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quadrilateral. Therefore, the first part of this research program
has focused on developing an understanding of the mechanisms of

rank deficiency and locking and of providing a rational and effective
method for the control of kinematic modes.

_The major outcome of this research has been the development of
an effective procedure for controlling the kinematic modes in the four
node quadrilateral plate-shell element when one quadrature point is
used. In addition, the insights gained from that work have enabled
us to develop a triangular plate shell element with three nodes which
only requires a single quadrature point. Both of these results make
- possible highly efficient nonlinear transient calculations for they
permit the use of very simple elements without any deleterious.
effects on the rate of convergence.

In addition, some unusual behavior of higher order elgments,
such as the 9 node plate-shell element, which we call membrane locking,
has been discovered and investigated. This is a phenomenon asso-
ciated with curved elements that can lead to severe errors if the number
of quadrature points is too high. The importance of this finding is that
many finite element workers recommend using more quadrature points when
the material is nonlinear in order to represent the material nonlinear-
ity effectively. These findings show that if recourse is taken to
higher order quadrature in such elements, the performance of the
element may in fact deteriorate because of the onset of membrane
locking.

The results of the research conducted so far indicate that in the
analysis of curved shells, an optimal integration scheme is associated
with each element and deviations from this optimal integration
scheme can lead to significant errors. This is of considerable impor-
tance in the use of curved shell elements in structural analysis
where closed form solutions are often not available, because the
damaging effects of over and underintegration often are not readily
apparent. Results of the research conducted so far indicate that
optimal integration schemes in the four node and nine node elements
are all associated with kinematic modes. An effective method for the
control of these modes for linear problems has been developed for the
four-node element. The performance of the hourglass control method has
been examined in linear and nonlinear problems. Although some unresolved
difficulties remain to be dealt with in nonlinear material problems,
the procedure is quite effective and yields a highly efficient element
which is suitable for many applications in transient analysis.
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ABSTRACT

A finite element formulation and algorithm for the nonlinear analysis of
the large deflection, materially nonlinear response of impulsively loaded
shells is presented. A unique feature of this algorithm is the use of a
bilinear four node quadrilateral element with single point quadrature and a
simple hourglass control which is orthogonal to rigid bey modes on an element
level and does not compromise the consistency of the equations. The geometric
nonlinearities are treated by using a corotational description wherein a
coordinate system that rotates with the material is embedded at the
integration point; thus the algorithm is directly appligable‘to anisotropic
materigls without any corrections for frame invariance of material property
tensors. This élgor{;hm can treat about 200 element-time-steps per CPU second
on a CYBER 170/730 computer in the explicit time integration mode. Numerous
results are preéented fOf both elastic and elastic-plastic problems with large
stra{;s that show that the method in most cases is coﬁﬁarab]e in accuracy with

an earlier version of this algorithm employing a cubic triangular plate-shell

element, but substantially faster.
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I. INTRODUCTION i

In the nonlinear analysis of impulsively loaded shells, algorithms
employing explicit time integration offer significant advantages in both the

economy and reliability of computations. However, it is very important in

these algorithms that the bending elment be quite efficient, because thousands

} of element nodal force evaluations are typically required in a computation.
”é In an earlier work, Belytschko and Marchertas [1] developed an explicit
v shell code SADCAT based on the Bazeley, et al element [2]. Although this
;i element is nonconforming and meets the patch test only for restricted element
‘2 arrangements [3], the code proved quite successful and economical in many
3 applications. In addition to explicit time integration, part of the
‘ efficiency could be ascribed to a corotational formulation which considerably
.E simplified the basic equations on an element Tevel as compared to the |
N Lagrangian formulations which were then popular. In Ref. [1], a computational
; algorithm was first developed which employed vectors to track the rotations of
S nodes and elements so that the arbitrarily large rotations could be treated; i
this was also applied to frames in [4]. |
: However, an element which does not meet the patch test for all
I% configurations is inherently unacceptable in a general analysis program so |
% numerous other elements have been tried. Experiments with the Razzaque-Irons
e [5] element showed it was too expensive for explicit computations. Attempts

with higher order quadrilateral elements proved equally disappointing.

In this paper we will report on the application of the bilinear, 4 node

quadrilateral shell element with one point quadrature, as proposed by Hughes,
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E&f et al [6] under the name Ul, which appears to have the necessary ingredients
of simplicity, versatility, and reasonable accuracy. In the context of an
explicit time integration code, a simple element appears to best because it
provides the most accuracy for a given amount of computer time; higher order
elements, while more accurate for a given mesh, contain very high element
frequencies which severely limit the stable time siep. Furthermore, they add
substantially to the complexity of the computational scheme. This statement
will be partially substantiated by comparing the Ul element to triangular

elements with cubic fields; other studies are underway.

» Even with simple elements, reduced integration is imperative in an

t explicit time integration code because a large part of the computational cost
- arises from evaluating the constitutive law at the integration points. Thus
f? we have found that going from a single point quadrature to a 2 x 2

55 reduced/selective quadrature more than doubles the running time of the program
¥ for an elastic-plastic material.

;; Unfortunately, both reduced integration and selective/reduced integration
:f in a bilinear plate element permit zero-energy or kinematic modes, as seen

¥ from [6] and [7]. These modes, which are called hourglassing in the finite

:g difference literature, will often quickly destroy a solution. We will here

b describe the application of an hourglass control based on the work of Flanagan
" and Belytschko [8]. The essential feature of this hourglass control is that
:i it is orthogonal to the straining and rigid body modes on an element level

similar to the stabilization matrix scheme proposed by Belytschko, et al [9]

for the selective reduced integration element. Hence its effects on the

oy ¥

solution is minimal, although, in spite of its orthogonality on the element

' %

.
a.

level, it does siightly stiffen the overall response. The Ul element was

first used with hourglass control by Taylor [10], who employed the method of
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Kosloff and Frazier [11].

Another feature of this work is the use of a corotational velocity-strain
formulation. A corotational finite element formulation is here defined as any
formulation where effects of rigid body rotation of the material are treated
by embedding a coordinate system in the element or at each sampling point of
the element. This provides a simple expedient for avoiding the complexities
of nonlinear mechanics, for in the corotational system the rate forms of the
kinematic and kinetic relations are basically linear and frame-invariant.

The attractive simplicity of a corotational formulation and its natural
compatibility with the finite element method were first recognized by Argyris,
et al [12], who cast their formulation in terms of the natural deformation
modes of the element. Wempner [13] subsequently developed a shell theory on a
similar premise. In [14], [15], [16], and [12], corotational methods were
developed and applied to the nonlinear analysis of beams and shells for both
static and transient nonlinear problems.

The formulation in [1] and [15] is a corotational stretch formulation,
for the strain tensor defined there corresponds exactly with the "right
stretch" tensor commonly used in nonlinear continuum mechanics; see [17] to
[19]. A disadvantage of this formulation is that the conjugate stress is not
the physical stress (Cauchy stress), but the first Kirchhoff-Piola stress.
This is awkward for computer software because this stress tensor is not
symmetric, and its physical interpretation is not as clear as that of the
Cauchy stress. Furthermore, constitutive models today are generally developed
in terms of physical stress and its conjugate strain rate, the rate of
deformation or velocity-strain, so it's most efficient to perform element
operations in terms of these tensors; note that the use of a corotational

approach does not affect the constitutive equation routines at all.

.............................................
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‘iz For these reasons, our codes have recently been cast in this format, see
™ for example [18]. The computational procedure for this formulation is
f?§ actually even simpler than the corotational-stretch formulations or the
gig " natural deformation mode formulations if all computations are done directly in
S terms of the velocities and rates. The rate formulation does preclude the use
Ei of large time steps, but this is not a drawback in explicit time-integration
.%E codes, where numerical stability usually limits the time step to a magnitude
N
. so that errors in the integration of the rate equations are negligible. The
ji major objection we have found to this formulation is that unless other
ES measures of deformation are computed concurrently, the program provides no
:f valid measure of deformation: the velocity-strain tensor itself is not
'fi; integrable [19].
i A word is also in order about “degenerate" shell elements, as pioneered

by Ahmad and coworkers [20], [21], and recently implemented for general

’2

nonlinear analysis of shells by Hughes and Liu [22]. Although these elements

Ay by
l‘l’
a

‘l"
oA A

have a compelling cleanliness and possess the versatility of being easily

5]

™ linked with continuum elements, this is achieved at some cost. Because these
o elements use a full continuum formulations, they require the evaluation of a
LaS

e full 3 dimensional constitutive equation at each integration point and the

%

storage of the complete set of state variables associated with this 3D Taw.
Shell formulations, on the other hand only require a plane-stress law, which
effectively halves the state variables and computations. Thus, in an area
where we are still "compute-bound", in that the size of computations is often
limited by available computer resources, the shell elements still appear more

° attractive.

P v

In Section 2 of this paper, we will define the kinematic and kinetic

state variables and relations of the Mindiin theory for a corotational
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description of shells. In Section 3, the finite element equations are given,
followed by details of implementation, including hourglass control. In
Section 5, several studies of the performance of this algorithm are reported.

In Appendix A, a triangular element is described which similarly uses
only one quadrature point per element. This element so far has only been
tested in linear situations, but its characteristics look quite promising.
The availability of a triangular element in conjunction with a quadrilateral
is quite useful since the modeling of many engineering structures requires
triangles.

In Appendices B and C, the suitability of some higher order elements to
these problems is examined. It is shown that unless reduced quadrature is
employed in curved elements, a phenomenon called “membrane" locking is
encountered which leads to poor results. On the other hand reduced quadrature

in these elements also leads to kinematic modes, which need to be controlled.
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[I. NOMENCLATURE AND GOVERNING EQUATIONS

The geometry of the shell is defined by its reference surface, or
midsurface, with coordinates denoted by x™, y™ and z™ and by its thickness

h. The velocity of the midsurface !m is given by

® m
Ve X

vt = X" or Y? = 4 y" (2.1)
m m
vy z

where a superposed dot denotes a time derivative. The vectors tangent to the
midsurface are e and e and a fiber direction is defined by L. The fiber

direction is initially coincident with €3, where

€3 " €1 X & (2.2)

and the angle between g and ) is assumed to remain small, so that
|g;5-1|<5 (2.3)

where the order of § depends on the magnitude of the strains and the accuracy
expected; for most elastic-plastic engineering calculations, values of & on
the order of 1072 are acceptable.

The triad e,, €5 and e; will be defined to be corotational in the sense
that it rotates with the material except that the vectors e and e, remain

tangent to the midsurface; if the condition (2.3) is met, the difference




L; between the rotation of the material and the triad e; should be small. The
# location of 3 and & in the midplane will depend on the material rotation as
defined subsequently. Whenever the components of a tensor are expressed in

terms of the base vector €i» it will bear a superposed "hat", as for example

the stress é. The base vectors of the flobal system will be denoted
g o9
by ey{, &3 and e3.

In the Mindlin [23] theory of plates and shells, the velocity of a point
in the shell is defined by the velocity of the midsurface !m and the angular
velocity vector § by

v = !m - 2g3 x 6 (2.4)

The corotational components of the velocity strain (rate-of-deformation) d are
given by
v,  av.
N SR AR
d,. 2( +ax1.) (2.5)

i X
J 9 j

Substituting (2.4) into (2.5) gives the following equations for the velocity

strain §

Am ~

T T

d =—2+z2-L

X ax ax
- .

R Y

d, = —.L - Tx

Y gy 3y

. " ™ _y36 36

2d =2+ Lz L -2 (2.6)

Y gy ax 3y  ax




a8 s 300

I A, a a. >

-

i .2 .
yz X
m
-~ av -
ZdXZ = _‘Z_ + 0
ax y

AT= -~ -~ a a a
3 = Cd,d, 2,2, 2,] (2.7)

The stress column matrix is given by

- -~ ~

o s OKV’ Tyz? °yz] (2.8)

OT = [;X’

-~

The above stress and velocity-strain matrices are conjugate in the sense that

the rate of internal work per unit volume, W, is given by
N=dg (2.9)

We consider the shell in a state of plane stress, so the stresses are

subdivided as follows

o'
g = {;n} (2.103)

..............................................................




g = Lo, o a..] (2.10b)

< Yo Xy
< Xz’ “yz
where g‘ are the inplane stresses and g" are the transverse shear stresses.

-

The velocity-strain dz is computed from the assumption that ;z = 0; the
stresses sz and ;yz are treated primarily as penalty parameters to
approximate the condition (2.3) and are not necessari]y°computed by the
stress-strain law which governs the in-plane stresses. This simplifies the
structure of the material law subroutine with apparently no loss in
accuracy .

Note that the stresses are always computed in terms of corotational

components defined by the base vectors e.. This triad rotates exactly with

i
the material except for the out-of-plane rotation due to the difference
between the rotation of e; and g, which is assumed to be small. Thus any
anisotropic material law can be expressed in rate form directly as

-

-g(g:

o

) (2.11)

Q>
I

without any corrections for frame invariance. By contrast, a Jaumann rate
formulation would require equivalent correction terms for S, as exemplified in
kinematic hardening models used by Key [24], where the kinematic hardening
term must be updated by a Jaumann rate identical to that used to update the

stresses.
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III. FINITE ELEMENT EQUATIONS
The finite element equation of motion are [15]

& v = text - t‘lnt (3.1)

where M is the mass matrix, feXt and f‘"t the nodal force matrices arising
from external forces and the internal element resistances respectively. The

internal forces are obtained by a topologically appropriate summation

e
e} (3.2)

where the nodal forces fe and moments ge of element e are given by the

-

fint. A {

-~

3 ¢

principle of virtual power

eT e el ce _ .ceT 2e ~eT ze
s9p mp +eyp fy= sy mpréy f (3.3)
= Jeed g

v

where V€ is the volume of element e; repeated upper case subscripts are summed

over the nodes of the element, and g? and f? are given by

f

e xI

f = fyl (3.4a)
fzI

e M1

M1

DA

.
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As stated in the introduction, we will confine ourselves to the bilinear 4
node quadrilateral element with single point quadrature; by single point
quadrature we refer to the fact that only one evaluation of the moments and
membrane forces is made within an element; for elastic-plastic materials,
several integration points may be necessary at this point in the z direction
to evaluate the moment and membrane forces from the stresses.

The reference surface of the shell is approximated in both the

underformed and deformed states by the elementwise interpolation

X XI

m
y = NI (g,m) .YI (3.5)
Zm ZI

where xy, y1, and zy are the coordinates of node I.

Note that

m =

VI X1

v;'I =y (3.6)
m -

1) 71

and the superscript "m" will be omitted in the remainder of this paper because

all nodal variables pertain to the midplane

Ny = (1-8) (1-n) (3.7)

Ny = 3 (1+€) (L-n) (3.7b)
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Ny = 7 (1+€)
Ny = 7 (1-£)

The velocity

by the same shape
!m = NI(E.n)

2 = NI(E:“)

D
—

[l AR S BN Sl s NN R

(1+n) (3.7¢)
(1+n) (3.7d)

of the midsurface and the angular velocity is approximated

functions, so

(3.8a)

)<
—

(3.8b)

Upper case indices pertain to the nodes of the element and when repeated, as

in the above, are summed over the nodes of the element. The velocity strains

at £ = 0, n = 0 can be shown through Eqs. (2.6) and (3.8) to be given by

d =8

x = Birvyr * 2By1 8yp

d'y = B2I VyI

where

xy - BarV¥yi

2d,, = Bypvyr * Npgyg

yz = BZIsz

-~

- 2By,
+ BlI"yI + Z(BZIeyI - Bllexl) (3.9)
Y
- NIexI
12

.......................
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If the velocity strain matrix is partitioned identically to the stress matrix,
see Eq. (2.10), then Eq. (3.3) can be written as

.IT'. all

e e + 68T £8 = |  (sd'g +wsd g ) Vv (3.11)

89 oy T ey I Ve
where x is the shear factor; it will be treated as an arbitrary parameter in
the present context since it serves primarily as a penalization to enforce the
Kirchhoff normality condition as the shell becomes thin.

