulse or range r=r a-(N-1) v c/Prf.

12
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An illustration of the engagement model is shown in

Fiq. 4 where the prediction error of the sensor ao( 0), Eq. (3)],

the divert capability of the interceptor [D, Eq. (4)1 and the

one-pulse position chanqe [a(4N), Eq. (9)] are plotted as

functions of the range r. At very short range, o(4N ) is larger

than o($). This is because the relative change in a. between

pulses is significant. As long as the time between pulses is

much shorter than the missile response time, this effect does not

influence the miss distance. The critical point where the divert

and position change curves cross over each other is designated as

"A". The corresponding miss distance, M, defined as the predic-

tion error at this time is .4 meter.

Based on the above described miss distance model, sample

numerical results are presented in the followinq. The nominal

operating point of the enqaqement is assumed to be r = 5 km,a

vc=5 km/s, 0,= 2 mr, prf = 100, T = 40 ms and a = 40 q. The

miss distance variations corresponding to certain excursions of

Cot Tm, a, and prf are shown in Figures 5-8, respectively. Two

cases are considered in each figure, uncorrelated noise and

correlated noise. In the latter case, the correlation time is

set equal to the missile response time, i.e. t = mc in

Two observations are very distinct from these figures.

Firstly, the miss distance increases when a, becomes larger, when

13



T becomes lonqer, when a becomes smaller or when prf becomesm

lower. The chanqes are more prominent for the case of correlated

noise. Secondly, the effect of correlation deqrades the

achievable miss distance in all cases under consideration. The

deqrees of deqradation vary but they are particularly siqnificant

if T is larqe or if a is small.

m

14
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V. CONCLUSION

We have modified the basic model of a radar homing

engagement presented in (11 to include the boresight error effect

and a refined miss distance model. The boresiqht error is

treated as an exponentially correlated random noise additive to

the target position measurement. The final miss distance is

estimated as the prediction error at the range where the divert

capability of the interceptor is just sufficient to erase the

chanqe in predicted intercept points from the previous to the

current predictions. Numerical results show that the effect of

correlation generally increases the achievable miss distance,

particularly when the interceptor response time is large or when

the acceleration limit is small. Finally, we would caution the

reader that even with some modifications on the basic model, the

model described in this report is still very simplified and

should be used to give a lower bound on achievable miss distance.

20
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APPENDIX A: Derivation of Prediction Error Formula

In this appendix, we will derive Eqs. (6) and (7) of

Section 3. They are actually obtained as a special case of a

rather general approach. Given a sequence of measurements z i

(i=l,..., N) at r. and a linear regression model
1

z i = a0 + a1 r i + w i  =(Al)

where wi is the corruption noise; the problem is to estimate a0

and a En vector-matrix form, (Al) can be rewritten as

z Xa + w (A2)

where

z = (z I  ..., zN )t

w (w 1 ,..., wN)t

= ( 5 0 ,%1)t (
-- (A3)

x = (1, r)

• j (1, .. , 1)t

r r = rN)t

21
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Let W denote the covariance matrix of the noise sequence,

i.e.,

W = E(w w
t

Then, according to the well-known Gauss-Markov theorem [6], the
A

best linear unbiased estimate of , denoted by 1, is given as

A t -1 - I t -1
a ( W X) X W z (M)

A
and the covariance of a is

A -1 -I
cov() = (Xt W X) (A5)

(A4) and (A5) can be simplified if W possesses the special

structure that

2 N-i

2 N-2oI  o2  D 02  .... 0

iW 
(A6)

N-i N-2 2
O1 N 0 2 ON P N

as described in Section 3. It is easy to see that W in this case

can be decomposed into

22
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W =D V D (A7)

where

D = diag (i,..., ON) (AS)

and

N-I

..... N-2

V= (A9)

N-I N-2

By direct substitutions and using the fact that [7]

2
-i 2 - I+Q -P
V (A10)

I-2 .. I+ 2

0 -P 1

A A
both a and cov(_0) can be expressed explicitly without the matrix

A A
inversions. Specifically, 00 and var(O 0 are given by

23



A
a 0 = a If(r, r) f(z, 4) - f(r, z) f(r, 4) (All)

A 2
var(O 0 ) = (1-p ) a f(r, r) (A12)

where

a= { j( 4) f(r, r) - f2(r, 4)1-1

N- U Q+. V. Qv.~ +U02

f (u, V) + 0 1 0 211 i ii+ N

For the case that ui r with a, being a constant (All) and

(A12), reduce to (6) and (7) of Section 3.

