
7D-Ai36 093 ELEMENTS OF KNOLEDGE-BSED
EXPERT SYSTEIS(U) DELAWARE

i/i
I UNIV NEWARK DEPT OF COMPUTER AND INFORMATION SCIENCES
I D CHESTER MAR 82 AFOSR-TR-83 1i43 AFOSR8 06i9@

UNCLASSIFIED F/G 61 4 L

I I... I I . . ,. . ,,L. ,..-..., ._ . .- -*... .*.

~Ij,

1111 1 ~ 13.2

111118
111.25 A11 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- I963-A

J1"

I *

• 1°i' m t m. ' ..-" o° -e• °4 °°e' -' "- " °- ° " " ', ° ' "- o"" "- " ." -" o, " q- ° 'g " "" N

AFOSR-TR.S 3 1143

ELEMENTS OF KNOWLEDGE-BASED EXPERT SYSTEMS*

* by

Daniel. Chester

Department of Computer and Information Sciences
University of Delaware

Newark, DE 19711

March, 1982

-: DTIC
SEOTE

OE¢ 2 I MDI,

H

4 *Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, USAF, under grant no.
-AFOSR-80-0190%. The United States Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copywright notation herein.

A reprint of a pape om Proceedings Micro-Delcon '82, Universi-
Clw ty of Delaware, N aro, , March 9, 1982.

LUj Copyright 1982 IEEE
I .b

.Q

% 0 9

SECURITY CLASSIFICATION OF THIS PAGE (When Ds84 EnIered) __________________
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFOSR-TR- 83 -11 4 31vA/3 6 O'jq
4. TITLE (and Subide) 5. TYPE OF REPORT & PERIOD COVERED

ELEMENTS OF KNOWLEDGE-BASED EXPERT SYSTEMS

"6. PERFORW: &4"]"N REP ... NUMBER

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)

Daniel Chester Grant #: AFOSR-80-O190?

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK
AREA 6 WORK UNIT NUMBERS

Department of Computer & Information Sciences
University of Delaware 61102F 2304/A2
Newark, DE 19711 OTIC

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE COP.

Air Force Office of Scientific Research/NM March 1982 CO

Bolling AFB 12. NUMBER OF PAGES 3
Washington, DC 20332 23

14. MONITORING AGENCY NAME & ADDRESS(If dillferent Iron, Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

1Sa. OECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) C

Approved for public release, distribution unlimited --

ty C(es

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. it different from Report) d

18. SUPPLEMENTARY NOTES -

A reprint of a paper from Pro dings Micro-Delcon '82, University of
Delaware, Newark, DE, Marc 9, "1"2.

19. KEY WORDS (Continue on reverse aside it necessary and Identify by block number)

Expert systems,algorithms, control strategy, expert knowledge, natural
language requirements,forward chaining, backward chaining, rules, agendas,
indexing, frames, demons

20. ABSTRACT (Continue on reverse side i, n.caaary and Identify by block number)

. Expert systems are built to solve problems in application areas for

which 'good' algorithms are not known. These systems consist of a global
data base of assertions, a set of rules that represent small bits of an
expert's knowledge, and a control strategy for applying the rules to the
assertions. Agendas are used to make the control strategy more efficient.
Efficiency can be further increased by indexing the rules and assertions
in various ways, one of which is frames. A system for deriving formal
specifications from natural language requirements is presented as an example.

DD JAN73 1473 EDITION OF I NOV 65 IS OBSOLETE SUTDent

SECURITY CLASSIFICATION OF THI
'
S PAGE (When Data Entl

-3-
[*.'

