Ungrasii~ied Ceolins
. SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered) <o v
REPORT DOCUMENTATION PAGE BEF%%’;:DCISSKI’SQ‘?ESNFSORM

2. GOVY ACCESSION MOJ ). RECIPIENT'S CATALOG NUMBER

'AFOSR-TR- 88-1112

4. TITLE (anc Subtitite)

Collisional lonization as a Nonlocalized Process ’
and the Breakdewn of the Franck-Condon 424f9<44¢:£?

5. TYPE OF REPOAT & PERIOD COVERED

Appr°x1mti°n [ B P!n:‘SﬂumG ARG, REPORT NUMBER
T AUTHOR(s) ) 8. CONTRACT OR GRANT NUMBER(s)
Kai-Skue Lam and Thomas F. George AFOSR-82-0046
S PERFORMING ORGANIZATION NAME AND ADORESS 0. ::gi"‘A:OE.L(E:::dYT.n‘:J:o;EE;sT, T AsSK
Department of Chemistry 2303/A2
University of Rochester 61102F

Rochester, NY 14627

1, CONTROLLING OF FiCE NAME AND ADDRESS

12. REPOAT DAYE

AF Office of Scientific Research,NC 1983
Building 410 73, NUMBER OF PAGES
Bolling AFB, D.C. 20332 5
18, SECURITY CLASS. (of iNhis report)

T4 MONITORING AGENCY NAME & ADORESS(/ diffarent Irom Contrelling Office)

Unclassified.

A4D-4/57€ I¥S

18e. OECLASSIFICATION DOWNGRALING
SCHEDULE

19 OISTRIBUTION STATEMENT (el thiea Reparr)

This document has been approved for public release; ‘its distribution

DTIC

is unlimited.

OISTRIGUTION STATEMENT (of the abairect sntered in Bleck 20, If ditteront frem Rupert)

~

I8 SUPPLEIMENTARY NOTKS

Journal of Physical Chemistry, Volume 87, Number 15, 1933,
paaes 2799-2803.

KLY SORDY (Continue on revecte side /{ necossery and idenitly by blach number)

COLLISIONAL TONIZATION SEMICLASSICAL THECRY
NONLOCALITY PENNING IONZATION

BRLAKDOWN OF FRANCK-CONDON APPROXIMATION jHe* + Ar

10 ABSTRACT (Cronilrwe en reveres side f necossary end ideniily by boch mamber1t is demonstrated by a mcdel
compiitation based on a semiclassical theory that in collisional fonization the
Franck-Condon approximation, equivalent to the assumption that the jonization
event takes place locally, dces not always apply.

T FILE copy

v
FORM
DD 235 1473 | , Unclassified

SECUMTY CLASKIPICATION OF This MAGE (When [eate Entored! -

83 12 20 43

ALC3CI0EAA] A




Approved for public ret e
djatribution unlimited.

AFOSR-TR. 83-1113%

Reprinted trom The Journal of Phvsical Chemastry, 1983, 87 279,

Copyright © 1953 by the American Chemacal Saxiety and reprinted by permiswion of the copvright owner,

Collisional lonizatlion as a Nonlocallzed Process and the Breakdown of the

Franck-Condon Approximation

Kal-Shue Lam*® and Thomaes F. George

Depertment of Chermistry, University of Rochester, Rochester, New York 14827 (Recwived: August 20, 1982;

In Final Form: October 11, 1982)

It is demonstrated by a model computation based on a semiclassical theory that in collisional ionization the
Franck-Condon approximation, equivalent to the assumption that the ionization event takes place locally, does

not always apply.

1. Introduction .
We consider collisional ionization processes of the type

A*+B—~A+B*+e
usually referred to as Penning ionization.! The conceptual
picture most often used in the description of such processes
hinges on the Franck-Condon (FC) or quasistatic ap-
proximation: namely, an electron of energy ¢ can only be
emitted at the particular internuclear distance R where
e= WyR) - W((R) (1)

