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PREFACE

This is the third of the three volumes of Proceedings of the

1960-81 AhOSu-TT*-Stanford Conference on Complex Turbulent Flows:

Comparison of Computation and Experiment.

In this volume are included: (i) Several cross indexes of the

flows, cases, and methods used by the various Computor Groups; (ii) The

comprehensive results of the computation output and their comparison
with the experimental data; these results are presented in Plates I

through 187; (1ii) Brief comentaries by each Computor Group on methods

used and experiences gained in performing the computations. ... -.

This volume forms a set with Volumes I and II. The use of this

volume is explained in the Preface to Volume 11 and, in particular, in

the "Reader's Guide" (pp. xx, Vol. II), which suggests various parts of

the three volume that are useful for particular purposes. Reference

should be made also to the "Introduction to Summaries by Technical

Reporters" (p. 725, Vol. II).

The overall conclusions of the 1980-81 AFOSR-HTTM-Stanford Confer- - ..

ence on Complex Turbulent Flow, are presented at the end of Volume II

along with recommendations for further work and a follow-on conference

in the next few years.

The editors will welcome notification concerning any errors in this

or other volumes. Such notices can be sent to any of the editors at the

addresses listed.

S. J. Kline
B. J. Cantwell
G. M. Lilley

July 1982 ...
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GENERAL N HEMCLATURE

Sybol

Conven-
Computer tional Meaning S. I. Units

BETA 0 (dpldx) *Ir-""

DEL 8995 Boundary-layer thickness to 0.995 Us a

DILS 6 Displacement thickness - (1 - --L-)dy 1
a ee

ENTH** Energy thickness f .. (1 U dy a

8PU

0 e e U ""':

PeUe -  PU

CLTR A Clauser thickness f p dy I
0

EPSILON e Dissipation function *2 se - 3

TH1ETA 0 Moentum thickness f 8 - dy a
o Pee e

UU v Kinematic viscosity 32 sec -

10 P Density kg m- 3 "

TAU T Shear stress N 2

PHIL #L Left-hand side of momentum integral equation
balance

PHIR #R Right-hand side of momentum integral equation
balance -"-".%

CD Co  Drag coefficient

CL CL Lift coefficient -

F Cf Skin-friction coefficient 1 'iC pU -

CFE Cf Cf as reported by originator -

CYLT Cf Cf according to Ludwieg-Tillmann formula -

CPT Cf Measured using Preston tube

CP Cp Pressure coefficient

C C ,Equilibrium shape factor f Cd(y/) - V:-:

0 P1U11

Shape factor - 8/0 -.--.

us * **/e -

lKA, x (U 2 + v 2 + V2)

Tk urbulence kinetic energy (K/2)

LiM? Lref Reference length M.

I M Mach number

x

1% 1%

****~*:*. -N >.X.
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Symbol

Conven-
Computer tional Meaning 5.1. Units

]MRM Krf Reference Mach number

P p Pressure N a-2

P& Pr Prendtl =umber

PREP Pref Reference pressure Na

PIul WU Pressure-velocity covariance

QRZF qref Reference dynamic pressure N a

RE Re Reynolds number based on reference values

Re-Uref Lref
"ref

IDELS Ra* Reynolds number - U* 8*/V

ROM ~ w Density-velocity covariance

RTORTA Re Reynolds number U* 6/v

ST St Stanton number

STR Str Strouhal number

-T Temperature

-t Time

'C /21T - T
TENT t+ Thermal energy thickness Ti z-rI

X8 a Coordinate tangent to an arc a

IN n Coordinate normal to an arce

U U Mean streamwise velocity ase

V V Mean transverse velocity a sec 1

UW Mean spanvise velocity a e-

UDE? - Defect velocity - (UG U)/U* a sece

UN U Velocity external to boundary layer a sece

U1 UM Free-stream velocity a see 1

DREW Uref Reference velocity a sec'I

us U* Wall shear velocity AT a sec-1

UPLUS U+ U/Ut

U22 Renlssrs 2  ~-2
U 2 u2  Reynolds stress 2sece

V2 2 Reynolds stress I2 sec-2

W2 w Reyoldsstres 22nexi



lymbol

Cmaer tional tWauing 1.1. Units

uliReynolds shear stress a2 sec-2

VIVIi Reynolds *bear stress 32 sece

ViVIi Reynolds sheer stress 22 gec-2

tbWV& u"y Uigher-order velocity covariance

0 Freuency (also alk) seecI

I Stressavis coordinate

Y y Transverse coordinate

z a Spanwise coordinate Is

x z or a Streawise coordinate on curved surface

Y y or a Direction normal to curved surface

z a penvise coordinate

T" -. yV* .P

Sebact4,t Ow' denotes meil value.

Subscript **' denotes conditions external to bwumary layer.

(u2.) 2oo (U

I +Ud

%o o C 'v

2~
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The initial version of the pictorial and tabular pre-

sentation of all the "Flows" used in the 1981 Conference was

prepared by Professor S. Honsai. The initial version was

modified and edited for these Proceedings. All the major

features of the flows which appeared as "Specifications" for

the 1981 Conference are Included. They are given here in

the numerical order of the "Flows." Each individual chart

was also included within the relevant "Case" in Volume I and

with each Technical Reporter's Summary In Volume II.
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TAXOOKT OF mNKTODs

Level Method

1 Correlations

2 Integral Methods

3 One-Point Closures

4 Two-Point Closures

5 Large-Eddy Simulation

6 Full Simulation

1074
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TAXONOKY OF METUODS

1. CORRELATIONS

No descriptors

2. INTEGRAL METHODS

(E) Energy Integral Equation

(14L) Moment of Momentum Equation

(HN) Entrainment Correlation-Shape Factor, No Lag

(HG) Entrainment Correlation-Shape Factor, Lag

(SN) Entrainment Correlation-Shear Stress, No Lag

(SG) Entrainment Correlation-Shear Stress, Lag

1075
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3. ONE-POINT CLOSURE

TREkTI4EWT Of REYNOLDS STRESSES

Examples

(B) Roussineag (eddy viscosity)

(A) Algebraic Pecie

OL t from ODE (BOP-)
1K k equation, I prescribed
IL k equation, t from ODE (AIW-)
1W I prescribed, w equation

Two-equat ion model

KE k, e
XW k, w (AKE-)
KL k It

QE ki,

-' Differential

4E k, c, uv, uw
D 51 C, .2 .2 2 (5-

7%, k2£ u ±2 ±. J_
5Q k~, IT, u

2
, v

2
, w

2

Reynolds Stress

RS T No additional PDE
RE Additional PDE for e (RSE-)

L Additional PDE for t

SPECIAL EFFECTS

1. Treatment Near Solid Walls

X No slip-Explicit Damping
N No slip-No Explicit Damping (EOPX)
Y Law of the wall-Explicit Damping (AKEZ)
z Law of the wall-No Explicit Damping (D5EC)
C Not applicable (free shear flows) (RSEZ)
0 Other

2. Extra Rates of Strain

Curvature
.4 Lateral Divergence

Rotation
.4 Roughness ..

Blowing
Suction
Pressure Gradient 7,a3

Other

1076 ..
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4. IWO-POINT CLOSURES .. ~-

(2DI) Direct Interaction Approximation

(29D) Eddy Damped Quasi-Natural Hypothesis

44

5. LARGE-EDDY SIM4ULATION

6.~~I FULSIUATO

%



"'.4".

Energy
Integral
Equation

Momnt of
OR, Momentum ML

Equation

Momentum No Lag HN
Integral +
Equation Shape

Factor

Lag HG

Entrainment
* OK, Correlation

No Lag SN ' ': " -

Shear
Stress

Lag SG

.-. '-.,:,-.
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aASIIC&TIC OF 1K-POINr CLOSURS

Reynolds n-Equation
Method Stress Model Wall Treatment

AOPX Al~ebraic 0-Equation Eddy Viscosity No Slip Damped Eddy
*Prescribed Viscosity

AUEC -2-Equation k, e Not Applicable

AlEX No Slip Damped Eddy
Viscosity

AU!Y Law of WallV

AKEZ - No Special
>4 Treatment

AKWC Not Applicable

AIMX k, w No Slip Damped Eddy
Viscosity

SiAKWY Law of Wall

BOPX Boussineaq 0-Equation Eddy Viscosity No Slip Damped Eddy
Prescribed Viscosity

BKEC -2-Equation k, e Not Applicable

mKX No Slip Damped Eddy
Viscosity

IKE! 4 ' Law of Wall

BKEZ - 4' 4No Special

Treatment i
IWX ' 4k, w No Slip Damped Eddy

Viscosity

1KW! 4N' Lawvof Wall '

DOLK 0-Equation X from ODE No Slip

.. %S ILK I from ODE k-Equation No Slip

IX I4 Prescribed -'

RSTC Reynolds Stress No Additional PDE Not Applicable

RSTZ - Law of Wall No Special
Treatment

RSTO - 4Other

RSEC -Additional PDE for e Not Applicable

iSEN -Additional PD8 forec No Slip No Special
Treatment

D5Qz Differential Several Equations Law of Wall No Special
Treatment

1079
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CLASSI1CATIo OF Two-Fmh c.osUUS

Method
* 2DI Direct Interaction Approximation -

29D E9ddy Damped quasi-Xorual Rypothesis
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TAXONOMY OF NUMERICAL METHODS

(1) Overall Strategy

Zonal (separate methods in different regions; matched or patched) Z
Global (single method for entire flow)

Note: If xonal, it Is assumed that there is a turbulent
region and a potential flow region. Where possible a

(2) separate numerical taxonomy Is given for each region.

Parbolc (quaion sovedby arcingin streamvise direction) P
Elliptic (iterative method required) E
Hyperbolic Y
Mixed (specify) 14

(3) Type of Discretization

Finite difference-regular grid R
Finite difference-staggered grid T
Finit: volumee-regular grid V

Finite elementL
Hybrid
Other (specify) 0

(4) DIfferenciMg of Convective Term

Central C
Upwind standard U
'Upwind-skew"
RotatedA
Exkplicit artificial viscosity D
Hybrid (specify) H
Other (describe) 0

(5) Formal Order of Accuracy (convective terms)

First 1

Third 3

Fourth 4
Mixed (specify) M
Other (specify) 0

(6) Torally Conserve' Quantities 7

Mass only Q
Mess and mmntum N
Mess, momentum, and kinetic energy3
Mass, momntumn, and total energy W -

Other (specify) 0

1082
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(7) Treatment of Difficult Boundary Geometries
Aayinetric stars X
Boundary-fitted coordinates B
Coordinate transformations F
Non-applicable (simple geometry only) ,
Other (specify) 0 .:..

(8) Flow Type

Compressible C
Incompressible I

(9) Strategy

Explicit, time-like X
Explicit, not time-like E
Implicit, time-like T
Implicit, not time-like M
Semi-implicit S
Other (specify) 0

(10) Tactics

Point substitution P
Line substitution L
Direct matrix inversion D
Split (ADI-like) A

IF METHOD IS FOR COMPRESSIBLE FLOWS, SKIP TO SECTION 13.

(11) Pressure (Incompressible only)

Poisson equation Q
Artificial compressibility F
Other form of pressure correction 0

(12) Relaxation (Incompressible only)

Under-relaxation throughout U "
Over-relaxation throughout R
Variable relaxation V
Other (specify) 0

(13) General

Computer used
Approximate time per iteration per point

(14) Specifics

For each flow solved, the following information (where possible)
is given in the index below.

Flow Number of Grid points in x and y directions First
or xy or z directions y+

1083
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7"7. -3--..o

OF_ mii av GF ROUPs BY GRO U
Computor Computor Other Members
Group Group of
lNmber Coordinator Computor Group Method Cases L. 9

01 Moore, J. J.G. Moore BOPX 0141, 0142, 0143, 0512,
0612

02 Ransour, N.N. T. Morel BKEZ 0331, 0421

04 Nagamatsu, T. BOPX 0141, 0231, 0232, 0233,
0612

05 Orlandi, P. BIKX 0141, 0142, 0143, 0241,

0242, 0244, 0281, 0612

06 Pollard, A. BKEZ 0421
07 Rodi, W. I. Celik, A.0. Demuren, AKEC 0374AB, 0375AC, 0376AB

G. Scheurer, E. Shiranl AKEX 0231, 0232, 0233
N.A. Leschziner, AKEZ 0231, 0232, 0233, 0261,

A.K. Rastogi 0263, 0331
AUEZ(A) 0111, 0112, 0113(P1) '
BflX 0141, 0211, 0241, 0242

0244, 0281, 0612
BKEZ 0511

BKEZ(A) 0141, 0142, 0143, 0211,
0311, 0381, 0382, 0471,
0612

BXEZ(B) 0421
BKEZ(C) 0512
BKEZ(D) 0422(P2) .".-

BKEZ(E) 0142, 0143
RSEC 0371, 0372ABC, 0373ABCDE,

0374A3, 0375ABCDE, 0376AB

09 Tassa, Y. BOPX 8621

12 Whitfield, D. A. Jameson, W. Schmidt ZE 0141, 0612, 8621

14 Mellor, G.L. N.C. Celenligil D5QZ 0331, 0421, 0431 i-- ad

17 Launder, BI..
171 S.M. Chang, T. Ian, BKEZ(G) 0512

J.A.C. Humphrey BEZ(I) 0512
172 I. Demirdsic, BKEZ(F) 0421

A.D. Gosman, R.I. Isse BKEZ(H) 0422(P2), 0423(P3) ,'-.
173 N.A. Leschsiner, AKEC(A) 0375ABCDE, 0376AB

M. Sindir, A. Barba, AKEC(C) 0331, 0421 -.- ."
R.W. Johnson, AKEZ(B) 0142, 0143, 0231, 0232,
J.M. Maclnnes, 0233, 0311, 0381, 0382,
R.J. Mjolsness, 0612

N.G. Teku AUZ(D) 0231, 0331
AUEZ(E) 0421
BKKC(C) 0331, 0421
BKZ(B) 0142, 0143, 0211, 0231,

0232, 0233, 0311, 0382,
0612

BKEZ(D) 0331
RSEC(A) 0375ABCDE, 0376AB
RSEC(B) 0375BDE 4.

174 J.P. lonnet RSTC(A) 8501
RSTC(3) 8501 ... ..
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WIM;

____01__ - N 05!Ot m OPS IT ~UF UUU (cont.)

Computoj Computor Other Members
Group Group of
Numberl Coordinator Computor Group Method Cses

18 HanjalE, K. M. Ivanovid, AKEZ 0142, 0143 .'..-.

R. Selimovid, BKEZ 0142, 0143
N. Stogie, S. Vasoi RSEC 0371, 0373ABCDE, 0374A3, """/0375ABCDE, 0376#3AB: ! :

RSEN 0141, 0241, 0244, 0371, .. -.

0612
19 Hah, C. B. Lakehininerayan. AlEC 0331
21 Donaldson, C.duP. B. Quinn, RSLC 0371, 0373ABCDE, 0374AB,

W.S. Levellyn 0375ABCDE, 0376AB
R.D. Sullivan RSLC(A) 0376B

R.I. Sykes, A.K. Varma RSLZ 0421, 0422(P2)
RSTC 0311
RSTN 0141, 0241, 0242, 0244,

0612, 8101, 8201, 8301,
8403, 8411

22 Cousteix, J. R. Houdeville AOPX 0111, 0511, 0512
D. Arnal BKEX 0141

BKEX(A) 0141, 0211, 0231, 0232,
0233, 0612

BKEX(B) 0231, 0232, 0233
BKEX(C) 0141
BKHX(D) 0261, 0381, 0382, 0471

HI(A) 0142, 0143 .
HN(B) 0141
HN(C) 0141, 0211, 0231, 0232,

0233, 0431, 0612, 8101,
8201, 8411, 8621

RSEC 0371, 0374.B, 0375B,
0376AB

RSEC(B) 0371, 0374A3, 0375BDE,
0376A3

23123 Chow, W.L. A. Nakayama, D. Sharma AKEZ 0111
232 C.M. Rhie, D. Sharma BKZ 0441

24 Birch, S.F. BIEC 0381
BKEZ 0311

27 Moses, L.L. S.B. Thompson, J.M. Hill EE 0141, 0142, 0421, 0431,
R.R. Jones III 0441, 0612

28 Murphy, J.D. BKEX 0141, 0612
BKWX 0141, 0612
BOPX 0141, 0431, 0612
BIKX 0141, 0612 .

30 Pletcher, P.R. O.K. Kwon BOLX 0141, 0241, 0242, 0612
BOX(A) 0421
BOP) 0421
BIKX 0421, 0431
B1LX 0431

BILX(A) 0421, 0431
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4~~1 OF___ C* ( OWUU0 1s BY (Gj? mEN (cont.)

Computor Computor Other Members
Group Group of

Numbr Coordinator Computor Group Method Cases

31 Rakich, J.V. J.C. Tannehill, BOPX 8101, 8201, 8661, 8671
I.K. Tree

32 Smith, P.D. SG 0141, 0231, 0232, 0233,
0612, 8101, 8411, 8621

33 Spalding, DLB A.M. Abdelimeguid BUKY 0141, 0142, 0143, 0421,
S.Y. Goh, 3. Ilegbusi 0512, 0612

35 Vandromme, D.D. BKEX 0471
RSEC 0381, 0382

36 Viegas, J. C.C. Horstuan, BOPX(A) 8101, 8201

C. Hung BOPX(B) 8661, 8663
BKWX 0471, 8101, 8201, 8403

8601, 8611, 8631, 8632,
8641, 8651, 8663

37 Wilcox, D.C. AKWC 0372ABC, 0374AB, 0376AB
ADIX 0141, 0142, 0143, 0241,

1'0242, 0244, 0311, 0371,
0612, 8101, 8201, 8403,
8411, 8501, 8621, 8623 '

BKWY 0421

39 Melnik, R.N. SG 8621

41 McDonald, H. EKEX 8601
BIKX 0441, 0512, 8641

42 Leblleur, J.C. SG 0441, 8621, 8623, 8631
8691

43 Hung, C. BOPX 8101, 8201, 8631

44 Ha Minh, H.
441 D.D. Vandromme, BKEX 8101, 8201

R.W. MacCoruack BOPX 8612
442 P. Chassaing, BKEZ 0421

D.D. Vandroe BKEZ(A) 0421

45 Ferziger, J.H. J.G. Bardina HG 0141
A.A. Lyrio, RN 0142, 0143, 0431
R.C. Strewn SG 0612

46 Dvorak, F.A. B. Maskew ML 0441

47 Deivert, G.S. BOPX 8621, 8623

50 Bailey, H.I. BOPX 8621, 8623, 8691

52 Cambon, C. J.P. Bertoglio 2ED 0371, 0372ABC, 0373ABCDE
D. Jeandel 0374AB, O375ABCDE, 0376AB

2ED(A) 0371, 0373E, 0374AB,
0376AB

2ED(B) 0376B
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IunBy ET HKOD

Method Case Hethod Case

Integral Methods: AKWX 37 0141, 0142, 0143, 0241, 0242,
0244, 0311, 0371, 0612, 8101,

2nD 52 0371, 0372ABC, 0373ABCDE, 8201, 8403, 8411, 8501, 8621,
0374AB, 0375ABCDE, 0376AB 8623

21D 52A 0371, 03731, 0374AB, 0376AB BOLX 30 0141, 0241, 0242, 0612

21D 521 0376B sOLx 30A 0421

RE 12 0141, 0612, 8621 BOPX 01 0141, 0142, 0143, 0512, 0612

RE 27 0141, 0142, 0421, 0431, 0441, BOPX 04 0141, 0231 0232, 0233, 0612
0 6 1 2 ' " " 0 " 0

UG 45 014. BOPX 09 8621

UN 22k 0142, 0143 BOPX 28 0141, 0431, 0612

22B 0141 BOPX 30 0421
BOP 221 014180, 61,87

RN 22C 0141, 0211, 0231, 0232, 0233, BOPX 31 8101, 8201, 8661, 8671
0431, 0612, 8101, 8201, 8411, BOPX 36A 8101, 8201
8621 BOPX 36B 8661, 8663

EN 45 0142, 0143, 0431 BOPX 43 8101, 8201, 8631

ML 46 0441 BOPX 44 8612

SQ 32 0141, 0231, 0232, 0233, 0612, BP 7 82,82
8101, 8411, 8621

SQ 39 8621 BOPX 50 8621, 8623, 8691

SQ 42 0441, 8621, 8623, 8631, 8691 BILK 30 0431

SG 45 0612 BILX 30A 0421, 0431

Differential Mthods: BAKX 05 0141, 0142, 0143, 0241, 0242,DifretalMthd:0244, 0281, 0612,"'". -'

ADP% 22 0111, 0511, 0512 BlIX 28 0141, 0612

ALC 07 0374AB, 0375AC, 0376AB BlIX 30 0421, 0431

AUC 17A 0375ABCDZ, 0376AB BIlKX 41 0441, 0512, 8641.-'

17C 0331, 0421 BIEC 17C 0331, 0421

AU]IC 19 0331 BIEC 24 0381 - ",

AlIIIX 07 0231, 0232, 0233 11K 07 0141, 0211, 0241, 0242, 0244,

AIZ 07 0231, 0232, 0233, 0261, 0263, 0281, 0612
0331 BIM 22 0141

iZ 07k 0111, 0112, 0113(PI) BICEX 22A 0141, 0211, 0231, 0232, 0233, e "

AM 171 0142, 0143, 0231, 0232, 0233, 0612.-''. *%

0311, 0381 0382 0612 IKEX 22B 0231, 0232, 0233

AUZ 17D 0231, 0331 BIlK 22C 0141

171 0421 KBEX 22D 0261, 0381, 0382, 0471

AI* 18 0142, 0143 flX 28 0141, 0612

AUZ 23 0111 B X 28 041 0612 % , %
BIEX 35 0471

ASK- 37 0372ABC, 0374Ah, 0376AB BX 41 8601'

1100

% . .% %

. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . . .-:- ..:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. ,*.
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IBM , B (cont.) "."__ _ _"_.

Method Case Method Case

IHI 44 8101, 8201 3131 28 0141, 0612

SiuY 33 0141, 0142, 0143, 0421, 0512, BXWX 36 0471, 8101, 8201, 8403, 8601,
0612 8661, 8631, 8632, 8641, 8651,

I3Z 02 0331, 0421 8663
[zZ 06 0421 !BW 37 0421

3ZZ 07 0511 D5(QZ 14 0331, 0421, 0431
RSEC 07 031057AB,0331CE

BR1Z 07A 0141, 0142, 0143, 0211, 0311, RSEC 07 0371, 0372A3C, 0373ABCDE,
0381, 0382, 0471, 0612 037418, 0375ABCDE, 0376AB .-

3HZ 073 0421 RSEC 17A 0375ABCDE, 0376AB

3H 07C 0512 RSIC 17B 0375 BDE

3 Z 07h 0422(12) RSEC 18 0371, 0373A3CD, 0374AB,
0375ABCDE, 0376AB

071 0142, 0143 RSEC 22 0371, 0374AB, 0375B, 0376AB
3HZ 173 0142, 0143, 0211, 0231, 0232, RSEC 22B 0371, 0374AB, 0375BDE, 0376AB

0233, 0311, 0382, 0612
3ZZ 17 0331 RSEC 35 0381, 0382

1ZZ 171 0421 RSEN 18 0141, 0241, 0244, 0612

3HZ 170 0512 RSLC 21 0371, 0373ABCDE, 0374A,- .
0375ABCDE, 0376AB

BHZ 171 0422(P2), 0423(P3) RSLC 21A 03763

1RZ 171 0512 iSLZ 21 0421, 0422(P2)

B3EZ 18 0142, 0143 IS'C 17A 8501

BDIZ 23 0441 USic 171 8501

RZ 24 0311 I9SC 21 0311

HZ 44 0421 RSTN 21 0141, 0241, 0242, 0244, 0612,

BIZ 44A 0421 8101, 8201, 8301, 8403, 8411

'9.-.,.-
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U TO PLATES BY PLAT AuMu CAME UMu

Plate Case Plot No. Page
Number No. (Vol. I) Method Number

1 0111 1 AOPX 22, AKEZ 07A, AKEZ 23 1115
2 AOPX 22, AKEZ 07A, AKEZ 23 ..

3 AOPX 22, AKEZ 07A, AXEZ 23

2 4 AOPX 22, AKEZ 07A, AKEZ 23 1116
5 AOPX 22, AKEZ 07A, AKE 23

3 6 AOPX 22, AKEZ 07A, AKEZ 23 1117
7 AOPX 22, AKEZ 07A, AKEZ 23
8 AOPX 22, AKEZ 07A, AKEZ 23

4 9 AOPX 22, AKEZ 07A, AKEZ 23 1118
10 AOPX 22, AKEZ 07A, AKEZ 23
11 AOPX 22, AKEZ 07A, AKEZ 23

5 12 AOPX 22, AKEZ 07A, AKEZ 23 1119
13 AOPX 22, AKEZ 07A, AKEZ 23
14 AOPX 22, AXXZ 07A, AKEZ 23

6 15 AOPX 22, AKEZ 07A, AKEZ 23 1120
16 AOPX 22, AKEZ 07A, AKEZ 23
17 AOPX 22, AKEZ 07A, AK 23

7 18 AOPX 22, AKEZ 07A, AIEZ 23 1121
19 AOPX 22, AKEZ 07A, AKE 23

See also Plate 187

8 0112 1 AUEZ 07A 1122
2 AKXZ 07A
3 AKEZ 07A
4 AXEZ07A
5 AKEZ 07A
6 AKEZ 07A *',. -.
7 AKEZ 07A
8 AKEZ 07A
9 AKEZ 07A

P1(0113) See Plate 179 .'.-

9 0141 1 HN 22B, HN 22C, SC 32, AXKX 37, BO1 30, 1123
BOPX 28, BlKX 05, B XX 22A, BlEX 22C, BlIY 33

10 EE 12, XE 27, HG 45, BOPX 01, BOPX 04, BlKX 28, 1124
BKEX 07, BIX 28, BIKZ 07A, BKWX 28, RSEN 18,
RSTN 21,

11 2 AKWX 37, BOX 30, B1KX 05, DiEY 33 1125

!4 12 BOPX 28, BlKX 28, BKEX 22A, BiRX 28, BUEZ 07A, 1126BIM 28 '"'

13 XE 12, BOPX 01, BOPX 04, BI1X 05, BlEX 07, BDXX 22, 1127
1.SEN 18, RSTI 21,

14 3 XE 12, BOPX 28, BIKX 05, BIKX 28, IKHX 28, BUT 33, 1128
BINX 28

15 B072 01, DOPX 04, NiMX 07, BlKX 22A, BilX 22C, 1129 "-'
3KHZ 07A, RSIEN 18, RSTR 21,

16 h3iX 37, =OLl 30, 311KX 05, 1130

1103
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M1 ToPLA798 BY PLEM AND CAM EU (cont.)

Plate Case Plot No. Page
Number No. (Vol. I) Method Number

17 4 ADWX 37, BOLX 30, BOPX 01, BOPX 04, BOPX 28, 1131
BIKX 28, BKEX 22C, BKEX 28, BERY 33, BKWX 28

18 0141 4 EE 12, EE 27, BG 45, E 22B, HN 22C, B1UX 05, 1132.
BKEX 07, BKEX 22A, BKEZ 07A, RSEN 18, RSTN 21

19 0142 1 EE 27, HN 22A, N 45, AKEZ 17B, AKZ 18, AKWX 37, 1133 ''

BOPX 01, BIKX 05, BKEY 33, BKEZ 07A, BKEZ 07E,
BKHZ 17B, BKEZ 18,

20 2 EE 27, HN 22A, HN 45, AKEZ 17B, AKEZ 18, BOPX 01, 1134
B1KX 05, BKEY 33, BKEZ 07A, BKIZ 17B

21 3 EE 27, RN 45, AKEZ 17B, AKEZ 18, AKWX 37, BOPX 01, 1135

BIlK 05, BKEY 33, BKEZ 07A, BKEZ 17B, BKEZ 18

22 4 AKEZ 17B, AKEZ 18, AKWX 37, BOPX 01, BlIKX 05, 1136 .4' 4.

BKEY 33, BKEZ 07A, BKEZ 18

23 0143 1 HN 22A, RN 45, AKEZ 17B, AKEZ 18, AKWX 37, BOPX 01, 1137
B11X 05, BKEY 33, BKEZ 07A, BKEZ 07E, BKEZ 17B

24 2 HN 22A, EN 45, AKEZ 17B, AKEZ 18, BOPX 01, 1138
BIEY 33, BKEZ 07A, BKEZ 17B

25 3 HN 45, AKEZ 17B, AKEZ 18, AKWX 37, BOPX 01, 1139
B11X 05, BKEY 33, BKEZ 07A, BKZ 17B, BKEZ 18

26 4 AKEZ 17B, AREZ 18, AIGX 37, BOPX 01, B1X 05, 1140
BDEY 33, BKEZ 07A, BKEZ 18

27 02-.1 1 RN 22C, BKEX 07, BIEX 22A, 1KEZ 07A, BKEZ 17B 1141

28 0z31 1 HN 22C, SC 32, AKEX 07, AKEZ 07, AKEZ 17B, 1142

BOPX 04, BKEX 22A, BKEX 22B, BKEZ 17B ...

29 2 HN 22C, SG 32, AEX 07, AUZ 07, AKEZ 17B, 1143
BOPX 04, BEX 22A, BKEX 22B, BKEZ 17B

30 3 UN 22C, SG 32, AKEX 07, AKEZ 07, AKEZ 17B, 1144
OPx 04, IKEX 22A, EX 221

31 4 HN 22C, AlEX 07, AKEZ 07, AKEZ 17B, BOPX 04, 1145
BKEX 22A, BKX 22B

32 5 AKEZ 07, AKEZ 17B 1146
6 AKEZ 07B, AKEX 07, AKEZ 17B, BOPX 04, BKEX 22A,

lKI! 221

33 0232 1 HN 22C, SG 32, AlEX 07, AIEZ 07, AKEZ 17B, BOPX 04, 1147
BKE 22A, BIEX 22B, BKZ 17B

34 2 RN 22C, SG 32, AlEX 07, AKEZ 07, AKEZ 17B, BOPX 04, 1148
BKm 22A, BKh 22B, BIM 17B

35 3 HN 22C, SC 32, AKEX 07, AKEZ 07, AKEZ 17B, BOPX 04, 1149
BKEX 22A, BEm 221, BKHZ 171

36 4 RN 22C, AlEX 07, AKEZ 07, AKEZ 17B, BOPX 04, 1150
B 22A, B 22B

5 hIR 071, AKEZ 17B

1104
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INEX TO 1LAIUS BY PLAM AU) CAS MNU (cont.)

Plate Case Plot No. Page
Number No. (Vol. I) Method Number

37 6 AUX 07, AKEZ 07, AKE 17B, BOPIX 04, BKEX 22A, 1151
EKEX 22B

38 0233 1 HN 22C, SG 32, AKEX 07, AKEZ 07, AKEZ 17B, 1152 ..-
BOPX 04, BIKEX 22A, BKEX 22B, BKEZ 17B -

2 HN 22C, SG 32, AKEX 07, AKEZ 07, AKEZ 17B,
BOPX 04, BKEX 22A, BEX 22B, BKEZ 17B

39 3 HN 22C, AKEX 07, AKEZ 07, A]EZ 17B, BOPX 04, 1153
BKEX 22A, BKEX 22B

40 4 AKEZ 07, AKEZ 17B, BOPX 04 1154
5 AKEZ 07

41 6 AKEZo7 1155
7 AKEX 07, AKEZ 07B, AKEZ 17B, BOPX 04, BRm 22A,

EX 22B

42 0241 1 AIWX 37, BOLX 30, Bl.X 05, BIKEX 07, RSEN 18, RSTN 21 1156
2 AKWX 37, BOLX 30, BIX 05, BEX 07, RSEN 18, RSTN 21

43 3 AKWX 37, BOLX 30, BKX 05, BIEX 07, RSEN 18, RSTH 21 1157
4 AKWX 37, BOLX 30, BIKX 05, BEX 07, RSBN 18, RSTN 21

44 0242 1 AKWX 37, BOLX 30, BIKX 05, BKEX 07, RSTN 21 1158
2 AKWX 37, BOLX 30, BIKX 05, BEX 07, RSTH 21

45 3 AKWX 37, BOLX 30, BIKX 05, DKEX 07, RSTN 21 1159
4 AKWX 37, BOLX 30, BIKX 05, BIX 07, RSTN 21

46 0244 1 AKWX 37, BIKX 05, BXEX 07, ISEN 18, RSTN 21 1160
2 ArWX 37, lKX 05, RSN 18, RSTN 21

"I 47 3 AKWX 37, RSEN 18, RSTN 21 1161
4 AKX 37, BiIn 05, BIEX 07, RSEN 18, RSTN 21

48 0261 1 AKEZ 07, BKEX 22D 1162
2 AKEZ 07, BX 22D
3 AKEZ 07, BUEX 22D
4 AKEZ 07, BX 22D

49 6 AKEZ 07 1163
11 AKEZ 07

50 0263 1 AKEZ 07 1164
2 AKEZ 07
5 AKEZ 07

51 0281 1 BlKX 05, BIEX 07 1165
2 BiKl 05, imEX 07
3 BKEX 07
4 BlKX 05, BREX 07
5 BiXX 05, BKX 07
6 BIKX 05

52 0311 1 AKEZ 17B, AKWX 37, BKEC 24, BIEZ 07A, BIKZ 17B, 1166
.STC 21 %-

53 0331 1 AIEC 17C, ASEC 19, AKEZ 07, AKEZ 17D, BKEC 17C, 1167 , .
BIEZ 02, BIKEZ 17D, D5QZ 14
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I ,,O] 1 PLAW NY PLAM UiU AMN CAU WM (coot.)

Plate Case Plot No. Page
Number No. (Vol. I) Method Number

54 2 AKEC 17C, AKEC 19, AK.Z 07, AKRZ 17D, BKEZ 02, 1168
D5QZ 14

55 0331 3 A]UC 17C, AKEC 19, AKEZ 07, AIZ 17D, BKEZ 02, 1169
DSQZ 14

56 4 AIEC 17C, AKEC 19, AKEZ 07, AKEZ 17D, BKEC 17C, 1170
BKEZ 02, BKEZ 17D, D5QZ 14

57 5 AlEC 17C, AlEC 19, AKEZ 07, AKEZ 17D, BKEZ 02, D5QZ 14 1171

58 6 AlEC 17C, AKEC 19, AKEZ 07, AKEZ 17D, BKEZ 02, D5QZ 14 1172
7 D5QZ 14

59 0371 1 2ED 52, 2ED 52A, AKWC 37, RSEC 18, RSEC 07, 1173
RSEC 22, RSEC 22B, RSLC 21

60 0372A 1 2ED 52, AKWC 37, RSEC 07 1174

61 0372B 1 2ED 52, AKWC 37, RSEC 07 1175
2 2ED 52, AKWC 37, RSEC 07

62 0372C 1 2ED 52, AKWC 37, RSEC 07 1176
2 2ED 52, AKWC 37, RSEC 07

63 0373A 1 2ED 52, RSEC 07, RSEC 18, RSLC 21 1177
2 2ED 52, RSEC 07, RSEC 18, RSLC 21

64 0373B 1 2ED 52, RSEC 07, RSEC 18, RSLC 21 1178
2 2ED 52, RSEC 07, RSEC 18, RSLC 21

65 0373C 1 2ED 52, RSEC 07, RSEC 18, RSLC 21 1179

66 2 2ED 52, .SEC 07, RSEC 18, RSLC 21 1180

67 0373D 1 2ED 52, RSEC 07, RSEC 18, RSLC 21 1181
2 2ED 52, RSEC 07, RSEC 18, RSLC 21

68 03731 1 2ED 52, 2ED 52A, RSEC 07, RSEC 18, RSLC 21 1182

69 2 2ED 52, 2ED 52A, RSEC 07, RSEC 18, RSLC 21 1183

70 3 21D 52, 2ED 52A, RSEC 07, RSEC 18, RSLC 21 1184 -

71 0374A 1 2ED 52, 2ED 52A, AKEC 07, AKWC 37, RSEC 07, 1185
RSEC 18, RSEC 22, RSEC 22B, RSLC 21

72 2 2ED 52, 2ED 52A, AKEC 07, AKWC 37, RSEC 07, 1186

RSBC 18, RSEC 22, RSEC 22B, RSLC 21

73 3 2ED 52, 2ED 52A, A.EC 07, AIWC 37, RSEC 07, 1187
RSEC 18, RSEC 22, RSEC 22, RSLC 21

74 0374B 1 2ED 52, 2ED 52A, AlEC 07, AIWC 37, RSEC 07, 1188
RSEC 18, RSEC 22, RSEC 22B, RSLC 21

75 2 2ED 52, 2ED 52A, AKEC 07, AKWC 37, RSEC 07, 1189
RSEC 18, RSEC 22, RSEC 22B, RSLC 21

76 3 2ED 52, 2ED 52A, AlEC 07, AKWC 37, RSEC 07, 1190
RISEC 18, RSEC 22, RSEC 22B, RSLC 21

77 0375A 1 2ED 52, AKEC 07, AlEC 17A, RSEC 07, RSEC 17A, 1191 .'
RSEC 18, RSLC 21
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4. o% -

IN= TO PAS NT PL N UN= AMD CAM U (cont.)

Plate Case Plot No. Page
Number No. (Vol. I) Hethod Number

78 2 2ED 52, AKEC 07, AKEC 17A, RSEC 07, RSEC 17A, 1192

79 0375B 1 2ED 52, AKEC 17A, RSEC 07, RSEC 17A, RSEC 17B, 1193
RSEC 18, RSEC 22, RSEC 22B, RSLC 21

80 2 2ED 52, AKEC 17A, RSEC 07, ESEC 17A, RSEC 17B, 1194 " ""
RSEC 18, RSEC 22, RSEC 22B, RSLC 21

81 0375C 1 2ED 52, AUEC 07, AEC 17A, RSEC 07, RSEC 17A, 1195
RSEC 18, RSLC 21

82 2 2ED 52, AXEC 07, AKEC 17A, RSEC 07, RSEC 17A, 1196
RSEC 18, RSLC 21

83 0375D 1 2ED 52, AEC 17A, RSEC 07, RSEC 17A, RSEC 17B, 1197
RSEC 18,RSEC 22A, RSEC 22B, RSLC 21

84 2 2ED 52, AICEC 17A, RSEC 07, RSEC 17A, RSEC 17B, 1198 '.'

RSEC 18,RSEC 22A, RSEC 22B, RSLC 21 ..

85 0375E 1 2ED 52, AKEC 17A, RSEC 07, RSEC 17A, RSEC 17B, 1199 .'-"4

RSEC 18,RSEC 22A, RSEC 22B, RSLC 21

86 2 2ED 52, AKEC 17A, PSEC 07, RSEC 17A, RSEC 17B, 1200
RSEC 18,RSEC 22A, RSEC 22B, RSLC 21

87 0376A 1 2ED 52, 2ED 52A, AKEC 07, AKEC 17A, AKWC 37, 1201
RSEC 07, RSEC 17A, RSEC 18, RSEC 22, RSEC 22B, RSLC 21

88 2 2ED 52, 2ED 52A, AUEC 07, AU-C 17A, AKWC 37, 1202
RSEC 07, RSEC 17A, RSEC 18, RSEC 22, RSEC 22B, RSLC 21

89 3 2-D 52, 2ED 52A, AKEC 07, AKEC 17A, AKWC 37, 1203
RSEC 07, RSEC 17A, RSEC 18, RSEC 22, RSEC 22B, RSLC 21

90 4 2ED 52, 2ED 52A, AKEC 07, AXEC 17A, AKWC 37, 1204 .,.....

RSEC 07, RSEC 17A, RSEC 18, RSEC 22, RSEC 22B, RSLC 21

91 0376B 1 AlEC 07, AlEC 17A, RSEC 07, RSEC 17A, RSEC 18, 1205
RSEC 22, RSEC 22B, RSLC 21."" "

92 2ED 52, 2ED 52A, 2ED 52B, AWKC 37, RSLC 21A 1206
2 2ED 52, 2ED 52A, 2ED 52B, AKWC 37, RSLC 21A

93 AlEC 07, AKEC 17A, RSEC 07, RSEC 17A, RSEC 18, 1207
RSEC 22, RSEC 22B, RSLC 21

94 3 AlEC 07, AXEC 17A, RSEC 07, RSEC 17A, RSEC 18, 1208
RSEC 22, RSEC 221, RSLC 21

95 2ED 52, 2ED 52A, 2ED 52B, AIwC 37, RSLC 21A 1209 -"

4 2ED 52, 2ED 52A, 2ED 52B, AKWC 37, RSLC 21A

96 AlEC 07, AKEC 17A, ESEC 07, RSEC 17A, RSEC 18, 1210
RSEC 22, RSEC 22B, RSLC 21

97 0381 1 AUEZ 171, BKEC 24, BKEX 22D, BKEZ 07A, RSEC 35, 1211

2 AME 17B, BKEC 24, BKEX 22D, BKEZ 07A, RSEC 35 121

98 3 AKEZ 17B, RSEC 35 1212 .'

4 AREZ 171, RSEC 35
5 RSEC 35
6 8EC 35

:, ." .-.-11074.-
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1X TO PLA78 BY PLJU MOMAN CASE (cont.)

