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INTRODUCTION

The strain behavior of thick-wall cylinders with a single fatigue crack
grown from a longitudinal slot machined at the inner surface has been
described previously.1 It was shown that measurement of the strain on the
outside surface directly over the crack gave an indication of how near the
cylinder was to fatigue failure. It was found that as the crack deepens, the
strain directly over the crack diminishes from the Lame” strain expected in an
uncracked cylinder and approaches zero strain in a regular manner with
increasing depth. When this strain reaches zero or becomes compressive the
fracture of the cylinder is imminent. During this time the pressure within
the crack is exerting a bending moment on the remaining ligament as well as
adding to the circumferential tension; and the compressive strain on the
outside of the ligament becomes greater than the circumferential tensile
strain. When the remaining ligament finally becomes thin enough the tension
in it once again exceeds the bending strains and stretches the ligament to
failure causing failure of the cylinder. A plot of this strain versus crack

depth may be used to anticipate the failure.

OBJECT
The object of this report is to show that the strain behavior of
cylinders containing multiple notches or cracks is similar to the single notch

case and may be analyzed the same way. A series of cylinders with 20 inch

1Throop, J. F. and Fujczak, R. R., "Strain Behavior of Pressurized Cracked
Thick-Walled Cylinders,” Experimental Mechanics, The Society For Experimental
Stress Analysis, August 1982, pp. 277-286.



(500 mm) long notches were tested. Three of them had two notches, 180 degrees
opposed. One had zero percent overstrain (0S), one was subjected to 30
percent 0S, and one was subjected to 60 percent OS. Also, one cylinder with
four notches, 90 degrees apart, with zero percent OS was tested. For
comparison the data for a cylinder with a single notch and zero percent 0S is
repeated from the earlier study.

The comparison of the dual notched cylinders will show the improvement in
fatigue life brought about by autofrettage overstrain. The comparison of the
single notch, dual notch, and quadruple notch will show if the dual notch is
the worst case, as has been predicted analytically for the straight-fronted
crack. Of course, these 20 inch (500 mm) long notches start off as straight-
fronted cracks, but soon become semi-elliptical because they grow fastest at
mid-length.

For each case, we present graphs of crack depth versus number of cycles,
of crack rate versus crack depth, and of crack depth versus distance from the

top of the specimen, as well as the graph of hoop stress versus crack depth.

THEORY
The stress and strain on the outside surface and the stress on the inside

surface may be calculated by the following equations:2

0Q = P ==—g=————5- on outside surface (1)

2Timoshenko, S. P. and Goodier, J. H., Theory of Elasticity, Third Edition,
McGraw-Hill Book Company, New York, 1970, pp. 68-71.




Eigh ™ = S=sv =27 on outside surface (2)
E (R12 - Rlz)

(Rz2 + Rlz) @

0y = P ———g—————p— on outside surface 3
L (Ry2 - Rp2)

An idealization presented by Shannon3 assumes wall thinning represented
by an effective increase of the internal radius of the cylinder to include the
deepest crack depth, with the pressure-bending effect applied as a moment on a
section of depth equal to the remaining wall thickness of the cylinder. Thus,
the equations for stress and strain on the outside surface of a cracked
cylinder are as follows.

Uniform thinning and pressure-bending approximation for stress and strain

in the cylinder with internal longitudinal straight—-fronted crack of depth a =

(Ry - Ry):3
2PR 2 3P(Ry, - R1)(Ry - Rp)
0= GEZ IR Ry - R (4)
90
€Q = == (5)

This idealization gives the nature of the decrease in the strain directly
over the crack. The actual decrease occurs more slowly with crack depth

because the fatigue cracks do not remain straight-fronted.

3Shannon, R. W. E., “"Crack Growth Monitoring by Strain Sensing,” Pressure

Vessels and Piping, (1), Applied Sciences Publishing Ltd., England, 1973, pp.
61-73.



SPECIMENS, INSTRUMENTATION, AND PROCEDURE

The strains on the external surface of 30 inch (0.76 m) long cylinders of
high-strength steel were measured with bonded foil strain gages while
pressurized in steps from zero to 48 ksi (330 MPa). The cylinders had a 7.1
inch (180 mm) bore diameter with 14.25 inch (362 mm) outside diameter and were
fatigue cracked from longitudinal notches. The internal notches in all these
specimens were 20 inches (508 mm) long, 1/4 inch (6.4 mm) deep, and 0.030 inch
(0.762 mm) wide produced by electrical discharge machining. The external
strains on the periphery at midsection of the cylinders were measured at crack
depths of 1/4 inch (6.4 mm) to 3 inches (76 mm) measured from the bore,
generally at intervals of 1/2 inch (13 mm) measured periodically by means of
ultrasonic pulses reflected from the leading edge of the crack.