By using the arbitrariness of the variation and Eqs. (3.9) and (3.11) and

one point quadrature, we obtain the following formulas for the nodal forces

>
1]

for = A By, * By A

>

fyI = A (By; {y + By, /xy) (3.12)

?>
]

for = A By, * 8 fy,)

_ 1 -
meg = A [Byyme, + By, - " < fyz1
mp=A [-8m, -8 m <4 ;)
sz =0

13
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DX

2 where

.:'! /GB = l 008 dz (3.133)

-

=-[zq,dz (3.13b)

] 8

aB

¥ and By is evaluated at the same point as in Eq. (3.9). Details of the

formulas are given in Appendix A.
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IV, IMPLEMENTATION AND HOURGLASS CONTROL

A major goal in the programming of this element was to exploit the
simplicity of the element to obtain relationships involving few computations
so that explicit time integration could be performed efficiently. Since one
point quadrature is used in the element, hourglass control is necessary. This
does involve additional computations, but the techniques of [8] were adapted
to the element so that the additional cost is small.

The element computations are all performed in the corotational
system (x, §, z). The function v(x, ¥y, z) is defined on the surface in terms
of reference parameters £ and n, see Eq. (3.8a). Derivatives are obtained
from the following matrix equation

Xy z,

£ Yog

14 £ X
Vo £ = Xs o Ysq . Vay (4.1)
0 y,Ez,n - y,nz,E x,nzE - z,nx,E X’Ey’n - y,Ex,n Vs,

where the comma followed by a subscript denotes partial differentiation with
respect to that subscript. Note that the third equation in (4.1) simply
indicates that the derivative of the function normal to the surface must
vanish.

! If Eq. (4.1) is written in terms of the corotational

h coordinates §, §, 2, then av/ai = 0, so it follows immediately that the
differentiation formula is independent of ai/ag and ai/an. Thus, the implicit

differentiation formula reduces to

V’E - x’e y’g v’x (4.2)
v'n x’n y’n v’;

15




If we then use the identity given in [8], we obtain

Yp<Y4 Y3-Y, Ya-Yp, ¥ -Y3| il
1 .2 .4 .3 “1 ,4 ~2 ‘1 .3 (4.3)
X4 - XZ Xl - X3 XZ - X4 X3 - Xl i=2

These formulas are then used directly in the evaluation of Eqs. (3.9) and
(3.12), as given in Appendix A.

For the purpose of hourglass control, we follow [8] and define the

matrix y by

vy = hy - (hyx ) B ; (4.4a)
or

vy = hp - L(hTR) By + (hTY) 8,,) (4.4b)
where

hy = [+1, -1, +1, -1] (4.5)

In the above equations, the Greek subscripts have a range of 2 and are summed
when repeated, ;11 = ;I’ ;21 = §I' Throughout this paper, repeated upper case
subscripts are summed over the nodes of the element.
The hourglass generalized strain rates are obtained by
+B

q 3718

o (4.6a)

al
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a:“ =¥ Vg (4.6¢)

where the superscripts B and M denote hourglass modes associated with bending
and in-plane (membrane) forces, respectively. The corresponding generalized

hourglass stress rates are given by

°B _ B
Qa cl 9%
0 = ¢, a3 (4.7)
M _ ‘M
Qa =C3 9%
where
3
Eh~A
€1 = re 197 Ba1 Ba
© 6h>

Eh A
C3=ry—g— B,1 B,

The constants Fos Ty and ry are generally given values between 0.01 and
0.05. For elastic-plastic materials we let £ = %-5aa, where éij are the

constants that relate the components of the in-plane stress tensor by
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The nodal forces corresponding to the hourglass generalized stresses are

~H _ B

mr = v Q

%’Z*I = v Qg (4.10)
sH _ M o

fal =71 9

where the total hourglass stresses are obtained from the rates as described in
Appendix A.

An important aspect of this hourglass control procedure is that it does
not effect the straining or rigid body modes for a riat element; this is shown
in Appendix B. Thus if the velocities correspond to a rigid body rotation
about an arbitrary point or a rigid body translation, all of the generalized
hourglass strain rates vanish. When the element is warped, a rigid tody
motion does generate hourglass strain rates qt; they may be almost entirely
eliminated by a procedure described in Appendix B.

In all of the computations reported here, the central difference method
was used for time integration. A lumped mass matrix was used for all
computations. In addition to an augmented rotation lumped mass, as proposed
in [6], a reduced shear factor ¥ as proposed in [25] was used to reduce the
maximum frequency and hence increase the stable time step. This permits the
increased rotatory lumped mass to be scaled so that the spectral fidelity of

the finite element mesh is quite good over a large range of frequencies.

18
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l'j V. NUMERICAL RESULTS
‘d
:;é Several numerical examples will be given to illustrate the performance of
S? . this quadrilateral element. All the computations were carried out on the CDC
N Cyber 170/730.
x
.% Example 1: Impulsivelvy Loaded Cantilever Beam
¢ A cantilever beam, shown in Fig. 1, is used to test the linear and
1;? nonlinear response of the quadrilateral plate element. A uniform pressure is
Ea applied in the negative z-direction as shown. The results for the linear
'ij response obtained with p = 0.01 psi are summarized in Table 1 and are compared
N with other elements [1] [4], and the analytic solution given by Timoshenko and
ES Goodier [26]. The results for p = 2.85 psi, presented in Table 2, involve
i; large displacements and highly nonlinear response. Fig. 2 illustrates the
“i time history for the tip displacement and compares it to the result obtained
Eﬁ with an 8 node, two dimensional isoparametric element by Shantaran et al [27].
3
" Example 2: Simply Supported Square Plate Subjected to a Uniform Load
i This problem is described in Fig. 3; all sides of the plate are simply
;E supported. Due to the symmetry of the geometry and loading, only a quarter of
g the plate was modelled. The mesh consists of 25 nodes and 16 elements. Both
3 elastic and elastic-perfectly-plastic materials were considered. The results
:? are compared to those obtained with a triangular plate element [1] and an
& analytic solution by Timoshenko [28].
ii The elastic and elastic-plastic results are presented in Tables 3 and 4,
j% respectively; time histories of the deflection of the center point are plotted
iq in Fig. 4 for 3 and 5 integration points through the thickness. Note that the
¥ 19
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number of integration points through the thickness used to evaluate Eqs. 3.13

makes a large difference in the displacement; this is also clear from Table 4.

h

g Example 3: Impulsively Loaded Clamped Beam

&_"

. A 10 in long aluminum beam clamped at vnth ends is loaded impulsively

o over a center portion, as shown in Fig. 5. The material is elastic-perfectly-

plastic. Experimental results have been given for this problem by Balmer and
Witmer [29]. Fig. 6 compares the computed displacement time history with the

experimental results.

Example 4: Corner Supported Square Plate

The hourglass modes in static and free vibration problems have been
investigated by Belytschko, Tsay and Liu [9]. Here we will demonstrate the
hourglass modes and their control for a transient problem. We consider a
square plate subjected to a uniform load with point supports at the four
corners.,

Figure 7 shows the deformed shape without hourglass control. In order to
see the deformation, we have amplified the results 1000 times. This problem
shows that the in-plane and w-hourglass mode [6,8] produces serious distortion
of the square plate. After adding hourglass control ry = 10'3, w = 0.03, the
quadrilateral element gives the expected deformed shapes as can be seem from

Fig. 8; the amplification in this figure is 15000,

Example 5: Cylindrical Panel

A 120° cylindrical panel, loaded impulsively, is shown in Fig. 9. The

problem is symmetric, so only half the panel is modelled. Note that the ends

20
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of the panel are simply-supported and the boundaries at the sides are fixed.
An initial velocity of 5650 in/sec normal to the shell's surface is applied
over the region marked Rj.

We used two meshes fo solve this problem, varying the number of
circumferential elements from 6 to 8 with 16 elements along the length of the
cylinder., The displacement of the midpoint along the crown line of the
cylinder is compared with experimental results [30] and the triangular
elements results [1] in Fig. 10. The results obtained for the 6 x 16
quadrilateral mesh are not satisfactory; this may be due to deficiencies of
one-point quadrature for warped elements. Fig. 11 gives the permanent
deformation of the crown line of the panel and Fig. 12 gives the deformation
of a radial cross section as compared to the experimental and the triangular

element results. Deformed shapes are given in Fig. 13.

Example 6: Spherical Cap

The problem description and a top view of the mesh are shown in Fig. 14;
fourfold symmetry was used. A uniform load was applied over the cap as
shown. Both elastic and elastic-plastic materials with the material

properties given in Fig. 14 were considered. The results for the center-

L~

25 deflection time-history are compared to the results obtained by Bathe et al
ii (31] using 8 node, axisymmetric isoparametric elements in Fig. 15. Five
g: integration points were used through the thickness in the elastic-plastic
%; calculations.

CONCLUSIONS

E; A four node quadrilateral applicable to transient plate and shell

’

problems with material and geometric nonlinearities in an explicit codes based
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on the Hughes element [6,7] has been presented. The element uses one
quadrature point in the plane of the element and kinematic modes are
stabilized by an hourglass control. The performance of the element with one-
point quadrature is generally quite good, except when excessive warping is
encountered. The hourglass control procedure described here is easily
implemented and permits one-point quadrature to be used regardless of the
boundary conditions, without mesh instabilities. The use of one-point
quadrature, as compared to reduced-selective integratioh, enhances the speed
of the element substantially; the element is also significantly faster than
the Bazeley et al [2] element as used in [1] with 3 quadrature points and, yet

it possesses comparable accuracy.
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APPENDIX A
DETAILS OF FINITE ELEMENT IMPLEMENTATION
We describe here in detail the procedure for computing the internal nodal
forces Ie for a given set of nodal coordinates and nodal velocities.

Throughout this Appendix a double numerical subscript indicates a

difference: x32 = X3 - X2, Vy4] = Vx4 = Vxl-

Orientation of local base vectors e..

The local e; vector is assumed to be the normal to the

vectors r3; and Lap aS shown in Fig. A.l. The components of ey are then given

by

Y31%42 -~ %3142

$3 % Z31%42 T *31242 (A.1)
X31¥42 - ¥31%42
lp
2. 2. 2
e3 = s3/lls5l] s = (s] + 53 +53) (A.2)

Two procedures have been used for defining the x axis. In the first
procedure, x is embedded in the element between nodes 1 and 2, side 1-2;
however, since this direction is not perpendicular to §3 normality is
enforced. This is quite accurate if the shear strains are less than 10%.
While defining X to join nodes 1 and 3 would automatically satisfy normality,

the use of an axis along the side is convenient because the stresses, which
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are computed in the (x, y) system, are then more easily interpreted. In

procedure 1, él is computed by

X21
219 Ya
Z21

] T sys
$1 = [rg = (£ e3) €3l
e = 21/||51||

The matrix e, is then obtained by

€2°8x¢

The components of v are transformed to the local system by

.
3]

PS - - T
vy =Avy € Y1

I
€3

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

where A is the matrix of direction cosines between the giobal and Tocal

system. The current nodal coordinates, Xy must also be expressed in terms of

the local system by Eq. (A.7) before proceeding further.

In procedure 2, the coordinate x is not embedded along the side 1-2;

instead side 1-2 is associated with a coordinate X and x rotates with a spin

as defined by

v, av

- 1

w, * = (=L-2)
2 ax oy

..........

''''''''
ot e

---------

(A.8)




.‘
<
A
[ which, by Eqs. (3.8), (3.11) and (4.3), gives
: T |
' w =7z Uoa Vy13 * Y31 Yy2a = %42 Yx13 ~ %13 Vx24d (A.9) |
| |
‘ |
Xy The rate of the angle ¢ , see Fig. A.l, is then given by |
}. i} }
b= w, - ow () (A.10)

\:

o
;:.' where ;2(521) is the angular velocity of side 1-2, which is

2 The direction cosines between the X,y and ;(,§ are then updated by !
o n+l n . N 1,2 n

cos(¢ ) = cos(¢ ) - a¢ sin(¢") *+ 3 a¢" cos(¢) (A.12a)

: sin(¢"1) = sin(4") + a4 cos(o") - %— a¢? sin(e") (A.12b)

. - onil

s A = ¢ /zbt (A.12c)

2

\ Note that § as computed by Eq. (A.10) is at time step nd/> in the central

difference method since v in Eq. (A.9) is at time step n+1/2. To implement this

j. method, cos ¢ and sin ¢ must be stored for each element since their values at

the previous time step, time step n, must be known to obtain their values at

' n+l. A radial return is used to normalize their values i.e.,

> 28
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1
s = (cos? (") + sind(s"*1))R (A.13a)
cos(¢"+1) - cos(¢"+1)/s (A.13b)
sin(e™1) « sin(e"1)/s (A.13¢)

The direction cosines are then modified by

EI cos(¢"+1) sin(¢"+1) 0 QI
ég .« - sin(¢"+1) cos(¢"+1) 0 é; (A.14)
AT AT
) 0 0 1 e;

where the far right hand vector is that which appears in Eq. (A.7)

Note that Eq. (A.7) must now be repeated to obtain the nodal velocities
in the correct local coordinate system. The procedure introduces some error
because Eq. (A.9) does not use the correct local coordinate system to
compute ;z; this can be corrected by using a two pass procedure or
storing 31 for time step n; neither alternative appeared to be worth its

additional cost.

The area A is computed by

!
A=z (3142 * Xa4¥13) (A.15)

Computation of strain rates. Once él and EI are obtained at nodes I, I =1 to

4, from the global components by the transformation (A.7), the strain rates
are easily obtained through Eqs. (3.9) and (4.3). The following formulas are

used:

......................................
-------

..........




Am - 1 -~ ~ ~ ~
dy = 7% WaaVy13 * ¥Y13Vx4)

Am - 1 " ~ -~ P
d) = ox (Xgvy13 * X13Yy24)

a

m - 1 2 ~ ~ ~ ~ ~ - -
2,y = 7% (%24 Vx13 * *13Vxaa * Y2aYy13 * Y31Yy2d) (A.16)

I PN - A
x = 2% (Y248y13 * ¥318,24)

b G i
K = 7% (X428,13 * X138,04) (A.17)

1 - ~ ~ - PS -~ Py a
Zeyy = 7K (~X428013 = X138,04 * Y248513 * ¥318)24)

dx dx Z x,
dy dy z Ky (A.18)

The strain rates must be computed at a set of quadrature points through the
thickness, =-h/2 < z < h/2, if a plane stress law is used.
The generalized hourglass strain-rates are only computed once in an

element and the form of Eq. (4) is used directly.

Stresses. The stresses are computed by a plane-stress constitutive equation
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Qe
1]

10

f =% 1

The transverse sheiresses are always computed by an elastic law. The
generalized hourglitress-rates are computed by Eq. (4.6). Note that all

rates are at time ndp. The new values of the stresses are then computed

by

~n+l _ on Yo
g g

~

1
Q" = Q"+ e (A.20)

-~

The stresses nuscomputed at all integration points 7§-< z < %-to

obtain B and e generalized horuglass stresses and strain rates are

computed only o each element.

