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ABSTRACT

In a previous paper, Jewell and Sundt shoved how to approximate the
distribution of total losses from a large, fixed, heterogeneous port-
folio, using a recursive algorithm developed by Panjer for the dis-
tribution of a random sum of random variables (a single casualty
contract). This paper extends the approximation procedure to large,
dynamic heterogeneous portfolios, in order to model either a portfolio
of correlated casualty contracts, or a future portfolio, whose composi-
tion is not known with certainty.
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APPROXIMATING THE DISTRIBUTION OF A DYNAMIC RISK PORTFOLIO

by

William S. Jewell

0. INTRODUCTION

The problem of finding the distribution of 1 X + x2 + "'" +

where the (i1 ) are a fixed and large set of independent, nonidentically

distributed, integer-valued random variables was considered in Jewell and

Sundt (1981) (hereinafter referred to as JS). Although, in theory, the

, discrete density of j is just the N-fold convolution of the individual

densities, this computation is very time-consuming, and various forms

of approximation must be used; moreover, in many risk applications, the

use of a normal approximation gives very bad results, even for large N ,

because of the skewness and long tails of the density. However, if the

probability pi W Pr {i = 0) is significant for most i - 1,2, ..., N

• - it turns out that a very good approximation can be obtained using newly-

developed procedures for the related problem of calculating the distribu-

tion of the sum of a random ancber of independent and identically dis-

tributed random variables.

In many risk applications, especially in insurance and investment

management, there are an ever-changing number of risks of different types,

and it is of interest to predict the distribution 'of a portfolio whose

future composition is not known with certainty. This paper develops a

general model for this situation, and shows how the approximation proce-

dure described in JS can be extended.

4.
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1. THE DYNAMIC PORTFOLIO MODEL

Let i - 1,2, ..., N index a number of different risk classes

(insurance policies or types of investment) in a given portfolio, and let

C [0,1, ... ] be the random number of independent risks of type i

giving a grand total number of risks in the portfolio

N(1.1) IT
i-l

Risks of type i are 8imilar, in the sense that, if xtj is the
*1j

random monetary gamble from the j th risk of type i , then its discrete

density, f0(x) , is the same for all j , i.e.:

Ni

a,a

;' (i - 1,2, .. ,N)
(1.2) Pr {xlJ "x} "f ()( "12 .. w

(xij) as [0,1,2, ..., R] . As mentioned above, we assume for the moment

that the (xjj) are statistically independent of each other and the n ,

but we do not assume that the are independent. (But see Appendix A.)

The total monetary gamble for all risks of type i is then the sum of

a random number of random variables:

0 (i = 0)
(1.3) i'i =  - (i - 1,2, ... , N)

I i + X12 + ... + xii (ni > O)

and the grand total monetary risk is then the fixed-term random sum:

(1.4) Y l +  2 + "' + 'N

,- .'.* -* :.. - , **. . * . - - -,.-,. -.- . -;., ,- = .- -.- . ,. -. ... - . ..
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Note that the (xi) are now dependent random variables, if the

are.

If g(y) and w(nl,n 2, ..., nN) are the discrete densities of

the total risk sum and the number of risks of each type, respectively,

we have then the discrete density of y as:

Pr { - yl - g(y) - .. w (n ,n2, ... , )+ f(y) l

n I n 2  nN

(1.5) fn * . [(y)]nN*

(y 0,1,2, ... )

which, of course, is a lengthy and laborious computation. (In JS, the

special case of (nI) deterministic was considered.)ii

5

'
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2. INTERPRETATIONS

Before describing a method of approximating (1.5), we give someI! possible practical interpretations of the model.

In insurance applications, the simplest interpretation is that i

refers to different, distinguishable typea of insurance policies in a

given portfolio, for instance, similar policies in personal lines of

insurance could refer to ordinary life insurance policies with the

same face values issued to persons of the same age. For the current

year, we know exactly the number of policies of type i and hence,

following JS, can find an approximation to the current g(y) . How-

ever, an approximation to (1.5) would be necessary to predict total

portfolio risk for next year, after some policies are withdrawn,

some policies have paid out benefits, or new policies have been added,

and still others have shifted type. By specifying the stochastic law

governing this "drop-add" mechanism, we can get ir(nl,n 2, ..., n N )

for next year. Possible reasons for leaving correlation between the

(f) are that we may have a precise idea of how new sales are dis-

tributed among the different types of policies, but may be uncertain

about the total new business; or, the new business total may be

accurately estimated but the distribution may be uncertain; or,

there may be an uncertain number of policies which are shifting type

(as in aging of life insurance insured); etc.

