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quadrilateral. Therefore, the first part of this research program
has focused on developing an understanding of the mechanisms of
rank deficiency and locking and of providing a rational and effective
method for the control of kinematic modes.

The major outcome of this research has been the development of
an effective procedure for controlling the kinematic modes in the four
node quadrilateral plate-shell element when one quadrature point is
used. In addition, the insights gained from that work have enabled
us to develop a triangular plate shell element with three nodes which
only requires a single quadrature point. Both of these results make
possible highly efficient nonlinear transient calculations for they
permit the use of very simple elements without any deleterious.
effects on the rate of convergence.

In addition, some unusual behavior of higher order elements,
such as the 9 node plate-shell element, which we call membrane locking,
has been discovered and investigated. This is a phenomenon asso-
ciated with curved elements that can lead to severe errors if the number
of quadrature points is too high. The importance of this finding is that
many finite element workers recommend using more quadrature points when
the material is nonlinear, in order to represent the material nonlinear-
ity effectively. These findings show that if recourse is taken to
higher order quadrature in such elements, the performance of the
element may in fact deteriorate because of the onset of membrane
locking.

The results of the research conducted so far indicate that in the
analysis of curved shells, an optimal integration scheme is associated
with each element and deviations from this optimal integration
scheme can lead to significant errors. This is of considerable impor-
tance in the use of curved shell elements in structural analysis
where closed form solutions are often not available, because the
damaging effects of over and underintegration often are not readily
apparent. Results of the research conducted so far indicate that
optimal integration schemes in the four node and nine node elements
are all associated with kinematic modes. An effective method for the
control of these modes for linear problems has been developed for the
four-node element. The performance of the hourglass control method has
been examined in linear and nonlinear problems. Although some unresolved
difficulties remain to be dealt with in nonlinear material problems,
the procedure is quite effective and yields a highly efficient element
which is suitable for many applications in transient analysis.
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ABSTRACT
I.',1

A finite element formulation and algorithm for the nonlinear analysis of

the large deflection, materially nonlinear response of impulsively loaded

shells is presented. A unique feature of this algorithm is the use of a

bilinear four node quadrilateral element with single point quadrature and a

simple hourglass control which is orthogonal to rigid body modes on an element

level and does not compromise the consistency of the equations. The geometric

nonlinearities are treated by using a corotational description wherein a

coordinate system that rotates with the material is embedded at the

integration point; thus the algorithm is directly applicable to anisotropic

materials without any corrections for frame invariance of material property

tensors. This algorithm can treat about 200 element-time-steps per CPU second

on a CYBER 170/730 computer in the explicit time integration mode. Numerous

results are presented for both elastic and elastic-plastic problems with large

strains that show that the method in most cases is comparable in accuracy with

an earlier version of this algorithm employing a cubic triangular plate-shell

element, but substantially faster.4! F
:4
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I. INTRODUCTION

."4

In the nonlinear analysis of impulsively loaded shells, algorithms

employing explicit time integration offer significant advantages in both the

econony and reliability of computations. However, it is very important in

these algorithms that the bending elment be quite efficient, because thousands

of element nodal force evaluations are typically required in a computation.

In an earlier work, Belytschko and Marchertas [1] developed an explicit

shell code SADCAT based on the Bazeley, et al element [2]. Although this

element is nonconforming and meets the patch test only for restricted element

arrangements [3), the code proved quite successful and economical in many

applications. In addition to explicit time integration, part of the

efficiency could be ascribed to a corotational formulation which considerably

simplified the basic equations on an element level as compared to the

Lagrangian formulations which were then popular. In Ref. [1], a computational

algorithm was first developed which employed vectors to track the rotations of

nodes and elements so that the arbitrarily large rotations could be treated;

this was also applied to frames in [4].

However, an element which does not meet the patch test for all

configurations is inherently unacceptable in a general analysis program so

numerous other elements have been tried. Experiments with the Razzaque-Irons

[5) element showed it was too expensive for explicit computations. Attempts

with higher order quadrilateral elements proved equally disappointing.

In this paper we will report on the application of the bilinear, 4 node

quadrilateral shell element with one point quadrature, as proposed by Hughes,

ho



et al [6) under the name U1, which appears to have the necessary ingredients

of simplicity, versatility, and reasonable accuracy. In the context of an

explicit time integration code, a simple element appears to best because it

provides the most accuracy for a given amount of computer time; higher order

elements, while more accurate for a given mesh, contain very high element

frequencies which severely limit the stable time step. Furthermore, they add

substantially to the complexity of the computational scheme. This statement

will be partially substantiated by comparing the Ul element to triangular

elements with cubic fields; other studies are underway.

Even with simple elements, reduced integration is imperative in an

explicit time integration code because a large part of the computational cost

arises from evaluating the constitutive law at the integration points. Thus

we have found that going from a single point quadrature to a 2 x 2

reduced/selective quadrature more than doubles the running time of the program

for an elastic-plastic material.

Unfortunately, both reduced integration and selective/reduced integration

in a bilinear plate element permit zero-energy or kinematic modes, as seen

from [6] and [7]. These modes, which are called hourglassing in the finite

difference literature, will often quickly destroy a solution. We will here

describe the application of an hourglass control based on the work of Flanagan

and Belytschko [8]. The essential feature of this hourglass control is that

it is orthogonal to the straining and rigid body modes on an element level

similar to the stabilization matrix scheme proposed by Belytschko, et al [9]

for the selective reduced integration element. Hence its effects on the

solution is minimal, although, in spite of its orthogonality on the element

level, it does slightly stiffen the overall response. The Ul element was

first used with hourglass control by Taylor [10], who employed the method of

N2
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Kosloff and Frazier [i.

Another feature of this work is the use of a corotational velocity-strain

formulation. A corotational finite element formulation is here defined as any

formulation where effects of rigid body rotation of the material are treated

by embedding a coordinate system in the element or at each sampling point of

the element. This provides a simple expedient for avoiding the complexities

of nonlinear mechanics, for in the corotational system the rate forms of the

kinematic and kinetic relations are basically linear and frame-invariant.

The attractive simplicity of a corotational formulation and its natural

*. compatibility with the finite element method were first recognized by Argyris,

et al [12), who cast their formulation in terms of the natural deformation

modes of the element. Wempner [13] subsequently developed a shell theory on a

similar premise. In [14), [15], [16], and [12), corotational methods were

developed and applied to the nonlinear analysis of beams and shells for both

static and transient nonlinear problems.

The formulation in [1 and [15) is a corotational stretch formulation,

for the strain tensor defined there corresponds exactly with the "right

stretch" tensor commonly used in nonlinear continuum mechanics; see [17) to

[19). A disadvantage of this formulation is that the conjugate stress is not

the physical stress (Cauchy stress), but the first Kirchhoff-Piola stress.

This is awkward for computer software because this stress tensor is not

symmetric, and its physical interpretation is not as clear as that of the

Cauchy stress. Furthermore, constitutive models today are generally developed

in terms of physical stress and its conjugate strain rate, the rate of

deformation or velocity-strain, so it's most efficient to perform element

operations in terms of these tensors; note that the use of a corotational

approach does not affect the constitutive equation routines at all.

43
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For these reasons, our codes have recently been cast in this format, see

for example [18]. The computational procedure for this formulation is

actually even simpler than the corotational -stretch formulations or the

natural deformation mode formulations if all computations are done directly in

terms of the velocities and rates. The rate formulation does preclude the use

of large time steps, but this is not a drawback in explicit time-integration

codes, where numerical stability usually limits the time step to a magnitude

so that errors in the integration of the rate equations are negligible. The

major objection we have found to this formulation is that unless other

measures of deformation are computed concurrently, the program provides no

valid measure of deformation: the velocity-strain tensor itself is not

integrable [19].

A word is also in order about "degenerate" shell elements, as pioneered

*by Ahmad and coworkers [20], [21], and recently implemented for general

nonlinear analysis of shells by Hughes and Liu [22]. Although these elements

have a compelling cleanliness and possess the versatility of being easily

linked with continuum elements, this is achieved at some cost. Because these

elements use a full continuum formulations, they require the evaluation of a

full 3 dimensional constitutive equation at each integration point and the

storage of the complete set of state variables associated with this 3D law.

Shell formulations, on the other hand only require a plane-stress law, which

effectively halves the state variables and computations. Thus, in an area

where we are still "compute-bound", in that the size of computations is often

limited by available computer resources, the shell elements still appear more

attractive.

In Section 2 of this paper, we will define the kinematic and kinetic

state variables and relations of the Mindlin theory for a corotational

4. 4



description of shells. In Section 3, the finite element equations are given,

followed by details of implementation, including hourglass control . In

Section 5, several studies of the performance of this algorithm are reported.

-- In Appendix A, a triangular element is described which similarly uses
only one quadrature point element. This element so far has only been

tested in linear situations, but its characteristics look quite promising.

The availability of a triangular element in conjunction with a quadrilateral

is quite useful since the modeling of many engineering structures requires

triangles.

In Appendices B and C, the suitability of some higher order elements to-4:

these problems is examined. It is shown that unless reduced quadrature is

employed in curved elements, a phenomenon called "membrane" locking is

encountered which leads to poor results. On the other hand reduced quadrature

in these elements also leads to kinematic modes, which need to be controlled.

5
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II. NOMENCLATURE AND GOVERNING EQUATIONS

The geometry of the shell is defined by its reference surface, or

midsurface, with coordinates denoted by xm, ym and zm and by its thicknes

h. The velocity of the midsurface vm is given byivx rx4x

vm = xm or Vy = ym (2.1)

vm zm

S{
z

where a superposed dot denotes a time derivative. The vectors tangent to the

midsurface are e I and e2 and a fiber direction is defined by £. The fiber

direction is initially coincident with e3 , where

e 3 , el x e2  (2.2)

and the angle between £ and e3 is assumed to remain small, so that

e -1 < 6 (2.3)

where the order of 6 depends on the magnitude of the strains and the accuracy

expected; for most elastic-plastic engineering calculations, values of a on

the order of 10-2 are acceptable.

-The triad el, e2, and e3 will be defined to be corotational in the sense

that it rotates with the material except that the vectors el and e2 remain

tangent to the midsurface; if the condition (2.3) is met, the difference

6
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between the rotation of the material and the triad e should be small. The

location of eI and e2 in the midplane will depend on the material rotation as

defined subsequently. Whenever the components of a tensor are expressed in

terms of the base vector ei, it will bear a superposed "hat", as for example

the stress a. The base vectors of the flobal system will be denoted

* by eg, e? and e.

In the Mindlin [23] theory of plates and shells, the velocity of a point

in the shell is defined by the velocity of the midsurface vm and the angular

velocity vector e by

vvm - ze x e (2.4)
-%3

The corotational components of the velocity strain (rate-of-deformation) d are

given by

d . 1 i  vvx+  v (2.5)ij 2 ax axi

Substituting (2.4) into (2.5) gives the following equations for the velocity

strain

xd -

ax ax

y ay ay

2- - + (2.6)
-xy (2.6

x y a ax ay ax

7
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2d z=- z
ay

2d
xz ax y

The velocity strains are arranged in a column matrix

AT C ; x  d , , 2d 2a xz, 2; z (2.7)

The stress column matrix is given by

a= A xz ;YZ (2.8)

The above stress and velocity-strain matrices are conjugate in the sense that

the rate of internal work per unit volume, W, is given by

W = do (2.9)

We consider the shell in a state of plane stress, so the stresses are

subdivided as follows

{ } (2.1oa)

8
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alTz
m )

S x yz (2.10c)

where a' are the inplane stresses and a" are the transverse shear stresses.

The velocity-strain ; is computed from the assumption that az = 0; the

stresses r. and cyz are treated primarily as penalty parameters to

approximate the condition (2.3) and are not necessarily 0 computed by the

stress-strain law which governs the in-plane stresses. This simplifies the

structure of the material law subroutine with apparently no loss in

accuracy.

Note that the stresses are always computed in terms of corotational

components defined by the base vectors ei . This triad rotates exactly with

the material except for the out-of-plane rotation due to the difference

between the rotation of e3 and 1, which is assumed to be small. Thus any

anisotropic material law can be expressed in rate form directly as

'p

without any corrections for frame invariance. By contrast, a Jaumann rate

formulation would require equivalent correction terms for S, as exemplified in

kinematic hardening models used by Key [24], where the kinematic hardening

term must be updated by a Jaumann rate identical to that used to update the

stresses.

%.°
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.4' III. FINITE ELEMENT EQUATIONS

'4 The finite element equation of motion are [15]

M v = fext _ flint (3.1)

where M is the mass matrix, fext and fint the nodal force matrices arising

from external forces and the internal element resistances respectively. The

internal forces are obtained by a topologically appropriate summation

fint=A fe (3.2)

where the nodal forces fe and moments me of element e are given by the

principle of virtual power

,eT e 6veT fe = ;eT -e + 6 veT e (33)

- ve aT a 
dV

* where Ve is the volume of element e; repeated upper case subscripts are summed

over the nodes of the element, and me and fe are given by

e fxl

~fzI

[: mx

m - my (3.4b)

10
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As stated in the introduction, we will confine ourselves to the bilinear 4

node quadrilateral element with single point quadrature; by single point

quadrature we refer to the fact that only one evaluation of the moments and

membrane forces is made within an element; for elastic-plastic materials,

several integration points may be necessary at this point in the z direction

to evaluate the moment and membrane forces from the stresses.

-"-. The reference surface of the shell is approximated in both the

underformed and deformed states by the elementwise interpolation

" m NJ (tn) Yl (3.5)

'.,
z z.

where xI, yl, and zI are the coordinates of node I.

"* Note that

W vm = XI

xI I
vm = Y (3.6)

-. i

vm =zII

and the superscript "m" will be omitted in the remainder of this paper because

all nodal variables pertain to the midplane

KN
.. Nl  (1-c) (-n) (3.7a)

N 2

N2 = 1+{ ln (3.7b)

' ' 11
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N3  (3.7c)

N4  T ~ 1c)(+~ (3.7d)

The velocity of the midsurface and the angular velocity is approximated

by the same shape functions, so

v= N1(tn) VI (3.8a)

Upper case indices pertain to the nodes of the element and when repeated, as

a, in the above, are summed over the nodes of the element. The velocity strains

at g - 0, n~ 0 can be shown through Eqs. (2.6) and (3.8) to be given by

d - ^ B ^

dy B2 , vy I zB 21'xI

2dv = B 1 ,+ B11 vYl + z(B 21'YI B B1I XI) (3.9)

2d xz= Blv + N 18y1

2yz = N

21. IX

where

12



B1
ax

aN1  (3.10)
N,

B21 
3

ay

If the velocity strain matrix is partitioned identically to the stress matrix,

see Eq. (2.10), then Eq. (3.3) can be written as

T(6d + 6d ) dV (3.11)

where is the shear factor; it will be treated as an arbitrary parameter in

the present context since it serves primarily as a penalization to enforce the

Kirchhoff normality condition as the shell becomes thin.

By using the arbitrariness of the variation and Eqs. (3.9) and (3.11) and

one point quadrature, we obtain the following formulas for the nodal forces

fxi = A (BII /x + B21  x)

i yI= A (B21 /4 + B1I tY) (3.12)

f z , A K (B1 xz + 21 yz)

-xi = A [B21 m y + Biily - i y ]

4.. m A C- Bi B * ) +  yz]

mzi =0

13
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where

fc, f J'; dz (3.13a)

f i- ;f j di (3.13b)

and Bil is evaluated at the same point as in Eq. (3.9). Details of the

formulas are given in Appendix A.