Introduction

In recent years researchers in artificial intelligence have

implemented many systems that they call 'expert systems'; these

are systems designed to solve problems in the same ways that

human experts do. Four expert systems have come into regular

use: Dendral [1, Macsyma [2), Puff [3), and Rl [4]. (Dendral

determines the molecular structure of organic compounds; Macsyma

manipulates algebraic expressions symbolically, including their

integration and differentiation; Puff diagnoses pulmonary disor-

* ders; and R1 configures VAX systems.) This paper discusses i) the

kind of problem expert systems try to solve, ii) the representa-

tion of expert knowledge, iii) the application of that knowledge,

and iv) the organization of that knowledge for efficient opera-

'-' tion. The examples in this paper are based on an expert system

for deriving formal specifications from natural language re-

quirements. Drs. Weischedel and Chester are developing this sys-

tem at the University of Delaware.

Application areas

• A 'good' algorithmic solution to a problem is a step-by-step

procedure that is based on a well-understood theory of the prob-

lem domain. Such a solution usually works in polynomial time;
-4o

that is, the time taken to solve a problem is proportional to a

polynomial function of the size of the problem data. It is a

method frequently used by people who must solve the problem every

day. For instance, the Simplex method is commonly used to solve

-. 4

5'

*) -4-

linear programming problems; various numerical integration

methods are often used to solve differential equations; discrete

event simulation techniques are often used to obtain certain

information about complex processes. Because a 'good' algorith-

mic solution to a problem is based on a well-understood theory,

it can be taught; anyone can become an 'expert' at solving this

*type of problem.

Expert systems solve problems that don't have 'good' algor-

4 ithmic solutions, or whose algorithmic solutions are inefficient

or difficult to follow. For example, we don't know how doctors

diagnose medical conditions; Mycin [5] is an expert system that
-I

does this for blood diseases. Similarly, no 'good' algorithmic

solution is known to the problem of determining the molecular

structure of organic compounds from their chemical formulas,

together with mass spectrograph and nuclear resonance data, which

is what Dendral [l] does. Likewise, there are no 'good' solu-

tions known to the problems of understanding continuous speech,

discovering new mathematics, or designing electronic circuits.

But expert systems have been built to solve all these problems

[6,7,8), at least to some extent.

People become expert at many kinds of problems without hav-

ing a well-understood theory, but to do so, they train for a long

time. Doctors study medical facts for many years and acquire

much knowledge from experience before they are experts at diagno-

sis. Engineers also study many facts about their specialties and

'learn by doing'. The same holds for programmers. Doctors,

enaineers and programmers don't have well-understood theories for

their problem domains, but they do solve their problems

methodically. They devise their own techniques and shortcuts for

effectively applying the facts they learned in school and from

experience. Expert systems attempt to implement techniques and

shortcuts similar to these.

Most expert systems consist of three parts: a global data

base in which is stored the data that describes the problem to be

solved and all the intermediate results in its solution, a set of

rules that encode the knowledge of a human expert, and a control

strategy that applies the rules repeatedly to the data until the

problem is solved. Rules may be applied mainly in the forward or

in the backward direction; some systems apply them in both direc-

tions. Only the strictly backward chaining and the strictly

forward chaining strategies will be discussed here.

Global data base

The global data base holds the problem-specific data in the

form of assertions. These are expressions in a formal language;

often they are atomic expressions consisting of a predicate name

and a list of arguments. These assertions represent information

in a way that is independent of where they are located in the

computer. They are thus different from the data that is stored

in an array, where the significance of an array element is a

function of the array and the index value by which it is ac-

cessed.

As an example of the assertions that might be in the global

data base, suppose that the system for deriving formal specifica-

tions mentioned above were given the sentence "An ordered list is

-6-

empty" as part of its input. Let this sentence and its com-

ponents have the following names:

S: "an ordered list is empty"
P: "is empty"
N: "an ordered list"
R: "ordered"
S : "list".

The parser produces a representation that gets stored in the glo-

bal data base as the set of (paraphrased) assertions

P is the grammatical predicate of S
the translation of P is the formula 'empty(X)'
N is the grammatical subject of S
R is the restriction on the head word of N
the translation of R is the formula 'ordered(X)'
H is the head word of N
the translation of H is the formula 'list(X)'
'X' is the variable in the translation of N.