A second insurance interpretation is the so-called casualty claim

model, in which multiple claims may occur on a policy during a given

exposure year. Here i indexes each of a fixed number of policies,

f0(x) is the individual claim ("severity") density, i is the random

iP-i
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number of claims ("frequency"), and x is now the total monetary claim

on the single policy i . Of course, if the (ai ) were independent,

then this application could be handled by making I (n ) + (y)] n i

the basic density used in the procedure described in JS; but this would

require prior calculation of this compound law (see also Section 8

and 9, below). Moreover, external factors, such as weather and economics,

often affect the number of claims of all types of contracts in a given

portfolio in the same way, thus introducing correlation and the need

for a more general model.

In most insurance portfolios, a great deal of effort is used to

assure that the (i ) are statistically independent of each other.

However, there remains always the possibility that risks of the same

type i are influenced by the same exogenous factors. In Appendix A,

we consider the case when risks of the same type are exchangeabZe random

variabZes, which leads to a weak form of dependence on the ) .

In investment portfolios, it is unusual to have independent risks

of the same type, i.e., requiring the same investment level, and having

4 the same outcome distribution; instead, we usually have a different

amount of money invested in different risks. If we let ii be the level

of investment in type i and i the net return from this investment,

then (1.3) holds only if the are perfectly correlated, or what

is the same, if (1.3) is replaced by xi W nix "ii Another limitation

on investment modelling is that it is usually possible to have negative net

returns, which is discussed in Section 10. It should be remembered also

that our approximation is usually successful only if the problem is modelled

so that the probability of zero net return is substantial; i.e., all "sure

thing" return has been eliminated.

- . . - . . . . . . . . - - ... . . . . . . . . . . . . . . . . . . . . . .



Technological risk applications are based upon the compound law

interpretation; for instance, in reliability engineering, ii may refer

to the random number of mechanical, electrical, or thermal shocks of

type i which affect a given piece of equipment; in fire damage analysis,

ii is the random number of fires of a given type (size, type of dwelling

or land classification) which occur; and so forth. In technology appli-

cations, the primary modelling challenge is to express damage in appropri-

ate, additive units for situations where there is no accepted monetary

surrogate for the risk.
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3. NOTATION AND MOMENTS

The success of the approximation procedure to be described depends

- upon the assumption that most of the total risks, (xi) , have a high

probability of being zero; this can occur either because f0(O) is large,* i

or because fi is often zero. We now change to a traditional notation

(see JS) which emphasizes the distribution of risk when it is positive.

Let

(3.1) Pr{i 0} - f (0) - Pi W 1 - q, (i = 1,2, ... , N)
ij

(j = 1 . 2 , . . i

(3.2)- o0- (x fi1,2, .. R)
(3.2) fi(x) = Pr {iij x I j o - f(x)/q , ., R)

and define the first two moments of non-zero risk as:

(3.3) mi - E{i1j I J > 0} -E{ij}/q,

(3.4) v U iJ I -iJ 
>  01 [V{ ij}/ql - 2* vi VijI=>0 Vi~/~ Pi (mi)

From the joint counting density, we get the marginal densities:

.,n r -i (i 1,2,..., N)..,(3.5) 1i(n) -Pr {hi n) nj ,2

. and the first two moments:
-

(3.6) X- M E{Gi}

(i ,k = 1,2, ... , N)

(3.7) -ik m C{fi ;flkl

The approximation itself is based upon moment-matching with the

first two moments of the exact density (1.5), which we now find in a

%%
_.4

* C
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straightforward manner. First, from (1.3) and the assumptions:

E{i i n I = niE{k ij

C~ii ik nnk Mn V{ui ij (i k)

so that, unconditioning, we have:

(3.8) E{i I - E i }E{:i I

. (E{iIV{ij } + VG1i[E{i i 12 (1 - k)

0 (o + C{iii;ik)E{ijE{ } . (i 0 k)

Then, using (1.4) and notation defined above, we find the first two

moments of total portfolio risk as:

N
(3.10) E{Y} I A liqim ,

i-l

and

N N~i+ i2 N
(3.11) V(y} - I A iq1 (vi + +m) + q q k .i-I i-i k-i

The (q ) , ( i , and (vi) are presumed known from past portfolio

statistics on each type i , and the (Xi) and (yik) are gotten

from modelling assumptions regarding the future composition of the

portfolio; so, we shall assume that these moments are given parneter,.