Nodal forces. >dal force contribution from an element consists of both

the nodal forcéing from the physical stresses, Eqs. (3.12), and those
arising from teralized hourglass stresses, Eqs. (4.10). We will give

the nodal forcessions for node 1:

.1 M
faa =5 7 X2 w! ¥l

- 1 M

2 X B

fa1 = 7 oxzt M2 oy Tl (A.21)
3
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-~ The nodal forces and moments are then transformed to the global system by the

"

inverse of Eq. (A.7) which gives

i

1
P R R

Fa a0t
P

oty 4
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]
x>

—
I =h>
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n
1>
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13
—

(A.22)

s 'J‘I\ _'

4

J{A’L‘"

» > v\. l'
S

+

»

o
I'd

«

XX

a0,

.yc',:l., /] (‘,. ‘

N

.. 32




S S SNE el LA e e el B ast iR A R A e R R R L A

APPENDIX B

PERFORMANCE OF HOURGLASS CONTROL

“'fliifﬁ?ﬁ-ﬁﬁffﬁllvfuiﬁq
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IN RIGID BODY MOTION

-

s et
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In this Appendix it is shown that all generalized hourglass strain-rates

SIS

vanish exactly for an element if all of the nodes are co-planar. This is
crucial for the performance of the element with hourglass control because if
the hourglass strain rates do not vanish for rigid body motions, nodal forces
are generated by rigid body motions via the generalized hourglass stresses.
It is also shown that this condition can be satisfied when the element is
warped and the nodes are not co-planar by a slight modification of Eqs. (4.6).
In this Appendix indicial motion is used; areek subscripts have a range
of 2, Latin lower case subscripts have a range of 3, Latin upper case

subscripts a range of 4,

sp = (1, 1, 1, 1] (B.1)

The following equations will be used

hIsI =0 (B.2)

(B.3)




.....

where BaI is defined in Eq. (4.3) and h; in Eq. (4.5); 5&8 is the Kronecker
delta. Egs. (B.2) to (B.3) can easily be verified by simple algebra.

In rigid body motion, the nodal velocities are given by

- 0
Vi T &gk @5 X T Yy (B.5)

where e, is the alternator tensor, w; is the angular velocity and v? the

J
translational velocity. The nodal velocities can then be written as

- Y -

= (8]
Vi1 ® 9508 0% * 853N * &gk WST) * Vs (8.6)

where r is the vector from the center of rotation to the origin of

the X coordinate system and the assumption that
X3p = ;hI (B.7)

has been made in writing the second term. The last two terms will be omitted
henceforth since by Fqs. (B.2) and (B.3) their inner product with yp will

always vanish. The nodal angular velocities are given by

-

6” = miSI (B.7)
Using Eqs. (4.4), (4.6a) and (B.7), we note that
B _ ) . A

where the last equality follows immediately from Eqs. (B.2) and (B.4).
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Similarly, from Eqs. (4.4), (4.6b) and (B.6), it follows that
«B - - -~ -~ - =

where the second term in (B.6) has been omitted immediately because e3j3 =

0. The last equality in (B.9) follows directly from the use of Eq. (B.3).

Using a similar procedure shows that

2

! M = 4 N e (B 10)
g 9g = 7% ®5 €453 y

[

*.

Thus, the membrane hourglass strain rates do not vanish when ¢ # 0, i.e. when
the nodes are not co-planar. However, they can be made to vanish

approximately by letting

dT M EARK: Zy (B.11a)
dg = Y1 ;yI + 4g ‘wx (B.11lb)

Equations (B.1l) do not completely eliminate dt in rigid body motion because

the z coordinates of the nodes usually do not satisfy Eq. (B.7).
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4

Fig. 5.

Fig. 6.

Fig. 7.
Fig. 8.
Fig. 9.

Fig. 10

Fig. 11

Fig 12.

Fig. 13.
Fig. 14,
Fig. 15,

FIGURE CAPTIONS

Cantilever beam (example 1): problem description and finite element
mesh.,

Tip deflection for cantilever beam subjected to a uniform load p =
2.85 psi.

Simply supported square plate (example 2): problem description and
finite element mesh.

Deflection of center-point of simply-supported square plate for
elastic and elastic-perfectly~plastic materials using 3 and 5
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compared to experiment [30] and earlier results [1].

Final deformed shape of the panel at the cross-section z = -6.28
compared to experiment [30] and earlier results [1].

Computer plots of deformed cylindrical panel.

Problem description for spherical cap, example 6.

Center displacement of spherical cap for elastic and elastic-plastic
materials compared to numerical results of Bathe, et al [31].
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Table 1. Parameters and results for linear response (p = 0.01 psi) of
cantilever beam, example 1.

Table 2. Parameters and results for nonlinear response of cantilever beam,
example 2.

Table 3. Parameters and results for elastic, simply-supported square plate,
example 2.

Table 4. Parameters and results for elastic-plastic, simply supported square
plate example 2.
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Fig. 1. Cantilever beam (example 1): problem description and finite element
mesh .
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Fig. 3. Simply supported square plate (example 2): problem description and
finite 2lement mesn.
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integration points through the thickness for the latter.
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Fig. 13. Computer plots of deformed cylindrical panel.
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Fig. 14. Problem description for spherical cap, example 6.
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Table 1. Parameters and results for linear response (p = 0.01
psi) of cantilever beam, examole 1,

Element No. off No. of|Time S:eg No. of éMax. Ceflecticn ?eriod(EPU Time

Type Nodes |Elements| At (sec)|Time Step (in) (msec)| (sec)

Euler -5 )
. Beam 6 5 1.5x10 400 0.0254: 5.812 20.03
| Element{4]

Triangular -5
Plate 12 | 20 [1.5x107%| 400 0.02¢0¢  |5.662 | 126.03
Element{1] '
Quadri-

lateral | 5 s 1.5x107° 400 0.0245¢  |5.680 | 25.80

Plate
Element

Analytic
r27] 0.925 5.719

Table 2. Parameters and results for nonlinear response of
cant.ilever beam, example 2.

Element No. of| No. of|{Time Step! No. of [Max. Deflection{Pericd|CPU Time
Type Nodes|Elements| At (sechime Steps (in) (msec)| (sec)

EU]er .5
Beam 6 ] 1.5x10
Element[4]

Triangular .5
Plate 12 20 1.5x 10
Element{1]

Quadri-

lateral -5 .
Plate 12 5 1.5x 10 400 6.139 5.640 25.30

Elament

2-0 5

Element[28) 22 5 [0.2x10°

400 6.321 5.812 20.03

400 6.076 5.587 | 126.03

6600 6.0 5.600 43

* COC 76C0
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Table 3

. Parameters and results for elastic

square plate, example 2.

...............

» simply-supported

Element
Type

No. of
Nodes

No. of
Elements

Time Step
At (sec)

No. of
Time Steps

Max. Daflection

(in)

Periad
(msec)

CPi Time
(sec)

Triangular
Plate
Element[1]

25

32

3 x 1078

0.1996

1.032

77.31

Quadri-
lateral
Plate

Element

25

16

& x10°6

0.2901

G.995

28.08

Analytic

[29]

i

°0.2129

1.070

Table 4.

Parameters and results for elastic-plastic,

simple supported square plate. example 2.

Element
Type

No. of
Nodes

No. of
Elements

Time Ste
At (sec

No. of
Time Steps

(in.)

T
Max, Deflecticn

Periad
(sec)

CPU Time
(sec)

riangular
Plate
Element
(3 layers)

0

25

32

4x 1078

300

0.3866

0.01152

124,51

Triangular
Plate
Element

(5 lagers)

0

25

32

4x 10

300

0.2478

0.01104

143.41

Quadrila-
teral
Plate
Element

(3 layers)

25

16

6x 1075

200

0.2949

0.01152

33.82

.
!

Quadrila-
teral
Plate
tlement

(5 layers)

25

16

6x10

200

0.01115

43.€4

*note:
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3 layers means 3 integration pointc thrcough thickness
5 layers means 5 integraticn points through thickness
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APPENDIX A

1. INTRODUCTION

In the analysis of nonlinear problems, particularly transient nonlinear
problems, computation time and memory are often crucial factors. Since
element stiffness computations are repeated many times it is advantageous to
have efficient and simple elements. Consequently much research is aimed at
formulating accurate elements with these characteristics [1-8].

In the analysis of thin flexible structures, perhaps the most promising
approach for developing simple and efficient elements is that based on
independent appfoximations of the rotations and displacements combined with a
reduced order of shear integration [3-5, 9-16]. As opposed to the C1
continuity required in the Kirchhoff type theory, only C0 continuity need be
satisfied in this approach. Consequently lower order shape functions can be
used which enhance simplicity. However, the use of the low order shape
functions necessitates reduced integration of the shear contribution to the
stiffness matrix, [3]; otherwise the elements are considerably too stiff.
Fortunately this necessity further contributes to the efficiency of the C0
element; reducing the number of the integration points reduces the number of
computations, and along with the simple shape functions, results in extremely
efficient elements. While this approach also has its drawbacks, such as
possible zero energy modes, these appear only for certain boundary conditions
and then can be effectively eliminated [17,18].

In some cases reduced integration may fail. For instance Batoz et.al.
{(n examine three different approaches to triangular elements and in their
study the SRI (selective/reduced integration) triangular element was found tu

be ineffective. On the other hand Hughes and Taylor [19] have developed a

more successful one point quadrature triangular element by overlapping two
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nodes of the quadrilateral [20], but the element's performance is mediocre for
certain element arrangements.

The results of [7] and [19] show that to develop a successful 0 element
it is not sufficient to use reduced shear integration; it is necessary in fact
to identify those mechamisms which are associated with excessive shear-strain
energy and hence shear locking. This will be accomplished by fitting a
portion of the deformation to an "equivalent Kirchhoff mode"; this portion of
deformation will be’called the bending mode. Although accompanied by shear
strains, bending modes will not involve any shear strain energy. The
remaining portion of.the deformation will be called a shear mode. The proper
definition of these modes is crucial for the development of a successful c0
element. It can not always be achieved by just reducing the order of -
numerical integration. The triangular linear plate element is one of the best
examples of this situation.

In this paper we develop a new triangular element with linear Co fields
which is based on this concept of decomposing the.deformation into well
defined bending and shear modes. The e1emeqt developed here shows definite
improvement compared to the formulation presented in [19]. We also identify
the source of the difficulties encountered in {7]. After some modifications,
the basic ideas presented here can also be used for other elements.

Our presentation begins with general considerations regarding the shear
and bending modes of deformation. Section 3 contains the specifications of
the problem for the triangular linear plate element. Section 4 deals with
major aspects regarding implementation while in Section 5 the results of

numerical applications are presented including a discussion.
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2. GENERAL REMARKS

The main issue in this paper is to determine an additive decomposition of
the displacements and rotations of a c0 plate element into two modes: a
bending mode - associated exclusively with bending strain energy (regardless
of the presence of shear strains in this mode) and a shear mode - which is

associated only with the shear strain energy. Therefore the transverse

deflection w and the rotations 8> ey in each element are given by
“’%“x"vf‘)i("tl’*"i)"? (1a)

b s

e ]

e ;] xI xI
S IR U T (I B I

Y Y yl yl

where the following decomposition is implied for the nodal variables

=g+’ (1e)
W e (1a)

Here NY and N? are the shape functions for the displacements and
rotatfons, respectively, and where superscripts b and s designate the bending
mode and the shear mode, respectively. Each of these modes can include an
arbitrary amount of rigid body motion.

The decomposition is chosen so that the element behaves as closely as

possible to a Kirchhoff C1 element in the thin-structure limit. The

mechanical reasoning used to accomplish this task will be presented in the

next Section. In the decomposition, the shear and bending nodal variables are
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linearly related to the total nodal variables, so

¢ b | ¥ (2a)
=P a

W ToLE

¢° s [8 (2)
= b

) B

where Eb. fs are linear operators emerging from the decomposition. They can
also be viewed as nonorthogonal projection operators.
Assuming the sign convention shown in Fig. 1, the kinematical

relatiopships are

“x XX
S T 2 G ®y.y (3a)
‘Xy ex’y ¥ e.Yox
Y o, +w,
X P x
b Y, _ 8, * W, (30)

Their discretization yields:

(42)
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with QE, gi, 53 defined by Eqs. (1) and (3). Equations (2) and (4) can be
used to find the strain fields in the bending or shear mode of deformation.

Thus, in the bending mode

b .
) ) 8
b _gb J= ~rdpd I - gbb <
€ =8 {pp "BL Y, (=8 (52)
!l ~ ~
b
8 9 9
Xb - §s ~b - §s Bb ; = gsb ; (5b)
¥ ~ ~
while in the shear mode
s
8 @ 8
3 b < b < bs <
€8 o B LR 1, (62)
Y N N
s
) ) )
AR S SIS AR SV SN MR (6b)
W - “~

As mentioned earlier, only the bending mode will contribute to the
) bending strain energy, and only the shear mode will contribute to the shear-

strain energy. Hence, each mode is uniquely associated with one of the energy
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terms. The total strain energy is

I
' . :
g vl (@ e ) Pt w) ™)
- 2 A A
i' g )’ 9
E-,' 2 - A A ~
v
where gbb, §ss are defined in Eqs. (5) and (6), A is the area of the element,
1 v 0
b _EnS
0° - v 1 0 (8)
12(1-v®) 0 1oy
2

1 0 :
eoat [°] .

where E is Young's modulus, v is Poisson's ratio, h the thickness and y the

) shear correction factor. Eq. (7) leads immediately to the conclusion that in

o
the present formulation, the element stiffness matrix is:

y A A
N

The above outline of the approach does not give any rationale for the
-‘s decomposition into the bending and shear modes nor the decomposition. This
2 crucial aspect of the formulation will be discussed in the next Section in
9

connection with the analysis of the linear triangular element.
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3. LINEAR TRIANGULAR PLATE ELEMENT |
’\ Consider a triangular plate element in the local coordinate frame shown
¥
, . in Fig. 2. Nodal rotations and displacements form the following vectors
»
ol = [8.15 8.9 8.0 8.0y 0_as 8] (11a)
i - x1” “yl® "x2® “y2* "x3* "y3
3
o W om [y, W Wal (11b)
< 1° "2* ™3
N Linear shape functi‘ons wil]l be used within the element, so the rotations and
<-
b displacements are
%
-
F~ ] 3 e
2 - )L e*‘ (12a)
I=] Syl
>,
“ Y (125)
w = ) Liw 12b
A ap 1
N ;
..1 where L, are area triangular coordinates. }
h I
Using Eqs (3) and (12) leads to the following forms of ,
: matrices gb and B°
: -¥3 0 Y3 0 0 e
s Bb . 0 X=X 0 -X 0 x,| (13)
. P 3772 3 2
N X3*2 Y3 X3 Y3 X2 o
%
3
> -7-




¥
~
L 0 L 0 L 0
gi - [ 1 2 3 ] (14)
0 L1 0 L2 0 L3
s 1 Y3 Y3 0
B4 = XY X3=X, “Xq X, (18)

The decomposition of the total displacement into its bending and shear

° modes will now be described. To this end, we note that modifying the shear
strain energy is an effective means of improving the performaﬁce of the ¢
element in the thin plate limit, for this may eliminate the excessive energy
absorption in shear which leads to locking. On the other hand, modification
of the bending energy is undesirable since it may introduce additional zero
energy modes (compare [3] and [18] for instance). Therefore the bending mode
is chosen so that the bending strain energy in this element is unchanged by
the decomposition., Since the bending energy only-depends on the nodal
rotations in the C0 element, to accomplish this we can immediately establish

the decomposition of 8 as follows

e g -0 (16)

To determine the decomposition of the nodal displacements w, we first
define the set of "equivalent Kirchhoff configurations", which are
displacement fields wK(x,y) with curvatures equal to that of the c0 element,

1 .e.