W,(R) and W,(R) being the potential energy curves cor-
relating to A* + B and A + B*, respectively. This picture
of localized transitions, while intuitively appealing and
generally useful, has never been directly verified. Indeed,
many previous approaches®? to the problem of Penning
ionization have preferred to adopt it as the starting point
of their formulations. In this work we report on a model
computation based on the He + Ar system which dem-
onstrates explicitly the failure of the localized-transitions
picture. Although this example by no means rules out the
validity of the FC approzimation in many cases,!® certain
doubts can now be raised about its indiscriminate use.
It is perhaps useful to recall the origin of the FC ap-
proximation. The crucial point is that, for a system in-
volving bound-continuum interactions, the Schradinger
equation does not lead to a differential squation but to a
differential-integral equation of the form® (ignoring the
complications due to partial-wave decomposition)
At g? .
(“‘2—“’ ar + Wi(R) - E)%(E.R) =] 2)
where
I= fde fdR V.AR) V(RY ple) %1(Eq'R) X
WW(EY R ¢ (E.R) (3)

E/=E-¢ @
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and V(R) represents the bound-continuum coupling
parametrized by the electronic energy ¢ (defined in eq 5).
Equation 3 clearly indicates the nonlocality of the poten-

" tial. This potential, however, can be localized with the help

of the FC approximation.® It consists of the following: in
the integration over ¢ in eq 3, only those values of ¢ are
considered important for the R’ integration at which the
product ¢, (Ey R ¢o(E,R" is slowly varying. If the wave
functions ¢, ; are regarded as WKB wave functions, and
also if V,(R) is assumed to be slowly varying, the station-
ary-phase approximation, together with eq 4, would im-
mediately lead to the FC resonance condition eq 1. Thus,
in the ¢ integral, ¢ can be regarded as a function of R (given
by eq 1) in the product V,*(R) V(R). By virtue of the
completeness of the set {{,(E,R)| the rest of the ¢ integral
leads to the deita function 6(R — R) and localization is
finally achieved through the R’integration. It therefore
appears that any theory which employs a width factor
T'(R) = x0()|V.]* in a complex potential has already im-
plicitly (or explicitly) made use of the FC approximation:
in that a differential-integral equation (involving a non-
local potential) has been reduced to a differential equation
(involving only a local, though complex, potential).

Our approach is to avoid using the basis set of the
tlectronic Hamiltonian (H,) leading to eq 2 and thus by-
puss using the FC approximation for localization: at this
early stage. Insteed, a besis set consisting of eigenfunctions
of H, (the adiabatic representation) is chosen, with the
result that a simpler equation consisting of noniocality only
for ¢ (eq 24) is obtained. This equation ig simpler in the
sense that the kernel K(e,¢') is of a very favorable nature:
it is separable. We have shown previously'! that this im-
portant feature allows eq 24 to be recast in tha jorm of an
integral equation of a relatively simpie.type, thus per-
mitting a solution without introducing any localization
approximation a priori. Interesting sa it is, we will, how-
ever, not pursue this path here. Qur rationale in this work
is the following: having established a formalism in which
a localization approximation is not incorporated in the first
place, we have the option of carrying it through with or
without making that approzimation at some later stage,
and make a comparison. This will be done via a pertur-
bative solution of eq 24. OQur purpose, then, is to inves-
tigate whether a localization condition (either of the form
of eq 1 or of some other peneral forin ¢ = «(R)) will sutfice
for the solution of eq 24.

Our computation is based on a general semiclassical
theory of collisional ionization developed earlier,'! which
treats explicitly the nonlocalization of the transitions be.
tween W. and W,. In section II, the relevant parts of this
theory will be briefly reviewed (more complete derivationa

(11) K..S. Lam, T. F. George, and D. K. Dhettacharyys, Phys Rev. A,

27, 1353 (1983}, b} 3
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of equations presented therein can be found in ref 11).
Section 111 will deal with the model computation and its
results: and finally, in section IV, we will discuss some
pertinent problems for future investigations.

I1. Theory

A diabatic basis set ||¢,(¢))},|®.(¢),¢)] corresponding to
W, and W, are assumed such that the following conditions
are satisfied:

(S2(t)H1gs(2)6) = V(0 (5)
(@) elH|9,(t),¢) = (W, (1) + O3, (6)
(82(t)|Hlga(t)) = Wylt) M
(B2d2) = (Drrelds,e) =0 8)
(Baldsre) = (doldsre) = 0 9)

with H being the total Hamiltonian involving electronic
coordinates. Equation 5 defines the bound-continuum
configuration-interaction coupling V,(t), while eq 6 implies
that there are no couplings between the different contin-

uum states. (The quantization volume of the system will -

eventually be allowed to approach infinity so that the
discrete indices will become continuum ones.) Equations
8 and 9 specify the condition of the absence of “velocity”
or nonadiabatic couplings.