Of course, if the (i) are statistically independent, the last term

become Y 1iqJi2 2 . In the static portfolio model in JS, the composition

was fixed, with all ii a 1 ; an equivalent, but slightly generalized

model can be gotten from the above, with i ni M , and all Yik - 0

iA

................... .. . . . .. . . . .... . . ... 4- % % - -. . . .
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4. THE APPROXIMATING RISK COLLECTIVE MODEL

In the approximation, we replace the original portfolio by a

'. homogeneous "risk collective," that is, we assume that y is approxi-

mately:

0-(a e = 0)

(4.1)

e ' 2 e

where ie is the random number of equivalent positive claims (i)

assumed to be independent of each other and n and identically

distributed, according to prototypical counting and individual risk

densities:

(4.2) r(n) - Pr {ne = n} (n = 0,1,2, ... ) ; f(u' = Pr {w = w} (w = 1,2, ... )

leading to the usual compound law of risk theory for the densxty of j

(4.3) g(y) = I Tr (n)[f(y)]n .

n-0

As mentioned earlier, the rationale behind this approximation is that,

in many applications, the (x1) are zero with high probability; the

(w1) then represent just the positive (x) (See also JS and Gerber

(1979).)

If the prototypical moments are:

(4.4) = E{n e } ; y I E{ e )

(4.5) m- E{ ) ; v - V{i})

. . .\' ~
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then the moments of the random sum in the approximating model will be:

(4.6) E{y} - Xm

-~ 2
(4.7) V{) - Xv + ym

For a good approximation, the moments (4.6), (4.7) must be matched as

closely as possible with the true values (3.10), (3.11). In addition,

the forms of the w(n) and f(w) chosen may also be varied.

-.

'.

,

.. 5

.
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5. THE ADELSON-PANJER RECURSIVE ALGORITHMS

At this point, we should stop and consider whether the computa-

tion of the compound law (4.3) can be p'fected in any efficient manner;

otherwise, it is not much improvement over (1.5). A traditional approxi-

mation (for the static portfolio problem) used in actuarial circles was

to make n(n) a Poisson law; this was because (further) approximations

to the compound law had been developed in the early risk theory litera-

ture (see, e.g., Gerber (1979)).

However, the recent extension by Panjer (1981) of a recursive scheme

of Adelson (1966) now provides an efficient and direct way to compute

(4.3). Essentially, if f(w) is discrete over [1,2, ...] and the

counting distribution is chosen from a certain (ab)-fwnily for which:

(5.1) w(n) - (a +bk)Tr(n-l) , (n - 1,2, ... )

I then g(y) can be calculated recursively via:

g(O) - W(O) - (1 - a)((a+b)/a)

(5.2)min y,R)
. g(y) -a + b f(x)g(y -x) . (y =1,2 . ..

This is clearly an efficient computational procedure, provided the

(a,b)-family is a useful one. As elaborated upon in Sundt and Jewell

(1981), the only members of this family, apart from the degenerate

density, are:

n -X

(5.3a) (Poisson) 7r(n) - (a 0 b X) (9(0) e- b

a(

,'-.S ,, '' . > ..; . ' ': ? - - .? -'-'."- .2.?.. - - - - . i - . . - ,.. . -- '
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IM\ nl p)-n

(5.3b) (Binomial) ir(n) jn(lp -) (a - -p/(l-p) ; b - (-a)(M+l);

(5.3c) (Negative Binomial) 7r(n) a+n -ln (1 - p )o (a-p ;b -p(.-1))

(Of course, the familiar Geometric density is obtained with a - 1 in

(5.3c).) These counting distributions are useful, since they are often

used in modelling compound risk laws. Furthermore, since:

(5.4) Ei 1 a + b Y=Vii a + b
el 1- a e (1) 2

we get:

(5.5) a = 1 - . ; b = X + 1) 1
Y Y

and:

(5.6) e = 1

The importance of the ratio (5.6) in modelling empirical counting processes

is well known. From (5.3), we see that this family covers a wide range

of such ratios, with the Binomial giving (y/X) < I and the Negative

Binomial (Pascal) giving (y/X) > 1 ; the Poisson (y - X) distribution

is the dividing line.