"_W'Z"‘ 29 (17a)
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! ST TRy Ty (176)
“ ay

~0

N

v 2 K

d 3w -

E “axay T %xy T %y T %yax (17c)
)

Note that the above implies that the bending strain energies in the c0 element
and any equivalent Kirchhoff configuration are equal.
The curvatures in this ¢0 element are constant, so the set of equivalent

o

Kirchhoff configurations is described by

K
w = -i [xz - XX - x3(x3-x2)§? y2 - Ya¥s XY - X3¥ ] K
X - ayy +8 (18a)
where
588 (18b)

with EE given in Eq. (13); a_s a,, and B are free parameters which account for

b SIS

rigid body motion. At node I, the nodal rotations associated with wK are
given by

8 K ’- g—w-K Q

S Xyl a5 e +d X (19a)

8 _aw <1 @y

Y1 T2

el s

7, (23 &1Y3 X=Xy
-9-

YA e T
QR AR ST s V) P




!
\
.
S
R
!
N
l\
R
]
i
k-
l»
[
|4
.

.ot .
P I \..‘T'.{‘ " a

P AT RS A A A R e R A PR D
'<.' .t \*"’.‘ DALV, S I TSI 1 S LIV ST TS SV S S Berwees v S S
. 0w - - . - - - — .

The nodal displacements of an equivalent Kirchhoff configuration are

w§ 1 0 0 ]
K _ K
W= Wy a 1 -X, 0 C (20)
K 1

in order for the c0 element to perform well in the thin-structure limit,
its bending mode should resemble an equivalent Kirchhoff configuration as

closely as possible. Therefore, we will define the optimal bending mode as

that which minimizes the following measure of the difference between an

equivalent Kirchhoff configuration and the bending modes

K

i
@ - @ -" e 0w

T
fla sa,s B, W?) g ) (!b - !K) (21)

XYy

where gb

, gK and !K are given by Egs. (16), (19), and (20), while gb is to be
determined. The nodal displacement vector gb (along with gb) which minimizes

the function in Eq. (21) is called the optimal bending mode. It is clear that

the above procedure is in fact a least square method.
The minimum of f is independent of the rigid body translation, 8.

Assuming 8 = O the following steps are needed to determine !b. First,

according to Eqs. (18b) and (20)

[+ }
eK-Ae+RT{"} (22)
where
31
s b
A= s2 ] (23a)
-~ -~ ~-r
83
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The values of ay and ay which minimize the function (21) can then easily be

shown to be
a
U LR(1s-A)e (24)
“y 3
where 56 is the unit matrix of order 6. It also. follows that at the minimum
b

of f, w = gK. Consequently, according to Eqs. (20) and (23b),

Wl -ae (252)
3~ - - -~

Xy 0 : (25b)

with g assumed to be zero.

b b b

Having specified 9 and w~, the projection operators P~ and Es of Egs.

(2), can be defined. In view of Eqs. (16) and (25a)

I 0
N ) (26)
3% (Ig-4) 9
Moreover, since Eqs. (1) and (2) imply that
0+ pt - Ig (27)

-11-
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the operator gs is

o
o

P* s (28)
I1Ue-BH L
The above expressions for operators Bb and Bs along with Eqs. (4-6) and (13-
15) enable one to find the stiffness matrix defined in Eq. (10).
In Eq. (21) the function f utilizes local x and y components of rotations
in both the bending mode and equivalent Kirchhoff configurations. It is worth
noting, however, that the result of the minimization is independent of the

local frame. To explain this, note that

3

: 2 2
f = %1 (a8 + Aeyl) (29)
where
40, =0, - eK ( ) (29a)
xI ® 9xI © UxI'%x* %y
A0, = 0,7 - eK ( ) (29b)
yl = Yy1 ~ Py1iayr @y
K K
Since at each node 8,12 eyI’ °xI’ °yI and ays @y are components of appropriate

vectors (cf. Eq. (19)) so are 88 1> 49 Therefore, if the components are

yI-
taken with respect to a different coordinate system, the function f in Eq.

(30a) does not change. In particular the local x axis can coincide with any

side of the triangle.




;é It is clear from the above, that if the nodal rotations and displacements
(‘ in the total 0 configuration coincide with those of an equivalent Kirchhoff
f}; ' configuration, the total configuration and the bending mode are the same.

';Z ‘ Consequently, the shear-strain energy vanishes for this element for any

curvatures. We can show that this is not true of the formulation presented
in [7] where just reduced integration was employed. To this end, assume that
the nodal values of the rotations are given by Eq. (19a) while the nodal

displacements by Eq. (20). In this case the shear strains at the centroid of

,jf the €0 element are (compare Eq. (19b))
"y ‘
h
o\
o 3
S ol X3 < (30)
. Ty 2 y;'(xz - X3) e - Y3 Xe = %3
o where x_, y. are the coordinates of the centroid. Since in the thin-structure
N
If 1imit, the shear strains go to zero, for the SRI element of Ref. [7]
- yi - 0, y; + 0. Thus Eq. (30) (with yi = y; = 0) imposes two constraints on
‘ Ky Kys Xyy which result in the excessive stiffness of the SRI element.
-
§:
>
4
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4., IMPLEMENTATION

Both the bending and shear contributions to the stiffness matrix defined

in Eq. (10) form 9 x 9 matrices which are referred to all 9 degrees of

Call o] 9 S Padtd
AN AN, o

b
E"i
[ -
"

freedom. We found it more convenient to first formulate a 6 x 6 stiffness

matrix, referred to a corotational frame in whic.

(X))

=0 . (31a)

(31b)

¢
(X (P

where T is the transformation matrix resulting from condition (3la). All of
the previous considerations are obviously valid and can be specialized to the

following: the bending part of the stiffness matrix is

T
*b b b gb
£=/ @) 08 dh | (32)
where 93 is defined in Eq. (13). The shear related stiffness matrix is
XS E T T
€ -qattey [ Gs-8) R R UG- (33)

with A and R defined in Eqs. (23 a,b). The stiffness matrix of Eq. (10) can

then be obtafned as follows
k=T (R + %) 7 (34)

A similar transformation has to be performed once again (with a different T)

to obtain the matrix K in a global coordinate system.

-14-
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The integrands in both Eq. (32) and Eq. (33) are constants, so the
evaluation of the integral is simply the product of the area and the

integrand. Computationally, it is equivalent to one-point quadrature.

The formulation presented in the previous section, utilizing x and y

components of nodal rotation, is one of the frame-indifferent formulations

> . implemented herein. It will be referred to as the LSC (least square,
N
™ components) formulation. Another, natural and also frame-indifferent

formulation implemented here utilizes prgjections of the nodal rotations onto

sides of the triangle. We will refer to it as LSP (least square, projections)

2, formulation. In this case
b P PK,J P _PK b K T,.b K
: flayo o Bowp) = (@ -27) (8-87) + (w -w) (W'-w7) (35)
where,
) (36a)
o™ = E g (360)
e gyl 0 0 0 0
e ey3 0 0 0 0
E= 0 0 e, e.y1 0 0 (36¢)
0 0 e, eyZ 0 0
0 0 0 0 e ey2
I 0 0 0 0 e,3 ey3 ]

and e, p, eyl are components of a unit vector e parallel to Ith side of the
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triangle, Fig. 2. Note that in contrast to f in Eq. (21), the first term of
Eq. (35) is not the length of the vector.

Minimization of the function (35) leads to the following result

¢ |
Ll
ot
’
>
g
®

- 1 (37)
3

g (38)

Consequently, if R is replaced with R, Eqs. (32), (33) and (34) are all
valid. Moreover, the simple form of matrices R, Eq. (23b), and E, Eq. (36c),

enables one to perform a number of the multiplications in Eq. (38)

analytically
2 2 2 '
o1 €1 T &2 * &3 €181 * %x2%2 * ®x3%y3
REER =2
e.e.. +te e, te e e2 ~l»ce2+e2
x1"yl x2"y2 x3°y3 yl y2 y3
(39)
RE E-
ez +e e .8, + e .e e2 + e2
x1 x3 x1°yl x3"y3 x1 x2 exleyl + exzey2
e .e . +e .e e2+e2 e .e .+ e ,e e2 +e2
x17yl x3°y3 yl y3 x17yl “y2~x2 vl y2
2 2
€2 * &3 exZe,yZ * ex3e_y3

(40)

2 2
ex2ey2 + ex3ey3 ey2 + &y3
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6. NUMERICAL RESULTS

In order to evaluate the performance of this element and to compare it
with other elements, several square and circular plate problems were solved.
The parameters for all examples are given in Table 1. The term simply
supported here means that only the transverse displacements are constrained.
The transverse load is discretized in a manner consistent with the internal
force formulation; for a uniformly distributed load, one third of the total
load is allocated to each of the three nodes of the element. Only a quarter
of the plate is analyzed in each case because of symmetry. In the results
presented'(with the exception of the square, corner-supported plate), the
deflection of the center of the plate is normalized with respect to the
analytic value based on Kirchhoff theory [21].

The results for the square simply supported plate (Example 1) are shown
in Table 2, where A, B, CD refer to the various discretization patterns
presented in Figure 3. This element shows marked improvement over [19] with
mesh A and a slight loss of accuracy with mesh B,‘so this element is less
ortentation-dependent. It should be noted here that for the uniform load, the
consistent load formulation distributes twice as much load to the central node
for mesh B as it does for mesh A, which is significant for the coarse mesh, N
= 4, Table 3 presents the results obtained by distributing the load to the
nodes by dividing the plate into equal square areas and allocating the
resulting load to each node. For the cross-diagonal mesh, the results of this
element and [19] are comparable.

Results for the circular plate are presented in Table 4; the
corresponding meshes are illustrated in Figure 4. Improvement of about 4% to

10% is gained, over [19] for mesh-type A, while the cross diagonal mesh again

yields results comparable to [19].
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We have also compared the triangular element with the quadrilateral with
one-point quadrature and a stabilization matrix, Example 3 in Table 1. In
both cases the number of degrees of freedom is the same. The mesh used is of
the type B, N - 64, shown in Figure 3 and the results for both uniform load
and a central point load are presented in Table 5 and compared to [18]. The
Kirchhoff theory solution for the uniform load case is given in [21]. The
performance of these 2 elements is quite similar,

The convergence rate for this triangular element for the square (edge
supported) plate and circular plate are shown in Figures 5 and 6,
respectively. In both cases, the convergence rate is somewhat greater than
the expected value of 2.0 [22], but no rigorous estimates of the convergence
rate are available.

In this convergence study, the following measure of the error has been
used

ter, = (£ e2dg) /2 | (41)

where g 1s the area of the plate,

e =W -w (42)
with wA the analytic solution based on Kirchhoff theory and wFEM the finite
element solution. To simplyfy the computations, wA was evaluated at the nodal
points only and then interpolated by means of linear shape functions. Thus

the following difference has been actually used within each element

e = ? [w? - wiEM) L (43)
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The mesh parameter p has been choosen to be the length of the maximum side of

the biggest element.
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7. CONCLUSIONS

An accurate and simple formulation for the c0 triangular element with

TR TRERLCRAN Fea o M )

linear shape functions has been developed. The success of the method hinges

Aral

on the identification of the bending and shear modes and the use of the least

square method to properly separate the two modes. In comparison with the four

EACROWO i, SRART

node bilinear element with one point quadrature [18], the element shows
comparable accuracy. However in shell problems this element may prove more
effective than the quadrilateral with one point quadrature because it can more
effectively handle a warped surface.

Since this method assumes a constant shear in the element, one point
quadrature is sufficient for exact integration of the resulting integrals; in
fact, no numerical integration is needed. Since the shear distribution in
[19] is linear, a point probably exists within the element at which the shear

_strains developed in [19] are equal to those defined in this paper. Thus if
that point is used for the reduced shear integration, the two formulations
would yfeld equivalent stiffness matrices. The present formulation, however,
does provide a rationale for a selection of the integration point.

; Because the shear distribution in this element is constant, it has one

' Zero-energy mode: {in-plane rotation of the upper face of the element with

respect to its midplane. This zero-energy mode, however, disappears in any

mesh of two or more elements. Thus the present element can be safely used in

all plate problems.
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TABLE 1

Parameters for Example Problems

Example 1. Square Plate

Uniform Road, simply supported edages
Dimensions: 10 in x 10 in .
Thickness: 0.1 in

Young's modulus 10.92 x 105 psi

Poisson's ratio:

Example 2. Circular Plate
Uniform load, simply supported edge
Radius: 5 in °
Thickness: 0.1 in 5 ]
Young's modulus: 10.92 x 10° psi
Poisson's ratio: 0.3
Example 3. Square Plate
Uniform load and concentrated load, corner supported
Dimentions: 24 x 24 in
Thickness: 0.375 in

Young's modulus: 43.00 x 'IO4 psi
Poisson's ratio: 0.38
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TABLE 2

Center displacement and moment for simply-supported
square plate subjected to uniform load.

DISPLACEMENT MOMENT

MESH N NDOF | Ref.[19] LSC LSP Ref.[19] LsC LSP

3 16 631 .690 ~690 555 574 573

A 16 56 .78¢  .919 915 .564 .870 .855

64 208 .947  .986 .985 .835 .978 .973

3 16 .883 .883 .825 .906  .951 811

8 16 56 .989  .974 .951 1.127 1.026 .977

64 208 .999 .994 .994 1.098 1.002 .999

cross |8 28 912 .913 .914 .919 .920 .920

diaqonal |16 104 .978  .980 .980 .979  .982 .982

- 64 400 .994  .998 .998 .996 .997 .998
TABLE 3

Center Displacement for simply-supported “square plate;
Uniform load; nodal forces proportional to the area surrounding the nodes.

: DISPLACEMENT
MESH N | NOOF LsSC LSP
4 16 .730 729
A 16 56 .925 .920
64 | 208 .989 .988
4 16 770 .766
8 16 56 .962 .927
64 | 208 .988 .987
4 28 913 .936
Cross {16 104 1.036 ~ .986
diagonal}64 | 400 .997 .998
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TABLE 4

Center displacement and moment for simply-supported
circular plate subjected to uniform load.

DISPLACEMENT MOMENT
MESH N NDOF | Ref.[19] LsC LSP Ref.[19] LsC LSP
3 12 .103 .824 815 .576 .781 .750
A 12 42 912 .954 .954 .878 .957 .951
48 156 .948 .989 .989 .975 .988 .987
3 21 .927 .930 .930 .885 .890 .893
cross |12 78 .981 .982 .982 .976 .979 .979
diagonal} 48 300 .976 .996 .996 .986 .994 .994
TABLE 5
:f Center Tine displacements for corner supported,
s square plate
g Nodal DISPLACEMENT [in]
N point £SC Ref.[18] KIRCHHOFF
M UNIFORM LOAD PQINT LQAD ‘UNTFORM LOAD — POINT LOAD UNIFORM LOAD
L 1 . 11963 . 14095 11940 4102 . 12065
= 2 .11888 .13908 .11903 .13884
' 3 .11667 .13423 11647 .13392
N 4 11315 .12749 .11337 g2
. 5 .10855 .11955 .10843 11919
" 6 .10318 .11093 .10349 .11057
" 7 .09743 .10214 .09742 .10183
v 8 .09177 .09368 .09222 .09339
i 9 .08678 .08602 .08689 .08576
N
:
\
Y
; -26-




Fig. 1.
Fig. 2.

Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

FIGURE CAPTIONS

Sign convention.

Geometry of the triangular element in a local
reference frame.

Discretizations of the square plate.
Discretizations of the circular plate.
Convergence rate for the square plate.

