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ABSTRACT

In this report, we extend a simple graphical model for

analyzing radar homing interceptor engagements [1] to include the
radome refraction error effect and a refined miss distance
estimator. The residual radome error is treated as an additive

exponentially correlated noise with correlati?n time egual to the
interceptor response time. The miss distance is estimated as the
error in predicting the target cross-range position at intercept
at the range where the interceptor divert capability becomes just
insufficient to correct the distance difference between the
previous and the current predicted intercept points. The
analytical and numerical results show that the prediction ervor
is a strong function of the correlation time and the effect of

correlation generally increases the achievable miss distance

especially when the interceptor response time is large.
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I. INTRODUCTION

There is considerable interest in evaluating the performance
of homing interceptors using simple analysis techniques [1, 2].
The analytical results are generally good enough for system-level
studies and could be used as guides for complicated computer
simulations.

In [1], a simple graphical model for analyzing radar homing
interceptor engagements was presented. The model compares the
accuracy of the intercept point prediction and the interceptor
divert capability to estimate the final miss distance. At long
ranges, the interceptor can usually take out the prediction
error because of the long time remaining until intercept.
However, at sufficient close ranges, the interceptor is no longer
capable of fully correcting the prediction error and this
residual error is considered as a rough estimate of the miss
distance. In this model, the sensor error is treated as a white
noise and it is assumed that the interceptor responds to the
sensor prediction perfectly. (This has been called "divine
guidance.")

In this report, we extend the previous model [1] to include
the boresight slope error effect and a refined engagement model.

The boresight slope ercnr which is believed to be important to

the final miss distance is modeled as a correlated noise additive




to the measurement [3, 4]). The analytical and numerical results
show that the prediction error is a strong function of the
cocrrelation time of the noise. Besides, the effects of
correlation generally increase the achievable miss distance,
especially when the interceptor response time is large.

The refined engagement model assumes that the sensor revises
the prediction of target position at intercept at each pulse and
the interceptor changes maneuver accordingly to get to the
predicted position. The miss distance is then regarded as the
prediction error at the range where the interceptor divert
capability becomes insufficient to correct the distance
difference between the previous and the current predicted target
positions.

In the next section, we first summarize the basic model
describced in [1] in order to provide a foundation for the
following discussions. In Section 3, we describe the refined
sensor error model and the resulting prediction errors.

Section 4 describes the final miss distance model and presents
some numerical results. Finally a conclusion is given. There

are two appendices containing detailed derivations of the

statistical formula used in Sections ? and 4.




II. BASIC MODEL

In this section, we summarize the basic sensor; interceptor
and engagement models are presented in [1]. The homing sensor
tracks a target from acquisition range ry to a given range r
and predicts ahead to intercept (range=0). Based on a seguence
of measurements of the target cross-range position, zj
(i=1,..., N), at range rj with accuracy o; and assuming a

linear target trajectory model
zi = Bg + By rj + wj (1)

where wj 1=1,..., N is a sequence of uncorrelated zero-mean
noise, the general formula for the predicted position (@b) and
the prediction error o(@b)= ‘\’Var(@b) have been derived. Among
various radar error sources, we are particularly concerned with
the instrumentation error. For this error, oj=op rj where

og is the radar angular accuracy and By and Var (B83) are

given by

' (2)




and

A
var (Bo)=

3

(N_})z (3)
.o,
i

[ e i-4

A
. 2
i=1 r.
1
Lespectively.

The interceptor response to a commanded acceleration is

modeled as a constant acceleration preceded by a pure time
delay, Tp. Thus, the divert capability of the interceptor at

range r is equal to
D = 1/2 al(c/ve - Tg) (4)

where2 vs is the closing velocity and a is the maneuver
acceleration limit.

During engagement, at an instantaneous range after
acquisition at which tracking stops and prediction starts, the
interceptor is commanded to erase the prediction error. In the
early stage of engagement, the divert capability of the
interceptor is usually more than enough to do sn. However as r
decreases, the divert capability decreases faster than the
prediction error and so at some point the divert is just adequate
to take out the prediction error. Below this point, the divert
becomes insufficient. The corresponding prediction error at this

point is then considered as an estimate of the final miss

distance.




III. A BETTER SENSOR NOISE MODEL

In this section, we calculate the predicted target position
at intercept and the associated prediction ervor using a refined
sensor noise model which can take the radome refraction error
into account., We will follow the same notation as used in the
previous section.