J

'p

..4

,
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IV. IMPLEMENTATION AND HOURGLASS CONTROL

A major goal in the programming of this element was to exploit the

simplicity of the element to obtain relationships involving few computations

so that explicit time integration could be performed efficiently. Since one

point quadrature is used in the element, hourglass control is necessary. This

does involve additional computations, but the techniques of [8] were adapted

to the element so that the additional cost is small.

The element computations are all performed in the corotational

system (x, y, z). The function v(x, y, z) is defined on the surface in terms

of reference parameters g and in, see Eq. (3.8a). Derivatives are obtained

from the following matrix equation

vsnX, 1 ys n Z'nV,1(41} y, z, - y, Z, X, z - ZX, x, x I - y,Ex, J V z (

where the comma followed by a subscript denotes partial differentiation with

respect to that subscript. Note that the third equation in (4.1) simply

indicates that the derivative of the function normal to the surface must

vanish.

If Eq. (4.1) is written in terms of the corotational

coordinates x, y, z, then av/az = 0, so it follows immediately that the

differentiation formula is independent of az/a and aZ/an. Thus, the implicit

differentiation formula reduces to

v, E E y, E v, (4.2)
Vn X' n Y'n. Vy 1

is



If we then use the identity given in [8], we obtain

B 1 Y2 " 4 Y3 " yl Y4 - Y2 I " ;3 (4.3
Bix 4 x xI - x3  x2 - x4 x3 xi i=2

These formulas are then used directly in the evaluation of Eqs. (3.9) and

(3.12), as given in Appendix A.

For the purpose of hourglass control, we follow [8] and define the

matrix X by

Yl ' hl- (hjx ) Bai (4.4a)

or

YI = h, - C(hTx) B1  + (hTX) B21] (4.4b)

where

"I = [+1, -1, +1, -1) (4.5)

In the above equations, the Greek subscripts have a range of 2 and are summed

when repeated, x1l = xI, x21 = YI" Throughout this paper, repeated upper case

subscripts are summed over the nodes of the element.

The hourglass generalized strain rates are obtained by

4B =Y ; (4.6a)

16



' YI (4.6b)

a yI .I (4.6c)

where the superscripts B and M denote hourglass modes associated with bending

and in-plane (membrane) forces, respectively. The corresponding generalized
I

hourglass stress rates are given by

*B 'B

6B = C1 qI

a ah

B = rw  Bl (4.7)Eh 3

4M = rM  -- - B# Ma

3 Cq

where

C r Eh 3A B B

rC Gh 3  B B(4.8)C2  = BI GIi

C r Eh A B B

The constants re, rw, and rM are generally given values between 0.01 and

0.05. For elastic-plastic materials we let E =7 C, where Cij are the

constants that relate the components of the in-plane stress tensor by

17



cy C d (4.9)

K The nodal forces corresponding to the hourglass generalized stresses are

-H Bm I =YI Qa

m°i

iH Y B (4.10)

fal YI aM

where the total hourglass stresses are obtained from the rates as described in

Appendix A.

An important aspect of this hourglass control procedure is that it does

not effect the straining or rigid body modes for a flat element; this is shown

-4 in Appendix B. Thus if the velocities correspond to a rigid body rotation

about an arbitrary point or a rigid body translation, all of the generalized

hourglass strain rates vanish. When the element is warped, a rigid body

* motion does generate hourglass strain rates qM ; they may be almost entirely

V' eliminated by a procedure described in Appendix B.

In all of the computations reported here, the central difference method

was used for time integration. A lumped mass matrix was used for all

computations. In addition to an augmented rotation lumped mass, as proposed

*i In [6], a reduced shear factor 7 as proposed in [25] was used to reduce the

maximum frequency and hence increase the stable time step. This permits the

- increased rotatory lumped mass to be scaled so that the spectral fidelity of

the finite element mesh is quite good over a large range of frequencies.

18"Z



V. NUMERICAL RESULTS

Several numerical examples will be given to illustrate the performance of

this quadrilateral element. All the computations were carried out on the CDC

Cyber 170/730.

Example 1: Impulsively Loaded Cantilever Beam

A cantilever beam, shown in Fig. 1, is used to test the linear and

nonlinear response of the quadrilateral plate element. A uniform pressure is

applied in the negative z-direction as shown. The results for the linear

response obtained with p = 0.01 psi are summarized in Table 1 and are compared

with other elements [1] [4], and the analytic solution given by Timoshenko and

Goodier [26]. The results for p = 2.85 psi, presented in Table 2, involve

large displacements and highly nonlinear response. Fig. 2 illustrates the

time history for the tip displacement and compares it to the result obtained

with an 8 node, two dimensional isoparametric element by Shantaran et al [27).

Example 2: Simply Supported Square Plate Subjected to a Uniform Load

This problem is described in Fig. 3; all sides of the plate are simply
'S.

supported. Due to the symmetry of the geometry and loading, only a quarter of

the plate was modelled. The mesh consists of 25 nodes and 16 elements. Both

elastic and elastic-perfectly-plastic materials were considered. The results

are compared to those obtained with a triangular plate element [1] and an

analytic solution by Timoshenko [28].

The elastic and elastic-plastic results are presented in Tables 3 and 4,

respectively; time histories of the deflection of the center point are plotted

in Fig. 4 for 3 and 5 integration points through the thickness. Note that the
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number of integration points through the thickness used to evaluate Eqs. 3.13

makes a large difference in the displacement; this is also clear from Table 4.

Example 3: Impulsively Loaded Clamped Beam

A 10 in long aluminum beam clamped at t.oth ends is loaded impulsively

over a center portion, as shown in Fig. 5. The material is elastic-perfectly-

plastic. Experimental results have been given for this problem by Balmer and

Witmer [29]. Fig. 6 compares the computed displacement time history with the

experimental results.

Example 4: Corner Supported Square Plate

The hourglass modes in static and free vibration problems have been

investigated by Belytschko, Tsay and Liu [9]. Here we will demonstrate the

hourglass modes and their control for a transient problem. We consider a

square plate subjected to a uniform load with point supports at the four

corners.

Figure 7 shows the deformed shape without hourglass control. In order to

see the deformation, we have amplified the results 1000 times. This problem

shows that the in-plane and w-hourglass mode [6,8) produces serious distortion

of the square plate. After adding hourglass control rM = 10- 3 , rw = 0.03, the

quadrilateral element gives the expected deformed shapes as can be seem from

Fig. 8; the amplification in this figure is 15000.

,* Example 5: Cylindrical Panel

*~. -A 1200 cylindrical panel, loaded impulsively, is shown in Fig. 9. The

problem is symmetric, so only half the panel is modelled. Note that the ends

.2
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of the panel are simply-supported and the boundaries at the sides are fixed.

An initial velocity of 5650 in/sec normal to the shell's surface is applied

over the region marked RI.

We used two meshes to solve this problem, varying the number of

circumferential elements from 6 to 8 with 16 elements along the length of the

cylinder. The displacement of the midpoint along the crown line of the

Acylinder is compared with experimental results [30] and the triangular

elements results El] in Fig. 10. The results obtained for the 6 x 16

quadrilateral mesh are not satisfactory; this may be due to deficiencies of

one-point quadrature for warped elements. Fig. 11 gives the permanent

deformation of the crown line of the panel and Fig. 12 gives the deformation

of a radial cross section as compared to the experimental and the triangular

element results. Deformed shapes are given in Fig. 13.

Example 6: Spherical Cap

The problem description and a top view of the mesh are shown in Fig. 14;

fourfold symmetry was used. A uniform load was applied over the cap as

shown. Both elastic and elastic-plastic materials with the material

properties given in Fig. 14 were considered. The results for the center-

deflection time-history are compared to the results obtained by Bathe et al

[31] using 8 node, axisymmetric isoparametric elements in Fig. 15. Five

integration points were used through the thickness in the elastic-plastic

calculations.

CONCLUSIONS

A four node quadrilateral applicable to transient plate and shell

problems with material and geometric nonlinearities in an explicit codes based
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on the Hughes element [6,7] has been presented. The element uses one

quadrature point in the plane of the element and kinematic modes are

stabilized by an hourglass control. The performance of the element with one-

point quadrature is generally quite good, except when excessive warping is

encountered. The hourglass control procedure described here is easily

implemented and permits one-point quadrature to be used regardless of the

boundary conditions, without mesh instabilities. The use of one-point

quadrature, as compared to reduced-selective integration, enhances the speed

of the element substantially; the element is also significantly faster than

the Bazeley et al [2] element as used in [1] with 3 quadrature points and, yet

it possesses comparable accuracy.
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APPENDIX A

DETAILS OF FINITE ELEMENT IMPLEMENTATION

We describe here in detail the procedure for computing the internal nodal

forces fe for a given set of nodal coordinates and nodal velocities.

Throughout this Appendix a double numerical subscript indicates a

difference: x32 = x3 - x2, vx41 = Vx4 - Vxl.

Orientation of local base vectors e,.

The local e3 vector is assumed to be the normal to the

vectors r31 and r as shown in Fig. A.1. The components of e3 are then given

by

y 31 z 42 - z3 1Y42

5s3 = z3 1x42 - x31z42  (A.1)

x3 1Y42 - Y3042

e lsi l2 + S2 + lsll =  (A.2)3 SA3IIS3II 1 1523)

Two procedures have been used for defining the x axis. In the firstSA

procedure, x is embedded in the element between nodes 1 and 2, side 1-2;

however, since this direction is not perpendicular to e3 normality is

enforced. This is quite accurate if the shear strains are less than 10%.

While defining x to join nodes 1 and 3 would automatically satisfy normality,

the use of an axis along the side is convenient because the stresses, which
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are computed in the ,y) system, are then more easily interpreted. In

~procedure 1, e;I is computed by

,: x21

r21 Y2 1  (A.3)

z21

s = 21 3) 3 (A.4)

el = Sl/1si I  (A.5)

The matrix e2 is then obtained by

2 =e x e (A.6)

The components of v are transformed to the local system by

.11

v = A v = e v (A.7)

e1 T
.1X3

where A is the matrix of direction cosines between the global and local

system. The current nodal coordinates, x, must also be expressed in terms of

the local system by Eq. (A.7) before proceeding further.

In procedure 2, the coordinate x is not embedded along the side 1-2;

*i instead side 1-2 is associated with a coordinate x and x rotates with a spin

*. as defined by

. x z -(A.8)
", 2 ax ay
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which, by Eqs. (3.8), (3.11) and (4.3), gives

'z E>'24 vy 13 Y3 4 x42 vx13 x13 v2]( 9

The rate of the angle * , see Fig. A.1, is then given by

=z - wz(r21 )  (A.10)

where wz(r 2 1) is the angular velocity of side 1-2, which is

w (r 21 (vy2 - vy1 )/lIr 21 11 (A.11)

The direction cosines between the x,y and x,y are then updated by

inil
cos(* n  ) = COS(* n ) - A, sin(,n) + AO2 COs(,n) (A.12a)

sin( n+ ) = sin(,n) + a cos(* n ) -1 A&2 sin(,n) (A.12b)

= ;ni / At (A.12c)

Note that as computed by Eq. (A.10) is at time step n4/2in the central

difference method since v in Eq. (A.9) is at time step n4 /2. To implement this

method, cos * and sin * must be stored for each element since their values at

the previous time step, time step n, must be known to obtain their values at

n+1. A radial return is used to normalize their values i.e.,
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S = (cos 2(,n+1) + sin 2(n+1)) 12  (A.i3a)

cos(n+1) + cos( n+l)/s (A.13b)

sin(* n+ l ) + sin(n+l)/s (A.13c)

The direction cosines are then modified by

AT co(n+1 +1
eo( sin (,n 0eT

1T 1+ + T(.4
eT  +- sin(, n+ l) cos( n+l ) 0 T

T ;T
e3T 0 0 1 e3

where the far right hand vector is that which appears in Eq. (A.7)

Note that Eq. (A.7) must now be repeated to obtain the nodal velocities

in the correct local coordinate system. The procedure introduces some error

because Eq. (A.9) does not use the correct local coordinate system to

compute wz; this can be corrected by using a two pass procedure or

storing e1 for time step n; neither alternative appeared to be worth its

additional cost.

The area A is computed by

A = 1 (x31y4 2 + x24y 13 ) (A.15)

Computation of strain rates. Once 8 and v are obtained at nodes I, I = 1 to

4, from the global components by the transformation (A.7), the strain rates

are easily obtained through Eqs. (3.9) and (4.3). The following formulas are

used:
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2 7K (24 x 3 + 13x241

'd IN (X42vy13 + X13vy24)

I .x ( 24 'x3 + + +3 31e 24  (A16

y - (x 42 ex13 + x24)(A.17)

xy (-x428y13 - +1e2 Y24exI3 + Y1y4

;A *am - A

x

d ad - Z Ky (A.18)

[^M

d-" zdxy adxy ZPCX

*. The strain rates must be computed at a set of quadrature points through the

thickness, -h/2 c z 4 h/2, if a plane stress law is used.

The generalized hourglass strain-rates are only computed once in an

element and the form of Eq. (4) is used directly.

Stresses. The stresses are computed by a plane-stress constitutive equation

3

" 30

* J..



L ,J , , . !. ,> -. A,. - . .. - ,- -;. -. ' " : - -' i " . . ' . . ' i"

C d (A.19)

The transverse sherresses are always computed by an elastic law. The

generalized hourgltress-rates are computed by Eq. (4.6). Note that all

rates are at time n-XI2. The new values of the stresses are then computed

by

-n+1 n + &'/2

Q n+1 Qn +/ 
(A.20)

h- h

The stresses muscomputed at all integration points -T A h to

obtain ao and e generalized horuglass stresses and strain rates are

computed only opr each element.

Nodal forces. 3dal force contribution from an element consists of both

the nodal forc~ing from the physical stresses, Eqs. (3.12), and those

' *arising from tirallzed hourglass stresses, Eqs. (4.10). We will give

the nodal forcessions for node 1:

A M

1 x42 ) + y Q

f =2 (+ Y24  xy) + YIM

zi xz + X42 yz) + (A.21)
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1 Bx1 (x42  y Y24  xy 4kA yz

my1= ( Y24  x- x42  xy
) + 1 A xz + YI QB

42

* The nodal forces and moments are then transformed to the global system by the

inverse of Eq. (A.7) which gives

f = A T f- ml = AT ml (A.22)
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APPENDIX B

PERFORMANCE OF HOURGLASS CONTROL

IN RIGID BODY MOTION

In this Appendix it is shown that all generalized hourglass strain-rates

vanish exactly for an element if all of the nodes are co-planar. This is

crucial for the performance of the element with hourglass control because if

the hourglass strain rates do not vanish for rigid body motions, nodal forces

are generated by rigid body motions via the generalized hourglass stresses.

It is also shown that this condition can be satisfied when the element is

warped and the nodes are not co-planar by a slight modification of Eqs. (4.6).

In this Appendix indicial motion is used; 6reek subscripts have a range

of 2, Latin lower case subscripts have a range of 3, Latin upper case

subscripts a range of 4.

sI = [1, 1, 1, 1] (B.1)

The following equations will be used

h Is - 0 (B.2)

BalX = 6 (B.3)

BisI - 0 (B.4)
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where B i is defined in Eq. (4.3) and h, in Eq. (4.5); 6 is the Kronecker

delta. Eqs. (B.2) to (B.3) can easily be verified by simple algebra.

