
7AD-A136 037 RESEARCH IN PROGRAMMING LANGUAGES AND SOFTWARE

ICOM PU TER SC IE NCE V R BHA S F E AL 07 MAR 83
UNCAS E SR-TR-83 150D4962HCDO2 H

INEEEEEEEEEL84

1111 '11 "2 25

IIIJIL25

MICRCOPY RI SOLUJIION I ESI CHAR I
NA. ~, Al - NA

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered),

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
• BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFOSR-TR- 8 3 - 1_1 5 0
4. TITLE (ud Subtitle) S. TYPE OF REPORT & PERIOD COVERED

RESEARCH IN PROGRAMMING LANGUAGES AND FINAL , 1 JAN 82-31 DEC 82
SOFTWARE ENGINEERING 6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) B. CONTRACT OR GRANT NUMBER(s)

V.R. Basili, J.D. Gannon, R.G. Hamlet,
N. Roussopoulos, M.D. Weiser, R.T. Yeh and F49620-80-C-0001
M.V. Zelkowitz

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science AREA 8 WORK UNIT NUMBERS

University of Maryland PE61102F; 2304/A2
College Park MD 20742

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Mathematical & Information Sciences Directorate
Air Force Office of Scientific Research/N/ 13. NUMBER OF PAGES

Boiling AFB DC 20332 0__
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
ISa. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) I~ I
Approved for public release; distribution unlimited. ELECTE

DEC 2 0 1983

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fromReot
.lB.

IS. SUPPLEMENTARY NOTES

II

19. KEY WORDS (Continue on reverse side If necessary and identify by block number)

20. ABSTRACT (Contnue n reverse aide If necessary and Identify by block number)Pr g a7This paper describes work in progress in the following topics: (/
Metrics; (1) Program Testing - Experimental Investigations, Step-wise Testing,
Testing of Concurrent Specifications, and Testing-theory Critique; (6) Theoreti-
cal Issues in Software Engineering; ($) Debugging with Slices; 4) PLACES;
W Programming Environments; (. Concurrent, Distributed Systems; and

LA) Graphical Design and Documentation. The paper also lists other papers and
m- articles arising from this research effort.

DD , FORM 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

AFOSR-TR. 8 3.11 5 0

FINAL SCIENTIFIC REPORT

RESEARCH IN PROGRAMMING LANGUAGES
AND SOFTWARE ENGINEERING

AFOSR F49620-80-C-0001

V.R. Basili, J.D. Gannon, R.G. Hamlet, N. Roussopoulos,
M.D. Weiser, R.T. Yeh, and M.V. Zelkowitz

Department of Computer Science
University of Maryland

College Park, Maryland 20742

1. Program Metrics

Building on the work described in [Basili and Reiter 81]
which was awarded the IEEE Transactions on Software Engineering
Best Paper Award, we developed a family of structural complexity
metrics which considered such factors as size, nesting level, and
type of control structure. The number of program changes made
during development were counted on a per segment (procedure or
function) basis. The relationships between program changes and
some members of the structural complexity family were investi-
gated. The investigation provides further evidence that a dis-
ciplined team approach aids program development [Basili and
Hutchens 1983).

We have also used multiple regression analysis to determine
if other types of metrics could be used in conjunction with the
syntactic metrics to achieve a better model. The data metrics
considered included average live variables per statement, number
of input/output parameters, number of data bindings, and number
of unique operands. We found that the addition of data metrics
made minimal improvements in the statistical model. The syntac-
tic metric is the single most important factor, followed by
several of the team category variables.

We have investigated the use of cluster analysis in conjunc-
tion with data metrics as a means of determining the modulariza-
tion of systems with respect to data hiding. The small size of
the projects studied makes analysis of modularization difficult

Approved for public release;
: I I"distributionunlimited.

Final Scientific Report March 7, 1983

to interpret, but we noticed some interesting phenomena. In par-
ticular, programs which use data hiding techniques have a clus-
tering which is clearly different from those that do not.

We have also used this technique on production software.
Preliminary results of this study were reported at a workshop on
Software Performance Evaluation [Basili and Hutchens 1982].
These studies show that the clustering for at least one type of
production software gives a reasonable modularization of the sys-
tem. The modularization is similar to the functional modulariza-
tion used by the developers and described in the system documen-
tation.

An algorithm for decomposing programs into their prime sub-
components and a method for using this decomposition as the basis
of a program metric is described in [Gannon et al. 83). A tool
implementing the algorithm was developed and used to analyze a
set of commercial FORTRAN programs. The data collected suggested
that programs in an older version of the software contain more
complex subcomponents than those in the newer version.