Plate Case Plot No. Page
Number No. (Vol. 1) Method Number

99 0382 1 AIK1Z 171, BIHI 22D, 1HZ 07A, 1HZ 171, RSEC 35 1213
2 ARKZ 171, BHEX 22D, 1HEZ 07A, 1HEZ 171, RSEC 35

100 3 AUEZ 171, RSEC 35 1214
4 AURZ 171, RSEC 35
5 RSEC 35
6 RSEC 35

101 0421 1 E 27, 101.1 30A, BOPX 30, BlKX 30, 11LX 30A, UHEY 33, 1215
1HEZ 02, 1HEZ 06, 1HEZ 071, 1HEZ 44, D5QZ 14

102 AKEC 17C, AEZ 17E, BIHC 17C, 1HEZ 17F7, BKEZ 44A, 1216 *

KW 37

103 2 AKEC 17C, AHEZ 17E, IIKX 30, I1LX 30A, 1HEZ 02, 1217
1HEZ 071, 1HZZ 17C, 1HEZ 44, 1HEZ 44A, 101.1 30A,
BOPX30

104 21 101.1 30A, IOPX 30, 1111 30, ILX 30A, BEY 33, 1218
1HEZ 02, 1HZ 06, BKEZ 071, 1HEZ 17F, IIWY 37,
D5QZ 14

105 3 E 27, lOLX 30A, IOP% 30, BiKI 30, 11LX 30A, IHEY 33, 1219
1HCZ 02, 1HZ 06, 1HRZ 071, 1HEZ 44, D5QZ 14, RSLZ 21

106 AHEZ 17C, AUEZ 17E, 38HZ 17C, 1HMZ 17F, 1HEZ 44A, 1220
BINT 37

107 4 AHEZ 17C, AHEZ 17E, 8HEZ 17C, 1HEZ 17?, 1HEZ 44A, 1221
lIN 37 ---- A

108 BOLX 30A, Bill 30, BIKI 30A, B1LX 30A, BKHY 33, 1222 .

1HIZ 02, 1HEZ 06, 1H9Z 071, 1HEZ 44, D5QZ 14, RSLZ 21

P2(0422) See Plate 180

P3(0423) Soo Plate 184

109 0431 1 E 27, HN 22C, UN 45, IOPX 28, 11. 30, BIUl 30A, 1223
D5QZ 14

110 2 HN 22C, BOPX 28, BiLX 30, 111. 30A, D5QZ 14 1224

ill 3 ES 27, HN 22C, HN 45, 10171 28, I1LX 30, BILK 30A, 1225
D5QZ 14 4

112 4 XE 27, UN 22C, UN 45, IOPX 28, 111.1 30, 111. 30A, 1226 k-

D5QZ 14 PP,
5 D5QZ 14

113 6 IOPX 28, ILX 30, B1LX 30A, D5QZ 14 1227
7 D5QZ 14

114 0441 1 XE 27, HL 46, SG 42, 1111 41, 1HEZ 23 1228
2 Bill 41, 1HZ 23

115 BE127, SG042
3 1K 41, 1HEZ 23 1229
4 BHZ 23 .-.

5 BIHZ23

116 6 SG 42, 1111 41, 1HZ 23 1230 -~

1108



~~~~.~~ 7- 117. ~ * ~ ***

mu 10 PLA799 BY PIAU UMI AND CUMK MRU (cont.)

Plate Case Plot No. Page
Number No. (Vol. I) Method Number

117 0471 1 DXIX 22D, Bill 35, 1HEZ 07A, BKWX 36 1231
2 DXIX 22D, DXIX 35, BREZ 07A, DKWX 36

118 3 BKEX 22D, BXIX 35, 1HEZ 07A, BKIUX 36 1232
4 BXIX 35, 1HEZ 07A, BICWX 36

119 0471 5 BMKX 35, IKU 07A, BICWX 36 1233
6 BXIX 35, IKEZ 07A, MCWX 36
7 BEX 35, BMMO7A, BIWX 36

120 8 DXIX 35, IKEZ 07A, DKX 36 1234
9 DXIX 35, 1HZ 07A, DKX 36
10 DKX 36 %
11 BKW 36
12 Bull 36

121 0511 1 AOPX 22, 1HEZ 07 1235
2 AOPX 22, 1HZ 07
3 AOPX 22, 1HEZ 07

*122 4 AOPX 22, 1HEZ 07 1236 . 3
5 AOPX 22, IZ 07
6 AOPX 22, 1HZ 07

123 7 AOPX 22, 1HEZ 07 1237
8 AOPX 22, 1HEZ 07
9 AOPX 22, 1HEZ 07

124 10 AOPX 22, 1HEZ 07 1238
11 AOPX 22, 3HZ 07
12 AOPX 22, 1HEZ 07

4125 13 AOPX 22, 1HEZ 07 1239
5'14 AOPX 22, B1HZ 07

126 0512 1 AOPX 22, DOPI 01, 1hZX 41, BEI 33, 1HZ 07C, 1240
1HEZ 17G, 1HZ 171

127 2 AOPX 22, BOPX 01, BhIx 41, BEI 33, BXIZ 07C, 1241
BUZ 17G, 1HEZ 171

128 3 AOPX 22, DOPX 01, BlIX 41, IHEY 33, 1HEZ 07C. 1242
BHZ 17G, 1HZ 171

129 4 AOPX 22, BOPX 01, IKX 41, DiET 33, 1HEZ 07C, 1243
1HEZ 17G, 1HZ 171

130 5 AOPX 22, BOPX 01, lIKX 41, BHEY 33, 1HEZ 07C, 1HEZ 17C 1244

131 6 AOPX 22, BOPX 01, DliX 41, SEI 33, 1HZ 07C, 1HZ 17G 1245
132 7 AOPX 22, DOPX 01, DIx 41, IHEY 33 1246 .- --

8 AOPX 22, DOPX 01, DliX 41, BEI 33

133 0612 1 ER 12, ZE 27, HN 22C, SG 32, SG 45, AHEZ 17B, 1247
DlIK 28, RSEN 18, RSTN 21,

134 AXWX 37, EOLX 30, DOPX 01, DOPX 04, DOPX 28, lIKX 05, 1248
1HZX 07, 1HZ 22A, 1HZX 28, BEI 33, 1HZ 07A, DKX 28

*135 2 hXIX 37, EGLI 30, IOPX 01, BOPI 04, BOPX 28, BllX 05, 1249
1HZX 07, BXIX 22A, BXIX 28, EXIT 33, 1HEZ 07A, DKX 28

1109
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mx TO PMASr HNT AMK CAMKED (cont.)

Plate Case Plot No . Page
Nulmber No. (Vol. 1) Method Number

136 BE 12, IS 27, HN 22C, SG 32, SC 45, AMUE 171, 1250
BlK! 28, 1KHZ 171, RSEN 18, RSTN 21

137 3 UE 27, UN 22C, SG 32, SC 45, AUEZ 171, 1KHZ 171, 1251
RSER 18, RSTN 21

138 BE 12, AIII! 37, BOUl 30, BOPX 01, BOPX 04, 1252
lOPX 28, 11! 05, BlUZ 28, BKEX 07, BMM 22A,
IKE! 28, BhEY 33, BKEZ 07A, lMXii 28

139 8101 1 HN 22C, SG 32, AKYX 37, BOPX 31, IOPX 36A, 1253
10?! 43, liii! 36, RSTN 21 .

140 2 AIII 37, 101! 31, lOPX 36A, DKXii 36 1254
A BOPX 43, BE! 44, RSTN 21

141 1 AKh! 37, 101! 36A, 101! 43, Bxiii 36 1255
3 SEU! 44, RSTh 21

1.42 8201 1 HN 22C, hEW! 37, BOP! 31, IOPX 36A, lOP! 43, 1256V
ImM 44 BUZi 36, RSTN 21

2 BIM 44

143 A hAlIX 37, lOP! 36A, 10?! 43, WXii 36, RSTN 21 1257

144 8301 1 15TR 21 1258
2 RSTN 21
3 RSTh 21

145 8403 1 hAlIX 37, 1KW! 36, RSTN 21 1259
2 hEW! 37, 1KW! 36, RSTI 21
3 AKWX 37

146 4 hAll! 37, 1KW! 36, RSTN 21 1260
5 AD! 37, lKXii 36, RSTN 21
6 hAll! 37, lxii! 36, USTY 21

147 7 ~ I 7 K!3,UT 11261 l
8 hAlIX 37, lKXii 36, ISTH 21

9 hAlIX 37, BXii! 36, RITN 21

148 10 hAll! 37, liii! 36, ISTN 21 1262
11 hAX 37, 1KWX 36, RSTN 21

149 8411 1 HKN22C, SG 32, Au!X 37, RSTN 21 1263
2 HN 22C,SG 32, AKWX 37, RSTN 21
3 UN 22C, SG 32, AKWX 37, RSTN21

150 4 AMl137, RSTN 21 1264

151 8501 1 AIWC 37, RSTC 17A, RSTC 171 1265

152 8601 1 IKM 41, KW 36 1266
2 lxii!36
3 BUM X36
4 BUM 36
5 1KXi136
6 BlXiu36
7 lKXiu36
8 BEX 41, lKXii 36
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Iii 70 PLAMN MT PLAN UM1U AM CAME IS (cont.)

Plate Came Plot No. Page -

Number No. (Vol. I) Method Number

153 8601 9 BEKX 36 1267
10 BIX 36
11 B1WX 36

153 12 BIDX 36
13 BIK 36
14 BKWX 36
15 BKEX 41, BIOX 36

154 16 BKEr 41, BIM 36

155 8611 1 BINX 36 1268
2 B1NX 36
3 BKWX 36
4 B1WX36

156 8612 1 BOPX 44 1269
2 BOPX 44

3 BOPX 44
4 BOPX 44

157 8621 1 1112, HN 22C, SG 32, SG 39, SG 42, AIMI 37, BOPX 50 1270

158 2 EE 12, HN 22C, SG 32, SG 39, SG 42, AKIX 37, 1271
BOPX 47, BOPX 50

159 3 E. 12, HN 22C, SG 32, SG 39, SG 42, AKWX 37, 1272
BOPX 09, BOPX 47, BOPX 50

160 4 SG 32, SG 39, SG 42, BOPX 09, BOPX 47, BOPX 50 1273

161 5 EE 12, SG 32, SG 39, SG 42, BOPX 47, BOPX 50 1274

162 6 BOPX 50 1275

163 SG 32, SG 39, SG 42, BOPX 47 1276

164 7 EE 12, SG 32, SG 39, SG 42, BOPX 47, BOPX 50 1277

165 8 SG 32, SG 39, SO 42, BOPX 09, BOPX 47, BOPX 50 1278

166 8623 1 SG 42, AKIX 37, BOPX 47, BOPX 50 1279
2 SG 42, AKWX 37, BOPX 47, BOFX 50
3 SO 42, AIWX 37, BOPX 47, BOPX 50

167 4 SG 42, AXWX 37, BOPX 47, BOPX 50 1280
5 AKWX 37, BOPX 47, BOPX 50
6 AKWX 37, BOPX 47, BOPX 50

168 7 SG 42, BOPX 47, BOPX 50 1281

169 8631 1 SG 42, BOPX 43, BIX 36 1282
2 SG 42, BOPX 43, BWX 36 1283 - •o
3 BIDX 36, BOPX 43

170 4 SC 42, BOPX 43, MWX 36 1284

5 BKWX 36, SOFT 43

171 8632 1 BIN 36 1285
2 B1X 36
3 BKX 36

1111 .''".



E1 TO HAM BF H&U * cII ED (cont.)

Plate Cas iPot lb. Page
Number No. (Vol. 1) Method Number

172 8641 1 11UK41, BMU 36 1286
2 1K1136 3
3 BIRK 41, BnDI3
4 BIKX 41, IKWX 36 J

173 6651 1 1111136 1287
2 1111136
3 1111136
4 1111136

174 8661 1 10PX 31, BOPX 36B 1288
*2 lOP! 31, BOPX 36B

3 lOPX 31, BOPX 361
4 lOP! 31, lOPX 36B
5 lOPX 31, 10?! 36B

175 8663 1 BOPX 361, 1KW! 36 1289
2 lOP! 361, KW 36
3 lOP! 361, BM! 36 . ,

4 lOPX 361, 1111! 36
5 IOPX 361, BKWX 36
6 BOP! 361, BKWX 36
7 10?! 361, WX 36

176 8671 lOPX 31 12904177 10?! 31 1291

178 8691 1 SG 42, BOPX 50 1292
2 SG 42, BOPX50
4 SG 42

179 P1(0113) 1 hUEZ 07A 1293
2 AKEZO7A
3 AMH 07A
4 A]= 07A
5 A]= 07A
6 Al= 07A
7 A]= 07A
8 AUZO07A
9 AHZO07A
10 hKUZ 07A

180 P2(0422) 1 BUZ 0Th. 13MZ 171 1294
2 1HZ 07D), 1hlZ 171
3 BUZ 0Th, 1HZ 171

181 4 1HZ 07D, 1HEZ 171 1295
5 1HMZ 07!), 1HMZ 171
6 1lZ 17H, RSLZ 21

182 7 1HZZ 0TD, 1HMZ 17H, RSLZ 21 1296
6 1HlZ 07D, 1HZ 17H, RSIZ 21

9 BUZ 171, R=L 21
183 10 1HZ 171, RSLZ 21 1297

11 1HZ 171, RSLZ 21

1112
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IOU TO PLA2ES BY HMZn u AM CASKM u (cant.

Plate Case Plot No. Page *. .

NUmber No. (Vol. 1) Method Number

184 P3(0423) 1 BREZ 07D, B1hZ 17H 1298
2 BRHZ 07D, 3KHZ 17H
3 1KEZ 07D, BKEZ 17W
4 1KEZ 07D, 1KHZ 17W

185 5 1KEZ 7H 1299
6 1KHZ 17H
7 IKH17H
8 IKEU17H
10 1KRZ 07D, 1KHZ 17W
11 BKHZ 07D, 3XH 17H

186 9 BKHZ 07D, 1KEZ 17W 1300
12 1KHZ 17W

187 0111 AOPX 22 (supplementary-laainar flow) 1301

V7 - oft

1113.*
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COMPARISON OF COMPUTATION WITH EXPERIMENT "

Summary Report

by

H.E. Bailey J

Computor Group Number: 50

Cases 8621, 8623, 8691

All of the computations submitted to the Conference were made on the Illiac IV

using the method of solution described in detail in Steger (1977). The turbulence

model used is fully described in Baldwin and Lomax (1978). Solutions were submitted

for Cases 8621, 8623 and 8691. For all cases the smoothing coefficients used were the

same with the single exception mentioned below. ,:*

For Case 8621 some additional computations were made in an attempt to evaluate

the effect of mesh size on the solution. Subcase 7 of Case 8621 was selected for this

study. A mesh of 127 x 59 points was constructed for the RAE 2822 airfoil. This

permits the deletion of every other point in either or both of the x and y directions.

Plate 162 shows a comparison of the 127 x 59 mesh solution with the 64 x 30 mesh solu-

tion. The smoothing coefficients for the 64 x 30 mesh solution have been halved to

improve the comparison. Obviously halving the number of mesh points in both direc- ..

tione has seriously affected the solution.

Plate 162 also shows a comparison of solutions on the 127 x 59 mesh and the 127 x

30 mesh. Again the smoothing coefficients for the 127 x 30 mesh have been halved. In

this instance the differences in the two solutions are mainly confined to the upper

surface on the airfoil. This plate also shows a comparison of the 127 x 59 mesh solu-

tion with the 64 x 59 mesh solution. There are again severe discrepancies on both the

upper and the lower surfaces.

In Plate 162 the experimental results are also shown by themselves. Comparison

of experiment with the computation shows that the shock wave clearly evident in the

experiment has been smeared out in the numerical solutions with the smaring being

greater, the fewer the number of points on the body. .'.

A popular method of comparing transonic test data with numerical solutions which

assume no tunnel walls is to make corrections to both the free-stream Mach number and f

the angle of attack in the numerical solution until the lift coefficients agree.

Subcase 3 of Case 8623 was selected to evaluate this procedure for the -resent code..'

When the Mach number is increased from M - 0.8 to M - 0.82 at constant angle of

attack, the shock wave position does not move. When the angle of attack is decrease-

*NASA-Awes Research Center, Moffett Field, CA 94035
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from a - 2.4* to a - l.l to get the correct lift coefficients, the shock wave

does not move. Thus, in changing both the Mach number and the angle of attack the

shock wave remains stationary and is always behind the experimental shock location.

This suggests that either the walls should be included in the computation or the scale

of the experiment should be changed so that wall effects are reduced.

One final remark concerns Case 8691. This case represents a circular arc airfoil

at zero angle of attack. In spite of the fact that the top and bottom pressure dis- W -

tributions should be identical due to symmetry, they are not. During the Conference

it was suggested that this difference might be an unsteady effect. No attempt was

made during the computation to check for unsteadiness.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Calculation of Two Free-Shear Flows)

by

S. F. Birch A e

Computor Group Number: 24

Cases 0311, 0381

The computer program used for these calculations solved the boundary-layer ver-

sion of the 2-D equations of motion together with a two-equation (k-e) turbulence

model. The finite-difference equations were obtained using a finite-volume approach

and a hybrid differencing scheme. The equations were solved sequentially using a

standard tri-diagonal solver and the solution was iterated between planes. The "v"

velocity component was obtained from a direct integration of the continuity equation.

The mesh spacing in the "y" direction was variable and the size of the f low domain

increased with downstream distance so that most of the mesh points were always within

the shear layer. The axial step size also increased with downstream distance and was

approximately proportional to the width of the shear layer at all stations.

Turbulence Model

The turbulence model was the standard k-c model except that the constant in the

production tern in the dissipation equation was changed from 1.44 to 1.40. This leads . -

to increased mixing rates and improved agreement with data for the calculation of the

near field of jets. It is not necessarily an improvement over the standard model for

a wider range of flows; it will, for example, increase the error in planar jet calcu-

lations. -

The Planar Mixing Layer: Case 0311

The initial conditions were selected by running the program for a flat-plate wall

boundary-layer flow. Calculated results, independent of initial conditions and for a

value of R9 of 1210, were used as initial conditions for the mixing-layer calcula-

tion. For the wall boundary-layer calculation, a wall function was used in the near-

wall region. The formula used was: .

9.0 p yU*-.

*Boeing Military Airplane Co., Seattle, WA 98124 ...
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1/2

where Ue  (t/P)v and U, y are evaluated at the near-wall point 'p' where the

boundary conditions are applied.

Calculations were run using both 20 and 40 cross-stream points. Both calcula-

tions produced almost identical results: those calculated vith the mixing layer at

x/O - 2000 changed by only about 1.3%, when the number of mesh points was reduced

from 40 to 20. A total of 194 axial steps was used f or both calculations. Eight

iterations were used between planes. Total run time on a CDC 6600 was 13 sec using 40

mesh points in the y-directions and 6 sec using 20 points.

Symmetric Wake: Case 0381

The initial conditions in this case used the file data for the axial velocity.

The turbulence dissipation, e, was obtained as:

3/2
0.164 ki /I

where A - 0.096 outer region,

£ - 0.42y wall region.

The turbulence kinetic energy, k, was obtained from the values of uv supplied

%.,°. % --using: N

-;- 0.09 k -a,
e ay

The equations were again iterated 8 times between planes for the calculations.

The running time on a CDC 6600 using 40 cross-streas points were:

Distance No. of Axial Steps Run Time (see)

400 mm 93 6

1200 0 265 17

Cosoients

Our calculations seem to show that the k-c model will not accurately predict both

the near and far field of either the mixing layer or the wake. The prediction is

qualitatively in error in the near field of the mixing layer. For the wake, the far

field is underpredicted by about 30Z. "" "" ""

I . %,-.

1306

Z.-..



COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Spectral Closure of Homogeneous Turbulence)

by * L1 N. s&
C. Cambon, J.P. Bertoglio, and D. Jeandel*"

Computer Group Number: 52 C. Cambon

Cases 0371, 0372, 0373, 0374, 0375, 0376

Abstract: Two models for describing homogeneous non-isotropic

turbulence subjected to mean-velocity gradients are

presented. Both methods start from the equations for

second-order correlations at two points used in spectral

space. An extended eddy-damped, quasi-normal approxima-

tion is developed to close the basic equations.

I. Basic Equations

The starting point of the modeling method is the rate equation for the spectral

tensor #tj(k,t):

2uk2 Ij A --k, 2 ij + (a - 2 "k+21 -'T (1)

Di1 2k 01 (i "-tm'mj i 2 Iim jIs kk

where < kd '~-

+t~ ++3
Ti - k t) i- kzf#Zi-, O

R3Z
The equation giving the evolution of the third-order spectral tensor *ji(kPt)

Is closed by splitting into two parts the term governing the fourth-order correla-

tions; the first part is expressed in terms of second-order correlations, in which the

rules for evaluating moments of normal distributions are applied. The second one
depends linearly on the third-order tensor. Following Orszag (1970) we have then in

symbolic form

uuuu = uuuu + uuu

A single damping coefficient v appears, given by the expression
..-..-"

2 2 2 .
16(k,?,t) - n(k,t) + n(P,t) + Ti(Q,t) + v(k + P + Q k+P+ 0 (2)

Eeole Cantrale do Lyon, 69130 Ecully, France
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where

n(kt) - P2E(Pt)dP. 
112

0

is a large-eddy turn-over time scale and A~ a given constant. It should be noted that

for Som rotating f love an attempt to introduce the mean rotation rate in the cor-

rected time scale

i(k,t) -f k PE(P,t)dP + . (A~ j)Aj-Ai1 1  (3)

has been made (see Method 1).

11. Characterization of the Two Models

Since the resulting closed set of equations is too cumbersome to be handled '

directly, two different ways have been chosen in order to handle them computationally.

In Method 1, c. angular parameterization of *ij(k~t) in the form

+ E(k,t)
iJ(kot) 2 - F a

where .....)-
*(kt) 8

Hij(k)t) a n - kn n/k; E(t) (kt)/2

7 i (Aa - Qiat)(d n - CL n )18In (1 (15+7a)I pUaq) - 2aB~nl ;. -

is Introduced In order to integrate analytically the closed basic equations over a

spherical shell of radius k. A final integro-differential equation for the new radial

tensor *i (k~t) is deduced.

After comparisons of the model with the analytical solution for the rapid distor-

tion, an explicit expression for the function a(kt) is found in terms of both R and

the Lagrangian strain tensorj associated with the mean flow.

Method 2 directly retains the basic Eq. (1) but adopts an approximated form of

the closed nonlinear term T (t, t). The modeled expression based on an interpolation
ij

process, depends on local values computed (using the three-dimensional Extended-Eddy

Quasi-Normal Hypothesis Model) for a small set of wave vectors and for a f e values

of the time.

The detailed basic equations and the two typical methods have been previously

described in Cambon at al. (1981) and in Bertoglio (1981).

In both methods only one constant X, which com s from the eddy-damping rate

v(k,t), has to be adjusted. The chosen value of X. (- 0.36) has been found by Andre

and Lesioeur (1977) from the test field model for the case of isotropic turbulence.

1308
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III. Numerical Procedure and Mesh Requirements

In Method 1, a finite-difference scheme is developed to solve the equations for ?k

the components of the radial tensor written in the common form

3+ 2
+2vk -1

In order to avoid a limiting stability condition resulting from an explicit viscous

term, the following efficient scheme

22 -2vk At
*(k,t + At) *(kt)e + 2vk 2 t  (kt)

2vk 2 -. .,

is adopted.

A large constant step in time is used (for the calculated flows the number of

time steps is always smaller than one hundred). A fixed logarithmic discretizing in

the k-direction of the form

(L-1)/D v1/4k(L) =5 x 2L-/; k(30) =2(--.]/v- L =1.30--"

is chosen.

In Method 2, the final closed equation for #i( ,t) is numerically solved along
i.

the characteristic curves corresponding to the whole differential operator. The

three-dimensional calculation gives computer values for 18 spherical shells and for 32

directions on each hemisphere.

IV. Generation of Initial Data

Starting from the initial given values for iiuj and e at t to the spectral

computations require spectral data generated by the following successive algorithms:

Algorithm 1 - Generation of the energy spectrum E(k) by the expression

2/3 5/3 (kL)n10/12 -l.5y(k)4/3 V3 1/4
E(k) 1.5c L. Tk-2 e/

I l+(kL)2]"; 
( _ 

.

T 3/2331/4
L for 3 < n < 4

The coefficients B and a are fixed in order to obtain exactly the given values of-1-
q and c. .. '

Algorithm 2 - The nonisotropic tensor is deduced from the relation

.41)._R tk~ 1t k, "-E u .',
0l~~o ) " + i dT -T + o-

q
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For Method 1, the algorithm is completed by the calculation of

Sij(to) 0 j 4 3

required to evaluate a(k,to). of u oM d T t

Algorithm 3 - Generation of (required only in Method 2). The isotropic

function Fi is used with the results of the previous algorithms. For special cases,

more physical initial spectra are deduced at time to with a "precomputation", starting"Z'
from isotropic conditions at t - 0, and applying a suitable mean-velocity gradient.

6$V. Comparison of Prediction with Experiments

Numerical solutions of Method 1 are presented for all the test cases (Flow 0370),I using exactly the given values. This required the generation of spectral data (Algo-

rithms 1 and 2).

With Method 2 only a partial number of cases were computed. Various adjustments

of the initial spectra were tested.

For Case 0371, Methods 1 and 2 are basically equivalent to the method initially
proposed by Andre and Lesieur (1977). Good agreement is obtained with Method 1, but
small discrepancies appear in Method 2 due to the interpolation process used. In Case

0372A, Method 1 overpredicts the magnitude of the decaying kinetic energy. Unfortu-

nately the moderate overestimation will be seen to be of the same order as the small

effects of the mean rotation. Indeed, when w - 20 rad/s or w - 80 rad/s, the same

decaying trends appear; the supplemented points (+ +) correspond to the simplified

expression (2) for i(k) and indicate the possible calculated extremes, when the mean

rotation is (or is not) introduced in the nonlinear terms. It must be noted that the

initial conditions are non-isotropic and consequently the mean rotation is acting p.

.imultaneouly through both the linear and non-linear terms. In the return-to-isot ropy -

experiment of Uberoi (0373A-D), the decreasing tendency of the radial component v of",--..

the stress tensor is correctly predicted but the small streamwise contribution u

reverts too quickly towards isotropy. Small discrepancies may be due to a residual

contraction at the end of the distorting duct (see Plates 65 and 66, Case 0373C). It

should also be noted that the Reynolds-stress components are strongly nonisotropic and

Algorithm 2 does not ensure a more isotropic dissipative range. In Case 0373E, two

sets of initial spectra were generated (DATA 1 and 2). DATA 1 is found from the stan-

dard Algorithms 1 and 2, while DATA 2 takes into account the distortion history

(deduced from Method 2). The results underline the strong influence of the initial

spectra shapes. Method 2, used with the three-dimensional spectra corresponding to

DATA 2, gives similar results to Method 1. In Case 0374A poor agreement occurs espe-

cially in the downstream part of the duct. In Method 1 two different energy spectra

1310
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were introduced. DATA 1 results from the standard Algorithms 1 and 2. DATA 2 takes

into account the shape of a measured spectrum given by Townsend. In Method 2, using

DATA 2, some attempts were performed with different mean-velocity gradients in the -.

initial part of the duct arguing a progressive buildup of the mean strain. In Case

0374B, both methods exhibit more satisfactory agreement. The numerical experiments

performed by Method 2 correspond to adjustments of initial data of streamwise velo- " . -

city. Some success is then achieved at the end of the distorting duct. For Case

0375, Method 1 with the standard Algorithms 1 and 2 gives good results.

" . Concerning shear-flow turbulence, less satisfactory agreement occurs for a large

shear rate (Case 0376B) with Method 1. For both cases, it was very difficult to gen-

• "* crate spectral information, especially for the non-diagonal component uv. . .

VI. Concluding Remarks

The present methods may be considered as a first attempt to predict nonisotropic

homogeneous flows, using the full spectral basic equations. It is also relevant to

point out that in both methods, the parameters are optimized once and for all in com-

parison to other theories (i.e., rapid distortion or the test field model). No ad-

justment of constants with typical experiments is required. Some improvements of the

methods will be made, when some additional spectral data become avilable. For future

developments of such modeling, it seems that the three-dimensional approach would be

appropriate to take into account exactly dominant linear processes (see Method 2).

Method 1 is less cumbersome to handle and much less expensive in computing time.
Flows in which distortion and rotation are acting simultaneously must be considered
with special care in the small-wave-numbers range. Extensions of the spectral methods

to complex nonhomogeneous turbulent flows will be attempted in the future.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report,

(Calculation of the Secondary Flow of the

Second Kind Through a Fully Elliptic Procedure)

by

A. Nakayama, W. L. Chow, and D. Sharma

W. L. Chow Computor Group Number: 231

Case 0111

INTRODUCTORY REMARKS

A general fully elliptic calculation scheme has been developed by Nakayama (1981)

along with a three-dimensional transformation procedure for arbitrary non-orthogonal

coordinate systems, for the purpose of the three-dimensional turbulent separated flows

within ducts of arbitrary geometrical configurations. As a sequel to the series of

various test flow calculations, this fully elliptic scheme has been employed for the

calculation of a three-dimensional developing flow in a square duct with a two-

equation (k-c) model coupled to the algebraic stress model. Although the flow of this

class may well be treated more economically as a three-dimensional parabolic flow

following Patankar and Spalding (1972), it is still worthwhile to solve it as an

elliptic problem since all viscous-flow phenomena are governed by the Navier-Stokes

equation.

This summary focuses on the results of the calculations for the developing turbu-

lent flow in a square duct. Details of the development of the present elliptic

scheme, excluded in this summary, are given by Nakayama (1981), who also presents

various results of calculations ranging from fully developed turbulent flow in a trap-

esoidal duct to three-dimensional turbulent separated flow in a rectangular diffuser.

DESCIPTION 0! THE MET'OD

A general form common to all six governing equations, namely, the continuity

equation, the u, v, and w time-averaged momentum equations and the traasport equations

for the turbulent kinetic energy, k, and its rate of dissipation, e, may be written in

a Cartesian teusor form as'fore

ui  a r i)-,( .....

*ftive.sity of Illinois, Urbana-Champaign, IL 61801

1312 ....-

'. .'.'..

q.I V ., .t, . . . . - .. , ...-. . . . . . . . . . . 4- .. . . . . .. • •. . . .,- .,,. ., , ,.v ,.. .-... .... . .,-, -..- . ,. .. =



- . . '..,,- . - - - - - - - - -...- -... - . --.

where * denotes any one of the dependent variables, r# is the corresponding diffusion

coefficient, and the source term is denoted by as.

As already indicated, the present scheme employs the transformation procedure for

arbitrary non-orthogonal coordinate systems so as to acquire the generality in the

application for elliptic flows (for the square duct, the transformation would not be

necessary). Through this transformation procedure, Eq. 1 can be transformed into an

arbitrary non-orthogonal coordinate system (&, n,c) as

[JTdI - V) * -Jr d

-2" [Jd 2  V) -J r d "-
2 ":2 a

-2
" [J(d* V) - r d (2a)

with

s + J s (2b)

1 1 ~ 2 31

J 7' (& -O n f [, T& 7 (2d)

and

+ p r T 2 3 n + .* 2 33

+J, 2.3 ) ] *2E 3 1 c , .. . .
i ~ + P r,(€. %) *OC+ tJ r+(%. %-) *C (2e) :--',

where the bar indicates vector quantities such as the position vector F and the velo- L

city vector V, while the subscripts C, n, and C denote their partial derivatives.

The particular form of Eq. 2a can be justified by the fact that the contribution

of sc# (see Eq. 2e), is expected to be insignificant for any reasonable coordinate

system since the term sc# contains only the cross-derivatives (the term vanishes when

the coordinates are orthogonal).

The discretization has been performed by integrating Eq. 2a over a volume element
in the transformed domain. The resulting finite-dif ference form is so universal that

it can be used for any coordinate by simply specifying the transformation area vec-

tore, T's, either analytically or numerically. For the square duct

-I 1313
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di - 2  and -'3

Squation 2a naturally reduces to Uq. 1.

ALGUU&IC srRzss 14DDEL
The algebraic stress model for the secondary flay of the second kind used for the

study on developing flows is essentially the same as the one developed by Launder and

Ting (1973) and Gessner et al. (1976). The stress model in Cartesian coordinates

prior to the transformation (with x being the primary flow direction), is given by -

-u' -2 vtux - Cj0k (3a)

-Tr'v- V(U + v (3b)
t y x

-u,* (u +w) (3c)
t z x

322c CkA u. c (3d)

3 2 2 (e

-v w~ (c' C k /c) u u (3f) ..
D y

with

-t cD k2 /e (3g)%

where the bar here donotes the tim-averaged mean, and the prim indicates the fluctu-

ating component. The subscripts %, y, and z are used for the partial derivatives. As
listed above, slightly modifid expressions are used for the stress components associ-
ated with the primary flow velocity fluctuation

(u' , u'v' and u'w')

In order to account for the strong acceleration at the inlet region. The inclusion of

these axial diffusion terms is possible only for the fully elliptic procedure such as

the present one. ~
The empirical constants (they are linked by two independent constants which can

be arbitrarily chosen among themselves) have been set to:

-0.09, c' -0.0185, ci - 0.552, 9~-0.915 (4)
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MISCELLANEOUS MATTERS

A usual near-wall treatment based on the constant stress layer has been employed

to preclude the need for fine meshes near the wall. In order to reduce computer exe-

cution time, the exit boundary condition has been transformed from the Neumann type to

the Dirichlet type. Prior to the full calculation, the values at the exit have been

economically provided through the fully developed flow calculation using the two-

dimensional version of the present scheme.

Due to symmetry, only one quadrant of the square duct may be taken for the calcu-

lation domain. The grid system, 9 x 9 x 30 (30 axial stations) which is highly con-

centrated toward the inlet and near the wall, has been employed to cover the axial

distance of 84 hydraulic diameters. Since the present scheme is based on the fully

elliptic procedure, there is essentially no mesh requirement so that the grid system

can be constructed faithfully according to the desired distribution of spatial resolu-

tion.

Because of the limited available memory field, the grid refinement has been per-

formed only on the cross-sectional plane of a square duct through fully developed flow

calculations using the grid systems 9 x 9 and 15 x 15. No significant grid number

effects have been observed on the solutions, except that the secondary flow magnitude

tends to be somewhat amplified for the finer grid system. The conclusion may be drawn

from the comparison (see Fig. 1) that the grid system 9 x 9 is quite adequate for a

quadrant of a square duct.

Prior to the turbulent flow calculations, the present finite-difference scheme

has been extensively tested for laminar flows under various geometrical configurations

and the numerical accuracy, without the presence of the ambiguity due to imperfection

of the turbulence model, has been thoroughly checked. The effects of non-

orthogonality of coordinates and those due to the practice of hybrid difference have

been found to be insignificant.

COMPARISON WITH THE EXPERIMENT

The overall performance of the algebraic stress model when coupled to the k-s

model is satisfactory in most respects. Some specific features of the model perfor-

mance under the employment of the present fully elliptic scheme are listed below:

(a) The predicted pressure drop (the wall-friction coefficient) agrees well
with the experiment. The distortion of the wall shear profile over the
periphery, however, has been predicted to be more pronounced than the
experiment (see Plates 1 to 3).

(b) The predicted axial variation of the velocity field has been found to
be in fairly good accord with the experimental data although the
centerline velocity peak is predicted to be about seven hydraulic
diameters upstream of the peak observed in the experiment. The velo-
city level along the wall bisector i in good agreement with experi-
mat, yet the velocity level along the corner bisector has been
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underestimated throughout the flow development (see Plates 1, 2, 4
and 5).

(c) The predicted shear stress opposing the primary flow motion was found
to be in good agreement with experiment. The characteristic pattern of
the shear stress having the opposite sign has been correctly realized
by the prediction toward the fully developed stage (see Plates 5, 6
and 7).

(d) The degree of bulge toward the corner is underestimated on the kinetic

energy contour maps indicating a relatively high kinetic energy field p
maintained fairly close to the corner. The spreading rate of the kine-
tic energy boundary layer is overestimated. These failures are, how-
ever, consistent with the underprediction of the secondary-flow velo-
city level along the diagonal in contrast with the overestimation along
the wall bisector (see Plates 3, 6 and 7).

Finally, certain suggestion* which may lead to possible improvements are listed

below.

(a) Increase the Prandtl number for k to delay the diffusion process within

the boundary layer (at the sam time, CD may be slightly decreased).

(b) Extend the calculation domain farther downstream to eliminate "tail-
off" behavior observed for the primary flow-velocity field along the
wall bisector.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(A Numerical Study for the Two-Dimensional Stalled Airfoil)

by

C. M. Rhie, W. L. Chow, and D. Sharma

C. M. Wbe Computor Group Number: 232

Case 0441

A finite-difference method has been developed by thie (1981) to solve the two-

dimensional incompressible, steady, time-averaged Navier-Stokes equations in general

curvilinear coordinates for 'he prediction of the flow over an isolated airfoil with

separation. The k-c equation turbulence model is utilized. The present calculation

mathod is an extension and generalization of the procedure of Gosman and Pun (1973).

However, a significant modification is introduced to use the ordinary grid arrange-

ent, instead of the usual staggered grid arrangement which is not efficient in the

present application. In addition, body-fitted coordinates are generated for the

flnlt-difference computation scheme.

Governing Equations .

The continuity equation and the time-averaged Navier-Stokes equations in conjunc-

tion with the isotropic turbulent viscosity hypothesis are written in a Cartesian

tensor form as

~pui -0 (1)
i-

a a au au()"~ ) L a + xi .2 .-P U i n - +x 2 - [ ( P +  V t +k - ( 2) ' .G : ";., ..
i.-.-x-,-a. j

where p is the mean density, uj the mean velocity, and p the mean pressure. From the

k-c turbulence model (Jones and Launder, 1972), the turbulent viscosity, ut, is given

by

Pt C pk 2 / (3).
I.-.".'*

The model thus involves two equations; one for k and another for c as follows:

aa t (4) +4 p, r
i k ii- 4

*University of Illinois, Urbana-Champaign, IL 61801 7.

1318

.

,. ,. . . ., , . ; ,, . . , .-,. . , -,. -. . -. . .. . .. -,. . -..- .-,.- . + . +.+, . . - . . - . .. +,. - .. - . . . +. . . . . .V.- . - .



a ax + (C1 P -C 2 PC)()

I Wi C i

where P in the rate of production of turbulent kinetic energy. This model contains

five empirical constants and they are ascribed the following values:

- 0.09 ;C 1  1.45 ;C 2  -190 Ok 1.0 cc~ 1.3 (6)

Modeling of a Near Wall .

The wall-function method is used to save grid points within the laminar sublayer

region. The following functions are used to bridge the near-wall region:

-U /u~Y )t1Y Kn(Ey +I (7)

where

P (k cl1/ 2) /,

C (c 1 2 k ) 3/2 I, (8)

y3/

(c1/2k + / nE 4  9f edy (cU (1/ic) nEp(9

0 u

dk/dy~ 0 (10)

II

from the law of the wall, with values of 0.4 and 8.8, respectively. Ik

Transformation of the Basic Equations ,

If new independent variables C and n are introduced, the form of the conservation

law should be changed according to the general transformation

9 (x,y), n - r(x,y)

Partial derivatives are transformed through

f (yf -yfIJ, f -(-f + xf )Ij (fx (y f yf /J y i i

where J is the Jacobian of the transformation, J -x Y - x y . Upon Introducing

definitions of

C Y - y, vx Y (12)
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2 2 2 2a= +y, 0xC + yy,, - + y, (13)

the following integral conservation relation is obtained for an arbitrary scalar,.4.'

dependent variable *

f (PG On -PC0

f ((rl+/J)(a#- 04) dn - (r*/J)(Y, - 0#t) dt} + ff S J dt dn (14)
B R " -"

where B is the boundary of a region R.

Method of Computation

1. General Transport Equations

In terms of the notation in Fig. I for a typical grid node P enclosed in its cell

and surrounded by its neighbors V, S, 1, and W, a relation between #p and the neigh-

boring values is obtained through the finite-difference formulation: I
+4

App- +A* +AON +A* + S J At An. -

- {[(r/J) 0# ATn] + [(rIJ) o# '"J1) (15)

where the coefficients A involve the convection, diffusion, area, etc. The terms

within the brace in Eq. 15 are the results of cross-derivatives in the diffusion term

due to the use of non-orthogonal coordinates. These terms are usually very small and , "

can be combined into the source term and treated as known quantities. ADI is used for

the iteration.

2. Pressure Equation

While equations of this kind are used for each of the variables u, v, k, and e

for every cell, an equation for the remaining unknown pressure should be obtained by

combining the continuity and momentum equations. The preliminary set of velocity

components, u and v , based on the estimated pressure field of p will in general not

satisfy the continuity equation. Instead, a net mass source mp is produced for the

point P as

up-(PC, Aii)* - (PGl Ani) w + (PG 2A~n - (pG 2 )V (16)

where the superscript * for C and C2 denotes that they are based on the u* and v*.

To remove the mas source, up, one defines -

p = p* + p' (17)

where p' is the pressure correction. The corresponding convective components can be
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assumed as

G, G + Bpi and G2 -G 2 + CP,18

where B and C are derived from the momentum finite-difference equations. Upon substi-

tuting Eq. 18 into Eq. 16, the finite-difference form for the pressure correction .

similar to Eq. 15 is obtained. Special treatment was necessary to suppress the

oscillations in the pressure field which occurred initially with the ordinary grid

arrangement of Rhie (1981). The overall solution procedure is similar to that of

Gosman and Pun (1973).

Generation of Coordinate System

The scheme developed by Sorenson and Steger (1977) is adopted for the present

application. In their method curvilinear coordinates are generated as a solution of

Laplace's equation. A simple clustering method is used for the control of mesh

spacing since the grid points derived from the convergent solution of Laplace's equa-

tion is seldom adequate. In the present work, minor modifications to the grid genera-

tion method is done to avoid the discontinuity in the wake region as is seen in

Fig. 2a. The major part of the grid system still remains but the discontinuity is

smoothed out by fourth-order polynomials. The resulting grid system is illustrated in

Fig. 2b.

Results and Discussion

The numerical accuracy of the present method had been rigorously tested by Rhie

(1981) in a variety of laminar flow cases. With this established numerical accuracy,

we devoted our efforts to the prediction of the flow past an NACA 4612 airfoil at

maximum lift at 13.87" angle of attack. Since the experiment was carried out in the

confined wind-tunnel test section, the blockage effect was also simulated in our com-

putations. The computational domain was defined as illustrated in Fig. 3. All the

lengths were nondimensionalized by the chord length. The horizontal and vertical

Cartesian coordinate axes were used for the computation. As shown in Fig. 3, a fic-

titious upstream wall boundary was assumed to be composed of convex and concave circu-

lar arcs whose centers are located at x - -3 and x - -0.5123, respectively. The

specific geometry was then characterized by the angle 01 at the inflection point of

the curve. The front outer boundary was defined by half circular arc covering inlet

plane at x - -3. Uniform approaching free-stream condition was imposed on this

circular boundary.

To test the effect of the outer boundaries, several different values of 81 and 82

were tried. The effect of 01 on the flow near the airfoil was almost negligible.

However, it changed the reference velocity located at (1.1466, -1.1209) in the experi-

ment. When 61 varied from 0 to 10 degrees, the reference velocity, Uref, changed

1321



r. . ......

approximately 21. Although the flow condition near the airfoil was barely changed,

this 2Z change in reference velocity, made the computational result vary within a

certain range. The diffuser angle, 02, was set to 40 as indicated by Wadcock (1978) ,, .9

and the uniform u-velocity boundary condition was imposed on the rear outer boundary.

Wake-profile boundary conditions at the exit plane of the diverging diffuser section

was abandoned due to numerical difficulties. The v-velocity component and turbulence

quantities were extrapolated from the inner solution. Virtually no influence of this

rear outer boundary condition was observed on the inner solution near the airfoil.

Wind-tunnel-wall boundary layers were neglected since the displacement effects were

expected to be negligible. Instead, slip boundary conditions were imposed on the

tunnel walls. While the effect of outer boundary condition was almost negligible, the

grid resolution on the airfoil surface was critical. Poor grid spacing in the stream-

wise direction near the leading edge could not resolve the sharp variation there, and

this altered downstream flow conditions significantly. Therefore, an extremely fine . -

grid near the leading-edge region was necessary.

After all these numerical experiments, the final cor'?utation was performed with a

95 x 31 grid. A total of 63 points were distributed r the airfoil. The grid spac-

ing on the airfoil surface was 0.0015 and 0.009 chords at the leading and trailing

edge, respectively. The first grid spacing in Ti-direction was 0.00125 chords. The

converging and diverging sections were defined with 61  82 4o. Reynolds number

was based on the reference velocity which was unknown a priori in the computation;

hence, the ratio of the reference velocity to the approaching free-stream velocity had

to be guessed based on the preliminary results.

Grid dependence was also checked by computing the same conditions with a 95 x 16

grid. Since additional grid refinement was not possible using CYBER 175 for the pres-

ent study, the number of grid points in the n-direction was halved, while that in the

4-direction was kept the same. The pressure, u-velocity, and Reynolds stresses are .

shown in Fig. 4. It should be mentioned that the u-velocity direction coincides with

the airfoil chord line. As is seen in Fig. 4a, the surface-pressure distribution was

almost insensitive to the grid change. However, with the coarse grid, a small separa-

tion bubble size was produced (Fig. 4b) and smaller magnitude of the Reynolds stresses

were predicted in its region (Fig. 4c,d). For the confidence on the computed results,

further grid tests by refinements are suggested using a large computer.

The time and storage requirement of the FORTRAN IV computer program were 0.0083

sec/grid node/iteration and 23,440 words plus 37.8 words/grid node. It took approxi-

mtely 40 min to carry out 1,000 iterations for the convergence in the present problem

using the 95 x 31 grid.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

by

J. Cousteix, R. Houdeville, D. Arnal, A. Cler, ..
P. Berrue, P. Dubois, E. G. Tulapurkara*

Couputor Group Number: 22J. Cousteix i

Cases 0111, 0141, 0142, 0143, 0211, 0231, 0232, 0233, 0261, 0381, 0382, 0371, 0374,

0375, 0376, 0431, 0471, 0511, 0512, 0612, 8101, 8201, 8411, 8621

Several methods have been used for computing the test cases. The codes REMI-2D, )

-2D1, -DIFFU are based on an integral method; ELODIE-KELM, -KELMI, -KELM2, -KEVISC

solve the partial differential equations of the boundary layer using a k-c model;
ELODIE-COIN has been developed for corner flows; MULTI solves equations for all com-

ponents of the Reynolds-stress tensor, and uses the concept of multiple time scales;

LRRLW solves the system proposed by Launder-Reece-Rodi, but the constant C.1 of the

"production" term in the c-equation is made a function of the mean rate of strain by

comparing the c-equation with the model of tensorial volume of turbulence developed by

Lin and Wolfshtein (1980).

According to the proposed classification, the method descriptors are:

Names of programs Method descriptor

2D, 2DI HN

'MIg

DIFFU !N

KELM, KELM1, KELM2, KEVISC BKEX

ELODIE""-"
COIN AOPX "

MULTI RSEC boo

LRRLW RSEC

Description of RKII-2D, -2D1, -DIIFU

The integral method is based on the solution of the global equations (partial

differential equations integrated between the wall and the outer edge of the boundary

layer): continuity equation, momentum equation and enthalpy equation:

*ClfR/DERT, Complexe PArospatiale, 31055 Toulouse, France
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-Ci ; - ( 1 C Em T,-yj (RI)

C f dO e(H + 2 dfe + L R
Ydx_ U dx P Rdx e (2)-

e e

#W 1 d (3

where the following notation is used:

0 aa0 65 e 0

a h a 2
A f U Ci-ld 1 6 U 1 ~ Ll!~ dy- U U

0 e e La 0 e e U
e

hi - total enthalpy

R - wall transverse radius (axisy mme tric flow)

Subscripts: e - external flow ; w - wall.

Equation R3 is used in compressible flows, but not in incompressible flows.

The basic equations are closed by using the properties of families of velocity

and enthalpy profiles, obtained by establishing self-similar solutions. In these

solutions, a mixing-length model is employed to solve the resulting self-similar equa-

tions as given in fflchel et al. (1968).

Analytical formulae have been developed to represent the properties of the self-

similar solutions. These constitute the set of closure relationships. Let the index

1 represent incompressible quantities (for example 6 n 0 f,(l - U/U e)dy) and let the

overbar (-) represent intermediate variables (see Cousteix et al., 1974).

1) The relationships for the Integral thicknesses are:

6 81 6 61aH - 6 11 36 11/2

_W_ ~ ~ ~ - 'YIG V_ -_ - * 3 (G) -ar ai--)

63 6 - [7.58 + 6.53((8 - 8 - )2]1/2 - 2.756

a6i '(l + .2M2)a + 8 6+ 02M28

7 and 73, deduced from the self-similar solutions, are represented by:

Fl 0.6130 - (3.6 + 76.86(1/G - 0.154)2)V0

73 -(0.714 - 0.302/(G 2.57)2)G3
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11) The skin-friction law in:

In +D (G, T /Td ) M x .41
x wee as

D* Is obtained from self-similar solutions:

D* .2G -a G1/2 +b

a (0.7945 + 0.296TvITs - 0.0905 (Tad (4. 0.4 M~e 004

b-44 / - 2.8-0.3 M- (0.0678TT + 0.24
v ad e v ad e05)0 -

296 1+ (0.267 - 0.0955 T /T )
(.6+ 0.2 w ad) Me

T .3 Tvad 1 + (0.267 - 0.0955 T /T )M + 0.1
v ad e e

111) The entrainment coefficient is determined by: '

C E.- Y(G) ; P(G) - 0.074G - 1.0957/G

IV) The law for the wall heat transfer is:

C /2
h s h p~h~#he P -0.89

Do- [a + 0.035 b In((0.07 G2 + 1)/(0.07 G2 -1)]

a- -0.0239 M - 1,733 ; b -(a T/T + b)/(cTI/T + 1) %'
a 1lV ad 1 1lV ad

where aI - (-376.2 + 160.4 Yv)/(l - 8.075 N~e) a

b- (446.9 + 44.89 )fe)/(1 + 2.766Hs

c- (-25.18 + 1.331 Me)/I - 14.43 me).

The effects of wall curvature are taken into account in the method. Self-similar

solutions have been calculated by using a modified mixing-length model. Mahinly, the

wall-curvature effects alter the entrainment coefficient which is represented in

Cousteix and foudeville (1977) by,

87.235X + 1.0957 -0.37X + 0.074 .?:

c 1+

where

The effects of free-stream turbulence are also included in the method. Again,

self-similar solutions have been calculated by using a modified mixing-length model.
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The main effects lie in the entrainment coefficient which is represented in Arnal et

al. (1976) by,

P = (0.074 f 0- 1.0957 f /G)f
1 2 3

f" 1 + 4.054K ; f2 a 1 - 2.1904 X

f3  
C  - 1/(0.0675 + 0.0745 Xt))/(G2 - 1/(0.0675 + 0.078 Xt))

kXa 1/2 k -e ~G2 " Y; - e U .

Remarks

I) The method has been extended in Cousteix (1981) to calculate three-dimensional

thin boundary layers, unsteady boundary layers and wakes (two- and three-dimensional A--

wakes, symmetric and asymetric).

11) Possible improvements are being studied. These concern the basic closure rela-

tionships in incompressible flows. The set of relationships is modified in an empiri-

cal way. The following set has been tried in the REM-2D1 version of the method:

* 1/2 2
D 1.5880 - 2.9G + 1.288 ; P - [1 + 2.273((0/6.13) - l)]/F1

F, - [0.6130 - (3.6 + 76.86(1/0 - 0.154)21/GJ (1 + 18/0 2)

This set of relationships has been tested in the Samuel and Joubert experiment,

and also in several test cases of the 1968 Stanford Conference. In all the cases a

substantial improvement is obtained. Possibly, the function F1 needs to be tuned a

little bit more.

III) The effects of free-stream turbulence seem to be overestimated, especially at

low intensity. The results could be easily improved.

IV) REM.I-DIFFU is an extension of REMI-2D for calculating internal axisymmetric flow

(diffuser flows). The effects of thick boundary layers are taken into account. The

core velocity is calculated from the mass-flow conservation.

V) Prom the values of H and Re which are results of computation, the velocity pro-

files can be calculated from a velocity profile family (for example, Whitfield's fai-

ily--see Whitfield et al., 1980).

Description of EODI- N. -KELMI, -KILMH2 -FEI SC

This method solves the partial differential equations (boundary-layer equations),

using a k-c model. Near the wall, the k- and e-equations are replaced by a mixing

lenth model corrected with a damping function.
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The basic equations are:

ax 8

Tde + - (El)

The turbulent shear stress is calculated from a k-c model:

-urvV -Cr -U0.09

and the k- and C-equations are:

Lk+V2 y a Vta (EM)*x ay y ayi

1 2 c

rv I~ I2at (E4)

where 1isauieslfntoofy8

9 2 / ku-4-

This aboer-and proceureioso used or y In 09.the malythingen (retciong ofithe

boheda-ymade. iNmaeat the poiths yquations ere no us0.9. At ths point teon-h

turbucontisha foreksan is cacled iven by: in- orua

2/ k(U2

where 1/mI an (universare vuesio caclae atyy/6fo:hewlrgo roeue

andopos ba daupngdfr-triexin-sd a. h ofins a function of ah tichrdso sha tes

exp(-. (TP T 2U"
26X . .'FY..-*'~~4* - . - .

This~~ nea%%.%prceur isusd. o 7< .99p. Th macig(o acin)wt



q T.- . -7

C C, 1 K ! aru

2 2 (E6

whee a- 025. Cc, is the value ofC 2 when the wall curvature is zero.£2 o
For reporting the wall-curvature effects, an alternative procedure used In

ILODIE-KELMn consists of modifying the eddy-viscosity coefficient instead of Cc2

k2  k2 31 (7
e r

*where -A.8

In the boundary-layer approximation, it is assumed that the 3U/Bx terms are

small, compared with the SU/Sy term., but this hypothesis is not always well verified.

EanjaliE-Launder have shown that the 8U/Dx terms can play a significant role in the '

c-equation. Accordingly, the c-equation has been modified In ELODIE-KELM2, vhich is a

version of ELODIE-MEM, in which the c-equation is after Hanjalif and Launder (1980),

x y 1 2 3 -v j~D (S

where

u r2 0. 33k; C -1.44; C -1.9; C -4.44 ,

t£2 E 3

In ELODIRITLN, the wall treatment Is the sam as In ELODIE-KELM.

For a few cases, the low Reynolds number turbulent regions have been calculated

using the Jones-Launder model. This form the program ELODIE-KEI SC * The k- and

c-equations are according to Jones and Launder (1972): ...

Ok O2 2llt~)2 +,L t 3
ax ~ ~ ~ Uv ay SI y £ 3 rEO

3C'V- C at C -0.0x + V v a~c fy 2Ut32a +L

f- - cc -. 7 Cr- -2; a l i -1.3io
IF t k _T) a RU 71y

2 ~~~ ayC 
00-7

2 .

C~~* 1.5. .

k.*
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SDescription of MULTI

This model is directly drawn from the multi-scale model of Hanjalid, Launder and

Schlestel. It only differs by the values of some coefficients. Four transport equa- i.: *
tions have been written for the energies kp, k T , and the spectral transfer rates C

and e - They have the following form (in homogeneous f lows) as given in Hanjalid at

al. (1979):

Bk DkT  auI

-- = Cp p p - -u-iuJ--  (Ml)

D C P2 BeT T T (M2)

Dt4 =  l k p 2 k 1 C 1 T - CT2 -T

k k- 
C 1.085 ; C 1.8 - 0.3( ;DT = 1.08 __ C T 1.15

p1  p2  pT ;C 1 T 2

The dissipation rate C is equal to CT" The total turbulent kinetic energy is

k - kp + kT . The individual Reynolds stresses are computed with the following aqua-

tion drawn from the Reynolds-stress closure of Launder, Reece and Rodi (1975):

Du'up
i i j +r-- a k)- e 6 (K43)

OL~ij *J, 2  Cl kuiuj T i 3C
p

The value of the coefficient C2 of the linear part of the pressure-strain corre-

lation term *ij,2 is C2 - 0.4.

The value of the coefficient in the return-to-isotropy term is C1 - 1.61. The

initial values of the spectral parameters k /kT and Cp/CT are always taken as:

kp/k. 1

Cp/CT - 0.5

Description of "J.ULW

This model is drawn from the Launder-Reece-Rodi model. In the Reynolds-stress

equation, which Is written (in homogeneous flows)

Dc - ij + *IJ,2 -Cl (7'iI' - ik - j(l

the values of the coefficients are: C1 - 1.839; C2 - 0.4 (coefficient in the linear

part of the pressure-strain term #Lj,2)"

The turbulent kinetic energy, k, and the dissipation, c, are computed with the

following equations:
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Dk ar u (2

1 2

The only original approach in this model is the determination of the coefficient

CC A comparison Is made with the tensorial volume of turbulence theory of Lin and
Wolfshtein (1980).

These authors have defined a tensorial volume Vii (a symmetric tensor in homo-

geneous f lows). In homogeneous f lows, the transport of Vij is given by the following
exact equation:

au 3Uui(A)uj(B
D -~i) kau V ; V(A) -f - dV (L4)

ak axk V u'(A)uj( )3

A length scale is defined by: L -(Vtt) 1 j 3 . After writing that the dissipation rate
C is proportional to k /2 L we obtain:

D 2 al

k

The equations for k and:e lead to:

D -2 (L
DtIn( 2- bijj (Ce1- CC2) (6

where bi is the anisotropy tensor:

u u' 8
b -" +

With C -11/6 1.83, the comparison between Eqs. L5 and 1.6 gives:CC2

Vkt aU I

C -C2 (W7)
1 2 i ij i

In simple cases, when the derivatives aU1i/axj are known and with an initially
Isotropic turbulence, It Is possible to compute analytically the evolution of the

Volume 'ij as a function of a dimensionless time r. For instance, for a constant
shear all/ay the dimensionless time is written T - at, where t is the physical time.

In the case where a is not constant, the time ir - 0ftedt is used. Thus, the
Coefficient Cc1 Is a function of the anisotropy and of T.
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ror Cases 0376A and 0376B (@hear f low), C~ is computed with the following

expression. i~
1 2 -c 3

For~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ t-... Iroain lnesri Css074 n 34) h drvtvso h
N

mean velocity are

au av Swa 0 ; ; -X ;

Thes time vIs T Int and Ccis givenby:

4c - sinh (2-r) 1(9
e2 31 31 +2cosh (2)--2

Wv Ak-v t /k) ~

For the axisym~etric contractions (Cases 0375B,D,E), the mean-strain rate is

given by: .

OU SV I Sw I -9

and T Is given by:
t

T- f Xdt

0

This leads to the following expression for Ce

C2 1 2e.3 +IT(LO
2/3-u' /k

Remark: It should be noted that in our calculations, for both models (lELTI and -.-

LUJLW), the Initial value of the dissipation in Case 03763 (Harris) was c- 1.2, and

not the incorrect daton value e 3.91.

Description of 1ADII-COIN

The equations to be solved are the following:

U V +
x y Oz F'dx UVq ly-3 f

U -+ V + U tou j+ Wy +j +(L + Ii~ 2
ay 3z

+ ~ ~ -W + (2- T r
ax Sy
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a2 W a2 W w a2
- 7 7 Y XTZ-

2 2 2av av V w a1U

ay 3:

* where
_w 8 u a 3V a 31

The equations are the streamvise momentum equation, the equation for the stream- .

wise component of the vorticity and two Poisson's equations for the secondary veloci- a.~

ties V and W. A set of assumptions, which constitutes an extension of the usual

boundary-layer hypothesis, leads to a parabolized system in the x-direction (see Arnal

and Cousteix, 1981).

The h1ynolds shear stresses are expressed as follows:

2~ 4 A 2 l k ; 11 au --- au1
V - W' FY i---a-) {jTaZ

-~ 2 k~ v 2  w y :- O
11 C(r-. 7-''-1!'

t ayv -'W Vtt - - Z

where
2

1 A -6C2  12C2 +2 k
t 7 33C1

Closure relationships:

au -r au
-u w r-(dissipation)

1/2
2,!U2 ,t...-

vt +y Fz2]

F Is a damping function for the near-vail regions. The expression of the mixing- .-

length A is deduced from Buleev's formulation.

Values of the constants:

C1 - 1.5 ; C2 - 0.25 or 0.30

For Case 0512 (Humphrey), two calculations have been performed:

0 the pressure Is supposed to be constant in each (r, z) plane: 3p/ar -0, .

0 the pressure is obtained by a two-dimensional, inviscid calculation

(3 p/az - 0, but Op13r jI 0); this pressure field is introduced as a datum in

ELODIR-COIN. (C2 -0.30 for Case 0512.) a
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COMPARISON OF COMPUTATION WITH EXPERIYRNT

S-mary Report

by

G. S. Deiwert

Computor Group Number: 47

Cases 8621, 8623

Computations are made with the strong conservative form of the time-dependent

compressible Navier-Stokes equations by using the MacCormack (1978) finite-volume

mixed explicit/implicit/method-of-characteristics algorithm. Written in time-

dependent Reynolds-averaged form, the equations are

at f U d(vol) + f H - n ds -0
vol s 

..

where

p u p u + -