In rigid body motion, the nodal velocities are given by

vi =eijk j xk  (B.5)

0
where eijk is the alternator tensor, wj is the angular velocity and vi the

translational velocity. The nodal velocities can then be written as

... . eijvis (B.6)vi, +J + eij3Ch I  eijk rksl) + vis(

where r is the vector from the center of rotation to the origin of

the x coordinate system and the assumption that

X31 -Ch, (B.7)

has been made in writing the second term. The last two terms will be omitted

henceforth since by Fqs. (B.2) and (B.3) their inner product with yI will

always vanish. The nodal angular velocities are given by

8il = isI  (B.7)

Using Eqs. (4.4), (4.6a) and (B.7), we note that

.4B =h I - (h x(J ) B3I ]  =s = 0 (B.8)

where the last equality follows immediately from Eqs. (B.2) and (B.4).
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. Similarly, from Eqs. (4.4), (4.6b) and (B.6), it follows that

3 = [hI - (hj xj) B.i] wj e3j,3 xI = 0 (B.9)

where the second term in (5.6) has been omitted immediately because e3j3 =

"- 0. The last equality in (B.9) follows directly from the use of Eq. (B.3).

Using a similar procedure shows that

4 = 4C wj e 
(B.10)

Thus, the membrane hourglass strain rates do not vanish when , O, i.e. when

*, the nodes are not co-planar. However, they can be made to vanish

approximately by letting

1 X I x " Y (B.lla)

4 -I - yf + 4; (B.11b)

Equations (B.11) do not completely eliminate q in rigid body motion because

the z coordinates of the nodes usually do not satisfy Eq. (B.7).

3
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FIGURE CAPTIONS

Fig. 1. Cantilever beam (example 1): problem description and finite element
mesh.

Fig. 2. Tip deflection for cantilever beam subjected to a uniform load p =

2.85 psi.

Fig. 3. Simply supported square plate (example 2): problem description and
finite element mesh.

Fig. 4 Deflection of center-point of simply-supported square plate for
elastic and elastic-perfectly-plastic materials using 3 and 5
integration points through the thickness for the latter.

Fig. 5. Impulsively loaded clamped beam (example 3): problem description
and finite element mesh.

Fig. 6. Deflection of center point of example 3 compared to experimental

results [29].

Fig. 7. Deformed mesh of corner supported plate without hourglass control.

Fig. 8. Deformed mesh of corner supported plate with hourglass control.

Fig. 9. Problem description for impulsively loaded cylindrical panel,
example 5.

Fig. 10 bisplacement time histories for two points of the cylindrical panel,
* example 5, compared to experiment [30] and earlier computed results

[1].

Fig. 11 Final deformed shape of the panel, example 5, at the crown line
compared to experiment [30] and earlier results [1].

Fig 12. Final deformed shape of the panel at the cross-section z = -6.28

compared to experiment [30] and earlier results [1].

Fig. 13. Computer plots of deformed cylindrical panel.

Fig. 14. Problem description for spherical cap, example 6.

• Fig. 15. Center displacement of spherical cap for elastic and elastic-plastic
materials compared to numerical results of Bathe, et al [31].
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TABLES

Table 1. Parameters and results for linear response (p = 0.01 psi) of
cantilever beam, example 1.

Table 2. Parameters and results for nonlinear response of cantilever beam,
example 2.

Table 3. Parameters and results for elastic, simply-supported square plate,
example 2.

Table 4. Parameters and results for elastic-plastic, simply supported square[.,'iplate example 2.
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z
Py.z

'" J 4X Y
o. o

Length L = 10. In.
Width b 1. In.
Thickness t = 1. in.
Young's modulus E 12000. psi
Density p .1024X10- 5 Ib-s9c 2/In'
Poisson's ratio i 0.2

.- ' (a) Problem definition

time

(b) Pressure load

7 8 9 10 11 12

1 2 3 4 5 6

(c) Element mesh

Fig. 1. Cantilever beam (example 1): problem description and finite element

mesh.
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*~~ .. . . . . .- . .

8.00

S- [3-plate element

7.00 - 2-D element

6.00-

S5.00-

o.4.00-
0 linear

* static

3.00-

2.00-

1.00 0

0.00- e
0.000 .001 .002 .003 .004 .005 .006

time (sec.)

Fig. 2. Tip deflection for cantilever beam subjected to a uniform load p =
2.85 psi.
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-0,engh - LL-04In

Thickness t =0.5 In.
Young's modulus E I 10 psi
Density P 2.588X10'" lb-sec2 /n s
Poisson's ratio Id=0.3

Yield stress a - 30000. Psi
Plastic modulus Ep 0. psi
Pressure load P =300. psi

(a) Problem definition and element mesh

time

(b) Pressure load

Fig. 3. Sirply supported square plate (example 2): problem description and
finite element inesn.
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mO1 plate element

a plate element
.30- plaatic(3 points)

.25-

~'.20-

P4 .15- lsi( ons

linear
______static

.05-

0.00-7

0.00 .20 .40 .60 .80 1.00 1.20
time (sec.)

Fig. 4 Deflection of center-point of simply-supported square plate for
elastic and elastic-perfectly-plastic materials using 3 and 5
integration points through the thickness for the latter.
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x
I.y

2": - j

Length I.=10. In.
Width b =1.2 In.
Thickness t =.125 In.
Young's modulus E 10.4X106 psi
Density P - 2.81X1O4 Ib-.seC2/In 4 psi
Poisson's ratio -' 0.3
Yield stress - 41400. psi
Plastic modulus EV = 0. PSI
Initial velocity VO -5000. in/sec

Fig. 5. Impulsively loaded clamped beam (example 3): problem description
and finite element mesh.
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-93- plate element
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.20-

.10-

". ~0.00 '- Tt

0.0 2.0 4.0 6.0 8.0 10.0
time (msec.)

Fig. 6. Deflection of center point of example 3 compared to experimental
results [29J.
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1.40- 1 1 I

z=-6.28

V.

1.00-

~-.80-

0

-. 60-

.40-

w 0 plate elernent(aXle)
* x 0 plate element(eX16)

.20 t A plate element(exle)
o experiment

0.0

-~0.00 .20 .40 .60 .80 1.00
time (msec.)

Fig. 10 Displacement time histories for two points of the cylindrical panel,
example 5, compared to experiment Lr30] and earlier computed results
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S1.80-1 In A .

S1.20-

.60-o tC plate element
A& A plate element

e experiment

0.00I
0.00 .60 1.20 1.80 2.40 3.00

x direction (in.)

Fig 12. Final deformed shape of the panel at the cross-section z =-6.28

compared to experiment 1301 and earlier results [1].

44



time =.3781-03

7

z

z

time =.1003-02

7

z

Fig. 13. Computer plots of deformed cylindrical panel.
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.1

i z

0 0

Clamped spherical cap and element mesh

Radius r = 22.27 In.
Thickness t = 0.41 In.
Angle a - 28.870
Young's modulus E 10.5X108 psi
Density p - 2.45X10 - 4 lb-sec2/In 4 psi
Polsson's ratio v - 0.3
Yield stress cry 24000. psi
Plastic modulus = 0.21X1O psi
Pressure load P = 600. psi

Fig. 14. Problem description for spherical cap, example 6.
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- Bathe et al

* elastic
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Fig. 15. Center displacement of spherical cap for elastic and elastic-plastic
materials compared to numerical results of Bathe, et al C31J.
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Table 1. Parameters and results for linear response (p = 0.01

osi) of cantilever beam, examo]p 1.

El ent ,No. of No. of Time Step No. of Max. Deflection Period CPU Time
Type Nodes Elements At (sac) T ime Steps (in) (msec) (sec)

Euler
Beam 6 5 1.5x 10 400 0.02543 5.812 20.03
Elenent[4]

Triangu'l a'
Plate 12 20 1.SxlO 400 0.0240i; 5.662 126.03
Element[1 _]i

Quadri-
lateral 12 1.5x 10- 5  400 0.02454 5.680 25.83
Plate
Elenent

Analytic 0.325
[27 ]  0._25 5.719 _

Table 2. Parameters and results for nonlinear response of
cantilever bean, example 2.

Elenent No. of No. of Time Step. No. of Max. Deflection Pericd CPU Tiie

Type Nodes Elements At (sec ime Steps (in) (msec) (sec)

Euler
Beam 6 5 1.5 x 10"5  400 6.321 5.812 20.03
Element[4]

Triangular
Plate 12 20 1.Sx 10"S  400 6.076 5.587 126.03

El ement[l ]

Quadri-
lateral 12 5 1.5x 10- 5  400 6.139 5.640 25.80
Plate, ~Element'" l''

'2-0 -E1ement[28 22 5 0.2x 10 6600 6.0 15.600 43-

COC 7600
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Table 3. Parameters and results for elastic, simply-supported
square plate, example 2.

Element No. of No. of Time Step No. of Max. Deflection Period CU Ti-me

Type Nodes Elenents At (sec) Time Steps (in) j(msec) (sec)

Triangular I
Plate 25 32 4 xl0-  300 0.1996 106 7 .

Element[] 30 0.1996 
_ 

1.031 7_.31

Quadri-lateral
latea 25 16 6 x10 6  200 0.2001 0.995 28.08
Plate 20020
Element

Analytic 0 0.2129 1.070[29] I

Table 4. Parameters and results for elastic-plastic,
simole suooorted square olate. examole 2.

• Element 1No. of No. of Time Step No. of Max. Deflection Period CPU Tire
Type Nodes Elements At (sec) Time Steps (in.) I (sec) (sec)

Trlangular
Plate 25 32 4x 10"6  300 0.3866 0.01152 124.51' Element

(3 layers)

Triangular IPlate
Plaeen 25 32 4 x10-6  300 0.2478 10.01104 143.41Elemnt

(5 layers)

uadrila-
teral 25 16 6x 106  200 0.2949 0.01152 33.82
Plate
Element
(3 layers)

Quadrila-

teral 6
Plate 25 16 6x 10.  200 0.2511 0.01116 43.64
Element
( layers) ,__

*note: 3 layers means 3 integration points thrcuoh thickness
5 layers means 5 integration points through thickness
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APPENDIX A
'A

1. INTROOUCTION

In the analysis of nonlinear problems, particularly transient nonlinear

problems, computation time and memory are often crucial factors. Since

element stiffness computations are repeated many times it is advantageous to

have efficient and simple elements. Consequently much research is aimed at

formulating accurate elements with these characteristics [1-8].

In the analysis of thin flexible structures, perhaps the most promising

approach for developing simple and efficient elements is that based on

independent approximations of the rotations and displacements combined with a

reduced order of shear integration [3-5, 9-16]. As opposed to the CI

continuity required in the Kirchhoff type theory, only CO continuity need be

satisfied In this approach. Consequently lower order shape functions can be

. used which enhance simplicity. However, the use of the low order shape

*functions necessitates reduced integration of the shear contribution to the

stiffness matrix. [3]; otherwise the elements are considerably too stiff.

Fortunately this necessity further contributes to the efficiency of the CO

element; reducing the number of the integration points reduces the number of

computations, and along with the simple shape functions, results in extremely

efficient elements. While this approach also has its drawbacks, such as

possible zero energy modes, these appear only for certain boundary conditions

and then can be effectively eliminated [17,18].
.4

In some cases reduced integration may fail. For instance Batoz et.al.

[7] examine three different approaches to triangular elements and in their

study the SRI (selective/reduced integration) triangular element was found tD

be ineffective. On the other hand Hughes and Taylor [19] have developed a

more successful one point quadrature triangular element by overlapping two

-1 -
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nodes of the quadrilateral [20], but the element's performance is mediocre for

certain element arrangements.

The results of [7] and [19] show that to develop a successful CO element

it is not sufficient to use reduced shear integration; it is necessary in fact

to identify those mechamisms which are associated with excessive shear-strain

energy and hence shear locking. This will be accomplished by fitting a

portion of the deformation to an "equivalent Kirchhoff mode"; this portion of

deformation will be called the bending mode. Although accompanied by shear

strains, bending modes will not involve any shear strain energy. The

remaining portion of the deformation will be called a shear mode. The proper

definition of these modes is crucial for the development of a successful CO

element. It can not always be achieved by just reducing the order of

numerical integration. The triangular linear plate element is one of the best

examples of this situation.

In this paper we develop a new triangular element with linea'r CO fields

which is based on this concept of decomposing the deformation into well

defined bending and shear modes. The element developed here shows definite

improvement compared to the formulation presented in [19]. We also identify

the source of the difficulties encountered in [7]. After some modifications,

the basic ideas presented here can also be used for other elements.

Our presentation begins with general considerations regarding the shear

and bending modes of deformation. Section 3 contains the specifications of

the problem for the triangular linear plate element. Section 4 deals with

major aspects regarding implementation while in Section 5 the results of

numerical applications are presented including a discussion.
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2. GENERAL REMARKS

The main issue in this paper is to determine an additive decomposition of

the displacements and rotations of a CO plate element into two modes: a

bending mode - associated exclusively with bending strain energy (regardless

of the presence of shear strains in this mode) and a shear mode - which is

associated only with the shear strain energy. Therefore the transverse

deflection w and the rotations e y in each element are given by
x y

w w (wb + W (1a)

t: x {:} N~ X ( b Ne (1b)
yl f IJ e f exi + 16I ,

. where the following decomposition is implied fdr the nodal variables

aab es (c)

.. e +S (id)

W wa wb + ws  (1d)

Here NI and are the shape functions for the displacements and

rotations, respectively, and where superscripts b and s designate the bending

mode and the shear mode, respectively. Each of these modes can include an

arbitrary amount of rigid body motion.

The decomposition is chosen so that the element behaves as closely as

possible to a Kirchhoff C1 element in the thin-structure limit. The

mechanical reasoning used to accomplish this task will be presented in the

next Section. In the decomposition, the shear and bending nodal variables are

-3-



linearly related to the total nodal variables, so
%*.)

,(2a

* S ' (2b)

%w

-.-

where P, Ps are linear operators emerging from the decomposition. They can

- also be viewed as nonorthogonal projection operators.

Assuming the sign convention shown in Fig. 1, the kinematical

relatioqships are

K (3a)

X "}y I fox +wxv (3b)

Their discretization yields:

, ."b  eb
a B {} 8 Cr 0] (4a)

-4.
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BS f _ EB5, Bd] (4b)
w _ r -d Lw

with 8b SB defined by Eqs. (1) and (3). Equations (2) and (4) can be

used to find the strain fields in the bending or shear mode of deformation.
Thus, in the bending mode

= Bb
- b i u-bpb { bb4 (5a)

zb 8S { b s b } Bsb L(5b)

while in the shear mode

K .Bb B b Ps eJb (6a)si wt w
.o5

Bs B{} SPS {} B5 { (6b)

As mentioned earlier, only the bending mode will contribute to the

bending strain energy, and only the shear mode will contribute to the shear-

strain energy. Hence, each mode is uniquely associated with one of the energy

'.' -5-



terms. The total strain energy is

(Kb) TO b db + (L) T + -X s dA (7)
L.2 AA

1 j I I bb T Ob Bbb dA + ss) T  s  S s d
wf() 0B d f(B) D B A

2 ~.j \A A

-4 nbb ' ss
where 8 B are defined in Eqs. (5) and (6), A is the area of the element,

, s h (9)

4,"

2 r 1:V

£ 1 (9

where E is Young's modulus, v is Poisson's ratio, h the thickness and the

shear correction factor. Eq. (7) leads immediately to the conclusion that in

*1 the present formulation, the element stiffness matrix is:

bb )T bA bb)T ss

K a f ( bb) D  BbbdA + f(Bs ) Ds s  dA (10)f A A-

The above outline of the approach does not give any rationale for the

decomposition into the bending and shear modes nor the decomposition. This

crucial aspect of the formulation will be discussed in the next Section in

connection with the analysis of the linear triangular element.