(To simplify the illustration, we take the sentence. to mean

"every ordered list is (always) empty" and show only a subset of

the actual assertions.)

We retrieve the assertions in the global data base by giving

a pattern against which they are matched. These patterns are

partial descriptions; they include variables where the components

of tke desired assertions are unknown. The accessing function

retrieves the assertions that satisfy these descriptions one at a

time and assign the corresponding components to the variables.

(This matching process is frequently some variation of the

unification alaorithm E9.) If we query the above set of asser-

tions with the pattern

the translation of P is the formula Z,

we obtain the assertion

.. , . . . , , . , / , . .. - .. . - . . . , , , - .. ,.- , .,. . ,

-7-

the translation of P is the formula 'empty(X)'.

The variable Z now has the value 'empty(X)'. If we ask instead

the translation of Y is the formula Z,

we obtain the same assertion, giving Z the same value as before

and giving variable Y the value P. If we ask the same question

again, we obtain

the translation of R is the formula 'ordered(X)'

giving Y the value R and Z the value 'ordered(X)'. On asking a

third time, we obtain

the translation of H is the formula 'list(X)'

giving Y the value H and Z the value 'list(X)'. A fourth asking

of the question results in failure of the accessing function.

The other major operations on the data base are insertions

and deletions. All of these operations manipulate the assertions

as if they were stored in a featureless bag and pulled out by

magic, except that the order in which assertions matching a pat-

tern are pulled out depends on the order in which they were

stored.

--.TO

-S-

Rules

The knowledge that an expert brings to a problem is

represented in an expert system by a set of rules. These rules,

which are frequently obtained from cooperating experts, take the

form of a conditional statement:

IF premiss THEN conclusion

where both the premiss and the conclusion may be simple expres-

sions or combinations (usually conjunctions) of simple expres-

sions. To illustrate, here are two rules for translating simple

sentences into formal logic expressions. The terms Xs, Xp, Xpt,

Xn, Xnt, and V in these rules are variables; they will be assig-

ned values when the rules are applied; in particular, Xs will be

assigned the name of a sentence.

IF Xp is the grammatical predicate of Xs &
the translation of Xp is the formula Xpt &
Xn is the grammatical subject of Xs &
the translation of Xn is the formula Xnt &
V is the variable in the translation of Xn

THEN the translation of Xs is the formula
'(V)(Xnt -> Xpt)'

IF Xn is the grammatical subject of Xs &
Xh is the head word of Xn &
the translation of Xh is the formula Xht &
Xr is the restriction on the head word of Xn &
the translation of Xr is the formula Xrt

THEN the translation of Xn is the formula
'(Xht & Xrt)'

(When the rules are applied, the variables in the quoted expres-

sions are replaced by their values to produce the intended formu-

la.)

*6 -9-

The rules in an expert system represent the individual bits

of knowledge accumulated by an expert. Each one is a tiny gen-

eralization, a single insight that the expert has learned. Human

experts are seldom conscious of these rules until they carefully

* introspect about what they do to solve problems. These bits of

kniowledge are acquired over a period of years with little attempt

to organize them into step-by-step procedures. Consequently,

these bits of knowledge (and the rules that represent them) con-

tain no explicit "flow-of-control" to guide their application,

* which is quite different from modern computer programsl To comn-

pensate for this lack, expert systems include control strategies

for applying the rules ; in these systems flow of control informa-

tion is completely divorced from application area information.

A rule can be applied in basically two ways. If an expert

knows that the premiss is true, he can infer that the conclusion

is true. This is known as forward chaining. Alternatively, if

he wants to find out if some statement is true and the conclusion

of the rule implies that desired statement, he can try to esta-

blish that the premiss is true. This is known as backward

chaining. It may turn out that many rules can be applied, so the

expert has to decide which to go ahead with. Another property of

5- many of these rules is that they are not certain; the conclusion

is only a likely consequent of the premiss.