24



APPENDIX B: Derivation of Formula for Intercept Point

Prediction Change from Pulse-to-Pulse

In this appendix, we will derive Eq. (9) of Section 4 using

the observation model described by (A2) and (A6). Two subscripts

"N" and "N-i" will be used to denote quantities constructed from

A A
N and N-i measurements, respectively. For example, aN and a

denote the estimates of 6 at the Nth pulse and the (N-1)th

pulse. During the derivation, three important relationships are
A

obtained in order: (1) coy (IN) can be computed recursively, (2)

A A A ,
coy ( aN -_I )  coy (aN) and (3) coy NhNI coy (_N) -

-N~~~~- -1 N N--A
coy B SN

From (A5), we have

A t -1
cov(_N) = (XN WN XN) ()

W-i
Both XN and W can be partitioned as follows:

X = (X -) (B2)

W-1 D-1 -1 D-1
N N N N

25



0

()() )r_ -v- -+ - - /-1 ° -
0 -i 1 O 0 o- 1N 2 2 N

i-P 2  i-p

SWN-1 + T  ,f

- ( - - (B3)
ft

f g

where

t r (B4a)

S = (1 0

0p2

T = S / 2 (B4c)
0N-i

ft = (0 ... 0, -0 (B4d)

- N GN-
1

2[(l_02 02 -I (B4e)

N

Substituting (B2) and (B3) into (BI) and carrying out the matrix

manipulation yields

26



A -1T ft +
cov(O N) =(N-i N-i XN-1 + X N- 1T N-1+ - N-1i

X -f P t + p g p t)- (B5)

By direct matrix Multiplications and summation, it can be shown

that the summation of the last four terms within parentheses of

(85) is equal to

1 t

1-P2 N 2N

where

P 1

N-1I N

q N 0r N- r N(B6)

2
N-1i N

There fore

A t -1 t -1
cov(a N) (XN-1 W 1  Xi + q 3N %)

= XN-1i N-i XN-1) -N

A
- COV a N-1) - N (B7a)

27



where

1_2)-1 A t A
(1-2) -  cov( 1 ) q q cov( _

QN = l -N -N-i (87b)
2-1 t A

1(1-P q cov(S 1  q

In the above, the well-known matrix inversion lemma [7] has been

used. A A
Next, we will show that the covariance between a and a

A A A
cov(ON, N_1), is equal to cov(_ ). Let

U (Xt WN1 XN t W_ 1 (B8)

Then the following relationships are immediate:

A t -
U= cov(BN) XN WN
-N = UN' N N

8 U NzN

UN XN = I

Using these equations, we have

A A A A
cov( N a E 3_ - U) t

= E{UNi (Z N-I XN_1 ) ( N  XN a 8 t U} (B9)

= U E w N-i (Bi0)

It is easy to see that

E 1wNi w} = (WN _ h)

28
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where

h t  (o I 
0N pN--1 Nh , . . . . . a N -_ I  N  P )

and, using (B2) and (B3),

W- + T f

(B11)

A t - t Tt t
!N) (XN-1 W 1  N T 1 p

Substituting (B1O) and (B11) into (B9) and carrying out the

matrix manipulations, (B9) can be reduced to

A A A t -I t t
cov(13w , a [I + cov( 8l [X J(W~- h-

-1 g + f) pt

I(N) ( 1 I N ! t  t xt + N).

By direct expansions, it can be shown that

- t 1tWN1h -

and

N I  g = -f

Therefore we have

A A Acov(_ON ,  N-l1 cov(_N). (B12)

Now, we are ready to obtain Eq.(9) of Section 4. Since
A A

E(O N) E(N_) =- O, we have

29
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AAAA. A t
covU~ N1 E{U9 (- -N- ~ N N-1 ( 3l))

A + A A A
=cov( a + cov (8 ) a 2 cov(~N B N1 B3

Using (87) and (B12), we have finally

A A A A
lcov(%a a cov(Sa cov(N) 0  (B14)

30
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