Convergence rate for the circular plate.
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APPENDIX B

1. Introduction

Since the early years of finite element development, the use of €O finite

elements for the analysis of thin flexible structures has been very tempting,
as the c! continuity required by the Kirchhoff theory is very troublesome and
!. requ%res higher order shape functions [1-4]. However a rapid development of
N the ¢O approach started only with the application of reduced integration [5-
MO 123.

The effectiveness of this technique arises from its elimination of the
excessive shear contribution to the stiffness of thin structures whose
response is usually dominated by their bending properties.* However, it was
not clear how much of the shear-related stiffness should be eliminated.
Consequently the elements employing reduced integration were developed on a
"trial and error" basis; certain interpolations and integration schemes were
usually assumed and their consaquences were examined, [9-12]. Elements that
did not perform "well" were rejected. Although a similar approach was used in
the development of Kirchhoff cl elements, in this case, approximations
consistent with the theory usually give acceptable elements. Although their
convergence properties and error characteristics may vary, they seldom fail,
as for instance when the thickness of the plate decreases. This is not true
of CO elements employing reduced integration (for ‘instance serendipity plate
elements [9-12]) and perhaps for this reason the technique is sometimes viewed
more as a tr{ck than a legitimate method. In mixed methods, [17,18], similar
trial-and-error procedures have been used.

The equivalence between the reduced-integration displacement approach and

well established mixed methods [19] contributed significantly to the

* A more complex phenomena occurs when a curved structure is
analyzed [14-16].
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legitimacy of the former. However, doubts remained as to how to create
successful 0 elements; trial-and-error approaches are still in use and
consequently the resulting elements are often considered insufficiently
reliable. The zero-energy modes that often accompany reduced integration can
also cause severe difficulties.

A deviation from this path was originated by MacNeal [20] who, by
comparing energy terms, attempted to create CO, low order elements of accuracy
equivalent to that of higher order elements. A similar approach was later
used by Parish [21] to justify the use of reduced integration within 9-node
Lagrange plate elements.

Another approach for improving accuracy and eliminating zero-energy modes
was proposed by Hughes and Tezduyar [22] who developed a successful four-node

quadrilateral plate bending element. The idea was similar to that presented

-in [23] and consisted in changing the discrete derivative operator B to

guarantee good behaviour of the element in thin plate 1imit. After the change
of the matrix B there is essentially no need for reducing the order of the
integration to obtain good res: ::. An identical approach to the analysis of
perhaps the simplest plate bending element, a triangle with linear
approximations of displacements and rotations, was presented by Hughes and
Taylor [24]. The results for this element depended very strongly on the mesh
arrangement. Consequently the reduced integration technique was applied to
the shear terms along with the modified B matrix to alleviate the dependence
on the mesh orientation. However doubts arose about the correctness of the
modified B matrices. This subject has been discussed in [25], where a new
approach to the modification of the B matrix was proposed.

Another approach to O elements is to use reduced integration with

stabilization matrices [26,27], which eliminate the zero-energy modes. These




approaches have the same or better accuracy than [22], but the selection of

: stabilization parameters for nonlinear problems is an open question which is
iﬂ probably not trivial.,

E This study is aimed at identifying the factors which are most essential
;; C for the success of a 9 flexible element. This is done by means of two

: elements: the linear beam element and the linear triangular plate element.

¥§ . The salient characteristic of the first is that all the formulations discussed
?ﬁ lead to identical results; this is not the case for the plate element. We

) believe this enables one to clearly see the major features of the problem.

i: The next Section contains general remarks concerning CO flexible plate

; elements. The various formulations for the beam problem are given in Section
N 3, while the linear triangular plate element is discussed in Section 4.

ff Numerical results and conclusions are presented in Sections 5 and 6,

- respectively.
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_J: 2. General Remarks

If an element of a Mindlin plate is described by independent

b approximations of rotations 8,5 © and displacements w, the stiffness matrix
<

y
§ K obtained in the displacement formulation is, cf [10]:

5 = 5b + Es (1a)
Kp = { By Op 8 (1b)
D_B (1c)

In the above expressions, A is the area of the element,

N . M SV T (2)

R
._:.j . 12(1"\’)2

&O

= Gha (3)
0 1

AL

.
A S

where h is the thickness of the plate, £, G, v are standard material
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:*ﬂ
o
ggi constants, i is the shear correction factor. The matrices B8,, B, are the
2 discrete forms of the kinematical relationships
R
o
r N 'q N

o $x 9y, x

i: < E 9 Xy P = 4 8y.y } : By g (4)

B . +

' [ “xy ) %%,y " %y,x) .

Y
s

i

2 " Woy * 8,
N L: : = B g (5)

‘:"' Yy W,y + ey

.-.-\..

‘e

&
‘sk where Kys Ky ‘xy are curvatures, Ter Yy are shear deformations and g s
§$ the vector containing all elemental degrees of freedom. Positive rotations

By ey and displacement w are shown in Figure 1.

S

22 It is known that if low order shape functions are used and if the
.%ﬁ i integral in Eq. (lc) is integrated exactly, the plate elements are too stiff,
' <

- or "lock", as their thickness decreases [6]. This s due to the fact that too
N much of the work performed by the applied forces is converted to shear-strain
Y

.,,

) ::. -5_

o
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M= dMy > =Byt (6)
My
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energy. To alleviate this probiem, the integral expressing the shear
contribution to the stiffness matrix is often evaluated using quadrature
schemes of lower order than that required for exact integration. By doing
this, the portion of the shear strain energy associated with higher order
distribution of the shear strains is removed and.the performance of the
element is, in general, improved.

But this is not always true. There are cases, like the triangular plate
element discussed subsequently, that can not be treated in this way.
Moreover, reduced integration often gives zero-energy modes that are highly
undesirable. Furthermore, one can never be sure whether reduced integraton
removes the correct portion of the shear strain energy. It may therefore be
better to remove the troublesome terms by using mechanical arguments. This
reasoning leads to a different matrix E; that replaces 55 of Eq. (lc).
Depending on whether or not all the troublesome shear terms have been removed
while defining the E; matrix, the integral of Eq. (lc) can be integrated
exactly or underintegrated [22,24]. The point is to find a general method
that eliminates all the troublesome terms [25]. As pointed out in [22],
mechanical reasoning may provide a E; matrix which is far more effective than
reduced integration.

[f a mixed model {s used to formulate the element stiffness matrix,
internal forces, work-conjugate with the strains given in Eq. (4) and (5), are

interpolated independently of displacements

lf;g;i
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i T = Tx =P 7

L ‘ < T, rér (7)

:'

o where EM' ET describe the distributions of M and T respectively.

‘

;E - For B and 81 independent of each other (and this is often the case in
o

‘% practice) the two components of the stiffness matrix are (compare [16]):
N * -1

2 - T T -1 T

- B (B ([ ) [ (82)
3 T T -1

. S0 (& (fere BT) [ o g (8)

<

7 Moreover, if for a given displacement field the moment distribution is exactly

| the one that would occur in the displacement approach i.e. if

3

é Bu=0 8y (9)

'i: then the shear-related stiffness matrix 55 is still defined by Eq. (8b), but

;g. equation (8a) becomes
‘ .

éé & = | B Oy & (10) ‘
:f In this case only the distribution of the shear forces has to be defined. i
'_ This version of the mixed formulation will be used throughout the paper.

;; ' Malkus and Hughes [19] showed that if the kinematical description in the

gj displacement and mixed approaches is the same, then for each reduced
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integration scheme applied within a displacement approach, there exists an
internal force distribution in the mixed approach such that the stiffness
matrices obtained by the two methods are identical. In our case, for a shear
underintegration scheme, there exists a shear force distribution ET such that
the stiffness matrices defined by Eq. (1) and Eq. (10) are identical. This
equivalence will be used later.

In subsequent chapters we will be discussing various equivalent
formulations. By equivalent formulations we will mean those that result in
identical stiffness matrices. In all of the problems discussed, rigid body
motion will be eliminated and only the corotationaf stiffness matrix will be
compared. This diminishes the number of degrees of freedom, yet preserves

full generality of the analysis.
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3. Linear Beam Element

Consider a beam of length L, width b and depth h. We assume linear
distributions of rotations and displacements which depend on four nodal
quantities 8,, w;, 85, Wy, where bars denote quantities defined in the global
system. The corotating frame (x,y) is defined so that the transverse

displacements vanish, so the deformation is totally described by the rotation

field

6 =0 (1€) +06, &7 (11a)
q' - CPPNLPY (11b)
8, =8y - (W, -~ wy)/L (11c)
8, = 85 - (wy - wy)/L (11d)

The curvature and shear strains are given by

K, = 0y, -11_- (a2 - °1) (12a)
Ty =8 +w, =0 (1€) +0xk (12b)

The discrete forms of the above kinematical relations are given by

By = ¢ (-1, 1] (132)
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B = [1-¢, ] (13b)

i) Reduced integration displacement formulation

In this approach the integrals in Eqs. (1b) and (lc) are evaluated using

g --% as the integration point. This is exact integration for the first but

reduced integration for the second integral. The resulting stiffness matrices

are

i)

wnd |17
% =T (14a)
: -1 1
1 1
55 - GLbh) (14b)
1 1
Mixed formulation

Use of the Eqs (8) will now be made with 8, and B, defined in Eqs. (13),

Py given in Eq. (9) and P; defining a constant distribution of the shear

force, e.g.

Py = (1] (15)

Exact integration of the resulting formulas yields the matrix K, given in Eq.

-10-
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(14a) and matrix Ks given in Eq. (14b). A constant shear distribution in the
mixed method is therefore equivalent to the reduced midpoint integration in

the displacement approach.

iii) Displacement formulation with the modified matrix QS

The above two formulations are well-known [6,19]. Here we present
another formulation based on a concept developed as follows. First note that
in pure bendin;, a8 Kirchhoff-type element in which the curvature is constant
undergoes equal but opposing nodal rotations. If, in the thin structure
1imit, the present CO element (which also gives constant distribution of the
curvature) is to behave like its counterpart in the Kirchhoff theory, the
symmetric part of deformation that preserves curvature and is shown in Fig.
2b, should be associated with no shear strain energy. The remaining,

antisymmetric deformation, Fig. 2c, does not change the curvature and is

characterized by
65 =95 =L (s, +8,) (16)
21 22 7TV 2

Associating only this mode with the shear strain energy we arrive at the

matrix

5[] (17)

which reflects the shear strain distribution in the antisymmetric part of
deformation. Moreover, since the relationship between Es of Eq. (17) and

gs of Eq. (13b) is

...........
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~B-S = Es (e = %) (18)

use of gs in Eq. (lc) instead of B and exact integration is equivalent to
the reduced midpoint integration presented as formulation (i). Consequently
once again the matrix Kg is given in Eq. (14b). The matrix By, remains

unchanged, which means that 5b is still given by Eq. (14a).

iv) Dispiacement formulation with a modified distribution of the transverse

displacements

Now the symmetric portion of deformation, discussed in the previous
formulation will be introduced more explicitly; a quadratic transverse
displacement field will be associated with it, Thus we assume

wk -% (0, - 8,) (1-€) ¢ (19)

while the rotation field is still described by Eq. (11b). This displacement
field will be used within the standard displacement approach, not employing

any reduced integration whatsoever. Therefore the problem reduces to the

evaluation of gb and gs and to the exact integration prescribed by Egs. (1).

According to Eqs. (1l2a,b) x, does not change and neither does B, while

v =8+ WK w0 (18) 0,8 + 5 (0, - 8)) (1-2) (20)
3oy ey

This results in the following matrix
g - [+ 4] @)
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Since B, remains unchanged and g: is the same as B of Eq. (18), the last
two formulations are equivalent. Furthermore, as opposed to the previous

formulation, no simplifications ("tricks") have been used in the present one.

(-4

Note, that in the thin structure limit, when the constraint Yy ® 0 is

enforced, Eq. (20) yields

bbb MR R

8, = -8, (22)

This is consistent with the quadratic distribution of the transverse

displacement given in Eq. (19) and shows that all of the above formulations

ﬂ'-‘

attain the accuracy of the quadratic Kirchhoff-type element. However, the

quadratic Kirchhoff element, developed without any shear deformation, would be

A h = R

associated with a cumplicated assembly procedure since the two nodal rotations

would not be independent.

v) Mixed formulation with the modified distribution of the transverse

displacemcats

A quadratic distribution of displacements, Eq. (19) and a constant
: distribution of the shear deformation can be used to show that the mixed
formulation leads to precisely the same results as those in the formulation
: (fv). This can be immediately concluded from Fraeijs de Veubeke's limitation
principle, [28], since in the kinematic approach presented in (iv) the shear

distribution {s also constant, Eq. (20).

vi) Displacement formulation based on the opti.al bending configuration

A detailed discussion of the approach is given in [25]; its basic idea is

-13-
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the following. In order for a flexural O element to perform well in the
thin-structure 1imit, there must exist a properly defined deformed"
configuration associated with bending strain energy and no shear strain

¥ energy. This configuration will be called the bending mode. The additional
deformation required to bring this mode to the total deformed configuration

will be called the shear mode; it is associated with a shear strain energy and

% ) no bending energy. Since the assumed coordinate system is corotational only
Y for the total configuration, the bending and the shear mode may be
% characterized by nonzero nodal displacements. However, at each node, the sus.

of the displacements describing the two modes has to vanish whereas the sum ¢
R the rotations should give the initial rotations. Both modes are described b;
the linear shape functions. Their proper definition is essential for a

; successful development of a CO element.

v E s

L
o’

Existing works clearly indicate that shear strain energy should be
modified to achieve good behavior of the O elements in the thin-structure

Timit., Moreover, they indicate that the modification of the bending strain

AL WS 5

energy (introduced for instance by reduced bending integration) is not

desirable since it usually introduces additional zero-energy modes. For that

”

-

reason, the bending strain energy in the total configuration and in its

-l &

bending mode should be the same. To insure that this requirement is

T

fulfilled, the nodal rotations in the bending mode are assumed to be the same
as in the total configuration. This implies that the nodal rotations in the

. shear mode are zero; thus the shear strains that should be taken into account

’ O
e a0 s a’s

are completely defined by nodal displacements in the shear mode.
Even without a quantitative formulation the following remarks can be

made. First, it is clear that the shear strain described above involves only

svetad ¥ W2

the first derivatives of the transverse displacements. The polynomials

-14-
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describing the distribution of the shear strains are therefore one order lower
than those resulting from a given displacement and a nonzero rotation field.
Second, although the first remark indicates that certain shear strains have
been removed, they do not have to be the same as those removed by reduced
shear integration. The present approach is based on mechanical reasoning and
can serve as a guide to the appropriate reduced quadrature,

To determine the bending mode, we consider a set of "equivalent"
Kirchhoff configurations: they are characterized by a cu;vature identical
with that in the total configuration. They can be described by superposing
the quadratic displacement field of Eq. (19) and a linear field resulting from
a rigid body motion. Then we select the Kirchhoff configuration whose nodal
rotations are closest - in an average sense - to the already defined rotations
in the bending mode (being equal to the total rotations). By identifying the
nodal displacements in this particular equivalent Kirchhoff configuration with

the displacements in the bending mode. we define the ¢ptimal bending

configuration (or bending mode).

Since only rotations are compared in the evaluation of the nodal
displacements, the rigid body translation is irrelevant. ihus, rotation
around the node 1 of magnitude @ is considered. The difference between

rotations is measured by a sum of squares, so we miminize
o(a) = (88))% + (20,) (23)

where

-15-
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A62=32-<a-%(91-92)) =%(el+ez)-a (24)

with respect to a . It turns out for this case a can easily be chosen so

that ¢ = 0, which is obviously the minimum
1 (s, + 25
a ’2‘ (91 92) ( )
This definesea particular Kirchhoff configuration shown on Fig. 3. To
transform the configuration to the original configuration the nodal points
have to be displaced by

Aw, = 0 aw, = al (26)

These are nodal displacements in the shear mode that result in the following

shear deformation
Y= (27)
In view of Eq. (25) the modified matrix‘E; is
g =‘I;%’ %] | (28)
and it coincides with the one given in Eq. (17); Consequently the present
formulation is equivalent to all the previous ones.

