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INTRODUCTION 

The strain behavior of thick-wall cylinders with a single fatigue crack 

grown from a longitudinal slot machined at the inner surface has been 

described previously.^  It was shown that measurement of the strain on the 

outside surface directly over the crack gave an indication of how near the 

cylinder was to fatigue failure.  It was found that as the crack deepens, the 

strain directly over the crack diminishes from the Lame' strain expected in an 

uncracked cylinder and approaches zero strain in a regular manner with 

increasing depth.  When this strain reaches zero or becomes compressive the 

fracture of the cylinder is imminent.  During this time the pressure within 

the crack is exerting a bending moment on the remaining ligament as well as 

adding to the circumferential tension; and the compressive strain on the 

outside of the ligament becomes greater than the circumferential tensile 

strain.  When the remaining ligament finally becomes thin enough the tension 

in it once again exceeds the bending strains and stretches the ligament to 

failure causing failure of the cylinder.  A plot of this strain versus crack 

depth may be used to anticipate the failure. 

OBJECT 

The object of this report is to show that the strain behavior of 

cylinders containing multiple notches or cracks is similar to the single notch 

case and may be analyzed the same way.  A series of cylinders with 20 inch 

^Throop, J. F. and Fujczak, R. R., "Strain Behavior of Pressurized Cracked 
Thick-Walled Cylinders," Experimental Mechanics, The Society For Experimental 
Stress Analysis, August 1982, pp. 277-286. 



(5Q0 mm) long notches were tested.  Three of them had two notches, 180 degrees 

opposed.  One had zero percent overstrain (OS), one was subjected to 30 

percent OS, and one was subjected to 60 percent OS.  Also, one cylinder with 

four notches, 90 degrees apart, with zero percent OS was tested.  For 

comparison the data for a cylinder with a single notch and zero percent OS is 

repeated from the earlier study. 

The comparison of the dual notched cylinders will show the improvement in 

fatigue life brought about by autofrettage overstrain.  The comparison of the 

single notch, dual notch, and quadruple notch will show if the dual notch is 

the worst case, as has been predicted analytically for the straight-fronted 

crack.  Of course, these 20 inch (500 mm) long notches start off as straight- 

fronted cracks, but soon become semi-elliptical because they grow fastest at 

mid-length. 

For each case, we present graphs of crack depth versus number of cycles, 

of crack rate versus crack depth, and of crack depth versus distance from the 

top of the specimen, as well as the graph of hoop stress versus crack depth. 

THEORY 

The stress and strain on the outside surface and the stress on the inside 

surface may be calculated by the following equations:2 

2R!2 

n = P r -r- on outside surface (I) 
(R22 " Rl2) 

o 

2Timoshenko,   S.   P.   and Goodier,   J.   H.,  Theory of  Elasticity,  Third  Edition, 
McGraw-Hill  Book Company,   New York,   1970,  pp.   68-71. 



P 2R!2 

eth = E (Ri2 - R?) 
on outside  surface (2) 

(R2 + Rl ) 
04 = P r o-    on outside surface (3) 
1    (R22 " Rl2) 

An idealization presented by Shannon3 assumes wall thinning represented 

by an effective increase of the internal radius of the cylinder to include the 

deepest crack depth, with the pressure-bending effect applied as a moment on a 

section of depth equal to the remaining wall thickness of the cylinder.  Thus, 

the equations for stress and strain on the outside surface of a cracked 

cylinder are as follows. 

Uniform thinning and pressure-bending approximation for stress and strain 

in the cylinder with internal longitudinal straight-fronted crack of depth a = 

(Ra " Rl):3 

2PRa
2 3P(Ra - Ri)(R2  -  Rl) 

00 = ~(R2"
Z"*7)        ~d7"*l~2 (4) 

o
0 

SO =  - (5) 
E 

This idealization gives the nature of the decrease in the strain directly 

over the crack.  The actual decrease occurs more slowly with crack depth 

because the fatigue cracks do not remain straight-fronted. 

3Shannon, R. W. E., "Crack Growth Monitoring by Strain Sensing," Pressure 
Vessels and Piping, (1), Applied Sciences Publishing Ltd., England, 1973, pp. 
61-73. 



SPECIMENS, INSTRUMENTATION, AND PROCEDURE 

The strains on the external surface of 30 inch (0.76 m) long cylinders of 

high-strength steel were measured with bonded foil strain gages while 

pressurized in steps from zero to 48 ksi (330 MPa).  The cylinders had a 7.1 

inch (180 mm) bore diameter with 14.25 inch (362 mm) outside diameter and were 

fatigue cracked from longitudinal notches.  The internal notches in all these 

specimens were 20 inches (508 mm) long, 1/4 inch (6.4 mm) deep, and 0.030 inch 

(0.7 62 mm) wide produced by electrical discharge machining.  The external 

strains on the periphery at midsection of the cylinders were measured at crack 

depths of 1/4 inch (6.4 mm) to 3 inches (7 6 mm) measured from the bore, 

generally at intervals of 1/2 inch (13 mm), measured periodically by means of 

ultrasonic pulses reflected from the leading edge of the crack. 