Therefore, for computational simplicity, we propose to use the (a,b)-
family to model the counting distribution w(n) and the recursive proce-

dure (5.2) to compute the approximate density (4.3). Note that, if

a < 0 in (5.5), we are not completely free in our choice of b , since

M must be an integer in the Binomial law (5.3b); however, this is not

usually a serious limitation (see JS).

-
Z

•
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6. THE FINAL APPROXIMATION

Having selected w(n) on the basis of computational convenience,

we must now choose the prototypical density, f(w) . The form which

will give the best approximation in all cases is not known. However,

the most natural way, consistent with the interpretation given in

Section 4.,-is to weight the individual densities (3.2) with their

average chance of being selected and giving a positive xii , i.e.,

to fix:

'X q q f (w) X xf (w)
(6.1) f(w) (w) (w1,2, R)

This choice is consistent with JS for the static risk portfolio model,

and also provides the greatest simplification to the formulae below.

Using (3.3), (3.4) in (6.1), we find first m and v in (4.5), then

substitute into (4.6), (4.7) to find the first two moments of the approxi-

mating model; these moments are then equated with the exact results (3.10),

(3.11), obtaining finally the first two moments of the prototypical count-

ing density in terms of the original parameters:

N
(6.2) = E{i} A iqi

N Nli2 Nmm.\
(6 .3 ) y V ( n )  - I A 

q q k - 2

i-li 1  m i-l k-l kq[ -qm 2 ) +I Im-i

where the mean prototypical severity is:

(6.4) m = { =

q
' .j

a.'.. """% ." ' " ' .I , """""" *" " " "" °
' " """" g

° """ """ -" """""" "" " ~ """" '" """ " "" "-
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and the severity variance is:

(. x " iqi(vi + m2i) 2
(.5)_ v - -m

To summarize: In the final approximation, we would first calculate

the f i(x) and the moments of Section 3 using the data, then compute

f(w) from (6.1) and use it in the approximating model (4.3), together

with one of the w(n) of Section 5, with (a,b) selected using (5.5);

the approximate density is computed recursively via (5.2).

In the static portfolio case considered in JS, all y are iden-

tically zero, so that y < A , and a Binomial counting law results.

This raises the integrality problem for M previously mentioned, and

means that the resulting values of (a,b) do not exactly match V{5y

in the original and approximating models; however, the resulting error

is not serious in the example analyzed in that paper.

In contrast, the dynamic portfolio model of this study can give

y/I > 1 , and hence Negative Binomial w (n) , if the (yiA) are large

enough. To see this, consider the case of independent, but still random,

(6.3) then becomes:

(6 6 N N2
Y 

-I(6.6) 7-Vf e }  m )iq (y+ d-

Thus, we see that, if a sufficient number of (marginal) counting densi-

* ties (3.5) have yi/i i , then also y/X > 1 , a most reasonable

result.

a -. --- -. . a -. o . . . . .. • -. .. . . . . . . .
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7. THE COMPOUND MULTINOMIAL COUNTING DISTRIBUTION

One natural way in which the number of risks in the different classes,

- (n1,n2, ... , i) , might be generated in a predictive, dynamic model

is from a Multinomial law, with given total number of risks, nT , and

a set of seZection probabilities, w - (7i1,w2, ..., I V viz:

(7.1) Pr { ni nT;(n} - ) 1 W

With fixed nT and w , there are already correlations between the

counts in different classes, as:

(7.2) E(ii.i nT:wl = nT; (i-1,2 ..., N)

'"(7.3) -6 i "k I nT --" W= n - 2n i k

S{ N ik nT (i - k)

However, to give more modelling flexibility, we now permit both nT  and w

to be a random scalar and random vector, respectively, but require that

they be independent of each other, for simplicity. This "collective"

model dependency gives a more complex covariance structure.