* -6-

7%



- . 3. LINEAR TRIANGULAR PLATE ELEMENT

Consider a triangular plate element in the local coordinate frame shown

In Fig. 2. Nodal rotations and displacements form the following vectors

-T " [xl' eyl' ex2' ay2' ex3 ' ey3 (11a)

Tw -[w1, w2,w3] (11b)

Linear shape functions will be used within the element, so the rotations and

displacements are

*.L 1  (12a)

3
w II LwI W  (12b)

where L1 are area triangular coordinates.

Using Eqs (3) and (12) leads to the following forms of

matrices 8b and B
s

4, 0 0 0 0

8b 0 xx 0 -x 0 (13)
x3x2 "Y3 "x3 Y3 x20

t

-7-



s L, 0 L2  0 L3 O1 (14)
r 0 L 1 0 L2 0 L3]

1 1 -3 y3

M (15)
Xd72y3 [X3-X 2 -x 3 X 2]

The decomposition of the total displacement into its bending and shear

modes will now be described. To this end, we note that modifying the shear

strain energy is an effective means of improving the performance of the C0

element in the thin plate limit, for this may eliminate the excessive energy

absorption in shear which leads to locking. On the other hand, modification

of the bending energy is undesirable since it may introduce additional zero

energy modes (compare [3] and [18] for instance). Therefore the bending mode

is chosen so that the bending strain energy in this element is unchanged by

the decomposition. Since the bending energy only depends on the nodal

rotations in the CO element, to accomplish this we can immediately establish

the decomposition of e as follows

b e, ao (16)

To determine the decomposition of the nodal displacements w, we first

define the set of "equivalent Klrchhoff configurations", which are

displacement fields w K(x,y) with curvatures equal to that of the CO element,

i.e.

2 K

(X e X X 
( h17a)

-8-
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2 K

2wK y (17b)

2wK
a 2 =ex , +8 (17c)

a xayy x ly y'x

Note that the above implies that the bending strain energies in the CO element

and any equivalent Kirchhoff configuration are equal.

The curvatures in this C0 element are constant, so the set of equivalent
C

Kirchhoff configurations is described by

w K 1 [ x 2x. x 3(x 3 .x 2) L y 2 _-y9 ,'x- Y x 3yJ K

2 ,xx - +(18)

where

= Bb 0 (18b)

with Bb given in Eq. (13); a , ay, and a are free parameters which account for

rigid body motion. At node I, the nodal rotations associated with wK are

given by

3ay] wx SI K + (19a)
ayx.aw = y%

2x-x 2  (19b)

2 3 (x2-x3) 2yI-y 3  ]ob
-9-



p The nodal displacements of an equivalent Kirchhoff configuration are

K Kw 1 -x 0x (20)
:2~ ~ 2 w3 1-x"3 =

In order for the Co element to perform well in the thin-structure limit,

its bending mode should resemble an equivalent Kirchhoff configuration as

closely as possible. Therefore, we will define the optimal bending mode as

that which minimizes the following measure of the difference between an

equivalent Kirchhoff configuration and the bending modes

b b K T b _K b _K T b _Kf(a says o w) ( e ) (e 0 ) + (w . ) (w w ) (21)

where eb eK and wK are given by Eqs. (16), (19), and (20), while wb is to be

determined. The nodal displacement vector wb (along with e b ) which minimizes

the function in Eq. (21) is called the optimal bending mode. It is clear that

the above procedure is in fact a least square method.

The minimum of f is independent of the rigid body translation, o.

Assuming s = 0 the following steps are needed to determine wb. First,

according to Eqs. (18b) and (20)

BK . A e+ RT 'x (22)

where

A SS 311 B (23a)

-10-
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R= 1 0 1 1 (23b)
10 0

The values of ax and wy Which minimize the function (21) can then easily be

shown to be

' -. R (I "A) a (24)
CLy 3

where I is the unit matrix of order 6. It also follows that at the minimum

of f, w b  w . Consequently, according to Eqs. (20) and (23b),

Wb =K 1 X (I A)e (25a)

S f 3 - 6-

0 0 0 0 0 0]
x 0 0 2 01 (25b)

L 3 Y3 x3 Y3 X3 y3J

with 8 assumed to be zero.

Having specified eb and wb, the projection operators pb and PS of Eqs.

(2), can be defined. In view of Eqs. (16) and (25a)

~b [~6(26)
Tb 6 0

Moreover, since Eqs. (1) and (2) imply that

Pb + Ps . 1 (27)

, .. .. .. - - ' ' . .- ' % ' . .- . ' . - ' - , ' - . . , - , . -. . -So • . - .-.- - . -.. % . - . . . . .



the operator pS is

0 0
ps 1 (28)

The above expressions for operators PU and P along with Eqs. (4-6) and (13-
b s

15) enable one to find the stiffness matrix defined in Eq. (10).

In Eq. (21) the function f utilizes local x and y components of rotations

In both the bending mode and equivalent Kirchhoff configurations. It Is worth

noting, however, that the result of the minimization is independent of the

local frame. To explain this, note that

f 2 + 421) (29)f •ul (A x

where

ae xi - K I ) (29a)

A0yI MyI -K I(ax, OY) (29b)

yK K

Since at each node e P K 0  K and x  y are components of appropriate

vectors (cf. Eq. (19)) so are 49xl, Aey I. Therefore, if the components are

taken with respect to a different coordinate system, the function f in Eq.

(30a) does not change. In particular the local x axis can coincide with any

side of the triangle.

-12-



It is clear from the above, that if the nodal rotations and displacements

in the total CO configuration coincide with those of an equivalent Kirchhoff

configuration, the total configuration and the bending mode are the same.

Consequently, the shear-strain energy vanishes for this element for any

curvatures. We can show that this is not true of the formulation presented

in [7] where just reduced integration was employed. To this end, assume that

the nodal values of the rotations are given by Eq. (19a) while the nodal

displacements by Eq. (20). In this case the shear strains at the centroid of

the CO element are (compare Eq. (19b))

Y x X0 ycI x K (30)
{3} x 2 "2c 2 Y3 c 3

where Xco Yc are the coordinates of the centroid. Since in the thin-structure

limit, the shear strains go to zero, for the SRI element of Ref. [7]

yc 0, Y+ 0. Thus Eq. (30) (with y = C = 0) imposes two constraints on

Kx K, y which result in the excessive stiffness of the SRI element.

-13-
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0. 7
4. IMPLEMENTATION

Both the bending and shear contributions to the stiffness matrix defined

in Eq. (10) form 9 x 9 matrices which are referred to all 9 degrees of

freedom. We found it more convenient to first formulate a 6 x 6 stiffness

matrix, referred to a corotational frame in whic.

0s (31a)

e T (31b)
w

where T is the transformation matrix resulting from condition (31a). All of

the previous considerations are obviously valid and can be specialized to the

following: the bending part of the stiffness matrix is

T

(Bb Bb (32)

* where Bb Is defined in Eq. (13). The shear related stiffness matrix is

i. s .1* f, (1 6 - )TRTR (1-6 " A) dA (33)

with A and R defined In Eqs. (23 a,b). The stiffness matrix of Eq. (10) can

then be obtained as follows

K -T T (Kb a s) (34)

A similar transformation has to be performed once again (with a different T)

to obtain the matrix K in a global coordinate system.

-14-
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The integrands in both Eq. (32) and Eq. (33) are constants, so the

evaluation of the integral is simply the product of the area and the

integrand. Computationally, it is equivalent to one-point quadrature.

The formulation presented in the previous section, utilizing x and y

components of nodal rotation, is one of the frame-indifferent formulations

implemented herein. It will be referred to as the LSC (least square,
*-

*. components) formulation. Another, natural and also frame-indifferent

formulation implemented here utilizes prgjections of the nodal rotations onto

sides of the triangle. We will refer to it as LSP (least square, projections)

formulation. In this case

b P PKT P PK b KT b K":' f( ' y'0, wi) -(eP (6P K + (wb w ) (5

where,

P E e (36a)

8PK = E eK (36b)

e X1  e 1  0 0 0 0

e x3 ey 3  0 0 0 0

E 0 0 e eyl 0 0 (36c)

0 0 ex 2  ey 2  0 0
o' 0 0 0 e x2 ey

x2 ey2

0 0 0 0 ex3  e

x y3

and exl, eyI are components of a unit vector e, parallel to Ith side of the

-15-



triangle, Fig. 2. Note that in contrast to f in Eq. (21), the first term of

Eq. (35) is not the length of the vector.

Minimization of the function (35) leads to the following result

R I A) (37)

where

_ T RT) "  ET

R - 3 (R E E R RET E (38)

Consequently, if R is replaced with R, Eqs. (32), (33) and (34) are all

valid. Moreover, the simple form of matrices R, Eq. (23b), and E, Eq. (36c),

enables one to perform a number of the multiplications in Eq. (38)

analytically

RET ERT 2 ex + e x 2  x3 exleyl + ex2ey2 + ex3ey3

. . .e e e2 + 2  +e 2
eX1e + ex2ey2 0 eey3 eyi ey2 + y3

(39)

R ET E

e2 2 e2  +e 2

Iex::++e: 3 eey + exy0y 3  xl x2 eX1ey 1 + ex2ey2

e eyy + ee 2 e2e +ey2e e2  2

X1 + yy33 ex+eyl +  x2 yl + ey2

e 2  + e2  e el +e e
• x2 x3 x2ey2 x3ey3

(40)
ex2ey2 + ex3ey3 ey2 + ey3

-16-
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6. NUMERICAL RESULTS

In order to evaluate the performance of this element and to compare it

with other elements, several square and circular plate problems were solved.

The parameters for all examples are given in Table 1. The term simply

supported here means that only the transverse displacements are constrained.

The transverse load is discretized in a manner consistent with the internal

force formulation; for a uniformly distributed load, one third of the total

load is allocated to each of the three nodes of the element. Only a quarter

of the plate is analyzed in each case because of symmetry. In the results

* presented (with the exception of the square, corner-supported plate), the

deflection of the center of the plate is normalized with respect to the

analytic value based on Kirchhoff theory [21].

The results for the square simply supported plate (Example 1) are shown

in Table 2, where A, B, CD refer to the various discretization patterns

presented in Figure 3. This element shows marked improvement over [19] with

mesh A and a slight loss of accuracy with mesh B, so this element is less

orientation-dependent. It should be noted here that for the uniform load, the

consistent load formulation distributes twice as much load to the central node

for mesh B as it does for mesh A, which is significant for the coarse mesh, N

- 4.' Table 3 presents the results obtained by distributing the load to the

nodes by dividing the plate into equal square areas and allocating the

resulting load to each node. For the cross-diagonal mesh, the results of this

element and [19] are comparable.

Results for the circular plate are presented in Table 4; the

* corresponding meshes are illustrated in Figure 4. Improvement of about 4% to

10% is gained, over [19] for mesh-type A, while the cross diagonal mesh again

yields results comparable to [19].
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We have also compared the triangular element with the quadrilateral with

one-point quadrature and a stabilization matrix, Example 3 in Table 1. In

.], both cases the number of degrees of freedom is the same. The mesh used is of

the type B, N * 64, shown in Figure 3 and the results for both uniform load

and a central point load are presented in Table 5 and compared to [18]. The

Kirchhoff theory solution for the uniform load case is given in [21]. TheI performance of these 2 elements is quite similar.

The convergence rate for this triangular element for the square (edge

supported) plate and circular plate are shown in Figures 5 and 6,

respectively. In both cases, the convergence rate is somewhat greater than

the expected value of 2.0 [22], but no rigorous estimates of the convergence

rate are available.

In this convergence study, the following measure of the error has been

used

m. (f e2du)"' (41)

where a is the area of the plate,

e a wA FEMe - -w (42)

VFEM

with wA the analytic solution based on Kirchhoff theory and wFEM the finite

element solution. To simplyfy the computations, wA was evaluated at the nodal

points only and then interpolated by means of linear shape functions. Thus

the following difference has been actually used within each element

A FEM
eu (w, -w1  JI1 (43)

-18-
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The mesh parameter p has been choosen to be the length of the maximum side of

the biggest element.

C..,

4~1
.1

'C

-'.4

'I
4
C,

44

*4
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7. CONCLUSIONS

An accurate and simple formulation for the C0 triangular element with

linear shape functions has been developed. The success of the method hinges

on the identification of the bending and shear modes and the use of the least

square method to properly separate the two modes. In comparison with the four

node bilinear element with one point quadrature [18], the element shows

comparable accuracy. However in shell problems this element may prove more

effective than the quadrilateral with one point quadrature because it can more

effectively handle a warped surface.

Since this method assumes a constant shear in the element, one point

quadrature is sufficient for exact integration of the resulting integrals; in

fact, no numerical integration is needed. Since the shear distribution in

[191 is linear, a point probably exists within the element at which the shear

strains developed in [19] are equal to those defined in this paper. Thus if

that point is used for the reduced shear integration, the two formulations

would yield equivalent stiffness matrices. The present formulation, however,

does provide a rationale for a selection of the integration point.

Because the shear distribution in this element is constant, it has one

zero-energy mode: in-plane rotation of the upper face of the element with

respect to its midplane. This zero-energy mode, however, disappears in any

mesh of two or more elements. Thus the present element can be safely used in

all plate problems.
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TABLE 1

Parameters for Example Problems

Example 1. Square Plate
Uniform Road, simply supported edges

Dimensions: 10 in x 10 in
Thickness: 0.1 in
Younq's modulus 10.92 x l05 psi
Poisson's ratio: 0.3

Example 2. Circular Plate
Uniform load, simply supported edge

Radius: 5 in
Thickness: 0.1 in
Younq's modulus: 10.92 x l05 psi
Poisson's ratio: 0.3

Example 3. Square Plate
Uniform load and concentrated load, corner supported

Dimentions: 24 x 24 in
Thickness: 0.375 in 0
Young's modulus: 43.00 x 104 psi
Poisson's ratio: 0.38
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TABLE 2

Center displacement and moment for simply-supported
square plate subjected to uniform load.

DISPLACEMENT MOMENT

MESH N NDOF JRef.[] LSC LSP Ref.[19 ] LSC LSP
4 16 6 .681 .690 .555 .574 .573

A 16 56 .784 .919 .915 .564 .870 .855
.64 208 .947 .986 .9,15 .835 .978 .973
4 16 .883 .883 .825 .904 .951 .811

16 56 .989 .974 .951 1.127 1.026 .977
B 64 208 .999 .994 .994 1.098 1.002 .999

4 28 .912 .913 .914 .919 .920 .920
daona 16 104 .978 .980 .980 .979 .982 .982

diagonal 64 400 .994 .998 .998 .996 .997 .998

'.4

TABLE 3

Center Displacement for simply-supported'square plate;
Uniform load; nodal forces proportional to the area surrounding the nodes.

