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ABSTRACT
3 In a previous paper, Jewell and Sundt showed how to approximate the
. distribution of total losses from a large, fixed, heterogeneous port-

folio, using a recursive algorithm developed by Panjer for the dis-
tribution of a random sum of random variables (a single casualty
contract). This paper extends the approximation procedure to large,
dynamic heterogeneous portfolios, in order to model either a portfolio
of correlated casualty contracts, or a future portfolio, whose composi-
N tion 1is not known with certainty.
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ig APPROXIMATING THE DISTRIBUTION OF A DYNAMIC RISK PORTFOLIO

;” by

William S. Jewell

- 0. INTRODUCTION

:g The problem of finding the distribution of y = il + iz + ... + iN ,
5§ where the (ii) are a fired and large set of independent, nonidentically
‘; distributed, integer-valued random variables was considered in Jewell and
Qj Sundt (1981) (hereinafter referred to as JS). Although, in theory, the
iz; discrete density of y is just the N-fold convolution of the individual
‘%; densities, this computation is very time-consuming, and various forms

ff} of approximation must be used; moreover, in many risk applications, the
"

:; use of a normal approximation gives very bad results, even for large N ,
: because of the skewness and long tails of the density. However, if the

f ?- probability p, = Pr {X, = 0} 1is significant for most 1 = 1,2, ..., N,
:§ it turns out that a very good approximation can be obtained using newly-

3 developed procedures for the related problem of calculating the distribu-~

3, tion of the sum of a random number of independent and identically dis-

;; tributed random variables.

4 In many risk applications, especially in insurance and investment

‘if management, there are an ever-changing number of risks of different types,
$5 and it is of interest to predict the distribution of a portfolio whose

future composition is not known with certainty. This paper develops a

general model for this situation, and shows how the approximation proce-

dure described in JS can be extended.
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l. THE DYNAMIC PORTFOLIO MODEL

Let 1i=1,2, ..., N index a number of different risk classes
(insurance policies or types of investment) in a given portfolio, and let
Bi ¢ [0,1, ...] be the random number of independent risks of type 1 ,

giving a grand total number of risks in the portfolio

N
a.1) ap= 1 @ .
i=1

Risks of type i are similar, in the sense that, if ;ij is the

random monetary gamble from the jth risk of type 1 , then its discrete

density, fg(x) , 18 the same for all j , i.e.:

- (1 =12, ..., N)
(1.2) Pr {xi = x} = f:(x) .

3 (= 1,2, «v, 0

We shall only consider discrete gambles, with the common range of the

(x,,) as [0,1,2, ..., R] . As mentioned above, we assume for the moment

1)

that the (x,,) are statistically independent of each other and the (Bi) .

13

but we do not assume that the (ﬁi) are independent. (But see Appendix A.)

The total monetary gamble for all risks of type i 1is then the sum of

a random number of random variables:

0 (ai = 0)
(1.3) x, =4 . . . (1=1,2, ..., N)
X, + X9 + ... + xiﬁi (ni >0 ,

and the grand total monetary risk is then the fixed-term random sum:

(1.4) Yy =X+ x, + .. + Xy -

-----

........
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Note that the (ii) are now dependent random variables, if the (n,)

are.

i

If g(y) and w(nl,nz, ooy nN) are the discrete densities of

the total risk sum and the number of risks of each type, respectively,

we have then the discrete density of y as:

Pri{y=yl=g(y =] J ...} n(nl,nz, cees My

b ) ™N

* [fg(y)]nZ* * ...*[f;(y)] L ,

(y = 0,1,2, ...)

(1.5)

which, of course, is a lengthy and laborious computation.

special case of (51) deterministic was considered.)

o)™

(In JS, the
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2. INTERPRETATIONS

Before describing a method of approximating (1.5), we give some
possible practical interpretations of the model.

In insurance applications, the simplest interpretation is that 1
refers to different, distinguishable types of insurance policies in a
given portfolio: for instance, similar policies in personal lines of
insurance could refer to ordinary life insurance policies with the
same face values issued to persons of the same age. For the current
year, we know exactly the number of policies of type 1 and hence,
following JS, can find an approximation to the current g(y) . How-
ever, an approximation to (1.5) would be necessary to predict total
portfolio risk for next year, after some policies are withdrawn,
gome policies have paid out benefits, or new policies have been added,
and still others have shifted type. By specifying the stochastic law
governing this "drop-add" mechanism, we can get w(nl,nz, ey nN)
for next year. Possible reasons for leaving correlation between the
(ﬁi) are that we may have a precise idea of how new sales are dis-
tributed among the different types of policies, but may be uncertain
about the total new business; or, the new business total may be
accurately estimated but the distribution may be uncertain; or,
there may be an uncertain number of policies which are shifting type
(as in aging of life insurance insured); etc.