~~~.o, ,~,*

e eq + T q kVT

q -ue + ve

These equations are written and solved in Cartesian x-y space for computational

meshes of arbitrary geometry. An exponentially stretched grid with thickness the

4' order of the shear-layer thickness is used to resolve the viscous-flow regime. Out-

side this viscous region, a second exponentially stretched grid is used to resolve the .

inviscid field to distances far from the body surface (typically 15 chord lengths).

To facilitate adequate resolution of the near wake, the computational grid is dynam-

ically remeshed during the course of the solution so that the mesh always follows the

. path of the wake (as defined by the locus of minimum velocity). Solutions are

advanced in time until a steady state is reached.

Turbulent transport is incorporated into the molecular-transport stress tensor by

adding the scalar eddy-viscosity transport coefficient c, thereby relating turbulent

transport directly to gradients of the mean-flow variables. In a Cartesian coordinate %..

system, the two-dimensional molecular stress tensor can be written as

Ames Research Center, NASA, Moffett Field, CA 94035
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where the components are defined by

O - -2uz(3uIBx) - (Su/3x + 3v/Sy) (2)

0--2ia(Sv/Dy) - (3u/ax + avlay) (3)

T C -U-~ (Wa/y + av/ax) (4)
17 7K

and

-~~ The total shear (molecular plus turbulent) is written as -

I t X Y X Kyy YX y y y y

where

--
2 (Uz + pe)(Ou/ax) - )(3ulax + av/ay) (6)

M - 2(i + pe)(av/ay) - X(3uIax + Ov/3y) (7)
y

7 7 -(U + pe)(au/ay + Ov13x) (8)
KY Y1

* In a similar manner, turbulent heat transport ts defined in terms of mean-energy grad-

ients and an eddy-conductivity coefficient kt 00 that

Qt -k VT (9)

The eddy-conductivity coefficient Is related to the eddy-viscosity coefficient via a

turbulent Prandtl number Pr~t where

Prt p cc/k t(10)

An algebraic model of the type suggested by Smith and Cebeci is used where in the

boundary layer near the solid surface we have

£ 2[(3u/y)2 + (av/3x)2J(1

1 0.011r - exp(-vn/A)J (12)

A -
26M /- (13)

V WV w. .
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and in the outer part of the boundary layer and in the wake ve have

.- 0.0168u8  /fl + 5(n- n DS)/61 (14)

6i f (1 - ud (15)
TDS

To approximate the influence of upstream history a simple relaxation procedure is used

such that

, =c( - ,fl) + (1 - U)c M( ,n) (16)
eq

where eq is defined by Eqs. 11 and 14, a is a relaxation parameter with value between

zero and one and AC is the local streamwise computational mesh spacing. For a - 0,

there is no relaxation and for a - 1, the eddy viscosity is frozen. A value of 0.3

is used for a in the examples. The turbulent Prandtl number is assumed constant at

0.90.

A computational mesh is constructed around the airfoil geometry as follows.

first, an orthogonal body-oriented mesh is constructed around the airfoil (with the

airfoil surface treated as one mesh line) and extended out a distance sufficient to

capture the viscous-dominated flow region (ten percent of the chord length of the

airfoil). This mesh is extended downstream from the trailing edge of the airfoil (15

chord lengths) at an angle relative to the mean chord line corresponding to the angle

of attack of the airfoil to the oncoming stream. The mesh spacing normal to the air-

foil surface is exponentially stretched with the first mesh spacing set equal to

1/12th of the chord length divided by the chord Reynolds number. There are 18 mesh

points distributed across this region to the outer edge of the zone. Points are gen-

erated (or input) along the airfoil surface and distributed exponentially downstream -.. .

in the wake to a maximsn total of 107 "surface" points in the wake and on the air-

foil. Second, a larger and coarser mesh is constructed extending from the outer edge

of the viscous mesh to a distance far from the airfoil (typically 15 chord lengths).

Again, exponential stretching is used away from the surface and 19 points are distrib-

uted across the region. The radial mesh lines are required to be continuous with

those in the viscous mesh, but the requirement of orthogonality is relaxed so that

mesh lines neither converge (cross) nor diverge too rapidly.

As the flow develops, the position of the viscous wake moves with time. To

assure the capture of the wake in the viscous mesh, the mesh downstream from the

trailing edge of the airfoil is dynamically adjusted during the course of the solution

in a direction normal to the mean chord of the airfoil so that the slope of the wake

mesh matches the flow direction in the core of the wake. This dynamic remeshing is

Initiated sometime after the impulsive start (typically after a dimensionless time
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of 1) to allow time for the starting vortex to be shed downstream. Mesh adjustment is

realized gradually with the adjustment never exceeding the smallest transverse mesh

spacing in any one tine step.

The computer code was designed to study unsteady transonic flows where there

exist regions of strong viscous/inviacid interactions and large regions of flow separ-

ation. Because the method t time dependent and time accurate, fairly long computer

times are required to achieve convergence for transonic flows. This time increases

directly with the number of mesh points used in the computational grid. In the inter-

eat of economy a minimal number of mesh points (37 x 107) were used in the present

computations. This grid permits adequate streaawise resolution except near the trail-

Ing edge where clustering should be used to resolve the details of interest. The

radial resolution in sufficient for the Inviscid region and will support the coupling

of the inviscid and viscous regions. However, it is highly unlikely that the

boundary-layer details will be adequately resolved. Typically, there are only 5 to 10 N '

mesh points in the boundary layer, except in regions where the viscous region is very

thick.

One case was selected to illustrate the influence of grid resolution on the con-

potation of the boundary layer. For the RAE 2822 airfoil, case 6, (Case 8621) ten

more points ware added to the fine-mesh region in the direction normal to the airfoil-

surface. While even this does not provide adequate resolution of the boundary layer,

significant Improvement in the solution was realized. Previous studies (Baldwin et

al., 1975; Deiwert 1975a,b, 1976a,b, 1977, 1979; Deiwert et al., 1975; Deiwert and

Bailey, 1979; and McDevitt et al., 1976) indicate that good agreement with experiment .

can be realized when sufficient grid resolution exists.

For the transonic-airfoil cases considered for this Conference where the vis-

cous/Inviscid interactions are not strong and regions of flow separation are essen-

tially non-existent, the present method is not the method of choice. Rather a

boundary-layer method (including, perhaps, higher-order effects) would be much more

suitable.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Results from A.R.A.P.'s Second-Order Closure Model)

by

C. duP. Donaldson, B. Quinn, W. S. Lewellen,
R. D. Sullivan, R. I. Sykes, A. K. Varma*

R.D. Sullivan Computor Group Number: 21

Cases 0141, 0241, 0242, 0244, 0311, 0371, 0373t 0374, 0375,

0376, 0421, 0422, 0612t 8101, 8201, 8301t 8403, 8411

In the course of the last dozen years, A.R.A.P. has frequently been faced with

the need to make predictive computations of turbulent flows in regimes for which phy-

sical understanding was sketchy. Examples (Donaldson, 1973; Lewellen, 1977) include I

flows in the atmosphere with temperature and humidity gradients and flows in the ocean

with temperature and salinity gradients. Thus we have tried to make a turbulence

model as general as possible, without unduly sacrificing simplicity, by using

Reynolds-stress closure. Another goal has been to design the model so that it col-

lapses to simpler models for flows that can be adequately treated thereby.

Our codes can be expected to produce accurate results for flows with scales that

are not of greatly disparate size in different directions and for which the turbulent

spectra are similar and can be described by two parameters, an integral scale and a

dissipative scale. Our current research is directed toward developing equations for a

tensor of second rank, called the scale tensor, derived from the two-point correlation

equations. (If correlations of a scalar with the velocity are also involved in the

flow, there is in addition a scale vector to be considered.) We believe that the use

of such equations in conjunction with suitably modified Reynolds-stress-closure equa-

tions would give results applicable to an even wider class of flows, since such equa-

tions contain information about eddy structure. i *

In making computations for the Stanford Conference we have used operational codes

to calculate a variety of turbulent flows in order to demonstrate their generality.

The 18 cases represent a compromise between this desire for a broad verification set

and the necessity of keeping costs in line. They range from the simple homogeneous

flows to the true predictive case of the flow downstream of a backward facing step

with the wall opposite the step at a 60 angle. Five of the cases are compressible, .4

the rest incompressible.

We used two main programs for our computations: ARB (Sullivan and Varma, 1978;

Sullivan, 1980) and WAKE (Hirsh, 1979). They both use the same Reynolds-stress

Aeronautical Research Assoc. of Princeton, Inc., P.O. Box 2229, Princeton, NJ 08540
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modeling (except that AUS has additional modeling for terms that occur only in com-

$ pressible flow) with the same values of the coefficients. However, the turbulenc.-

scale, A, is computed differently. ARB uses an algebraic formula, while WAKE uses a

differential equation to determine A. We recognize that any such differential equa- -. -

tion with constant coefficients cannot be correct (Donaldson and Sandri, 1981).

Nevertheless such equations are more useful than one might expect in much the sam way

that eddy viscosity is a much more useful concept than one might expect.

As programs, ARB and WAKE differ considerably in that ARB is parabolic with one

space dimension and is used only for boundary layers, whereas WAKE is parabolic with

tmo space dimensions and is used for three-dimensional flows or time-dependent two-

dimensional flows. Thus WAKE can handle two-dimensional elliptic problems. The boun-

dary layers that ARB computes can be on flat plates or bodies of revolution with an

arbitrary distribution of cross-sectional area (the body can be rotating or not). A

variation of ARB called RSL has no provision for rotating bodies, but can do unbounded

shear layers as well as boundary layers. (RSL also has provision for calculating

multi-species reacting flows.) RSL was used in this project only for Case 0311 (mix-

ing layer).

Another difference between the two programs involves wall conditions: ARB com-

putes all the way to the wall with no special provision except that the formula for A

makes it proportional to the distance from the wall when that distance is small,

whereas WAKE uses the law of the wall to establish boundary conditions some distance

off the wall.

WAKE was used to compute Cases 0421 and 0422(P2). These separated flows have

been calculated as elliptic, unsteady flows. The flow is free to develop two-

dimensional unsteady eddies which are resolved by the computation. The influence of

the smaller three-dimensional turbulence is incorporated by the turbulence closure

model.

The homogeneous cases were done by an ordinary differential equation solver using

the equations to which the WAKE equations reduce under those conditions.

The method descriptor for AU is RSTN where the N denotes a no-slip condition at

the wall, with no modification of the equations. For RSL the descriptor is RSTC, for

WAZZ It is RSLZ, and for the ordinary differential equation version of WAKE it is

RSLC. Z

Table 1 lists the cases we did along with the method descriptors, the approximate

value of y+ for the first point off the wall, the approximate number of mesh points,

and the approximate CPU computing time on a VAX 11/780.

Many of the cases lacked sufficient data on the initial conditions to show

Reynolds-stress modeling to good advantage. Nevertheless the results were generally

as good as or better than those submitted by other groups using different methods.
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The Incompressble boundary layers included cases with blowing, suction, and adverse

or zero pressure gradient. The agreement was quite good for the most part.

Specific compressible boundary-layer cases Included two with adverse pressure

gradient and one with a favorable pressure gradient and blowing. Here we found good

results except that velocity correlations were found to be too large by as much as

10OZ. This Is perhaps due to the fact that the extension of our Reynolds-stress

modeling to compressible flow introduces new parameters that might be adjusted. No

* funding has been acquired to accomplish this task, so the coefficients of the new

terms have been set equal to the coefficients of similar terms for incompressible flow

or set to zero.

Other compressible calculations determined the skin friction of a flat-plate

boundary layer as a function of Mach number and as a function of wall temperature.

Again the results were reasonably good.

Flows calculated with a differential equation for determining the scale were

several homogeneous flows and two flows behind a backward-facing step. Among the .

homogeneous flows, agreement was generally good for the decay of isotropic turbulence,

for plane strain, for axisymmetric strain, and for homogeneous shear. On the other

hand, the return to isotropy after distorting strain in axisymetric flows is much too

rapid according to our results. This may be due in part to our neglect of rapid pres-

sure terms which forces a higher coefficient on the Rotta terms. However, some of the

flows return so slowly that the inclusion of rapid strain terms would not give good

agreement. Furthermore, in the two-dimensional plane strain case, our results are

very good indeed. It appears that some account of structure of the eddies is neces-

sary for accurate prediction of these flows; the axisymmetric strain may produce

highly elongated vortices aligned with the flow which could be very stable, and hence

persist for a long time.

For the backward-facing-step flows we obtained an unsteady two-dimensional solu-

tion, i.e., some of the turbulence energy is contained in the two-dimensional eddies.

In fact, if the length-scale equation was not modified, most of the energy ended in

the resolved eddies. This is utrealistic, since we know there is significant three-

dimensional motion, so we applied a lower limit to the length scale, forcing the mod-

eled stresses to contain significant energy. Profiles of turbulence quantities then

Include both resolved and modeled components, averaged over a time period which covers

sevaral flow times through the box. The results for both cases, one of which was

predictive, were good.

In smmary, we are encouraged by these results. We believe they demonstrate that

a wide range of problems can be handled by Reynolds-stress-closure models even with a
scale equation that Is very primitive. It is our belief that the direction to be

taken is the development of tensor- (and vector-) scale equations and the proper
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coupling of this information into the Reynolds-stress equations. This view is .' .

strengthened by the results of the calculations of return to Isotropy mentioned above.

There are really compelling reasons at this time for having predictive capabili- . *
ties for stratified flows. When one considers turbulence in such flows, it is clear .-'

. that significant efforts in Reynolds-stress-closure modeling should be expended in the

months ahead and, in all probability, for some years to come.

This work was partially supported by the Air Force Office of Scientific Research, .

Contract F49620-81-C0057.
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T a b le 1 . .. .

Method Mesh CPU
Case Short Description Descriptor y+ Points Time

0141 B.L., Op/3x > 0 RSTN 3 30 3 min
0241 B.L., Blowing RSTN 1 40 3 min
0242 B.L., 3p/3x > 0, Suction RSTN 1 35 3 min

-' 0244 B.L., Suction RSTN 2 25 3 min
0311 Mixing Layer RSTC - 25 3 min

'Y 0371 Homogeneous Isotropic RSLC - - 10 sec
0373 Homogeneous Relaxing RSLC - - 10 sec .'
0374 Homogeneous Plane Strain RSLC - - 10 sec
0375 Homogeneous Axisymmetric Strain RSLC - - 10 sec
0376 Homogeneous ShearRSLC - - 10 sec
0421 Back Step RSLZ 30 40x60 10 hr
0422(P2) Back Step, Predictive RSLZ 30 40x60 10 hr
0612 Flat-Plate B.L. R sTN 1 40 3 min
8101 Compressible B.L., Cf vs M RSTN 1 35 3 min
8201 Compressible B.L., C, vs Tv RSTN 1 35 3 min*
8301 Compressible B.L., Blowing ap/ax ( 0 RSTN 1 40 3 min
8403 Compressible B.L., Sp/ax > 0 RSTN 6 30 3 min
8411 Compressible B.L., ap/ax > 0 RSTR 2 40 3 min

[ld.: Two paragraphs here have been moved to consolidate discussion on modeling; see
p. 1006 of Vol. 11.1
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report 4
(The Modeling of Airfoil Separation in Subsonic Flow)

by

F. A. Dvorak and B. Maskew*

F. A. Dvorak Computor Group Number: 46

Case 0441

Abstract

A free-shear-layer model for separation has been developed which enables one to

calculate the flow about airfoils up to and beyond the stall. The calculation proce-

dure involves iteration between viscous and inviscid flows. The separation region

is modeled in the inviscid flow analysis using free vortex sheets whose shapes are

determined by iteration. The outer iteration employs boundary-layer calculations to P

determine the location of separation. In subsonic flow the inviscid flow field is a-..,

calculated using a panel method based on linearly varying vortex and source singulari-

ties. Viscous effects are introduced via the surface-transpiration approach. The

method has been compared with experiment for a wide range of airfoil types. The stall

behavior for airfoils with trailing-edge or leading-edge separation is predicted quite

well, while thin airfoil or long bubble stall is poorly predicted. The method has

been applied at angles of attack through 90* with excellent results.

S.-

Introduction

Boundary-layer separation is one of the least understood but most important of

fluid-flow phenomena affecting aerodynamic forces and moments. Its accurate modeling

is essential to the estimation of airborne vehicle performance. Currently, reliance

is placed on wind tunnel tests to determine the consequences of separation, a pro-

cedure which is not entirely free of doubt because of Reynolds-number effects. Suc-

cessful theoretical modeling of separation is limited to a small number of special

cases, one of which is two-dimensional turbulent boundary-layer separation from air-

foils or diffusers. The first successful model for trailing-edge separation was I
developed by Jacob (1967). With Jacob's model, the separation region is simulated

using source fluid, the distribution of which is chosen to give constant pressure

everywhere in the separation region. In general, the method predicts the upstream

pressure distribution in a satisfactory manner, although agreement with experiment for

base pressure level is not consistent.

*Analytical Methods, Inc., Redmond, WA 98052
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Bscently a separation model has been developed by Aalytical Mothods, Inc. which

replaces the source distribution in the separation zone by a vortex wake model. This

model is described in some detail in Maskev and Dvorak (1977), but is briefly dis-

cussed herein for reasons of completeness.

Separation Model ..

An approximate model of the flow about an airfoil with a region of separation is

based on the following: I- '

(i) The boundary layer and free-shear layers do not have significant

thickness and, hence, can be represented as slip surfaces; that is,

streamlines across which there exists a jump in velocity.

(ii) The wake region does not have significant vorticity and has constant

total pressure (lower than the free-stream total pressure). It is,

therefore, taken to be a potential flow region. ..

The flow field in the potential flow Is obtained using linearly varying vortex %. %

singularities distributed on planar panels. The wake is represented by sheets of

vorticity shed at the separation points. The mathematical problem is to fInd the

vortIcity sheet strength such that the appropriate boundary conditions are met.

The position of the vorticity sheet representing the free-shear layer is not known - "--,. .. .'.

. priori"

Approximations for the Free-Shear Layer

(i) Wake Shape

Initially, the streamlines are not known, and so the shapes of the free-shear

layers mst be obtained Iteratively starting from an Initial assumption. Once the

wake calculation begins, the initial slope and downstream position of each wake is

determined by iteration. The final wake position represents the separating stream-

Usne.

(i) Wake Length

Early calculations indicated that the results were sensitive to the length of the

free vortex sheets. Good correlation with experimental results was obtained only with

relatively short makes; I.e., makes extending O.lc to 0.2c beyond the trailing edge.

Such a model appears reasonable in the light of experimental evidence: the separated

wmak does, in fact, close quickly downstream of the trailing e4ge, as a result of the

strong entrasinmet process brought about by the rotation in the free shear layers (see

ketharm and Vnts, 1975). On the basis of several comparisons with experiment, a

simple correlation was obtained for the wake length as a function of the airfoil

thickness to chord ratio. This is discussed in detail in (Maskew and Dvorak, 1977).

o . %.%
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(iii) Wake Pressure

The approximation of zero static pressure drop across the free-shear layer is

used to obtain an expression for the total pressure in the wake in terms of the

strength of the free vortex sheets. The Jump in total pressure across the shear layer

is AR = -vy u .

Once the vorticity strengths of the individual panels representing the airfoil

and of the vorticity sheets representing the wake are determined, the velocity at any

point in the flow field can be calculated. -'

The pressures are calculated from the velocities according to the Bernoulli equa-

tion which is expressed non-dimensionally as

C p = 1 2 + .A.'

-1-, (V'-

where Cp = (p - p )/q., q. - 1/2 pV2, and AH - increase in total pressure over that

at infinity. Note that AH = 0 everywhere except in the wake region.

Boundary-Layer Methods

The laminar boundary-layer development is calculated by the method of Curle
(1967), an adaption of the well-known method of Thwaites (1949). The calculation

proceeds either to laminar separation or to the end of the airfoil-whichever occurs -

first. The calculated boundary-layer development is then interrogated to determine if

transition, laminar separation, or forced transition (boundary-layer tripping) has

taken place. If any of these phenomena has occurred, the downstream flow is assumed

to be turbulent.

Methods for the calculation of turbulent boundary layers in two dimensions have

been developed by many investigators. A review of these methods was made at the 1968

AFOSR-IFP-Stanford Conference (Kline et al., 1969). One of the methods, an integral

method by Nash and Hicks (1969) compared very favorably with the more complex finite-

difference methods. Now, several years later, the method remains an excellent

approach for application to the current problem, both in terms of accuracy and speed.

Separation is predicted when the skin-friction coefficient reaches zero.

Calculation Procedure
The overall calculation procedure involves two separate iteration loops.

(1) Wake Shape Iteration

The iteration loop for wake shape is the inner loop and involves the poten-

tial flow analysis only. Within this loop the separation points are fixed. The

wake shape is calculated as follows. Using the previous vorticity distribution,
velocities are calculated at the panel mid-points on the free vortex sheets.

The new wake shape is then determined by piecewise integration starting at the
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separation points. The upper and lover sheet downstream end points, which were

coincident in the initial wake, are allowed to move independently in subsequent

iterations. At each iteration the wake influence coefficients at the surface

control points are recalculated, and a new potential flow solution is obtained.

(ii) Viscous/Potential Flow Iteration

This outer iteration loop transfers the potential-flow pressure distribu-

tion to the boundary-layer analysis and returns with the separation points and

with the boundary-layer source distribution. The source distribution is deter-

mined directly from the boundary-layer solution as a - d/ds(Ue6*), where Ue is

the streaMwise potential flow velocity at the edge of the boundary layer, and 6"

is the displacement thickness. The addition of this source distribution modi-

fies the normal velocity, VN, at each panel control point. The sources are set

to zero in the separated region.

The program generates a new wake shape using the new separation points

together with information from the previous iterated wake. A new potential flow '"" •

situation is then obtained, and so on. The outer iteration is terminated when

the change in C, is below 1%.

Discussion of Results

The comparison with the experimental pressure distribution of Case 0441 is

shown on Fig. 1. Two Reynolds-number conditions were evaluated: the nominal

test condition, Re - 1.52 x 106, and a higher value, Re - 9.0 x 106. The calcu-

lated pressure distribution at the higher Reynolds number is clearly in better

agreement with experiment except in the separated flow region. This raises the

question of the effect of a high tunnel turbulence level on the data. A second

question arises from the use of a passive flow control system (vortex genera-

tore). What local changes occur to the flow field in the airfoil trailing-edge

region due to the vortex generators?

Additional calculations were made for comparison with the data of Pinkerton

(1938). This data was taken on the same NACA 4412 planform, although the test

environment differed considerably from that of Case 0441. Pinkerton used a

three-dimensional model with corrections to the angle of attack due to down- ..-

wash. No wall-boundary-layer control was required. As shown in Fig. 2, a cal-

culated pressure distribution for an effective Reynolds number of 3.4 x 106 (as

referenced by Pinkerton) is in excellent agreement with experiment. Figure 3

shows a comparison of the predicted Ci., with Pinkerton's data for a wide range

of Reynolds number. The excellent agreement suggests that Program CLMAX cor-

rectly predicts the effect of Reynolds number on the maximum lfL coefficient.

The conclusion remains that some as yet unexplained combination of different
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phenomena give rise to the results of Case 0441, which has some characteristics

of a high-Reynolds-number flow (high suction peak and delayed separation), while

at the same time having a separation pressure level more in line with a lower

Reynolds number. NASA Ames Research Center is currently planning a wind tunnel

test to explore this airfoil section in greater detail using non-intrusive meas- -.

uring techniques.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

by

'.. J. H. Ferziger,* J. Bardina,* A. A. Lyrlo,

and R. C. Strawn*

J.H. Ferziger Computor Group Number: 45 R.C. Strawn

Cases 0141, 0142, 0143, 0431y 0612

Our group at Stanford has developed integral methods for predicting detaching and

detached turbulent boundary-layer flows. Variations of one such method have been used

to predict five test cases for the 1981 Complex Turbulent Flows Conference. In the

following summary, an outline of the relevant equations is presented; more detailed

descriptions are contained in Bardina et al. (1981a,b), Childs et al. (1981), Ghose

and Kline (1976), and Lyrio et al. (1981)."'- -

Finally, a short discussion of each computed test case will be presented.

Summary of Equations

The basic integral methods used in the computations are completely described by

* Lyrio et al. (1981). They consist of the following equations:

1. Momentum Integral Equation

dU c -
de a0- f 1ld 2 2

+ (2 + H) . dx 2+ f - (u'- v' )dy (1)

U. 0

For detaching flows, the normal stress term is treated by a model due to Ross (1953).

According to this model, the last term is modeled as:

Ad 2*(U. (2)VN __ x ".U'., 6)\

A value of A - 0.023 was chosen from numerical experiments.

2. Shape Factor and Skin-Friction Correlations

Kline et al. (1981) present the following shape-factor correlation for detaching

and detached turbulent boundary layers:

2 - .'-.,

VT2
h 1. 5A + 0.179 VT + 0.321 -- (3)

where h - (H - 1)/H, A 5"/6, and VT is a nondimensional shear velocity given

implicitly by:

•Department of Mech. Eng., Stanford University, Stanford, CA 94305
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V2A (4)
l T + Xn(KRCe) + 0.05

for ear of computation, we use an explicit approximation to Eq. 4:

vTr  o.885 A 0.115
= I441-2AI (j;-) sign(I-2A) (5)

Kline et e1. (1981) hav3 shown this shape factor relation (3) to correlate a wide

range of separating turbulent boundary-layer data.

3. Entrainment Equation

The entrainment rate is defined by:

E d U - 1 (6)

Three different correlations for the non-dimensional entrainsent rate E were used.

All give very similar results for adverse pressure-gradient flows. The use of three

correlations rather than one is the result of test cases being computed by different

members of our group in various stages of their research and not of selecting a

"tuned" correlation for each particular case.

The three entrainment correlations are:

a) A relation between entrainment rate and maximum shear stress in the boundary

layer first proposed by Bradshaw et al. (1967):

10 T '....'

E max

PFPO

Details regarding the evaluation of Tmax are given in Ghose and Kline (1976) and Lyrio

at al. (1981).

b) A relation between entrainment rate, the integral parameter A, and a pressure-

gradient parameter Ke:

E 4.24 Ke A )0.916 (8)

c) For diffuser flows, a simplified entrainment equation is used which requires

no lag:

E- 0.0083 (1 - A) 2 5  (9)

Equations I through 9 can be combined to solve prescribed pressure-gradient

boundary-layer flows. The system is solved by marching in the downstream direction.

For diffuser flows, where the boundary layers and potential core must interact, addi-

tional equations are needed.
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4. Continuity Equation
In order to couple a potential core flow to the boundary layers in a diffuser

flow, a one-dimensional radial source flow is used for the core flow:

.1Q -U(1 - B)W (10)

where W is the diffuser width, B is the blockage (26*/W for symmetric boundary lay-

arm), and Q the volumetric flow rate. Equation 10 can be combined with Eqs. 1 through

9. The boundary layers and the core flow are computed simultaneously for internal

flows.

5. Diffuser Flows-Limits on Entrainment

For diffuser flows, two physical limits on the entrainment rate are implemented

after detachment. These limits are obtained by requiring:

a) Cp can never decrease in the diffusing section; , ..

b) Cf can never increase in the diffusing section.

These limits complete the system of equations for diffuser flows. Counterparts of the .... "-. -

above equations for axisymmetric flow are derived in Lyrio et al. (1981).

Proposed Extensions of the Basic Method

Childs et al. (1981) have already extended the basic integral method to include 16e

effects of compressibility up to 4 - 0.9. Lyrio et al. (1981) have extended it to

unsteady flows. The extensions to axisymmetric flows have already been mentioned.

None of the compressible Conference test cases were calculated, however, due to lack

of time and manpower. Proposed extensions of the method would include the effects of

boundary-layer suction and blowing and the effects of free-stream turbulence in the . -

correlations referred to above.

Discussion of Results from Computation

1. Case 0612, Zero Pressure-Gradient Boundary-Layer Flow (Wieghardt)

This flow was computed as a prescribed pressure-gradient case using the entrain-

ment correlation given by Eq. 7. Since the initial velocity profile contains only

five measured data points, there is probably considerable uncertainty in the starting

values of all of the integral parameters including Cf. Thus, it was not possible to

fit all of the initial data to our correlations. We therefore matched the initial Cf,

but agreement with the other given inlet parameters is only fair. Trial-and-error

tests, using different inlet conditions, could probably produce improved agreement

with the data downstream. The velocity profiles were generated using Coles' wall-wake

law from which Eqs. 3 and 4 are derived.

-/ ° . •
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2. Case 0141, Adverse Pressure-Gradient Flow (Samuel and Joubert)

This flow was also computed using a prescribed pressure gradient. Results were

obtained using the entrainment correlation given by Eq. 8. Velocity profiles for this ~

Vcase were generated using Coles' wall-wake law. Higher-order turbulence quantities
such as rW. and u' are not used in our integral methods so they are not presented in

our output plots.

3.* Cases 0142 and 0143, High- and Low-Core Turbulence Conical Diffusers (Pozzorini)

These flows were computed by coupling the one-dimensional continuity equation

(10) for the core flow to the boundary-layer equations. Results for the low-core-

turbulence case (0142) predict pressure recovery quite well, but premature separation

Is predicted at the diffuser exit plane. Hence, calculated skin-friction and velocity

profiles deviate from the data at the diffuser exit.
Results from the high-core-turbulence case indicate the necessity of revising the

modeling to account for free-stream turbulence effects.

4. 'Case 0431, Separating Boundary-Layer Flow (Simpson et al.)

This case was computed as a symmetric diffuser flow. The given streamline near
~1*the upper wall surface was used as a line of symmetry, and two identical boundary

* layers were coupled with a one-imensional continuity relation to complete the system.

The entrainoent correlation given by Eq. 9 was used f or this case, and velocity pro-

files were generated using Coles' wall-wake law. Results are quite good for skin-

friction and velocity profile prediction, particularly in the vicinity of boundary-

layer detachment.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report
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V..-. with an Algebraic Reynolds-Stress Closure Scheme)

by

C. Hah C. Hah* and B. Lakshminarayanat B. Lakshminarayana

Computor Group Number: 19

Case 0331

Abstract

The highly curved mixing layer measured by Castro and Bradshaw (1976) is pre-

dicted numerically with an algebraic Reynolds-stress closure scheme. The turbulence

closure model is based on the transport equations for the Reynolds stress and the

dissipation rate of turbulence kinetic energy. The convection and diffusion terms in

the Reynolds-stress transport equation were assumed to be related to the production

term. The curvature effect is included in the production of turbulence kinetic

energy. The comparison with the experimental data shows that the stabilizing effect

of the curvature is well reproduced by the model. However, the experimentally mesas-

ured rapid rise of turbulence quantities in the straight region downstream of the

curved section is not well predicted even though there is good agreement with the

qualitative trend. k

Coordinate System and Governing Equation

For the calculation of curved mixing layer, a curvilinear coordinate system shown

in Fig. 1 we used. r is the distance from the center of curvature, s is the stream-

wise distance on a specified path, and b is normal to s and r. With this coordinate,

the actual streamline of the mixing layer can be closely represented. The detailed .

characteristics of this coordinate system are given by Hah and Lakshminarayana (1980).

The fundamental metric tensor for this coordinate system is 2
r " 1 + A 0

0 0 J 0,

Christoffel symbols of the second kind are as follows:

•General Electric R&D Center, Schenectady, NY 12345

tDepartment of Aerospace Engineering, Pennsylvania State University, PA 16802
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Figure 1. Coordinate System and Notation.

2 3.

a 2 1 r1  - 2 *2 2 r3
ru~'2 -Tri 12 - 22 -- , r2 1  r22-- 747 (2)

r r r r

All other Christoffel symbols of the second kind are zero.

-~ A4The above coordinate System is a generalized curvilinear COOrdinate system and .

can be converted to either the Cartesian or the s-n coordinate system used by Bradshaw

(1973). .

Then the governing continuity equation is,

313 Or 3s Or

and the mean-mosentum-conseivation equations for turbulent flow are:

31 + V +~ + v~ r321v (
5- r 1 2 2rO 281 o r 3s

r

11r ur 12 -y 12 (4

3V Ov 2 2 2 2 2 1r!Pa + 31 P uv 3V

-72 -72 -2ur - v r 2 -uvr1  (5)

where U and V are contravariant components of mean velocity, u and v are fluctuating ..-

components of velocity, and p is the static pressure.e
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Turbulence-Closure Model

To get closure of the governing equations (3) through (5) for the unknowns U, V, , .

and p, a proper turbulence-closure scheme is required for the description of the cor-

relation of fluctuating velocity components. An algebraic Reynolds-stress closure

model is used for the closure of governing equations. With the adopted turbulence-

closure nodel, the diffusion and convection terms are considered collectively and the

combined effect of the two terms is assumed to be related to the production term.

Then, the Reynolds-stress components can be evaluated if the values of the turbulent

kinetic energy, the energy dissipation rate, and the mean shear rates are known at a

given location of the flow field.

The two transport equations for the turbulence kinetic energy and the energy

dissipation rate are as follows:

i ak aP- (6) a 2- - . . .

i a -- oeff at S - C (7)

U. x ; )x 1  o € 7 7 1 C 2  F _' _ , . , '
x Cx kx 2

where "'k.hgij'i',2

v eff  C V ; 2I P -=Utuj k a2 gj u u....

,. The Reynolds-stress components are evaluated using the following modeled Reynolds- ,-.: . ' *. .

[.'f, stress transport equation of Hah and Lakshainarsyana (t980a,b):- ""'

anda

O"(l+(l)(--kJu U,k-u.iU,k( - -(2)t¢1- )- C l(c/k)(--u - 2iti:k/3) (8) "::':

where C1 relates the collective effects of the convection and diffusion terms to the :-:-:-:
V.production terms, and y is constant related to the pressure-strain correlation due to "'''".=.-...

C~~j . - . • . ° -

the presence of mean-strain rate. ..
The effect of streamline curvature can be qualitatively explained using the fol- m Ryo.

lowing expression: -"a-'r1

1Ud %uU 2  (9) "" "

IIr r uvtr "":
where C is the orrespondtng frequency, U circumferential velocity component, and r
the radius of curvature. The flow field is stabilized by streamline uvtr when ". "
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has a real value. For most thin shear flows the first term is dominant. To examine -

the effect of the streamline curvature on the presently used turbulence-closure model,

the production term in Sq. 6 is written explicitly. For the coordinate system shown .- 'i 0
in Fig. 1, the expression for P is given by

- =-u l- + U 2+ V M)- v(r-+ U - V 13
r r r r

2 3u 3 L V -U + 2  3 !T +:'-a10

r r r ..- "''

and if higher-order curvature terms including u/r2 are neglected,

aT u 3Tv --u v u

The above expression can be further simplified for the thin shear layer with small

pressure gradient in the normal direction and then

P - Vf[(,U 2 U U (11)

The second term of the above expression has the same form as the principal term of Eq.