DISPLACEMENT
MESH N NDOF LSC LSP

4 16 .730 .729
A 16 56 .925 .920

64 208 .989 .988
4 16 .770 .766

8 16 56 .962 .927
64 208 .988 .987
4 28 .913 .936

Cross 16 104 1.035 .986
diagonal 64 400 .997 .998
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TABLE 4

Center displacement and moment for simply-supported
circular plate subjected to uniform load.

DISPLACEMENT MOMENT

MESH N NDOF Ref.[19] LSC LSP Ref.[19] LSC LSP
12 .703 .824 .815 .576 .781 .750

A 12 42 .912 .954 .954 .878 .957 .951
,. 48 156 .948 .989 .989 .975 .988 .987

3 _21 .927 .930 .930 .885 .890 .893
cross 12 78 .981 .982 .982 .976 .979 .979

diaqonal 48 300 .976 .996 .996 .986 .994 .994

,.

TABLE 5

Center line displacements for corner supported,
square plate

Nodal DISPLACEMENT fin_
point, LSC Ref.[18] KIRCHHOFF

UNIFORM LOAD POINT LOAD '7UNIFORM LOAD POINT LOAD UNIFORM LOAD
. .11963 .1495 .11940 .141R .Z065

2 .11888 .13908 .11903 .13884
3 .11667 .13423 .11647 .13392
4 .11315 .12749 .11337 .12711
5 .10855 .11955 .10843 .11919
6 .10318 .11093 .10349 .11057
7 .09743 .10214 .09742 .10183
8 .09177 .09368 .09222 .09339
9 .08678 .08602 .08689 .08576
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FIGURE CAPTIONS

Fig. 1. Sign convention.

Fig. 2. Geometry of the triangular element in a local
reference frame.

Fig. 3. Discretizations of the square plate.

Fig. 4. Discretizations of the circular plate.

Fig. 5. Convergence rate for the square plate.

Fig. 6. Convergence rate for the circular plate.
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APPENDIX B

1. Introduction

Since the early years of finite element development, the use of CO finite

elements for the analysis of thin flexible structures has been very tempting,

as the C1 continuity required by the Kirchhoff theory is very troublesome and

requires higher .order shape functions [1-4]. However a rapid development of

the CO approach started only with the application of reduced integration [5-

12].
."

The effectiveness of this technique arises from its elimination of the

excessive shear contribution to the stiffness of thin structures whose

response is usually dominated by their bending properties.* However, it was

not clear how much of the shear-related stiffness should be eliminated.

Consequently the elements employing reduced integration were developed on a

"trial and error" basis; certain interpolations and integration schemes were

usually assumed and their consequences were examined, [9-12]. Elements that

did not perform "well" were rejected. Although a similar approach was used in

the development of Kirchhoff C1 elements, in this case, approximations

consistent with the theory usually give acceptable elements. Although their

convergence properties and error characteristics may vary, they seldom fail,

as for instance when the thickness of the plate decreases. This is not true

of CO elements employing reduced integration (for instance serendipity plate

elements [9-12]) and perhaps for this reason the technique is sometimes viewed

more as a trick than a legitimate method. In mixed methods, [17,18], similar

trial-and-error procedures have been used.

The equivalence between the reduced-integration displacement approach and

well established mixed methods [19] contributed significantly to the

* A more complex phenomena occurs when a curved structure is

analyzed [14-16].
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legitimacy of the former. However, doubts remained as to how to create

successful C0 elements; trial-and-error approaches are still in use and

consequently the resulting elements are often considered insufficiently

reliable. The zero-energy modes that often accompany reduced integration can

also cause severe difficulties.

A deviation from this path was originated by MacNeal [20] who, by

comparing energy terms, attempted to create CO, low order elements of accuracy

- equivalent to that of higher order elements. A similar approach was later

used by Parish [21] to justify the use of reduced integration within 9-node

Lagrange plate elements.

Another approach for improving accuracy and eliminating zero-energy modes

was proposed by Hughes and Tezduyar [22] who developed a successful four-node

quadrilateral plate bending element. The idea was similar to that presented

in £23] and consisted in changing the discrete derivative operator B to

guarantee good behaviour of the element in thin plate limit. After the change

of the matrix B there is essentially no need for reducing the order of the

integration to obtain good rest :. An identical approach to the analysis of

perhaps the simplest plate bending element, a triangle with linear

approximations of displacements and rotations, was presented by Hughes and

Taylor [24]. The results for this element depended very strongly on the mesh

arrangement. Consequently the reduced integration technique was applied to

the shear terms along with the modified B matrix to alleviate the dependence

on the mesh orientation. However doubts arose about the correctness of the

modified B matrices. This subject has been discussed in [25], where a new

approach to the modification of the B matrix was proposed.

.V Another approach to CO elements is to use reduced integration with

\C stabilization matrices [26,27], which eliminate the zero-energy modes. These

4
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approaches have the same or better accuracy than [22], but the selection of

stabilization parameters for nonlinear problems is an open question which is

probably not trivial.

This study is aimed at identifying the factors which are most essential

for the success of a CO flexible element. This is done by means of two

elements: the linear beam element and the linear triangular plate element.

The salient characteristic of the first is that all the formulations discussed

lead to identical results; this is not the case for the plate element. We

believe this enables one to clearly see the major features of the problem.

The next Section contains general remarks concerning CO flexible plate

elements. The various formulations for the beam problem are given in Section

3, while the linear triangular plate element is discussed in Section 4.

Numerical results and conclusions are presented in Sections 5 and 6,

respectively.

4
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2. General Remarks

If an element of a Mindlin plate is described by independent

approximations of rotations ex , ey and displacements w, the stiffness matrix

K obtained in the displacement formulation is, cf [10]:

K - Kb + Ks  (1a)

Kb z B'b Q b Bb (lb)

Ks'" f Bs Ds Bs  (ic)

In the above expressions, A is the area of the element,

S1 0

".b Eh 1 0(2)-! 12(1-.v)2 ..~ 2

,. 1 0

.,'!where h is the thickness of the plate, E, G, are standard material

•.4-
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-~ constants, x is the shear correction factor. The matrices Bb , 2s are the

discrete forms of the kinematical relationships

Oe Kx Op 1,
K K h B (4)

wxB e (5)

Yy W,y + ey
wYly eyf

where Kx'1 ICY Jxy are curvatures, yx' Y y are shear deformations and is

the vector containing all elemental degrees of freedom. Positive rotations

ex , ey and displacement w are shown in Figure 1.

It is known that if low order shape functions are used and if the

integral in Eq. (ic) is integrated exactly, the plate elements are too stiff,

or "lock", as their thicknes, decreases [6]. This is due to the fact that too

much of the work performed by the applied forces is converted to shear-strain

mA

-5



energy. To alleviate this problem, the Integral expressing the shear

contribution to the stiffness matrix is often evaluated using quadrature

schemes of lower order than that required for exact integration. By doing

this, the portion of the shear strain energy associated with higher order

distribution of the shear strains is removed and the performance of the

element is, in general, improved.

But this is not always true. There are cases, like the triangular plate

element discussed subsequently, that can not be treated in this way.

Moreover, reduced integration often gives zero-energy modes that are highly

undesirable. Furthermore, one can never be sure whether reduced integraton

removes the correct portion of the shear strain energy. It may therefore be

better to remove the troublesome terms by using mechanical arguments. This

reasoning leads to a different matrix Bs that replaces Bs of Eq. (ic).

Depending on whether or not all the troublesome shear terms have been removed

while defining the Bs matrix, the Integral of Eq. (Ic) can be integrated

exactly or underintegrated [22,24]. The point is to find a general method

that eliminates all the troublesome terms [25]. As pointed out in [22),

mechanical reasoning may provide a Bs matrix which is far more effective than

reduced integration.

If a mixed model is used to formulate the element stiffness matrix,

internal forces, work-conjugate with the strains given in Eq. (4) and (5), are

interpolated independently of displacements

Mx

M m yMa (6)

Sx-6

o'-. . ° o .. . °' " °". . " ' ".' ° . • "." Q" " . . "..-.. . .• .- o ,



T. TX ~ (7)-ry epPT tTivly

where PM' PT describe the distributions of M and T respectively.

For aM and kT independent of each other (and this is often the case in

practice) the two components of the stiffness matrix are (compare [16]):

KM e B Por Di d fe (8a)

"b, -M MM "b -M M(gb

AAA

Khen Bh shP-eae sifns mari DS Ps Ti deieBb q (8b), u
eqato (8a becomes P Z

.1 -1

KA A APB (8b

Moreover, if for a given displacement field the moment distribution is exactly

the one that would occur in the displacement approach i.e. if

eM _b b (9)

then the shear-related stiffness matrix K is still defined by Eq. (8b), but

equation (8a) becomes

K 3 T D B(10)* b f ' b Zb ZbA

In this case only the distribution of the shear forces has to be defined.

This version of the mixed formulation will be used throughout the paper.

Malkus and Hughes [19] showed that if the kinematical description in the

displacement and mixed approaches is the same, then for each reduced

J-L-
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integration scheme applied within a displacement approach, there exists an

internal force distribution in the mixed approach such that the stiffness

matrices obtained by the two methods are identical. In our case, for a shear

underintegratlon scheme, there exists a shear force distribution PT such that

the stiffness matrices defined by Eq. (1) and Eq. (10) are identical. This

equivalence will be used later.

In subsequent chapters we will be discussing various equivalent

formulations. By equivalent formulations we will mean those that result in

identical stiffness matrices. In all of the problems discussed, rigid body

motion will be eliminated and only the corotational stiffness matrix will be

compared. This diminishes the number of degrees of freedom, yet preserves

full generality of the analysis.

-I8
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3. Linear Beam Element

Consider a beam of length L, width b and depth h. We assume linear

distributions of rotations and displacements which depend on four nodal

quantities e1 , w1, e2' w2, where bars denote quantities defined in the global

system. The corotating frame (x,y) Is defined so that the transverse

displacements vanish, so the deformation is totally described by the rotation

field

* -e(l~-)+e , x (11a)

T  - [oil 2]  (11b)

1* 'I - (w2 - 1 /hc

92 2- (w2 - 1 )/L (11d)
+,

The curvature and shear strains are given by

-' 1
" x (e2 - e) (12a)

SYx a e + w,x a 61 11- ) + 02& (12b)

The discrete forms of the above kinematical relations are given by

B -- , 1) (13a)

V r

. . . . ... .... . ,
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i) Reduced integration displacement formulation

In this approach the integrals in Eqs. (Ib) and (Ic) are evaluated using

1 as the integration point. This is exact integration for the first but

reduced integration for the second integral. The resulting stiffness matrices

are

K aEbh3 1(14a)
T"r - 1]

r 1 1GLbhx (1 4b)

N'i

ii) Mixed formulation

Use of the Eqs (8) will now be made with 8b and 8 defined in Eqs. (13),

P given in Eq. (9) and PT defining a constant distribution of the shear
meT

*. force, e.g.

, T 1] (15)

Exact integration of the resulting formulas yields the matrix Kb given in Eq.

-10-



r (14a) and matrix Ks given in Eq. (14b). A constant shear distribution in the

mixed method is therefore equivalent to the reduced midpoint integration in

the displacement approach.

iii) Displacement formulation with the modified matrix Bs

i The above two formulations are well-knon [6,19]. Here we present

another formulation based on a concept developed as follows. First note that

in pure bending, a Kirchhoff-type element in which the curvature is constant

undergoes equal but opposing nodal rotations. If, in the thin structure

limit, the present CO element (which also gives constant distribution of the

curvature) Is to behave like its counterpart in the Kirchhoff theory, the

symmetric part of deformation that preserves curvature and is shown in Fig.

2b, should be associated with no shear strain energy. The remaining,

antisymmetric deformation, Fig. 2c, does not change the curvature and is

characteri zed by

e s es (e + 82) (1
e1  -2 1 (6

Associating only this mode with the shear strain energy we arrive at the

matrix

which reflects the shear strain distribution in the antisymmetric part of

deformation. Moreover, since the relationship between Bs of Eq. (17) and

B s of Eq. (13b) is

-- 'S

*e -11



Bs - Bs (€ -. ) (18)

use of B in Eq. (1c) instead of Bs and exact integration is equivalent to

the reduced midpoint Integration presented as formulation (i). Consequently

once again the matrix K Is given in Eq. (14b). The matrix Bb remains

unchanged, which means that Kb is still given by Eq. (14a).

iv) Displacement formulation with a modified distribution of the transverse

displacements

Now the symnmetric portion of deformation, discussed in the previous

formulation will be introduced more explicitly; a quadratic transverse

displacement field will be associated with it. Thus we assume

wK . ( -8 1)(1-C) (19)

while the rotation field is still described by Eq. (11b). This displacement

field will be used within the standard displacement approach, not employing

any reduced Integration whatsoever. Therefore the problem reduces to the

evaluation of 8b and 8 and to the exact integration prescribed by Eqs. (1).

According to Eqs. (12a,b) cx does not change and neither does Bb while

Yx e + W'K -ei( 1 - { ) +e2 + ( -eS) (1 - ) (20)

(e1 + e )

This results in the following matrix

8w *I. . (21)
'S L

4 -12-
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Since 8 remains unchanged and 8 is the same as B of Eq. (18), the last

two formulations are equivalent. Furthermore, as opposed to the previous

formulation, no simplifications ("tricks") have been used in the present one.

Note, that in the thin structure limit, when the constraint yx = 0 is

enforced, Eq. (20) yields

el a -e2 (22)

This is consistent with the quadratic distribution of the transverse

displacement given in Eq. (19) and shows that all of the above formulations

attain the accuracy of the quadratic Kirchhoff-type element. However, the

quadratic Kirchhoff element, developed without any shear deformation, would be

associated with a complicated assembly procedure since the two nodal rotations

would not be independent.

v) Mixed formulation with the modified distribution of the transverse

displacem ,its

A quadratic distribution of displacements, Eq. (19) and a constant

distribution of the shear deformation can be used to show that the mixed

formulation leads to precisely the same results as those in the formulation

(iv). This can be immediately concluded from Fraeijs de Veubeke's limitation

principle, [281, since in the kinematic approach presented in (iv) the shear

distribution is also constant, Eq. (20).

vi) Displacement formulation based on the optial bending configuration

A detailed discussion of the approach is given in [251; its basic idea is

-13-



the following. In order for a flexural CO element to perform well in the

thin-structure limit, there must exist a properly defined deformed

configuration associated with bending strain energy and no shear strain

energy. This configuration will be called the bending mode. The additional

deformation required to bring this mode to the total deformed configuration

will be called the shear mode; it is associated with a shear strain energy and

no bending energy. Since the assumed coordinate system is corotational only

for the total configuration, the bending and the shear mode may be

characterized by nonzero nodal displacements. However, at each node, the sul".

of the displacements describing the two modes has to vanish whereas the sum c

the rotations should give the initial rotations. Both modes are described b.

the linear shape functions. Their proper definition is essential for a

successful development of a C0 element.

Existing works clearly indicate that shear strain energy should be

modified to achieve good behavior of the CO elements in the thin-structure

Jlimit. Moreover, they indicate that the modification of the bending strain

Qi energy (introduced for instance by reduced bending integration) is not

desirable since it usually introduces additional zero-energy modes. For that

4reason, the bending strain energy in the total configuration and in its

bending mode should be the same. To insure that this requirement is

fulfilled, the nodal rotations in the bending mode are assumed to be the same

as in the total configuration. This implies that the nodal rotations in the

shear mode are zero; thus the shear strains that should be taken into account

are completely defined by nodal displacements in the shear mode.