Define:

N N N

(7.4) EGi-1 AT ill- V{n 1YTil Yik;

then, unconditioning (7.2), (7.3), we obtain the moments for use in (6.2),

(6.3):

(7.5) E{ii = A1 OR ATE{wr i

.... . . . . . .* .*..* J* *-. *.-...*-. . . . . . .

.-;'<. . : -. .: ............................. ............ .. ..... ...-
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X TE{;i} + (T-T+xv;p+(YT-)T)E2{;, }  (i-k)

(7.6) C{ ; k}  
T 

T T

X(Y-A+2C;i; + (YT- XT)E{;ilE{ij (1 (ik)

It is easy to show that these satisfy (7.4), by using

It seems to the author that practical modelling variations might fall

into one of two extremes: either (1) the (wi) might be known rather

precisely, and forecasting uncertainty might be associated with the total

number of risks or, (2) there would be a relatively stable number of risks,

but prediction uncertainty would remain about their distribution over the

different risk classification types. (For the casualty claim model, only

the first variation would probably be relevant.)

An interesting special case of the compound Multinomial occurs when

the (w are fixed, and YT - AT " It then follows from (7.5), (7.6)

that Ai - 1 (i - 1,2, ..., N) , and (fiil9iik;i , k) are uncorrelated.

V' This then simplifies (6.2), (6.3), (6.6) to X y , that is, a - 0 , b X A ,

and a Poisson counting distribution would be used in the approximation

of Section 5! One obvious way in which this could happen is if nT were

Poisson with parameter, say v ; it is then well known that the (i i)

must be statistically mutually independent, with marginal densities that

are Poisson with parameters (w i.)

4

4 - o% -44 .• ' . .. . ° . . " . - .- . ". . •.•. .. • _ ,.. .,. -•. .- . .
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8. AN EXACT RESULT

There is one case in which the proposed procedure gives an exact

result. Consider a risk portfolio of fixed size N , with each contract

i 1,2, ..., N having an individual claim density f (x) , with parameters

q,' mi , vi , and an independent claim number density that is Poisson,

V with parameter V " This is the basic model used in casualty insurance.

Following the procedure in Sections 5 and 6, we get the same special

results described in the previous section, namely, yI = W ' Yik = 0 (i k)

and A - y - I uiq, . In other words, once f(w) is determined from (6.1),

the recursive algorithm (5.2) is used with the Poisson density (5.3a) to

find the approximate g(y)

However, it is easy to show, using generating functions, that the exact

form (1.5) reduces to a compound Poisson law with parameter A~ , and a

severity density f(w) . Thus, the dynamic portfolio approximation is, in

fact, exact for independent Poisson claims. This is true even if pt M 0

for all i It

Unfortunately, the same line of proof shows all that independent

Binomial or Negative Binomial claim densities (with different parameters

for each i) can only lead to an approximation of the true g(y) . However,

it follows from Section 6 that the approximating law for e would be
BNis

• - .,Binomial or Negative Binomial, respectively.

..

,

a. . '. * . ... S I

* - - - - - - - -.- - -
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k.E:-. 9. MDELLING WITH FIXED AND RANDOM NUMBER OF COUNTS

To highlight the differences between the model and procedure of this

paper and the static portfolio model in JS, it is instructive to re-

examine how the independent Poisson casualty claim model of Section 8

would be handled according to the JS procedure. We use primes to

designate the equivalent parameters of this paper, in terms of the given

model parameters 1i q ' mi , vi .

First of all, since all i - 1 in the JS model, we would have to

estimate or calculate separately the N individual total severity den-

sities for each contract risk, xi :

CO (Iii) ne-11i

(9.1) f '(xW = gj(x) 1 0 nI 1 rfx
*. n-0

(This could be done by N applications of the Adelson algorithm, or

might be approximated from real total severity data.)

Then, in terms of the parameters of this paper, we would get:

i = 1 q "1 e ; i  q, .i i

(9.2)

vi  Uivi - pi(mi) 2

Thus, the static portfolio approach of JS would use the Panjer recursive

algorithm with:

(9.3) f'(w) 0, (w))/(dl nt) , (w - 1,2,moens

and a Binomial counting density with moments:
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"4 -' = < q ) < ;

(9.4)

The resulting g(y) would then only approximate the true density, which

could be obtained exactly in this case. Thus, one might be tempted to

dismiss the JS procedure in compound claims applications. However, we can

Imagine situations in practice where the actuary has used empirical data to

estimate the densities, gi(x) and (ni) Then the question of the best

- . approximation procedure is still open.