A second insurance interpretation is the so-called casualty claim
model, in which multiple claims may occur on a policy during a given
exposure year. Here 1 indexes each of a fixed number of policies,

f:(x) is the individual claim ("severity") density, ﬁi is the random
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number of claims ("frequency"), and ii is now the total monetary claim

on the single policy 1 . Of course, if the (ﬁi) were independent,

then this application could be handled by making 2 "(“1)[%§(Yi]n1*

the basic density used in the procedure described in JS; but this would
require prior calculation of this compound law (see also Section 8

and 9, below). Moreover, external factors, such as weather and economics,
often affect the number of claims of all types of contracts in a given
portfolio in the same way, thus introducing correlation and the need

for a more general model.

In most insurance portfolios, a great deal of effort is used to
assure that the (iij) are statistically independent of each other.
However, there remains always the possibility that risks of the same
type 1 are influenced by the same exogenous factors. In Appendix A,
we consider the case when risks of the same type are exchangeable random
variables, which leads to a weak form of dependence on the (iij) .

In investment portfolios, it is unusual to have independent risks
of the same type, i.e., requiring the same investment level, and having
the same outcome distribution; instead, we usually have a different
amount of money invested in different risks. If we let n, be the level

i

of investment in type i and x, the net return from this investment,

i
then (1.3) holds only if the (iij) are perfectly correlated, or what

is the same, if (1.3) is replaced by ii = ﬁiiil . Another limitation

on investment modelling is that it is usually possible to have negative net
returns, which is discussed in Section 10. It should be remembered also
that our approximation is usually successful only if the problem is modelled

so that the probability of zero net return is substantial; i.e., all "sure

thing" return has been eliminated.
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Technological risk applications are based upon the compound law

interpretation; for instance, in reliability engineering, n, may refer

i
to the random number of mechanical, electrical, or thermal shocks of

type 1 which affect a given piece of equipment; in fire damage analysis,
ﬁi is the random number of fires of a given type (size, type of dwelling
or land classification) which occur; and so forth. In technology appli-
cations, the primary modelling challenge is to express damage in appropri-

ate, additive units for situations where there is no accepted monetary

surrogate for the risk.
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3. NOTATION AND MOMENTS

The success of the approximation procedure to be described depends
upon the assumption that most of the total risks, (ii) , have a high
probability of being zero; this can occur either because f:(O) is large,
or because ﬁi is often zero. We now change to a traditional notation
(see JS) which emphasizes the distribution of risk when it is positive.

Let
~ o
(3.1) Pr {xij = 0} = fi(O) =p = 1 - q 1d=1,2, ..., N)
(3= 1,2, ooy A))
(3.2) £,(x) = Pr {iij = x | iij > 0} = f‘;(x)/qi , x=1,2, ..., R)

and define the first two moments of non-zero risk as:

(3.3) m, = E{x > 0} = E{iij}/q1 s

13 | %14

(3.4) vy = VR | &gy > 0) = VG /e,] - py@)?

15 ' *13

From the joint counting density, we get the marginal densities:

(1 =1,2, ..., N)
(3.5) wi(n) = Pr {ii1 = n}
G3=12, ..., ﬁi)

and the first two moments:

(3.6) Ay = E{ﬁi} ,

(i1,k=1,2, ..., N)

(3.7) Yik ™ C{ni;nk} .
The approximation itself is based upon moment-matching with the

first two moments of the exact density (1.5), which we now find in a

...........
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Pd straightforward manner. First, from (1.3) and the assumptions:

E(x, | n) = nElk ),

i3

n V{x } (i = k)

N - 13
§., C{x xk I n ;nk} { (1 * k)

S; so that, unconditioning, we have:

(3.8) E{ii} = E{ﬁi}E{iij} ,

E(R, W%} + ViR MEGR N? (=K

iy

2

e'

‘ «

% 3.9 Clx;sx) = { oA
g 0 + C{ni;nk}E{xij}E{xkz} . 1% k)

s

t.