* Backward chaining

Some expert systems backward chain their rules, they reduce

goals that mnatch conclusions of rules to the subgoals stated in

-10-.

the corresponding premisses. This approach resembles conven-

tional programming in that it operates in a top-down, goal-

directed way that is similar to procedure calls. All the rules

that have the same predicate name in their conclusions can be

thought of as defining a procedure by that name. This procedure

is defined as a single nested IF-THEN-ELSE statement in which

each IF-THEN branch implements one rule. So if three rules de-

fine a procedure, the body of that procedure would have the form

IF premiss2 THEN RETURN conclusion2
ELSE IF premiss2 THEN RETURN conclusion2

'ELSE IF premiss3 THEN RETURN conclusion3.

These expert systems also include a backtracking facility, which

means that once a branch is taken, the procedure is exitted, but

if a failure occurs, the procedure is reentered and another

branch is taken if possible. Prolog [10] is a programming langu-
V.

age that has this backtracking facility built into it.

To see how backward chaining of rules works, consider the

rules and assertions shown above. To find out what the transla-

4 tion of sentence S is, the system is given the goal of obtaining

an instance of the assertion

the translation of S is the formula Z.

This matches the conclusion of the first rule by giving Xs the

value S and Z the value '(V)(Xnt -> Xpt)'. Each of the simple

assertions in the premiss is then obtained. The first three are

obtained by matching them against the assertions in the data

base, giving Xp the value P, Xpt the value 'empty(X)', and Xn the

value N. The fourth simple expression does not match an asser-

tion; in this case, the bound variable Xn is replaced by its

value and the resulting expression is matched against the con-

clusion of the second rule. The expressions in the premiss of

this rule match assertions in the data base, giving Xnt the value

'(list(X) & ordered(X))'. Finally, the last simple expression in

the premiss of the first rule matches an assertion, giving '7 the

value 'X'. By replacing all variables by their values, the ;oal

pattern becomes

the translation of S is the formula
'(X)((list(X) & ordered(X)) -> empty(X))'.

The example rules and assertions don't show how backtracking

works, but if the value obtained for Z were unsatisfactory and

there were other translation rules, the system would throw away

the variable assignments, apply the other rules to obtain a new

value for Xnt, and proceed again as before.

Forward chaining

Other expert systems forward chain their rules. The rules

are like condition-action statements; when the condition descri-

bed in the premiss of a rule holds, the conclusion describes a

possible action that might be taken. The conclusion is likely to

contain several expressions, each of which gives a simple opera-

tion on the data base: insert or delete an assertion, print to or

read from the terminal, etc.. Since a particular set of asser-

tions in the data base may satisfy the conditions of many rules,

these expert systems have strategies for selecting the rule whose

,,., , ,.:, .. .oi .. * . . _

-12-
"4

actions will actually be carried out. Nearly all follow the

principle that once a set of assertions activate a rule, that

rule is not activated again by that set until at least one of the

assertions gets temporarily removed from the data base.

For our example rules, forward chaining is particularly sim-

ple. As the example assertions are put into the global data

base, they are matched against the expressions in the premisses

of the rules in every way possible. When the last fact is added,

a combination of matches will be found that satisfies the entire

-, premiss of the second rule, causing the conclusion

. the translation of N is the formula
'(list(X) & ordered(X))'

to be added to the data base. When so added, it too gets matched

against the expressions in the premisses, satis-ying the premiss

of the first rule, which in turn causes the conclusion

the translation of S is the formula
'(X)((list(X) & ordered(X)) -> empty(X))'

to be added. Since these are the only conclusions that can be

reached through these rules, the system stops computing and waits

for the input of more assertions.

Forward chaining systems have the Ldvantage that they can

respond quickly to sudden changes in their environment; they

won't keep on working on the same problem when sudden changes

make the problem no longer important or a new problem more impor-

tant. Such readiness to change the focus of attention is impor-

tant in real-time systems.