We remind the reader that, if the (ni ) are, in fact, deterministic,

then the procedures of the two papers are equivalent; conversely, if the

are correlated, only the procedure described here applies.

44
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10. OTHER VARIATIONS

In JS, an improved approximation for the example considered was

obtained by modifying the w(O) of the Binomial (5.3b) to enable an

exact match of V{j) , together with an integral value of M . This

modification could be used with the model of this paper whenever

(y/A) < 1 , and requires only a trivial change in the recursive algorithm.

But this refinement is not necessary in the other cases, as V{9} is

matched exactly. Of course, one might try matching other moments or

values of the exact distribution by modifying the initial values of the

prototypical counting density (see the discussion in JS).

It would also be desirable, particularly in investment applications,

to extend the range of permitted (ia) to negative values. The diffi-

culty then is that the relationship (5.2) is no longer recursive, and

must be solved by other means, such as iterative methods. This point

is discussed in Sundt and Jewell (1981), where possible procedures for

"the Binomial and Poisson cases are suggested; exact recursion with negative

values in the Negative Binomial case (y/X) > 1 does not seem to be possible.

.,!
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4,

11. COMPUTATIONAL CONCLUSIONS AND ACKNOWLEDGEMENT

The limited computations carried out thus far indicate that the same

general kinds of approximation error result as in JS; in other words, the.'

underlying severity density should not be too "lumpy" if there are only

a few risk types. Errors also seem higher in strongly correlated cases,

as expected. A future paper will explore computational results in more

detail.

The author would like to thank the referee who found several errors

in the original formulae.

._',
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APPENDIX A

DEPENDENT RISKS

In Section 1, it was assumed that the individual risk severities (xij)

were statistically independent of each other and of the counts (ni) . In

this appendix, we consider the modifications necessary if the risks are

exchangeable random variables within each type i , but still independent

* of the counts. As is well known, this weak dependency is equivalent to

assuming that, for each type i - 1,2, ..., N , there exists a random

parameter, such that the individual risks are independent if ,=

is known, and depend in the same way upon i . Thus, the basic density

(1.1) is replaced by:

(i =1,2, N)
(A.1) Pr = x ei }  fi(xI e

i~ (Q 1,2, n. ni)

giving a joint density within type i , given n- M ni similar risks, of:

n ni n,

(A.2) Pr n X nij= E H f )(x.' [~l i j  xij i ni nf~ij

and a comon marginal density for any risk of type i

(A.3) Pr {xi- x1 Ef0 (x f()

(Expectations in the above are over the random values of ei. Exchangeable

random variables thus have the property that they have the same marginal

density (and self moments), their arguments may be permuted in any fashion

in their joint density (A.2), and they have common cross moments.

.J

o ° "4. - , . ," -.,"
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In addition to the dependency between different types introduced

by the correlation between different counts, we will also permit the

different parameters in 0 = (e ... 1 )  to be statistically
1' 2 ' N

dependent, with arbitrary joint d.f. U(e) In short, our new model

substitutes for (1.5) the general form:

i1 g(y) .. . dU (8) Tr [ . (n) 0(y [ 1 )]f f... fdU n6 n n Irf)f
'a81 e 2 N  n n 2  L

(A.4)

* 0 (yl 82 * I ON)

Intuitively, we can think of as representing exogenous factors,

such as the economy, weather, political factors, etc. that influence the

random outcome of all risks of type i jointly. This type of "collective

behaviour" model is often used in casualty insurance, where it is recog-

nized that all risk classification schemes are imperfect, and that

residual correlations still exists among risks of a given type due to

the unexplained inhomogeneity still present within the class i . Further,

there might be common factors between the different classes, which would

account for the dependency between i and 0k (i 0 k)

Proceeding in a manner similar to Section 3, we define the positive

risk densities fi(x I e) , the probabilities pi(6 and qi(e

and the first two moments, mi(1) and vi(OI) , all dependent upon the

risk parameter. (3.8), (3.9) still have the same form, except that they

express only the conditional mean total risk, E{i I %l , and conditional

covariance of total risks between different classes, C{i;k I Oi;O k} in

terms of the conditional moments of individual risk, and the (non-8-

dependent) moments (3.6), (3.7) of the counts.