We have illustrated these concepts in terms of a beam element for

simplicity., It is also interesting to note that all of the preceding beam
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formulations give the same resulits. In the next Section we will discuss these
formulations in application to the triangular linear plate element. In this
case they are not all equivalent. The results will suggest the formulation

which can be safely used in a wide class of problems.
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4, Triangular linear plate element

The triangular linear plate element will be considered in the local

corotational frame of reference, Fig. 4, such that the nodal transverse

displacements are zero. Its deformation is therefore described by the nodal

rotations

TI
2 [exl’ Oy1» 8x2» 8y2 8430 °y3]

whereas the rotations within the element, 8y and o

o) 3
X
= T gt
{ey} 4y Ut

with

T
8 = (8,45 841

yi

(29)
» are distributed linearly

Y

(30)

(31)

and Li denoting the area coordinates, Using the above expressions and

utilizing Eqs. (4) and (5) one arrives at

r oLl 0 L

X=X
8, = 0 3 x2 0

273

X3x2 1 . %3

T X2 XaX3

-18-
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1l 1l 0
X2 Y3 i
(32)




i) Reduced integration displacement formulation

Note that B, defined in Eq. (32) s constant while B of Eq. (33) is
linear. Thus, one point centroidal integration gives the exact value

for Eb and underintegrates 55 . The expressions defining the two matrices are

Kp = A EI D, 8 (34a)
ks = A 8 0] & (340)

where A is the area of the triangle and gg is the matrix §s’ Eq. (33),

evaluated at the centroid (L1 =Ll,=Ly= l).
3

it) Mixed formulation

We assume that Py is chosen according to Eq. (9) and that Kp 1s given by
Eq. (10). Both components of the shear terms are independently assumed to be

constant within the element, so
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Since By Is a linear function over the triangle, one point centroidal
integration evaluates the first and the last integral exactly.
Furthermore gs is constant so

-1
K = ABST (Aggl) ABS = agSTp gl

~S ~$ <§ ~$§ (37)

which is identical with Eq. (34b). This formulation is therefore equivalent
to the previous one.

Both formulations as well as their equivalence were reported in [29].
However the approach turned out to be ineffective. Further search for an

appropriate approach to a linear CO triangular element has led to the

formulations presented in the following.

111) Displacement formulations with the modified matrix B

. Both the curvatures and thé shear strains along side of the element
depend on the projection of the total rotation on the particular side. For
the linear rotation field defined in Eq. (31) the projections 8y, i = 1,2,3,

are

0 = 04 y(1-65) + 04,184 (38)
with
T T
8,1 =8 & 04,141 " 441 & (39)

where for i=3, i+1 should be identified with node 1, 8y is specified in Eqg.

-20-

......................
............



v oy > s . . . . .-
NE TRV U W T atata T N » e, ¥, w Lt et et e N L Ve e e T e

(31), ey are the unit vectors shown on Fig. 4 and £ (0,1) parametizes the
i-th side of the triangle. Thus the curvatures and the shear strains

associated with each side are

. .l -
i ® %, X, (®5,141 - 04,4 (40a)
Yeo= 0y = oy (1-64) * 04 jupdy (40p)

The above equations are analogous to Eq. (12a,b). One can therefore draw the
following conclusion: if the present plate element is to behave well in the
thin plate limit, the linear portion of the shear deformation for each side
has to be related to a deformation associated with no shear strain energy
(this led to success in the analysis of beams). The portion of the shear
strains that should be associated with the strain energy is therefore (compare
Eq. (16))

0 +90
BN B P 2 1,141

-0, (& -%) (a1)

These values, considered for i = 1,2,3, define the modified shear deformation

over the entire triangle

3
S=¢5= 1 L, g° 42)
R S (
where
T T T T
(%) = [(e}) » (83) » (83) 1 (43a)

.21-




i R
Qoo

8]
o,

.4.‘.
ooyt e OO
POV, | ’ faral el

-~

Q00 Y

.7
(83) = [o° i e ;3 (43b)

can be obtained by inverting the relationships

S S T S T
Yi = (gi) g«i = (9,1...1) gi’ i=19293 (44)

Taking into account Egs.(39), (41), (42) and (44) as well as the particular

position of the reference frame, Fig. 4, one arrives at

-7 i X3 X3 = X3 X3
B, = E(L1+|.2+_2.|.3) ~z (L2+x—2-L3)
Y3 X2 = X3
%, b ‘(L t = )
1 X2- %3 X2 = X3
=Ly + L+ —=5—1L,) “zy Ly + = L3) | (48)
2 X2 2
73 (L, + = Ly)
- + -
7&2 3 2' 2 X5
1, 3, X"’
Z -3 2?5 1 2y3 2
1
0 V]
L -
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The approach presented above was first proposed by Hughes and Tezduyar,

[22], for the analysis of the quadrilateral element, and then was used by
Hughes and Taylor, [24], in the analysis of the triangular element. Since
the shear strain distribution defined by E; in Eq. (45) is linear,
no single-point integration (associated with constant shear strains over the
element) can be equivalent to the present approach. Therefore this
formulation is clearly different from the two previous ones. Yet, the
derivation of.-B:s as well as the difference between Eqs. (33) and (45) clearly
indicates that some portion of the shear strain energy has been removed.
Although use of‘Eg instead of B in Eq. (10) should not require
reduced integration, exact integration has been found to lead to results very
strongly dependent on the mesh orientation, [24]; consequently one point
quadrature has been applied by Hughes and Taylor, [24], but the integration
point has been selected so that its location (and the results) depend on the
local numbering of nodes. Fig. 5 shows three locations of the integration
point P,P',P" for three different numbering of nodes 123, 1'2'3' and
1",2",3"., It is therefore clear that the integration point has not been
selected’properly. More importantly, however, the above analysis indicates
that the matrix E; should be defined in a bettér way; a correct definition of
'E; should not necessitate any reduced integration. These problems will be

discussed subsequently.

iv) Displacement fromulation with a modified distribution of the

transverse displacements

Here, a displacement formulation equivalent to the previous one, but not

employing any corrections like those of the last formulation, will be

|
|
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presented. To this end we introduce the quadratic transverse displacement

RIS YL XoX = Xa(Xg = X5) 3’;-3 ¥y - xyl e (46)

where

and B, 1s given by Eq. (32). In the corotational description adopted here,

the displacement wk

vanishes at all nodal points. The approximation of the
rotation field is linear, as it is given by Eq. (30).
Upon substition of the above functions into Egs. (4) and (5), one

obtains B, given in Eq. (32) and

L b
B = B, - B (48)

where gs is given by Eq. (33) and

2x - x 0 y
b _ 1 2
g o X stb (49)
2 : 3
(x2 - x3) Y; 2y - Y3 X - X3

Further evaluation of the above equations leads to the conclusion that
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which proves the equivalence between the previous formulation and the present
one,

The structure of the Eq. (48) clearly shows that, within this
formulation, y = 0 indicates that the Kirchhoff mode described by Eq. (46) is
realized, Thus, in the thin-plate limit, quadratic accuracy could be
expected. However, all the remarks made with regard to the prévious,
equivalent fqrmulation are also pertinent here. This means that for some mesh
arrangements the results obtained with the present formulation are very poor

unless reduced integration in employed.

V) Mixed formulation with the modified distribution of the transverse

displacements

If the kinematics presented in the previous formulation and the constant

shear forces related to the matrix Py of Eq. (35) are used in Eq. (8b)
T
kg = A (5:) B & (51)

where Eg is the matrix‘Es evaluated at the centroid.

The abcve result indicates that if reduced integration is to be applied
along with the modified matrix E;, the centroid should be selected as a point
of integration rather than one of the points shown on Fig. 5( in [24] the word

"centroid" has a different meaning).
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vi) Displacement formulation based on the optimal bending configuration

The idea here is the same as in the related section concerning beams.
Namely, for given nodal rotations, the transverse displacements have to be
found which, along with the rotations, form the bending mode that is
associated with no shear strain energy. This displacement mode is assumed to
be defined by the position of an equivalent Kirchhoff configuration in which
the nodal rotations are, in an average sense, closest to the given ’
rotations. The difference between the given nodal displacements and the
computed ones defines the shear strain enerqgy that has to be taken into
account.

In this case the displacement field describing basic equivalent Kirchhoff

configuration is given by Eqs. (46) and (47). The nodal rotations for this
field are

<>
]

@

(52)

where 521' ~22, 523 are obtained by evaluating the matrix 52 given in Eq. (49)
at the nodal points 1,2,3 respectively. Any other equivalent Kirchhoff
configuratibn can be obtained by the rigid body motion given in Eq. (46).
Since the rigid body translation is here irrelevant only two rotations of the

magnitude a, and ay will be considered. In this case the difference between

...............
e e
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given nodal rotations and those of an equivalent Kirchhoff configuration is

88 ¢ *a, d +a d -8 (53)
where

dl =[1,0, 1,0, 1, 0] (542)

¢y = [0, 1,0, 1,0, 1] (54b)

The function
flays ay) = (8g)7 (ag) (55)

The result is

is then minimized with respect to Gys Gye
=l (aS s s s . _aK
%y ;'(axl * 8,0 *0,3) s Oy T Oy - 0 (S62)
=1 (aS s s S . _aK

The quantities on the right hand side of the expressions defining

ay and ay form the vector

1
H] S S S S S S
(87) = [0, 8,1 8505 8425 8535 8y3] (57)

which, in view of Eqs. (30), (33), (48), (50) and (52), is
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The matrices Esl’ EsZ’ 353 are the nodal values of the matrix ES of Eq. (45)
' Because of the corotational description adopted here the initial nodal
displacements are zero, so the transformation of the bending mode to the total

one results in

Yx Sy }
. . (59)
Y {Yy } {“y

So, in view of Eqs. (55), (57) and (59), the modified matrix B is

1 ¢
x

Es' 3 47 Ps (60)
(G

and it describes a constant distribution of the shear deformation over the
element.

Note, that matrix E s of Eq. (45) defines a linear field of rotations
over the element and, by virtue of Eqs. (56) and (58), ay and ay is just one

third of its nodal values. Thus

too]

. 5 (61)
S

H
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Therefore, the present approach once again confirms that in [24] the centroid
should be taken as the integration point. More importantly, the formulation
seems to capture the predominant mechanical behavior of the element so that no
reduced integration is needed in conjunction with the present approach. Its

more detailed analysis is presented in [25].
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5. Numerical examples

Numerical solutions to a ¢lamped beam and to a simply supported circular
plate, both under uniform loading, are presented. If cO plate elements are
used in the analysis of thin plates, two different models of the classical
simply-supported boundary conditions are possible: SS1, in which only the
transverse displacement is constrained and SS2, in which both the transverse
displacement and tangential rotations are constrained. In the present case
the SS1 condition has been employed. Geometrical and mechanical data for the
beam and plate problems is given in Tables 1 and 2, respectively.

The central displacements, normalized with respect to the analytic
solution, are reported in Table 3 for the beam and Table 4 for the plate.

The number of elements in Table 3 refers to half of the beam since
symmetry is used. It can be seen that the improvement in the results obtained
by changing the number of elements from 1 to 2 is significant. Doubling the
number of elements to 4 does not change the displacement much, and the
accuracy attained is already satisfactory. The difference between the 1-
element and 2-element solutions is attributed to the fact that a single
element can only model the antisymmetric mode of deformation shown in Fig. 2,
which is associated with shear strain energy. For a thin structure, this is a
highly energy-absorbing mode which results in a stiff model.

In Table 4, the number of elements is for a quarter of the plate; the
related element arrangements are shown on Fig. 6. It is clear that the first
two formulations fail while formulation (vi), and the equivalent formulation
(v) gives the best results; the role of the proper decomposition of the total
c0 configuration into its bending and shear mode is therefore apparent. The
formulations (i1i) and (iv) yield results equivalent to those obtained with

one-point quadrature introduced in [24]. However a different selection of the

=30~




e o - -
ROEAR AL A A IO 0 0 T Ao o I IChb S oied T rach A St e RS |

integration point, resulting from the formulation (v) or (vi), gives

significant improvement, especially for coarse meshes.
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6. Conclusions

In this paper two basic and simple C° elements have been investigated:
the beam element and the triangular plate element (this is the simplest but by
no means the easfest plate element); both with linear approximations for
rotations and displacements. The purpose of this investigation was to show
that the proper additive decomposition of the deformation into its bending
mode, which is free of shear strain energy, and the shear mode, is crucial for
a successful development of CO structural efements. This is clearly seen in
the analysis of the triangular linear plate element. In this case, almost all
the formulations are different and in most cases yield unacceptable results.
Good results are obtained only after a proper definition of the bending
mode. However it is important to emphasize that the proper definition of the
bending mode can not be achieved simply through the use of reduced
integration,

The analysis of the beam element shows that under fortuitous
circumstances reduced integration may work. In the beam reduced integration
automatically selects the proper bending mode of deformation. This is
probably the case in many other CO elements, as for instance the Lagrange
family of plate elements which are based on reduced integration. Even if the
optimal bending mode of deformation is not selected by reduced integration, in
all the cases where this approach works, the reduced integration probably
selects a bending mode which is sufficiently close to the optimal one to yield
adequate results. There are however cases,like the Serendipity family of
plate elements, where the reduced integration fails, [9, 12]. We believe that

this happens because of inadequate selection of the bending mode of

deformation,

! Of the formulations presented herein, the one based on the optimal

-32-




bending configuration and originated in [25] is the most promising, at least
- for simple elements. The fact that it leads to matrices not requiring any

{

DN reduced integration indicates that it removes all obstacles to the correct

“u.
h& behavior of the elements in the thin-structure limit.
- .
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length

height

width

Young modulus
Poisson ratio

shear connection factor

radius
thickness
Young modulus
Poisson ratio

shear correction factor

TABLE 1

Data for the beam problem

TABLE 2

Data for the plate problem
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10 in
1 in
1 in

10.92 x 10° psi

0.3
5/6

5 in
0.1 in

10.92 x 10° psi

0.3
5/6
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TABLE 3

" Central displacement

for a clamped beam

No. of ele-

nts
Formulatid 1 2 4
(i) to (vi) 0.126 0.874 1.062

Notation:

i) reduced integration displacement formulation

ii) mixed formulation
iii) displacement formulation with a modified matrix B

iv) displacement formulation with a modified distribution of the

transverse displacements

v) mixed formulation with a modified distribution of the transverse
displacement

vi) displacement formulation based on the optimal bending configuration
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TABLE 4

ages, A 0,
e,

Central displacement
for simply supported circular plate

L ad
N

No. of ele-
ents 6 24 96
Formulati
i), ii) 0.063 0.150 0.398

iif), iv) 0.722 0.917 0.981

verere BN .

N

AR
LN

e ref. [24] 0.703 0.912 0.948

- v), vi) 0.824 0.954 0.989
K Notation as for the Table 3.
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Fig. 1.
Fig. 2.

Fig. 3.

Fig. 4.
Fig. 5.

Figure Captions

Stgn convention.