9 and represents the curvature effect that was discussed qualitatively.

Equation 11 indicates that the production of turbulence kinetic energy is de-

creased when the flow field is stabilized by the streamline curvature. As the energy .-.

dissipation rate is not affected by mean shear rates with the present model, the

effective eddy viscosity (k2 /e) behaves properly with regard to the effect of stream- ""

line curvature. Many investigators have used the production term P in Eq. 6 as a

source term in Eq. 7, and reported poor prediction of curved flows.

When the production term (P) is used as a source term in the energy dissipation

equation, the energy dissipation rate is also decreased for the stabilized flow due to

stremline curvature. Therefore, the resulting eddy viscosity is almost independent of

the effect of streamline curvature. The detailed comparison of numerical predictions .. -. -

with different forms of the source term in the energy dissipation equation is given by

Hah and Lakshninaryana (1980b).

Numerical Scheme

The governing equations (3-5) are solved simultaneously with the turbulence-

closure equations (6-8). The streamwise diffusion in the governing momentum equations

are neglected and the parabolized equations are solved downstream. The curvature of

the sixing layer is specified as an input and the calculation was done mainly to

examine the performance of the turbulence-closure model for the given flow. Initial

conditions are obtained with a preliminary calculation of the straight mixing layer.
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The Reynolds stress at S - 0 was closely matched with the experimental data by ad-

juating the energy-dissipation rate. The boundary conditions at the edge of the mix- '

ing layer are that the pressure is equal to the atmospheric pressure and the mean

velocity is zero. The boundary conditions at the potential flow region is that all

the turbulence quantities are zero. The static pressure at the boundary in the poten-

tial flow region is obtained by integrating Eq. 5 with the known value of the stream-

line curvature and the mean velocity at the upstream station. The mean velocity at

the boundary in the potential flow region is obtained with the pressure gradient along

a streamline using Eq. 4. Approximately 300 forward steps are used in the curved flow .-.. .-.

region and another 300 forward steps are used in the straight flow region with 61

cross-stream grid points. The computation time on an IBM 370/4033 is approximately

0.2 sec per step.

Comparison with the Experimental Data

The comparison of mean-velocity profiles in Plates 53 and 56 shows good agreement

between experiment and prediction. The mean-velocity profiles are very well predicted

over the entire flow region. This may partly be due to the fact that the measured
value of streamline curvature is used as an input data and the static pressure is

estimated from the cross-stream momentum equation.

The comparison for the shear-stress distribution is given in Plates 54 and 57.

The shear stress is overpredicted in the initial part of the curved flow, and under-

predicted near the end of the curved-flow region and straight-flow region. Rapid rise

in shear stress downstream of the curved-flow region is not well predicted. The com-

parison for the turbulence intensity is given in Plates 55 and 58. The streamwise

intensity is overpredicted in the urved-flow region while the turbulence intensity

level is substantially underpredicted in the straight-flow region.

Although the mean-velocity profiles are reasonably well predicted, the turbulence

quantities are not properly predicted, especially in the region downstream of the

severe streamline curvature. However, the stabilizing effect of streamline curvature * .4

in the curved-flow region is very well represented with the present turbulence-closure

model. The poor agreement between the experimental ciata and the prediction in the

flow region downstream of the curvature may be due to the assumption used for the

present turbulence-closure model. Some of the error may be attributed to the experi-

mental data. A full Reynolds-stress-clomure scheme which utilizes the convection and

diffusion effects individually may improve the prediction. An elliptic Navier-Stokes

solution of the full flow field which does not use the streamline curvature as an '-

input say produce more reasonable predictions.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report W @"

(Reynolds Stress - Dissipation Method for
High Reynolds Number Turbulent Flows)

by

K. HanjaliE, M. IvanoviE, R. Selimovi6, N. StosiE, and S. Vasi*

K. HanJali . Computor Group Number: 18 '

Cases 0141, 0142, 0143, 0241, 0244, 0371, 0373, 0374, 0375, 0376, 0612

1. Postulations of the Method

Character and origin

The method used for the computationst that are discussed below employs the sec-

ond-order one-point closure scheme, based on modeling the full differential transport

equation for each component of the Reynolds-stress tensor u uj and, in addition, the

differential equation governing the decay rate of the turbulent kinetic energy. The

employed modeling scheme is restricted to flows of high turbulence Reynolds number, ".-.-

and, as such, cannot be applied to flows with appreciable viscosity effects without

adequate modifications.

Based on some early ideas of several workers, the present method was first shaped

in an applicable form and tested extensively by Hanjali6 and Launder (1972), and was

subsequently refined and extended by Launder et al. (1975). A number of further ex-

tensions of the basic model to account for various additional effects, such as vari-

able fluid properties, low-Reynolds-number effects, buoyancy, flow curvature, heat and

mass transfer, etc., have been proposed and tested by the above-mentioned and other

authors, but in most cases the amendments were proposed in the form of additional

terms and functional relationships in such a way that the model remains reducible to

the original form when the additional effects are absent.

Because the flow cases considered herein do not require any of the above- r _

mentioned amendments (except, possibly, for the streamline curvature), it is basically

the Launder-Reece-Rodi (LRR) form of the model which has been applied, with two modi-

fications, which are briefly described later. They are:

*Masinski Fakultet, Omladinsko Setaliste, 71000 Sarajevo, Yugoslavia

tThe computations reported here represent a part of the coordinated effort, undertaken
jointly with groups from the following institutions: UMIST, Manchester (Prof. B. E.
Launder); Imperial College, London (Dr. A. D. Gosman); University of California,
Berkeley (Prof. J. A. C. Humphrey) and University of California, Davis. The present ...-
report discusses the results of the computations of the above indicated flow cases
using the same basic turbulence model as other groups.
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(i) - modification of the modeling of the source term in the dissipation

equation

(ii) - modified treatment of the wall boundary conditions. I;.4 -d Oi.

Variants of method applied

In its general form the method provides a solution of the full transport equa-

tions for all the non-zero components of the Reynolds-stress tensor. However, often

simplified forms of these equations have been used for the computation of more complex

flows, in particular the flows with recirculation and additional effects, as mentioned

earlier. These simpler forms are derived from the full-stress model through either

the neglect of the transport terms in the equations for turbulent stresses (Gibson and

Launder, 1978), or their modeling by means of the sum of transport terms in the kine-

tic energy equation as given by Rodi (1976). In both cases the differential equations

for the turbulent stresses are reduced to algebraic expressions, while the differen-

tial forms are used only for the equations governing the turbulence kinetic energy and

its dissipation rate. ' . .

The computations reported here have been carried out using the full-stress model

for all the above-mentioned cases, except for Cases 0142 and 0143 (axisymmetric dif-

fusers), where the algebraic stress model of Gibson and Launder (1978) was applied (to

avoid the computational inconveniences associated with the solution of the shear-

stress equation for flows with axisymmetric geometry). For comparison these cases

were also solved by means of the simple k-e method.

Modifications incorporated in the present computations

Because the modifications mentioned earlier were only partially published in the

literature so far, a brief summary will be given here (more details will be given in

the report by Launder-see Summary Report by Computor Group 173).

(i) Almost all models that employ the equation for the dissipation rate

as a way of providing the characteristic turbulence scales, use the N"

expression

(C P -C 2 )
kl 

,2 

k

to define the source of C. (Here P stands for the production of the

kinetic energy due to the mean rate of strain.) In spite of numerous

successes in predicting various cases of turbulent flows, there have

been notable failures, particularly in the case of rapid evolving

flows and those with streamline curvature. The modifications Incor-

porated in the present model replaces Pc/k in the above expression hy 0. %

the term k(OU /9 )2 .  This remedy, as proposed by Ranjalid andixj
1365.
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Launder (1981), seems to account, at least partially, for curvature

effects. It provides also a somewhat looser coupling (in comparison

with previous practice) of the turbulence energy balance in physical ...

space-defined by the kinetic energy equation-and the energy-

transfer process in spectral space, supposedly described (at least in

gross terms) by the c-equation. Consequently, the new form, satisfy-

ing the invariance requirements, seems to yield grounds for a better " ..

description of the flow evolvement.

(ii) Because the method is not applicable within the viscosity-affected

region in the vicinity of the solid wall, the Couette flow analysis

is used to specify the boundary conditions in the form of wall func-

tions. In comparison with earlier practice two postulates have been

consistently followed here:

- the velocity scale k11 2 was used instead of UT-

- characteristic length scale L - k3 /2/c was assumed to vary ..

linearly with the wall distance, (L - Cly), with C, regarded as

a universal constant, invariant even under the conditions well

removed from local equilibrium.

In addition, a new treatment of the source terms in the stress equa-

tions for the first cell next to the wall was applied, as suggested

by Chieng and Launder (1980), accounting both for the steep variation

of turbulence quantities and their different behavior within the

viscosity-affected region and the fully turbulent zone.

2. The Numerical Procedure

The solution of the homogeneous flow cases were obtained by means of a standard

Runge-Kutta fourth-order method. Other cases considered here fall into the category

of parabolic flows and have been solved by the finite-difference method based on the

GENKIX procedure of Patankar and Spalding. The major modification of the original

scheme, amenable to the full-stress model, was the use of the staggered grid for tur-

bulence quantities (Samaraweera, 1978). In all cases 30 grid points were used in the

direction normal to the flow, slightly squeezed in the wall region, and were proved by

the grid optimization studies to be satisfactory.

3. The Modeled Equation Set

Because of space limitations, the equation set will not be given here; the reader

is referred to Launder et al. (1975), where the complete set is presented, except for

the modifications described earlier. The adjustment of some of the empirical
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coefficients is commented on in the discussion below (the same notations is used as in

Launder et al. 1975).

4. Discussion of Results

(i) - Homogeneous Flows, Flow 0370

A number of the presently considered homogeneous flow cases have been calculated

earlier with the original form of the LRR method, some of them serving as a basis for -%

determining the empirical constants. Consequently the model has already been proven

to yield an acceptable quality of agreement with experimental data. The present corn-

putation, made with the modified equations and covering a broader range of flows, in

line with the Conference propositions, yielded results of similar quality with a

slight general improvement, indicating also a need for the readjustment of some of the

empirical coefficients. In all cases the calculations were performed using the recom-

mended initial value of e, but if the agreement with the experiments was not achieved, *"

a better value of e was sought. In some cases the adjustment of the initial dissipa-

tion rate yielded the same quality of agreement with a different set of coefficients,

so the final choice was determined in the light of the experience gained by our group . -.

and others in computing more complex flow cases. Care was taken to distinguish the

influence of different effects, if they were jointly present in the same flow case, so

that the coefficients in various terms of the modeled equations could be optimized

separately. So, wherever the stress anisotropy was noticeable, the initial e was :.;...,

chosen to produce the best prediction of kinetic energy, and then the stress-

redistribution process was calculated.

Decay of homogeneous isotropic turbulence (Case 0371). For the case of decaying

homogeneous isotropic turbulence, the applied turbulence model yielded the solution in

form of the power law k - x-n, with the exponent n directly correlated with the coef-

ficient Cc2 through the relationship n - (CE2 - 1)-i. Because the experiments seem a.

to obey the same power law in the initial period of decay, with the appropriate choice

of Ce2 and the initial value of e, the decaying process can be predicted in full

agreement with the experiments. Indeed, this case has in the past served as a basis
.-

for determining the value of Ce2. As shown on Plate 59, the best agreement with the

data of Comte Bellot and Corrsin is achieved with C.2 - 1.8 and with the initial e

equal to 18 m2/s3 , (which is about 16% higher than the recommended value, and there-

fore within the accepted * 20Z tolerance). However, the value Ce2 - 1.9 (corre-

sponding to n -- 1.11) is more widely used in practice for the computation of more

complex flows. The results, obtained with this value, and with the recommended ini- - ..-

tial dissipation are also presented for comparison. Although this value yields a less
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satisfying agreement with experiments, It has been used in all subsequent calcula-

tions, in order to stay in accord with the adopted practice.

Return to isotropy (Cases 0373A through Z arnd 0375A and C. These flows serve am

..4. :..

<1a direct test of modeling of the turbulence contribution to the pressure-strain term

in stress equations. Here a simple form of Rotta was applied, which presumes that the

rate of return to isotropy is linearly proportional to the degree of anisotropy, with

a single adjustable constant, and using a single length scale for all stress compo-

nents. In Case 0373A, which shows a moderate initial degree of anisotropy, with the

initial dissipation rate of 33 x 10 , instead of the recommended value of 22 x

I0-  m2 / the obtained stress components seem to follow closely the experimental

points, as seen in Plate 63 for Case 0373A. The same quality of agreement is obtained

in Cases 0375A and C, which have smaller initial anisotropy, as shown on Plates 77, 78

and 81, 82, respectively.

Much less satisfactory agreement is achieved in Case 0373B where the contraction

ratio is 9:1. Here the experiments show that the stress component u , which is an

order of magnitude smaller than v and w , should remain almost constant. This condi-

tion would require that C1 be assigned a value close to 1.0, contrary to findings in

sost other flow cases. However, because the lateral stress components are much lar-

ger, with the reduction of the initial dissipation to a much smaller value (again to -. -

obtain the desired kinetic energy decay), the lateral components are predicted reason-

ably well.

Quite opposite disagreement is obtained in Case 0373E. Here again, with an ad-

justment of the initial dissipation, the lateral stress components (not equal now) are -

predicted reasonably well. However, the predicted streamwise component shows consi-

derably slower increase in time in comparison with experiments. To achieve the

desired growth rate, the constant C1 should now be at least twice as large as the

adopted value of 1.8.

The experimental data of Cases 0373C and D show another pecularity: while the

lateral stress connents (much larger in magnitude), show immediate fall-off, the

smallest component u shows a time lag before it begins to increase. Because the

present model is incapable of predicting this sort of time delay, much better agree- ... *

ment with experiments is achieved if the initial position of the calculation is

shifted back, as shown in Plates 65, 66, and 67, respectively.

If all the experimental data for these cases are to be regarded as trustworthy,

even with due account for experimental scatter, the return to isotropy could not be

regarded as a simple process governed solely by the degree of anisotropy, as presumed

by the present model, but is probably influenced also by the inequality of the scales
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* 'in the various direction and also by the spectral transfer, as suggested in the review

paper by Ferziger.

One should notice that the major departure from the experiments is produced for C..,9
the streanwise stress component, which, as smallest in magnitude, should receive the .,

energy from the others. This disagreement is in particular pronounced in cases with ..

large anisotropy. However, it should be noted that the predicted value of u at the

end of the calculation period differs from the experimental value at the most by about

332 (Case 0373B), which could be regarded as acceptable in light of the much better

results obtained in all other cases, and accounting for the simplicity of the applied

model.

Plane strain (Cases 0374A and B). In the case of plane strain, the predicted

results show the acceptable agreements with experiments in all cases except for v in

Case 0374A. It should be noted here that a considerable improvement was achieved with

the earlier described modification of the dissipation equation. The pr.sent calcula-

tions were obtained with the more elaborate form of the mean-strain contribution to

the pressure redistribution term *ij,2 of the stress equation (denoted as Model 1 in

the LRR paper). Earlier tests as well as the present ones have shown, that in spite

of some criticism of the more elaborate model of *ij,2 (see Leslie, 1980) and the .-

recent general preference towards the simpler form proposed by Naot et al. (Model 2 in

the LRR paper), the more elaborate model as used here yields noticeably better predic-

tion of the plane-strain flows, and has been retained in the present calculations.

Axisymmetric strain. The predictions of Cases 0375B, D, and E show in all cases % 1"

a consistent deficiency, manifested in a too slow response of the turbulence to the

applied strain-the disagreement being more noticeable in Case E with the higher

strain (contraction ratio 16:1). This sort of deficiency was noticed earlier and

seems to be caused primarily by the inadequate modeling of the spectral energy and

dissipation process and the use of a single scale to represent all turbulent interac-

tions. Indeed this type of flow was used by Hanjalit and Launder (1981) as a test '.

case for the improvement of the dissipation equation and the modifications applied

here helped to improve the predictions of the same type of flow experimentally inves-

tigated by Uberoi. In the cases considered here, the improvement, though noticeable

in comparison with the earlier model, does not seem to produce a sufficient effect,

and further study is obviously needed. It should be noted that a decrease of the

initial dissipation rate may produce better overall agreement, with a slower decay

rate at the beginning of the flow section before the strain is applied, but this

merely means shifting the curve upwards without changing the overall dynamics of the

flow evolvement.

1369

% - .. ................. . .. . . .



Homogeneous shear flows. Both Cases 0376A and B are predicted with acceptable

accuracy when account is taken of the experimental uncertainties indicated in the

review paper by Ferziger. m.m

(ii) - Plane Boundary layer at Zero Pressure Gradient, Case 0612

Plates 133, 136, 137 for Case 0612 all show very good agreement between output p
and experimental data. L - '

(III) - Diffuser Flows, Cases 0141, 0142 and 0143

The plane diffuser flow, Case 0141, shows both the friction factor and the mean-

velocity profiles in very good agreement with the experiments, while the shear-stress

profiles show some discrepancies, in particular at the last downstream position.

Because the cross-stream distance is not normalized, the agreement depends on the

initial conditions and here a trial-and-error routine was applied to guess the appro-

priate thickness of the boundary layer some distance upstream from the start of the

pressure gradient. As mentioned earlier, the flows in axisymmetric diffusers were

solved by means of the algebraic stress model as well as with the simple k-c model.

Both models show good prediction of the mean-flow properties, though the algebraic

stress model proves to be superior, in particular in Case 0142. In both cases the " "

initial velocity profiles at the pipe entrance were assumed to be almost uniform, the ...

major difference between the two cases being in the prespecified turbulence level,

which was one order of magnitude larger in Case 0143.

(iv) - Boundary Layers with Blowing/Suction, Cases 0241. 0244 %' ' . %..

Cases with blowing and suction were computed with the full-stress model and with

the same method used in Cases 0612 and 0141, the only difference being in the modifi- . .

cation of the wall function for the momentum equation to account for the lateral

transfer of momentum through the wall. The resulting wall function, obtained on the

basis on standard Couette-flow analysis, but normalized with the value of the kinetic

energy at the edge of the viscous sublayer kv,

+ + /~X +
U+ [ly) -]/V+wp

where

+ 05 + 05 + 0.5
4U PUk /T y iyk /V V V /kv w v w w v

(with I - 5.1 and X - 0.23), produced very good agreement with the experimental data

in the case of blowing, (0241), but much less satisfactory in the suction cases (0242

and 0244). The supersonic Flow Case 8301 was not considered. It should be pointed

out that the applied wall function was derived on the assumption that the variation of

the kinetic energy within the first wall grid cell outside the viscous sublayer is
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negligible; this assumption is not in accord with the actual situation when a high

rate of blowing, and in particular suction, is applied. The case with suction seems

to exhibit a much steeper variation of both the kinetic energy and the turbulent shear --

stress which the model is not able to follow, yielding, in the case of suction, much

higher wall shear stress and consequently the higher kinetic energy in the wider part .. * ..

of the wall region. In the authors' opinion, the inadequacy of the wall function is

the primary cause of the failure to predict the flow with suction.

5. Conclusion

*- A judgment on the overall performances of our method is given in the Summary

*' Report of Computor Group 173 by B. E. Launder (herein) on the basis of the computa-

tions performed by all five groups who have used the same basic model. However, the

computations reported here, as well as our previous experience which covered a number 7%

of other flow cases, give us grounds to believe that the present model is capable of

*" producing results in acceptable agreement with experiments in a large variety of

turbulent flows. Some of the weak points indicate an obvious need for further inves- - -

tigation, but in the authors' opinion, with an adequate effort the desired improve-

ments can be achieved.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report ft~

by

C. Hung

Computor Group Number: 43

Cases 8101. 8201, 8631

A coordinate transformation is employed that maps the body surface onto n0,

- Vx,y) (1)

n n(x,y) (2)

The transformed equations are solved by a time-dependent calculation until a steady

state is reached. The approximate Navier-Stokes equations in transformed coordinates

* -~ are *

P a E 3F 13 (3)
e

where

PPU 1 PV1

q 1P -l LpuU +p PCxJ1 [PuV +p~ -nX 4
L:J PuU + [CPuV + Pniy

L e epu jLepV j

.0

a u + av
SJ1 1T 3n 2V~a( ) (5

2 n 3

j- n -~n (6)
x y y x

U- u + Cv (7)
x y

V n u + rv (8)
x y ~

1 0' + V x+ 2 (9)

NMASA Ames Research Center, Moffett Field, CA 94035
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2 +~ 2 2

Y -+R- + !t (n1 2~
y-l~ P~~x 'yr rt

The above expression for S corresponds to the boundary-layer approximation, although L
that approximation is not used in the inviscid parts of the equations. The terms that

have been omitted from S (derivatives with respect to 9) are not resolved in meshes

that are used for numerical solution of the Navier-Stokes equations at high Reynolds

numbers. Retention of all inviscid terms (some of which are omitted in the boundary-

layer approximation) permits computation of separated flows in which the reversed-flow .

region remains close to the body surface.

The algebraic turbulence model is based on that of Cebeci with modifications that

avoid the necessity for finding the edge of the boundary-layer. The defining rela-

tions are

(t)inner Y < Ycrossover
Ut -(13)

(t)outer Y > Ycrossover

where y is the normal distance from the wall and Ycrossover is the smallest y at which

values from the inner and outer formulas are equal.

The Prandtl-van Driest formulation is used in the inner region

(Ut)inner t2 Iw] (14)

where

I Ky [1 - exp(-y /A (15)

y + y/U (16)..

and m is the magnitude of vorticity., ,-'../' 16)f

In place of the Clauser formulation, the outer layer formula is ',.

(i5 -KC PF F (Y) (17) .. M.'

outer cp wake kleb

where K is the Clauser constant, Cp is an additional constant and

or -aVor

wake 'SmallerCwkYmxUdf f/Fmax
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The equations for Y3mx and Fmax are determined from the function

F(y) - y. 1j. [ - exp(-y+/A+)] (19) 9

The quantity Frex is the maximum value of F(y) that occurs in a profile and Ymax is

the value of y at which It occurs. The function Fkleb(Y) is the Klebanoff intermit-

tancy factor given by

[1 + 5.] 20
Fkleb(Y [ + FCkleb- Y6]1(20)

The quantity udif Is the difference between the maximum and minimum total velocity in

a profile.

The constants have been determined by requiring agreement with the Cebeci formu-

lation for constant-pressure boundary layers at transonic speeds. The values used are

A+ =26

Ccp -1.6

Ckleb =0.3

Cwk = 0.25

ic - 0.4

K - 0.0168

r 0.72, Prt -0.9

The meshes used in the calculations contain 77 x 46 mesh points and are stretched in

the n direction such that y+ < 6 at the first mesh point off the wall. Since the " "
laminar sublayer is thereby resolved, no wall functions are used. "-':

Flat-plate calculations required 13 min per case on a CDC 7600. Calculations for
two-dimensional compression corner consumed 26 min per case. The storage required was

86K words.

U..
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summry Report
% by

S. M. Chang, T. Han and J. A. C. Humphrey

Computor Group Nber: 171-

T. Han J.A.C. Humphrey

Case 0512

Introduction

The following pages contain a summary of the computational methodology and expe-

rience gained at the University of California, Berkeley, in relation to the prediction

of Case 0512 (see Humphrey, 1977) for the 1980-1981 AFOSR-HTTM-Stanford Conference on

Complex Turbulent Flows. The present contribution is part of a more extensive and k- -

coordinated effort aimed at documenting the performance of various (similar or re-

lated) turbulence models embodied in a class of numerical procedures familiar to the -.

various collaborating groups. The institutions participating in this collective ef-

fort are listed in the computors' summary report presented herein by Launder,

Leschziner and Sindir (Computor Group 173). The computation output appears on the

plates in this volume (Methods 17G and 171).

The contribution summarized here is based on the use of a two-equation (k-c)

model of turbulence as presented in, for example, Launder and Spalding (1974). The

numerical algorithm solving finite-difference forms of the transport equations is the

Imperial College TEACH-2E code generalized to three-dimensional (3-D) flows by

Humphrey (1977, 1978), and subsequently extended as described in Humphrey et al.

(1981) to encompass turbulent flows. A "semi-elliptic" version of the numerical pro-

cedure, developed along the lines of the work in Pratap (1975), was recently completed

by Chang et al. (1982) and includes the use of the QUICK scheme for convective differ-

entiation proposed by Leonard (1979) and tested by Han et al. (1981). The principal

results prepared for this conference were calculated using the semi-elliptic version

of the 3-D code using the higher-order QUICK scheme for convective differentiation in

the cross-strem plane of the flow (Method 17G). Additional predictions of Case 0512

using the HYBRID differencing scheme of the standard TEACH codes have also been made

but these are less accurate (Method 171).

CUniversity of California, Berkeley, California 94720

tComputor Groups 17 were coordinated by B.E. Launder and appear here and in other
alphabetic listings under "Launder".
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While qualitative features of the 90* curved-duct flow of Case 0512 are well

* represented by the numerical calculations, these yield poor quantitative agreement

with the measurements. The discrepancies are attributed principally to the failure of0 0
the two-equation model to account f or large-scale anisotropy in the flow.

* Equations, Turbulence Model and Boundary Conditions

Time-averaged continuity and momentum equations governing steady, developing, .-

incompressible, isothermal, turbulent flow in cylindrical coordinates, as given by 0 .
Humphrey et al. (1981) are:

Continuity

r 1 ' z r

Momentum '

2
* ~raur Ue alr 3Lur Ue ap 1 a 3tr

auau u au
________r)___ -if 2 Uef f +Sr(2)r 38 eff r3 a + eff az~ 38f 2r r

(U e +u- a ue U U

II auau u au
+L ~)eff 8.) - 8 2 (3)

r 8 r a 'a eff 9 eff -2 + 2 "eff DO Sr r

z a z a

au ua 3U a 1aa

~jI1ff~ J *~* ~enZ) + S(4)

where

.13 rt 3 13 3r

a F)F a3u U au U au u
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and

ef f t t

The turbulent viscosity, Iit, is assumed to be determined uniquely by the loca3

* ~values of density p, turbulent kinetic energy k, and a turbulent length scale 1. At .

* high Reynolds numbers I is proportional to k3 / 2 /c, where £ is the rate of dissipation

of turbulent kinetic energy and as given in Launder and Spalding (1974):

2
U C1 pk /C (5) *.

where % has the constant value given below. The spatial variation of Ut is deter-

mined by solving transport equations for k and e in cylindrical coordinates, readily

derived from the general tensor equations given in Bryant and Humphrey (1976), i.e.:

3k U 0ak 3k 13 a A a 1aeff 3k
PUr +rOz r 3r a r k

+ + G- pe(6)
Ok

and

£ r £ 4

with

r 2 1  0 2  z _ 2 _ e 1 r 8

U U au DU au au au aU aU

U8 2  all 2 3DUO2 1 a 3r 2 Ur 2 aUz 2  1 aUz 2

The constants In these equations were taken as CU .9,Cl- .7 Ce2 -1.92,

Ok 1.0, and cc - 1.3, in accordance with the recommendations in Patankar et al.
(1975).

In all the above equations capital letters denote mean quantities. Components of

the Neynolds-stress tensor in the momentum equations have been modeled according to

the Boussinesq approximation, relating stresses to mean-f low gradients through the

1377

% -.



.44

turbulent viscosity mt. Terms enclosed in boxes were not included in the semi-

elliptic numerical procedure.

Equations 1-7 were solved using the boundary conditions summarized in Table 1.

Numerical Procedure

Finite-difference forms of the transport equations were obtained by volume inte-

gration over cells discretizing the flow domain as explained in Pratap (1975) to gen-

erate a semi-elliptic calculation scheme. In this scheme the neglect of streamwise

* diffusion in the momentum equations allow a "parabolic" treatment of velocity, 1
requiring two-dimensional storage of velocity components at only two streamwise loca-

tions. Elliptic effects are retained in the numerical procedure through three-

dimensional storage of pressure. Of course, the use of this scheme precludes the

calculation of streanwise flow recirculation.

Further discussion regarding the development and application of the semi-elliptic -.

calculation scheme is available in Pratap (1975) and Chang et al. (1982).

Test Cases

The cases listed in Table 2 were predicted to test the worthiness and accuracy of

the numerical procedure. In addition to the laminar flow tests, two turbulent flow

calculations were conducted to verify the two-equation turbulence model for conditions

where it is known to yield fairly accurate results. The two-dimensional flow cases

were predicted by imposing two (streamwise) symmetry plane conditions in the 3-D semi-

elliptic calculation scheme.
Remarks on the Prediction of Case 0512

A comparison between measurements and predictions of Case 0512 obtained by us

shows that although qualitative agreement has been established, quantitative agreement

is rather poor. The calculations were performed on an equally spaced grid of refine-

sent (r - 14) x (z - 10) x (0 - 36) in the curved duct. The grids in the upstream and

downstream tangents were (14 x 10 x 37) and (14 x 10 x 17), respectively. Computation . -.

costs prohibited optimizing the grid distribution. A typical converged run time for

these grids was 3.6 x 10 - 5 CPUs per node visitation and required 135 k 8 words of stor-

age. The criterion for convergence was that the maximum normalized residual summation

should be less than 10 - 3  A comparison between QUICK-generated and HYBRID-generated*

calculations for both laminar and turbulent curved-duct flow showed clearly the supe-

rior performance of the former scheme for the same number of equivalently distributed

grid nodes.

*The EYBRID scheme employs central differencing when the cell Peclet number is
IPe < 2 an wind differencing when it is IPI > 2.
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The use of the QUICK scheme in the cross-stream plane of the flow and the stream-

vise refinement allowed by the semi-elliptic scheme suggest that it is turbulence

model deficiency rather than numerical diffusion which produces the discrepancies

observed.

The use of a C function (as opposed to a constant value of 0.09) along the lines

of Humphrey and Pourahmadi (1981) did not appear to improve the calculated results.

Initially, calculations were performed using the straight-duct developed flow

data provided to the Stanford Conference organizers by A. Melling. Calculations using ;-.

these data revealed an extra pair of small counter-rotating vortices at the outer-

radius wall of the curved duct. Calculations using the mass-adjusted data provided

by Melling (1975) in Figure A5.10 of that reference, or performing calculations in

which the upstream tangent cross-stream motion was suppressed, did not reveal the

second pair of outer-radius wall vortices. Since the measurements corresponding to

Case 0512 given by Humphrey (1977) and Humphrey et al. (1981) do not show nor suggest

the presence of a second pair of vortices, it is believed that the predictions based

on the mass adjusted data are the more accurate of the two. It is also worth noting

that differences between sets of calculations with and without mass-adjusted upstream

tangent cross-stream flow were not significantly different. This is attributed to the

pressure-dominated nature of the flow in the curved duct. To some extent, such a

condition relieves the need for a very accurate specification of the cross-stream flow . _

magnitude at the entrance plane.

In our opinion accurate numerical calculations of this case study and similar

curved-duct flows as in Buggeln et al. (1980) could probably be started with the

entrance plane located nearer to the 0* plane of the curved duct and without a spe-

cification of the transverse-flow component (i.e., Urlinlet - 0). Measurements at

x =-2.5 hydraulic diameters in Humphrey (1977) support this contention as has the

subsequent research at Berkeley reported in Chang et al. (1982).
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

* (Som Separated Flow Cases)

by

I. Demirdzic, A. D. Gomman and R. 1. Issat

Computor Group Number: 172

Cases 0421, 0422, 0423

1. INTRODUCTION

The present document ttports part of a collaborative effort made f or the Stanford

Conference on Complex Turbulent Flows by five university groups in Europe and the USA;

the results appear in the conference volume with the code LHHGM. The participating 6

institutions are: University of California, Davis and UHIST, Manchester (Prof. *..

Launder); University of California, Berkeley (Prof. Humphrey); Masineki Fakultet,

Sarajevo (Prof. Ranjali) and Imperial College (present authors). The computations

made at the last-named institution are presented here; the other groups are submitting

separate reports. Our collective aim has been to provide computations vith the same

turbulence model over a sufficiently broad range of flows to allow some general infer-

owes to be drawn about the utility of current particular turbulence closures.

An additional objective of the present effort has been the assessment of a new

computational procedure for separated flows In complex geometries, which employs a" 4
general non-orthogonal grid system for this purpose. The Conference test cases to

which it has been applied comprise the following:

i) Case 0421: Backward-Facing-Step Flow

Hi) Case 0422(P2): Backward-Facing Step: Variable Opposite-Wall Angle

Ili) Case 0423(P3): Backward-Facing Step: Turned Flow Passage

In what follows, a brief outline is first provided of the mathematical formula-

tions Including the equations of the turbulence model employed, and of the numerical

solution procedure. Then those features of the predictions for the individual cases . .

are presented which are the focus of attention of the Conference. The report is

necessarily brief to comply with Conference requirements, but additional information

is available in the references cited and it is anticipated that further details will

be provided in later publications.

Ipeial College of Science and Technology, London SW7 21K * England

tComputer Groups 17 were coordinated by B.!. Launder and appear here and in other
alphabetic listings under "Launder".
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2. * ATMMTICAL MODEL

2.*1 Equations of Hanm Flow

These are formulated in terms of general curvilinear coordinates xi and physical

velocity components u(i). For a stationary, incompressible, time-averaged turbulent

f low obeying a Newtonian stress-strain law, they run as follows, In general tensor

notation (see Aria, 1975):

Ox ~ ax

- [pu(j)u(k) -T(jk)1 l} Li I _____ (1)

a ouj) (2)

ax

where p and IAtare respectively the density and turbulent viscosity of the fluid, p is

the pressure, k is the turbulent kinetic energy and

uti jj a 'S--

is the turbulent stress tensor. The quantities g~j, gii and g are respectively the

covariant. and contravariant components and determinant of the metric tensor, { }isj k OL
the Christoffel symbol of the second kind and

V u(L ) + ii ii c i-a G~ 4

is the coven~ant derivative of a physical vector.

2.2 Equatious of Turbulence Model

Wie emloy the familiar k-c viscosity mdel as described in Launder and Spalding

(1972) but with modificatimn. to the production and diffusion terms in the c-equation

as proposed by Launder (private comunication). The equations solved for the turbu-

lent kinetic energy k and its dissipation rate e are as follows:

Ix 0k 3z(5

Aare

1)64
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sCsi U- v 9VU( ) • -- jUMi (8) ::::::

I t 10

G1 " "t aJse...c u(B * ... (8)v

Ut C pk2/C (9)

and the various coefficients appearing in the above are defined thus:

a M o(C2 - CI)C 2 - C ) (10) .. z.
aor I21(C2 - C1)'

2  (11)

C' min(C ,C C/pc) (12)

and

CD 1, C1 - 1.44, C2 - 1.92, CP 0.09, ark  1.0, K - 0.4187

2.3 Treatment of Wall Layers .

A modified form of the near-wall treatment of Chieng and Launder (1980), proposed

by Launder (private communication) is employed; it is based on a one-dimensional model

with a two-layer structure comprising viscous and inertial regions, with associated

distributions with distance from the wall y of the tangential velocity U, k, and C.

These are used in the present finite-volume analysis to modify, and match, the inte-

rior numerical solution as follows: the wall shear stress T. required in the tangen-

tial momentum solution is obtained from: ,.-- .

12pkt121/T =*-l tn(z*yk 1/21v )  (13)

evaluated at the matching location yp. Here * - 0.23 and E* = 5.88. The -

turbulence-energy solution is obtained by setting Ok/Dy to zero at the wall and calcu-

lating the integral production P and dissipation D from:

P -T(U - U )/y (14)
w e v e

Dk3/2 -1~38) -1 (5D -k 3/  (C 1 + 0.381) +C 1 I~n(y Y(15)

; I-it e.

where the subscripts v and • refer to the edges of the viscous and inertial layers

respectively and C - 2.55. The dissipation rate is obtained directly from:

-C = 3/4 (16)3/2

in place of the differential equation (6). -.

Further information about all aspects of the turbulence modeling can be found in

the compenion paper by Launder for Computor Group 173.
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3. HMOD OF SOLUTION
The finite-volume method employed here to solve the foregoing equations is a fur-

ther development of an earlier version described by Demirdzic et al. (1980); in view

of the availability of this publication and the limited space available for the pres-

ent description, only a brief outline will be provided. The method employs an arbi-

trary non-orthogonal computing mesh defined by the physical coordinates of curvilinear

quadrilateral cells; scalar quantities, including p, k, and e are calculated at the

centers of these cells, while the coordinate-aligned velocities are displaced to the

edges, as illustrated in the inset of Fig. 1. Discretized counterparts of Eqs. 1-6

are constructed by integration over contiguous, non-overlapping control volumes cen- - -

tared around the variable in question; in this process convection and diffusion fluxes

are approximated by hybrid central/upwind differences, while central differencing is

used for other terms. The overall solution algorithm is a form of predictor-corrector

method which invokes, in the corrector stage, a pressure equation based on the mass-

conservation requirement and especially conditioned to be solvable by iteration. -.

Systematic grid-refinement tests were performed for Case 0421 and sensibly grid-

independent results were obtained with a 28 x 28 grid arranged as illustrated. Simi-

lar grid numbers and distributions were employed for the other two cases but it was .

not possible in the time available to assess these in the same systematic way. The

number of iterations required to reduce the equation residuals to tight tolerance

ranged from about 180 to 350 and the corresponding computing times on a CDC 7600 ma-

chine were around 45 sec and 90 sac, respectively.

4. PRESENTATION OF RESULTS

4.1 Case 0421: Backward-Facing Step

The measured inlet conditions for this case were not supplied at a single plane,

so the streanwise velocity profiles were linearly interpolated onto the plane

x/H - -1.333, at which the turbulence information was aiven. The k-distribution was

estimated from the latter with the assumption that w (U + v1 )/2, while the

C-distribution was obtained from

2= C k j(du/dy)/'uTvI

using the measured velocity and Uv r profiles. Zero streamwise gradients were imposed

on all variables at the outlet plane. The method is referred to as BKEZ 17F.

The dominant feature of the comparison between calculations and experiment is the

underprediction of the reattachment length XR, the respective values being 6.2 H and "."

•Tbe notation of this section follows, wherever possible, that of the case specifics-
tions supplied by the Conference organizers.
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7.0 H. The former figure is a modest improvement on the value of 5.6 H obtained using

the "standard" k-c model of Launder and Spalding (1972), but the discrepancy is none-

theless around 11. Exploration with other wall-function variants revealed that the 9
error is unlikely to stem from this source. The wall-pressure (Plate 102), axial-

velocity (Plate 106), and axial-shear-stress (Plate 107) profile comparisons all re-

fleet the effects of the XR underprediction in the expected way, especially in the

separated region. One noteworthy feature is the indication in Plate 107 that the rate ,

of growth of the outer edge of the shear layer is being underestimated. However, the

* device of plotting the maximum shear stress versus position relative to the reattach-

sent point (Plate 104) does bring the computed results into closer accord with the data.

4.2 Case 0422(P2): Backward-Facing Step, Variable Opposite Wall Angle

For this case the inlet conditions were specified at the plane x/H =-4 using

the measured values of 6, 61, Cf, and Us there (the values of the first three quanti-

ties being different for the two walls) and the following relations derived from flat-

plate boundary-layer theory (see Launder and Spalding, 1972, and Schlichting, 1968):

u-mnU0(/) U] n = 1/, - 1

-1/2 2 2
k - C- I (du/dy)2 , X - min(Ky,O.096)

2 -1
e - C k (Idu/dy) -

, I - min(ay,0.096)

The outlet boundary conditions were treated as in the previous case. The method is

referred to as BKEZ 17H.

The results, which would of course also be expected to be subject to errors of

the kind exhibited in Case 0421, show the reattachment length XR as monotonically

increasing with wall-divergence angle a, in the range -2* < a < 10*; this is presum-

ably due to the Increasingly adverse pressure gradient and decreasing lateral confine-

sent of the separation bubble. That this trend should accelerate Is at first sight

surprising, in view of the fact that as a becomes large, XR should asymptotically

approach the value for an unbounded flow; however the calculations have not at this

stage been carried beyond a - 100. The separation wall pressure profiles (Plates 180

and 181) are consistent with expectations up to a - 6, but the a - 10* result is

again curious. The lateral profiles of axial velocity (Plate 182) and axial shear -0 "

stress (Plate 183) for a - 6" seem reasonable.

4.3 Case 0423(P3): Backward-Facing Step: Turned Flow Passage (Method BKEZ 17H) .-.--. -'

The inlet condition treatment here follows that of the previous case, apart from

being Imposed at x/H - -3. The variations in wall pressure along the step and oppo-

site sides are shown in Plates 184 and 185, respectively. These show the expected "
.% a u %"_
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trend of increasing initial pressure on the impingement side with increasing a, in the

range 0 < a < 15, while on the step side the pressure is reduced due to the higher

velocity at separation consequent upon the inwards displacement of the flow as it OV -

enters the bend. This same acceleration is presumably responsible for the lengthening

of the separation zone with increasing a displayed in Plate 186. The velocity pro-

files shown in Plate 185 are consistent with the above interpretation. %

5. DISCUSSION

The final judgment of the outcome of the calculation for two of the three cases

just presented must necessarily await the comparison with the measurements. It is,

however, nonetheless possible to draw some tentative conclusions: firstly, the errors

observed for Case 0421 are almost certainly due to the turbulence modeling and are

probably also present to a lesser or greater extent in the predictions for the other" '

two cases; secondly, the wall-layer component of the modeling is not the major error

source; and thirdly, on the basis of the experience of our companion group 173 (see

Suinary Report of Launder et al. which follows) and other workers, the most likely

source is inadequate simulation in the models we have employed of the effects of curv-. -.

ature on the shear-layer development. It is our intention in future work to explore

the capabilities of algebraic-stress-model variants of the k-c approach like that

outlined in the Summary Report of Launder et al., which appear better able to simulate

the forementioned effects. We intend also to further explore the possibilities for

improvements in accuracy and economy through computing mesh optimization afforded by

the flexibility of the present computational procedure.

Acknowledgment

We would like to acknowledge with thanks the cooperation and assistance of Prof.

B.E. Launder and Dr. M. Leschziner in connection with this collaborative venture.

References -.. -:.

Aria, R. (1975). Vectors, Tensors and the Basic Equations of Fluid Mechanics.
Prentice-Hall, Inc., Englewood Cliffs, N.J.

Chieng, C. C., and B. E. Launder (1980). "On the calculation of turbulent heat trans-
port downstream from an abrupt pipe expansion," Numer. Heat Transfer ,% 189.

Desirdzic, I., A. D. Gosman, and R. I. Issa (1980). "A finite-volume method for the
prediction of turbulent flow in arbitrary geometries," Proc., Seventh Interna-
tional Conference on Numerical Methods in Fluid Dynamics. Springer-Verlag,
Berlin.

Launder, B. E., and D. B. Spalding (1972). Mathematical Models of Turbulence.
Academic Press, New York.

Schlichting, H. (1968). Boundary-Layer Theory, 6th Ed. McGraw-Hill, New York.

1388

r -q v q ~ - . . , .-. . .,"-. - *• ' .'. -% ' - " . '.. . . -". -"..



7.

case o42

-77-

(a) Case 0442/P

(c) Case 0423/P3

71W



7 V

COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

• "by

*t
B. E. Launder, M. A. Leschziner*, and M. Sindir

with contributions by ".'.
B.E. Launder M.A. Leschziner

A. Barba, I. M. Ibrahim, R. W. Johnson,
J. M. MacInnes, R. J. Mjolsness, and N. G. Teku*

Computor Group Number: 173

Cases 0142, 0143, 0211, 0231, 0232, 0233, 0261, 0263, 0311, 0331, -"-"

0375, 0376, 0381, 0382, 0421, 0422, 0424, 0612

1. INTRODUCTION ,.

The present document reports part of a collaborative effort made for the Stanford

Conference on Complex Turbulent Flows by five university groups in Europe and the USA;

the results appear in the Conference volume with the code LHHGM and the participating

institutions are Imperial College London (Dr. Gosman), Masinski Fakultet, Sarajevo

(Prof. Hanjalie), University of California, Berkeley (Prof. Humphrey), University of

California, Davis, and UMIST, Manchester. The computations made at the last two "

institutions are presented here-,-the Qther groups are submitting separate reports.

Our collective aim has been to provide computations with the same turbulence *.-. .

model over a sufficiently broad range of flows to allow some general inferences to be -

drawn about the utility of current turbulence closures. In common, no doubt, with

other groups, the period we have been able to devote to the computations has been

brief-a mere four months. Indeed at UMIST the code employed for the two-dimensional

thin-shear-flow computations has been written entirely from scratch and so the task of

applying the program to the specific test cases has inevitably been intertwined with

final debugging of the code itself. The scope of our enquiry has thus necessarily%

been limited to identifying and understanding the origins of differences between mea-

sured and computed behavior. The task of extending the rather modest capabilities of -\.

the models examined in the present study is in any event best undertaken outside of

the rather hectic pe,-i leading up to the Conference itself.

*Univ. of Manchester, Inst. of Science and Technology, Manchester M60 1QD, England
•- .o-."°

tUniversity of California, Davis, CA 95616. Authors' names appear alphabetically.
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2. TURBULENCE -.DELS

2.1 Sumary and Rationale

The turbulence models tested, save for minor variations, are ones that have been

available in the literature f or several years, the principal references being Hanjalif

and Launder (1972), Launder et &l. (1975), Rodi (1972), and Gibson and Launder (1976,

1978). Three levels of closure have been employed (though only two levels have been ,.- .14

tested for any single flow): .

(1) Full second-moment closure (referred to as "Reynolds-Stress Transport
Models" in this Conference) used for Cases 0375, 0376.

(2) Algebraic Stress Model (a truncated second-moment closure) based on

two transport equations (for k and e). Cases 0142, 0143, 0211, 0231,

0232, 0233, 0311, 0331, 0375, 0376, 0381, 0382, 0421, 0422, 0424.