Even without a quantitative formulation the following remarks can be

made. First, it is clear that the shear strain described above involves only

the first derivatives of the transverse displacements. The polynomials

-14-



describing the distribution of the shear strains are therefore one order lower

than those resulting from a given displacement and a nonzero rotation field.

Second, although the first remark indicates that certain shear strains have

* been removed, they do not have to be the same as those removed by reduced

shear integration. The present approach is based on mechanical reasoning and

can serve as a guide to the appropriate reduced quadrature.

To determine the bending mode, we consider a set of "equivalent"

Kirchhoff configurations: they are characterized by a curvature identical

with that in the total configuration. They can be described by superposing

the quadratic displacement field of Eq. (19) and a linear field resulting from

a rigid body motion. Then we select the Kirchhoff configuration whose nodal

rotations are closest - in an average sense - to the already defined rotations

in the bending mode (being equal to the total rotations). By identifying the

nodal displacements in this particular equivalent Kirchhoff configuration with

the displacements in the bending mode. we define the optimal bendi

configuration (or bending mode).

Since only rotations are compared in the evaluation of the nodal

displacements, the rigid body translation is irrelevant. 'hus, rotation

around the node 1 of magnitude a is considered. The difference between

rotations is measured by a sum of squares, so we miminize

(a) (A81)2 + (Ae2 ) 2 (23)

where

1= - ( - . 2  e) 02)

-15-



• 2 - - - (e1 - e2 )  - (e + a) - i (24)

with respect to a . It turns out for this case c can easily be chosen so

that 0 - 0, which is obviously the minimum

CL 1 (25)

This defines a particular Kirchhoff configuration shown on Fig. 3. To

transform the configuration to the original configuration the nodal points

have to be displaced by

awl a 0 Aw2  c&L (26)

These are nodal displacements in the shear mode that result in the following

shear deformation

-y = (27)

In view of Eq. (25) the modified matrix B is.,S

T- [i .. (28)

and it coincides with the one given in Eq. (17). Consequently the present

formulation is equivalent to all the previous ones.

We have illustrated these concepts in terms of a beam element for

simplicity. It is also interesting to note that all of the preceding beam

-16-
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formulations give the same results. In the next Section we will discuss these

formulations in application to the triangular linear plate element. In this

case they are not all equivalent. The results will suggest the formulation

which can be safely used in a wide class of problems.

-17-
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4. Triangular linear plate element

The triangular linear plate element will be considered in the local

corotational frame of reference, Fig. 4, such that the nodal transverse

displacements are zero. Its deformation is therefore described by the nodal

rotations

0 T . [exl ' eyl, ex2, ey2 ex3, ey3] (29)

whereas the rotations within the element, ex and ey, are distributed linearly

ex 3

e il eiL (30)

with

0T =T .[0 eyi] (31)

and Li denoting the area coordinates. Using the above expressions and

utilizing Eqs. (4) and (5) one arrives at

0x3x2 x3 0x2Y3  Y3

x31x2 I x3 1 1
x2x3  x2 x2x3  2  3

(32)

-18-



[L 0 L.2 0 L3 01 (33)

0 L1  0 L 2  0 3

i) Reduced integration displacement formulation

Note that 8b defined in Eq. (32) is constant while 8 of Eq. (33) is

linear. Thus, one point centroidal integration gives the exact value

for Kb and underintegrates Ks . The expressions defining the two matrices are

K - A BT D B (34a)

Ks a A BC D-T BC (34b)

where A is the area of the triangle and Bc is the matrix Bs t Eq. (33)9
1

evaluated at the centroid (L1 = L2 = L3 1).
3

ii) Mixed formulation

We assume that PM is chosen according to Eq. (9) and that Kb is given by

Eq. (10). Both components of the shear terms are independently assumed to be

constant within the element, so

Sol1
PT [ 0 1 (35)

and then Eq. (8b) reduces to

Ku f B (ID;) f B~ (36)

-19-
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Since Bs is a linear function over the triangle, one point centroidal

integration evaluates the first and the last integral exactly.

- Furthermore Ds is constant so

Ks " A Bc A 0 A B -s D (37)

's SJ -s -s.

which is identical with Eq. (34b). This formulation is therefore equivalent

to the previous one.

Both formulations as well as their equivalence were reported in [29].

However the approach turned out to be ineffective. Further search for an

appropriate approach to a linear CO triangular element has led to the

formulations presented in the following.

iii) Displacement formulations with the modified matrix Bs

Both the curvatures and the shear strains along side of the element

depend on the projection of the total rotation on the particular side. For

the linear rotation field defined in Eq. (31) the projections ei, i - 1,2,3,

are

.. "et a ei'i(l 'ci)  +1~ 91 (38)

5.

with

8 1,1* 61,1T+e 'T Si (39):: el i i ie-T  eei+1 T i (

where for 1-3, 1+1 should be identified with node 1, 9i is specified in Eq.

.. -20-
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(31), e1 are the unit vectors shown on Fig. 4 and C, (0,1) parametizes the

i-th side of the triangle. Thus the curvatures and the shear strains

associated with each side are

Ki, ! (11 " (40a)
L'i

YI a l , (-8i' ) + ei'i+1Ci (40b)

The above equations are analogous to Eq. (12a,b). One can therefore draw the

following conclusion: if the present plate element is to behave well in the

thin plate limit, the linear portion of the shear deformation for each side

has to be related to a deformation associated with no shear strain energy

(this led to success in the analysis of beams). The portion of the shear

strains that should be associated with the strain energy is therefore (compare

Eq. (16))

sY " es ,' i 1't+1 " 1(41)
Yi *Bi 2 1i (i ) (41

These values, considered for i a 1,2,3, define the modified shear deformation

over the entire triangle

5 5 3 5
8 * E Lie (42)

izia--

where

T T T T:(e s)  . (es)  (a Se) ,(e3s (43a)
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i)= xi, e1yi (43b)

can be obtained by inverting the relationships

s T  s T T
* ei  (ei. 1) ei, i.1,2,3 (44)

Taking into account Eqs.(39), (41), (42) and (44) as well as the particular

position of the reference frame, Fig. 4, one arrives at'S
' T 1 x3x2 " x3 x3

B " "(L 1 + L2 
+  L3 ) ' 3  (L +  L

Y3 + x2 " x3
-s 2 L 2 (  (x2 (L1 L3 )

1 x2 " X3  x3 x 2 " x3
2L1 2 x2 3) -U3 (I + x 13) (45)

3Y3 x3

, 2 3  7 (2 x 2L3)x2 L

1 L x3 L x2 - x3
"7 3 73 1 z 3 2

0 1.
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The approach presented above was first proposed by Hughes and Tezduyar,

[22], for the analysis of the quadrilateral element, and then was used by

Hughes and Taylor, [24], in the analysis of the triangular element. Since

the shear strain distribution defined by _g, in Eq. (45) is linear,

no single-point integration (associated with constant shear strains over the

element) can be equivalent to the present approach. Therefore this

formulation is clearly different from the two previous ones. Yet, the

derivation of B s as well as the difference between Eqs. (33) and (45) clearly

indicates that some portion of the shear strain energy has been removed.

Although use of -ts instead of Bs in Eq. (10) should not require

reduced integration, exact integration has been found to lead to results very

strongly dependent on the mesh orientation, [24]; consequently one point

quadrature has been applied by Hughes and Taylor, [24], but the integration

point has been selected so that its location (and the results) depend on the

local numbering of nodes. Fig. 5 shows three locations of the integration

point P,P',P" for three different numbering of nodes 123, 1'2'3' and

l",2",3". It is therefore clear that the integration point has not been

selected properly. More importantly, however, the above analysis indicates

that the matrixas should be defined in a better way; a correct definition of

B should not necessitate any reduced integration. These problems will be

discussed subsequently.

iv) Displacement fromulation with a modified distribution of the

transverse displacements

Here, a displacement formulation equivalent to the previous one, but not

employing any corrections like those of the last formulation, will be

-23-
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presented. To this end we introduce the quadratic transverse displacement

WK 1 [x2 _ x2x - x3(x3 " x2) 3 y2 _ y3y, xy - x3y ic (46)

where

Bb  (47)

and Bb is given by Eq. (32). In the corotational description adopted here,

the displacement WK vanishes at all nodal points. The approximation of the

rotation field is linear, as it is given by Eq. (30).

Upon substition of the above functions into Eqs. (4) and (5), one

obtains Bb given in Eq. (32) and

Bw. -Bb (48)s " -bs  (e

where B is given by Eq. (33) and

2 (x 2 " 3) 3 2y ]Y3 b (49)

Further evaluation of the above equations leads to the conclusion that

-24-



B.wz1 (50)K"W
-s -S (0

which proves the equivalence between the previous formulation and the present

one.

The structure of the Eq. (48) clearly shows that, within this

formulation, C - 0 indicates that the Kirchhoff mode described by Eq. (46) is

realized. Thus, in the thin-plate limit, quadratic accuracy could be

expected. However, all the remarks made with regard to the previous,

equivalent fqrmulatlon are also pertinent here. This means that for some mesh

arrangements the results obtained with the present formulation are very poor

unless reduced integration in employed.

V) Mixed formulation with the modified distribution of the transverse

displacements

If the kinematics presented in the previous formulation and the constant

shear forces related to the matrix P of Eq. (35) are used in Eq. (8b)

rTaT

Kss _sc~)5  (51)I.

wheref- is the matrix IT evaluated at the centroid.

The above result Indicates that if reduced integration is to be applied

along with the modified matrix B§S, the centroid should be selected as a point

of integration rather than one of the points shown on Fig. 5( in [24] the word

"centrold" has a different meaning).

-25-
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vi) Displacement formulation based on the optimal bending configuration

The idea here is the same as in the related section concerning beams.

Namely, for given nodal rotations, the transverse displacements have to be

found which, along with the rotations, form the bending mode that is

associated with no shear strain energy. This displacement mode is assumed to

be defined by the position of an equivalent Kirchhoff configuration in which

the nodal rotations are, in an average sense, closest to the given

rotations. The difference between the given nodal displacements and the

computed ones defines the shear strain energy that has to be taken into

account.

In this case the displacement field describing basic equivalent Kirchhoff

configuration is given by Eqs. (46) and (47). The nodal rotations for this

field are

B b,I I
' -K JBbsl

K - e (52)

bb Bb 
b

where s s2' s3 are obtained by evaluating the matrix Bs given in Eq. (49)

at the nodal points 1,2,3 respectively. Any other equivalent Kirchhoff

configuration can be obtained by the rigid body motion given in Eq. (46).

Since the rigid body translation is here irrelevant only two rotations of the

magnitude ax and my will be considered. In this case the difference between

-26-

4

• . o . . % % % . . . . . . . . . . . - '. . . ." - . . -. --- . " " - ' . . -. . .- - .-. .



given nodal rotations and those of an equivalent Kirchhoff configuration is

A- U +si d + a d -a (53)

where

dT 0 [ , 1, 0, 1, 0] (54a)X

dT a CO. 1, 0, 1, 0, 1j (54b)

The function

4f(ax. ay) (6elT (a (55)

is then minimized with respect to axs ay. The result is

iax a.
1  s as + as K (56a)

3 ( x i + x 2  ex3) exi = xi "exi

M a (e1 + s  s s  - eK  (56b)
Y 3 y y y y y

The quantities on the right hand side of the expressions defining

and ay form the vector

T

(es ) - Cex, ey, ex2, ey29 ex3 e 3
]  (57)

which, in view of Eqs. (30), (33), (48), (50) and (52), is

-27-
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s 1

S - P s. (58)

B3

The matrices Ts1' 52' S are the nodal values of the matrix Is of Eq. (45)

Because of the corotational description adopted here the initial nodal

displacements are zero, so the transformation of the bending mode to the total

one results in

{X} {xJ (59)

* So, in view of Eqs. (55), (57) and (59), the modified matrix Bs is

T I fq5 P5  (60)

and it describes a constant distribution of the shear deformation over the

element.

Note, that matrixF s of Eq. (45) defines a linear field of rotations

over the element and, by virtue of Eqs. (56) and (58), x and ay is just one

third of its nodal values. Thus

1 1. .( 6 1 )

s s

-28-
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Therefore, the present approach once again confirms that in [24] the centroid

should be taken as the integration point. More importantly, the formulation

seems to capture the predominant mechanical behavior of the element so that no

reduced integration is needed in conjunction with the present approach. Its

more detailed analysis is presented in [25].

,'4

4.:
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S. Numerical examples

Numerical solutions to a clamped beam and to a simply supported circular

plate, both under uniform loading, are presented. If CO plate elements are

used in the analysis of thin plates, two different models of the classical

simply-supported boundary conditions are possible: SS1, in which only the

transverse displacement is constrained and SS2, in which both the transverse

*_ displacement and tangential rotations are constrained. In the present case

the SS1 condition has been employed. Geometrical and mechanical data for the

beam and plate problems is given in Tables 1 and 2, respectively.

The central displacements, normalized with respect to the analytic

solution, are reported in Table 3 for the beam and Table 4 for the plate.

The number of elements in Table 3 refers to half of the beam since

symmetry is used. It can be seen that the improvement in the results obtained

by changing the number of elements from I to 2 is significant. Doubling the

number of elements to 4 does not change the displacement much, and the

accuracy attained is already satisfactory. The difference between the 1-

element and 2-element solutions is attributed to the fact that a single

element can only model the antisymmetric mode of deformation shown in Fig. 2,

which is associated with shear strain energy. For a thin structure, this is a

highly energy-absorbing mode which results in a stiff model.

In Table 4, the number of elements is for a quarter of the plate; the

related element arrangements are shown on Fig. 6. It is clear that the first

two formulations fail while formulation (vi), and the equivalent formulation

(v) gives the best results; the role of the proper decomposition of the total

CO configuration into its bending and shear mode is therefore apparent. The

formulations (iii) and (iv) yield results equivalent to those obtained with

one-point quadrature introduced in [24]. However a different selection of the

-- 30-
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integration point, resulting from the formulation (v) or (vi), gives

significant improvement, especially for coarse meshes.
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6. Conclusions

In this paper two basic and simple CO elements have been investigated:

* the beam element and the triangular plate element (this is the simplest but by

no means the easiest plate element); both with linear approximations for

rotations and displacements. The purpose of this investigation was to show

, that the proper additive decomposition of the deformation into its bending

mode, which is free of shear strain energy, and the shear mode, is crucial for

a successful development of CO structural elements. This is clearly seen in

the analysis of the triangular linear plate element. In this case, almost all

the formulations are different and in most cases yield unacceptable results.

Good results are obtained only after a proper definition of the bending

mode. However it is important to emphasize that the proper definition of the

bending mode can not be achieved simply through the use of reduced

integration.

The analysis of the beam element shows that under fortuitous

circumstances reduced integration may work. In the beam reduced integration

automatically selects the proper bending mode of aleformation. This is

probably the case in many other CO elements, as for instance the Lagrange

family of plate elements which are based on reduced integration. Even if the

optimal bendiog mode of deformation is not selected by reduced integration, in

all the cases where this approach works, the reduced integration probably

selects a bending mode which is sufficiently close to the optimal one to yield

adequate results. There are however cases, like the Serendipity family of

plate elements, where the reduced integration fails, [9, 12]. We believe that

this happens because of inadequate selection of the bending mode of

deformation.