The gages were mounted circumferentially directly over each notch line. 

Strain measurements were made under static pressurization using a null- 

balancing technique.  They were made on non-autofrettaged cylinders, and on 

autofrettaged cylinders of two different percent overstrain values.  The 

percentage overstrain is the portion of the wall thickness which has exceeded 

the material yield strength during the prestressing by overpressurization. 

The bore of the cylinder was partially filled with a cylindrical steel 

mandrel which supported the end closures, leaving the cylinder in essentially 

the open-end condition.  A synthetic hydraulic oil was used as a pressurizing 

medium, filling the remainder of the cavity including the notches.  Fatigue 

cracks grown from the initial notches were monitored for depth and shape with 

ultrasonics periodically as the cylinder was repeatedly pressurized from 4 ksi 

(28 MPa) to 48 ksi (330 MPa).  The growth of fatigue cracks in cylinder 



specimens is described by Throop^ and the 17 5 mm fatigue specimens, end 

packing, and ultrasonic crack-depth measurements are described by Davidson, 

et al.5 

SPECIMEN AM2437B 

We compared the fatigue behavior of the cylinders having multiple cracks 

with that of specimen AM2437B, a single-notch cylinder which had no auto- 

frettage overstrain.  It was tested in an earlier investigation and failed at 

1,500 cycles.  The crack depth, a, versus number of cycles is plotted in 

Figure 1. 

The crack propagation rate, da/dn, is plotted versus the crack depth, a, 

in Figure 2.  The range of crack rate goes from I0~h  in./cycle at a = 0.25 

inch to 10~2 in./cycle at a = 1.3 inch (33 mm) in a nearly linear manner on a 

log-log plot. 

Figure 3 is a plot of the strain directly over the notch versus the crack 

depth.  Starting at the theoretical strain of 1056 uin./in. for the uncracked 

cylinder at 48,000 psi (330 MPa) pressure, it decreases to zero at the crack 

depth of 1.3 inch (33 mm), goes into compression briefly and then back sharply 

into tension as the ligament approaches failure at Nf = 1,500 cycles. 

Compared to the curve for the approximation for a straight-fronted crack. 

4Throop, J. F., "Fatigue Crack Growth in Thick-Walled Cylinders," Proceedings 
of National Conference on Fluid Power, XXVI, NCFP, Chicago, 1972, pp. 

115-131. 
Davidson, T. E., Throop, J. F., and Reiner, A. N., "The Role of Fracture 
Toughness and Residual Stresses in the Fatigue and Fracture of Large Thick- 
Walled Pressure Vessels," Proceedings of National Conference on Fluid Power, 
XXVI, NCFP, Chicago, 1972, pp. 102-114. 



which goes to zero strain at 0.85 inch (22 mm) crack, depth, the graph shows 

the effect of the increasing curvature of the crack front. 

Figure 4 shows how the crack front changed shape, particularly during the 

last cycle before firing. 

SPECIMEN AM3244B 

Specimen AM3244B with zero precent OS and dual notched 180 degrees apart 

endured 1,143 cycles.  One of the notches grew a fatigue crack to 1.15 inch 

(29 ram) while the other notch only reached 0.65 inch (17 ram) as shown in 

Figure 5. 

The faster crack went from a da/dn of lO-1* in./cycle at 1/4 inch (6.3 ram) 

depth to over 5 x 10~2 in./cycle at 1.15 inch (29 mm) depth as shown in Figure 

6. 

The strain over the deepest crack decreased from 1056 pin./in. to zero at 

a crack depth of 1.18 inch (30 mm) as shown in Figure 7.  The strain over the 

other crack decreased to 450 yin./in. at 0.65 inch (17 mm), which put it on 

the curve for a straight-fronted crack.  However, this crack ceased to grow 

beyond 0.65 inch (17 mm). 

Figure 8 shows the change of shape of crack #1 and crack //2 in the last 

few cycles.  Crack #2 perforated the wall with a 17 inch (432 mm) crack as 

shown. 

SPECIMEN A2341B 

Specimen A2341B was a four-notch cylinder with notches at zero degrees, 

90 degrees, 180 degrees, and 270 degrees.  All were 20 inches (0.5 m) long, 

1.4 inch (6.3 ram) deep, and machined with a 30 mil EDM cutting tool.  Crack //I 



at zero degrees grew the fastest, as shown in the plot of crack depth versus 

number of cycles, Figure 9.  Crack #3 at 180 degrees was nearly as fast, but 

did not go to failure, while crack #2 and crack #4 at 90 degrees and 270 

degrees respectively, grew slowly and ceased to grow at a shallow depth. 

Figure 9 shows that crack #1 grew continually at an ever increasing rate 

until failure occurred at 1,463 cycles.  Cracks #3, #4, and #2 grew at lesser 

rates.  The graph of da/dn versus crack depth in Figure 10 shows that crack #1 

went from just under 10-l+ in./cycle (2xl0_6 m/cycle) to just under 10  in./ 

cycle (2xl0-3 m/cycle). 