It has heen pointed out that the radome refraction error
cnuld cause instability of the interceptor [3] and should be
compensated by an on-board computer using pre-calibrated look-up
tables. Even after compensation, the residual error is still
expectaed to influence the performance of the interceptor. This
residual radome ervor is modeled as an exponentially correlated
noise 1in the 1look anale domain [4]. By proper choice of error
magnitude and correlation distance, it 1is possible to match the
appropriate boresite slope errvor distribution. 1In simulation,
this correlated noise can be generated by passing a white
sequence through a first order Markov process filter.

We assume that noises additive to the target cross-range
position measurements due to radome rafraction are also
exponentially correlated but in the range or time domain. That

is

- j-i
E [w, wj] = 9 oj p‘ | (5a)

(¥
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p = exp (-at/7T ) = exp (-1/(prf-t.)) (5b)

where At, equal to 1/prf, is the pulse interval and TC is the

correlation time. TIf the interceptor does not maneuver by
changing its angle of attack, the T If the interceptor does
maneuver, then a reasonable assumption for Tc is that it is
equal to the missile response time, Tn* This is because the
look angles are likely to be correlated within Tn due to lack of

maneuver change but tend to vary significantly over a period

longer than Um due to the new maneuver,

According to this error model, it is shown in Appendix I

A A
that BO and Var(Bo) are given by

A . .
Bop = « {f(r, r) f(z, j) - f(x, z) f(r, j)} (6)
AT 2
Var(B,) = o (1-07) a f(r, r) (7)
where

N’




o Y

when o, = Ogr,. Here o might represent the magnitude of the

"

residual radome refraction error or the radar range-independent
(instrumentation) error. To be more explicit, var(éh) in (7) can

be rewritten

et aiiac L b

Note that when p=0 (or TC=O), the case of uncorrelated noise,
the above two equations reduce to (2) and (3) as expected.
Figure 1 shows the prediction error as a function of the
instantaneous range r for several values of Tc using a set of
nominal values for ra(S km), vc(S km/s), prf(100) and 09(2 mr).
It is clear that at long ranges the correlation degrades the
prediction accuracy hut starts to improve it near intercept.
This behavior can be explained as follows: The effects of
correlation are twofold. On one hand, higher correlation means
AN

fewer independent samples and so larger 0(80). On the other

hand, with short time to intercept, the higher correlation

imposes strong proportionality constraints among samples [5] and

reduces the dependence of @b on the noise. 1In the limiting case

where p=1 (or Tc=“), for any given Wi the subsequent noise

samples are testricted to be
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and

is always

0
A
and c(BO)=0. At long ranges, the number of available

A
Clearly, the noise does not affect BO and therefore B8
equal to BO
samples is small and so the first effect might dominate for
moderate values of p. Near intercept, many samples become
available. The first effect is less important and is overwhelmed
by the second effect. 1In fact, it can be shown that for
r<<vc/prﬁ
A 2

o(By) = 04 X 1-p . (8)
However, this corresponds to the region after the last
measurement,

Figures 2 and 3, in comparison to Figure 1, show the effect
of prf on the prediction error while 9g is kept constant,
Generally speaking, higher prf tends to reduce the prediction

error for the case 1, = 0 but not for the other cases.
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IV. MISS DISTANCE MODEL

The intercept point predicted by the homing sensor changes
from pulse to the pulse. At the Nth pulse, the interceptor
responds to the revised prediction by maneuvering to take out the
difference between QO(N) and @b(N-l) within the remaining time
until intercept. 1In other words, the interceptor is commanded to
chase the predicted intercept point, During the engagement
process, the instantaneous miss distance becomes smaller and
smaller as the interceptor approaches the target. At some point
the divert capability of the interceptor becomes insufficient to
respond to the change in predicted target position. At this
critical point, the prediction error can no longer be reduced and
it is considered as an estimate of the final miss distance.

The one-pulse position change at Nth pulse is a random
variable. Let AN=QB(N)-QO(N—1). Then, the variance of 4. as

N

shown in Appendix 2, is given by
A A
Var(AN) = Var(BO(N—1)) - Var(BO(N)) (9)

and it can be computed using the formula for Var(@b) in Eq. (3).
Statistically, the one~o value of AN is considered as the
distance which should be taken out by the interceptor after the

Nth pulse or range r=ra-(N-1) vc/prf.

12




An illustration of the engagement model is shown in
Fig. 4 where the prediction error of the sensor [0(80), Eq. (3)],
the divert capability of the interceptor [D, Eq. (4}]} and the
one-pulse position change [o(AN), Eq. (9)] are plotted as
functions of the range r. At very short range, o(AN) is larger
than 0(80). This is because the relative change in 9, between
pulses is significant. As long as the time between pulses is
much shorter than the missile response time, this effect does not
influence the miss distance. The critical point where the divert
and position change curves cross over each other is designated as
"A", The corresponding miss distance, M, defined as the predic-
tion error at this time is .4 meter.