As discussed in ref 11, eq 5-9 are simply taken to con-
stitute the “model” of the present theory, and questions
concerning the explicit construction of the diabatic states
or even their existence will not be dealt with here. The
present theory also makes use of classical trajectories for
the A-B relative motion (with internuclear coordinate
trajectory R(¢)), so that V,, W, and W, all become explicit
functions of time, as they appear in eq 5-7.

We now choose an adiabatic representation {|¢,(t))] in
which nonadiabatic couplings do not vanish, but which
comprise the exact eigenstates of F:

Hie, (1)) = (W, + )o.(t)) (10)
These can be expanded in terms of the diabatic set:
[B.8)) = B,(0)lda(t)) + Jos(t)) + Lo Athps(t)e) (11)

It can then readily be deduced that
-8,(t) V, 2(t)

X (t) pEpp (12)
-V,
B.(t) ~ Wo < St (12)
with the instantaneous level width given by
T.(t) = rp()|V.J? (14)
where p(¢) is the energy density of continuum states and

W,=W,- W,

Now |#,(t)) represents Franck—Condon “stationary”
states, so that “wave packeta™ including the effects of
nonadiabatic tranaitions between the |#,(¢)) can be con-
structad:

t
MDY = Ty.d0) exp{—u'/mj; dt’ (Wt + ofle(n)
(15)

The time-dependent Schridinger equation then yields the
equation of motion for y,{t}:

Y, = _,Z:." (¢’|¢' e o AHe o (18)

The initial condition ir given by

N(0)) = |¢2(0)) amn
which implies
7.(0) = £,*(0) (18)

The transition probability for the ionization process is
given by ‘

lim |S,()12
t—-

where

S.(8) = (¢4 (0),ely(t)) (19)
This quantity can be expressed in terms of the time-de-
pendent coefficients v (t) as':

3r3
(20)

(Wy(8) - 9 + T,22)
There is one such quantity S,/“* for each partial wave
characterized by the orbital angular momentum quantum
number L of the A-B relative motion. The total differ-

ential ionization cross section (with respect to electronic
energy ¢), do/de, is then given by

do/de = (xp, /KDL (2L + DS, P? (21)
L

ISAe)? ~ |‘Y.(‘)|2[ 1+

where
Kg? = ZuE‘/ﬁz 3 (22)

with u being the reduced mass and E, the total collision
energy of the system.

If we now make the assumption that the time variation
of T, is insignificant, i.e.

IP) <« |Wy (23)
Equation 16, on passing to the continuum limit in the

energy variable ¢, can be shown!! to be equivalent to the
following differential-integral equation for v,

ir W,
—————y =
(Wy - e-iT)?
WiV, -
(Way - e +il')Jo

3+
oI/ AN
,oVoye

AR (o ——T
T

We note that the separability of the kernel in the above
equation permits it to be recast as an integral equation—a
Voliterra equation of the second kind.!! We wil} here,
however, pursue a perturbative solution based on the as-
sumption

v/ (t) ~ 8.2(2) (25)

which is to be used in the right-hand side of eq 24. Since
8,(¢) is a known quantity (eq 13), eq 24 reduces to a
first-order ordinary Jifferential equation. Provided that
for the collision times ¢ of interest

t < Ay2r, (26)

the solution to this differential equation is givon approx-
imately by
f 4
() > y(0) + ——— § dt
Y 7. PYRY /,J;

!',"n"“/ Mo Wyt g t'To/ A

UV e - Wy - iT)

(=7)

The integral is of a form such that the stationary-phase
approximetion is likely to be applicable for its evaluation.
This approximation would be exact in the strict classical
limit A < 0; and in & great variety of collision problems
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Figure 1. Potential curves for the He + Ar colisional ionization system,
W4R) correlates to He'*(1828,°S) + Ar an, W (R)to He + Ar*. Al
quantities are in atomic units.