(3) Boussinesq Viscosity Model based on two transport equations (again for

k and e). Cases 0142, 0143, 0211, 0231, 0232, 0233, 0311, 0331, 0381,

0382, 0421, 0422, 0424.

Our overall philosophy has been to try to provide evidence on what, for a given

flow type is the simplest closure level that will give adequate agreement with experi-

meat. The reason for emphasizing simplicity is that most engineering flows (as op-

posed to laboratory generated flows) are so complex that computer-storage imposes

severe constraints on the fineness of computational mesh that can be employed; thus,

the simpler one can keep the turbulence model, the better.

2.2 Stress-StraLn Connections

(i) Reynolds-Stress Transport Model (RSTM)

The kinematic Reynolds stresses are obtained from solving the differential equa-

tionst

Tij + Pij + ia - (1)

Dt ii

where:

Transport, TU ) ...

Production, P1l " - {uiu + 7 4 exact
3x. juk 3x.E

Pressure scrambling, * - * + * + .
ii iii iJ2 iii,

and *Ljl - -C1 te(iiji U I .U 6ak);

#iJ2 - .-C2 (Pij - ijpkk)
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wall reflection term,
absent In free f lows,

E3 3 _ _
+ c 21(uu nkn 6ij 2ku ik n f..l, -

+ i#m2i - k j T jk2 T.I' -5c Lx

n

x -normal distance from vall*
* n

Dissipation, e 2 6
ij 3 ii

(ii) Algebraic Stress Model (ASH)

As Model (i), except the derivatives of stresses are approximated in terms of
kinetic energy using the suggestion of Rodi (1972):

Du u u u u u
I i k (Rk T)= ii ~k~e (2)

This leads to a system of algebraic rather than differential equations for the uF u
i j

(iii) Ioussinesg Viscosity Model (BVM) ~f/t

-2 Ck 3U au
-(uiuj 6ijk) "E +-:1 (3)

3j ax i

2.t3 Transport of Scalar Properties of Turbulence

The kinetic energy dissipation rate e is obtained from the following transport

equation: ±__

De T + C 1 C1 k ( i) -C 2 (4)t -.. t

157t el U ax Cj

where
a k - 3£'

Te C -( uj i- for the ASH
ax£ uu Xj)
C 2
k a~ - k- 2-) for BVM 6

In axisymmetric flaws (the conical diffusers) an effective wall distance is obtained
by integration around the perimeter (see Samaraveera, 1978). f f

tnmany cases the more usual f orm 1/2 C££Pk /k has been adopted as the source term in
(4) because that v.~s the version embeddeg in the original coding, and t~ece has ~ f

proved to be insufficient time to effect a change-over. Except for Cases Oa',3 and
0331, our experience suggests that the computad behavior would have been negligibly
different had the form given in (4) been used.
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For the ASH and BVH models the following equation for k must be solved:

Dk 1
Dt k 2 i kk

where
.4_ k Tkk.-.- "(ASH

Tk 'sj (ASM

C 2

axt

2.4 Values Assigned to Coefficients

Except where specifically indicated to the contrary the coefficients appearing in

the above equations have been assigned the following constant values:

RST /ASM: C1 -1.8; C2 -0.6; C1 -0.5; Cj -0.3; Cs -0.22;

Cei-1.44; Cc2  1.92; Cc 0.15

BVH: CU  0.09; ok - 1.0; oa - 1.25

2.5 Near-Wall Treatment

The principal solution procedures used in the study obtain the set of discretized

equations by integration of the transport equations over control volumes surrounding

each node. For the wall-adjacent control volumes (with one control volume face coin-

ciding with the wall) special formulae are derived to take, so far as possible, a

global account of the effects of the viscous sublayer on the various processes appear- -

ing in the turbulence model. The particular formulae used in the present study are '.

reported in Chieng and Launder (1980); space constraints preclude our giving a de-

* tailed presentation here. In sumary, the square root of kinetic energy at the edge
1/2

of the viscous sublayer, V;/ replaces the friction velocity as the ..-aracteristic

velocity scale, and for purposes of estimating the mean velocity, and the turbulence-

energy generation and dissipation rates, the near-wall region is represented as a
viscous (but not laminar) sublayer, whose thickness is equal to 21n /2 where turbu-

lent stresses are zero but k and c are not; this abuts a fully turbulent region in

which the turbulent length scale is assumed to increase linearly in direct proportion

to the distance from the wall.

For the RSTH the individual uiuj are found from transport equations and the kinetic

energy then obtained as: k u7k/ 2 .
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3. NUMERICAL COMPUTATION SCHEMES

3.1 Homogeneous Flows

These flows are described by coupled ordinary differential equations in terms of

the independent variable x (or t). Separate programs have been vritten for the two

types of flow studied (shear and axisymmetric contraction) employing, for clarity, an

Ruler first-order solution method. Forward step size was progressively reduced to

ensure independence of the solution from this quantity; computation times (- 0.5 sec

CPU time for CDC 7600) were negligible compared with those needed for analyzing the

inhomogeneous flows.

3.2 Thin-Shear Flows

Although several general thin-shear-flow codes are available in the literature,

it was decided, in the interests of unification, that an entirely new program should

be written for the Stanford Conference computations. Our purpose has been to provide

a parabolic solution procedure that adopted broadly the same solution methodology as

the elliptic flow program outlined in Sec. 3.3 in respect of the choice of independent

(and dependent) variables, the discretization scheme and the treatment of boundary

conditions. The resultant code PASSABLE written by Dr M. A. Leschziner will shortly -.

becom available for general use.

Basic Equations: The equations solved are those governing continuity, momentum

and the transport of scalars (here k and c). The co-ordinate system and the numer-

Ical mesh are sketched in Fig. 1. The independent variables are n, the dimensionless

distance across the shear flow and E the -

(nearly) streamwise co-ordinate (a E-directed

contour being one connecting point of con-

stant 0O. The system (, n) is weakly non-

orthogonal, but for the flows considered .

deviations from orthogonality are small

enough to permit the approximations

ri, y/)ax ay ( x")

to be introduced in the transformation of the

equation from the (x,y) to ( ,r) plane.

Figure 1. Coordinate system for %. "
thin shear-flow program.-

1Parabolic Mi-Symstric Solver Applied to Boundary-Layer Equations.
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For plane flows (r, R + ,) the resulting equations are:

Continuity: ( 4 (VG 0  (7) .-'......:

Conservation of #-property: 3(6U#) + a(V-G) a V6 + V + S (8)

where d'" d"
dxo dx : +

and S* is the variable-dependent source/sink term.

For *-U, I

Su = a- + secondary terms

while for - V, 
.,

l apSV - - - T + secondary terms . .

The above thus implies an uncoupling of pressure, i.e., the assumption aP/ax * f(y). - -

The Solution Code: Discretization was based on the control volume approach. A -',.-

hybrid, cell-Peclet-number-dependent central/upwind difference scheme is used in the -

r-direction, and the finite-difference equations are implicit in the E-direction. ,

Thus, the discretized form of Eq. 8 is ,"7x"_

D UAD D D D sD.., .:.

# Aj *j+ A_ 1  D + D + (9)

with U and D denoting upstream and downstream, respectively, and j denoting cross- .

stream positions.

The solution scheme is a forward-marching one and segregated in variable space.

A tr-diagonal matrix algorithm (TDMA) is used to solve linearized sets of the form .

(9) for all nodal downstream values # (i.e., with the A's and S evaluated at the

upstream plane). Iteration within each forward step is optional if account need be

taken of nonlinearity and coupling within a forward step. The V-velocity field is

normally obtained by explicitly solving the continuity equation. This, however, re-

quires V to be known at one boundary. An alternative path, involving the solution for "

V-momentum and pressure P(y) is provided if no boundary V-value is known (as, for

example, in the case of the asymmetric wake).

The code is applicable to plane, axially symmetric and plane-curved flows.

Adaptation of the mesh to the flow domain is automatic, being controlled by the flow

itself on the basis of entrainment. For confined flows, iVTdk, appearing in the -

These arise from strain rates not included in the diffusion terms and from the (x,y)--'"
- to- (4,n) transformation.
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C-momentum equation, is solved by reference to integral continuity and momentum con-

siderations.

In most flows considered 15-25 n-directed grid lines proved adequate. Typical

forward-step numbers were in the range 1000-2000. No attempt was made to economize in

this respect. Typical execution times were of the order 50 CPU sec on a CYBER 72 -. ,,

(equivalent to ca. 7 CDC 7600 sec) for 15 r-nodes and 2000 steps covering a plate

boundary layer 2 m long.

Turbulence Models: The general forms of the BVM and the algebraic Reynolds-

stress model are provided in Section 2. Here, terms associated with aU/ax, 3V/3y.
V/r, and V/R have been removed, which is consistent with thin-shear-flow assumptions.

3.3 Elliptic Flows

The elliptic flows have been computed with versions of the two-dimensional

TEACH-2E computer program of Gosman and Pun. The forms of the code used in the cal-

culations employ a Cartesian mesh so that only an approximate match can be made to a .-.

solution domain of complex shape. We retained Cartesian co-ordinates rather than

adopting some curvilinear form, because we doubted there would be time to incorporate

successfully the ASH treatment into a more generally organized co-ordinate system. "'"

The code adopts so-called "primitive" variables and, except as noted below, uses a

hybrid upwind/central-difference discretization and a line-by-line iterative solution

of the discretized set. For one test case (0331) a "skew" upwind option was intro-

duced into the calculation method. In this scheme, for cell Peclet numbers greater

than 2, convection is approximated by applying the usual upwind principle in the

direction of the velocity vector. The interpolation involves a 9-point star rather

than the 5-point array that results from the conventional upwind scheme. Since the

'upwinding" is applied along the velocity vector, artificial diffusion associated with

skewness--the major source of error in the hybrid scheme--is largely eliminated.

The basic version of TEACH-2E incorporates a two-equation BVM. In adding the

ASH, stresses were, so far as possible, represented as a turbulent viscosity times the

relevant velocity gradient; this practice markedly improved stability. The parts of

the stress components left over after viscous-type contributions had been removed were

incorporated as source/sink terms and treated explicitly.

The backward-step cases employed approximately 40 x 40 nonuniform grids. A pre-

vious study by H. Sindir of a back-step geometry suggested this degree of refinement

achieved nearly grid-independent results (the maximum error on reattachment associated

with numerical diffusion is estimated at no more than 1/4 step height). Execution

times per computation range from 1.5-12 min CPU for a CDC 7600 according to the test

case.
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4. TOE TEST CASES CONSIDERED

Case 0612: Boundary Layer on a Flat Plate (A. Barba)

important elements of both the ASH and BVI have been chosen by reference to

experiments of this flow, so it is not surprising that very nearly the correct devel- ..7

opuent is obtained, in each case with 15 cross-streas nodes. At low Reynolds numbers,

there is some uncertainty as to the effective x origin; this obscures any possible

weakness in the model (associated with the wall treatment or viscous effects in the

superlayer). The underestimate in H seems mainly due to small integration errors; . .

recent repeat calculations with 20 nodes halved the difference between data and compu-

tation with an insignificant effect on Cf.

Case 0211: Effect of Free-Stream Turbulence (N. G. Teku)

The principal results in this case relate to the BV. Eighteen nodes were used

and the computed behavior through which the mean line has been drawn were for momentum

thickness Reynolds numbers in the range 3-6,000. It must be said, there was some dif-

ficulty in estimating 6995, as the outer-region profile is so flat when the free-

stream turbulence is high. The free-stream turbulence was assumed isotropic (no other

possibility existed with either the ASH or BVW), and decayed with distance downstream.

The BVM seriously underestimates the effects of free-stream turbulence in the middle

range of intensities. The ASH curve based on fewer runs is rather better, though here

it seems likely that the improvement arises for the wrong reason; this topic is dis-

cussed in relation to Case 0143.

Cases 0142, 0143: Axisymmetric Diffuser (N. G. Teku)

Both cases were computed with an 18-node mesh. Experimentally prescribed distri-

butions for U and the Reynolds stresses were adopted at the initial plane. For Case

0142 (Low-Core Turbulence) e was obtained from u, k, and BU/By in the shear layers

(via the constitutive stress-strain relation), while in the core region L S k3/2 /,

was taken as 0.55R. For Case 0143 L- min(2.5y, 0.55R) was prescribed. For low-

core turbulence the ASH scheme gives nearly the same Cf distribution as that measured,

though the stress within the boundary layer is computed too high, which appears to be

mainly due to the known tendency of the c-equation to give too large length scales

under near-separation conditions. ,*

The BYM does distinctly better for Case 0143 where, due to the high-core turbu-

lance, the wall stress never approaches zero. The ASH does much worse; this result,

which initially rather surprised us, is apparently due to the scheme giving much too

high levels of effective viscosity in the region near the axis where Pkk/2 is much

less than C. This is a weakness of the particular ASH hypothesis employed (Eq. 2),

but not necessarily an intrinsic frailty of this closure type. A very recent proposal
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by Launder (1982) appears to avoid the problem, but there has been insufficient time

to include the suggestion in the present computations.

Cases 0231. 0232, 0233: Boundary Layers on Curved Surfaces (A. Barba)

All calculations, made with 20 cross-stream nodes, started from a uniform initial

U-profile and included the section of plane plate that preceded entry to the curved

section. The development length differed somewhat from the actual, however, in order

that the correct value of 6 be given at the start of curvature in the case of the

ASK. For Cases 0231 and 0232 the pressure gradient was applied via a cubic-spline fit

to the given Cp(x) (a piecewise linear fit gave very similar results). The convex-

wall boundary layer, Case 0231, shows an erratic behavior in the variation of 6 and Cf

and, after extensive checks for numerical instabilities, we conclude that this is a

consequence of the prescribed Cp (the minimum Cf nearly coincides with a change-over

of dp/dx from positive to negative). The relative variation of Cf and 0 also seems

anomalous for, in spite of the presence of a non-negligible variation in streamwise

velocity, it is unlikely that a consistently too large value of Cf would produce '""

throughout a too small rate of increase in 0. Qualitatively similar, though less

pronounced, differences are seen for the concave wall opposite (Case 0232); here the

calculated 0 is too large, while the computed Cf is too small. One is led to wonder,

whether there may have been weak secondary flow present in the experiment (unlikely,

in view of the experience of the data takers), or whether we have misinterpreted the

data file.

In any event, inferences about the ability of the turbulence models to reflect

the sensitivity of turbulence to streamline curvature are best drawn by reference to

Case 0233, where pressure gradients near the convex test surface have been made insig-

nificant. We notice that the ASH treatment produces a rapid diminution in Cf at the

start of curvature, while the BVM exhibits none. The mean-velocity and Reynolds-

stress profiia.m are generally in good agreement, though the wall shear stress and -.

near-wall W levels remain somewhat too high. Unfortunately, the source term in the

c-equation was based on turbulence energy production Pkk/2, rather than that given in

Eq. 4; this seems to be a case where secondary strains are large enough for the dif-

ference between the two forms to be significant (the recommended form produces higher

levels of c under stable curvature and, thus, somewhat lower stresses). The benefit

of using an ASK in place of a BVM are also evident for Case 0232, though, since the

curvature is milder, the differences are less pronounced. .. .
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Case 0263: The Wall Jet on a Logarithmic Spiral (A. Barba) -

These computations were made with 20 cross-stream nodes. A roughly wall-jet-like

profil, was prescribed initially and computations extended downstream until the flow

4 became self-preserving. To assist stability a small external stream velocity (a 4% of

maximum velocity at most downstream positions) was prescribed, which we believe has

had no significant influence on the computed rate of spread.

At the time of writing only results with the BVM are available, as shown in

Fig. 2. These show two anticipated anomalies: (i) the rate of spread is insensitive
to the strength of streamline curvature (which is consistent with the boundary-layer

results for Cases 0231, 0232, and 0233 above; (ii) the computed rate of spread for the

wall jet on a plane surface is 25% too high. The latter weakness arises from the fact

that this simple model contains no equivalent of the wall-modification *ijw to the

pressure-strain correlation. (That the deficiency is attributable to the absence of

*ijw can perhaps best be appreciated by comparing two published RSTM computations. In

the first, HanjaliE and Launder (1972), *ijw was omitted with results similar to those

here obtained, while in the second, Launder et al. (1975), it was included, resulting

virtually in complete agreement with experiment).

Case 0261: * The Equilibrium Wall Jet in an Adverse Pressure Gradient (I. M. Ibrahim)

Time limitations have confined our study to the BVM. A power-law variation of

free-stream velocity was applied, UE a x- m, and the shear-flow computations carried

downstream until the flow became self-preserving. In fact, only for m - 0.45 did .
the ratio UM/UE become strictly uniform though its variation in the other cases was

sufficiently slow that a locally prevailing equilibrium could be presumed.t As noted

above the calculated development of the wall jet in stagnant surroundings is some 25%

too high with this model. This overestimate diminishes (Fig. 3), as the velocity ..-. ',

ratio increases; indeed at the largest value of UM/UE for which computations were

made, the rate of spread appears to be seriously too low.

At UK/Um - 0.38, for which detailed comparisons with Irwin's data are to be

made, the computed rate of spread is some 12% higher than measured, which is broadly

consistent with the calculated peak shear stress being some 20% below the experimental

value (Fig. 5). Figure 4 indicates a satisfactory accord in the mean-velocity pro-

files, except in the vicinity of the velocity maximum, where the well-known difference ..- .-

in the positions at which the velocity gradient and shear stress vanish, cannot be

mimicked with a BVK treatment. The streanwise normal component of the Reynolds stress

is shown in Fig. 6.

*Plates for Cases 0261 and 0263 were not prepared in time for the Conference. They

are however included as Figs. 2 through 6 herein. .-

tTypically, a 42 variation in UM/UE for a doubling of streamwise development length.
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Case 0311: Plane Mixing Layer (J. H. Maclnnes)" -

The computed spreading rate is in somewhat less satisfactory agreement with data

than expected, principally because the unusual definition for L gives especial promi-

nence to the high velocity edge of the layer. The computed profiles of mean velocity

approach the free-strem value too abruptly at the high velocity edge-hence L is too

small. The usual definition for length scale (based on distance between the 90% and -'-.-

101 velocity points) would display much closer accord between the asymptotic slopes of I
the measured and computed curves. .o

Cases 0381 and 0382: Ner-Field of Plane Wakes (J. M. Maclnnes)

These cases highlight some clear weaknesses of the ASH scheme though, even so,

the mean profiles are fairly well reproduced. For the symmetric case 18 cross-stream

nodes were used, and 44 for the asymetric case. Mean-velocity profiles obtained withJ.

the BIM cannot be clearly distinguished from the ASH results and are therefore omit- . .,

ted. The initial k profile has been set equal to the given u distribution, while c

has been obtained as k312/L with L - min(2.5y, 0.58), which is appropriate to a flat-

plate boundary layer. This prescription inevitably gives a too large U7 (because of

the absence of *ijw); the alternative of adjusting c to give the correct initial 7V

profile, while almost certainly leading to better agreement with experiment, is not -. *

Justifiable. The principal errors in the Reynolds-stress profiles arise from the fact '

that these are free-shear flows and thus contain no wall effect, #ijw, yet the real

flow clearly does retain some wall memory on the relative intensity levels.t The fact

that the measured u., /v,. remains at about 4 throughout the development (compared "
with about 1.5 in an asymptotic wake) shows how difficult it is to get energy into the ."

highly elongatod cigar-like eddies near the wall. This fact translated to the present

model would suggest that C2 and C1 should diminish under such conditions. Case 0375 -

allows this idea to be considered further. - 'G
.'- :.:

The asymptotic plane wake was computed, as requested, and the results are summar-

ised in Table 1. As is well known, the ASH scheme is more adept than the BVM at

coping with both strong and weak shear flows and this is reflected in the higher

asymptotic rate of spread; the profile shape is worse, however, because the production - .-

of kinetic energy falls to zero on the axis and this feature leads to a sharp increase

in the effective viscosity.

eThis non-ideal choice, which will give k levels somewhat too high near the wall and

somewhat too low in the outer region, is unlikely to have had a significant effect on
the computed development. -.

tThe method of Launder et &l. (1975) exhibits a similar discrepancy (for the Chevray-

Kovassnay wake) though there the error is less because transport equations were .

solved for the stresses.
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Table 1. Spreading Rate in a Plane Wake

ex--BVM

o.- 0.098 0.069 0 090 A,

1Uyg d .5

0 20

Case 0331: The Curved Mixing Layer (H. A. Leschziner)

Computations of this flow have used an elliptic solving scheme with a Cartesian

mesh, despite the fact that (numerically) more accurate results could have been

obtained from a parabolic computation (following the prescribed free streamline) at

much less computational effort. We have eschewed use of the parabolic code partly

because, in a practical case, one would not know precisely where the flow would go and

partly because the thin-shear-flow approximation (with radial equilibrium) becomes an

increasingly inexact model of the mean-flow equations as the ratio of shear-layer

width: streamline radius of curvature becomes larger. There is thus an endemic prob-

lea of confusing errors associated with the model of the mean flow with the model of

the turbulence. our use of the complete Reynolds-stress equations offers in principle

a way of avoiding this problem though, in practice, the results reported here all

4suffer significantly from an inadequately fine mesh. Nevertheless, these computa-

tions are intrinsically relevant to this Conference and for that reason they are in-

cluded In our presentation. 'S

A 27 x 31 nonuniform grid was used for all computations with a maximum ratio of
* ~1.2 in the dimensions of neighboring cells. About 400 iterations were required to ,.'.

convergence (somewhat longer with the ASH) with execution times ranging from 1.5 to Y.
4.0 min (CDC 7600). depending on choice of turbulence model and difference scheme

• . • . . "*=.

(hybrid or skewed). Grids f iner than 27 x 31 have not been used because of computer

resource limitations. In the polar-coordinate regions, results are shown only at

0*and 90%, because of the difficulty of interpolation. Horeover the station at

z - 0.708 lies outside the solution domain covered. The walls have been treated as

planes of sy etry and the wall reflection term ijw has been omitted from the ASH

calculations.

Ithad originally been hoped that a collaborating group could provide further ellip- ":

tic computations using a curvilinear mesh, thus allowing a more effective coverage of
the shear layer.
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The computations obtained with conventional hybrid differencing are, as expected, ,.

dominated by false diffusion; the mean velocity profiles at 900 show this clearly

with the maximum cross-streas gradient being less than half the measured. The skew-

differenced results are much better in this respect, particularly the ASH scheme

which, apart from being somewhat displaced towards the high-velocity edge,* exhibits a

generally correct profile. The shear stress on Plate 54, and the normal stress ur on

Plate 55, also display the correct maximum level at 900, albeit distended somewhat on

the low velocity side. A comparison of Plates 53, 54, and 55 suggests that the dis- .

placement of the stresses towards the low velocity edge at e - 0" is incorrectly";.\"'-'

large, relative to the displacement of the mean U-profile. There are two reasons for

this anomaly: first, only two grid points lie within the shear layer at e - 0°; this

results in large errors in the numerical evaluation of the velocity gradient; secondly,

the boundary condition p 0 along the entrainment plane x - 0 results in strong .

shear above the jet lip. The shear leads to a large k level which is convected to

the e - 0* plane. It is the combination of U-profile displacement and a stronger

k-profile displacement which contributes to the marked stress-profile displacement.

Plate 57 shows that the skew scheme produces excessive shear-stress levels beyond the --

curved region; this is a manifestation of an excessively fast recovery from curvature

effects and Is perhaps mainly due to the imperfect accounting of stress transport with

the ASK level of closure. Notice that at x = 0.556, the computed BVM-upwind (hybrid)

velocity is in close accord with measurement, because the computed stresses are too

low and the resultant rate of spread is so slow that the measurement "catches up.

The agreement is fortuitous but helps to show how apparently satisfactory computations

can result with coarse sashes and low-order difference schemes.

Case 0421: Plane Backward-Facing Step (M. Sindir)

Three sets of computations are here included to show the strong effect in this .-

flow of replacing the positive c source given in Eq. 4 by the more conventional form

involving the turbulence-energy production. Broadly, ASH leads to longer reattachment -2 Nj

lengths than the corresponding BNY with lower stresses in the separated region. The

use of CiUi/Dxj) In place of Pkk/2 leads to the creation of larger levels of c,

hence, lower stresses and, again longer reattachment lengths, (5.3, 5.4 and 6.9 step

heights, respectively for BV, ASH with Pkk/2 in the c source term and ASH with

C MCUi/axj)2, respectively). The recovery region is not particularly well predicted

with the ASK scheme giving the longest reattachment length having the slowest

downstream growth. It emrges that small differences in stress profiles lead to

rather significant variations in the development of the mean-velocity field.

The displacement occurs close to the jet-exit plane and is thought to be associated
with the application of atmospheric pressure along the "stagnant air" botndaries. A
constant stagnation pressure condition may alleviate this problem.
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Cases 0422, 0424: Back-Step Variations (M. Sindir)

Computations of these predictive cases have been made with the same models as for

Case 0421. The sloping roof has been simulated (rather roughly) by a series of shal-

low steps, a treatment which we felt would be adequate for small angles of divergence.

Computations by Dr. Gosman at Imperial College using body-fitted coordinates will

provide an opportunity (with the BVM) of comparing the results of the two numerical

treatments. As one would intuitively expect, the increasingly large adverse pressure

gradient, whether produced by "tilting the roof" or by providing a larger expansion

ratio, has the effect of increasing the length of the reverse-flow region.

Cases 0375, 0376: Homogeneous Strains (A. Barba, R. J. Mjolsness)

These homogeneous flows have employed ASM and RSTH models, one objective being to

observe, for two quite different strain fields, how well the algebraic-stress hypothe-

sis, Eq. 2, managed to imitate the development given by the RSTM. A partial answer

: ..:.. ,. *

is: in a shear flow the approximation is fairly successful, even when ,kk/2 is con-

siderably in excess of c, but where plane-straining is involved and the normal

stresses each appear in the generation term of their own transport equation, utterly

spurious behavior can result. In several 0375 runs u actually becomes negative.

For the case of i (w t strain the standard RSTM fails to reproduce cor-

rectly the marked dip in u arising from the acceleration. This defect can be traced

to the model Of *ij2. In simple terms, the more rapidly turbulence is stretched
axially, the less readily can pressure fluctuating "deflect" energy generation to the

streanwise component. To help quantify this view, computations are provided where C2
is reduced from 0.6 to 0.4 at some point in the acceleration. For 0375B this produces ~ -

too large an effect, for 0375D about the correct modification, and for 0375E an insuf-

ficient diminution. These cases represent a progressive increase in the applied

*..- - ......
trnhes; hooeneou theeos hapea tpoeS aconind betweoene axial eing and

C2. What one is really trying to capture is the modification, by straining, of the .'s

shapes of the 2-point velocity correlation iso-correlation surfaces. A first cut at

this (appropriate to RSTM closure) is to represent the coefficient(s) in the OiJ2

model as functions of the local 2nd and 3rd invariants of the Reynolds stress. The '

second Invariant alone (the "anisotropy") is insufficient for this purpose for it does

not allow distinction between "cigars" and "saucers".

uresults of Case 0424 are not presented (see Vol. II, p. 886).

trelthy gh an error in -appears equally plausible, little effect on the predictions
cam be achieved by adju eling C1. Of course this does not rule out the possibility of
a different kind of model having a marked effect.
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5. CONCLUDING REMARKS

The study suggests the following conclusions:

sThe ASK is decisively superior to the BVM in capturing the effects of

streamline curvature (Cases 0232, 0233, 0331).

0 The ASH does not infallibly mimic the stress transport processes (Cases

0111, 0381/2, 0375). Although the basic algebraic-stress hypothesis can be

improved, an increasing use of RSTM for complex flows can only be advocated.

0 The e-equation remains a weak point of all models. The current form pro-

duces too large near-wall length scales near separation; for boundary layers

in adverse pressure gradients, it is probably safest to prevent L exceeding

2.5 times the distance from the wall. There seem some advantages to using

the modified e source advocated herein. For simple shearing, it gives neg-

ligibly different behavior than the conventional form, but in flows with

strong streamline curvature (0421) or axial stretching (0375), its use ap-

pears beneficial.

0 Concerning numerics, approximations of convection, such as skew differencing

used here (or quadratic upwind employed by Prof. Humphrey), allow numerical .

diffusion in elliptic flows to be reduced to levels where, even with fairly

coarse -ashes, the computed mean-velocity field seems principally to reflect

the workings of the turbulence model employed.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

* Summary Report
by

J. P. Bonnet

Computor Group Number: 174

Case 8501

The turbulence model used is a second-order closure model directly derived from
the "invariant modeling closure" proposed by C. duP. Donaldson (see Varma et al.,

1974). Transport equations are written for the quantities U, T, u' v12, w'2, Uv',

V'2 , T ',r yrv-- using conventional averages. Some modifications to the model of Varma

et al. (1974) have been introduced and are described in Bonnet and Alziary de Roque-

fort (1977); this model uses a macro-scale A defined in this flow as A - CAS, vhere
8 ly(ul) - y(u2)I with ul - f-9ue and u2 -!~ e (ue is the supersonic

external stream velocity. The dissipation terms are modeled by:

4i jak-u Dk aij i i:

when the Reynolds number is large, I2 X 2A/bk with b -0.125 and k Ur uyi1 2.

All other closure models follow Donaldson's proposals, except the pressure-strain,

* , P'(3u' /ax + au' 13x - # + +
j j j i ij,1 ij,2

which is expressed using the following simplified form:

* -- C 1pq/A (u'u -;2/386, k)

- C (P - 2/386 P)
ij,2 2 ij ij -

with a..-

P -(' i /ax +u u' 3/x) and q2  
-

Vij il k j k j k i k I I

The equations are Integrated by a second-order implicit finite-difference method.-

The domain is covered by a grid equally spaced in the x- and y-directions; we use 100

mesh points for the initial profiles in y. Discretization of the x derivatives is

*Centre!, d'Etudes Mfrodynamiques et Thermiques, UniversitS de Poitiers, 43 rue de
l'hhro,.rome, 86000 Poitiers, France

Thscontribution appears with the Group 17 entries because the work was undertaken
by Dr. Bonnet during a period of study leave with Prof. Launder's group at UMIST. It
ast be emphasized, however, that both the turbulence model and the numerical method

are different from those used by the other Group 17 contributors. It appears, as do
the other Group 17 contributors, alphabetically under "Launder".
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made with second-order, three-point upwind differences. Nonlinearity and coupling of

the equations is handled by a Gauss-Seidel iterative scheme at each x step, keeping

only one variable as unknown in each equation. A typical running time on CDC 7600 is

0.3 sec per x step for 100 points in y-direction. Convergence is obtained here for a

ratio of uel/ue2 - 0.01; this ratio seems to not affect the spreading rate (see Rodi,

1975).

As a first step the code has been checked for the incompressible case in order to

adjust essentially the constant CA, using initial profiles given in the review by Rodi- "

(1975). With CA - 0.35 we obtain the correct spreading rate defined as dS/dx with

C1 - 0.575 and C2 - 0.48. Supersonic flows were then tested with the same version,

using as starting profiles for mean and turbulent velocities the experimental results

of Lau et al. (1979). The result is a decrease of d6/dx when the external Mach number

increases, but the evolution is very small compared with the "Langley consensus" data

and is essentially the behavior obtained by several authors taking into account only

the mean density gradients. This result is also identical to the calculations of

Donaldson (see Varma et al., 1974) and is plotted in Plate 151.

The complete form of the Poisson equation for the pressure in steady compressi- -.

ble, two-dimensional thin-shear flows suggests that compressibility affects mainly

Oij,l, via the term:

c 2c J 1/4w f 2(u )' (a P'ul /axixj)'(au! /3xj + au; /axi) d vol/Ir"
Vol

In many supersonic flows, two assumptions are generally verified; first, at rela-

tively low Mach numbers (Mach < 4 is a value generally adopted as suggested by

Kistler, 1959), the pressure fluctuations are small compared to density or tempera-

ture: p'/f << p'/r or T'T, then we can write p'/O - -T'/T-. Secondly, the

temperature fluctuations are related to velocity fluctuations, providing there is

negligible total-temperature mean gradients and fluctuations (the "Strong Reynolds

Analogy", after Morkovin, 1962). This leads to: T'/T ( Y - 1)M2 u'/U where M is

the local mean Mach number and y the ratio of specific heats. With these two assump-
c *

tions, we propose the following modification for Olj,l + 0 = where,

(A) = C(i + CA(y - 1)M2) pq/A( uT- -- 2/3 6 k)
ij,l 1 Ai ij

In order to take into account only the high level of the fluctuating Mach number

which seems to be one of the most important features of the flows under consideration,

we propose an alternative form, purely empirically derived from the form (A):

2 2u
(B),* -Cl(l + CB u' /a ) pq/A(uj - 2/3 6ij k)

where a is the local speed of sound.
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The usae of forms (A) or (B) leads, with CA = 1 or CB = 8, to a rapid decrease

of the spreading rate. Form (B) gives slightly better agreement with the data points

than (A) but the two calculated spreading rates are very close together. Plate 151 , -

shows the predictions up to Mach number 7, which is the upper limit for the conver-

gence of the model B in its present version. The great sensitivity of the mixing

layer to the flow Mach number seems to be well represented either by including a mean

Mach number effect, or, better, by including a fluctuating Mach number effect in the

first part of the pressure-strain correlation model.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

by

J. C. Le Balleur

Computor Group Number: 42

Cases 0441, 8621, 8623, 8631, 8691

1. GENERAL OUTLINES C..

The computations performed for the 1980-81 Stanford Conference are based on a

viscid-inviscid splitting method, with fully overlaying viscous and inviscid calcula-

tion fields.

The inviscid flow has interacting boundary conditions and is presently solved

within potential flow assumptions, using relaxation codes. The viscous calculation

estimates locally the difference (so-called "defect") between the fictitious inviscid

flow and the real flow; it has been reduced to integral equations along the inviscid
boundary, through approximations on computing the defect pressure, and through a mod- --

cling of the defect velocity profiles given by Le Balleur (1981).

The viscous-defect calculation is then an extension of a boundary-layer integral

method, with a capability of computing separated boundary layers or wake flows.

Roughly, a single integral method with entrainment closure, interacted with several .

inviscid codes, has been used to calculate Cases 0441, 8621, 8623, 8631, and 8691.

The coupling with the inviscid codes is solved with the same relaxation technique,

either "direct" or "semi-inverse", according to whether the boundary layers or wakes

are locally attached or separated (see Le Balleur, 1981, and Le Balleur et al., 1980).

The switch between the two techniques relies on the shape parameter of the viscous-

defect velocity profile, and allows us to use an inverse solution of the viscous equa-

tions along the separated-flow regions. '.x..-

The turbulent entrainment closure is calculated both from the shape parameter of

the man-velocity profile, and from two lag-equations for a non-equilibrium modeling

of the kinetic energy and Reynolds-stress levels inside the outer part of the layer.

(The method is described as SG42 herein.)

Both improvements of the inviscid calculation, through a solution of the full ,".-

Euler equations, and improvements of the turbulent integral closure are believed to be

possible In the future with the present computational method.

CAerodynamics Department, ONERA, 92320 Chatillon-sous-Bagneux, France
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2. SUfl4MR OF EQUATIONS

2.1 Inviscid Part of the Calculations

Cases 0441, 8621, 8623: Full potential equation (conservative scheme).

Case 8691: Transonic small perturbations to the potential equation (conservative

scheme).

The approximations involved in the last two calculations are believed to be

restrictive and to be a limitation for the overall viscous-inviscid prediction.

2.2 Viscous Part of the Calculations (see Le Balleur, 1981)
Let us denote by x,o,y the curvilinear intrinsic coordinates measured along the

wall or the vake centerline (minimal velocity line), (u, v, P, p, hi) and (u, 7,' V,

S being respectively the inviscid and viscous unknowns for the mass-averaged
velocity components, pressure, averaged density, and total enthalpy, respectively. If

Tr is the apparent shear stress and K (x) an appropriate y-averaged curvature of the
viscous streamlines, the thin-layer time-averaged Wavier-Stokes equations are approxi- .*

mated In the following way:

3 (Pu - -P7) 3(Pv - _Pv)
4 ax ay -

3(pu2  2 a(puv - _Puv) - ( -W

ax + ay ax B

a(p - F )(1

0

-K1' r 2 ~ Firsta( scn order: computeP
a XJ h Pu us vsy

Integral form: d

dx pqax pq Pq(xo

[dO6* + 2 0 11 !~ +1( f -- First

q 3x p 3x pq order '-

Vr(x~y) - I'(X.y) (2),

E(x y) *h (X.y)

-P -K (x[*+ 0][qSecond order

iwere integral thicknesses are generalized as: "T17
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8(z) [pq] (xo f [Pu -Pu Jdy
(xo)(x,y) (X,y)

[8 (x) + O(x)] [pq] f [ ,pu ) 2u (X]dy (3)
0

2 .2 2q -u +

The previous first-order continuity and K-momentum integral equations are closed

with the entrainment equation at the outer edge y -8(x) of the layer:

[08O -o 6 + 6 - p v(,O p]xS (4)
dx pq Bx pq(xo dx Pu(,)-E

which is equivalent to the local x-momentum equation at y 6 (x) if the entrainment

rate E is defined as:

E { 3r3Y (5)
Pu[3(u - u)/3y]'(X")

The final closure of the integral method given by Eqs. 2 and 4 is detailed in L~e

Balleur (1981). A modeling of the defect-velocity profiles is achieved through an

analytical expression with wall and wake components, including separated-f low pro-

files:

U(.) 1+ C1(x) log[~~- - C(x)F[~-y CY xC() (6)

The wall coefficient C1 is related to the calculated unknown C2 in order to match

the usual law-of-the-wall, and provides the skin friction. The modeling of the equi-

librium entrainment rate Eeq (C1, C2) (see L~e Balleur, 1981), is very similar to what

may be deduced from Sqs. 5 and 6 with a mixing-length closure. The final nonequilib-

rium entrainment rate Is deduced from additional lag-equations for y-averaged esti-

mates of the turbulent kinetic energy k(x) and of the Reynolds stresses r(x) across

the outer part of the layer. The departure from equilibrium values Eeq(x), keq(x),

Teq(x), is calculated from approximate transport equations:

Dk I r T(k 1/2
k k]

eq eq e

DT 1.5 [k 1/2 -~ 7

-1 eq Te
eq

where Te'kq e are deduced from the velocity profile, the length scale 1 being

also dependent on k(x), S(x) (see TA Salleur, 1981).
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The asymmetrical wakes are computed by solving Eqs. 2, 4, 6, and 7, both for tle .-

upper and lower parts, prescribing the continuity of V(x,o), i(x,o) across the center-

line, and vanishing Cf(x) and CI(x). The centerline geometry is calculated during the 9
coupling with the interacting inviscid flow.

3. SUMMARY OF COMPUTING CASES

3.1 Case 8621: Transonic Airfoil RAE 2822

Calculation of category II: viscous-inviscid interaction

Inviscid: full potential equation-conservative scheme-relaxation code (factor-

ization, 181 x 27 grid) %

Viscous: laminar + turbulent boundary layers + turbulent asymmetrical wake:

- transition prescribed (continuous 6 thickness)

- wake-geometry calculated

- integral method: (continuity eq.

x -momentum eq.

)entrainment eq.
+- 2 lag-equations (k T )

- displacement and curvature effects of the wake

- no special treatment at shock-waves. :%

Comments: No careful adjustments of Mach number or angle of attack have been per-

formed, but only:-'

- free-air calculations at the experimental Mach number,

- first runs with the given corrections for the angle of attack, "

- a few additional runs with new angles of attack and slightly improved lift ' '

predictions (see Table I).

3.2 Case 8623: Transonic Airfoil DSMA 523S ...

Computing conditions are the same as used for Case 8621 (free-air calculations)..-"-"

They involve no trial for Mach number correction and only corrections for the angle of -

attack. 6k A

Comments:

- fully converged viscid-inviscid solutions are achieved for case 1 (see .. '

Plate 166).

- no-convergence for the full viscid-inviscid interaction was possible at the

selected flow conditions (Table I) for case 2 or case 3, probably because of

an inappropriate mesh resolution of the shock-wave/boundary-layer interaction,

or because of a need for Mach number corrections in order to avoid shock- -. '-

separation.
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- However, during the iterations, before the shock-wave will reach an excessively

rear position and induce divergence, a valuable estimate of the viscous field

including a small bubble on the lover surface may 'be noticed (Plates 166, 167

and 168), and is roughly in agreement with experiment.

3.3 Case 0441: Stalled Airfoil

Calculation with viscous-inviscid interaction.

Inviscid: - full potential equation (same as Case 8621)

- free-air calculation

Viscous: laminar + turbulence boundary layers + turbulent asymmetrical wake:

- transition prescribed (continuous 8 thickness)

- wake-geometry calculated

- simplified integral method: continuity eq.

x-momentum eq.

entrainment eq.

equilibrium entrainment closure

- no curvature effect of the wake.

Comments: The selected angle of attack corresponds approximately to the maximum lift

prediction (Table III) from the present method (free-air calculation). Fully stalled

configurations are not yet allowed from the numerical technique, the selected condi-

tions being at the upper limit for convergence of the present code. For this reason,

the influence of wake curvature effects and of non-equilibrium turbulent modeling have

not yet been involved.

3.4 Case 8631: Supersonic Ramp

Calculations with viscous-inviscid interaction

Inviscid: potential single-wave approximation (Prandtl-Meyer relation)

Viscous: integral method: continuity eq. p -

x-momentum eq.

entrainment eq.

+2 lag-equations (k - r)

The plotted pressure is the viscous pressure, including a "viscous-curvature

correction," to the first-order inviscid pressure on the wall. Although second-order,

this correction is found to be important (rotational normal pressure gradient).

Coients:

- The Prandtl-Meyer approximation is believed to be a limitation and needs to be

changed in the future into an Euler solution.

- A very fine msh size has been used at the beginning of interaction to elimi-

mate numerical viscosity: Ax I 0.00125 (8 > 1OAx)
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-A high sensitivity to the shape parameter of the initial boundary layer has

been noticed. More precision on the initial displacement and momentum thick- -

nessees data would be needed. '. -t
-In these conditions, a plot of the computed separated length versus Reynolds: - '.

number at incipient separation (e - 20") is not believed to be representative. ,.

3.5 Case 8691: Transonic Shock/Boundary Layer Interaction -'-

Calculations with viscous-inviscid interaction.

Inviscid: potential transonic small-disturbance equation - conservative scheme -

relaxation code (SLOR) - symmetrical free-air calculation (Mach .

0.785)

Viscous: integral method: continuity eq.

x-momentum eq.

entrainment eq.

+ 2 lag-equattions (k - T)
Turbulent from leading edge (Reynolds - 10 on chord)

Comments:

Transonic small perturbation approximation was used because the available full-

potential solvers fail to converge with the fine mesh size required to solve the vis-

cous interaction near the shock-wave. Presently, the local mesh size was approxi- 7

mately such that 8 > 3 Ax.

References

Le Balleur, J. C. (1981). "Strong matching method for computing transonic viscous
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Table I. Case 8621 -Category II: Viscid-Inviscid Interaction

RM 282. CD/DCC
Cam Ru N.X/ CL C C F rict. Press. Wake -

01 002 0.676 1.93 5. x 10"6 0.11 0.566 0.0092 -0.080 0.0056 0.0036 0.0098

002 0.725 2.54 6.5 v 10+6 0.03 0.737 0.0136 -0.085 0.0057 0.0079 0.0112

003 0.725 2.60 6.5 v 10+6 0.03 0.746 0.0137 -0.083 0.0057 0.0080 0.0446

*07 002 0.725 2.21 6.5 v 10+6 0.03 0.678 0.0124 -0.085 0.0058 0.0066 0.0109

002 0.730 2.79 6.5 v 10"6 0.03 0.787 0.0166 -0.086 0.0055 0.0111 0.0128

003 0.730 2.85 6.5 v 106 0.03 0.800 0.0174 -0.087 0.0055 0.0119 0.0131

002 0.730 2.93 2.7 v 106 0.03 0.763 0.0168 -0.077 0.0063 0.0105 0.0146
12

- 003 0.730 2.73 2.7 v 10+6 0.03 0.727 0.0162 -.0.077 0.0062 0.0100 0.0143

Table II. Cage 8623 -Category II: Viscid-Inviscid Interaction

Case Run HO a* Rc xtC CL CD CM Frict. Press. Wake7

01 002 0.600 2.20 4 x 10'6 0.05 0.732 0.0118 -0.120 0.0059 0.0059 0.0117
0.18

02 002 0.800 1.15 2 v 106 0.35 No convergence for viscid-inviscid
0.18 interaction with these conditions

03 002 0.800 2.00 3 v 106 0.j No convergence for viscid-inviscid
0.18 interaction with these conditions

Table III. Case 0441 -Ti&-Dimnsional Stalled Airfoil (Free-Air Calculation)

CD C CD
RiM R t/C CL Ck Frict. Press. Wake

MACA 002 0.0778 13.60 1.5 x 106 0.025 1.563 0.0369 -0.056 0.0069 0.0300 0.0368
4"12 0.*103
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Computations for a Curved Shear Layer and a Backward-Facing

Step Using a k-c Turbulence Model Comparison)

by

N.N. Mansour N. N. Mansour and T. Morel

Computor Group Number: 02
Cases 0331, 0421

INTRODUCTION

This summary documents the governing equations and the numerical procedure used

to simulate the backward-facing step, Case 0331, and the curved shear layer, Case

0421, entry cases to the Conference. It also includes the boundary conditions used

for each case and a summary of checks performed on the code.

The computer code used in these calculations is a derivative of a code HINT

developed by Gibeling et al. (1975). It is a Navier-Stokes code for time-dependent

three-dimensional compressible flows. The finite-difference scheme utilized has a

standard (non-staggered) mesh, central differencing in space, and implicit differenc-

ing in time. The resulting difference equations are solved by an alternating direc-

tion implicit (ADI) operator splitting in space, and by a non-iterative scheme in .-.- ,

time.