\3 Then, using (1.4) and notation defined above, we find the first two
]
L
A

moments of total portfolio risk as:

) N

k5 (3.10) EGG) = ) Aagm,

3: i-l

) and

\'

3 ) o)+ 1 ]

(3.11) Viy} = A,q (v + p,m ) + Y.9,9, M .

« o MV TP )T L ekt
o

The (qi) ’ (‘i) , and (vi) are presumed known from past portfolio

'

? statistics on each type 1 , and the (Ai) and (yik) are gotten

Ef from modelling assumptions regarding the future composition of the

... portfolio; so, we shall assume that these moments are given parameters.

ii Of course, if the (61) are statistically independent, the last term
Ef become 2 Yiiqi i . In the static portfolio model in JS, the composition

 £5 was fixed, with all 51 = 1 ; an equivalent, but slightly generalized

:g model can be gotten from the above, with ﬁi =n; =), and all vy, =0.
e

-

L 3%
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4. THE APPROXIMATING RISK COLLECTIVE MODEL

In the aspproximation, we replace the original portfolio by a
homogeneous "risk collective," that is, we assume that y 1is approxi-

mately:

.1) y =

where ﬁe is the random number of equivalent positive claims (Gi) ’
assumed to be independent of each other and ﬁe , and identically
distributed, according to prototypical counting and individual risk

densities:
(4.2) 7(n) = Pr {ﬁe =n} (n=0,1,2, ...) ; f(«* =Pr {w=w} (w=1,2,
leading to the usual compound law of risk theory for the density of y :

*
(4.3) gy) = I tIEeN” .

n=0
As mentioned earlier, the rationale behind this approximation is that,
in many applications, the (ii) are zero with higih probability; the

(w,) then represent just the positive (ii) . (See also JS and Gerber

1
(1979).)

If the prototypical moments are:

(4.4) A=En} ;v =En)},

(4.5) m=&E{w} ; v=Vw},

R N T - R
BUNT TN N T T s et e

eed)

*




then the moments of the random sum in the approximating model will be:

(4.6) E{y} = im ,

(4.7) Viy} = av + sz

For a good approximation, the moments (4.6), (4.7) must be matched as

closely as possible with the true values (3.10), (3.11).

\‘r\‘.-jr' 1‘::‘;

In addition,
the forms of the w(n) and f(w) chosen may also be varied.

e
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5. THE ADELSON-PANJER RECURSIVE_ ALGORITHMS

At this point, we should stop and consider whether the computa-
tion of the compound law (4.3) can be e7"fected in any efficient manner;
otherwise, it is not much improvement over (1.5). A traditional approxi-~
mation (for the static portfolio problem) used in actuarial circles was
to make w(n) a Poisson law; this was because (further) approximations
to the compound law had been developed in the early risk theory litera-
ture (see, e.g., Gerber (1979)).

However, the recent extension by Panjer (1981) of a recursive scheme
of Adelson (1966) now provides an efficient and direct way to compute
(4.3). Essentially, if £f(w) 1is discrete over [1,2, ...] and the

counting distribution is chosen from a certain (a,b)-family for which:
(5.1) m(a) = (a +2r@-1, @=1,2, .20

then g(y) can be calculated recursively via:

g(0) = w(0) = (1 - a)((3+b)/a)

(5.2) m:lngy,R)

X
g(y) = (a +b ;)f(x)g(y—x) .y =1,2, ...)

x=1
This is clearly an efficient computational procedure, provided the
(a,b)-family is a useful one. As elaborated upon in Sundt and Jewell
(1981), the only members of this family, apart from the degenerate

density, are:
n =\
e

— (@=0;b=21); (g0) = e ;

(5.3a) (Poisson) m(n) = A

L T e e . . PR . - R e . T T
. R R R P N O I T T o S P DA U PR




(5.3b) (Binomial)  m(n) = (:)p“(l-p)“‘“ (@ =-p/(L=p) ; b= (-a)M+1)) ;

(5.3c) (Negative Binomial) m(n) = (a-+2-1)pn(l _p)a (a=p;b=p(a-1))

(0f course, the familiar Geometric density is obtained with a = 1 in
(5.3c).) These counting distributions are useful, since they are often

used in modelling compound risk laws. Furthermore, since:

(5.4) A= E@) =2ED gy - 22D,
(1-a)
we get:
(5.5) a=1l- A ;s b= A+ 1) 1
Y Y

and:

Via }
(5.6) bl R

E{a} -a

The importance of the ratio (5.6) in modelling empirical counting processes
is well known. From (5.3), we see that this family covers a wide range

of such ratios, with the Binomial giving (Yy/A) < 1 and the Negative
Binomial (Pascal) giving (y/A) > 1 ; the Poisson (y = A) distribution

is the dividing line.