treated in the semiclassical context which do not involve
bound-continuum interactions, it is indeed found to be
excellent.’? The advantage of the stationary-phase ap-
proximation, when valid, is that the result allows a very
interesting physical interpretation of the collision process,
namely, transitions take place locally in configuration
space. In the context of eq 27, the lowest order station-
ary-phase resuit would be given by

1. %)

; LT 1/3
740} + 2(xp,)'/? z RWaltd + Waltdtd )

e-teT 1/

il (¢y)

r.(t 1/2 Po = e
(T(ta)) (o Wit

In this equation the sum is over the stationary points ¢,
which satisfy

) “P{‘;;‘ W,,(to)to’}e“' */¢ § (28)

e~ Wy(t) = Wye)e (29)

the = signs in the exponential are to be used according as
~2W,, — Wat > or < 0. If eq 28 is valid, the most im-
portant contributions to the ionization process would then
be localized to the discrets times t,, or the discrets con-
figurations R(t,), where R is the A-B internuclear coor-
dinate. The fact that there may be more than one sta-
tionary point for a particular trajectory leads to Guantum
interference effects within a semiclassical treatment.

We recall that in most conventional interpretations of
Penning icnization, localization, according to the Franck-
Condon appruximation (eq 1), is assumed to take place
where :

- Wyit) =0 (30

Equation 29, however, indicates that, when localization
applies at all, it takes place at points quite different from
those implied by eq 3C. In fact, since W, has opposite

(12) W. H. Miller, Adv. Chem. Phys., 28, 09 (1974).
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signs on the incoming and outgoing portions of the tra-
jectory, the “true” stationary configurations (R(t,)) may
be shifted to either side of the Franck-Condon configu-
rations by an appreciable amount.

At this point, we have no a priori reason to expect that
the stationary-phase approximation will work for eq 27.
Indeed, it may be surmised that, since the present problem
involves bound-continuum interactions, localization,
whether it conforms to the Franck-Condon points or not,
would not be expected to take place. In.the ner: secticn
we will attempt to settle the question by perfor: 1ing cal-
culations on a specific model system.

111. Model System and Results

We apply eq 27 to the He*(1828,°S) ¢- Ar Penning ion-
ization system using the following model potential curves
{all values are givet in ato-nic vnits):®

WAR) = V,(R) (31a)

Wy(R) = V,(R) -Ey  E, = 0.149 (51b)
ViR) = Ae®™ -8R (R) i=1,2  (32)
84R) = Cy/R + Cu/R* (33)

$:(R) = [1 + exp{~(R ~ Rp) /bJ1 {1 + B41 + exp((R -
Ro) /b1 (34)

Ap = 4465270 A, = 4.39678 (35)
by = 0.53.0 - by = 0.9675 (36)
Cy =794 Cg = 2260 ' 37
Cq=06904 Ciy=00 (38)

B, = 642317  f, = 2.81505 (39)
Roy = 5.76899 Ry = 8.73010 (40)

These potential curves are shown in Figure 1 (drawn to
scale). The interaction configuration coupling strength T",
is taken to have a constant value: '

T, = 1.056 x 1078 4D

This assumntion of constant coupling strength may be
somewhat unrealistic as T, is usually t.ken® to have an

" exponential dependence on R. It is adopted here to render

the model as simple as possible, in-particular, as the va-
lidity of localization does not depend on the nature of T,
Computations are made for do'®/de (reroth partial wave)
for a range of values of ¢ between 0.155 and 0.19 au ac-
cording to eq 21 and 27. For a particular value of ¢, the
classical trajectory is obtained by propagation on the po-
tential curve W, + ¢, using Hamilton's equations of motion.
The choice of the potential surface follows as a conse-

quence of eq 10. The initial kinetic energy E, for the

trajectory corresponding to a given e is then given by
‘E{"EX*‘E{)‘Q (42)

where E, is the actual initial kinetic energy with respect
to the potential curve W,(R). For the present computa-
tions this is chosen to be

E, = 0.061 (43)

The reduced mass of the He-Ar system used here is given
by

u = 8631.406 (44)
Propagation is initiated at the internuclear distance R =

20.0 in the approeching phase and carried out until R ~
20.0 in the separating phase. Results are obtained for (i)

o -
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Figure 2. W,, and W,, as functions of time for total initial kinetic
energy £. = 0 .yl and ¢ = 0.19. AN quantities ars in atomic units.
Results are obtaine ./ progagating Hamiton's equations with a time
step size At = 10 »-..