Based on the above described miss distance model, sample
numerical results are presented in the following. The nominal
operating point of the engagement is assumed to be r = 5 km,

VC=5 km/s, 04= 2 mr, prf = 100, T 40 ms and a = 40 g. The
miss distance variations corresponding to certain excursions of
Py Tm’ a, and prf are shown in Figures 5-8, respectively. Two
cases are considered in each figure, uncorrelated noise and
correlated noise. 1In the latter case, the correlation time is
set equal to the missile response time, i.e. W= Tne

Two observations are very distinct from these fiqures.

Firstly, the miss distance increases when 9 becomes larger, when

13




T becomes longer, when a becomes smaller or when prf becomes
lower. The changes are more prominent for the case of correlated
noise. Secondly, the effect of correlation degqrades the
achievabhle miss distance in all cases under consideration. The

degrees of deqradation vary but they are particularly significant

if T is large or if a is small.

14
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V. CONCLUSION

We have modified the basic model of a radar homing
engagement presented in {1} to include the boresight error effect
and a refined miss distance model. The boresight error is
treated as an exponentially correlated random noise additive to
the target position measurement. The final miss distance is
estimated as the prediction error at the range where the divert
capability of the interceptor is just sufficient to erase the
change in predicted intercept points from the previous to the
current predictions. Numerical results show that the effect of
correlation generally increases the achievable miss distance,
particularly when the interceptor response time is large or when
the acceleration limit is small. Finally, we would caution the
reader that even with some modifications on the basic model, the
model described in this report is still very simplified and

should be used to give a lower bound on achievable miss distance.
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APPENDIX A: Derivation of Prediction Error Formula

In this appendix, we will derive Egs. (6) and (7) of

Section 3. They are actually obtained as a special case of a

rather general approach. Given a sequence of measurements zj

(i=1,...,

where Wy

and 81.

I

where

| N
[]

€
I

(R
W

Iy
]

N) at £y and a linear regression model
Y. + W, i=1,...,N (A1)

is the corruption noise; the problem is to estimate 80

In vector-matrix form, (A1) can be rewritten as

XB + w (A2)

(21,..., zN)t
(w1,..., wN)t
(BgrBp)° (A3)
(3, ©)

(1,000, Nt

(r1,..., rN)t

21




Let W denote the covariance matrix of the nolse sequence,

W= Ewu)

Then, according to the well-known Gauss-Markov theorem [6], the

A
best linear unbiased estimate of B, denoted by B8, is given as

& A - - -
; B (xt Wl x) Txtwl 2 (A4)
. AN
and the covariance of B8 is
A - -
cov(®) = (xtw !l x) (AS5)

(a4) and (A5) can be simplified if W possesses the special

structure that

2 g. o g. o pN—l

1 9 9,° 1 N

g. o 9.2 0. O N2
A 1%° 2 2 °n !
B W = . L. . (A6)
:t . . - .
~‘.'
' N-1 N-2 2

o) g

‘ 9 ON 02 ON P N

as described in Section 3. It is easy to see that W in this case

can be decomposed into

22
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W=DVD (A7)
where
D = diag (01,-00' oN) (As)
and
1 b e N7t
_ L e pN—2
V = . . . (A9)
»N—l kM_Z ..... 1

By direct substitutions and using the fact that [7]

1 - O
2 .
-1 1 P, M -P
\Y = ——5 . ° - > (Alo)
1-p ) 1+p
O -0 1

A A
both 8 and cov(B) can be expressed explicitly without the matrix

A A
inversions., Specifically, BO and var(Bo) are given by

23




A
B = @ {£(x, r) f(z, 3) - £(r, z) £(x, i)} (A11)

A
var(B,) = (1-9%) @ £(r, ) (A12)

where

a = {£(3, 3) £z, ) - £z, DI

N-1 u, 0 u. v, o v. u. v
. i i+l 1 1+] 2 N N
fu, v) = {.L (O. 5 ) ('o—l-'- 5 )}+ (1-p) 5

i=1 i i+l i+1 oN

For the case that o, = Og T'; with 9g being a constant (Al11) and

(A12), reduce to (6) and (7) of Section 3.
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APPENDIX B: Derivation of Formula for Intercept Point
Prediction Change from Pulse-to-Pulse