Of the formulations presented herein, the one based on the optimal

-32-
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bending configuration and originated in [25] is the most promising, at least

for simple elements. The fact that it leads to matrices not requiring any

reduced integration indicates that it removes all obstacles to the correct

behavior of the elements in the thin-structure limit.
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TABLE 1

Data for the beam problem

length 10 in

height 1 in

width 1 in

Young modulus 10.92 x 105 psi

.., Poisson ratio 0.3

,% shear connection factor 5/6

TABLE 2

Data for the Plate problem

- radius 5 in

thickness 0.1 in

Young modulus 10.92 x 105 psi

Poisson ratio 0.3

shear correction factor 5/6
.- 37
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TABLE 3

Central displacement

for a clamped beam

1Formulat 1 2 4

M to NO 0.126 0.874 1.062

Notation:

i) reduced integration displacement formulation

ii) mixed formulation

iii) displacement formulation with a modified matrix B

iv) displacement formulation with a modified distribution of the
transverse displacements

v) mixed formulation with a modified distribution of the transverse
displacement

vi) displacement formulation based on the optimal bending configuration

N-38-
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TABLE 4

Central displacement

for simply supported circular plate

No. of ele-
0* of ents 6 24 96

- Formulat

1), ii) 0.063 0.150 0.398

iii), iv) 0.722 0.917 0.981

ref. [24] 0.703 0.912 0.948

v), vi) 0.824 0.954 0.989

Notation as for the Table 3.
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Figure Captions

Fig. 1. Sign convention.

Fig. 2. Linear beam element:
a) total deformed configuration
b) symmetric part of deformation
c) antisymmetric part of deformation

Fig. 3. Linear beam element:
a) total deformed configuration
b) equivalent Kirchhoff configuration
c) shear mode of deformation

Fig. 4. Geometry of triangular plate element.

Fig. 5. Position of the integration point in ref. E24]
for various local node numbers.

Fig. 6. Discretlzatlon of the circular plate example.