GOVERNING EQUATIONS

The equations (in Cartesian tensor notation) governing the statistical properties

of the flow are modeled as follows:*

Continuity

+ (Puj), " 0 -.

Momentum

(Pu)i t + (PujUi " i +  JJ

where

2(2 +p)Spk6Tijn 2iiPT)ij~1+~ )S 5
ij T 2( 3 T kk ij 3 ij

General Motors Research Labs. Current address: NASA-Ames Research Center, Moffett
Field, CA 94035 -.'.

tGeneral Motors Research Labs. Current address: Science and Tech. Labs, Interna- -,

tional Harvester, Hinsdale, IL 60521

*1ass-imighted (Favre) time-averaging as described in the questionnaire is used. The

symbols describing the averaging are dropped for simplicity.
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NUMERCAL METHOD

TlIs-Differencing

The governing equations are finite differenced using backward differencing (fully , .- ,

implicit) in tins on all terms except those containing cross-derivatives in space.

Term with cross-derivatives are treated explicitly. The differenced equations are

then linearized in time using the technique described in Briley and McDonald (1977). e

The set of linearized equations is then split in space using the Douglas-Qunn (1964)

technique to generate an ADI scheme. J"

Spatial Differencing

An analytical coordinate transformation is used to distribute the grid in the

computational domain. If x is the original coordinate, the transformation is of the

form

ax + b sinh (ct + d)

en + f = tanh ( + h)

where n is an equally spaced computational coordinate and a,b,c,... are constants.

Such a transformation provides grid packing at the boundary of the domain (hyperbolic

tangent) and at a region inside the domain (hyperbolic sine). Central differencing is

used to evaluate derivatives in the transformed domain.

boundary Conditions

Near-Wall Submodels at Solid-Walls. At solid-wall boundaries, near-all sub- S-

models were employed to bridge the gap between the wall and the first grid point away

from the wall. The same set of submodels was used for all solid walls.

Velocity. The normal-velocity component was set to zero at the wall. The velo-

city components parallel to the wall were found from the law-of-the-wall applied at

the first point away from the wall.";** -.

k and e. ak/an - 0 was used for the k-equation, where n is the direction normal

to the wall. The dissipation equation at the first point away from the wall (point 2)

was replaced by

3/4 3/2 ' "
c2 -"C k A,"

where the dissipation length scale Z2 was obtained by interpolation, assuming that I

varies linearly between its value on the wall (£1 0) and the value at the second. 3/4 3/2
grid point away from the wall (£3 C k 3 /C 3 ).

H and p. Fixed wall temperature T - Tref ( 300*K) was used for the energy .. ,

equation. The boundary condition for the continuity equation was a(p + 2/3pk)/n

calculated from the momentum equation for the normal-velocity component (at the wall).
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Boundary Conditions on Open Boundaries " "

Exit. At exit openings, the extrapolated boundary condition 3/an = 0 was used

on u, v, H, k, and e. A prescribed static pressure (Pambient - 2/3pk) along the

boundary was used as the boundary condition on the continuity equation.

Inlet. The boundary condition used at an inlet boundary depended on the test

case to be simulated.

Case 0421. Profiles of u and k were obtained from the measured data at the

x 0 station. The cross-stream velocity v was set to zero. The dissipation length

scale was set to be constant in the bulk of the flow, at Lt - (0.04)2H (where 2H is

the width of the channel), and was dropped linearly to zero at the wall with a 0.3

slope. The extrapolative boundary condition 9(p + 2/3pk)/3y = 0 was used as a

boundary condition for the continuity equation.

Case 0331.* Profiles of u, v, and k were obtained from the measured profiles at

the 0 - 0* station. The dissipation length scale was set to 1. 0.00287 m. 3(p +

2/3pk)/y - 0 was used as a boundary condition for the continuity equation.

In the "still" air region, u (ur in r,O coordinates) was set to zero and v (ug)

was obtained using the extrapolative condition v/ay - 0. The total pressure (Po =

p + 2/3pk + 1/2pv2 ) was taken to be atmospheric. The inlet temperature was set at

Tref - 300-K, the inlet k was set equal to 0.00035Uref, and the inlet dissipation

length scale was set equal to £ - 0.00287 m.

BACKWARD-FACING STEP, FLOW 0420

Case 0421. The numerical procedure was checked by simulating the laminar

backward-facing step and comparing the reattachment length to the experimental results -

of Arualy at al. (1980). Figure 1 shows the reattachment length (defined to be the

point where the axial velocity reverses sign) versus Reynolds number. These results

suggest that the equations of motion are correctly implemented and that the numerical

procedure is trustworthy in such a configuration.

A 39 x 30 grid layout was used to simulate Case 0421, with the inlet boundary at

the dump plane and the length of the domain equal to L/H - 20. The simulation pre-

diets a reattachm.nt length equal to XR 5.2, 26% shorter than the one experimen-

tally observed (Xl - 7.0). Several diagnostic runs were carried out, where the length

of the simulation domain (L) between the inlet plane and exit plane was varied. The

reattachmsnt-length results were found to be independent of L/H. The number of grid

points was also changed from 39 x 30 to 59 x 30 and to 39 x 58. Neither of the

changes affected the reattachent length. The inlet turbulence kinetic energy and

the inlet dissipation length scale were also varied and found to not affect the.--

The coordinate system is the same as indicated in the summary for the test flow case.
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reattachment length. Finally, different near-wall submodels were used and in turn

they were found to not affect the reattachment length. We are thus satisfied that the

results reflect the performance of the present k-e model for this test case. We note

that in a simulation of the axisymmetric sudden-expansion case of Chaturvedi (1963),

which was not one of the test cases for this conference, this k-c model yielded the .-. -

correct reattachment length.

CURVED SHEAR LAYER, FLOW 0330

Case 0331. The numerical procedure for this test case was checked by simulating

laminar stagnation flow (u = cx, v = -cy). The numerical solution reproduced the

exact solution. To check the implementation of the terms in the k- and c-equations, a

turbulent stagnation flow was simulated. In the e-equation the model constant C2 was

set equal to C1 (- 1.44). The inlet k-level was set to be constant (- ko ) and the . -

inlet dissipation length scale was set to yield production equal to dissipation, i.e.,

(2C) - k . Under these conditions the turbulent viscosity throughout the
ijij 0 Oflow field can be shown to be constant. This result was reproduced by the numerical

solution.

The results presented at this Conference were obtained using a 50 x 50 grid lay- 'e

out. They were checked for grid sensitivity by running a 40 x 40 grid and a 61 x 59

grid test case. We found that the mean flow was independent of the grid but the tur-

bulence intensity was slightly grid-dependent. Figure 2 shows the turbulence inten-

sity for two grid systems, compared to the experimental data. Finally, the effect of

bleed size on the results was investigated. It was found that (Fig. 3) changing the

size of the bleed changes the location of the point where U - 0.5 Uref. To match the °",: .. -

experimental data for U - 0.5 Uref, the bleed mass flow would have to be 38% less

than the reported experimental value.

CONCLUDING REMARKS

In this short summary we have documented the equations and the numerical method

used in simulating the curved-shear-layer and the backward-facing-step test cases. We

have included the numerical checks made and our experiences with the code. We believe

that the results are representative of the performance of the present k-E model under .

these flow conditions. Briefly, this k-e model will predict a too-short (with respect .'., -

to experimental observation) reattachment length for the two-dimensional backward-

facing step. In the case of the two-dimensional curved shear layer it predicts a too-

large spreading of the shear layer (with respect to that observed experimentally) as " '

it negotiates the curve.
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COMPARISON OF COMPUTATION AND EXPERIMENT

Summary Report

by

H. McDonald*

Computor Group Number: 41

Cases 0441, 0512, 8601, 8641 ."f_ .'

Case 0441 (BIKX)
The time-averaged Navier Stokes equations were used. The computer code is avail-

able from NASA Langley Research Center. The governing equations are given in Shamroth

and Gibeling (1980). The code does not include models for roughness effects.

The NACA 4412 airfoil calculation at 13.7 ° incidence was run with a body-fitted,

nonorthogonal constructive mesh which placed coordinate lines on both the airfoil .

surface and the tunnel walls. The grid used was a "C"-type grid consisting of 141 ?

pseudo-azimuthal grid points and 39 pseudo-radial grid points. The inner "C" loop

fell upon the airfoil surface and the wake branch cut; the outer loop fell upon the

tunnel walls and the upstream grid boundary. The grid was constructed so as to have

continuous metric derivatives through the wake branch cut, thus allowing this line to

be treated as a usual type interior line. The grid was highly stretched having very

fine streamwise resolution in the leading-edge region so as to allow prediction of the

very strong suction peak. At the leading edge the grid spacing was 0.002 chords. The

normal (pseudo-radial) grid was also highly stretched so as to obtain grid points in

the Heimenz layer and the boundary-layer sublayer; the grid spacing at the airfoil "

surface being 10- 5 chords. Although conceptually no difficulty would be encountered

in resolving the tunnel-wall boundary layers, it was felt that the extra grid points

which would be required could be better placed elsewhere and, therefore, slip condi- %.

tions were placed at these boundaries.

In regard to the calculation itself, although second-order artificial dissipation %.*..

was used to suppress spurious oscillations, several calculations were run at several

artifical dissipation values until a value was resolved where the results became

insensitive to further reduction. The calculation was run with total pressure speci-

fied at the upstream boundary and static pressure at the downstream boundary; these

provide realistic boundary conditions. Finally, the predicted separation point,

x/c - 0.7, was in good agreement with data.

Scientific Research Associates, Inc., P. 0. Box 498, Glastonbury, CT 06033
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Som further details of the calculation are as follows:

A. Case 0441 was begun from a converged solution at 7.8' incidence. This

solution was obtained for the NACA 4412 airfoil immersed in a stream with

tunnel walls present. Slip conditions were applied at the tunnel wall. In

order to assess the flow development and to obtain a series of calcula-

tions, converged solutions were obtained at 10.80, 12.30, and 13.70 geomet-

ric incidence. Each solution was initiated from the previous converged

solution. In general, approximately 120 time steps were required to obtain

each solution; based upon previous experience, it is estimated that 150-180

time steps would be required to obtain the 13.7" solution from a "cold

start."

Case 0512 (EIKX)

The time-averaged Wavier-Stokes equations in fully general orthogonal coordinates

were solved together with a k-1 turbulence model. The details of the equations used

and the method are given in Buggeln et al. (1981). Some further details of the calcu-

lations are as follows:

I. The computational grid was chosen to provide resolution of the viscous -...-

sublayer region on all duct walls.

2. The coordinate system was constructed to fit both the 90" bend and straight

sections both upstream and downstream of the bend. The inflow boundary was

located 8.2 duct diameters upstream of the bend, and the axial velocity-

profile shape was taken from interpolation of Melling's tabulated values

supplied by the Conference. The outflow boundary was located 2.0 duct

diameters downstream of the 90" location, to model correctly the elliptic

character of this flow at the 90" measuring station.

3. There are very large radial velocities (40% of mean flow) in the region

near the end wall within the bend; they terminate in the viscous

sublayer. These large radial velocities are an important feature of this

flow, but do not appear in the Conference contour plots since measurements

ware not taken near the end wall.

4. All velocities ware normalized by the mean (bulk) velocity as determined by

a second-order numerical integration of the computed solution. This calcu-

lation also indicated that global mass conservation was satisfied by the

solution to within 0.52 at each axial location.

Case 8601 (USX)

The k-¢ code used for this case is available from the U.S. Army Research Office.

It was run with supersonic and subsonic boundary conditions as appropriate on inflow,

and subsonic conditions on exit. The grid moved, sensing the shock and tracked it
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with a nonuniform packed mesh to give good resolution in the region of the shock. The

mesh was 41 x 31. An initial uniform velocity field with an axial variation of static

pressure was adopted. The inflow supersonic flow was held fixed together with the . 9

exit wall static pressure. The shock formed rapidly, was identified and located by

the mash, and the resulting boundary-layer interaction resolved. The transverse mesh

resolved the boundary layer, including the viscous sublayer, and although dynamic mesh

redistribution was also possible in the transverse direction, it was not necessary.

Second-order artificial dissipation was added to keep the cell Reynoldc number below

20 (a cell Reynolds number of 2 gives the same truncation error as first-order upwind

differencing of the convective terms). A mixing-length calculation was run first,

then used to start the two-equation calculation. The calculation proved sensitive to

the k-c relationship assumed in the viscous sublayer. Both the mixing length and the

two-equation model predicted the shock to occur in about the correct location in the

tube (not discernible from the plotted results by virtue of the choice of axial

origin). Only the k-c results are plotted. Other transonic shock calculations had

indicated the moving mesh and high-cell Reynolds number were absolutely necesary for

adequate solution numerical accuracy. A small separation bubble formed in the mixing

length calculation. This significantly distorted the predicted wall-pressure dis-

tribution. For a number of reasons, for example examination of boundary conditions,

effect of turbulence model, mesh distribution, etc., no relevant cold-start calcula-

tion is available. Based on prior calculations, it is estimated that from a cold

start this calculation would converge in approximately 100 time steps. It is observed

that the published skin-friction data for this case have changed more than once.

Case 8641 (BIKX)

The time-averaged Navier-Stokes equations were used. The computer program is

available from the U.S. Army Research Office. It was run with supersonic inflow and

outflow boundary condition, i.e., all variables specified on inflow, none set on out-

flow. The shock exited the outflow boundary and no-slip was used on the wall. Turbu-

lence was modeled using a mixing-length model as k-c gave nonphysical turbulent vis-

cosities in the recirculation zone. The mesh was nonorthogonal and body-fitted with

61 x 41 mash points. Nonuniform packing was used to define the approach boundary

layer including the viscous sublayer, and the shear layer, while the transverse mesh

distorted to become aligned with the shock. It is felt that the reattachment near-

wall flow is only marginally resolved, but time was not available to construct a

better mash. Second-order artifical dissipation was added to keep the cell Reynolds

ember below 20. The shock was unacceptably smeared when a cell Reynolds number limit

of 2 was used, although the comparison with data was, in fact, better! A cell

Reynolds-number limit of 2 gives the same truncation error as first-order one-sided
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differencing of the convective term. The mixing length chosen for this case utilized

a conventional wail-layer model with sublayer damping and a f ree-stream mixing length

equal to 0.09 of the approach boundary-layer thickness. In the shear layer this uiaxi-

numm mixing length was increased smoothly to a value of 0.05 of a step height.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Some Calculated Elliptical Turbulent Flow Cases,

Cases 0331, 0421, 0431) -"

i by
G. L. Mellor and M. C. Celenligil -

M.C. Celenligil Computor Group Number: 14

ABSTRACT

A model based on hypotheses of Rotta and Kolmogoroff is here applied to Cases

0421, 0431 and 0331. The model has previously (Hellor and Yamada 1977, 1982; other

references are cited in these papers) been shown to yield good simulations of simpler

flows; e.g., boundary layers, channel flow, pipe flow and-although required boundary

condition and verification data are ambiguous or imprecise--density stratified flows

encountered in meteorological and oceanographic problems.

In the present applications, the model has behaved quite well. For some flow

regions there are errors, generally associated with inadequate grid resolution, but

considering the complex nature of the flows, they do not seem serious overall.

The calculations for Case 0421 (backward-facing step) produced repeating large-

scale, two-dimensional, eddy shedding. .- .-

THE HDDEL EQUJATIONS

We define ensemble mean vorticity, F, in terms of the mean-stream function, *, .. .

according to - 9.-.

ax 3y

The mean vorticity, derived from the curl of the Reynolds-averaged momentum equation,

is

DE a 2  a ~2 2 2 (2)

ax ay

The model equations for the Reynolds stresses (Mellor and Yamada, 1977, 1982) are

Department of Aero./Mach. Sc., Princeton University, Princeton, NJ 08540
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u 33u /ax au /ay + 2auv/ax u -q /3 ~ gLf

2 2 -2 2
_v a y a3v /ay -ay!+ 2 33y v - q/3

Dt - ~3A 1Z -

au2/ay + 2aWlax 3'i2 /ax + 2a3iiWayJT

2aU/Sx -2u2 alu/ax - 2Ui- 3Ulay 1

CMq 2vly -12u Wvax - 2v 2 vWay 2 3~g 1 (3

+Cq+ -B (3

0 0

3u/3y + 2V/ax 0 U W x-v a/a jL -

where we def Ina K 31 qS q/5; q2 - + 7 + . - 0.92; B1  16.6; C1  0.08;

and Sq 0.2.

The model equation for the master length scale I is

D(q 2 C) -[qtS1 a(q 1)] + !$qtS1 a q t) 1

+ ~ ~ T U au 7av 1 3  (4
ix 3y-(Y + )1u3+E2 ~2} (4) .**

where a wall-proximity length scale, L, Is defined according to

-l (X ds (5)

xis any point in the fluid domain bounded by the soi ala and dos d - 1.

The constants In (5) are 9 1 - 1 .8, 92 - 1.33, and St - 0.2. K - 0.41 is von

Kirmin's constant.

The model is here specialized for two-dimensional mean flow but, in general, need

not be.

FNhITE-DI MRNCE UQUATIONS -1W1

The computations are done in a rectangular domain with constant Ax and Ay. The

differential equations are finite differenced in a conventional way. The transport

equations for vorticity, Reynolds stresses and length scale are differenced by an

explicit central dif ferencing scheme. The time derivatives and the advective term

are differenced by the leapfrog method, and the diffusion terms are all centrally
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function io solved by an alternating-di reetiLon implicit (ADI) method. *
At some Intermediate time in the course of calculations, all of the variables

from. the previous time are known. The values of vorticity, Reynolds stresses and
length scale at the next time step are calculated by solving the transport equation

explicitly inside the boundaries. Then, the boundary values are evaluated using the

boundary conditions cited below. Once the vorticity is known everywhere, Poisson's

equation is solved for the stream function.

At time t - 0 the flow is set to be irrotational and some small constant ini- "'' .

tial values are given to Reynolds stresses and length scale. Then, using the algo-

rithm explained above, the transient flow structure is computed by marching forward in

time, until the steady state is reached or the flow configuration becomes cyclic in

time.

",BOUNDARY CONDITIONS

Entrance B.C.

The data are used whenever possible. Assumptions are made for the variables not

prescribed by the data.

Case 0331: (Uo - 33 m/sec, H - 0.127 n): The velocity profile is flat. C --0,

- 0. v2/Ug - l0 - 6 (data). We assume u - - - 7/2 and
-3/H 10

Case 0421: (Uo = 18.2 a/sec, H 0.0381 a): The data is used for (assuming

3V/x - 0) and for '. u 2 , v 2 , and u are taken from the data of the

nearest station (x/E = -1.333). ; is assumed as w v- is

obtained assuming an equilibrium turbulent boundary layer.

Case 0431: (Uo - 15.06 i/sec, H - 0.2 n): The data' is used for t (assuming

aV/ax - 0), #, u2 , v2 , and WW, w2 is assumed to be w - .  I is ,,.

obtained assuming an equilibrium turbulent boundary layer. ,

Exit D.C.

Case 0331: 3*/3x - 0, 3C/ax - 0, 3iu--j/Sx - 0, aq2t/ax - 0.

Cases 0421 and 0431: 32* /3x2 - 0, 3C/3x - 0, a- ij/3x - 0, 3q21/3x - 0.

* Open B.C.

Case 0331: U- 0, u2 /U- v2 /Ug w2/Ug 10-8, t/H 10- 3  are used

assuming the flow at the boundary is directed into the calculation

domain in the y-direction.
Case 0431: t6 (a 1*/3y) data, 3C/3y - 0, 3-u /8y - 0, 3q21/3y - 0 are used • .

assuming the top boundary is outside of the boundary layer.
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Wall B.C.

Constant values are given to w vhich differ on opposite walls by an amount deter-

mined by the volume flow rate. Except at 90" corners, the vall vorticities are not

required because in the advective terms they are multiplied by zero normal-wall velo-

cities. At singular 90" corners (Case 0331: x - 0, y - 0.447 m), (Case 0421: x - 0,

y - H) the vorticities are evaluated using the method given by Briggs et al. (1977)

which ensures that the streamlines remain parallel to their original direction after

leaving the corner. For the turbulence intensities Neumann boundary conditions are

used, 3u2/an - 0, av2 /Dn - 0, 3;1/an - 0. At the walls I - 0 . The turbulent

shear stress at the wall is obtained from the turbulent wall layer model (Mellor, -"'

1966) which gives the velocity profile near the wall assuming that the shear stress

varies linearly close to the wall. If T and U are the total shear stress and velocity

at the first grid point away from the wall (and y ' &y), To is the shear stress at the

wall and ur - o/pI /2, then the equations are:
I. When "r and To have the same sign: "-•","

U+ + tn!- 1+-f[Ii(sign T) K 1/ 2JI C 0
C 1  1 /1/2 1+ JIr/ro11/2 1

u { T/T + l}

ii. When T and To have opposite signs:

U -1+ / 2 + 1] - 4 2 -1 1.1.oujsn T) In[ I I +
ta 01

where, B+ depends on the shear-stress gradient (:+ = 4.9 when 3T/3y - 0).

DISCUSSION

The transport equations are integrated numerically and for Cases 0331 and 0431 a

steady-flow structure is obtained after a long time of integration. However, for Case

0421 unsteady vortex shedding is observed and the flow-becomes nearly cyclic in time.

The. non-dimensional cycling time is approximately AT = 10. In order to make compari-

son with the experimental data, the computational results are averaged over the

cycles. The averaged quantities are denoted by an angle bracket, e.g. <U>. Also, one

has to add <(U - <U>)'), <(V - <V>)2>, <(U - <U>)(V - <V>)> to <u>, (2>, < ,u-v.

respectively, in order to include the effect of mean-velocity fluctuations around (U>

and <V> and obtain the total average values for these variables.

To maintain stability diffusion is added explicitly to the transport equations.

This is chosen to be a fraction of the artificial diffusion term inherent in the up-

wind forward differencing scheme. We used the minimum value for this fraction which
2 f

maintains stability in each case. The artificial viscosities are of the order of Ax

and Ay2  respectively, and the second-order accuracy of the scheme is preserved '" -

(oche, 1976).
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At the wall the various boundary conditions we used for u2 , v, w2 showed almost

no effect oan the results. In our early computations we used the relations for u2,v 2 ,
2

J as proportional to uT based on the law-of-the-wall assumption, which does not hold ,

*T for separated flows.

For the type of time marching, fully elliptic algorithm adopted here, one cannot-
. afford very fine grid resolution and one cannot resolve the viscous sublayer or a

" large portion of the logarithmic layer. We therefore matched our numerical solution

to the wall-layer model. This model, which we used for calculating the turbulent

shear stress at the wall, improved the results compared with the law-of-the-wall

* results.

- Case 0331

The results, which are from computations done on an 87 x 23 grid, agree more

closely with the experimental data than the results using a 44 x 44 grid. Finer reso-

lution in the x-direction is needed because the variables change more rapidly in the

x-direction than in the y-direction (especially near the entrance).

Various different boundary conditions are applied at the top boundary, and the

results are found to be very sensitive to them. The flow configurations for various

boundary conditions are shown in Fig. 1. The open boundary conditions which are given

in the previous section resulted in a steady flow configuration. When a wall is

assumed to be present at the top boundary, however, an unsteady, nearly cyclic vortex

shedding is observed and the explicitly calculated unsteady component of the flow

dominates the "turbulence" statistics.

Case 0421

The calculations provide repeating, unsteady, streamline flow patterns, as shown

in Fig. 2. Figure 3 is the average pattern.

After the unsteady results are averaged, Cp is obtained diagnostically by inte-
9p

grating the momentum equations in the whole calculation domain. <Cf> is found to be
zero (i.e., the reattachment point) around x/H - 7.89, which is a couple of grid

points downstream of the location x/H = 5.40, where <*> on the first grid point

adjacent to the wall becomes zero:

xH- .- ; , -.-.-.:-

x. X x x X grid points"_" 'j

. _ 7 7 7 _ . .. . . .,_ _ - .. . . . .. ..

%x/H= 5.40 x/H 7.89

<Cf> = 0
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This is a result of the wall-layer model ye are using in our computations. If

the law-of-the-wall is used as the vail function, the location where <Cf> is zero

becomes the same location where <*> is zero on the first grid point adjacent to the I.4'-
wail.

When we repeated the calculations using half mesh sizes (i.e., using a 61 x 61

grid instead of 31 x 31), then <Cf> is found to be zero around x/H - ,.75 and <(> on

the first grid point adjacent to the wall becomes zero near x/H - 5.81.

Case 0431

The computational domain is between x = 2.197 m and x = 4.34 m which is about

401 smaller than the one specified in the instructions. Using a 45 x 45 grid resulted

in 4 grid points in the boundary layer at the entrance (instead of 1 grid point, if we

started the calculations from x - 0.805 m using the same number of grid points with

constant mesh spacing). In order to extend the calculation domain to x = 0.805 m

with good accuracy, one could try using more grid points or a different mesh system -

with varying mesh size. But considering that the boundary layer grows more than 20

times from x - 0.805 m to x = 4.34 m it would be necessary to use very small Ay

values near the entrance. This requires very small values for At, which would in-

crease the computation time considerably. Our computations take about 10 min of com-

puter time with the ASC computer to reach a steady-flow structure.

The height of the computational domain (0.328 m) places the top boundary outside

of the boundary layer. Although this is a little larger than the tunnel height near

the entrance (x = 2.197 m), there should not be any significant error since free-

stream flow is stipulated outside of the tunnel height.

The backf low at the exit makes it difficult to apply various exit boundary condi-

tions. Nevertheless, the ones that we used which are less restrictive than the other

boundary conditions gave very good results. In some of our computations we tried exit ... *

data as the exit boundary condition for the stream function. This gave almost the

same results everywhere; however, near the exit 32 /x2 - 0 boundary condition gave

better results. When using * data as the exit boundary condition, in one of our runs

we reduced the beckflow velocities at the exit by half, but this did not affect the . -

separation zone. This supports the hypothesis that the backflow is supplied locally .

by the outer-region large-scale structure and not by the small mean backflow far down-

stream (Simpson, 1980).

Cf is found to be zero around x = 3.267 m and this is the separation point for

our results. However, the stream function on the first grid point adjacent to the

wall becomes zero near x - 3.44 m. This means there is a very small backflow up to

the location where Cf is zero which can not be detected from the stream-function re-

sults.
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The fraction of time the flow moves downstream (yU) is calculated assuming a

Gaussian distribution for the u fluctuation.
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Figure 1. Case 0331. Flow streamlines for various sets of boundary conditions ap- ~
plied at the top portion where flow prooperties were not known.

lot column: 3*13y - 0, F~-0, u2 /Ug - v2iUg - w2IUg - 10-8, 77i - 0, I/H -3.

This is the principal flow calculation detailed elsewhere. The sequence

begins at non-dimensional time T - 0 and proceeds to a nearly statio-

nary flow at T - 120.- >>

2nd column: A wall is assumed to be present at the top boundary. The sequence begins ~ ... "

af ter non-stationary cycling has been established at T - 180 and ends

at the beginning of a new cycle at T - 200. -:-.

3rd column: 32#/gy 2 - 0, 1-0, u2IUg v2/U3 - w2/Ug - 10-3, Tv - 0, XH - 10s

The sequence begins at T -0 and proceeds to a nearly stationary f low

at T 100.
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(Figure 2 continued)

- T * 185.m

____________T - 190

MN Figure 2.

-4 -2 0 2 4 6 8 10 12 14 16
i/H

Figure 3. The streamlinee after averaging between T - 17 and T -190.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

- o
Sumary Report

(Computation of the Viscous Transonic Flow

over an Airfoil by a Zonal Method)

by

i.E. Meinik R. E. Melnik

Computor Group Number: 39
Case 8621 '

Introduction

Interactive-type calculations were carried out for the transonic airfoil cases

(8621) using the zonal method developed by Melnik, Chow, Mead, and Jameson (MCMJ)

(Melnik, 1978, 1979, 1980; Melnik et al., 1977, 1981). The MCMJ method employs an

iterative procedure to obtain self-consistent solutions of the coupled inviscid and

boundary-layer equations. All terms appearing in the matching conditions coupling the

inviscid and boundary-layer flows are accounted for in the formulation. Displacement-

thickness effects on the airfoil and in the wake are accommodated through an equiva-

lent transpiration velocity form of the matching conditions. The coupling condition

associated with the curvature of the wake is accounted for through an equivalent pres-

sure jump across the wake.

It is generally recognized that the boundary-layer approximations fail near

strong interaction zones at the trailing edge and at shock waves (see Melnik et al.,

1981). The present method employs a local analytic solution to correct the boundary-

layer solution for normal pressure-gradient effects at the trailing edge but does

nothing special to improve the theoretical modeling of the shock-wave boundary-layer

interaction. In its present form, the method is restricted to attached flows or to

flows with small regions of separation. A review of recent developments in zonal

methods and theories for strong interactions on airfoils is given in Melnik et al.

(1981).

Coupling Conditions and Trailing-Edge Corrections

The MNCJ theory uses a local solution to correct the boundary-layer solution for . .F

strong interactions at the trailing edge. A solution which is uniformly valid in the

entire flow field is formed by adding the boundary-layer and trailing-edge solutions

to the inviscid solution and subtracting their "common parts". This results in a

standard sum-type composite solution as for the method of matched asymptotic expan-

sions. For example, the representation for the streamwise velocity component is

Cruman Aerospace Corporation, Bethpage, NY 11714
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written in the form,

U -UINv(NS;VU[MJfl[IMf) + EUBL(n,S) -UBL(n,S)J + [UTE,n,) - UTyEg0,0) (1)

where N,S are curvilinear coordinates normal and tangent to the airfoil and wake

streamline, n and C are stretched coordinates

n -/ ; C - (S- Sm)V

and e is a small scaling parameter of the order of the nondimensional boundary-layer

thickness at the trailing edge. The leading term is from the solution of the inviscid .-.

equations subject to the coupling conditions, while the second and third group of . ..

terms are from the boundary-layer and trailing-edge solutions and their "common

parts." The function VO is the transpiration velocity appearing in the boundary con-

dition at the airfoil surface, and [V and [[q] are the equivalent jumps in normal and

tangential velocity along the wake which are imposed as boundary conditions on the .. .

outer inviscid flow.

In the MCLT theory, "composite" coupling conditions are derived which correct the

standard matching conditions of boundary layer theory for strong interaction effects

at the trailing edge. The corrected coupling conditions for Vo, [M]] and [Rq] are writ-

ten in the form,

d(eUe8*)
VO . C( d ) GN  (2)

* 2
4 [[O]]-c [1e(a + 0e)1K G W  (3)

e V w

IM) c312 G + 2(de*_ ) (4).

where the subscript "e" denotes surface values of the composite solution, "w" denotes

the complete wake thickness, K is the wake curvature and GN, GW and C are analytic _____

expressions determined from the local trailing-edge solution. Equation (2) specifies

the equivalent transpiration velocity leading to the usual displacement effect on the. -'..

airf oil surface while Eqs. 3 and 4 arise from the wake-curvature and wake-thickness . j
effects, respectively. These relations reduce to the standard coupling conditions of

boundary-layer theory for GN, Gw - 1 and Cs - 0. The composite solution for the

pressure on the airfoil surface and wake centerline, is written in the form

P(N 0 0,S) PIw(OS) - C3/2Ap(S) (5)

where the first term is determined from the outer inviscid solution (subject to

. . . * .
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coupling conditions) and the second term is a correction to account for pressure

changes across the boundary layer and wake near the trailing edge.

inviscid low

It is assumed that total pressure losses across shock waves can be neglected and

that the flow in the outer region can be approximated by solutions to the full-poten-

ti1al flow equation. Numerical solutions to the potential equation are obtained with

Jameson's, fully conservative, rotated difference scheme. The calculations employ an

"0" type grid determined from a conformal transformation of the region exterior to the

airfoil to the interior of a circle. The method uses an explicit artificial viscosity

in a region that extends slightly beyond the supersonic zone. The artificial visco-

sity is switched off for local Mach numbers less than Mc, which in the present calcu-

lation was set to -. - 0.9. The present calculations employed a fully second-order

accurate version of the method.

Boundary-Layer Solution

The boundary-layer equations are solved by a direct method, with the pressure

distribution prescribed. A compressible flow version of Thwaites integral method is

used to solve for the laninar boundary layer between the stagnation and transition

points. In the computations for this Conference, transition is assigned at the

location of the roughness strips on the airfoil model. Initial conditions for the

turbulent boundary-layer calculations are determined from the assumption that the

momentum thickness Is continuous and the transformed shape factor experiences a jump,

[ - 1.1, across the transition point. This initialization procedure leads to good

agreement of the computations with the measured turbulent boundary-layer properties

just downstream of transition. The calculations of the turbulent boundary layer were

carried out with the original version of Green's lag entrainment method (as opposed to

the more recent version used by P. D. Smith at this Conference). This is an integral...

method which makes use of the turbulent-energy equation to derive a lag equation for

the entrainment function. The computations were made including terms allowing for the

secondary influences of surface curvature and mean dilatation on the turbulence. The

wake was treated as two symmetric half-wakes, as in the original method. ;\,'"

Numerics ..-

The inviscid equations were solved on a sequence of three grids (coarse, medium,

and fine) employing (40 x 8), (80 x 16), (160 x 32) points that were uniformly dis-

tributed in the circle plane ("point at infinity" at the origin) with the larger of

the two numbers referring to the number of grid points on the airfoil surface. The
nonlinear difference equations are solved by hybrid scheme, in which a fast Poisson

solver is repeatedly employed after a specified number of SLO steps in order to
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accelerate convergence. The integral boundary-layer equations are integrated with a

Runge-Kutta method with automatic error-checking and mesh-halving. This procedure

leads to a subgrid embedded in the inviscid mesh to allow for high gradients near the

shock wave and trailing edge.

The solution procedure involves two nested iterations, one to solve the nonlinear

inviscid-flow equations (with fixed coupling conditions) and the other to solve the

inviscid/viscid coupling. The iterative solution of the inviscid equations is inter-'

rupted periodically to solve the boundary-layer equations and update the coupling

conditions. The coupling condition updates are underrelaxed (w - 0.1) to assure con-

vergence. The updates are made whenever the maximum residual in the inviscid computa-

tions has been reduced by a specified factor, which is typically taken to be equal to

1/5. This results in frequent updates of the coupling conditions, usually about every

20 SLOR cycles. Typical runs for supercritical cases take about 10 min on an IBM 370-

168 computer to reduce the maximum residual to below 10 - 5 . The solution on each grid

is converged to this level, so that they can be compared to provide an indication of

truncation error.

The computer code was organized so that either the incidence or the lift coeffi-

cient could be specified. The computations submitted to the Conierence were run with

CL set equal to the experimental value (as requested in the specifications to con-

puters). In this mode the incidence is determined as part of the solution by the

S~. Kutta condition.

Results

Results were submitted for all runs of the RAE 2822 airfoil (Case 8621) calcu-
lated at the experimental Mach number, Reynolds number, and transition point loca-

tions. In addition, two cases were submitted with a small blockage correction of

A). - +0.004 and one with a correction of Ayft - -0.004. In these cases, the experi-

mental values of the lift and pressure coefficients were corrected according to for-* .-. :-
mulas given in the specifications. The magnitude of the Mach number corrections were

chosen on the basis of comparison between the computations and experiments for the ...

pressure distribution on the lower front part of the airfoil.

Converged solutions comparing the pressure distribution and forces on the coarse,

medium and fine meshes were also submitted for the CL - 0.743 case to give some

indication of numerical accuracy. These results indicated it was necessary to go to a

(160 x 32) point grid in order to achieve 1% accuracy in the surface pressure distri-

bution and shock location and 52 accuracy in the drag coefficient. The value of the -

drag coefficients on the three meshes in this case were CD = 0.0195, 0.0127, and

0.0115, with an extrapolated zero mesh limit of CD - 0.0111.
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Concluding Comments

Although the present method employs only a simple interacting boundary-layer

description of the shock-wave boundary-layer interaction, the results indicate that it

provides a quantitatively useful prediction of the surface-pressure and displacement-

thickness distributions both near and downstream of the shock wave. The main short-

cominge of the present code are its relatively long computing times and its inability

to handle separated flows. We have recently developed a new version which uses

Jameson's multigrid method to solve the inviscid equations. Preliminary computations

indicated a factor-of-five reduction in computing time. Extensions to separated flow

require improved numerical techniques to handle the viscid/inviscid coupling and im-

proved turbulence modeling.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Sumry Report

(Complex Turbulent Compressible Flows) wm~
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by

Ha Minh Riau

D. D. Vandrommel and R. W. MacCormack.

Cm•utor Group Number: 441
Ha Minh Hieu

Cases 8101, 8201, 8612

INTRODUCTION

The new MacCormack (1981) explicit-implicit scheme is used to solve the two-

dimensional Favre-averaged Navier-Stokes equations. The first two cases concern the

flat-plate boundary-layer flows with and without heat transfer across the solid wall.

The third case is a more complex flow involving a shock/boundary-layer interaction and :::."
an extended flow-separation region in a two-dimensional channel (Delery, 1978). In a *'- "

first step, all the calculations have been performed with an algebraic formulation for to

the turbulence correlations (mixing-length theory). In a second step, the Boussinesq

approximation is used but the various second-order moments are accessed by the knowl-

edge of two turbulence scales: the turbulent kinetic energy and its dissipation rate

(Jones-Launder k-e turbulence model). All the calculations are started with the alge-

bralc formaulation. If the two-equation model is to be used, the switching is done

after a small number of iterations.

The Savier-Stokes Equations

Using Favre-averaging, the time-dependent Navier-Stokes equations may be written ,. .

TE'P + Tx (P ) - --0
k

ikN ..

The closure of the equations is achieved in the first step by the use of a gradient- ,.

flux approximation in which the viscosity coefficient is determined algebraically .

(mixing-length theory). Thus the closed Navier-Stokes equations may be represented by

the vector expression:

CInstitut de Nicanique des Fluides de Toulouse, 31071 Toulouse, France
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at U + axF + y-G 0

in which case the vectors U, 7, and G are

PU pV

xi+ + XY

F- Gm
*b U'+T P92 +

xPr Prt J xY 7Y Pr Prt va

in which

F +x [2 P.- (DU+ D)]

t ay 33x a

r -t-

* The pressure field is obtained from the equation of state

P -(Y -)P

where

1 - -2-2
.mE-~(U + V

I Ty- ax

Ut Min.
0.0168 -pt 8*

where 8* is the displacement thickness and the nixing length is defined by

£ Xy [1- exp (-ri PT w(

where x 0.4  and A+ 26.
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To achieve the closure of the Navier-Stokes equations in the second step, the

formulation is slightly different. The Boussineaq approximation is still used but the .:O,

turbulent viscosity is now determined by two turbulence scales: generally speaking,

length and time scales, and, in this model, the turbulent kinetic energy k (related to
the turbulent velocity scale) and its dissipation rate, c (related to the length .l.

scale). This necessitates the solution of two extra equations, for which a standard

form has been given by Jones and Launder (1972). The presence of these two equations

breaks the conservative character of the Navier-Stokes equations (which was preserved

in spite of averaging in the first step) and yields the pressure terms to be modified

by a "turbulent pressure" contribution. The matrix form of the equation is now:

+ + + +

U + F + G =H

p 0

rU 0

Pv 0
U- H

0u0

r " --ay -. P

e. U2 a ffl+
x xy

PUV + T Cf2 G- y2 y-
2. + ky

oV+ rc 0- + o ...

xy.. y.. .. .. '... . .. .. .".. .

- B- PIc + 0y)V + T V-{ + !-)vt BT ,:...0 + a X + T W + IP }Cv TX- y y )c D
r rt r rt i

kx k y'

. "*". .. .
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..- _......-..

in which ., ..

BU23P -2) (± + l1(k tI .4 . + 1 +li( .L+.)2
S- t  + L3axx ayax

S0.09 e
-2 .5/(l+Ret/50) k

Ret- -; f 2  1.0 -0.30 ep( -Ret)
lie

.4 According to Rubesin (1976), the polytropic gas assumption allows us to write

yC T
u - 2 + + 2 v +- 'V --- -+ .2-C

where n - 1.2 is the polytropic coefficient.

- 2 -.,

2,+ i-¢ + t[2 -- +y,

[ R + 0k t  + + k
"x _.T~x ° t 3x 33x a

)2 r - -

a -- ii+ ;~ -(l + ..i)

Cx 0) + d y + S 'S

+ +

The values of the different constants are:

1 2 2
C -1.45; C -1.94; C - 2.0; ak l; cc 1.30; P 0.72; P 0.9

C k" r rt

The Numerical Nethod

The acCormack (1981) method, which is used here, has the following main charac-

terlstics:

- second-order accurate in space and time,

- unconditionally stable,

- no block or scaler tridiagonal matrix inversion,

- allowance of very large CL numbers (up to 10,000).
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The method uses the classical predictor-corrector scheme. The predictor or cor-

rector steps are themselves split into two stages: the first one determines the local

change of the solution by explicitly approximating the governing equations. The sec-

ond stage uses the local solution change with an implicit procedure to determine the

actual solution that is to be used to update the solution.

Practical Aspects of the Computations

Computation grid

The grid is made of two parts: the fine mesh has points exponentially stretched

in the cross-flow direction which allows a fairly good resolution of the boundary

layer in the region close to the solid wall (y - 1.0). The coarse grid has a con-

stant spacing in the cross-flow direction. Both grids can be stretched in the stream-

vise direction to get a better resolution in a specific zone of interest as a shock

wave or an interaction region. Most of the calculations have been performed with a

32 x 32 grid.

Boundary conditions

The boundary-condition problem has been found much easier to handle for Cases
8101 and 8201 than for Case 8612. In the first two cases the flow is supersonic

(except close to the wall), and constant or extrapolated boundary values give good

results. For the last case, the problem is completely different. Before going into

detail in the description of these boundary conditions, it must be emphasized here

that one of the goals for this work is to provide a computational tool, which would

require as little as possible initial information to describe properly a complex flow

pattern, without supplying the main characteristics, such as the shock-wave presence

in the initial flow field. Such a computer code should be used like a wind tunnel for

which, when the model is set in, it is necessary to adjust only one or two valves to

control the whole flow field, the geometries of the model, and the test section

governing the flow pattern. Such a requirement is very restrictive on the boundary-

condition determination, but it allows us to start the calculation of a given geometry

with an arbitrary initial flow field. This allows us also to include a rigid wall as

upper boundary and ignore a priori the normal shock position.

At the inlet, the boundary conditions prescribe:

- the normal velocity is equal to zero,

- the input mass flow rate is constant,

- the entropy is constant,

- the density and pressure satisfy a compatibility relation along a charac-

teristic line (see Moretti and Pandolfi, 1981).

At the outlet, the boundary values are given by one-sided difference forms of the

continuity, v-momentum, and energy equations, together with a given value for the

1447
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pressure. At both boundaries, the turbulence can be obtained by zero-order extrapola-

tion.

For upper and lover boundary conditions, zero values are prescribed for the velo-

cities, and zero gradient for all the other quantities, including k and e. To insure '"
physical behavior of the turbulence quantities in the vicinity of the lover wall, the

turbulent viscosity is set to zero. This prescription is not necessary for the upper .'.'

wall because the mesh points are not close enough to each other to resolve the viscous

effects of the upper boundary layer. Nevertheless, the correct choking of the flow is

insured and therefore the normal shock position.

The initial flow field

The use of the boundary conditions described in the previous paragraph allows us

to start the calculation with a more or less arbitrary constant-flow field and the .

boundary conditions are sufficient for the equations to completely build the flow

field.

For the flat-plate boundary-layer computations, the free-stream values are

assumed everywhere, and for the channel-flow calculation, the inlet values are used.

Typical runs

The code has been set up in such a way that whatever the turbulence model is, the "

computing times are identical.

For a typical flat-plate calculation, the residual error of the skin-friction

coefficient is 0.00002 after 128 time steps, which corresponds to 128 sec of CPU time

on a CDC7600 computer. For a channel-flow calculation, the program converged after

1000 time steps with the same accuracy.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Turbulent Recirculating Flows)

by . '."

Ha Minh Hieu, P. Chassaing

and D. D. Vandromme t  K "

Computor Group Number: 442 P. Chassaing

Case 0421

INTRODUCTION

A primitive variable method (U,V,P) has been developed to solve the steady time-

averaged Navier-Stokes equations for incompressible turbulent recirculating flows.

This numerical method is used here to calculate the two-dimensional flow over a-

backward-facing step. The boundary conditions and the geometry are identical to the

experiments of Kim et al. (1978). A two-equation turbulence model is used here, where

two transport equations are solved for the turbulence scales: the turbulent kinetic

energy, k, and its dissipation rate, c. Two different wall functions are used: the

classical one using equilibrium and the Couette flow hypothesis, and the more recent

version suggested by Launder (1980). Although the code can be used for variable-

density flow calculations, only constant-density calculations are reported here.