In this appendix, we will derive Eg. (9) of Section 4 using
the observation model described by (A2) and (A6). Two subscripts
"N" and "N-1" will be used to denote quantities constructed from
N and N-1 measurements, respectively. For example, @N and @&_1
denote the estimates of B at the Nth pulse and the (N-1)th
pulse. During the derivation, three important relationships are

A
obtained in order: (1) cov (EN) can be computed recursively, (2)

e Bup = cov B o £
cov (XN’ By-q) = cov (By) and (3) cov (fy=By ;) = cov (B ;)
cov (EV).
From (A5), we have
A t ., -1 -1
cov(EN) = (XN WN xN) ({B81)

Both X and WN—1 can be partitioned as follows:

AN-1
p




ST =R T

-1 -1
DN_l : O VN_l + S
= - - -_ - r -— - Ll D T T —"
O ! o-l Q -- il
| N l_'02
-1 !
Wy ¥T ¢ £
S _o_ .
t |
£ 19
where
pr = (1, 1y
0 O
s = '0 p2
O —
1-0
T=5/ oN_l
£t = (O, OI 2 -6 )
(1-09) oy o,
2 2 -1
g = [(1-pT) oy 1
Substituting (B2) and (B3) into (B1)

manipulation yields

]
|
1
]
¢
|
|
\
¢
e .
]
|
!

(B3)

(B4a)

(B4b)

(B4c)

(B4d)

(Bde)

and carrying out the matrix




it Lo

tooalox. o+ xE LT X

(Xn-1 n-1

A
cov(EN)
t t -1
Xgo1 £ B°+p g p°) (85)

By direct matrix multiplications and summation, it can be shown
that the summation of the last four terms within parentheses of

(B5) is equal to

1 q qt
1-p2 TN =N
where
b - 1
N-1 N
Q = (B6)
9] rN—l _ iﬂ
2
QN—l ON
Therefore
A _ et -1 1 t, -1
cov(By) = (Xyq Wyog Xyog * 72 W !
_ t -1 -1 _
(Xn—1 Wnoq Xn-y) Oy
= cov(By 4} - Q (B7a)
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_Vf'<‘.:,,k.

V1Y WAL

where

2. -1 A t A
_]_-
o (1=07) = cov(By 1) gy g cov(B -1
N PR . (B7b)
1+ 105 gtcov® ) g
N N-1" =N

In the above, the well-known matrix inversion lemma [7] has been

used.

. . A A
Next, we will show that the covariance between EN and 8“-1'

A A . A
cov(EN, B“_1), is equal to cov(jN). Let

0

-1 -1t -1 (88)

Then the following relationships are immediate:

u. = cov(@ ) xt w"
N -N N N
A

By = Uy 2y

UN XN = I .,

Using these equations, we have

cov(Bys By_p) 2 {8y, - 8 (By - 8 |
= Elug_y (2Zgqm Xyoy B (2y - %y 87 0" (B3)
= Uy, Elwg_, wel Uy - (B10)
It is easy to see that
E {wy wy ! (Wy_y: h)

23




where

N-1
ht = (o0, o, P reecer 99 1 % P)

il b

and, using (B2) and (B3),

[}
. wN—l+T‘; f
Uy = €ov(By) (g 3 @ P) | ~oommemeee dmmmeee
t 1
£ R
(B11)
t -1 t t !

cov(gh) (X

t
N-1 -y P Xy TR E Xy, Erpa)

Substituting (B10) and (B11) into (B9) and carrying out the

matrix manipulations, (B9) can be reduced to

A A A t -1 t t
cov(Byr By q) = {1 + cov(By ;) [Xg_y(Wgl, h £+ T7) X,
t -1 t A
; + Xg_y Wy, h g+ £) p) } cov(8.).
Y By direct expansions, it can be shown that
-1 £ _ _nt
} Wy-y B E7 = T
¥ and
' "l hg = -f
-1 B9 =-L.
Therefore we have
A A A
cov(EN, EN—I’ = cov(fN), (B12)

Now, we are ready to obtain Eq.(9) of Section 4, Since

A
= E(EN_1) = B, we have




cov(/_B\N- EN—1) = E{[(_/E\N- 8) - (-/-\N—1- 8)1] [(é\N' 8) (_B/_\N_1-§)]t}
- A A A A :
= cov(BN) + cov(BN_1) - 2 cov(BN, BN-‘I)' (B13)

Using (B7) and (B12), we have finally

4
A
[ cov(By - /B_\N_1) = cov(@N_1) - cov(é\N) = Oy (B14)
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