Therefore, for computational simplicity, we propose to use the (a,b)-
family to model the counting distribution w(n) and the recursive proce-
dure (5.2) to compute the approximate density (4.3). Note that, if
a <0 in (5.5), we are not completely free in our choice of b , since

M must be an integer in the Binomial law (5.3b); however, this is not

usually a serious limitation (see JS).

AR I 4 B - RS Pae NN M) S
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6. THE FINAL APPROXIMATION

Having selected w(n) on the basis of computational convenience,
we must now choose the prototypical density, f(w) . The form which
will give the best approximation in all cases is not known. However,
the most natural way, consistent with the interpretation given in

Section 4, -is to weight the individual densities (3.2) with their

average chance of being selected and giving a positive iij , 1.e.,
to fix:

z A.q.f, (w) z A fo(w)
(6.1) fu) = —> 22~ 2 11 7 (w=1,2, ..., R)

L Ayq L Ayq

This choice is consistent with JS for the static risk portfolio model,

and also provides the greatest simplification to the formulae below.

Using k3.3), (3.4) in (6.1), we find first m and v in (4.5), then
substitute into (4.6), (4.7) to find the first two moments of the approxi-
mating model; these moments are then equated with the exact results (3.10),
(3.11), obtaining finally the first two moments of the prototypical count-

ing density in terms of the original parameters:

N
6.2) A=E{n}= ) Argq, ;
e 1=1 171

. N (mi)Z N N (mimk)Z
(6.3) v =Via,} = 121 Muyll-a\g) |t 121 kzl YikU %\ "w / ¢

A

RIS

ﬂtff

where the mean prototypical severity is:

& L

: 1X,qm
o (6.4) m = E{w} = —L1 1
4 L Ayq

-
.
.
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and the severity variance is:

T ‘ _'-',_';‘

. 2

4 Z A.q (v + m )

& (6.5) v = 14\ 4 1 -m2 .
e A

i RSP

9

To summarize: In the final approximation, we would first calculate
! the fi(x) and the moments of Section 3 using the data, then compute
f(w) from (6.1) and use it in the approximating model (4.3), together

with one of the w(n) of Section 5, with (a,b) selected using (5.5);

the approximate density is computed recursively via (5.2).

A
ég In the static portfolio case considered in JS, all Yik are iden-
3 tically zero, so that y < A , and a Binomial counting law results.

2 This raises the integrality problem for M previously mentioned, and

.3 means that the resulting values of (a,b) do not exactly match V{y}

2; in the original and approximating models; however, the resulting error

'Q is not serious in the example analyzed in that paper.

3 In contrast, the dynamic portfolio model of this study can give

5 vy/X > 1 , and hence Negative Binomial = (n) , if the (Yik) are large
~§ enough. To see this, consider the case of independent, but still random,
g (ﬁi) . (6.3) then becomes:

K0 . N N /q.,m,\2

~ (6.6) y = Via } = 121 Aaq + 121 (—1“%) (vgy = A

.

= Thus, we see that, if a sufficient number of (marginal) counting densi-

; ties (3.5) have Yiilki > 1, then also Y/ > 1 , a most reasonable

_E result.

S
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7. THE COMPOUND MULTINOMIAL COUNTING DISTRIBUTION

One natural way in which the number of risks in the different classes,
i,- (ﬁl,ﬁz, ey ﬁN) , might be generated in a predictive, dynamic model
is from a Multinomial law, with given total number of risks, n. o, and

a set of selection probabilities, m = ("1’“2’ cees nN) , viz:

n N n, = n
(7.1) Pr{n=n | n,;r} = T n w:k . (2 1 T)
nl,nz, sees Dy {=]1 (Z “i = l)

With fixed n,. and 7w , there are already correlations between the

counts in different classes, as:

(7.2) E(a, | np:a} = ann g (4 =1,2, ..., N)

2 ,
T, - 1 =k)
(7.3) cla;n, | npinl = £ T
1 -Tm,7 . (1 4 k)
1"k"T
However, to give more modelling flexibility, we now permit both n. and 7
to be a random scalar and random vector, respectively, but require that

they be independent of each other, for simplicity. This "collective"

model dependency gives a more complex covariance structure.