The Navier-Stokes Equations

When ensemble-averaging is applied to the Navier-Stokes equations, some new

unknown term appear that make the turbulence-closure problem. The closure of the

equations can be achieved by using a gradient-flux approximation in which the diffu-

sivity coefficient (eddy viscosity) is determined either by an algebraic relationship

or by some turbulence characteristic scales, such as the turbulent kinetic energy and

its dissipation rate. The following equations are included in the numerical proce-

dure: %9

a u + 3 V -0

[,>i - 'eOf ] + [p>v- .effTJ - " [F + 2 pk] + u

[. .e 3V + . -. l 1 + 2 k] + v

where ':..
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lff " Pat + jt ; jt -CD  -

; t C¢ Pt122]]]]

ef lam t t D

-(U + u. Lk. + L t k

-~ _] -. p-P

• ~t aU 2k ay k V U sT -

-atz ]  + (U + C) Pi 2h nopeshe ae .---
Vtk1pt . ;(. ; 13t -. C

where

a2 3V 2 a'
- Pt[2( xu) + 2(y-) + (L + L~) (in the incompressible case)

and

CD 0.09  C1  1.43 C 1.92; a 1.3; a. .0

au  a Va V a f

These transport equations can be written with a comon form, assuming that * is any

transport variable:

div [00- (U +-7) grad 0] -Su()

The Numerical Procedure

All transport equations are integrated over a control volume leading to a rela-

tionship between four cardinal nodes surrounding the control volume and the central

node. The source terms are calculated by averaging over the control volume while the

convective and diffusive terms are determined on the control surface. These relation-

ships are transformed into linear equations solved with a tridiagonal matrix algo-

rithm. The grid is staggered in three different systems, respectively, U, V, and the

other dependent variables. Centered and hybrid schemes are used for convective and

diffusive terms. The pressure is obtained from a Poisson equation, where the source

term plays the role of an artificial compressibility.

Wall Boundary Conditions

Wall function treatments are applied at the wall-adjacent nodes in order to save

computing time and storage. Two different approaches are used:

(a) The shear stress is assumed uniform from the wall to the first adjacent grid

line. It is obtained from the modified logarithmic law for the smooth flat plate,

+ U I r+ +
Ulgfor y > 11.5

where
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T + 1/2

*. 1/4 1/2 and y A ok./U

Tv is determined for y > 11.5 from

_%1/4 1/2 ._1/2 . ...
TV  0.41 CD pUpkp /log [9pypk /V]

where P indicates the adjacent node. A viscous formula is used to calculate cW if
y+ < 11.5. When Tw is used as a boundary condition for U or V in the wail zone, the

average of two shear values on both sides of the control volume is required. In the

same way, two different values of the dissipation rate are used: the first (mean -.

value over near-wall cell) is required for the source terms of the turbulence kinetic - .

energy equation, the second value (defined locally) is used for the dissipation equa-

tion.

(b) In the second treatment due to Chieng and Launder (see Launder, 1980) the

wall shear stress is obtained from the relationship

%- 0.23 Uk /log [5.0 yk 1 2/V]

where Up is the velocity component parallel to the wall at the first near-wall node, -...

yp is the normal distance from this node to the wall, and kv is the kinetic energy at

the edge of the viscous sublayer obtained by linear extrapolation from the interior to

the edge of the sublayer, of which the thickness satisfies

1/2
y.k", /v 20

The local value of the dissipation rate is

3/2
;p M 4k p /yp.

and the mean value used as a source term in the kinetic energy equation is

2vk V-- + k /2loYe yv +  YP'" ";'e log yv~l

where Ye is the nearest node for the velocity.

Flow Boundary Conditions

The upper boundary is a symmetry axis with zero gradient condition on it. The

experimental values of Kim et al. (1978) are used as inlet boundary conditions.*... .:.:,.,

Characteristics of the Computations

The computations are made with a 40 x 40 non-uniform grid. The convergence is

obtained after 1250 iterations, for which the residual-mass source error over the

whole flow field is 0.00097 times the main-mass flow rate.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Sumary Report .

(Calculation of Five Turbulent Flows Using the Moore Cascade Flow Program)

by

J. Moore and J. G. Moore
Computer Group Number: 01 i '

Cases 0141, 0142, 0143, 0512, 0612

INTRODUCTION

Calculations have been performed for five of the turbulent flows. The calcula-

tions have been used as a basis for evaluating the Moore Cascade Flow Program (Moore -

and Moore, 1981) and its ability to model boundary-layer and duct flows in relatively

simple geometries. The flows considered are a flat-plate boundary layer, a boundary

layer in an adverse pressure gradient, flows with high and low inlet turbulence in a

conical diffuser, and flow in a 90° bend of constant cross-sectional area. Overall

the agreement is good, especially with the measured turbulent shear stresses in the

boundary layers and in the diffuser, and with the secondary-flow velocities in the 90
°  

*".

bend. , .. . %.r

VISCOSITY M4DEL

The mixLng-length model for turbulent viscosity uses the following well known

relations:
*- p )1/2 .-. ...-

I 0.41y [1 - exp ( 26ypT I

I - 0.086
boundary layer

A - O•OWshear layer

* 2.
+ef ut -+ + P1 du/dy"

In addition, mid-way between the wall and near-wall grid points, the effective visco-

sity is calculated using the relation

1/2 1/2
Peff " I ("t +  )l

VLrSinia Polytechnic Institute and State University, Blacksburg, VA 24061
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Case 0612. The Wieghardt Flat-Plate Boundary Layer

The flow was modeled as being on the bottom wall of a rectangular duct whose

height was 0.5 m plus the measured displacement thickness, which increased to

0.0092 a. The other three walls were specified as inviscid walls. Since the calcu-

lated displacement thicknesses agreed well with the measured values along the plate,

this geometry resulted in a calculated free-stream velocity of 33.000 * 0.001 m/s.

The calculations were started at x = 0.187 m, using the measured velocity pro-

file, and were carried out to x - 4.987 m.

Grid point locations (relative spacing). Normal to viscous wall: 0, 0.0004,

0.001, 0.002, 0.004, 0.008, 0.016, 0.03, 0.06, 0.12, 0.24, 0.48, 1. In transverse

direction: 0.1.

Steps. 35 steps varying in length from 0.02 m initially to 0.4 m finally; these

step sizes correspond to between 4 and 6 local boundary-layer thicknesses.

Mixing-length model (0.086). To account for the large change, the boundary-layer

thickness 8 was calculated at U/Ue - 0.995 for use in the expression 0.086 used to

obtain the mixing length in the outer part of the boundary layer. The free-stream

mixing length was set to zero.

Case 0141. Samuel and Joubert, Boundary Layer in Adverse Pressure Gradient '-..

The Samuel and Joubert flow geometry was modeled as a rectangular duct of varying

height and 1 m widch. The boundary layer was calculated on the flat-bottom wall. The

height was calculated using an initial height of 1 m; height variations along the duct

were calculated using the measured wall-static pressure coefficient together with

Bernoulli's equation for the free stream; these heights were then corrected using the

measured displacement thicknesses for the test wall. A no-slip boundary condition was

applied at the bottom wall and the other three walls were treated as inviscid.

The marching integration started at x - 0.85 m, using the measured velocity pro-

file, and proceeded to x - 3.4 m..%

Grid point locations (relative spacing). Normal to viscous wall: 0, 0.0003, IN*

0.0012, 0.0048, 0.02, 0.04, 0.06, 0.08, 0.15, 0.3, 1. In transverse direction: 0, 1.

Steps. 14 steps varying in length from 0.05 m initially to 0.25 m finally; the

4 step sizes were approximately twice the local boundary-layer thickness.

Viscosity model. A laminar viscosity of 0.000018 kg/m.s was used together with

the mixing-length model for turbulent viscosity. The characteristic length used to

define the slope of the total pressure gradient at the edge of the boundary layer was

0.2 a. The free-stream mixing length was set to zero.

Results. The calculated skin-friction coefficients were normalized using a free-
stream velocity of 27.0 m/s at x - 0. Good agreement with the data from the Clauser
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plots and from the Preston tubes was obtained. The calculated values of turbulent

shear stress were also in good agreement with the measured values.

Minor improvements to the calculated velocity profile at x - 3.39 m could re-

sult from a different choice of free-stream velocity distribution, which could be

obtained from either measured velocities or by applying turbulence corrections to the

static pressure distribution. Because of uncertainties in the experimental data these

corrections were not applied. , '

Case 0142. Pozzorini Diffuser, Low-Core Turbulence

The geometry of the Pozzorini diffuser is such that the conical section is pre-

ceded by a straight cylindrical section and there is no rounding of the wall at the

beginning of the conical diffuser. Data for starting calculations were given very

close to the beginning of the diffuser, only 0.055 m upstream of the end of the cylin-

drical section. The shape of the velocity profile at this station showed a relatively

high velocity near the wall, suggesting that the static pressure was locally low near

the wall, due to the curvature of the flow entering the conical section. This also

suggests that elliptic pressure calculations may be necessary to obtain improved

agreement with the measured boundary-layer development near the beginning of the coni-

cal section. However, insufficient data were given upstream of x = -0.055 m to

allow an elliptic calculation to be started in a region of parabolic flow with uniform

static pressure across the inlet section. Such an elliptic calculation was therefore

not attempted.

One pass of the marching-integration procedure was performed starting at x = ..

-0.055 m and using the measured velocity profile. The static pressure was assumed

uniform at this initial station. The parabolic flow calculation then allowed only

one-dimensional variations in the pressure field, i.e., p = p(x).

The calculation was performed for a duct with a pie-shaped cross-section. The ".

included angle used was 0.5 radians. Axisymmetric flow was assumed and a viscous-wall

boundary condition was applied at the diffuser wall. Inviscid-wall boundary condi-

tions were applied on the two radial walls and on a small inviscid tube of radius

0.001 m along the axis of the diffuser. This geometry was chosen to satisfy the

requirements of the Moore Cascade Flow Program, which is written for passages having ". -.

cross-sections with four corners.

Grid point locations for Cases 0142 and 0143 (relative spacing). Radial direc-

tion (inwards from viscous wall): 0, 0.001, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08,

0.15, 0.3, 0.5, 0.75, 1. Circumferential direction (angle - 0.5 radians): 0, 1.

Mixing length model (0.086). The boundary-layer thickness 8 was calculated at " '.

U/Ur 0 - 0.99. The free-stream mixing length was set to zero for this low-core turbu-

lence case.
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Results. Some improvement in the calculated skin-friction coefficients and tur-

bulent shear-stress distributions could be obtained near the beginning of the dif-

fuser. As discussed above, it is likely that these improvements could have been

achieved with an elliptic flow calculation had sufficient information to start an

elliptic calculation been provided. It is unlikely that a change in the turbulence .--.

% model alone could give sufficient improvement. -

The static pressure recovery for the diffuser was well calculated by this para- 0
bolic calculation. Near the end of the diffuser, at x - 1.81 m, the calculated pres-

sure coefficient of 0.74 agrees closely with the measured value of 0.71. The velocity

profiles are also in similar good agreement.

Case 0143. Pozzorini Diffuser, High-Core Turbulence

The differences between Case 0142, low-core turbulence calculation and Case 0143,

high-core turbulence calculation, are simply in the inlet velocity profile used to

start the calculation and in the mixing-length viscosity model. Again the measured -.

velocity distribution was used to start the calculation, but, to model the high-core

turbulence, the mixing-length in the outer part of the boundary layer and the core of . .-

the flow was set to 0.08 times the local radius of the conical diffuser.

The results show reasonable agreement, but the boundary layer approaches separa-

tion more quickly in the calculations than is shown by the measurements. This may be .-. %

partially explained by the calculated turbulent shear stresses being slightly too low.

Case 0512. Humphrey 900 Bend with Square Cross-Section

Notes on the changing character of the flow. The specifications for computation

call for calculations of the radial component of velocity at the beginning and end of

the bend, 8 - 0* and 90, respectively. These calculations are made complex by the

changing character of the three-dimensional flow, which is influenced by at least

three flow phenomena. Three major influences are:
.

1) flow redistribution due to elliptic pressure changes;

2) generation of streamwise vorticity due to curvature of flow with gradi-

ents of total pressure normal to the streamwise direction;

3) flow induced by non-isotropic turbulence.

The relative importance of these effects depends on the particular location consid-

ered.

Far upstream of the bend, the third influence, due to turbulence, will dominate

the development of the three-dimensional flow. In our calculations, we included the

% influence of non-isotropic turbulence only through the three-dimensional flow which
entered the bend. This inlet flow distribution has an effect on the results calcu-

lated at the beginning of the bend, but it becomes dominated first by the elliptic
flow redistribution and then by the .treamwise vorticity generated in the bend. This
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streawise vorticity dominates the three-dimensional flow until the end of the bend,

where once again elliptic effects are important. Finally, downstream, the flow be-

comes parabolic again and turbulence effects grow in a flow still dominated by stream-

wise vorticity.

Only at the beginning of the bend are all three influences on the three-

dimensional flow all significant at the same location. Thus only near this plane, one

of those chosen for evaluation of the calculations, must all three effects be well

modeled.

3-D partially-parabolic flow calculation. The pressure solution for the flow

field was built up using:
a) three two-dimensional, inviscid-flow passes with a uniform inlet flow;

b) one three-dimensional, inviscid-flow pass with a distorted inlet flow

based on the measured inlet velocity profile;

c) two three-dimensionl, viscous-flow passes using the measured inlet

velocity profile.

The final viscous-flow pass was started at x - -0.024 m with a uniform static .-.

pressure distribution. This location was sufficiently far upstream of the beginning

of the bend, that the static pressure variation, over the cross-section, calculated

from earlier passes, was less than 10 N/m (i.e., less than 0.03 times the peak pres-

sure difference across the duct, later in the bend). The tabulated data of Melling L

were used for the ux component of velocity, and the cross-flow velocity vectors, as

given graphically in a supplement by Humphrey, were used for the Uy and uz compon-

ents. All the velocity components were adjusted for symmetry by considering 1/8 of

the inlet cross-section.

The calculations were performed for half of the duct using a plane of symmetry

mid-way between the end walls.

Grid point locations. Grid points were located at B - 0, 0.003, 0.0125, 0.05,

0.1475, 0.3025, 0.45, 0.55, 0.6975, 0.8525, 0.95, 0.9875, 0.997, 1; and C -0, 0.006,

0.025, 0.1, 0.295, 0.605, 0.9, 1; where:

B = 0 is the suction surface; B 1 1 is the pressure surface;

C -0 is the end wall; C 1 1 is the plane of symmetry.

Viscosity model. A laminar viscosity for water of 0.00089 kg/ms was used to be

consistent with the flow Reynolds number of 4 x 10 4 and the bulk mean velocity of

0.89 m/s. The characteristic width for shear-layer gradients was taken to be equal to

the duct width of 0.04 m. The free-stream mixing length was set to 0.00008 m.

Turbulent shear stress. The turbulent shear stress Ur/Uef required for the

plots was approximated by the 
expression [(uff - 2 ref
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Results. The mass flow rate corresponding to U = 0.89 m/s did not seem consis-

tent with the contours of circumferential velocity given at e = 00. For our plots,

therefore, we used a reference velocity Uref - 1.04 x 0.89 m/s. This value gave much

improved agreement at 0 = 0. Also at this inlet station, the agreement with the

measured values of radial velocity was good, indicating that the magnitude and rela-

tive importance of the elliptic vorticity, and turbulence effects on the three-

dimensional flow were well modeled. The calculated values of turbulent shear stress

at 6 - 00 were in reasonable agreement on the suction and pressure side walls.

(Note that the plots are presented with a severely distorted scale.)

In the bend, the development of the flow is dominated by the generation of a

streawise component of vorticity and the magnitude of the secondary velocities grows

to approximately 501 of the bulk-flow velocity. These high velocities occur near the

end walls just upstream of the end of the bend. The data given at 0 = 900 partly

reflect the strength of this vorticity by showing the corresponding secondary flow

away from the walls. For example, on the plane of symmetry, the radially outward

component of velocity is in excess of 28% of the bulk mean-reference velocity. The

magnitude of this secondary flow velocity from the calculations is in excellent agree-

ment with the measured value. Also the extent of the flow cross-section influenced by

* the outward velocities is very well described.

The influence of the streamwise vorticity on the development of the circumferen-

tial component of velocity is clearly seen in the data. The thickening of the boun-

dary layer on the suction side near the plane of symmetry is a result of the transport

of low momentum fluid by secondary flows and of the unloadng of the pressure differ-

ence across the duct. This thickening was quite closely modeled. Also the contour

shapes are in remarkable good agreement considering the closeness of the contour

intervals chosen for the plots.

REFERENCE
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Abstract

A procedure for calculating turbulent boundary layers simultaneously with the

inviscid flow is described for two-dimensional, incompressible flow, following the

work of Moses (1968) and Moses et al. (1967, 1978, 1979, 1981). The method is in-

tended as an engineering approximation for applications where there is a strong inter-

action between the boundary layer and an inviscid flow, especially where separation is

involved. The stream-function equation is written in finite-difference form for the

inviscid flow with integral equations for the boundary layers. At a given longitudi-

nal position, the equations form a linear set with a tridiagonal coefficient matrix.

The set is solved simultaneously at each position in a line-relaxation procedure,

beginning at the upstream boundary and iterating over the flow field.

Introduction

In many engineering applications there is a need to predict overall performance

characteristics, where there is a strong interaction between an essentially inviscid

flow and turbulent boundary layers, particularly where separation is involved. Be-

cause of the difficulties in analyzing such flows, designers have relied heavily on

experimental correlations in the past. However, where a large number of variables are

involved, this approach is severely limited. Thus, there is a need for some type of

analysis, even if it is essentially an elaborate correlation of experimental data.

The difficulty in predicting flow separation stems from the fact that the

boundary-layer equations, with a fixed pressure distribution, exhibit a singular ',- . .

behavior and become unstable. Thus, a straightforward iteration between the boundary

layer and inviscid flow is not possible. Only recently has there been a widespread

effort to analyze such flows. These efforts generally attempt a solution of some form .

Virginia Polytechnic Institute and State University, Blacksburg, VA

tSverdrop Corp., ARO, Inc., Tullahoma, TN
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of the time-averaged equations for the entire flow or a patching solution of the

boundary-layer equation with the inviscid flow. In any case, the solutions must be

regarded as approximate because of the numerics as well as the turbulence correla-

. tions. Furthermore, any two-dimensional, steady model of turbulent separation is an

approximation. However, it does appear possible to obtain solutions of separated N

flows that are acceptable for engineering purposes, although more work is needed.

The purpose of the work described here is to develop a method for approximating

flow fields that involve separation. Since the method is fully described in the

- listed references, only a summary is given here, with a discussion of its application.

Suimmary of Method

*: In the work reported here, a simple rectangular grid system (see Fig. 1) was

employed, but this simplification is not necessary. For this system, the inviscid-

stream-function equations are

A-" A I, + Bj* +Ci () .- '
j'.ij j-l ji j ij+l j

where coefficients only depend on the grid spacing, *i-i,j, and *i+i,j for incompres-

sible flow.

For the first grid point away from a solid surface (Fig. 2) the bounding stream

function is eliminated from equation 1 by the linear approximation,

ds

~i~l 4'i, - AU~l(ki (2

-j

FLOW ----

DIRECTION A, ,2 ' 1,,
24~

I, ' ., ........

L- . .

J

F1gure I. Grid syatem for inviacid- Figure 2. Grid system at boundary
flow region. layer.
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To obtain a relation between the boundary-layer displacement, the edge velocity,

and the first calculated stream function, a similar linear relation is employed,-* dx !
U. (1,2 - 6)/[y l (!j)i - 6i] (3)

where 6 is the stream function value on the displaced boundary, which is assumed to

be a known constant. (Assuming a constant value for both stream functions results in

the one-dimensional pressure assumption.) Equation 3 is differentiated with backward

differencing to yield a linear equation of the form,

,31 + B3 U1 + c3,i, 2 - D3  (4)

An integral method is employed for the boundary layer, which can be written

(again with backward differencing) in the form

B1H + C6 - D (5)

and

A 2R + B261 +C D2 " D2  (6)

At any longitudinal position, Eqs. 1, 4, 5, and 6 form a linear set with a tridiagonal

coefficient matrix. The set is solved with a line-relaxation procedure, starting at

the upstream boundary and iterating over the flow field until convergence is achieved.

It is emphasized that the primary concern here is the approximate solution of the

entire flow field where separation is involved. Almost all integral methods can be

reduced to the form of Eqs. 5 and 6, so the basic procedure is not restricted to the

simple approximations presented here. ...-.

In the work presented here, Eqs. 5 and 6 were derived from the momentum and 1P.

kinetic-energy integral equations. These equations require three correlations for

closure: the skin friction, a relation for the second shape factor, and the dissipa-

tion integral. If separated flow is included, this condition must be considered in

developing the correlations. A number of different approximations have been consi-

dered by the authors, and further work is continuing. The correlations given below

"" are the simplest ones that gave acceptable results for all cases considered.

, 4H ~(7) - .-
H32 " 3H-1

Cf - 0.246 R-0 .268 10-0.678H (8)

and
Cd 0004 0.1667

C 0.004 H/R 0
6  Cd _< 0.01 (9)

If velocity-profile information is desired, the velocity must be related to the inte-

gral parameters. In the present work, the usual logarithmic profiles were assumed for
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the attached boundary layer. For the separated boundary layer, a wake or f ree-shear-

layer profile was assumed with a region of approximately zero velocity near the sur-

face. r "

Discussion

S.' The simultaneous solution procedure has been applied to a number of flows with

stable and convergent results. However, some of the integral parameter correlations

attempted, which seemed quite realistic, did not yield reasonable predictions. Thus,

some care must be exercised in selecting these correlations, particularly when large

regions of separated flow are included.

V Since the method is very approximate, a relatively large grid spacing was used

for most of the calculations. A finer mesh did not improve the results within the

uncertainty involved with the approximations. The calculations, which were run on an

IBM-370, have not been optimized for computational time.

The boundary-layer flows, Cases 0612 and 0141, were calculated with the given

pressure distribution. As is typical with integral methods, acceptable results were

obtained in a few seconds of computational time.

The unseparated diffuser, Case 0142, was run with the method as described and

also with a one-dimensional pressure assumption. Since this flow is nearly parabolic,

the overall results were essentially the same. The two-dimensional case, which was

run with a grid of 6 x 100 points, required approximately 50 iterations for conver-

gence and a computational time of 60 sec. The axially symmetric form of the boundary-
layer equations was used, but transverse curvature effects were not included.

Since the effective geometry for the separated diffuser, Case 0431, was deter-

mined with a one-dimensional pressure assumption, this was also used in the calcula-

tions. In this case only one pass was needed, and the calculated results were -

obtained in a very few seconds.

Although the method was not developed for large regions of separation, such as a
backward-facing step, this flow (Case 0421) was included to determine if it could be

treated without extensive modifications. This flow was calculated as an 890 diffuser,

with the only modification being an extension of the dissipation integral for large

values of the shape factor to approximate that for a free-shear layer.

The stalled airfoil, Case 0441, was run with a variable grid spacing and 20

points along the chord. In this case, the boundary layer upstream of the fH. Reas-

ured station and on the entire pressure side was not calculated. The wake was approx-

imated by a source, and was not calculated. Iteration on the dividing streamline was -

required as well as that required to relax the solution. For a convergence criterion

of 10- , a total computational time of approximately 5 min was required.
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Conclusions

An approximate procedure for calculating the turbulent boundary layers simultane-

ously with the inviscid flow has been demonstrated for a number of cases. The primary

advantages of the method are short programming and computational times and the ability

to calculate separated flows. A single set of boundary-layer correlations have been -"--

used for all flow cases with no attempt to optimize them for each case. Although more

work is needed on these correlations, acceptable results have been obtained for most -

applications.
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Cases 0141, 0431, 0612

The basic numerical procedure is described in Murphy (97,adtetruec

moestogether with parametric studies on nodal spacing and boundary conditions are
4 described in Murphy and Rubesin (1979).

Briefly, the equations considered are the incompressible time-averaged Navier-

Stokes equations in stream- funct ion/vort ic ity variables. These may be written as:

2 a2 1ay Re3x2

a... 2 3T 2 2

y VX W - e* +W x7--jT-y (2)
ay ax ay ax

and

Ty - -a

The boundary Conditions are

yin0, 0- -
ay

u (x)

yy R0 e W x

''WAX' ay u ' w

00 0

2 2 22 2 (2) L. '

* a , a _y a) E..

mx' ax2  ax 2  ax2 - ax .y V axay

Splined cubic Taylor's series expansions are used to represent the unknowns and their

derivatives. The block tridiagonal system Is solved by Newton-Raphson iteration and

the solution Is fourth-order accurate in y and second-order accurate in x. An addi-

tional equation or system of equations is used to define the eddy viscosity. In the

present study the several models considered are:

OASA-Ames Research Center, Moffett Field, CA 94035
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BOPX The Cebeci-Smith model (Cebeci, 1970). No intermittency or

pressure-gradient correction is made.

BIKX - The Glushko model (Glushko, 1966). Integration to the wall.

BKEX - The Jones-Launder model (Jones and Launder, 1973). No wall

functions used.
N.

BKWX - The Wilcox-Rubesin model (Wilcox and Rubesin, 1980). Energy

equation is integrated to wall. Specific dissipation varies like I .

1/y4 near the wall and is constrained algebraically for y+ ( 6.

The Wieghardt flat plate, Case 0612, and the Samuel-Joubert increasing adverse

pressure gradient, Case 0141, were solved using each of the above models, as in Murphy

and Rubesin (1979).

The last flow considered here is the separating diffuser of Simpson et al., Case

0431. Although a similar case was treated in Murphy and Rubesin (1979), a substantial

modification to the code was introduced to treat this case in the present study. In "* '.

addition to the transformations used in Murphy (1977) and Murphy and Rubesin '1979),

the stream-normal coordinate was transformed by the relation

y-y/h~x)

where h(x) was the streamline trajectory given in the case description. This trans-

formation maps the diffuser shape onto a rectangle. See sketch.

YmI.ax..

0 01LL+:''° ' 'x L X0

On the upper boundary, y 1, we prescribe a constant stream function. The velocity

distribution and skin friction are prescribed at Xo, and at L all second-derivatives

with respect to x are set to zero. In addition, for this case only, the streamwise

diffusion is set to zero in the vorticity-transport equation for all x and y. This

latter approximation reduces the time averaged Navier-Stokes equations to the so-

called thin-layer approximation. Note that the system is still elliptic due to the

definition of vorticity. The turbulence model used in these calculations was that

proposed by Baldwin and Lomax (1978), which circumvented the problems associated with

ill-defined integral parameters in non-boundary-layer methods.

As in Murphy (1977) and Murphy and Rubesin (1979), the initial guess used by the

relaxation procedure for the time-averaged Navier-Stokes equations is obtained by a
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marching pass through the mesh with all /3x2 set to zero, which corresponds to the

boundary-layer equations.

Since, in the present case, the stream-function rather than the edge velocity is

prescribed, the boundary-layer equations do not encounter a singularity at the separ-

ation point and solutions were obtained for the parabolic calculation as well as the .-. .-

elliptic calculation. Although there are differences between the two solutions of a

few percent, they are too small to show up to the scale of the plots presented. .

The skin-friction-coefficient plots are extended to contain all the data and to --

show both predicted and experimental separation points. The rather good agreement

between predicted and measured skin friction, particularly as regards the separation

point, must be regarded as fortuitous, since the predicted velocity gradient is too

large by a factor of two in the region of the separation point, see Fig. 1. This

figure provides a useful global figure of merit for the turbulence model since the -

proper growth of the viscous region will automatically provide the correct core velo- .

city. We find that up to some neighborhood of the separation point, say roughly

x - 3 m, all the parameters are reasonably well predicted, while downstream of this

point, all the various parameters degrade progressively. ' '

The machine times and nodal density for the results presented are shown in

Table I.
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Figure 1. Predicted streamvise velocity distributions.

Table 1

Execution Time 7600 CPU seconds

M X N

30 x25 22 x31 30 x27

Vieghardt Samuel & Simpson*. .

Joubert 
1

Cebeci-Smith 7.68 20.61 160O

Gluuhko 13.44 22.01

Jones-Launder 15.45 24.33

Wilcox-Rubesin 20.06 29.96

Parabolic Calculation.

tilliptic Calculation.

L
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Cases 0141, 0231, 0232, 0233, 0612 -. 4.

1. The Governing Equations

For steady-state incompressible two-dimensional flows, the governing boundary-

layer equations are (see Cebeci and Smith, 1974; Cebeci and Bradshaw, 1977),

Continuity

3 -CPu) + -y Pv) - 0 (1)

Momentum

Pu X PV +a ax au (2)-

The coordinate x denotes the distance along the surface measured from the leading

edge. The coordinate y is measured normal to the surface. The velocity components in

the x and y directions are u and v, respectively. p is the fluid density and )j is the

coefficient of viscosity. Bars and primes represent time-averaged and fluctuating

quantities, respectively.

The boundary conditions for the preceding equations are given as follows:

ii(x,O) = 0

V(xO) = 0 (3)

u(x,6) = (x)

where 6 is boundary-layer thickness.

Boussinesq's eddy-viscosity concepts are used to evaluate the turbulent transport

quantity -pu'v'

,,ut PC (4)-pu'v' = pe 4 ""'

We introduce the Falkner-Skan transformation as

u 1/2 (5)
n - (- y ()

where v is the kinematic viscosity.

Mitsubishi Heavy Ind. Ltd., Nagasaki, Japan
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If Y(x,y) is a stream function such that

__ - (6)

then the continuity equation is satisfied. Introducing a dimensionless stream func-

tion f(x,n) by

Y(x,y) u UVx) 1/2 f (X.TO (7)

* and using the new variable of Eq. (5) the momentum equation becomes

1 ml + r f) 2  af' af
[* e)f"-]' + At- ff" + - x(-'f - f"T) (8)

Here the primes denote differentiation with respect to ni.

The boundary conditions (3) nov become

f(x,0) - 0

f'(x,o) - 0 (9)

f'(X,6) -1.0 -

In Eq. 8, C+ and m are defined as

+ £xdueJ£ ~M~ (1.0)

2. Eddy-Viscosity Model

The Cebeci-Smith model is used for calculating two-dimensional turbulent boundary

layer.

Inner region:%

(C)i M L y tr' 0 < y < y (11

where

L l exp(w Y-] 04

26juU ,

N (1 -1.8p5 1  P vudu
u T 3

dx-4 ue -1.34
Y 1 n exp[G(xtrx f dx] , G 8.35 x10 R;x

t rXtr e V 2 tr

lAx u- U xtrIV xtr m x at the location of start of transition
tr ..

1.469



Outer Region:

(0) al~ f (us - ui)dyly tr Yc Y< (12)
0

wheren a 0.0168; yc is the position where (S)i (c)o efc o h

For low verconcavean covxsraetesraws cu aueefctnth
ed vicst Isintroduced bmutpyn th ne-dyvsoi expression byS 2,

where 12i3 1(3

1+0, S-XjY)

where A is the longitudinal radius of curvature which is positive for a convex surface

and negative for a concave surface. The parameter 8 is taken equal to 7 for a convex

surface and 4 for a concave surface.
3. Method for Numerical Calculation

Introducing new dependent variables q(x,ri) and w(x~n),

-q

the momentum equation (8) can be written as-V(4I[(I + £ )wJ' + Z fw + m(I-q 2) X 3- 2- (15)

The boundary conditions are <

f(x,O) -0, q(xO) -0, q(x~ne) -1(16)

Let us now consider the grid rectangle and denote the grid points by

jiere ~ X n xn xn-I + :1~ : 2 ::c oftentny(7

functions denoted by (fjpqjgvj). We employ the notation g' for points and for any noat

function:

60n-i1/2 I n n-i
If -jx + X ) nj_.1 / 2 -(nj + -1

nj-1/ 1gn n-1 n I(g n 1  (18
n-l/2 gj gJ-1/2 '2g j1

N The finite-difference approximations of Eqs. 14 and 15 can be written by using

centered-difference derivatives as follows:

1470 .



h-1ifn fn q n h-1, (q n'1) W
- J-1' 'J-1/2 jj - .j- J-1 /2

-i bnwn b n n + CL(f) n_ - 2(2n
j i i -liJ-i lwi1/2 z J-1/2

+ a(wn- f 2  -fnl n ) R nl (19) -

J-1/2 J-1/2 J-i/2wj-1/2 J-1/2

where '

n-1/2 n
5 k 1 2 +a 2 +

n

Rn' ~n-i +- 01 -(
2 n-I n

J-1/2 -J-112 + fl(fw)J, 1/2  ~ J-1/2-

{h-lb w1 +1 +m-( 2  n-i
LJ-1 /2  (h- ( iwj bj-1 wj-) -;-(fv)J-1 /2 + ~ J-1/2 1 )

The finite-difference equations (19) can be solved by Newton's method. ,%

4. The Net Configuration and Convergence Criterion

The net in the n-direction is a geometric progression having the property that

the ratio of length of any two adjacent intervals is constant; that is, hj =Khj-1-

In the present computations, K -1.2 is employed for all cases. No signif icant

difference was found in results calculated Using several values of K from 1.1 to 1.5

for the Case 0141.%

The step in the x-direction was chosen to be uniform and the values are

.4 kn - 0.33m for Case 0612

km - 0.05m for Case 0141 .

k- 0.02m for Case 0231, 0232 and 0233

In order to obtain a solution of the finite-difference equations (19), iteration

was repeated until some convergence criterion was satisfied. We used the wall

parameter as the convergence criterion. The iteration was stopped when

wix0) - -) w(X,o) < 0.02 (20)

where i denotes the number of the.-iteration.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report.

(A One-Equation Turbulence Model '. -

Including the Low Reynolds Number Wall Effect)

by ..

P. Orlandi* '0

Computor Group Number: 05

Cases 0141, 0142, 0143, 0231, 0232, 0233, 0241, 0242, 0244, 0612

INTRODUCTION

In order to numerically predict the behavior of turbulent boundary layers incor-

porating some complexity such as unsteadiness, transpiration, and free-stream pressure

gradient, it seems necessary to use a dynamic turbulence model including the near-wall

region. An accurate modeling of the wall region involves the simulation of the com-

plex turbulent mechanism occurring in the viscous and buffer regions. In these

regions the maxima of turbulence energy production and dissipation occur and the other ,

energy-balance terms are of the same order of magnitude, except the advective term.

This latter term shows its influence in the case of high transpiration, and it is

predominant near the boundary-layer edge, where it balances the turbulent diffusion.

In a previous paper (Orlandi, 1981), the role of the pressure work term in the near- -

wall region has been emphasized and a first rough model has been introduced, but its

behavior, from a quantitative point of view, cannot be proved, due to the lack of

experimental measurements. Its introduction, as shown in Orlandi and Reynolds (1979),

was intended as a modification of the dissipation term, and allows us to obtain a

value of the maximum turbulence energy in very good agreement with the experimental

values measured by Klebanoff (1955).

The one-equation model, mentioned above, is satisfactory for numerical investiga-

tions on turbulent flows without separation regions. For such flows a length-scale

distribution can be easily obtained. In the largest part of the flows calculated for

this Conference the mixing-length distribution, strictly valid for the zero-pressure-

gradient case, has been found to be satisfactory. The only case presenting some

uncertainty is the relaminarizing flow (Case 0281) which needs a deeper investigation. ___

I feel I can affirm that for a large number of non-separated boundary layers, if the -

near-wall region needs to be modeled, it is not advantageous to use more sophisticated

models, such as the two-equation model or the Reynolds-stress model. In these models

CIstituto di Aerodinamica - Universita di Roma, Italy maim!
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a larger number of terms appear whose modeling presents large difficulties, especially

in the near-wall region; for example, the representation of the pressure-velocity cor-

relations in the two-equation model was found to be impossible, as shown in Orlandi .,"

(1980), and the turbulent energy balance in the near-wall region was incorrect. In .

the case of adverse-pressure-gradient boundary layers a negative turbulent energy was

obtained at a distance from the wall of the order of y = 1.

If Reynolds-averaged turbulence models have to be used for engineering purposes, ,

the code needs to use short CPU calculation times, and hence fast numerical methods

have to be developed. The first requirement is based on using implicit methods, in

such a way as to avoid stability-condition restrictions. Due to the non-linearity of -.

the equations, implicit schemes need iterative procedures, that can be overcome if

efficient linearization schemes are used, as suggested by Warming and Beam (1977). .. '

Moreover implicit methods, dealing with turbulent flows, allow us to obtain a fast

coupling of the mean-velocity field and the mean-turbulence quantities. Boundary-

layer numerical simulation usually employs scaled variables; the major group of

methods use the Falkner-Skan type transformation (see Keller, 1978), which is adequate

in dealing with laminar boundary layers. If these transformations are used to solve

turbulent boundary layers, a continuous check must be conducted to satify that the

real flow is inside the computational domain. This requires a great programming

effort, and if adverse-pressure-gradient cases are considered, where large boundary-

layer thickening may occur, a reduction of the streamwise step is necessary. The

method employed here scales the normal direction with respect to the unknown boundary-

layer thickness 8(x,t) which is evaluated at the old time step. Whatever steady

boundary layer is considered, it is solved as an unsteady boundary layer with the

external conditions (free-stream velocity or/and transpiration rate) evolving from a

steady flat-plate state to the assigned one. This method allows us to obtain accurate

solutions with a reasonable number of time steps and streamwise grid points. In the

normal direction a stretching of the scaled variable must be used in order to have
+some computational points in the viscous region (y < 5).

GOVERNING EQUATIONS

The momentum and continuity equations for two-dimensional incompressible turbu-

lent boundary layers are

a--- v + . (1) -- -
+ iv- ,0.ax ay

aU U U 3
Ue a_ U .T..y

-e + + aT)u (2)
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The velocity time derivatives have been retained because, as previously stated, the

steady case has been solved like an unsteady case with the following free-stream velo-

city distribution

Ue(Xt) = 1 + f(t)[U(x) - 1] (3)e a ,..• " '.,.

Ua(X) is the desired free-stream velocity distribution and f(t) Is a function giving a * "

smooth transition from t = 0 to t = T, where T is a priori chosen. For t > t'

alUe/at - 0. It has been checked that the steady solution is not dependent on the

assumed value of T. vT is the eddy viscosity, related to the velocity scale, the tur-

bulent kinetic energy, and length scale of the turbulence. The length scale is related

to the dimension of the eddies carrying energy in the boundary layer. In the outer

region the eddies are of the dimension of the boundary-layer thickness, and in the near-

wall region they have dimensions proportional to the distance from the wall. An analyti-

cal expression which takes into consideration these physical aspects can be introduced .-

SC 06 (l- ( Y/6) )(4)

A damping factor has been introduced, in the turbulent-viscosity expression, to model

the wall suppression of the turbulent transport

1/2
1/2 -c6 (Q y)/v-

VT=CQ 1 (1 -e)(5

*More details to support this point of view are reported in previous papers [1,2,7].

_~ ~ -£-2::

The dynamics of the turbulent kinetic energy, Q - u + v + w - 2k, is given by

a transport equation that under the boundary-layer simplification is written as

'q +U + V q vT[- 2- - 2D-at ax ay ayVTW +y a y] ay -

where D is the "isotropic dissipation" to be modeled as a function of the turbulent

kinetic energy, mixing length, and laminar viscosity if the near-wall region is consi-

dered. By dimensional analysis one obtains the following expression:

D - 3 ~ (I + c5 7j- (7)

The turbulent-kinetic-energy diffusion has been treated by a gradient-diffusion

model, in which the pressure-work term has not been included as is usual in one- and

tvo-oquation turbulence models. The pressure-work term should play a significant role
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mostly in the near-wall region. In Orlandi (1981) a comparison between experimental - '

and numerical results obtained by more sophisticated turbulence models, such as the

Large Eddy Simulation Model of Moin et al. (1978), suggested reasons why it is neces-

sary to model explicitly the pressure-work term in the wall region. By dimensional

consideration, this term is modeled as .. ,

1/22Q3/2 -1[(Qz/2t)/csv-i 1 8 2 :::::::

- ay Ce-I e

The values of the constant in Eqs. 4, 5, 7, and 8 can be evaluated following the -

procedure described by Norris and Reynolds (1975) and by Orlandi and Reynolds

(1979). It consists of comparing the experimental data, in wall coordinates, of

steady flat-plate turbulent boundary layers at y+ 100 and in the near-wall region,

with the theoretical model. Hence the constants can be evaluated. From the experi-

mental results of adverse-pressure-gradient turbulent boundary layers, with and with-

out transpiration at the wall, it can be seen that the near-wall and logarithmic

region up to y 100 are not affected by the external pressure gradients; thus the

value of the constants, obtained for the zero-pressure-gradient case, have been

retained. They are

C0  C1  C2  C3  C4  C5  C6
0.096 4.16 0.37 0.0425 3.93 0.012 4.5

METHOD OF SOLUTION

A coordinate transformation in the normal direction relative to the boundary-

layer thickness is useful to solve the system of continuity, momentum, and turbulent

energy-conservation equations. As the boundary-layer thickness is unknown at the new ,

time step, the normal coordinate is normalized with respect to the boundary-layer .,.

thickness at the old time step. The independent variables have been transformed .

according to

x = (x1 ) ; y - 6(x,t - At)n(x2) (9)
1 2.

If the governing equations have to be integrated down to the wall, some computational
+ +points have to be inside the viscous layer, extending from y - 0 to y 2 5. Since .

the boundary-layer thickness in wall coordinates is of the order of thousands, a

finite-difference scheme with uniform mesh would require an excessive number of grid
points. Hence, to avoid enormous computational time, a further coordinate transforma-

tion has been introduced,
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tanh(l - x2)c
,- =r(1 - tanh(c) ) (10)

where x2 is the "new" coordinate with respect to which the governing equations Vill be

discretized. Large values of the transformation parameter c give more computational

points near the wall. In order to have the whole boundary layer inside the computa-

tional domain, having introduced 6(x,t - At) in Eq. 9, a value n. - 1.25 has been

assumed. The coordinate transformation in the streamwise direction is chosen in order

to have more computational points in regions depending on the flow considered.

The continuity equation has been differentiated with respect to the y coordinate

for numerical reasons, as given by Orlandi and Ferziger (1981). Then introducing in

the continuity, momentum, and turbulent-energy equations the coordinate transformation

(9), a system of equations is obtained in which more terms will appear with the

derivatives expressed in term of the "new" variables x1 and x2. The transformed

equations can be found in Orlandi (1981) and Orlandi and Reynolds (1979). The-*%..

boundary conditions associated with them are

y , U- Q 0 , V V(x,t)
y 0 0

y %6, U - Ue(X~t) , y =-3x , 3y

The non-linear system of equations has been solved by an implicit procedure which *.., .

is useful for two reasons; first to avoid stability conditions on the mesh size in the

streamwise direction; second and most important, to have a fast coupling between the .,

velocity field and the turbulent quantities. The system of equations has been linear-

ized along the streauwise direction. All the details of the method, of the finite- ..-. *.

difference scheme, and of the methodology of solution of the algebraic system of equa-

tions can be found in Orlandi and Ferziger (1981) and Orlandi and Reynolds (1979). - -.

INITIAL CONDITIONS

To solve the system of governing equations described in the previous paragraph

Initial conditions must be assigned at x - o  and t > 0, and at t " 0 and

x > xo .  With regard to the velocity profile, usually the experimental velocity data,

closer to the wall, lie in the log region. A boundary-layer code, taking into

consideration the near-wall region, requires the velocity profile in this region. It

can be easily obtained from the profile in wall coordinates if Tw at x - xo is

known. The turbulent-kinetic-energy profile has been calculated, by an iterative

procedure, solving the non-linear turbulent-kinetic-energy conservation equation with

the assumption of zero advection. This assumption gives a satisfactory distribution

in the inner region, where the advection term is negligible. The same velocity and
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turbulent-energy profiles have been assigned as initial conditions (x = xo  and

t > 0). The initial conditions described above and the further assumption at x -x

of zero vertical velocity are responsible for the large differences encountered, near

the inlet, between the experimental and the numerical data of Cf. The influence of

the incorrect initial conditions disappears completely after a few streamwise mesh " .*.

points.

The initial conditions at x > xo  and t = 0 have been calculated solving the

system of equations with the assumption of steady state and zero pressure gradient.

The coordinate transformation in the vertical direction, given in Eq. 9, requires the

knowledge of the boundary-layer thickness as a function of x. Only in the case of

zero-pressure-gradient turbulent boundary layers does it grow in the streamwise
4'5

direction with a well-defined law (6 - x ). Thus the code at x = xo  demands a

value for 6. ..

Each flow considered requires some coefficients in the expression of the stream-

wise coordinate transformation in order to have more computational points in particu-

lar regions. For example the relaminarizing boundary layer (Case 0281) shows very

high gradients far away from the inlet, and thus the code was able to run only if more .

grid points were located in the end region. Almost all the other flows instead

require more computational points at the inlet due to the above-mentioned inaccurate

assumptions at x - xo .  Moreover for the transpired flows (Cases 0241, 0242, 0244),

Vo(x,t) - 0 has been assumed at x - Xo, then Vo(x,t) increases abruptly until it - .

reaches the experimental value of Vo . This fast growth can be described in a very

short streamwise distance only if a refinement of the grid is assumed near x - xo.

COMMENTS AND CONCLUSIONS

The results obtained with this model are in very good agreement with the experi-

mental data for all the flows considered, except for the high-turbulence core diffuser . -

(Case 0143). It appears in this case that a boundary-layer code is not able to

describe a flow, where a well-defined potential flow region is not present. To obtain

good predictions for such flows a code which includes viscous-inviscid interaction is

obviously necessary.

The code has also been modified to calculate boundary layers with streamwise
curvature, and attempts were made to solve the Gillis/Johnston boundary layer (Case

0233). In this case the computation started always from a flat-plate boundary layer

and a time-dependent curvature radius was assumed. The steady state was not reached,

because a negative turbulent kinetic energy was found near the wall at a streamwise

position located between the flat and the curved regions, where high streamwise curva-

ture gradients are present. Due to the inability to calculate this flow, the other

two boundary layers with curvature (Cases 0231, 0232) were not even considered. Thus
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more work needs to be done to take into consideration this kind of boundary layer.

The simulation of the effect of free-stream turbulence (Case 0211) will need some

small modifications to the code. This will be performed in the near future.
L
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report .

(Prediction of Some Complex Turbulent Flows
Using the Boundary-Layer Equations
and Viscous-Inviscid Interaction)-. -

by

R. H. Pletcher,* 0. K. Kwon
t

R.H. Pletcher

Computor Group Number: 30

Cases 0141, 0241, 0242, 0421, 0424, 0431, 0612 
-.