......,.,, ..., . , . ... ; . ,,- . J.. .., . . . .. . . ., . .. . . .: . .
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Now all that remains is to uncondition these moments, using the

relationships:

* N
(A.5) E{f} = EE{ 1 I il

i-l

N N
(A.6) V{j) = - EC{ii;i. I 'i;ekl + C{E{ii I i} ; E{ Ik

i-l k=l

(Innermost operators are over the total risks ; outermost operators

are over the risk parameters (e).)

iiWe define the unconditional versions of q(), mi(O) , vi(O) as:

(A.7) q= E{qi(0)1 ; = Emi(Oi)l; i E{vi(e )1

By the theorem of conditional expectation, qi Pr xij > 0} is the same

as in (3.1). However, as the referee reminds us, ii and v are not

the same as mi and vi in (3.3), (3.4) unless the variation due to

vanishes; hence, the different notation. In fact, in the current notation,

we see that:

q

" (A.8) m, M E~i ij I xij > 01 - m, + Clq,(0i ) ; mi(01 i)}/q i •

*In addition to correlations, we shall also need higher-order cross-

moments, so we define:

(A.9) Qi(0i) - qi( i) - qi ; Mi(ei) - mi(ei) -ii ; v(l) - vi(%i) - 7i

and use notation like:

! A ,". '-."''.;*'''-.... .;. ." . ,'.',,.. .,," " .'/ 'i.."," " '..,.-. - -'-',..." "" , , ,..'- .- '"X " ;''.-""" ,: -."
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Qi~k -E{Q 1(6i)Qk(O k Q 1 Cq(0 1);q k(0 k)}

(A.10) Qi M, = E{Q 1(6 i(e k)l

QiMIXE{Qi(i)Mi(i)H.k(ek))

-. and so forth.

In place of (3.10), we have:

*(A.11) E10} L X q iM: +~ Xi(QiTi)}

and, in place of (3.11), we obtain:

x .j1(-j + ()2)+

VU} 1V + 2rvP - q~)qM +(- 2

M 2rQi 2j)M~

(A12 +q -- (i

i k

+ Y ik + x i xk )[qiqkF~ik + Mi ik+ 2qii Q~H.

+ 2qQ0M + 2miQIQk.k

+ Q ±QkMA]

1 1]
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,',' The term in braces in (A.11) gives a correction term to the calculation

of X in (6.2) (with, of course, mi and vi replaced by mi and vi);

similarly, the terms in braces in (A.11) and (A.12) give two correction

terms to the calculation of y in (6.3).

In many applications, these corrections simplify because either the

probability of a claim or the moments are independent of e For instance,

in life insurance, mi = mi and vi M vi are the moments of the face value

of policies of type i , which do not usually change with exogenous condi-

tions, while the expiration probability, qi(O) , would probably vary with

external effects; this would eliminate aZZ terms in (A.ll), (A.12) with

Mi, Mk , or VI I Conversely, in casualty insurance, the probability of

a claim, q, 9 might be relatively fixed several years in a row, but the

severity moments, mt(0t) and vi(Oi) , might be relatively uncertain in

view of inflation, etc.; in this case,all terms in (A.11), (A.12) involv-

ing Qi and Qk can be eliminated!

A more complex model can also be developed by permitting the (n i)

to depend upon B ; details are left to the reader.
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(4.4) y = v e }

nk  n i
in (7.1) fi should be i.
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p. 9, line -5 and -6 (Ri) should be (Rij)

p. 9, eq. (4.4) y = V{h e )

p. 11, eq. (5.2) g(O) = n(O) (I - a)(a+b)/a (a 0)

= e-b (a O)

p. 11, eq. (5.3a) delete: (g(O) e-b)

p. 12, eq. (5.3b) b = -a (M + 1)

p. 12, first paragraph delete: (Of course, the familiar ... (5.3c).)

p. 13, first paragraph However, a natural way, consistent with the inter-
pretation given in Section 4, is to weight the
individual densities (3.2) with weights proportional
to the expected number of risks with positive outcome
in the corresponding class, i.e., to fix:

nk ni
p. 15, in (7.1) i should be i
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