i L “ A
3 7

the direct numerical trapezoidal quadrature of eq 27, in
which case the time step size for the propagation is de-
creased untii the integrated values become convergent, and
(ii) the stationary-phase case using e¢q 28, in which case
the time step size is taken to be 10 au. (The totai time
required for the above-specified tra)'ectow is ~1.3 x 10%)
Figure 2 shows the resulits for W,, and W), as a function
of time for ¢ = 0.19 au and propagation stepwise At = 10
au.
In Figure 3, the results are presented for do'®/de (¢ =
0.155 to 0.19 au) using the two methods of
computetion—direct numerical quadrature and station-
ary-phase approzimation. These results demonstrate
clearly the discrepancy between the two methods, indi-
cating the failure of the stationary-phase approximation,
and consequently invalidating the picture of localized in-
teractions. [t is, however, interesting to note the quali-
tative resemblance between the two sets of resulta.

1V. Discussion

The main conclusion to be drawn from this work is that
the Franck—Condon approximation (in the sense stated in
the introduction) cannot Le applied indiscriminately to
bound-continuum problems, such as Penning lonization.
This implies that the convenient picture of localized
transitions in configuration space does not necessarily hold
in molecular collisicns involving a centinuum of energy
eigenstates. We should note, however, that, even though
strict localization (at a discrete configuration) has heen
invalidated “rough” localization may still hold because of
the factor (e ~ W, - iT",)"! occurring in the integrand of
eq 27. But then the degree of localization is much harder
to specify than in the stationary-phase case. The strongest
statemert one can make is that. since e - W, - I, =0

Lam and George
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Figure 3. L = 0 partial wave differential ionization cross section
da'?/de as a function of ¢. The dashed curve is the stationary-phase
result, obtained by using eq 25; the soild curve gives the exact resuit,
obtained by numerical quadraturs of the integral in eq 24.

roughly corresponds to the Franck—Condon condition eq
1, the ionizing transition rate peaks at the Franck—Condon
points. The extent of the actual “spread” of the transition
region remains quite indefinite. Hence, the Franck-Con-
don approximation, though still useful as a crude estimate
of the general vicinity of the transition region, cannot be
used as a basic premise justifying strict localization in
collision theory. Moreover, in cases where the station-
ary-phase approximation does apply, strict localization
obtains, and, as shown in section II, the Franck-Condon
approximation will predict erroneous localization points,

Our model for the theory has been chosen to illustrate,
under the most simplifying assumptions possible, the in-
adequacy of the Frapck-Condon approximation. As a
consequence, some compromise to reality has been made.
One such is the assumption of the constancy of I", with
respect to R. Since the validity (or lack of it) of the
Franck—Condon approximation should not depend on the
detailed nature of T,, this assumption has been made in
the interest of arriving at the relatively simple form for
the differential-integral equation of motion (eq 24) and
the subsequent result eq 27. These would require modi-
fication if the time (or spatial) variation of ', becomes
important. Hence, further work including this effeci
should prove worthwhile in order to bring the model closer
to reality, although the msjor conclusion is not expected
to be changed.

Another worthwhile direction of further investigations
would be the nonperturbative treatment of eq 24 via the
solution of an integral equation (as mentioned in section
I1), or the carrying out of the perturbative solution to
higher orders. It must be pointed out that we have not
attempted here to delineate rignrously the general criteria
of validity for the perturbative treatment used. This
problem would also appear to warrant further work.

With regard to the physical characteristics of the
problem, a natural extension is to include the spin and
propagation direction of the emitted electrons as observ-
ables. This would entail enlargement of the continuum
hasis set to include these degrees of freedom, and also some




detailed studies of the spin- and direction-dependent
configuration-interaction coupling strengths. Finally, it
is interesting to point out that, when these extra degrees
of freedom are included, the problem becomes formally
identical with that of molecular fluorescence in a collision
context,' in which the photon frequency w, wave vector
direction k, and polarization direction & correspond to ¢,
k (electronic momentum unit vector), and S (electronic

(13) K.-3. Lam and T. F. George, J. Chem. Phys., 78, 3396 (1882).
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spin unit vector) in the probleva of collisional ionization.
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