Define:
? g g
(7.4) E(Rgl = Ap = I A 5 Vi) = vy = Yy b
Brt T AT L M TR T T Ll ik

then, unconditioning (7.2), (7.3), we obtain the moments for use in (6.2),

(6.3):

(7.5) E{ﬂi} - )\, = ATE{ﬂi} ;

i
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ATE{%i} + (Y'r -\ +A,§)V{1‘ri} +(vq -;\T)Ez{%i} (i =k)
(7.6) C{ni;nk} =Y - A ) )
(YT—AT+AT)C{1ri;Trj} + g APEGIEG) - (@A

It is easy to show that these satisfy (7.4), by using z ii =1,

It seems to the author that practical modelling variations might fall
into one of two extremes: either (1) the (ni) might be known rather
precisely, and forecasting uncertainty might be associated with the total
number of risks or, (2) there would be a relatively stable number of risks,
but prediction uncertainty would remain about their distribution over the
different risk classification types. (For the casualty claim model, only
the first variation would probably be relevant.)

An interesting special case of the compound Multinomial occurs when
the (ni) are fixed, and Yp = AT . It then follows from (7.5), (7.6)

that A (1=1,2, ..., N) , and (ﬁj,ﬁk;i # k) are uncorrelated.

1 Yiq
This then simplifies (6.2), (6.3), (6.6) to X =y , that is, a =0 , b= 1,
and a Poisson counting distribution would be used in the approximation

of Section 5! One obvious way in which this could happen is if ﬁT were
Poisson with parameter, say u ; it is then well known that the (ﬁi)

must be statistically mutually independent, with marginal densities that

are Poisson with parameters ("1“) .
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8. AN EXACT RESULT

There is one case in which the proposed procedure gives an exact
result. Consider a risk portfolio of fixed size N , with each contract
i=1,2, ..., N having an individual claim density f:(x) , with parameters
9 > 5V, and an independent claim number density that is Poisson,
with parameter My - This is the basic model used in casualty insurance.

Following the procedure in Sections 5 and 6, we get the same special
A

results described in the previous section, namely, =0 (i#Kk)

Y31 % 4 0 Yix

and A =y =) p In other words, once f(w) 1is determined from (6.1),

19 -
the recursive algorithm (5.2) is used with the Poisson density (5.3a) to
find the approximate g(y) .

However, it is easy to show, using generating functions, that the exact
form (1.5) reduces to a compound Poisson law with parameter ) , and a
severity density f(w) . Thus, the dynamic portfolio approximation is, in
fact, exact for independent Poisson claims. This 1s true even if P, - 0
for all 1 !!

Unfortunately, the same line of proof shows all that independent
Binomial or Negative Binomial claim densities (with different parameters
for each 1) can only lead to an approximation of the true g(y) . However,

it follows from Section 6 that the approximating law for ﬁe would be

Binomial or Negative Binomial, respectively.
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9. MODELLING WITH FIXED AND RANDOM NUMBER OF COUNTS

To highlight the differences between the model and procedure of this
paper and the static portfolio model in JS, it is instructive to re-
examine how the independent Poisson casualty claim model of Section 8
would be handled according to the JS procedure. We use primes to

designate the equivalent parameters of this paper, in terms of the given

N

N
311 model parameters My s G > My 5 Vg oo

= First of all, since all ﬁi £ 1 in the JS model, we would have to
33 estimate or calculate separately the N individual total severity den-
Hg sities for each contract risk, ii :
:\é

v: —M

! n i
™ @ (p,) e

. o, - - i o n*

N (9.1) 1 =gy = ] A [e]™ .