In some ways building a forward chaining system is like pro-

gran-ping with decision tables. Only here there are many more

p J *

-13-

conditions to test and not every combination of conditions has

its outcome specified in a rule.

Agendas

A simple conceptual model of a forward chaining system is

that it operates by repetitively executing a Recognize-Resolve-

Act cycle. In the Recognize phase of each cycle, the conditions

N of all the rules are evaluated to see if they are satisfied by

the current assertions in the global data base. Rules with sa-

tisfied conditions indicate competing, possibly conflicting ac-

tions that can be taken at this time. In the Resolve phase, one

of these rules is selected. Often, in simple systems, this is

just the first rule found with a satisfied condition. In more

sophisticated systems each rule with a satisfied condition is

given a priority; this priority is a function of such things as

when the rule was added to the system, when the assertions that

satisfy the condition were added, and the a priori importance of

the actions of the rule to the overall purpose of the system. In

the Act phase, the actions of the selected rule are carried out.

This cycle is repeated over and over until a terminating action

is taken or no more rules get activated.

This conceptual model is a convenient way to imagine how a

forward chaining expert system operates, but it is quite ineffi-

cient if implemented directly. The most redundant part of the

model's operation is the repetitive evaluation of the conditions

;. in order to determine which rules to activate. This part of the

operation can be made more efficient by putting the rules with

.

-14-

satisfied conditions on a list, or agenda, where they remain

until chosen for activation or until their conditions cease to be

satisfied, due to a change in the global data base. If all of

the satisfied rules are on the agenda and a new assertion is

added to (or deleted from) the data base, only the rules which

require the presence (or absence) of that assertion need to have

their conditions evaluated.

The behavior of such an expert system depends critically on

the manner in which it puts potentially activated rules on the

agenda. In some systems, such as AMORD [11], the agenda is a

queue; the rules are put on the back of the agenda and the rule

at the front is selected for activation. This approach is useful

when the expert system infers consequences of its initial asser-

tions; it mostly adds new assertions to the data base and only

rarely deletes them. Under these circumstances, every rule that

can be activated should be activated eventually. A queue guaran-

tees this; a stack would be unsatisfactory, since if the agenda

were a stack, it would be possible for some rules to dominate the

system, causing themselves to be repeatedly added to the stack so

that it eventually overflows or at least goes into an infinite

loop of activity.

Some systems, like Hearsay II [6] and AM [7], compute a

priority for each rule before it is inserted into the agenda. In

these systems, each rule has explicit data or code for computing

this priority. The priority of a rule may change with time as

the global data base changes so that the rule is moved in the

agenda, which is always kept in priority order.

A few systems, such as OPS4 [12] and OPS5 [13), assign a

!.

"" -15-

priority to rules implicitly; the rules do not contain any data

(such as ratings) expressly for computing priority. These sys-

tems select the rule with the most recently satisfied and most

specific condition. This approach relieves the implementer of

the task of supplying arbitrary functions for computing rule

*q priority.

Indexing

The process of recognizing the rules to be activated can be

speeded up by suitably indexing the assertions in the global data

base and the rules in the system. Simple assertions that consist

of a predicate name and some arguments can be grouped and indexed

by the predicate name or by one of the arguments. If the predi-

cate name is the indexing term (such as in Prolog) the group of

assertions having that predicate name is like a table in a rela-

tional data base, with each assertion corresponding to one line

in the table. This mode of indexing is useful when collections

of similar facts are desired, such as finding out which employees

will retire in ten years. In expert systems, however, what is

desired is often complex information about individual persons and

things. In these systems the assertions are indexed on one or

more of the arguments, which are names of objects. When the

assertions are limited to predicate names having exactly two

arguments and are indexed on both arguments, the global data base

is often called a semantic network, after the terminology of some

early work [142 in which this organization was used to represent

the definitions of words.