-40-

~~~~~ .U .UU .U . . .- . . . .



* N. % N .



ft-e2 el

2 b) 2

el e2 el+ e
-S~ 2-~.S



17.

22

- . ~~2*'~-.e22.



Y3 e

"3 Z2

-ow

4....

x3  22

-42



-,",. -- -; -- '4, - - -

b2c

2c /

b2

1, 2a 2a ,1 T

*F.



'1

k

-4

'p

J

~1G



Section 1

INTRODUCTION

In Ref. [I] a phenomena called membrane locking was identified and

analyzed for curved C1 beam elements with linear axial and cubic transverse

displacement fields. Membrane locking results from the inability of an

element to bend without stretching: since any bending deformation of the

element is then accompanied by stretching of the midline, membrane energy is

always generated in bending, thus increasing the bending stiffness. Although

the study employed a very simple beam model, it is clear that membrane locking

must also appear in shells, (compare [2-9]).

However, the success of widely employed CO elements, [10-15] with reduced

shear integration and the claims for hybrid and mixed elements [16-19] led to

the conjecture that membrane locking may be circumvented in these elhent:.

Therefore, a similar study has been made of these elements.

It has been found that reduced shear integration in curved CO elements

does mitigate the effects of membrane locking. Indeed, a complex

interdependence was found between shear and membrane underintegration:

reduced integration in either the shear or membrane energies leads to improved

*accuracy in the bending response. In fact curved CO elements with full

membrane integration perform quite well if reduced shear integration is

used. However, reduced shear integration is accompanied by a deterioration of

membrane-flexural coupling, which is one of the essential features of a curved

element; it also leads to the appearance of kinematic modes.

Mixed finite elements are shown to also exhibit membrane and shear

locking; in view of the equivalence t!orems [20],[21], this is not

. . . . . . . . . . .
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surprising. However, for a beam, hybrid methods are not subject to membrane

locking because the general solution to the equilibrium equations can be

constructed. This cannot be accomplished for arbitrary shells, but it may

provide the insight needed for a rational construction of reduced-integration

displacement elements which avoid locking. We are convinced such displacement

elements provide the most viable approach to practical computaticns; the extra

calculations associated with hybrid and mixed elerrents are nard to justify

when displacement elements yield the same results.

In Section 2, the governing equations for a beam based on shallow shell

theory and the variational formulations which pertain in this context to

displacement, hybrid, and mixed elements are presented. Using a specific beam

element, the interrelationship of membrane and shear locking is demonstrated

in both mixed and displacement elements in Section 3. Both analytical methods

and numerical results are used. In Section 4, isoparametric beaai elements are

examined; it appears that the cubic element avoids locking, though the cost of

its counterpart in shell analysis is quite daunting. Conclusions are

presented in Section 4.
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Section 2

GOVERNING EQUATIONS AND VARIATIONAL FORMS

Consider a curved beam of height h, width b = 1, which is approximated by

a sequence of chords, parametrized by x; in each chord the shape of the beam

is described by a function w(x) as shown in Fig. 1. If w(x) is small, the

behavior of the beam can be described by the theory of shallow structures

wherein the following equations apply:

i. kinematic relations [22-25]

C = Ux + Wx Vx (la)

K -OX (Ib)

Y = - + V, x (lc)

where u and v are the x and y components of the displacement field and * is

the rotation of the cross-section; C, K, and y are the membrane (midplane)

strain, change of curvature and shear deformation, respectively; commas denote

derivatives.

ii. constitutive equations (elastic)

n = Die D = Eh (2a)
Eh3

m D = E h (2b)

q- D3y = ZGh (2c)

or

-a. 3
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D (2d)

where

a [n. m, (2e)

C= [, , y] (2f)

DI  0 0

D = (2g)

,sym D

and n, m and q are the membrane (axial) force, moment 3nd shear on the cross-

section of the beam.

iii. equations of equilibrium

n,x  0 (3a)

mPx - q = 0 (3b)

q'x + (nwx),x - p = 0 (3c)

iv. boundary conditions

n = n vx  or (u = u and su = 0) (4a)

m = -m vx or ( = and 60 = 0) (4b)

* *t

q + nw,x a q vx  or (v = v and av = 0) (4c)

where asterisks denote prescribed values, the prefix 6 a variation, and v is

4,4
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-the unit normal to the end, which takes on values of -1 and +1 at the left and

right hand ends. The conditions in the left colu:.n of the above (which are on

the forces) are the natural boundary conditions, the ones on the riyht the

essential boundary conditions.

Hu-Washizu Functional

The Hu-Washizu function for Eqs. (1-3) is given by

H = U pv dx i= (n u + m 0 + q v) x = xi  (5a)

-n (c - u,x  W,xV'x ) + m( C+ O,) + q(y + 0 - v,x)] dx

where xi and x2 are the two ends of the beam and U the internal energy, which

is given by

U= (Dic 2  + 2 3 Y2 ) dx (5b)

In (5), the kinematic variables (u, *, v, C, , y) are all independent, as are

the kinetic variables (n, m, q); (u, 0, v) must be CO functions;

(, 6, y, n, m, q) must be C-1 , C-1 functions are piecewise continuous

functions which are allowed to be discontinuous across element interfaces.

For the finite element formulation, these independent variables are

approximated by shape functions S, N, and E as follows

n Is{} = Sn} =S (6)

q5

v5



I . . . . . . .=' {"~ .-'' " '" - (7).. .. . .. . . ..- ..

u N d =N d (7)

v -V

. ' e E e (8)

Y EY

where d is the matrix of nodal displacements and and e are the discrete

variables for the stress and strain fields, respectively.

We also introduce the strains associated with the displacement field

(el W, X V, X BC

Sd= B d (9)
! ,+Vx

where the kinematic relations (1) are used in the first equality and the

elements of the B matrix are obtained by evaluating the expressions in the

second term with the displacements approximated by Eq. (7).

Substitution of Eqs. (6-9) into (5) provides the discrete form of the Hu-

Washizu functional

H - U - dT fext + tT- e) (10a)

1U - - e e (10b)

2

E D E dx (l0c)

.. . sT dx (10d)

6
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dx (10e)

fext up T 2 * *

f dx + (n N L;+ Ill + q N V) x(10f)

This functional yields the following discrete equations:

i. strain-displacement

Bd Ee II)

ii. constitutive

T - (12)

iii. equilibrium

5,

FT fext

Since the parameters e and are associated with C-1 functions, the

corresponding element matrices ee and te can be local to each element.The

procedure for obtaining the governing equations is then the following. Using

Eq. (12), it follows that

e. E- T Ae (14)

which, when introduced into Eq. (11), gives

7
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Qe(E T) dQ (15)

Now the use of equilibrium, Eq. (13) leads to tre final result
N.

K d = ext (16a)

K K e L e  (16b)
e

where L is the convectivity array, the element stiffness matrix is yiven by..e

K, - I ( U TB (17)

The heart of this stiffness lies in the term 0, see Eq. (lOb), which

'orresponds in form to the usual stiffness except that E has replaced B.

Displacement Formulation and Selective Reduced Integration

In the displacement formulation

€ I n

I1C ; m D (18)

Y q

which leads to the following identities (compare Eqs. (6), (8), (9))

E e - B d S = DBd (19)

and in Eqs. (10a) the coefficient of vanishcs and e can be eliminated to

7



give

H .- dT K d - dT fext (20a)

and

K B' D B dx (20b)

This stiffness matrix for an element can be written (see Eqs. (9) and (10g))

K = (D BT B + D 2 t Bo + BT B ) dx (21)

membrane flexural shear

Here the membrane, flexural and shear terms are identified. The crucial

feature of a curved beam is that w,x does not vanish, so transverse

displacements v(x) may contribute to the membrane energy; see Eq. (9).

Moreover, for many combinations of shape functions, any transverse ,eflection

will contribute to the membrane energy; consequently pure bending

deformations, which are often called inextensional modes of deformation, can

not be replicated by the finite element. The concomitant increased stiffness

is called *membrane" locking [l].

Mixed Formulation

In the mixed formulation, the constitutive equation and strain-

displacement equations are combined so that the independent fields are the

stresses and displacements. Thus Eqs. (2d), (6) and (8) are combined

9
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E e = D -1 S (22)

The resulting functional H3 is obtained by substituting Eq. (22) into thee

first and last term of Eq. (10a), which gives

1 2 T "R d - dT  (23a)
e 2 # U Dc Sdd e+

!2

'U ST  -1 S dx (23b)

e

The stationary conditions of this discrete functional are

I d e Dc A(24a)

-Te fext (24b)

-4

where

ST B dx (24c)

e

The element stiffness is obtained by combining Eqs. (24a) and (24b) so that a

relationship is obtained between f and d e , which yields that-e -

K,- D ' (25)

The possibility of locking can be deduzed immediately from Eq. (25). Let

10



S = D B (dim = dim d) (26)

Substituting into Eq. (25), we obtain a K e which is identical to the

displacement formulation stiffness, Eq. (20b). This result, which was

obtained in a more sophisticated way in [20], shows that the mixed method is

equivalent to the displacement method when the shape functions for the

stresses are obtained by Eq. (26); compare the conditions for equivalence in

[19]. Hence locking should occur in mixed models (contrary to the

implications of [19]), and reduced integration may be necessary; this will be

shown later.

The counterpart of Eq. (21), which is obtained from Eqs. (24a) and (24b)

is that for a mixed model

K B B(27)

Reduced quadrature, if needed, will be used only on B; all terms of i will

be integrated exactly.

Hybrid Formulation

In the hybrid method, all stress shape functions are assumed to satisfy

the homogeneous equilibrium equations, which allows the second term in Eq.

(23a) to be replaced by a boundary integral. We will not consider this form

explicitly but instead derive the hybrid method directly from Eq. (23a).

Details are given in the next Section.

'47
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Section 3

CUBIC-LIIEAR ELEMENT

Stiffness Formulation.

This element, shown in Fig. 1, employs cubic shape functions for the

transverse deflection v, quadratic shape functionz for the rotations of the

cross-section *, and linear shape functions for the axial displacements u.

This type of element is often used in explicit time integration because its

maximum frequency for commonly used element dimensions is lower than if a

cubic is used for u, thus providing a larger stable time step [9].

The study of the element is facilitated by considering only the nodal

degrees of freedom which are associated with deformational modes, thus

excluding all rigid body modes. The deformational degrees of freedom are

dT = 21' 1' 2' a1 , a2]  (28a)

u 21  U2 - u 1  (28b)

where u21 is the axial displacement of the right end relative to the left

one, i are rotations of the nodal cross-sections and are the rotations of

the tangents to the middle line at nodal points. The shape functions and the

initial shape w(x) are:

(N 0F 00
N N 0 ) 3(C 3( ) (28c)

N( N 0 0 L(C-2 2+ ) L( 3.2 )]

12
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w2 (L 0 r2  (28d)

Note that these shape functions exclude rigid body motion and are expressed in

a corotational system. The B mdtrix resulting from Eq. (9), is

B I U 0 (, (3 32-4-+1) w, (3 2_2r,)

B B0 01 1 -3 -)(2 - ]
(29)

where L is the length of the element and C E [U,1] is the dimensionless

parameter of its chord. The orders of the memorane and shear terms for this

element are given in Table 1, along with the number of Gauss quadrature points

required for exact integration of these polynomials.

* Analysis of Reduced Integration in CO Displacement Element

, Here an analysis of the element stiffness will be presented to

demonstrate the effects of reduced membrane and shear integration. Of the

rotational degrees of freedom, only 0 must be continuous across interelement

boundaries, so ai is local to each element ard can be eliminated on the

element level. The elimination results in a 3x3 corotational stiffness

matrix K

m K21 K22 K2 (30)

- 421 K 31 K3 K3.

i1
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This matrix completely defines the axidl and flxural properties of the

element. All other nodal forces are found through global equilibrium of the

element. The entries K2 2 ' K23' K3 2, K3 3 reflect bending properties of the

element while K12 , K1 3 represent membrane-bending coupling; in the absence of

this coupling, K12 = K13 = 0. To make the analysis tractable, it is assumed

that Poission's ratio v = 1/3 and

al a = a, a2 -
"Q(l+E) (31a)

where c is a small number. Moreover, we assume that

La= 0(1) 2 = O(C) (31b)

and only terms of order c are retained in the final expressions. These

assumptions are satisfied in many practical applications

where h ~ 0.1 and a - 0.1. Within this accuracy we obtain

.'I

m 1 = K2 2 *1 + K23 f2 (32)

The coefficients K22 and K23, for various reduced integration schemes are

given in Tables 2 and 3, respectively.

For *2 = 0, these stiffness terms are shown in Figs. 2 and 3 as a

* function of the element slenderness h/L. As expected, for a fixed value

of a, the bending stiffness of the curved beam approaches that of the straight

beam as h/L increases. For reduced membrane integration, the stiffness is

14
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very close to the Euler-Bernoulli theory. At te same time, a clear

difference between curved and straight beams is retained,

Reduced shear integration, on the other hand, shifts the stiffness

towards that of a straight beam. The effects of curvature appear only for

very slender elements, and from Figure 3, it is apparent that this is also

true for other values of a. Thus reduced integration of either shear or

membrane terms reduces the bending stiffness and yields acceptable results

whenever bending is the predominant mode.

0=0

Remark 1. For the case = a , reduced shear integation leads to singularity

* of the submatrix which has to be inverted to eliminate ti .

Consequently, a, cannot be uniquely expressed in terms of the remaining

degrees of freedom. The nodal forces however, in this case depend only on the

mean value of ai which is defined uniquely. To avoid this difficulty (which

indicates the presence of a zero energy mode) this submatrix has been

integrated exactly in this analysis; reduced integration is used for all other

shear contributions.

Remark 2. This element reduces to the Euler-Bernoulli element studied in Ref.

"El ifa i  "

Hybrid Formulation

The general solution of the homogeneous form of Eqs. (3) is

4: n a 01

q z -01 W~x +82 (33)

"* 15
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m =-1 w + 82x + 83

The parameters 11, 02, 83 can easily be interpreted as -nI, -tI, m, Fig. 1,

whereas the form of Eq. (33) results in

F 1  0 0

S -w X 1 (34)

S W x  1 01

Note that the development of a general equilibrium solution such as (33),

while feasible for curved beams, would be impossible for curved shells.

The parameters 0I' 02' 03 can be obtained from one of the stationary

conditions of the functional (23), namely Eq. (24a), which gives

sT 0-lSdx) (f ST B) dx d (35)

e C e -

The right hand side of the above equation can, in this case, be evaluated

without assuming any approximation for the displacement field, giving

- u 2- u1
STfT + 1x -0

S B dx) d = T+dx d vx

eCe Ue I I "2

(36)

where ui, vi , #i are translations and rotations at the nodal points. Since

the right hand side of Eq. (35) is independent of the approximation of the

16
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displacement field, we may claim that the field resa1tir. from the exact

analytic solution of the problem has been selected and that the eleient wili

not lock.

The equations relating the nodal forces and the nodal displacements are

obtained by solving Eq. (35) for 81' 02, 83 and then making use.of the

following relationships

n
1 = "81 m1 = 83 q, -"2

= Bi ' m2 ' - 2 L - 83 ' q2 = 82 (37)

Mixed Formulation

For the cubic-linear element, the following internal force distributions

were considered:

i. nQ - qC; this distribution conforms with the guideline of Ref. [19]

that the internal force distribution be one order lower than that obtained

from Eq. (26):

n - 01 + 02 (1 - &)2 + 03C2

22
m - 04 L (1 - ) + (38)

q = 06

17
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ii. nQ - qL; in tnis element, the shear distribjtion is consistent in

order with Eq. (26):

"'- .{)2 3 2
n = BI + E2 (1 +

m = 84 L (1 - + B5 L { (39)

Sq =8 6 + 87 (1 - 2&)

iii. nD - qC; this element has a normal force distribution consistent with

Eq. (26):

n =B 1 + B2 (-6 3 + 11& 2 -6 + 1) + B3 (-6&3 + 7&2 - 2&)

m = 04 L (1 - E) + 5 L (40)

iv. nC - qL; this element has the simplest normal force and shear

distribution consistent with a 5 parameter stress model:

m 02 L (I - E) + 03 L E (41)

q B4 + o5 (1 - 2&)

18
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In all the above elements, the dispiacem.rent shape functions are given in

Eq. (28c) and the B matrix needed to evaluate Eq. (24c) is given in Eq.

(29). In reduced membrane integration, the rows of B associated with t' -

axial force n (e.g. rows 1 to 3 for nQ - qL) are underintegrated, while in tne

reduced shear integration, the rows of B associated with the shear q (i.e.

rows 6 and 7 for nQ - qL) are underintegrated.

Numerical Results

Results were obtained for the deep arch shown in Fig. 4. The results for

various integration schemes in displacement, mixed and hybrid formulations are

summarized in Table 4.

The displacement method with full integration of both membrane and shear
terms, it is apparent, is far too stiff. Reduced integration of either the

membrane or shear terms leads to reasonable agreement with the analytic

solution; this contrasts with the behavior of curved C1 elements of this type,

where reduced membrane integration is always necessary [1]. However, reduced

membrane integration with full shear integration gives the best results. The

reason for this is apparent from examining the membrane-flexural coupling

terms K12, which vanish for shear underintegration, thus providing behavior

similar to that of a straight element; this also is borne out by comparing

cases 3 and 5.

The hybrid element does not lock and is in good agreement with the

analytic solution. This was expected in view of the fact that for this

element, the stiffness matrix is independent of the shape functions used; see

comments following Eq. (36).

The mixed elements, as can be seen from Table 4, also exhibit locking

when full integrated except for the constant membrane, linear shear element

IlY. 19
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(nC-qL). In the quadratic membrane, linear shear element (nQ-qL), various

reduced integration schemes were tried. The best accuracy was attained for

reduced membrane and full shear integration. Reduced shear integration yields

results similar to that of the quadratic membrane, constant shear (nQ-qC)

curved and straight elements, supporting the hypothesis that reduce shear

integration diminishes flexural-membrane coupling.

This conjecture is also supported by the effects of reduced integratior

on the stiffness term K12 which is given for the various elements in Table

4. It is apparent that reduced membrane integration provides a good estimate

of this stiffness term, while for reduced shear integration it often vanishes,

as in a straight beam.

Examining the results and their implications in more detail provides some

interesting insight into the relationship between reduced integration and

shear/membrane locking. The element nQ-qC (quadratic n, constant q) was

designed according to the recommendation of [19]; see Section 2. As can be

seen from Table 4, nQ-qC possesss no flexural-membrane coupling and behaves

like a straight element (compare with Case 13); this reflects the shear

flexibility brought about by the constant shear approximation. The element

with constant n, linear q (case 12) in fact performs better, for by reducing

the order of n and increasing the order of q, an effect similar to membrane

underintegration is brought about.

These results (cases 7 and 12; 9 and 10) again illustrate the

interrelationship of membrane and shear underintegration in curved elements,

and that it also occurs in the framework of mixed elements.

It is worth noting that when continuous distributions were used for the

stress functions [18, 19], no locking was observed despite the fact that the

order of S was one order higher than that given by Eq. (26). We attribute

20
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this to the fact that using continuous shape functions S diminishes tre number

of independent parameters, and is thus in a sense equivalent to reducing its

order.

2

1

'|
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Section 4

CURVED ISOPARAMETRIC ELEMENTS

Description of Elements

The element studied in Section 3 employed a linear axial and cubic

transverse displacement. The purpose of this Section is to examine whether

the behavior of isoparametric elements, where the axial and transverse

displacements are of the same order, is similar.

Two elements were studied:

1. a quadratic isoparametric with 3 nodes

2. a cubic isoparametric with 4 nodes

In the quadratic and cubic elements, u, v, *, and w were approximated by

quadratic and cubic shape functions, respectively. Because the curvature is

treated by shallow-shell theory, cf. Eqs. (1), all terms were integrated over

the straight x-axis. Only displacement formulations with selective reduced

integration were considered. The number of Gauss points required for exact

quadrature of the relevant terms is given in Table 1.

Some of the reduced quadrature schemes introduced kinematic modes;

wherever this occured, the element was stabilized by exactly integrating

entries of the stiffness corresponding to the transverse displacements of the

interior nodes. Although this scheme is not suitable for practical

applications, it provided a convenient means to study low order quadrature.

All results obtained in this manner have been identified.

Numerical Results

Results for the curved isoparametric elements are presented in Tables 5

and 6. It can be seen from Table 5 that the quadratic element exhibits severe

22



locking when full quadrature is employed; see Table 1 for the quadrature whicn

is exact. Reduced membrane integration alone makes a big difference between 3

and 2 Gauss points but, still, some locking is present. Further reduction to

one integration point practically introduces no additional change. If unly

shear terms are underintegratea, the big difference is betvieen 2 .and 1, with

almost no difference between 3 and 2 Gauss points.

For one-point integration of the shear terms, the results are independent

of the membrane integration. This suggests that bending of the element's

midline is not involved in the deformation process and the mernbrane-bending

coupling is almost eliminated. To verify this, the terms k12 and K22 are

given in Table 7 (see Eq. (30)). It is clear that K12' which represents the

membrane-bending coupling, vanishes for one point shear integration. It also

vanishes if one point membrane integration is used; this stems from the fact

that the initial shape of the element is symmetric and w,x in Eq. (la)

vanishes at the center of the element. Obviously, neither one point shear nor

one point membrane integration is desirable.

The results for the cubic element are given in Table 6. The difference

between full and reduced integration is quite small. This element is only

mildly susceptible to membrane or shear locking, apparently, deformation modes

which eliminate excessive membrane and shear energy are always possible.

However, the accuracy is best for 3 point quadrature of both terms, which

represents underintegration.

Recommended Quadrature Scheme

From the numerical results, it appears that quadrature schemes which in a

sense filter out the higher order terms in Eqs. (la) and (ib), are most

accurate. For an isoparametric element, these terms

23
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are w,x v,x and *, respectively. The number of quadrature points would then

be estimated by requiring exact quadrature of the energies associated with the

2 2
lower order terms in Eqs. (la) and (1b), namely u,x and vx , respectively.

For the quadratic isoparametric, this guideline suggests 2 point

quadrature for the shear and membrane terms, while for the cubic

isoparametric, it suggest 3 points. Tables 5 and 6 indicate that these

quadrature scheme give the best results.

.2 Remark 3. Both 2 x 2 quadrature in the quadratic element and 3 x 3 quadrature

in the cubic element are associated with kinematic modes in the three

-imensional shell element. These modes would require stabilization.

24
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Section 5

CONCLUS IONS

1. Shear membrane locking are interrelated in curved CO elements. Reduced

integration of either the shear or membrane terms can alleviate locking,

but shear underintegration eliminates the membrane-flexurai coupling which

characterizes curved elements and thus results in elements whose

performance closely approximates that of straight elements.

, 2. Mixed finite element formulations, when used with generalized stress

fields local to the element, also exhibit membrane and sheai locking.

3. In cubic isoparametric beam elements, almost no locking of either a

membrane or shear type is detectable with full integration.

4. In quadratic isoparametric beam elements, both membrane and shear locking

1are present and the interrelationship between these types of locking

described in the first conclusion is apparent.

5. Hybrid curved beam elements do not exhibit locking. This is probably a

consequence of the fact that a general equilibrium solution car be

obtained for this element; it is doubtful that this could be achieved for

a curved shell element.

It is worth noting that these locking phenomena will occur regardless of

the type of structural or continuum theory which is used. A shallow beam

theory has been used here because it enables the order of the membrane terms

J
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to be easily identified. In a continuum formulation, these terms appear

through the variations in the Jacobian which are brouyht about by the

curvature, and are not as easily identified. Nevertheless, the mechanical

behavior of a slightly curved element will be identical. Thus in either

context, the use of higher order integration, which incidentally, is often

recommended for plastic problems, will result in poor element performarce

because of locking.
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Fi yure Caprions

Fig. 1. Notation for the curved beam Element.

Fig. 2. Bending stiffness of the curved beam elcment as a function of
"' . aspect ratio normalized with respect to a straight beam; F and R

designate full and reduced quadrature of memb:rane (M) and shear
terms (S); EBA designates an analytical result for the Euler-
Bernoulli beam.

- Fig. 3. Bending stiffness of the curved beam element as a functin of the
initial curvature (see Fig. 2 for nomenclature).

Fig. 4. Problem description for the elastic deep arc).
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TABLE 2

Bending stiffness K22 (Eq. (30))

Eh3  2 4.0+ 2  L 2  2 h

2 A + A, [A3 + A4  +

Type of A A A A A
integration 1  2  3  4  A

EBA 0.0 0.0 0.5829 O.U 0.0

FNI -0.8381 -8.0 0.9144 0.8316 1.8288

FS-RM -1.7984 -2.6667 0.6744 0.0 0.0

FM-RS -0.8381 -8.0 0.3143 -0.0878 -0.8381

Notation: EBA - Euler Bernoulli analytic solution, FNI - full inte-
gration, FS-RM - full shear and reduced membrane (2 Gauss
points) integration, FM-RS - full membrane and reduced
shear (1 Gauss point) integration.
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TABLE 3

Bending stiffne ss K2 Eq. (30))

A Eh 3  2 h 2  L 2  ,.2 h
K 3 = 2.0 + C, a +C ~)+ (9 ) c23 U 23 '40 C5  T

Type of C 1  C2  c 3  C4  C 5

EBA 0.0 0.0 -0.2500 0.0 I0.0

FNI -0.8381 -8.0 -0.2856 -0.8724 I-0.8376

FS-RM -1.7984 -2.6667 -0.6744 0.0 0.0

FM- RS -0.8381 -8.0 0.3143 -0.0878 -0.8381

Notation the same as for Table 1.

c
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TABLE 4

Numerical Results for a Deep Circular Arch

with Cubic-Linear Element

tase Method Element Used Further Specifications Force Stiffness

No of the Element TirTs terms**

(number of integration points lb
in parenthesis) in- K22  K12

1 Exact EBA 471.1 - -

analytic

2 full integration 694.9 1.25 1.10
8 curved

shear
3 FM-RS, full mem. (5) red. 487.8 1.00 0

flexible shear int.(1)

el.~1.01 1.12
4 5 FS-RM full shear, (2) 473.3

red. mem. int. (2)

IA5 . 8 straight full int. 482.1 0.9 0.0
CZ EB el.

6 Hybrid stress 8 curved shear 473.3 1.00 1.00

7 8 el. nQ - qC curved; full int.(4,1) 484.5 0.94 0

8 curved; full int.(4,2) 690.3 1.19 1.11

8 el.
9 nO - qL curved; full shear (2) 473.3 1.01 1.13

nQ-qLred. mem. (2)

10 curved; full mem. (4) 485.2 0.94 0
' .' - red. shear (l)•

1Z 8 el. nD - qC curved; full int. (4,1) 487.0 1.00 0

12 8 el. nC - qL curved; full int. (3,2) 473.4 1.02 1.13

13 8 el. nC - qL straight; full int. (1,2) 482.1 0.87 0

Abbreviations: EB =Euler-Bernoulli; int. = integration; mem. = membrane; red. reduced
Normalized with respect to R22 and K12 for hybrid stress method respectively
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TABLE 5

Ratio of Numerical to Analytic Results for a Circular Arch Solution

with Quadratic Isoparametric Elements

for Reduced Membrane and Shear Quadrature

nG (mremb) Curved Element Straight
: El ement

nG (shear 3 2 1

3 1.575 1.063 1.084 1.084

2 1.449 1.004 1.023 1.023
1 0.939 0.940* .940* 0.940

*) Some entries of the stiffness matrix were integrated exactly to
stabilize kinematic modes.
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TABLE 6

Ratio of Numerical to Analytic Stiffness fur a i)ep Circuldr Arch with

Cubic Isoparametric Element for Reduced Integration

Gauss Gauss
quadrature quadrature Ratio
points for points for
membrane shear

5 4 1.010

5 3 1.007

5 2 1.004*

5 1 0.957*

4 4 1.010

3 4 1.004

2 4 1.004

1 4 1.023

3 3 1.004

.) Kinematic modes were stabilized.

TABLE 7

Sttffnes.es K22 and K 12 for Ouadratic Isoparametric Element

n (memb) 3 2 1

-. K22  K12  K22  K12  K22  K12

n G (shear) _____ ____ ____ ____ ____ ____

3 3.25 1.09 3.15 1.12 3.00 0.00

2 1.11 1.09 1.01 1.12 0.87 0.00

1 0.52 0.00 0.52 0.00 0.52 _0.00

*) normalized with respect ot hybrid element in Table 3
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