In Figure 11 the strain measured with a gage directly over the dominant 

crack decreased steadily from the Lame'' strain for an uncracked cylinder until 

it reached zero strain at about 1.3 inch (33 mm) crack depth.  It went 

negative for a short distance until it reached 1.4 inch (36 mm) crack depth 

when it went positive and the crack perforated the cylinder at 1,463 cycles. 

Figure 12 shows the final shape of the four cracks. 

SPECIMEN MB3244B 

Specimen MB3244B with 30 percent OS and dual notches 180 degrees apart 

endured 3,973 cycles, a factor of 3.5 times the number for zero percent 

overstrain.  The graph of crack depth versus number of cycles is shown in 

Figure 13. 

The crack rate went from 10-4 in./cycle (2.5x10  m/cycle) at 1/4 inch 

(6.3 mm) crack depth to 2 x 10-2 in./cycle (5xl0-l+ m/cycle) at three inches 

(7 6 mm) crack, with a plateau at about 1.6 x lO-1* in./cycle (4x10  m/cycle) 

between 0.3 and 0.5 inch (7.62 and 12.7 mm) crack depth, followed by a steep 

rise between 0.5 and 1.0 inch (12.7 and 25.4 mm) crack depth.  This is the 



rate of the faster crack, as shown in Figure 14.  In Figure 15 the strain over 

crack #2 decreased from 1056 uin./in. to zero at 1.23 inch (31.2 mm) crack 

depth.  The strain over crack #1 decreased to 460 yin./in. at 3,780 cycles and 

0.90 Inch (22.9 mm) crack depth. 

In Figure 16 the change in shape during the last two hundred cycles is 

shown.  Crack #1 grew a little, but crack #2 grew rapidly to perforate the 

wall. 

SPECIMEN B2341B 

Specimen B2341B is a dual-notch cylinder with 60 percent overstrain.  We 

could not cause it to fail because of leaks in the end seals.  The cracks were 

grown to 0.8 inch (20 mm) and 0.95 inch (24 mm) at 9,836 cycles.  A reasonable 

extrapolation of the crack growth curve, as shown in Figure 17, would allow 

the fatigue life of the tube to be about 11,500 cycles, a factor of ten times 

the life of the non-autofrettaged dual-notch cylinder. 

Figure 18 shows that when cracking was initiated it started increasing 

rapidly at first, followed by a plateau at lO"4 in./cycle (2.5xl0-6 m/cycle) 

between 0.3 and 0.63 inch (7.6 and 16 mm) crack depth with a gradual rise to 

2 x lO"4 in./cycle (5xl0-6 m/cycle) as the crack grew toward one inch (25 mm) 

depth.  Crack #1 followed crack #2 quite closely. 

In Figure 19 the strains over the two notches were measured only to 8,650 

cycles.  Crack #2 had the largest decrease in strain with crack #1 following 

closely behind it.  A reasonable extrapolation of the curve for crack #2 would 

estimate failure at 1.2 inch (30.5 mm) crack depth. 



Figure 20 shows the crack shapes of the two cracks at the last 

observation.  Neither crack had shown a tendency to become unstable and go to 

fast fracture yet. 

DISCUSSION 

Of the non-autofrettaged cylinders, the single-notch cylinder, AM2437B, 

had the longest fatigue life, followed by the four-notch cylinder, A2341B. 

The two-notch cylinder, AM3244B, had the shortest life.  This had been 

predicted analytically for a straight-fronted crack, and was confirmed for 

curve-fronted cracks. 

Of the multi-cracked cylinder, the fatigue lives are: 

AM3244B    Two Cracks - 0% OS     1,143 cycles 

A.2341B     Four Cracks - 0% OS    1,463 cycles 

MB3244B    Two Cracks - 30% OS    3,973 cycles 

B2341B     Two Cracks - 60% OS    11,500 cycles - estimated 

The advantage of autofrettage residual stress for internal cracks is 

readily apparent. 

The cracks did not remain at equal depths in any of the multi-cracked 

tubes tested.  On the contrary, one of the cracks became the dominant crack 

and grew to failure faster than the others. 

The strain over the dominant crack decreases to zero in the same manner 

as for a single crack.  The crack perforates the cylinder wall soon after the 

strain reduces to zero or becomes compressive. 



CONCLUSIONTS 

1. Two opposing cracks in a cylinder give the fastest crack growth and 

shortest fatigue life. 

2. Four equally spaced cracks are just about equivalent to the single- 

crack case. 

3. Autofrettage residual stress from 30 percent OS increases the fatigue 

life over three times, and that from 60 percent OS increases the life over ten 

times that of the non-autofrettaged cylinder with the dual cracks. 

4. Mbnitoring the circumferential strain on the outside wall over the 

dominant crack gives an indication of when failure is imminent. 

10 
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