2. Program Testin&

2.1. Experimental Investigations

A controlled experiment was performed to compare the tech-
niques of functional testing, structural testing, and
code/reading inspection. Thirty subjects, from the upper level
"Software Design and Development" course at the University of
Maryland, applied each of the three different methods to three
different programs with "seeded" errors (in a Latin Square exper-
imental design). The results are being used to contrast the
methodologies with regard to mean number of errors found, cost-
effectiveness (in terms of number of errors found per unit of
effort), classes of errors characteristicly uncovered and errors
that were observable but not reported. The examination extends
previous work [Myers 78, Hwang 81) by incorporating different
testing techniques and a greater number of programs, while adding
statistical significance to the conclusions.

Two of the above testing strategies are integrated in the
"Clean-Room" software development approach [Dyer 82), and a
second investigation was executed to analyze and evaluate this
methodology. Motivated by the desire to produce more reliable
software, the approach completely separates the development pro-
cess from the testing process. The developers apply the tech-
niques of code/reading inspections and structured walk-throughs
to source code before submitting it for on-line testing. An
independent group then functionally tests the delivery from a
statistically selected set of test data. This iterative develop-
ment process was utilized in ten three-person team projects. The
operational failures of the projecs are being analyzed with
respect to severity level, productk e&I IE nJ T /RH (A'S

... ,,,,N.. , "1 ' L '0O T
?Lf:t
,' '

" .. . ' '" r' "'.- n

[it . A'l ,t i, . ..: Lit [,..

VATTHEL J. C..
j Chiet. Technical Information Division

Final Scientific Report March 7, 1983

increment for use in Mean-Time-Between-Failure and other relia-
bility models.

A case study [McMullin and Gannon 83] was performed in which
we specified, implemented, and validated a record-oriented text
editor similar to one discussed in [Kernighan and Plauger 81]
using the DAISTS system. Algebraic axioms served as the specifi-
cation notation; and the implementation was tested with a
compiler-based system that uses the axioms to test implementa-
tions with a finite collection of test cases. Formal specifica-
tions were sometimes difficult to produce, but helped reveal
errors during unit testing. Thorough exercising of the implemen-
tations by the specifications resulted in only two errors per-
sisting until integration.

We have begun distributing DAISTS; the system is installed
on the University of Illinois and Melbourne VAX systems, and has
been provided to the Universities of Iowa and Sydney. It was
used in courses at Melbourne as the basis for some student pro-
jects. A description of the implementation appeared in [McMullin
et al. 822.

2.2. Step-wise Testin&

The problem of testing software that is divided into
modules, particularly when these components are intended to be
processed concurrently, is a difficult and important one. There
are two difficulties: the complete execution patterns are so
complex that the test results cannot be understood (particularly
in the early, buggy stages); it would be advantageous to test
partially completed software. A process of iterated, incremental
testing is suggested to handle both difficulties [Hamlet 82/16).

2. . Testing of Concurrent Specifications

The difficulty of testing concurrent software lies in con-
trolling the nondeterminism of the possible interleaving of
parallel execution histories. A simple finite-state model is
useful in describing the difficulties encountered. Two specifi-
cation languages now under development (PAISLey, Bell Labora-
tories; Gist, USC/ISI) are "executable," but do not pay much
attention to the question of multiple sequencing possibilities.
These languages are described from the testing viewpoint, and a
critique presented of the software development methodology based
on each. Although not intended to specify concurrent programs,
the PROLOG language has some unusual and revealing test proper-
ties, which illuminate problems in the more practical languages E]
[Hamlet 82/13].

2.4. Testing-theory Critique

A paper summarizes and evaluates the three themes in testing des

theory today, which arise from logic (proving-based theory),
r

DTIC
2

.N P. 711

Final Scientific Report March 7, 1983

practice (tool-based theory), and probability (random testing
theory) [Hamlet 82/15].

3. Theoretical Issues in Software Engineering

As a part of a conference in Brisbane, Queensland, Dr. Ham-
let was invited to prepare a series of lectures on current
software-engineering work of interest to theoreticians. The pri-
mary topics are the formalization of specifications, and the
foundations of testing theory [Hamlet 82/8].

4I. Debugging with Slices

When debugging, it is common for a programmer to know that
the value of some variable at a given line is wrong. The portion
of a program containing only and all information relevant to a
variable's value at a given line is called a slice. Informally,
a slice may be defined for a statement n and a set of variables
V, to be those statements relevant to the computation of V just
before the execution of statement n.

We have developed an interactive tool on the VAX 11/780 that
computes slices of programs. Our tool runs on a modified version
of the csh called wsh (window shell).