Linear beam element:

a) total deformed configuration

b; symmetric part of deformation

c) antisymmetric part of deformation

Linear beam element:

a) total deformed configuration

b) equivalent Kirchhoff configuration
¢) shear mode of deformation

Geometry of triangular plate element,

Position of the integration point in ref. [24]
for various local node numbers,

Discretization of the circular plate example.
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3‘ Section |
INTRODUCT ION
{
.g In Ref. [1] a phenomena called membrane locking was identified and

'§ analyzed for curved ¢l beam elements with linear axial and cubic transverse
:‘ displacement fields. IlMembrane locking results from the inability of an

i element to bend without stretching: since any benrcing deforiration of the

; element is then accompanied by stretching of the midline, membrane energy is
;, always generated in bending, thus increasing the bending stiffness. Although
2

3 the study employed a very simple beam model, it is clear that membrane locking
iﬁ must also appear in shells, (compare [2-9]).

f; However, the success of widely employed 0 elements, [10-15] with reduced
Eg shear integration and the claims for hybrid and mixed elements [16-19] led to
;: the conjecture that membrane locking may be circumvented in these eievent:.

v Therefore, a similar study has been made of these elements.

-

; It has been found that reduced shear integration in curved 0 elements

ti does mitigate the effects of membrane locking. Indeed, a complex

interdependence was found between shear and membrane underintegration:

! reduced integration in either the shear or membrane energies leads to improved
;: accuracy in the bending response. In fact curved VY elements with full

v membrane integration perform quite well if reduced shear integration is

.ﬁ; used. However, reduced shear integration is accompanied by a deterioration of
;; membrane-flexural coupling, which is one of the essential features of a curved
?Z element; it also leads to the appearance of kinematic modes.

_; Mixed finite elements are shown to also exhibit membrane and shear

2 locking; in view of the equivalence t! .orems [20],{21], this is not

:

]
R N




surprising. However, for a beam, hytrid methods are not subject to membrane
locking hecause the general solution to the equilibrium egquations can be
constructed. This cannot be accomplished for arbitrary shells, but it may
provide the insight needed for a ratinnal construction cof reduced-integration
displacement elements which avoid lacking. We are convinced such displacement
elements provide the most viable approach to practical ccmputaticns; the extra
calculations associated with hybrid and mixed elements are hard to justify
when displacement elements yield the same results.

In Section 2, the governing equations for a beam based on shallow shell
theory and the variational formulations which pertain in this context to
displacement, hybrid, and mixed elements are presented. Using a specific beam
element, the interrelationship of membrane and shear locking is demonstrated
in both mixed and displacement elements in Section 3. Both analytical methods
and numerical results are used. In Section 4, isoparametric beam elements are
examined; it appears that the cubic element avoids locking, though the cost of
its counterpart in shell analysis is quite daunting. Conclusions are

presented in Section 4,
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‘%: Section 2
-~ GOVERNING EQUATIONS AND VARIATIONAL FORNS
Efi Consider a curved beam of height h, width b = 1, which is approximated by
tﬁé ’ a sequence of chords, parametrized by x; in each chord the shape of the beam

\' is described by a function wi(x) as shown in Fig. 1. If w(x) is small, the !
s behavior of tihe beam can be described by the theory of shallow structures
;:“ wherein the following equations apnly: i
KA, ?
~Y
-1 i. kinematic relations [22-25]
N
' €= u’X+w'X V’X (16)

1
_’,3. T 2 (16)
2

e Y = -¢+V'X (1c) !
.._ |
;4 where u and v are the x and y components of the displacement field and ¢ is j
- 1
" the rotation of the cross-section; ¢, x, and y are the membrane (midplane)

strain, change of curvature and shear deformation, respectively; commas denote

- |
_ derivatives. |
e : J

ii. constitutive equations (elastic)

o |
.::: n= Dle Dl = Eh (Za)
- 3
= _ Eh

L m = Dy« b = 17 (2b)

o q = D3y D5 = %Gh (2c)
o
= or
!
o 3




- g=0D¢
5! where
b\‘z
~ T
: g = [no m, QJ
e e o]
€ T |€» X Y
D1 0 0
D = D2 0
sym D3
N and n, m and q are the membrane (axial) force, moment and shear on the cross-
section of the beam,
g iii. equations of equilibrium
Moy = 0
m’x - q = 0
qox + ("w’x) 'y -p= 0
' jv. boundary conditions
* *
n=nv or (u=u and su = 0)
* *
m=-my or (¢ =¢ and §¢ = 0)
. * *
N, q+tm, =quv or (v =v and §v =0)
~ ‘
N
~
Y

where asterisks denote prescribed values, the prefix

(2d)

(2e)

(2f)

(29)

(3a)

(3b)

(3c)

(4a)

(4b)

(4c)

§ a varijation, and v,

is




the unit normal t¢ the end, which takes on values of -1 and +1 at the left and
right hand ends. The conditions in the left coluwnn of the above (which are on
the forces) are the natural boundary conditions, the ones on the right the

essential boundary conditions.

Hu-Washizu Functional

The Hu-Washizu function for Egs. (1-3) is given by

2 . e
L nurmprqgv) |, (5a)

H=U - g pv dx -
i=] i °

- g [ﬂ (C - u’X = w’XV’X) + m(K + ¢’X) + Q(Y + $ - V’X)] dx

where x; and x, are the two ends of the beam and U the internal energy, which

is given by
U =% é (D)e® + Dye? + Dyy?) dx (5b)

In (5), the kinematic variables (u, ¢, Vv, €, x, y) are all independent, as are
the kinetic variables (n, m, q); (u, ¢, v) must be cC functions;
(es x» Ys N, M, @) must be C'l, ¢l functions are piecewise continuous
functions which are allowed to be discontinuous across element interfaces.

For the finite element formulation, these independent variables are

approximated by shape functions S, N, and E as follows

n §n
my o= (Sn) B=S8 (6)
9 2
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u ﬁul

= N d=Nd 7
¢ Ngg d=Xd {7)
v Ev
€ L

= {E1 e=Ee¢ (8)

E

Y ~Y

where d is the matrix of nodal displacements and g and e are the discrete
variables for the stress and strain fields, respectively.

We also introduce the strains associated with the displacement field

m>

“m +WNVR Ee
<( = 4y = {B, [ d=8d (9)
Y ¢t an §’Y

where the kinematic relations (1) are used in the firct equality and the
elements of the B matrix are obtained by evaluating the expressions in the
second term with the displacements approximated by Eq. (7).

Substitution of Eqs. (6-9) into (5) provides the discrete form of the Hu-

Washizu functional

. H=u-d '+ g'Ba-To (10a)
v=lelpe (10b)
2
Ij-éfggax (10c)
|
B =£§T§dx (10d) |
i
}
6 %
l{
|
|
|
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2 = T
o E = g S E dx (1ve)
o
ext T 2 . * * £
e f =gpr1v d + Jn N em N e aN) L (10f)
2 i=1 i
.::\:
£ ) This functional yields the following discrete equations:
i. strain-displacement
Bd=Ee (11)
ii. constitutive
Tg-Te (12)
iii. equilibrium

Since the parameters e and g are associated with C'1 functions, the
' corresponding element matrices o and Bo can be local to each element.The
procedure for obtaining the governing equations is then the following. Using

Eq. (12), it follows that
=T g (14)

which, when introduced into Eq. (11), gives
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* Pas e

FLEL A

Lt Wk &y

't DAY WP

) B4 (15)

Now the use of equilibrium, Eq. (13) leads to the final result

Kd = £ (16a)
K =) 7
"Ik e ke (160)
e .

where Ee is the convectivity array, the element stiffness matrix is yiven by
-5 (EolEhtE (17)

The heart of this stiffness lies in the term D, see Eq. (10b), which

corresponds in form to the usual stiffness except that E has replaced B.

Displacement Formulation and Selective Reduced Integration

In the displacement formulation

c ;l n e
el = tel o Inb =p [« (18)
Y ?l q Y

which leads to the followiny identities (compare Egs. (6), (8), (9))

m
i
"
oo
pi=%

sg=084¢ (19

and in Eqs. (10a) the coefficient of g vanishes and e can be eliminated to
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o7
'ie‘g‘i 0 8 dx (20b)
e

This stiffness matrix for an element can be written (see Egs. (9) and (109))

= T T T
Ke é(01§e§€+02§¢§¢+03§\r§v)dx (21)
e
membrane flexural shear

Here the membrane, flexural and shear terms are identified. The crucial
feature of a curved beam is that w,, does not vanish, so transverse
displacements v(x) may contribute to the membrane energy; see Eq. (9).
Moreover, for many combinations of shape functions, any transverse ceflection
will contribute to the membrane energy; consequently pure bending
deformations, which are often called inextensional modes of deformation, can
not be replicated by the finite element. The concomitant increased stiffness

is called “membrane" locking [1].

Mixed Formulation

In the mixed formulation, the constitutive equation and strain-
displacement equations are combined so that the independent fields are the

stresses and displacements. Thus Eqs. (2d), (6) and (8) are combined
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The resulting functional Hz is obtained by substituting Eq

. {22) into the
first and last term of Eq. (10a), which gives

1 T =-1 T T cext
ﬂ";é?c g+g Bd-d f (23a)
LA s'ols o (23b)
e
The stationary conditions of this discrete functional are
Bde =L £ (242)
where
T
E=é S B dx (24c)
e

The element stiffness is obtained by combininy Eqs. (24a) and (24b) so that a
relationship is obtained between f

and ge’ which yields that

T =-1 =
ke *T 0B

(25)
The possibility of locking can be deduced immediately from Eq

. (25). Llet

10

e e —— e U >
”‘ YA P LRI RE, PR d® Vo £ pat BIIDLANE AR 8 TSR GBIP A CERL ol D e
.............
L.LA‘.A

-‘.l_i....kn_{d_;_.d‘_lk N

VPEGTGRG
N et

PP PRI

...........




S=08 (dim g = din d) (26)

({ ] Substituting into Eq. (25), we obtain a Ke which is identical to the
displacement formulation stiffness, Eq. (20b). This result, which was
obtained in a more sophisticated way in [20], shows that the mixed method is

equivalent to the displacement method when the shape functions for the

o
iﬁ . stresses are obtained by Eq. (26); compare the conditions for equivalence in

{Sf (19]. Hence locking should occur in mixed models (contrary to the

N implications of [19]), and reduced integration may be necessary; this will be

j;; shown later.

1;? The counterpart of Eq. (21), which is obtained from Egs. (24a) and (24b)

7:I is that for a mixed mode)

. K, = ET E:-l B (27)

;i Reduced quadrature, if needed, will be used only on B; all terms of E; will

IEE be integrated exactly.

;R Hybrid Formulation

:g , In the hybrid method, all stress shape functions are assumed to satisfy

= the homogenecus equilibrium equations, which allows the second term in Eq.

:3: (23a) to be replaced by a boundary integral. We will not consider this form

3 explicitly but instead derive the hybrid method directly from Eq. (23a).

f; Details are given in the next Section.
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Section 3

CUBIC-LINEAR ELEMENT

Stiffness Formulation,

This element, shown in Fig. 1, employs cubic shape functions for the
transverse deflection v, quadratic shape functions for the rotations cf the
cross-section ¢, and linear shape functions for the axial displacements u.
This type of element is often used in explicit time integration because its
maximum frequency for commonly used element dimensions is lower than if a
cubic is used for u, thus providing a larger stable time step [9].

The study of the element is facilitated by considering only the nodal
degrees of freedom which are associated with deformationai modes, thus

excluding all rigid body modes. The deformational degrees of freedom are

d = [u $15 dos @ ] (28a)

~ 21° %10 20 %0 X

Upy = Uy = Uy (28b)
where up; is the axial displacement of the right end relative to the left
one, ¢; are rotations of the nodal cross-secticns and a; are the rotations of

the tangents to the middle line at nodal points. The shape functions and the

initial shape w(x) are:

N C ] 0 0 0
N= b = |0 1-¢ Z 30 35P-0) (28¢)
N, 0 0 0 U c-2;2+c3) L{ c3 -cz)
12
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w=1 a? (g - 2¢° + ¢ (28d)
Note that these shape functions exclude rigid body motion and are expressed in

a corotational system. The g matrix resulting from Eq. (9), is

Eu [l 0 U W’X(BCZ-d‘:+1) w,x(3c -2r)
= = 1 1 3 (o.. _3 -
E’ §¢ = 0 T T "[(Zs 1) -[(ZC 1)
8, 0 -(1-z) T l-¢ g

(29)

where L is the length of the element and ¢ € (0,1] is the dimensionless
parameter of its chord. The orders of the membrane and shear terms for this
element are given in Table-l, along with the number of Gauss quadrature points

required for exact integration of these polynomials.

Analysis of Reduced Integration in ¢V Displacement Element

Here an analysis of the element stiffness will be presented to
demonstrate the effects of reduced membrane and shear integration. Of the
rotational degrees of freedom, only ¢ must be continuous across interelement
boundaries, so a; is local to each element ard can be eliminated on the
element level. The elimination resujts in a 3x3 corotational stiffness

matrix E

K131 Uz
K23 U\ (30)
K33 *2




¥ |
N
7 This matrix ccmpletely defines the axial and flexural properties of the
o element. All other nodal forces are found through global equilibrium of the
-‘. ~ ~ ~ -~
;5 . element. The entries K22’ K23, K32. K33 reflect bending properties of the
element while QIZ’ ﬁ13 represent membrane-bending coupling; in the absence of
N this coupling, ﬁlZ = R13 = (. To make the analysis tractable, it is assumed
; that Poission's ratio v = 1/3 and
b S
1 @ = a O = —a(l+e) (31a)°
G 1 ’ '

where ¢ is a small number, Moreover, we assume that

La- o), of = 0(e) (31b)
LY
and only terms of order ¢ are retained in the final expressions. These
assumptions are satisfied in many practical applicaticns
where'% ~ 0.1 and a ~ 0.1. Within this accuracy we obtain
. , Mol = Koo ¢ * K3 4, (32)
The coefficients izz and ﬁ23, for various reduced integration schemes are
given in Tables 2 and 3, respectively.
- For 4 = 0, these stiffness terms are shown in Figs. 2 and 3 as a
. function of the element slenderness h/L. As expected, for a fixed vaiue
N of a, the bending stiffness of the curved beam approaches that of the straight
h Y
: beam as h/L increases. For reduced membrane integration, the stiffness is
y 14
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very close to the Euler-Bernoulli theory. At the same time, a clear
difference between curved and straight beams is retained,

Reduced shear integration, on the other hand, shifts the stiffness
towards that of a straight beam. The effects of curvature appear only for
very slender elements, and from Figure 3, it is apparent that this is also
true for other values of g. Thus reduced integration of either shear or
membrane terms reduces the bending stiffness and yields acceptable results

whenever bending is the predominant mode.

Remark 1. For the case a? = ag, reduced shear integation leads to singularity
of the submatrix which has to be inverted to eliminate aj -

Consequently, a; cannot be uniquely expressed in terms cf the remaining
degrees of freedom. The nodal forces however, in this case depend only on the
mean value of aj which is defined uniquely. To avoid this difficulty (wnich
indicates the presence of a zero energy mode) this submatrix has been
integrated exactly in this analysis; reduced integration is used for all other

shear contributions.

Remark 2. This element reduces to the Euler-Bernoulli element studied in Ref.

(1] if a; = ¢

Hybrid Formulation

The general solution of the homogeneous form of Egs. (3) is

n=g

q = =B W, * 8 (33)

-------
.« .
-------
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The parameters Bys By B5 CaN a2asily be interpreted as s -tl, LI Fig. 1,

whereas the form of Eq. (33) results in

1
r 1 0 0

S= |-w X 1 (34)
W, 1 0

A\

Note that the development of a general equilibrium solution such as (33},

while feasible for curved beams, would be impossible for curved shells.
The parameters Bys Bps B4 CaN be obtained from one of the stationary

conditions of the functional (23), namely Eq. (24a), which gives

-~

( ng'lgdx)g=(é sT8) d d (35)
e

The right hand side of the above equation can, in this case, be evaluated

without assuming any approximation for the displacement field, giving

, i X-Wk-w,xy
T I N
(£§§_dx)g=é§_ xdx-ée .<x+y v1-¢2
lY

(36)

where uj, vi, ¢; are translaticns and rotations at the nodal points. Since

the right hand side of Eq. (35) is independent of the approximation of the

16
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displacement field, we may claim that the field resultirg from the exact
analytic solution of the problem has been selected and that the element wili
not lock.