- n=0

(This could be done by N applications of the Adelson algorithm, or

f; might be approximated from real total severity data.)
Ly Then, in terms of the parameters of this paper, we would get:
"l
) -u,q q
14l 1°1 i

3 Al =1;q!l=1-e s m! ={=)um
i 1 Yy Py (qi)ui 1
b (9.2)
Al q

. | - _l - ! ' 2

- Vi (qi) Hgvy - PymDT .
K;i Thus, the static portfolio approach of JS would use the Panjer recursive

algorithm with:

o
s

o o

) (9.3) £'(w) = (2 fi'm)/(z qj) » (w=1,2, ...)

and a Binomial counting density with moments:
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The resulting g(y) would then only approximate the true density, which

. kA
A WL U |

“.8

aale

g‘ could be obtained exactly in this case. Thus, one might be tempted to

;* dismiss the JS procedure in compound claims applications. However, we can
Tl

§ imagine situations in practice where the actuary has used empirical data to
~ estimate the densities, gi(x) and w(ni) . Then the question of the best
‘3 approximation procedure is still open.

bt

o We remind the reader that, if the (ni) are, in fact, deterministic,
& then the procedures of the two papers are equivalent; conversely, if the

gq (ﬁi) are correlated, only the procedure described here applies.
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10. OTHER VARIATIONS

In JS, an improved approximation for the example considered was
obtained by modifying the = (0) of the Binomial (5.3b) to enable an
?: exact match of V{y} , together with an integral value of M . This

modification could be used with the model of this paper whenever

5
3 (y/2) <1 , and requires only a trivial change in the recursive algorithm.
.

3 But this refinement is not necessary in the other cases, as V{y} is
U

matched exactly. Of course, one might try matching other moments or

?2 values of the exact distribution by hodifying the initial values of the

o,
fg prototypical counting density (see the discussion in JS).

04

It would also be desirable, particularly in investment applications,

i to extend the range of permitted (iij) to negative values. The diffi-
??: culty then is that the relationship (5.2) is no longer recursive, and

: must be solved by other means, such as iterative methods. This point

?5 is discussed in Sundt and Jewell (1981), where possible procedures for

Ll

XY the Binomial and Poisson cases are suggested; exact recursion with negative
oot

values in the Negative Binomial case (y/A) > 1 does not seem to be possible.
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11. COMPUTATIONAL CONCLUSIONS AND ACKNOWLEDGEMENT

The limited computations carried out thus far indicate that the same
general kinds of approximation error result as in JS; in other words, the
underlying severity density should not be too "lumpy" if there are only
a few risk types. Errors also seem higher in strongly correlated cases,
as expected. A future paper will explore computational results in more
detail.

The author would like to thank the referee who found several errors

in the original formulae.
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APPENDIX A
DEPENDENT RISKS
In Section 1, it was assumed that the individual risk severities (iij)
were statistically independent of each other and of the counts (n,) . In

i

this appendix, we consider the modifications necessary if the risks are
exchangeable random variables within each type 1 , but still independent
of the counts. As is well known, this weak dependency is equivalent to
assuming that, for each type i =1,2, ..., N, there exists a random

parameter, ©, , such that the individual risks are independent if B, = 6

i

is known, and depend in the same way upon 6 Thus, the basic density

i .
(1.1) is replaced by:
(1 =1,2, ..., N)

(A.1) Pri{x,, =x]6}=£&«]s),
1] 1 1 i (j =1,2, ..., ni)

giving a joint density within type i , given Bi =n, similar risks, of:

Py ny
(A.2) pr{n x, =x, |n¢=E 1 £2(,, |8,
o1 1T N Pt R B

and a common marginal density for any risk of type 1 :

o
L

e

(A.3) Pr{k,, = x} = E£](x | 8,) = £7(x) .

3

»
.

(Expectations in the above are over the random values of 8 ) Exchangeable

i.
random variables thus have the property that they have the same marginal
density (and self moments), their arguments may be permuted in any fashion

in their joint density (A.2), and they have common cross moments.




_'r_‘r_.n

A

In addition to the dependency between different types introduced
by the correlation between different counts, we will also permit the
different parameters in 6§ = (91,92, ooy ON) to be statistically

dependent, with arbitrary joint d.f. U(8) . In short, our new model

substitutes for (1.5) the general form:

n *
g(y) = ff daue) § I e 1 ﬂ(_rl)[f:(y | 61)] 1
n

Intuitively, we can think of ei as representing exogenous factors,
such as the economy, weather, political factors, etc. that influence the
random outcome of all risks of type i jointly. This type of "collective
behaviour" model is often used in casualty insurance, where it is recog-‘
nized that all risk classification schemes are imperfect, and that
residual correlations still exists among risks of a given type due to
the unexplained inhomogeneity still present within the class i . Further,
there might be common factors between the different classes, which would
account for the dependency between 51 and ék (1+Kk).