The window shell is a modified version of the Berkeley Unix
csh that allows a user to create multiple virtual terminals on
his terminal screen. Each virtual terminal appears as a bordered
window that can be used to invoke programs within the window.
The user can create new windows, connect the keyboard to any win-
dow, destroy windows, move a window to a new location, hide (make
invisible), unhide and uncover a window. A window may cover
(partially or completely) another overlapping window on the
screen. A program running in a window may also create windows
and do any window function the user could do.

We have developed an interactive debugging tool based on
slicing and data flow information. The user is presented with a
menu of operations to select from. He may elect to display the
program and highlight lines where a given variable is assigned,
referenced or appears; slice on a variable at some statement and
highlight the slice; or create a file containing just the state-
ments of a slice. He may also see a summary of data flow infor-
mation about the program or invoke other programs to run in a
window. The tool is friendly to the user and can explain any of
its functions.

5. PLACES

Research on the design and evaluation of data abstraction
features continued with the evaluation of those features in the
PL/I system - PLACES, previously developed under this grant. An
evaluation of abstract data types was performed by two

Final Scientific Report March 7, 1983

programming classes at the University of Maryland -one using the
features and the other using standard PL/I. The results of' this
study were previously reported to AFOSR [Zelkowitz 82b] and are
summarized here:

(1) The cost or' implementing abstract data types within a
language that includes structures or records and pointer
variables (e.g., PL/I) is relatively low and cost ef'fective.

(2) There was some run-time overhead in using abstractions. Pro-
grammers, using good design techniques developed more
modules than in the standard PL/I group. However, many of'
the modules were of a trivial (e.g., one line of' code) type,
and inline expansion of these procedures eliminated most of
the increased overhead.

(3) Programmers seemed to have little trouble adapting to the
data abstraction discipline. Using two measures of' program
complexity - length and cyclomatic complexity - programs
using abstractions were less comoplex.

In summary, abstract data types seem ef'fective in practice,
and if taught correctly, should be effective in producing good
programs in a language like Ada.

6. Programming Environments

With the advent of' the megabyte workstation with multimega-
byte disk f'or a relatively low cost of' $10,000 to $20,000, the
means zo develop programs will change in the future. Powerful
single-user workstations can be used to build and develop pro-
grams. An initial design of' an integrated environment was started
during this year [Zelkowitz 82a].

The basic idea is to use a structured editor that knows the
details of' the individual language. Such an editor, BABLE, is now
being designed. Some of' the important issues that are being con-
sidered are:

(1) The editor will work with an externally defined grammar.
Thus several source languages can be processed. Currently
Pascal is the target language, but PL/I and Ada are planned
later.

(2) A major issue is the management of' the user's view into the
program. Typically a user has from 24 to 60 lines of screen
in which to manage many thousands of source lines. Effective
man/machine interaction is important for increasing program-
mer productivity.

(3) The integration of all phases of the life cycle is important
for managing development. The use of a program design
language is being developed, and its integration into code

4

Final Scientific Report March 7, 1983

production is being studied.

7. Concurrent, Distributed Systems

A software specification technique suitable for concurrent,
distributed systems has been developed. The technique combines
an abstract, nonprocedural specification language with a formal
proof system for a programming language. The complete specifica-
tion of a program is a set of hierarchically structured module
specifications. Module external specifications are abstract.
Module internal specifications are debcriptions of hidden imple-
mentations, either in terms of submodules or actual code.
Defined verification procedures establish that the external
specification of a module is an accurate characterization of its
internal implementation. [Reed and Yeh 833

Several concurrent programming languages have been studied
to determine their suitability to real-time programming. It has
been determined that a completely new programming language is not
necessary to meet these requirements. We are now in the process
of selecting a subset of Ada with a few modifications borrowed
from Modula-2. This language will be incorporated into a set of
abstraction-based design and debugging tools. These tools will
primarily be concerned with the problem of meeting timing dead-
lines.

8. Graphical Design and Documentation

We have implemented an interactive system for graphical
design and documentation (Roussopoulos and Kelly]. The system is
supported by a database that has very general graphical represen-
tations of hierarchical nature and annotations for documentation
purposes. Through a friendly user interface, the user specifies
the systems requirements, he annotates them and proceeds to the
design. The design is specified and annotated through the same
interface. During these interactions with the user, a database
is constructed which contains the requirements and design specif-
ications along with their documentation.

The graphical representations and their underlying logical
constructs facilitate both the definition of the functional and
operational characteristics of the software as they are perceived
by the end user (requirement specifications) and the design pro-
perties of the software as specified by the analysts. The system
supports the logical constructions required for most structural,
control flow and data flow modeling primitives such as closed
objects of various shapes and sizes, connectors, and annotations.
Closed objects can be opened up and further specified and/or
examined at a more detailed level. The database is designed in
such a way that it can support this hierarchical decomposition
and a zoom-in/out accessing facility.