%Y

-16-

A closely related way to organize the global data base is to

make it be a collection of entities called frames. Each frame is

a group of assertions about an object, only now each assertion is

a 4-tuple of the form

* object-name relation aspect 2nd-argument

where the relation is often called a slot and the aspect is often

called a facet [15]. In a frame-based system our example asser-

tions about the head word H of grammatical subject N might be

expanded into the 4-tuples

H head i VALUE N
H translation VALUE 'list(X)'
H translation MUST-BE formula
H translation DEFAULT 'thing(X)'.

These 4-tuples assert, respectively, that H is the head (word) of

.* N, the VALUE of the translation of H is 'list(X)', the transla-

tion of H MUST-RE a formula, and if no VALUE of the translation

of H is stored, the DEFAULT VALUE is the formula 'thing(X)',

which just says that whatever is being talked about is a thing.

For efficiency the assertions about one object are combined into

a single tree structure indexed under the object name. For the

example above, the tree structure would look like this:

H\ ----- head ------------- VALUE ------- N
\ ----translation\ ----- VALUE --------'list(X)'

\...MUST-BE ----- formula
\ ---- DEFAULT ------ 'thing(X)'.

The rules in an expert system are organized in various ways.

One of the simplest is to select one of the simple expressions in

.he premiss of a rule to be its trigger; the process that adds an

10 W MITTOW R T IM l ZIT' .7 7 7 It, - 7 7 X-1.
V

. --- .. 4

-17-

assertion to the data base also checks to see if it matches any

triggers. Whenever a trigger matches, the premiss of the

corresponding rule is tested; if the test succeeds, the rule is

put on the agenda, or, in systems without an agenda, is activated

immediately. If the premiss of a rule contains several simple

expressions, every one that might be added last to the data base

must be made a trigger in a copy of the rule. (Each copy can

have its trigger assertion removed from the premiss to avoid

duplicate testing.) If the third simple expression in the second

example rule were chosen to be a trigger, the trigger-rule pair

would be

TRIGGER:
the translation of Xh is the formula Xht

RULE COPY:
IF Xi is the head word of Xn &

Xn is the grammatical subject of Xs &
Xr is the restriction on the head word of Xn &o
the translation of Xr is Xrt

THEN the translation of Xn is the formula
'(Xht & Xrt)'.

Since some rules might test for the absence of assertions, the

process that deletes assertions from the data base also checks a

set of triggers that are assertions that must be absent; when a

trigger matches, the premiss of the corresponding rule is tested

and the rule put on the agenda or activated accordingly, just as

in the additive case.

In older knowledge-based systems [16] these trigger-rule

pairs were called demons because they were like demons that would

constantly watch the contents of the data base, waiting for the

conditions to be just right so they could do their mischief!

In frame-based systems demons are stored directly in the

! % '. ,, ° "'
"

' .' -. ' ; -o - ' , ' * -. ' o.'- ' ' J " " " " ""

-18-

frames. A trigger pattern is an assertion about the VALUE aspect

of a relation; if the assertion must be present, the rule is

stored under the IF-ADDED aspect of the relation, and if it must

be absent, the rule is stored under the IF-REMOVED aspect. For

instance, the trigger-rule pair above could be instantiated on H

(H is substituted for Xh) and stored in the frame for H; this

would add the path

H----translation ---- IF-ADDED----/
~/

/--IF H translation VALUE Xht &
H head VALUE Xn &
Xn subject VALUE Xs &
Xr restriction VALUE Xn &
Xr translation VALUE Xrt

THEN Xn translation VALUE '(Xht & Xrt)'

to the tree shown above. (The expressions in the rule are writ-

ten as 4-tuples so that they can match the assertions in a

frame-based system. The trigger pattern is included in the prem-

iss in order to assign a value to variable Xht.)

To avoid having a separate copy of a rule for each object of

the same type, the rule is stored in the frame representing the

type and each object is related to the type by an AN-INSTANCE-OF

relation or an A-KIND-OF relation. The processes that add and

delete assertions check the type-frames of an object as well as

the object-frame in their search for demons to activate. Frame-

based systems can also hold backward chaining rules, which are

stored under the IF-NEEDED aspect of the relations that the rules

are meant to compute.