Proceeding in a manner similar to Section 3, we define the positive
risk densities fi(x | ei) , the probabilities pi(ei) and qi(ei) ,
and the first two moments, mi(ei) and vi(ei) , all dependent upon the
risk parameter. (3.8), (3.9) still have the same form, except that they
express only the conditional mean total risk, E{ii | 61} , and conditional
covariance of total risks between different classes, C{ii;ik | ei;ek} in

terms of the conditional moments of individual risk, and the (non-§-

dependent) moments (3.6), (3.7) of the counts.
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Now all that remains is to uncondition these moments, using the

relationships:
~ N -~ ~
(A.5) E{y} = EE{x, | 8,1 »
i=1

N N
(a.6) Viy} = ] ] EC{x;;x | 6,38} + C{E{x, | 8,1 5 Elx, | 6,1} .
i=1 k=1
(Innermost operators are over the total risks (ii) ; outermost operators
are over the risk parameters (51).)

We define the unconditional versions of qi(e) . mi(e) . vi(e) as:
(A.7) q = E{q (8)} ; @, = Elm (6,0} ¥, = Elv, (8} .

By the theorem of conditional expectation, q = Pr{iij > 0} 1is the same

as in (3.1). However, as the referee reminds us, ﬁi and 51 are not

the same as m, and vy in (3.3), (3.4) unless the variation due to 51
vanishes; hence, the different notation. In fact, in the current notation,

we see that:

(A.8) m =Ex, | x, >0} =@ +Clq®) 5 m6)}aq .

i} ij

In addition to correlations, we shall also need higher—order cross-

moments, so we define:
(A.9) Qi(ei) = qi(ei) -q 3 "1(91) = “1(91) - ii : vi(el) - vi(ei) - 61 3

and use notation like:




Q,Q, = E{Q, (8,00, (8,)} = Clq, (8,)5q, (8,)) ;

(A.10) QM = E{Q (B M, (B} ;
QMM = E{qQ (6,)M, (6,0M (8,)} ;

and so forth.

In place of (3.10), we have:
S Ty .= —
(A.11) E{y} i A qm, +{§ ;\i(qiui)} ,
and, in place of (3.11), we obtain:

Viy} = E A:1‘11(‘-’1 +p, @) 2) + z E Yikqiqkaiak

( 2 =272
g A1(“:{"1“i - (my) Qi)

- S 7
+ g A1["1"1 + 2 (py ~ q)QM; + (py - )My

- 2.2
- 2m,QM, - QiMi]

(A.12) + J_,_

et~

E 243953 QM

+

Ll e |

E Oryge + 242 [qiquiM'k +ommQQ + 29,m QM

* 29, QMM + 2m,0Q,QM

+ QiQkMiH'k]

e N e .
________ DT T TR L A RS
P L I T P T T P P . Y . T Vi

|




P~ T bitre o odubedienl 1'*'"1

-,l
.. '.

27

] l"
4 P

The term in braces in (A.1ll) gives a correction term to the calculation

of A 1in (6.2) (with, of course, m, and vy replaced by Ei

similarly, the terms in braces in (A.11l) and (A.12) give two correction

and ;i);

terms to the calculation of vy 1in (6.3).
In many applicatiouns, these corrections simplify because either the

probability of a claim or the moments are independent of 8 For instance,

4 -
in 1life insurance, m, = ;1 and v, = ;1 are the moments of the face value
of policies of type 1 , which do not usually change with exogenous condi-
tions, while the expiration probability, qi(e) , would probably vary with
external effects; this would eliminate all terms in (A.11), (A.12) with

Mi » Hk s OT Vi ! Conversely, in casualty insurance, the probability of

a claim, 9 » might be relatively fixed several years in a row, but the
severity moments, mi(ei) and vi(ei) , might be relatively uncertain in
view of inflation, etc.; in this case,all terms in (A.11l), (A.12) involv-

ing Qi and Qk can be eliminated!

A more complex model can also be developed by permitting the (ﬁi)

to depend upon 6 ; details are left to the reader.
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