The gages were mounted circumferentially directly over each notch line.
Strain measurements were made under static pressurization using a null-
balancing technique. They were made on non—autofrettaged cylinders, and on
autofrettaged cylinders of two different percent overstrain values. The
percentage overstrain is the portion of the wall thickness which has exceeded
the material yield strength during the prestressing by overpressurization.

The bore of the cylinder was partially filled with a cylindrical steel
mandrel which supported the end closures, leaving the cylinder in essentially
the open~end condition. A synthetic hydraulic oil was used as a pressurizing
medium, filling the remainder of the cavity including the notches. Fatigue
cracks grown from the initial notches were monitored for depth and shape with
ultrasonics periodically as the cylinder was repeatedly pressurized from 4 ksi

(28 MPa) to 48 ksi (330 MPa). The growth of fatigue cracks in cylinder




specimens is described by Throop4 and the 175 mm fatigue specimens, end
packing, and ultrasonic crack-depth measurements are described by Davidson,

et al.”

SPECIMEN AM2437B

We compared the fatigue behavior of the cylinders having multiple cracks
with that of specimen AM2437B, a single-notch cylinder which had no auto-
frettage overstrain. It was tested in an earlier investigation and failed at
1,500 cycles. The crack depth, a, versus number of cycles is plotted in
Figure 1.

The crack propagation rate, da/dn, is plotted versus the crack depth, a,
in Figure 2. The range of crack rate goes from 10—4 in./cycle at a = 0.25
inch to 1072 in./cycle at a = 1.3 inch (33 mm) in a nearly linear manner on a
log-log plot.

Figure 3 is a plot of the strain directly over the notch versus the crack
depth. Starting at the theoretical strain of 1056 pin./in. for the uncracked
cylinder at 48,000 psi (330 MPa) pressure, it decreases to zero at the crack
depth of 1.3 inch (33 mm), goes into compression briefly and then back sharply
into tension as the ligament approaches failure at Nf = 1,500 cycles.

Compared to the curve for the approximation for a straight-fronted crack,

4Throop, J. F., "Fatigue Crack Growth in Thick-Walled Cylinders," Proceedings
of National Conference on Fluid Power, XXVL, NCFP, Chicago, 1972, pp.
115-131.

5Davidson, T. E., Throop, J. F., and Reiner, A. N., "The Role of Fracture
Toughness and Residual Stresses in the Fatigue and Fracture of Large Thick-
Walled Pressure Vessels," Proceedings of National Conference on Fluid Power,
XXVL, NCFP, Chicago, 1972, pp. 102-114.



which goes to zero strain at 0.85 inch (22 nm) crack depth, the graph shows
the effect of the increasing curvature of the crack front.
Figure 4 shows how the crack front changed shape, particularly during the

last cycle hefore firing.

SPECIMEN AM3244B

Specimen AM3244B with zero precent OS and dual notched 180 degrees apart
endured 1,143 cycles. One of the notches grew a fatigue crack to 1.15 inch
(29 mm) while the other notch only reached 0.65 inch (17 mm) as shown in
Figure 5.

The faster crack went from a da/dn of 10~" in./cycle at 1/4 inch (6.3 mm)
depth to over 5 x 10~2 in./cycle at 1.15 inch (29 mm) depth as shown in Figure
6.

The strain over the deepest crack decreased from 1056 pin./in. to zero at
a crack depth of 1.18 inch (30 mm) as shown in Figure 7. The strain over the
other crack decreased to 450 pin./in. at 0.65 inch (17 mm), which put it on i
the curve for a straight-fronted crack. However, this crack ceased to grow
beyond 0.65 inch (17 mm).

Figure 8 shows the change of shape of crack #1 and crack #2 in the last
few cycles. Crack #2 perforated the wall with a 17 inch (432 mm) crack as

shown.

SPECIMEN A2341B
Specimen A2341B was a four-notch cylinder with notches at zero degrees,
90 degrees, 180 degrees, and 270 degrees. All were 20 inches (0.5 m) long,

1.4 inch (6.3 mm) deep, and machined with a 30 nil EDM cutting tool. Crack #1 ’



at zero degrees grew the fastest, as shown in the plot of crack depth versus
number of cycles, Figure 9. Crack #3 at 180 degrees was nearly as fast, but
did not go to failure, while crack #2 and crack #4 at 90 degrees and 270
degrees respectively, grew slowly and ceased to grow at a shallow depth.

Figure 9 shows that crack #l grew continually at an ever increasing rate
until failure occurred at 1,463 cycles. Cracks #3, #4, and #2 grew at lesser
rates. The graph of da/dn versus crack depth in Figure 10 shows that crack #1
went from just under 10~ in./cycle (2x10™° m/cycle) to just under 10-! in./
cycle (2x10™3 m/cycle).