--- --- -;w. -.. .76~ - - - -. -. . .

-19-

Example system

The assertions and rules shown in this paper are based on an

.expert system for deriving formal specifications from natural

language requirements. This system consists of three components:

a natural language parser, a discourse analyzer and a concept

mapper. The natural language parser used is the RUS parser [17];

it backward chains an extensive set of rules for English syntax

(that we augmented with more conditions and actions) to obtain a

sentence parse and semantic representation. For the sentence "An

ordered list is empty", the RUS parser produces the list struc-

ture

[DECLARATIVE
AUX -

[(PRESENT)]
FRAMETYPE = <PROPOSITION>TRANSL =(EMPTY X)

SUBJECT -
ENP
DET -

(ART...AN...
FRAMETYPE = LIST
RESTRICTIONS =

[(ORDERED X)]
TRANSL - (LIST X)
VAR - X
HEAD =(NOUN...LIST...)]

HEAD -[ADJVERB
HEAD - EMPTY]

COPULA -(BE)]

which becomes the input to the discourse analyzer.

The discourse analyzer breaks this list structure down into

the component assertions already shown and stores them in the

global data base. At this point the individual words of the sen-

tence have translations (produced by the parser). The rules in

the discourse analyzer combine these into a translation for the

zk~5* 49 '%- ..

-20-

whole sentence. This process requires that terms referring to

the same object be identified. When several sentences are pro-

cessed at once, these terms can come from different sentences.

The result of the discourse analyzer is a logic formula that

represents the literal content of the sentences. For the example

sentence, we get the formula

(X)((list(X) & ordered(X)) -> empty(X)).

Though the output of the discourse analyzer is a logic for-

mula it may not be a suitable formal specification. If the input

text mentions geometric metaphors like "left end of the list" or

"add to the top of the stack", the discourse analyzer translates

these metaphors literally. The concept mapper recognizes these

metaphors and maps them into appropriate mathematical expres-

sions. For example, if the input text defines "ordered list" in

terms of finite sequences, the mapper maps the expression

'empty(X)' into 'X=nil', where nil is the empty sequence. If the

definition were in terms of an array, the mapping of the expres-

sion would be different. The output of the concept mapper is a

second logic formula with metaphors removed and gaps filled in,

making it a suitable formal specification. (The gaps arise from

incompleteness in the natural language requirement and are filled

by rules in the mapper or by interaction with the user.)

Both the discourse analyzer and the concept mapper forward

chain their rules. This approach was chosen because the pro-

cesses are data driven rather than directed top-down. We only

know what to do for specific cases; as we look at more examples

we discover new cases and figure out what to do for them.

-21-

Forward chaining is appropriate for this situation because it

allows the analyzer and mapper to do what they can with the data

they receive. Without a global view, we cannot give these com-

ponents a goal to work toward, which would be required by a

backward chaining approach. Contrast this with the parser com-

ponent, where an extensive English grammar does provide a global

view of the parsing process and a backward chaining approach is

practical.

Conclusion

Expert systems provide a way to approach applications that

cannot be programmed by looking up some algorithms in a textbook.

They are particularly useful where new knowledge has to be

discovered and codified before program development is possible.

The approach taken by these systems is to completely separate

knowledge about the application area from the information about

how to proceed. The application area knowledge is entered in the

form of rules that resemble simple conditional statements. Each

rule represents an independent piece of knowledge and is thus a

kind of module that can be added or removed without much concern

for its effect on the contents of other rules.