The equations relating the nodal forces and the nodal displacements are
obtained by solving Eq. (35) for 8y By» 85 and then making use of the

following relationships

*- *_ *-

Ny = =8y »M™ 83,0 7 =6

*- = *-

N, =8y » My * -8yl = B3, a4y = B, (37)

Mixed Formulation

For the cubic-linear element, the following internal fcrce distributions

were considered:

f. nQ - qC; this distribution conforms with the guideline of Ref. [19]
that the internal force distribution be one order lower than that obtained
from £q. (26):
: n=pg +8I(1- 02+ 8352

2 2
m= gl (1 -g)" + B& (38)

Q'BG
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ii. nQ - gl; in tnis element, the shear distribution is consistant in

order with Eq. (26):

_ n=8 +8, (1 —5)2 + 6352

F m=84L(1-€)+85L5 (39)
Q?

1 q = 8g *+ 8 (1-2g)

iii. nD - qC; this element has a normal force distribution consistent with

Eq. (26):

2 . 2

n = 51 + By (-653 + 1152 -6+ 1) + B3 (-653 + 7¢
m=g, L(1-g +85Lg (40)

q = B

iv. nC - qL; this element has the simplest normal force and shear

distribution consistent with a 5 parameter stress model:

n=51
m=g,L(1 -¢g+8yLe (41)
q =8+ 8 (1-2¢)
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In all the above elements, the dispiacement shace functions are yiven in
Eq. (28¢c) and the 8 matrix nceded to evaiuate Eq. (24c) is given in Eq.
(29). In reduced membrane inteyration, the rows of‘E associated witn t'=
axial force n (e.g. rows 1 to 3 for nQ - ql) are underintegrated, while in tne
reduced shear integration, the rows.of B associated with tne shear g (i.e.

rows 6 and 7 for n) - qL) are underintegrated.

Numerical Results

Results were obtained for the deep arch shown in Fig. &4, The results for
various integration schemes in displacement, mixed and hybrid formulations are
summarized in Table 4,

The displacement method with full integration of both membrane and shear

terms, it is apparent, is far too stiff., Reduced integration of either the

(A ALY
- ‘» .
s ']

b3
v""l

IS R PR

membrane or shear terms leads to reasonable agreement with the analytic

solution; this contrasts with the behavior of curved ¢l elements of this type,

where reduced membrane integration is always necessary [1]. However, reduced

membrane integration with full shear integration gives the best results. The

reason for this is apparent from examining the membrane-flexurai coupling
terms ilZ’ which vanish for shear underintegration, thus providing behavior
similar to that of a straight element; this also is borne out by comparing
cases 3 and 5.

The hybrid element does not lock and is in good agreement with the
analytic solution. This was expected in view of the fact that for this
element, the stiffness matrix is independent of the shape functions used; see
comments following Eq. (36).

The mixed elements, as can be seen from Table 4, also exhibit locking

when full integrated except for the constant membrane, linear shear element

~
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(nC-qLl). In the guadratic membrane, linear shear element (nQ-ql), various

reduced integration schemes were tried. The best accuracy was attainea for
reduced membrane and full shear integration. Reduced shear integration yields
results similar to that of the quadratic membrane, constant shear (nQ-qC)
curved and straight elements, supporting the hypothesis that reduce shear
integration diminishes flexural-membrane coupling.

This conjecture is also supported by the effects of reduced integratior
on the stiffness term 212 which is given for the various elements in Table
4, It is apparent that reduced membrane integration provides a good estimate
of this stiffness term, while for reduced shear integration it often vanishes,
as in a straight beam,

Examining the results and their implications in more detail provides some
interesting insight into the relationship between reduced integraticn and
shear/membrane locking. The element nQ-qC (quadratic n, constant q) was
designed according to the recommendation of [19]; see Section 2. As can be
seen from Table 4, nQ-qC possesss no flexural-membrane coupling and behaves
like a straight element (compare with Case 13); this reflects the shear
flexibility brought about by the constant shear approximation. The element
with constant n, linear q (case 12) in fact performs better, for by reducing
the order of n and increasing the order of g, an effect similar to membrane
underintegration is brought about.

These results (cases 7 and 12; 9 and 10) again illustrate the
interrelationship of membrane and shear underintegration in curved elements,
and that it also occurs in the framework of mixed elements,

It is worth noting that when continuous distributions were used for the
stress functions [18, 19], no locking was observed despite the fact that the

order of § was one order higher than that given by Eq. (26). We attribute

20
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- this to the fact that using continuous shape functions § diminishes tre number
of independent parameters, and is thus in a sense equivalent to reducing its

order.
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774 CURVED ISOPARAMETRIC ELEMENTS

o)

9

i Description of Elements

The element studied in Section 3 employed a linear axial and cubic

- transverse displacement. The purpose of this Section is to examine whether
%E the behavior of isoparametric elements, where the axial and transverse

" displacements are of the same order, is similar.

:E Two elements were studied:

as 1. a quadratic isoparametric with 3 nodes

;’ 2. a cubic isoparametric with 4 nodes
;% In the quadratic and cubic elements, u, v, ¢, and w were approximated by
ij quadratic and cubic shape functions, respectively. Because the curvature is

‘ treated by shallow-shell theory, cf. Egs. (1), all terms were integrated over
:: the straight x-axis. Only displacement formulations with selective reduced
;S integration were considered. The number of Gauss points required for exact
e quadrature of the relevant terms is given in Table 1,
ﬂ? Some of the reduced quadrature schemes introduced kinematic modes;
‘; wherever this occured, the element was stabilized by exactly integrating
ii entries of the stiffness corresponding to the transverse displacements of the
:; interior nodes. Although this scheme is not suitable for practical
.? applications, it provided a convenient means to study low crder quadrature.
;? A1l results obtained in this manner have been identified.

» Numerical Results
;E Results for the curved isoparametric elements are presented in Tables §
{: and 6. It can be seen from Table 5 that the quadratic element exhibits severe
2
22
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locking when full quadrature is employed; see Table 1 for the guadrature whicn
is exact. Reduced membrane integration alone makes a biy difference between 3
and 2 Gauss points but, still, some locking is present. Further reduction to
one integration point practically introduces no additional change. If unly
shear terms are underintegratea, the big difference is between 2 and 1, with
almost no difference between 3 and 2 Gauss points.,

For one-point integration of the shear terms, the results are independent
of the membrane integration. This suggests that bending of the element's
midiine is not involved in the deformation process and the membrane-bending
coupling is almost eliminated. To verify this, the terms ilz and £22 are
given in Table 7 (see Eq. (30)). It is clear that ilZ’ which represents the
membrane-bending coupling, vanishes for one point shear integration. [t also
vanishes if one point membrane inteyration is used; this stems from the fact
that the initial shape of the element is symmetric and w,, in Eq. (la)
vanishes at the center of the element, OQObviously, neither one point shear nor
one point membrane integration is desirable.

The results for the cubic element are given in Table 6. The difference
between full and reduced integration is quite small. This element is only
mildly susceptible to membrane or shear lockiny, apparently, deformation modes
which eliminate excessive membrane and shear energy are always possible.
However, the accuracy is best for 3 point quadrature of both terms, which

represents underintegration,.

Recommended Quadrature Scheme

From the numerical results, it appears that quadrature schemes which in a
sense filter out the higher order terms in Egs. (la) and (1lb), are most

accurate. For an isoparametric element, these terms

23
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are w, v, and ¢, respectively. The number of quadrature points would then

X
be estimated by requiring exact quadrature of the energies associated with the

2

< and v,f, respectivelv.

lower order terms in Eqs. (la) and (1b), namely u,
For the quadratic isoparametric, this guideline sugygests 2 point

quadrature for the shear and membrane terms, while for the cubic

isoparametric, it suggest 3 points. Tables 5 and 6 indicate that these

quadrature scheme give the best results.

Remark 3., Both 2 x 2 quadrature in the quadratic element and 3 x 3 guadrature

in the cubic element are associated with kinematic modes in the three

1imensional shell element. These modes would require stabilization.
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- 1. Shear membrane locking are interrelated in curved CO elements. Reduced

integration of either the shear or membrane terms can alleviate locking,
but shear underintegration eliminates the membrane-flexurai coupiing which

characterizes curved elements and thus results in elements whose

el A A AR,

s .

performance closely approximates that of straight elements.

'E 2. Mixed finite element formulations, when used with generalized stress
L; fields local to the element, also exhibit membrane and sheai locking.
3 3. In cubic isoparametric beam elements, almost no lockinyg of either a
"]

membrane or shear type is detectable with fuil integration,

E 4. In quadratic isoparametric beam elements, both membrane and shear locking
< are present and the interrelationship between these types of locking

A described in the first conclusion is apparent.

N

N

) 5. Hybrid curved beam elements do not exhibit locking. This is probably a
;: consequence of the fact that a general equilibrium solution car be

3 obtained for this element; it is doubtful that this could be achieved for
b a curved shell element.

\

TS ' It is worth noting that these locking phenomena will occur regardless of
' the type of structural or continuum theory which is used. A shallow beam

g theory has been used here because it enables the order of the membrane terms
;

] 25
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to be easily identified. In a continuum formulation, these terms appear

4 through the variations in the Jacobian which are brouyght about by the
curvature, and are not as easily identified. Nevertheless, the mechanical

behavior of a slightly curved element will be identical. Thus in either
context, the use of higher order integration, which incidentally, is often

i recommended for plastic problems, will result in poor element performacce

because of locking.
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Figure Cagtions

Fig. 1. Notation for the curved beam Zlement,
X Fig. 2. Bending stiffness of the curved beam elcment as a function of
2 aspect ratio normalized with respect to a straight beam; F and R

designate full and reduced quadrature of membrane (M) and shear
terms (S); EBA designates an analytical result for the Euler-
Bernoulli beam.

" . Fig. 3. Bending stiffness of the curved beam element as 2 functin of the
i initial curvature (see Fig. 2 for nomenclature),.

Problem description for the elastic deep arch.
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o TABLE 2

Bending stiffness Rzz (Eq. (30))

»?

§ - Eh3 { 2 2

h La,? 2 h, 2
Koy = Tpr § 4.0+ Aja® + A + () [Ay + Ay a® + &g () ]

WA

d

Type of '

Y integration Al Az A3 A4 AS
- EBA 0.0 0.0 0.5829 | 0.U 0.0
X ENI -0.8331 |-8.0 0.9144 | 0.8316 | 1.8288
"
~'.
Y FS-RM -1.7984 |-2.6667 | 0.6744 | 0.0 0.0
. FM-RS -0.8381 }-8.0 0.3143 {-0.0878 |-0.8381
) .
,
2,

Notation: EBA - Euler Bernoulli analytic solution, FNI - full inte-
. gration, FS-RM - full shear and reduced membrane (2 Gauss
7 points) integration, FM-RS - full membrane and reduced
’ shear (1 Gauss point) integration.
ke
¢

) LT SO
"

A IR

: (

K}

o




TABLE 3

Bending stiffness 223 {Eq. (30))

et

Kpy = %3: { 2.0+ € a2+ C, ({})2 : (,ﬁ-‘l)zrc3 v Cpal v g ({—)2]}
©
Il{ggrgiion C] C2 C3 Ca CS °
EBA 0.0 0.0 -0.2500 0.0 0.0
FNI -0.8381 | -8.0 -0.2856 | -0.8724 | -0.8376
FS-RM -1.7984 -2.6667 -0.6744 0.0 0.0
FM-RS -0.8381 -8.0 0.3143 -0.0878 -0.8381

Notation the same as for Table 1.
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0 TABLE 4
“~
A
i Numerical Results for a Deep Circular Arch
f?i with Cubic-Linear Element
% ECase Method Element Used Further Specifica;ions Force Stiffnegs
' No of the Element Displ terms™”
3 (number of integration points 1b
e in parenthesis) in Koo | Ky2 -
e % )
W] Exact EBA 471.1 —_——
Y analytic |
e[ 2 full integration 694.9 1,25 1.10 |
x 8 curved
a8 3 s ST FM-RS, full mem, (5) red 487.8 1.00{ 0
hge . QU s - 'Y . . . .
- = flexible shear int.(1)
O £ FS-RM full shear, (2) 473.3 | 101} 1.12
:g o red. mem. int. (2)
Y4 Q.
5 - 8 straight full int. 482.1 0.9 | 0.0
" e £8 el.
& . |
~: 6 Hybrid stress |8 curved shear 473.3 1.00{ 1.00
7 8 el. nQ - qC curved; full int.(4,1) 484.5 0.94 0
X,
A
7 8 curved; full int.(4,2) 690.3 1.19] 1.1
N
- 8 el.
2 9 nQ - ql curved; full shear (2) 473.3 1.01] 1.13 4
el 9 red. mem. (2) ;
? 10 2 curved; full mem. (4) 485.2 0.94| ©
b fa =
i3 red. shear (1) ;
© |
: % B |
bin 1 £ 8 el. nD - qC curved; full int. (4,1) 487.0 1.00f o
) - .
o 12 8 el. nC - qL curved; full int. (3,2) 473.4 1.02| 1.13 !
I i ;
S 13 8 el. nC - qL straight; full int. (1,2) 4821 |0.87] 0
":\ :
-~ .:Abbreviations: EB =Euler-Bernoulli; int. = integration; mem. = membrane; red. = reduced
2§ Normalized with respect to Rz and Ky for hybrid stress method respectively
U TN “"“”“‘””"\iﬁkltﬂéiﬂﬁﬁf33&E¢E%ﬁ&k&ie§ﬁi}idfhiﬁdcﬁﬁxéj
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TABLE 5

Ratio of Numerical to Analytic Results for a Circular Arch Solution

e

v
]
e )

with Quadratic Isoparametric Elements

&

%

for Reduced Membrane and Shear Quadrature

i

SRR AN

ng (memb) Curved Element Straight
Element

s

Ry

NG (shear 3 2 1

" e o
RN

r 4
s
(e

[
(98 ]

1.575 1.063 1.084 1.084

I TR
e

SL

N

1.449 1.004 1.023 1.023

0.939* 0.940* 0.940* 0.940

l‘
£
—

11 'u':b' MY
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*) Some entries of the stiffness matrix were integrated exactly to
stabilize kinematic modes.
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TABLE 6

Ratio of Mumerical to Analytic Stiffness fur a veep Circular Arch with

Cubic Isoparametric Element for Reduced Integra

tion

Gauss Gauss
quadrature quadrature Ratio
» points for points for
membrane shear
5 4 1.010
5 3 1.007
5 2 1.004"
5 1 0.957*
4 4 1.010
3 4 1.004
2 4 1.004
1 4 1.023
3 3 1.004
*) Kinematic modes were stabilized.
TABLE 7
-~ P *
Stiffnesses K22 and K12 for Ouadratic Isoparametric Element
g (memb ) 3 2 1
ne (shear) 22 12 22 12 22 12
N 3 3.25 | 1.09 3.15 | 1.12 3.00 | 0.00
2 1.1 1.09 1.01 1.12 0.87 | 0.00
~ 1 0.52 | 0.00 0.52 | 0.00 0.52 | 0.00

*) normalized with respect ot hybrid element in Table 3
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v=0.3
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