In Figure 11 the strain measured with a gage directly over the dominant
crack decreased steadily from the Lame” strain for an uncracked cylinder until
it reached zero strain at about 1.3 inch (33 mm) crack depth. It went
negative for a short distance until it reached 1.4 inch (36 mm) crack depth
when it went positive and the crack perforated the cylinder at 1,463 cycles.

Figure 12 shows the final shape of the four cracks.

SPECIMEN MB3244B

Specimen MB3244B with 30 percent OS and dual notches 180 degrees apart
endured 3,973 cycles, a factor of 3.5 times the number for zero percent
overstrain. The graph of crack depth versus number of cycles is shown in
Figure 13.

The crack rate went from 10~ in./cycle (2.5x10"° m/cycle) at 1/4 inch
(6.3 mm) crack depth to 2 x 10~2 in./cycle (5x10™" m/cycle) at three inches
(76 mm) crack, with a plateau at about 1.6 x 10™* in./cycle (4x107° m/cycle)
between 0.3 and 0.5 inch (7.62 and -12.7 mm) crack depth, followed by a steep

rise between 0.5 and 1.0 inch (12.7 and 25.4 mm) crack depth. This is the



rate of the faster crack, as shown in Figure 14. 1In Figure 15 the strain over
crack #2 decreased from 1056 pyin./in. to zero at 1.23 inch (31.2 mm) crack
depth, The strain over crack #1 decreased to 460 pin./in. at 3,780 cycles and
0.90 inch (22.9 mm) crack depth.

In Figure 16 the change in shape during the last two hundred cycles is
shown. Crack #1 grew a little, but crack #2 grew rapidly to perforate the

wall.

SPECIMEN B2341B

Specimen B2341B is a dual-notch cylinder with 60 percent overstrain. We
could not cause it to fail because of leaks in the end seals. The cracks were
grown to 0.8 inch (20 mm) and 0.95 inch (24 mm) at 9,836 cycles. A reasonable
extrapolation of the crack growth curve, as shown in Figure 17, would allow
the fatigue life of the tube to be about 11,500 cycles, a factor of ten times
the 1ife of the non-autofrettaged dual-notch cylinder.

Figure 18 shows that when cracking was initiated it started increasing
rapidly at first, followed by a plateau at 10~% in./cycle (2.5x10° m/cycle)
between 0.3 and 0.63 inch (7.6 and 16 mm) crack depth with a gradual rise to
2 x 107" in./eycle (5)(10‘6 m/cycle) as the crack grew toward one inch (25 mm)
depth. Crack #1 followed crack #2 quite closely.

In Figure 19 the strains over the two notches were measured only to 8,650
cycles. Crack #2 had the largest decrease in strain with crack #1 following
closely behind it. A reasonable extrapolation of the curve for crack #2 would

estimate failure at 1.2 inch (30.5 mm) crack depth.



Figure 20 shows the crack shapes of the two cracks at the last

observation. Neither crack had shown a tendency to become unstable and go to

fast fracture yet.

DISCUSSION

0f the non—-autofrettaged cylinders, the single-notch cylinder, AM2437B,
had the longest fatigue life, followed by the four-notch cylinder, A2341B.
The two-notch cylinder, AM3244B, had the shortest life. This had been
predicted analytically for a straight-fronted crack, and was confirmed for
curve—fronted cracks.

Of the multi-cracked cylinder, the fatigue lives are:

AM3244B Two Cracks - 0% 0S 1,143 cycles
A2341B Four Cracks - 0% 0S 1,463 cycles
MB3244B Two Cracks - 30% OS 3,973 cycles
B2341B Two Cracks - 60% 0S 11,500 cycles - estimated

The advantage of autofrettage residual stress for internal cracks is
readily apparent.

The cracks did not remain at equal depths in any of the multi-cracked
tubes tested. On the contrary, one of the cracks became the dominant crack
and grew to failure faster than the others.

The strain over the dominant crack decreases to zero in the same manner
as for a single crack. The crack perforates the cylinder wall soon after the

strain reduces to zero or becomes compressive.



CONCLUSTIONS

1. Two opposing cracks in a cylinder give the fastest crack growth and
shortest fatigue 1life.

2. Four equally spaced cracks are just about equivalent to the single-
crack case.

3. Autofrettage residual stress from 30 percent 0S increases the fatigue
life over three times, and that from 60 percent 0S increases the life over ten
times that of the non-autofrettaged cylinder with the dual cracks.

4. Monitoring the circumferential strain on the outside wall over the

dominant crack gives an indication of when failure is imminent.

10
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