The control strategies in expert systems apply rules in two

ways: backwards and forwards. Backward chaining resembles the

recursive procedure calls of conventional programming, but it

usually includes a backtracking feature that allows procedures to

be re-entered and computed differently. Forward chaining allows

expert systems to react quickly to changes in their data bases

,-

-22-

and to operate without a definite goal, which might focus their

'attention' on too narrow a portion of their data. They can be

more 'opportunistic' this way, taking advantage of any signifi-

cant features of a particular problem.

If the rules were applied in the simplest way possible,

* expert systems would be quite inefficient. There are several

'4 techniques to increase their efficiency. These techniques con-

sist mostly of ways of indexing rules and assertions for quick

retrieval, scheduling rule applications for proper sequencing,

and storing intermediate data structures to avoid repeated compu-

tations. Expert systems have become practical with the adoption

of these techniques.
C°

Acknowledgements

Toni Cohen, Tom Myers, Don Perlis and Ralph Weischedel made

many valuable suggestions for improving the initial draft of this

paper.

References

1. Lindsay, R. K., B. G. Buchanan, E. A. Feigenbaum and J.
Lederberg. Applications of Artificial Intelligence for Organic
Chemistry - The DENDRAL Pro ict. McGraw-Hill , 1980.

2. Martin, W. A. and R. J. Fateman. The MACSYMA system. Proc.
ACM 2d Symposium on Symbolic and Algebraic Manipulation, Los
Angeles, CA, 1971, pp. 23-25.

3. Heuristic Programming Project 1980. Heuristic Programming

Project, Computer Science Department, Stanford University, Stan-
ford, CA.

4. McDermott, J. RI: an expert in the computer systems domain.
Proc. of the First Annual National Conference on Artificial
nellince, Stan-f--d University, August 18 to 21, 1980, pp.
269-271.

-23-

5. Shortliffe, E. H. Computer-Based Medical Consultations:
MYCIN. American Elsevier, ew York, 176.

6. Lesser, V. R. and L. D. Erman. A retrospective view of the
Hearsay-II architecture. 5th International Joint Conference on
Artificial Intelligence, 1977, pp. 790-800.

7. Davis, R. and D. B. Lenat. Knowledge-Based Systems in
Artificial Intelligence. McGraw-Hill, New York, 1982.

8. Stallman, R. M. and G. J. Sussman. Forward reasoning and
dependency-directed backtracking in a system for computer-aided
circuit analysis. Artificial Intelligence, Vol. 9, No. 2, Octo-
ber 1977, pp. 135-196.

9. Charniak, E., C. K. Riesbeck and D. V. McDermott. Artificial
Intelligence Programming. Lawrence Erlbaum Associates, Hilldale,
New Jersey, 1980.

10. Warren, D. H. D. and L. M. Pereira. PROLOG: the language and
its implementation compared with LISP. SIGPLAN Notices Vol. 12,
No. 8 / SIGART Newsletter No. 64, August 1977, pp. 109-115.

11. de Kleer, J., J. Doyle, G. L. Steele, Jr. and G. J. Sussman.
AMORD: Explicit control of reasoning. SIGPLAN Notices Vol. 12,
No. 8 / SIGART Newsletter No. 64, August 197'7,pp. 116-125.

12. Forgy, C. L. OPS4 User's Manual. Department of Computer
4 Science, Carnegie-Mellon University, July 1979.

13. Forgy, C. L. OPS5 User's Manual. Department of Computer
Science, Carnegie-Mellon University, July 1981.

14. Quillian, M. R. Semantic Memory. In Semantic Information
Processing, M. Minsky, ed., MIT Press, Cambridge, MA, 1968, pp.

' 2M6-270.

15. Winston, P. H. and B. K. P. Horn. LISP. Addison-Wesley,
Reading, MA, 1981.

16. McDermott, D. V. and G. J. Sussman. The CONNIVER Reference

Manual. AI-M-259A, The Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1974.

17. Bobrow, R. J. The RUS system. In Research in Natural
Language Understanding, B. L. Webber and R. Bobrow, eds., BBN
Report No. 7 Bolt Beranek and Newman Inc., Cambridge, MA,
1978.