5

Final Scientific Report March 7, 1983

The system is running on a VAX 11/780 under UNIX. Interac-
tion with the system is currently available only through Tek-
tronix 4020 series terminals, but drawing functions are performed
in 4010 mode. Hard copies are generated by a Tektronix photos-
tatic device.

9. References

[Basili and Hutbhens 19821
V.R. Basili and D.H. Hutchens, Clustering as a Method of
Analyzing System Structure, 5th Minnowbrook Workshop on
Software Performance Evaluation, July 20-23, 1982.

[Basili and Hutchens 1983]
V.R. Basili and D.H. Hutchens, Analyzing a Syntactic Family
of Complexity Metrics, IEEE Transactions on Software
EnagAneerinf, (to appear).

[Basili and Reiter 1981)
V.R. Basili and R.W. Reiter, Jr. A Controlled Experiment
Quantitatively Comparing Software Development Approaches.
IEEE Transactions on Software Engineering, 7, 3, May 1981,
pp. 299-319.

(Dyer 82]
M. Dyer, "Cleanroom Software Development Method," IBM
Federal Systems Division, Bethesda, MD, presentation given
October 14, 1982.

(Gannon et al. 83]
J.D. Gannon, M.S. Hecht, and R.J. Herbold. Prime program
decomposition, 16th Hawaii International Conference on Sys-
tems Sciences, (January 1983), 25-29.

[Hamlet 82/8)
R.G. Hamlet. Theoretical issues in software engineering, TR
82/8 Department of Computer Science, University of Mel-
bourne, Parkville, 1982.

[Hamlet 82/13]
R.G. Hamlet. Testing of concurrent programs and partial
specifications, TR 82/13 Department of Computer Science,
University of Melbourne, Parkville, 1982. (Also position
paper for a panel session at Hawaii International Conference
on System Sciences, Honolulu, January, 1983.)

[Hamlet 82/15)
R.G. Hamlet. Three approaches to program testing theory, TR
82/15 Department of Computer Science, University of Mel-
bourne, Parkville, 1982.

[Hamlet 82/16]
R.G. Hamlet. Step-wise debugging, TR 82/16 Department of

6

Final Scientific Report March 7, 1983

Computer Science, University of Melbourne, Parkville, 1982.
(Also to appear in ACM SIGSOFT High-level Debugging Sympo-
sium, March, 1983.)

[Hwang 81]
S-S. V. Hwang, "An Empirical Study in Functional Testing,
Structural Testing, and Code Reading/Inspectione", Scholarly
Paper 362, Dept of Computer Science, University of Maryland,
College Park, MD 20742 (December 1981).

[Kernighan and Plauger 81)
B.W. Kernighan and P.J. Plauger. Software Tools in Pascal.
Addison-Wesley Publishing Company, Reading, MA, (1981).

[McMullin et al. 82]
P.R. McMullin, J.D. Gannon, and M.D. Weiser. Implementing a
compiler-based test tool, Software - Practice and Experience
12, (1982), 971-979.

[McMullin and Gannon 83)
P.R. McMullin and J.D. Gannon. Combining testing with for-
mal specifications: A case study, IEEE Trans. Soft. Enj.,
(to appear). (A version of this paper was presented at the
IEEE Workshop on Effectiveness of Testing and Proving
Methods, Avalon, California, May, 1982.)

(Myers 78)
G. J. Myers, "A Controlled Experiment in Program Testing and
Code Walkthroughs/Inspections," Communications of the ACM,
pp. 760-768 (September 1978).

(Roussopoulos and Kelley 83]
N. Roussopoulos and S. Kelley. A Relational Database to
Support Graphical Design and Documentation, ACM SIGMOD
Conference on Databases, San Jose, CA., (May 1983), (to
appear).

(Reed and Yeh 83]
Joylyn Reed and Raymond T. Yeh. Specification of Concurrent,
Distributed Software, Proceedings IEEE Workshop on Computer
Systems Organization, New Orleans, La., 1983, (to appear).

[Zelkowitz 82a]
M.V. Zelkowitz, et. al., An editor for rapid prototypes, ACM
SIGSOFT Second Software Engineering Symposium: Rapid Proto-
typing, Columbia MD, April, 1982.

[Zelkowitz 82a]
M.V. Zelkowitz, What has happened to data abstractions? -
experience with one implementation, Sixth International
Conference on Software Engineering (Poster Session), Tokyo
Japan, September, 1982.

7

d-