INTRODUCTION

Three different computational models and five different turbulence models were

used to compute seven cases for the 1980-81 AFOSR-HTTM-Stanford Conference on Complex

Turbulent Flows. The cases considered are listed in Table 1. Fully attached flows "'.. . .-

(Cases 0612, 0141, 0241, and 0242) were computed using an implicit finite-difference

procedure (TBL) for solving the turbulent boundary-layer equations. A finite-

difference viscous-inviscid interaction procedure (VIS-INVIS) was used to compute

flows containing recirculatina regions. One separated flow (Case 0431) was also com-

puted by an inverse boundary-layer finite-difference procedure (INVBL). The computa-

tional methods and turbulence models employed will be described briefly below.

Table 1. Summary of Cases Computed

Case Mathematical Model Turbulence Model

0612, 0141, Boundary layer Model 1
0241, 0242

0431 Inverse boundary layer Model 2

Viscous-inviscid Model 2
interaction,.'...

0421 Viscous-inviscid 1: Model 3 upstream of step;
interaction Model 5 downstream

k-1: Model 2 upstream of step;
Model 4 downstream

0424 Viscous-inviscid k-1: Model 2 upstream of step;
interaction Model 4 downstream

Department of Mechanical Engineering, Iowa State University, Ames, IA 50011

tPresent address: Detroit Diesel Allison, Indianapolis, IN
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GOVERNING EQUATIONS

The thin-shear-layer (boundary-layer) equations were assumed to govern the vis-

cous flow. The FLARE approximation was introduced to permit marching the solution

through regions of reversed flow. For steady, incompressible flow, the equations
become: ",.% ."+

continuity

au av 0 (1)

momentum

au du 1 e 1 aT
U VaU IT pa (2)cuTX-+ av e -x+ _-Pg(2

where c = 1.0, when U > 0 and c - 0, when U < 0. The Boussinesq assumption is

used to evaluate the shear stress,

T- a - p uv - (E + T U (3)

Equations 1-3 were used in all three computational procedures considered here, al-

though the boundary conditions differed.

For all three methods, the inner boundary conditions were

U(xO) - 0

(4)

V(xO) - Vw(X) -. -. -

When the boundary-layer equations were solved in the conventional direct mode, the

outer boundary condition used was %

lim U(x,y) = Ue(x) (5)

When an inverse procedure was used as in INVBL and VIS-INVIS, the displacement thick-

ness, 8*(x) was prescribed. In the Iterative viscous-inviscid interaction procedure, %

an arbitrary initial distribution of 8* (x) is assumed, and improved distributions

determined as part of the viscous-inviscid matching. The boundary condition is for- g-'"
mally that the velocity distribution satisfy the prescribed 6 (x):

(x) f (I -U) dy (6)
0 e

A solution for inviscid portions of the flow field is required for the viscous-

inviscid Interaction calculation procedure. The inviscid flow was assumed to be
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two-dimensional, steady and irrotational. Thus, the inviscid flow could be determined

from a solution to Laplace's equation for the stream function:

2 + -0 (7)

ax ay

The inviscid calculations for the present Conference were all for two-dimensional

channel flows for which the boundary conditions were:

*(X L) 0.0 (lower)

*(x,6 u) -T (upper)

(.(,y) - Ue,o (y - 6*o) (upstream)

2 0.0 (downstream) (8)

ay2 (L,y)

where *T is the total volume flow rate per unit width.

TURBULENCE MODELS

Model 1. All flows remaining fully attached were predicted using the one-half

equation model designated as Model D in Pletcher (1979), supplemented by the sublayer

modification for blowing and suction presented in Pletcher (1974). The model utilizes
2 lu

the concept of a mixing length whereby yT r 2  with £ given in the inner re-

gion by 
PT

1i - 0.41 By (9)

with D = 1 - e - z , where z is given by equation 15 of Pletcher (1974) and includes a

modification for blowing and suction. The mixing length in the outer region is given

by

to - 0.12 L (10) ..-

where L is given by the solution of the one-dimensional transport equation

de - 1.25 1,-1 [(It) - 2 (1 )

1/2
The quantity rn is a representative velocity of turbulence taken to be (ITFTI/P)
where 'T is the characteristic fully turbulent stress given by equation 20 of Pletcher

(1974). The parameter 6 is the boundary-layer thickness. The value of TPT becomes

equal to r, for flows without blowing or suction. Details on the development of

Eq. (11) can be found in Pletcher (1979).
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Model 2. For several flows, improved predictions were noted when the turbulence

kinetic energy was utilized in the modeling for the outer region. The form of the

turbulence kinetic-energy equation utilized was

3k 3k 3 T k U2 CDU3/2/
P U - + P v -y RU + P'r-) l] + UT 3 (12)

T

where CD  0.164 and PrT - 1.0. The turbulence kinetic-energy equation was solved

subject to boundary conditions given as equations 15 and 16 of Pletcher (1979). The

turbulent viscosity was again evaluated according to -, the inner

region with I 1i where 1i was evaluated as

1 0.41 (r ax/TW) 1/2 Dy (13)

Here, D was represented as

1/2 y14)
D=1-exp i~fl 'lmax 14 --

In the outer region, the turbulent viscosity was evaluated by 1 /2548pk/-'

where to was determined as indicated for Model 1. The switch point from inner to

outer model was made at the y location, where Li first became equal to or greater than

As. This one-and-a-half-equation model was used for Case 0431 and upstream of the

step for some of the results presented for Cases 0421 and 0424.

Model 3. This model evaluates UT in the inner region exactly as given for

Model 2. The turbulence kinetic-energy equation is not used for UT in the outer re-

gion; instead the fo-mulation of Model 1 is used. For attached flows in mild pressure

gradients without blowing or suction, this model becomes indistinguishable from

Model 1. Model 3 was used upstream of the step for some of the results presented for

Case 0421.

Model 4. This model and Model 5 described below were developed to obtain im-

proved predictions downstream of rearward-facing steps. Attempts to extend Models 2

and 3 in applicability to this region showed promise, but overall, the best predic-

tions to date were obtained by specifying to algebraically downstream of the step.

Model 4 differs from Model 2 only in the determination of to. The turbulence kinetic-

energy equation is used as indicated for Model 2. In Model 4, to is taken as the

smaller value obtained from the following two expressions:

to -0.1( ) (15)

to " 0.08 (l + c ) (6 - y (16)

where
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,- {O.5 [yT2 + (6 - y' )2]}/2 (17)Pax a."."",'

and0.3 if h/H < 0.3 ;

h/H if h/H > 0.3 .-,-'"

In the above, x in the distance downstream of the step, h is the step height, H is the

cain boetheih do istam nc te stp,2 i h hight of the dividing (tramin

dowstream of the step and y.... is the height of maximum shear stress. All heights

are measured from the wall on which the step occurs. Motivation for the above formu-

lton is discussed in Kwon and Pletcher (1981).

Model 5. This model is a version of Model 4 in which the turbulence kinetic

energy equation is not used; instead, uT - 1 in the outer region. The inner-

region modeling is the same as for Model 2 and I is evaluated as indicated for

Model 4.

SOME COMPUTATIONAL DETAILS

A stretching transformation n - (y/x) (Rex)I, 1 x, was utilized in the TBL

procedure to remove the leading-edge singularity and to provide a more gradual growth

of the boundary layer in the transformed coordinates. The difference procedure was

fully implicit and formally second-order accurate. A three-point representation was,.. " ,.

used for the streawlse first derivatives and linearization of coefficients was

achieved by a second-order accurate extrapolation. No iterations were required.

Unequal grid spacing in the normal direction was implemented by a geometric progres-

sion, such that the ratio of two adjacent normal coordinate increments was a constant,

K. Case 0612 was computed as a turbulent flow from the leading edge with no matching

required. The starting length for Cases 0141 and 0241 was adjusted to match the

experimental 8* at the first measurement station. Difficulty in matching the first 8*

was observed for Case 0242 using the reported pressure gradient and suction rate. The

A9, An, and K parameters were refined several times until changes in the solution were

negligible. After grid refinement, streamwise sizes were typically a 0.38, K - 1.05,

and about 90 grid points were used across the flow.

In the INVIT procedure, the thin-shear-layer equations were solved in a coupled

manner in physical coordinates using an implicit finite-difference scheme with Newton ., ""

linearization. The pressure gradient was treated as an unknown in the numerical form-

ulation. Coupling was facilitated by the introduction of the streamfunction. The

algebraic equations were solved by a block tridiagonal elimination scheme. The use of

the FLAI approzmation permitted the calculation to proceed smoothly through separ-

ated regions. Details are provided in Kwon and Pletcher (1981). The INV3L scheme can

also be used in the direct mode with Ue(z) specified and this procedure was followed
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in Case 0431 from the channel entrance up to x =0.6 m, where the calculation...'"--

switched to the Inverse mode with a (x) specified. Only two Newton iterations were"""""

generally required at each streamvise station to achieve convergence to a relative -.:i,

%tolerance of 0•0005 on the U and * variables. For Case 0431, the number of grid "-"- - ,

%points across the flow varied from 35 near the channel entrance to 110 at the end of," .,.:

the channel. The couputational region for the inverse calculation was spanned by 298 """"

etreasivise steps. Calculations made with a significantly finer grid showed no signifi- - 1

cant changes...

The VIS-INVIS procedure employed the INVBL scheme to compute the viscous portion.---'"

- of the flow. The inviscid flow domain was transformed to a rectangle by an indepen- i-,.
dent variable transfornation given in Kwon and Pletcher (1981) prior to solution by an k

: ADI finite-difference procedure using successive overrelaxation• To start the calcu- .. _,

lation, an arbitrary distribution of 6*(x) was assumed. After the boundary-layer and . ::::

.A

inviscid-flow solutions had been determined with the assumed 6*(x), an improved dis-

tribution was obtained frou

(19)-

e, INV n

No under-relaxation was needed in the application of Eq. 19 for Case 0431, but was-.'"

required for the lover (step-side) wall for step flows (Cases 0421, 0424). The

required value of the under-relaxation factor seemed to be a strong function of the . ....

ratio of 6 before the step to the step height. When 6* at the step was larger than "'-.

the stop height, under-relaxation was not necessary. In the worst case (0421), anunder-relaxation factor of 0.1 was used. The calculapin p06 eee tealcutio ""c"de ier---.n

the solutions gave identical distributions Of Ue(x) thin a prescribed tolerance,re

e L Ue 'N W < :(20),.-" ".-
U -

e,INV '"" -

at all calculation points in the interaction zone. The values used for e were 0.0125

for Cases 0421 and 0424 and 0.005 for Case 0431• Thirty-eight global iterations were ..-...
required for Case 0421 and 9 Iterations for Case 0431 The interaction zone extended '

from - 0.05 a to the last data station for Case 0431 and from four step heights

upstream of the step to 16 step heights downstream for Cases 0421 and 0424. The- ._boundary layer was fowputed on both channel walls f or Cases 0421 and 0424. The grid

used for the viscous region for Case 0431 was as indicated above for the NVBL proce-

dure. a 48 x 51 Crld was used in the inviscid region for Case 0431. For the stepinifi-

cases, approxisiately 130 unequally spaced grid points were used across the viscous
portion of the f lo and 104 stresmaise steps were used to span the interaction zone.

A d 1 x 1 a rid was used for the inviscid region Preliminary calculations (not to
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tributio was.obtined.fro

• -.-..* ..- . % - . . ., .. L - - .-% . . -. . , .- - - - -. " . . .' ." " .' . '., ' . .." . . ." " '. . . ' ." , -. . ,. ..U e. .B L. . , . .
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complete convergence) were made using various grid sizes in order to establish the
adequacy of the grid used for the final calculations. The step cases (0421 and 0424;

see table below) required the largest amount of computer time, approximately 9.7 sec

per global iteration on the NAS AS/6 computer.

CLOSING COMMENTS

Cases 0242 (suction) and 0421 (rearward-facing step) were the most challenging.

The results for Case 0242 are especially puzzling in light of the relatively good

success achieved with Model 1 for the blowing case (0241). Assuming that the experi-

mental data have been interpreted properly and the case set up correctly for computa-

tion, some interesting further work on turbulence modeling is indicated.

The viscous-inviscid interaction mathematical model used for the step flows does

not account for normal pressure gradients in the viscous region. Prior to doing the

turbulent-flow calculations, this mathematical model was evaluated for laminar flows

as given in Kwon and Pletcher (1981). Good agreement was observed between predictions-:

of the VIS-INVIS procedure and experimental measurements for laminar flow. Inadequa-

cies in turbulence modeling are believed to be the major cause of discrepancies

between the predictions and measurements for the rearward-facing step flows, rather

than shortcomings in the mathematical model. The reattachment length was predicted

more accurately without use of turbulence kinetic energy in the model (Model 5) but '

the Reynolds stresses were predicted more accurately with Model 4. Clearly more work ..-

is called for on this class of flow. " ":''
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Table of Output: Four Area Ratios, Case 0424(P4)
Area Ratio Reattachment Length Step Height - .

A,/ 2  XR/H Hstep (i)

0.6667 7.95 0.0381 %
0.750 7.28 0.0254
0.8333 6.58 0.0152 A
0.9091 5.79 0.00762

(Ed.: This is the only output received for Case 0424(P4).
It is worth note that it is a zonal method.] ].* '
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Flow over a Backward-Facing Step)

aby

A. Pollard --

Computor Group Number: 06

Case 0421
a..

INTRODUCTION ..

A summary is provided of the turbulent two-dimensional, isothermal flow over a ,.'.-

backward-facing step (Case 0421) computed via a general three-dimensional finite-"'*'

difference computer code. This computer code has been adapted for two dimensions by

considering only three planes in the step spanwise direction, and calculates the dis-

tributions of two velocity components, pressure and two turbulence quantities (i.e.,

k-e) only on the mid-plane. The links between this center-plane and its two neighbors
rhave been severed.

The summary is laid out in the following manner: first, the time-averaged equa-

tions (supposedly) governing the flow are stated; these equations introduce the effec-

tive turbulent viscosity as an unknown. To effect closure, this effective viscosity

is calculated from two additional transport equations; namely, one for turbulent kine-

tic energy and one for its dissipation rate. The boundary conditions applied to all

equations are then stated. This is followed by a brief summary of the method used to

solve this set of equations and their boundary conditions. Numerical details then

follow. A comparison of the computed results with the supplied experimenta data is

then provided. Generally reasonable agreement is noted between the calculations and

data. Finally, some conclusions are drawn from the present work.

THE EQUATIONS -. ..

The time-averaged equations governing the flow situation are:

3YOV) + a(xPU) 0, 0l)

"-) + ; a (2)

aa 2 a u a au +a au a 3()#(PVU) + rx(PU ) -HyUsF) + Hx(e Ri) +H( P eTx) + Yy(U Tx) - (3)

where V, U are the time-averaged velocities in the y, x coordinate directions respec- -.

tively; p is the density which is here considered a constant, although there is no

5Dept. of Mach. Engr., Queen's University, Kingston, Ontario, Canada K7L 3N6
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real need to have it so in the program; p is the local pressure. 1ve is the effective

viscosity; the viscosity is obtained, and the equations closed by the introduction of

a two-equation model of turbulence, namely the k-c model in the form given by Launder 7~

and Spalding (1974). The equations are: .

* 2
V1 + PC k I,(4)

~-(Pvk) + iw Puk) a T-r) + Tx(rk )+ -

- ~{k Tyk a k (5) G P

aa a ac a ac e
~~PVC) + gx1(Puc) - y(rc TY-) + -(re - x) + j CC -C~c (6)

where C.~, C1, C2 are constants (-0.09, 1.44, 1.92, respectively), rk U e/ak,

r.' - iJeIoe, and Ok -1.0, ac - 1.3, with a signifying the turbulent Prandtl number.

Gk is the volumetric generation rate; it is given by:

Gk-1J[{aU 2 v av +3 aU 2
(aUs x y) I + Ix + y}I

BOUNDARY CONDITIONS

The geometry used is as stipulated by the organizers of the Conference; the .-

*boundary conditions used were as follows:

EQUATION: U V k

- -4 As Provided 0 0.0015 U 2  C kl.5 0.181
W 0

jim 2 0  OU 0 3k 0  ac

WF_ WyT

Y ji 0  WF0 FW

Y%
W M 3 WI' 0 W WI'

In the above, the term "WI'" denotes that the wall functions of Launder and

Spalding (1974) are employed; these are given below. Note that since the inlet condi-

tions that would enable jat or e to be prescr~ibed at K/H - -4 were not provided by

the organizers, the value of c at this location has been estimated using a fixed

length scale. These inlet conditions have not been varied.*.' 4

The wall functions (WI') employed to link the near wall grid node to the wall are

as follows:
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k-Equation: -k T ( .. -

1/4 1/2-

where u is the velocity parallel to the vail, = 0.4, E - 9.0, 6v/t6s is the gradient i': ..-.

of velocities parallel to the wail, a distance ds from the wall. "-l-

SOLUTION METHOD -
The solution to the afore-mentioned equations and their boundary conditions isan

*effected by a modified version of the code described by Pollard (1979) which incorpor- "''''

ates hybrid-differencing (Spalding, 1972) and the wll-known SIMPLE algorithm of .'-

Patankar and Spalding (1972). A very brief summary of the sequence of steps followed
by this code are:

* ) Pressure is assigned a guessed value over all grid nodes superposed ". *..

non-uniformly over the physical domain; a staggered orthogonal grid is : '--

3/ 3/4

Sused.

2) The U, V, and "pressure-correction" equations are solved (via TD 7)

sequentially over the whole domain. ...

3) An overall mass-balance is performed and, if necessary, the volume ,..-

il ~~outflow is altered such that outflow equals the known inflow. "".*
4) Auxiliary equations are solved (e.g., k,e).

5) Repeat steps 2-4 until satisfactory convergence is obtained; steps 2-4

constitute one iteration. ael

COLUOEENCE, COST, AD STORAGE REQUIREMENTS

The calculations were perormed using 3 finite-difference grid densities: s-

24 x 34, 24 x 58, and 38 x 87 in the transverse (y) and axial (x) co-ordinate direc-

tion, The program was set up for a maximum grid of 40 x 100; this required 731,154 :-.',
words of storage (36 bit/word) using double precision. Since care in eliminating "

redundant arrays (enthalpy, density, and third velocity component) has not been

exercised, together with the use of 3 planes of grid nodes in the spanwise direction
(as noted in the introduction), the storageo requir e used here are somewhat

used

Sexhorbitant. Furthermore, the use of double precision is not necessary but was

maintained for reasons o tnimum program changes. By removing double precdsii,,.
conidering only one plane of grid nodes, and removing redundant arrays, the presen.

411488 % -'*-

- . .

outlo is altered __ suc tha outlo eqal th nw nlwconstitute° on iteaton
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program would use only 89,000 words of storage; this may be lowered even further by

careful restructuring of the program.

Convergence was checked in two ways: first, the absolute sum of each equation's

residuals, summed over all calculation grid nodes and suitably normalized by the

influx of the variable, must be below 0.01 (always e-equation limited); secondly,

values of the vLriables must not change more than 0.1% between the last 25 iterations.

The following table illustrates the number of iterations and the CPU time required to

achieve this level of convergence:

*tGRID (Y x X) No. ITER. CPU%

24 x 34 269 10188

. 24 x 58 271 16260

38 x 87 400 66720

From the above, it is noted that the CPU times are very large; for the finest

grid, the quoted CPU times (= 18 hrs!) is, according to computer specialists, approxi-

mately equal to 50 min on a CDC 7600 computer.'-

Note that, to ensure a smooth rate of convergence of the equatons, an under-

relaxation factor of 0.4 was applied to all equations; this is not necessarily the

optimum value; higher values have not been tried.

OTHER COMMENTS

The results provided are from the 38 x 87 grid although the 24 x 58 grid results

varied little from these.

The physical situation under consideration contains a step. In the computations,

the step is aligned with the grid cell lines. The velocity cell's faces, adjoining

the step, have been appropriately modified by reducing the cell face areas over which

the shear stress acts.

The Reynolds stress (-u'v') calculations were performed after obtaining . solu-

tion to the other equations; where -u'v' - ut(dU/dy + dV/dx).

COMPARISON WITH EXPERIMENTAL DATA

The results of the computations are shown in Plates 101, 104, 105 and 108. it is

seen that the mean flow results (i.e., pressure and velocity) are in reasonable agree-

sent with the "accepted" data. The calculations for cross-stream Reynolds stresses "-"""

•Grid non-uniformly distributed; details are available. *.

tCPU, in seconds on a Honeywell series 6600 operating under Multics; FORTRAN compiler

release 6 with standard optimization.

*Using FTN 4.2, opt - 2.

1489

- .* . .- .

• %% .

' ? ' , ,' ,I,%. .'% -"."=."." '-'."•- '.' ". - . . " - , - ""- . . "- -



are also in reasonable agreement; however, the axial variation of the maximum Reynolds

stress Is poorly calculated In the reattachment region. The reattachment length is

calculated here to be at 5.88 H downstream of the step (as compared to the "accepted" "

value of 7 H), where H in the step height.

CONCLUSIONS

In the author's opinion, the foregoing study that uses a numerical procedure

which employs hybrid differencing and embodies the k-e model of turbulence, provides:

0 predictions that are in reasonable agreement with the mean-flow data;

& predictions that are in reasonable agreement with the cross-stream .'-.

Reynolds-stress data;

* predictions that are not in general accord with the axial variation of

the maximum Reynolds-stress data;

* predictions in computation times that should be interpreted carefully

before comparing with other schemes.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

by

3. V. Rakich, 3. C. Tannehill, and I. K. Tree

Computor Group Number: 31

Cases 8101, 8201, 8661, 8671 J.V. Rakich

INTRODUCTION

The present work employs the Parabolic Navier-Stokes (PNS) approximation for 7

solving the steady Navier-Stokes and energy equations for compressible flows in vhich

the inviscid part of the flow is supersonic. The full equations, which are elliptic,

are simplified by neglecting the derivatives of the shear stress in the marching

direction, thus reducing the equation to a parabolic form. The complete viscous and
inicdflow field is computed at once, including the culn ewe h w e

gions. It has been applied primarily to three-dimensional steady flows over bodies

and wings at angle of attack and to two-dimensional boundary-layer-like test cases.

COMPUTATION METHOD

The method is fully described in Vigneron et al. (1978a,b) and Rakich et al.

(1979). Here we outline the equations and boundary conditions used for the present

study. The governing equations are:

(WE/30 + (OF/an) + (aG/3;) -- (ap/ae)(1

where:

Ek- (x2/D) E Vf

F - (x/D) [A (-)+ A (7F-7r) + A(- )
1 v 2 v 3 v ~"f

(2)

G - (xID)fB (T-!) + B (7-7 ) + B (C- )

1 v 2 v 3 v *

- (x/D)

Here, the notation ()is used to signify the basic conservation-law quantities for a

Cartesian (x,y,z) coordinate system and D is the Jacobian of the transformation to

C,n,r. coordinates, which are aligned with the body and shock surfaces.

Thus, denoting column vectors with braces, one can write

NASA-mes esearch Center, Moffett Field, CA 94035
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-i* Pu, Pu 2 + OWp, Puv, Puv, 4-e +p)u)

T - (Pu, Pu 2 + p. Puv, Puw, (eT+ P)U

IF - [pV, puv, pv2 + p, pvv, (p. +- p)v) (3)
T

- (p, PV, vvPv2 + P. (p.e pv
T .J

F - {0, (1-W)p. 0, 0, 01

The subscript v in Eq. 2 identifies the viscous terms:

! {0, a Tt t ,(u0 +- VT +VT + q)
v Fx iy XE xx KY XZ x K

{0 (, T a ,T , (UT + Va +- VT + q ))(4)
V KY Y YZ XE Y yY yE Y

{0(, T , , 9 (UT +- VT +-vO +q
v XE 75 SE xz yz xz

where x, y, z are Cartesian coordinates. The total internal energy is designated by

2 2 2
e T + 0 5(u V + V (5

and the equation of state is

p - (y - I)pe (6)

The parameter w is Introduced to control the fraction of pressure that is in-

cluded on the lef t side of the equation; the remaining part (1 - w) is included in the

forcing term P. This is discussed in Vigneron et al. (1978ab) and Rakich et al.

(1979), as are the details of the geometric transformation.

TURBUTLENCE MODEL

The turbulent eddy viscosity is given by a two-layer mixing-length model.

In the inner region:

junj < n< ni(7)

where

A 0.011l - exp(- 1)/A)]

A -26v5./p(TV/pV)1/

In the outer region:

UTo 0 .Ol68pu,6*/Il +- 5.5(/6) I < n < ni (8) '

where
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8a-f (1-(u/u)dn-'
0

Here, T. is the wall shear stress and Pa is the molecular viscosity given by Suther-

land's formula.

The approximate factorization method of Beam and Warming was used for this code

because it eliminates the need for costly iterations. The system is solved by two

one-dimensional sweeps of block tridiagonal matrices, using the routine described by

Steger. The present code solves the following form of the equations

k [3E* aG E*f- (- 1 3E*a a F cAg F L -G A- p- (9)
! , au a C F ( i,u,) [, u, + a E CT )] U - -ac 9):"?

where

U- {P0, Pu, PV, Pw, pe
T

and P is the pressure gradient term which is usually neglected. The Jacobians (3G/aU)

and (aF/U) are complicated expressions which have previously been given in Vigneron

et al. (1978b). This method requires the use of artificial damping terms, in some

cases, to control oscillatory solutions.

INITIAL AND BOUNDARY CONDITIONS

Two-Dimensional Test Flows

For the flat-plate test cases, a two-dimensional version of the code was devel-

oped with the outer computational boundary in the inviscid region outside the wall

boundary layer. The pressure is specified on the outer boundary; total enthalpy and

entropy are used to calculate the outflow (v) velocity on the outer boundary, subject

to the specified pressure. At the wall, u - v - 0, and Tw or aT/9y = 0 is speci-

fied, as appropriate for the problem.

Initial conditions are specified at a starting x, which is much smaller than the

plate length L, and the solution is marched from x. to L. If rs << L, the initial

values have little effect on the solution at L, so approximate initial values can be

used. For the present computations, the boundary-layer thickness was estimated at x.,

and a 1/7 power velocity profile was used, together with a temperature distribution

based on Crocco's integral for the energy equation.

Cone Flow

For this type of flow, the computational domain is bounded by the cone and the

outer shock surfaces; the shock location is determined in the course of the solution.

The Rankine-Hugoniot jump conditions are applied at the shock, and no-slip and tem-

perature conditions at the cone surface. Symmetry conditions permit computation of

only half of the complete field. The grid consisted of 50 unevenly spaced points

between the body and shock, and 47 points circumferentially.
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Initial conditions are based on an approximate laminar f low at a starting loca-

tion, xs << L, and on estimated shock angles on the windward and leeward sides. The

turbulent viscosity is turned on after the laminar flow has developed. The f inal

turbulent calculation was started at x =0.1 L.

Three-Dimensional Shock-Impingement Flow

Thsflow was bounded by a f lat plate as the lower surf ace (z 0) and an in-

clndplate on the lef t side (y - 0) which generates a shock wave perpendicular to

• '.1..°

the lower plate. Zero slip conditions were applied on the solid boundaries; however,

a coarse grid was used on the left boundary and, therefore, the boundary layer was not

properly resolved there or in the corner region. On the left boundary, the Mach

number was greater than unity at the first point off the wall. On the lower boundary,

the stretched grid resulted in a y+ less than 3. Zero-gradient conditions were ap-

plied over most of the upper and right-side boundaries. On the upper boundary, to the

right of the shock, free-stream values of p, p, u, v were applied, while on the right

boundary the free-stream p was i.ed.

The grid expanded in the z direction with increasing x so as to capture the

shock growing out from the left wall. Forty-five unequally spaced points were used

normal to the viscous plate, and thirty points In the transverse, y, direction.

Initial data were obtained from a two-dimensional turbulent boundary-layer compu-

tation, and applied at - xe, fuor all values of y. The two-dimensional shock pres-

hure, and shock position were set at xp. As the solution was marched in the

u-direction, the captured shock was allowed to seek its own position.

MARCHING SOLUTION
The parabolic equations are marched downstream once in the -direction from the

Initial station x - x , to the final location x u aL, where the specified Reynolds

number is achieved. The step size in the -direction is governed by numerical stabil-

ity constraints, which are empirically determined. The only limitations of the pres-

ant codes are that the x component of Mach number, in the inviscid region, must be

supersonic and the u velocity must be greater than zero. Flow reversal in the cross-

dplane is allowed and fully accounted for.

* References

Rakich, J. V., Y. C. Vigneron, and R. Agarwal (1979). "Computation of supersonic
viscous flown over Ogive-cylinders at angle of attack," AI Paper 79-0131 17th
Aerospace Sciences Meeting.

Vigneron, Y. C., J. V. Rakich, and J. C. Tannehill (1978a). "Calculation of super-
sonic flow over Delta wings with sharp subsonic leading edges," NASA TM 78500.

Vigneron, Y. C., J. V. Rakich, and J. C. Tannehill (1978b). "Calculation of super-
sonic viscous flow over Delta wings with sharp subsonic leading edges," AIAA
Paper 78-1137, l1th Fluid and Plasma Dynamics Conference.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

by

W. Rodi1 ', I. Celik,2 A. 0. Demuren,3 C. Scheuerer,4  . ."-

E. Shirani, M. A. Leschziner,6  and A. K. Rastog 7 "

Computor Group Number: 07 W. Rodi

Cases 0111, 0112, 0113, 0141, 0142, 0143, 0211, 0231, 0232, 0233, 0241,

0242, 0244, 0261, 0263, 0281, 0311, 0331, 0371, 0372, 0373, 0374, 0375,

0376, 0381, 0382 0421, 0422, 0423, 0471, 0511, 0512, 0612

INTRODUCTION

The computor group identified above has submitted results for 33 test cases, all

of which are for incompressible flows. Eleven different methods have been used to

obtain these results; some cases have been calculated with several methods. Table 1 .. .

below summarizes the main features of the individual methods and relates them to the

taxonomy issued by the organizers of the Stanford Conference. The methods differ by

the numerical solution procedure as well as by the turbulence model employed. In what

follows, the essence of the individual methods is presented in as compact a form as is

possible with separati sections on the mean-flow equations solved, the turbulence

models and the numerical schemes. For lack of space, the equations cannot always be

given in all the coordinate systems used so that in some cases reference has to be •

made to the literature. Subsequent to the description of the methods, the choice of

an individual method for a particular test case will be discussed. In the second

University of Karlsruhe, Karlsruhe, Germany

tUniversity of Manchester Institute of Technology, Manchester, England

*Det norske Veritas, Bovik, Oslo, Norway

ICo-ordinator.

2Cases 0142, 0143. - .

3Cases 0111, 0112, 0113, 0511, 0512.

4 Cases 0141, 0211, 0231, 0232, 0233, 0241, 0242, 0244, 0261, 0263, 0281, 0311, 0331,
0381, 0382, 0471, 0612.

5Cases 0371, 0372, 0373, 0374, 0375, 0376.

Cases 0422, 0423.

7Case 0421.
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major part of this sumary paper, the present computors comment on their results for

the individual test cases, report on any special experiences, and discuss briefly the
____ ___ ____ __ ____ ___ ____ ___ ____ ___ ____ ___ ___-7._

successes or failures of their methods.

Table 1. Summary of Calculation Methods

Metod Stanford Turbulence
Metho1dS Code } Model Numerical Scheme

IDSE RSTC Istress-eq.
model Simple Euler method, no mean-flow

1D _ --t------- equations solved.
1DAS AKEC ASM*

~2DPHR BKEZ istandard k-c GENMIX code
2DPHRA AICEZImplicit marching-forward integration

~ ~ ~ ~ ------- ~ procedure of Patankar and Spalding (1970)
2DPLR BKEX !low Re k-c for 2D boundary-layer-type f lows.

2DPRA KE lo ReA~Automatic grid expansion as layer grows.

TEACH code of Gosman et al. (1974) for

'sadadk-c 2D-steady, elliptic f lows with rectangular ...
geometry, iterative, pressure correction

I~ scheme, hybrid differencing.

Transient boundary-fitted method of
2DEV BKEZ jstandard k-c Leschziner (1980) for variable geometry,4 ____________ Implicit ADI, otherwise similar to 2DETHY.

I 3DFP EKEZ jstandard k-c Marching-forward scheme of Patankar and

---P -------- Spalding (1972) for 3D parabolic flows, 2D

3D t----------- Icorrection scheme, hybrid differencing.
Ii s DFP, but 3D storage for pressure and

3DPP BKE stadar k-c sevral downstream sweeps, each time
3DPP ~ ~ ~ ~ updatndr kcting pressure field, as given by

[~L lgeraicstrss mdelPraap and Spalding (1976).

EAN-FLOW EQUATIONS

4 For Incompressible, statistically steady flows the continuity and momentum equa-
tions read:

Yx 3y 3z

UJI (2)+1 i _(M 2 -(V - 1
ax Oy '3z P ax ax axay a_5_5 __) 2
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4v + ai +v I-p - I (3)

a W+ + V _W + . W1 B w + w a w 2 ) ( 4 )

where here, and in the remainder of the paper, capital and small letters indicate

respectively mean and fluctuating quantities. This general form of the equations is

not used in any of the methods, but the various simplified versions can be obtained

easily from Eqs. 1 through 4.

In all 3D-methods, the terms with dotted lines underneath are neglected which

means that the streamwise diffusion of momentum is neglected, as is permissible for

situations without reverse flow in the x-direction. Method 3DPP uses the equations

with these terms neglected, although when applied to Case 0512 (curved channel flow)

the equations were written in polar coordinates as given in Leschziner and Rodi

(1979). Methods 3DFP and 3DFPA further assume that the streamwise pressure gradient -. '.-.-. -..
aP/x is constant over any cross-section and can be replaced by the average pressure

gradient dl/dx. This decoupling of the streamwise pressure gradient from the pressure

distribution over the cross-section makes the equations fully parabolic in the

x-direction. -".

In two-dimensional flows, all derivatives with respect to z are zero. Therefore,

all 2D-methods solve equations with the fully underlined terms omitted and also the

momentum equation (4) omitted. lf 2) shear-layer flows, the momentum equation (3)

need not be solved as a differential equation but yields the lateral pressure distri-

bution, as given for curved shear layers below. For shear layers without longitudinal .1_..'.

curvature, the lateral pressure variation is zero and the longitudinal pressure gradi-

ent aP/x in the streamwise momentum equation (2) is equal to the known pressure

gradient in the free stream or can be calculated in duct flows with a one-dimensional

treatment as described in Patankar and Spalding (1970). h 1

Further, in 2D shear layers the longitudinal diffusion of R

momentum is negligible so that in all methods starting

with 2DP the term with the dotted line in equation (2) is

omitted. For curved shear layers, the equations are
R

written in the curvilinear coordinate system defined in
fig. .•1-

Fig. 1: Curvilinear
coordinate system

au 0 (5)

2- h "- R x

+Z y y
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The longitudinal pressure gradient is obtained by integrating the lateral momentum

equation to yield:

._.a p d [1  dy] (7) *''r
0

These equations are used in methods 2DPHRA and 2DPLRA whenever longitudinal curvature

is present.

In all the methods except 2DPLR and 2DPLRA, the above equations are not inte- -

* grated to the wall, but the viscous sublayer is bridged by wail functions. In these

methods therefore the viscous stresses, that is all terms Involving v are omitted.

The velocities at the first grid point away from the wall are related to the wall

shear stress by the logarithmic law of the wall, which in the 3D-methods is applied to

both velocity components parallel to the wail:
"'- "'-

'R. 1 In +-n (Eyl) (8)
U
rR

where UR,l is the resultant velocity at the first grid point and UTR is the resultant .
+

friction velocity, Yl is the dimensionless wall distance URYl/V, K is the von Karman

constant (- 0.435) and E is a friction parameter (here for smooth walls E - 9).

According to equation (8), the ratio of the wail shear stresses in 3D-flows is deter-

mined by the ratio of the velocities at the first grid point. In calculations with

method 3DPP of case 0512 (curved channel flow) it was found that, due to the rela- :

tively coarse grid used, the maximum of the secondary velocity components occurred

between the first grid point and the wall so that the log-law (8) is not realistic and

the direction of the resultant velocity changes significantly between the first grid

point and the wall so that the resultant shear stress can no longer be assumed to be

in the same direction as the resultant velocity at point 1. To correct f or this, the

shear stress obtained from (8) for the secondary velocities was enhanced by the factor *' :

U. _

f- exp (-ciYl), with ci i:Y -(9)

where the indices 1 and 2 related to values at the first and second grid point and the

index i relates to the secondary velocity component in question (either V or W). This

procedure was applied only in method 3DPP for the calculation of the case 0512 (curved

channel flow) where the secondary velocities are fairly large.
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TURBULENCE MODELS

Altogether four different turbulence models or model variants were used in the

calculations, and these will now be described briefly.

a) Standard k-e model (BKEZ) .4-"

The standard k-c model, as described in detail in Launder and Spalding (1974) and %

Rodi (1980) was used in methods 2DPHR, 2DETHY, 2DEV, 3DFP, 3DPP. The model is based

on the Boussinesq viscosity concept, relates the eddy viscosity vt to the kinetic

energy k and the dissipation rate c, and determines these two quantities from

transport equations. The model is given in tensor notation by Eqs. 10 through 13:

-ui t V L- (A.4 .±) - j X (10)3k a "axo o 3%
2  -

+ t t ~ - 3c) ---- £(12) ''-.'
Vt= , ...c

3k i (Vk iu a aj
'i 0 T. N + Vt .- + __ T. (1) .•::-

V ( t  )+ l (aui aU1 au 2

+.£~. E (13)

In the 3D-methods, all gradients with respect to the streamwise direction x were

neglected on the right-hand side of (12) and (13), while in all 2D-methods all the

gradients with respect to the third coordinate z are zero. Additionally in method *

2DPHR, gradients with respect to x on the right-hand side were also neglected. The

following standard constants cited in Launder and Spalding (1974) and Rodi (1980) were

employed:

c -0.09, cc -1.44, c 19t 10 .
C c2 1 k

The above turbulence model is valid only for regions with high values of the V-,

local Reynolds number __. - Vt/V and therefore cannot be applied very near walls.

Hence, boundary conditions are specified at the first grid point yl which is located

outside the viscous sublayer in the log-law region. With the assumption of local

equilibrium and the log-law, k and c take the following values at this point:

k U2 Ut3  (14)

In three-dimensional situations, Ur is the resultant friction velocity. The

condition (14) for c at grid point 1 is used in all the methods employing the standard .'.

k-c model but the relation for k only in method 2DPHR. The other methods determine k
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at th. first grid point from the k-balance for a control volume adjacent to the wall,

with diffusive and convective transport through the wall set zero. Under local-equi-

librium conditions, this yields the k-relation given in (14).

b) Low Reynolds number version of the k-c model (BKEX)

A.A low Reynolds number version of the k-c model that can be used also in the vis-

cous sublayer was employed only in shear-layer calculations with 2DP-methods. The

model was suggested by Lam and Bremhorst (1978) and has the following form: ~.

-uv Vkt C (15)

with

fu= (1-epy) (1+ ) (16)

v 
,)

Ii t
where

Ry =AV lT V

.-

2kt+ V n Ionve- tr)anspor (.L) - C (17)
ax ay - y ak~y

liru odiintisyed h k-rlaio given C(1). (18)

f a

with
bRcl 3 -R 2

f1f2T 1 f -- e T (19)

The following boundary conditions are specified at the wall:

k -0, 0~~- (20)

The additional constants not appearing in the standard k-c model take the follow-

Ing values. They are slightly different from those given in Lam and Brehorst (1978):

V -0.016 -At - 19.5 .A" 0.06

All the other constants are the same as listed above for the standard k-c model.

For high local Reynolds numbers RT (e.g. outside the viscus sublayer) the model re- ~

duces to the standard k-e model presented above.

c) Reynolds-stress equation model (RSTC)

Here model 2 of Launder, Reece and Rodi (1975) was adopted, but with the wall-

proximity correction to the pressure-strain term proposed by Gibson and Launder

(1978). The modeled form of the Reynolds stress transport equation reads:

1500
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- -- L- - ~ *. - -.-- ".

"S Diff-+ P cl ijiJDt D u-l iuj 2 iJk )n nij

ja

3 3 2
+. cc(wnn6i - wnin - nr6nY) f( - c6t (21): "

n
+ I + cjTaf .. (21

where

Siut x j u u F " -uiuj  (22)
• -- ---- P .'-:.-'

2wT -c2 (P - (23)

The model for the diffusion term is not given in explicit form as it is not

needed here. The terms with the wall-damping function f are the vall-proximity cor-

rections, in which the index n denotes the direction normal to the wall.

The function f will be given below in the section on algebraic stress models; it

is not needed here because Eq. 21 was used only in method 1DSE for homogeneous flows

where there is no wall effect. The wall-proximity corrections are included in (21)

because this forms the basis for the algebraic-stress model to be discussed shortly.

The dissipation rate c appearing in (21) is determined from (here without diffusion .J

term an used in method TDSU):

* j c C P - cC~ (24)

The empirical constants were taken from Gibson and Launder (1978):

8, c " 06 c' - 0.5 -03;3
c 1.8, c2  0.6, c 1 . .0.3

d) Algebraic stress models

Two versions of algebraic-stress models were used for the calculations, one in

methods IDAS, 2DPHRA and 2DPLRA and the other one in method 3DFPA for the calculation

of turbulence-driven secondary motions in channel flow. The two versions are very

similar, but there are distinct differences that need to be reported.

(1) Algebraic-Stress Model in Methods 1DAS, 2DPHRA and 2DPLRA

This model follows directly from the Reynolds-stress equation (21) with the

following assumption: " '

Dun unu
i~ .... jJ."...I

-Diff-- - - Diff) 6(P -f) (25)
D uiu ij k Dt k ij k
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In which the summation convention does not apply. Equation 25 relates the transport

of normal stresses to the transport of k and neglects the transport of shear stresses.

The transport of shear stresses could of course also be related to the transport of k,

and this did In fact give better results for Case 0376 (homogeneous shear flow) but

proved detrimental in other flow situations like buoyant jets (see Hossain, 1980) and

was hence not adopted here.

With (25), the differential equation (21) can be reduced to an algebraic expres-

*ion for iij. Whop~ the wall proximity terms involving f are retained, this expres-
sion is rather complex and is not given here. For calculating homogeneous ows,

these terms can be omitted, and the following expression is used in model lDAS:

-- a[6 (l-c2) 3~ i (26)
1 "ij -

C appearing in this expression is determined from Eq. 24 and k from the corresponding

k-equation.

shea ler ic tres mooidenl wino be given in a form suitable for tw-dimensional

sharlyeswihlogiuinlcuvtueand wall-proximity effects. The derivation K.--

ofti omsat rmE.2 written in the curvilinear coordinate system sketched

in Fig. 1 (the transformed equations are g~iven in Gibson and Rodi, 1981). With (25),

these equations yield the following algebraic expressions for the stresses of interest - "-

in 2D-shear layers:

I 1 P/e* 4R
v 2 2 f 2 P,-27)

Is I +2# Y-RP 1+20 (27
5 f 5

274R
(l + (28)

2

fk l-Rf E ay -Rf

1'

The important parameters expressing the influence of longitudinal curvature and wall

proximity are

the curvature Richardson number Rf-3 y (30)

the wall damping function f s (31)
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Further: "

1-c + 2c'c cf
2 c 22 1 P + 1

*# a *5 , 6ic+-

* (32)
2- 2c2 + 22 1c + c'2  1- I c + 1.5c c' N.

2 2 2c2 2 2 2

The shear-stress relation can be seen to be basically the same as in the standard k-"

model, but the constant cu is now replaced b the function c* given above. However, in

the absence of curvature and wall-proximity effects (Rf . 0, f - 0) this function does

nOL give 0.09 used for c. in the standard model. To make the algebraic model reduce

to the standard model for Rf 0 and f - 0 the following c.-function is used:

c -0.09 c*/c* (Rf M 0, f - 0) (33)

k and e appearing in the algebraic-stress relation are determined from the following "

k- and e-equations in the curvilinear coordinate system:

3k 3k 3 3k BU 2 Rf)2
UF3 + - - (-" (jy h cl) + vth (y'-) (1- Rf - h C (34)

where v is calculated from Eq. 11. The constants were introduced already in the

section on Reynolds-stress equations and on the standard k-c model. For flows without

curvature and wall-proximity effects (Rf - 0, f - 0) the model is identical to the

standard k-c model.

(ii) Algebraic-Stress Model in Method 3DFPA 1 "- "

This algebraic-stress model is based on model 1 of Launder, Reece and Rodi (1975)

for the stress equations, which differs from Eq. 21 in that the wall-proximity terms

involving f are absent, two additional terms involving the constants 0 and y are pres-

ent in the mean-strain part of the pressure-strain term, and wall-proximity effects

are now simulated by making the empirical coefficient dependent on the wall-damping ..
function f. In the present model, convective and diffusive transport of u u are

neglected entirely, and the production P of k is set equal to c in the resulting

algebraic equations. These can then be written to yield the following general expres-

sion for u u

ki 2j~ k UPU
S6iJ (C2 +  +  cl -1) + (1- C2 ) C - C - Tee -- + ] (36)
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where

aut au I
D - u (37)

"o' -
i 

.

This algebraic-stress equation is applied only to the stresses v w. and .

appearing in the momentum equations for the secondary motions in channel flow. The

primary shear stresses uv and W appearing in the streamwise momentum equation are

determined from the standard k-c model given above. In the algebraic equations

for v , w , and vw, the gradients of the secondary velocities are retained, as it was

found that the inclusion of these terms, particularly in the W expression, had a

significant influence on the magnitude of the secondary motion. The coefficients in

(36) were calculated from:

1.5 - 0.5f, c = 0.7636 - O.06f, 3 - 0.1091 + O.06f, y = 0.182 (38)

as suggested by Launder, Reece and Rodi. These authors used a linear wall-damping

function f - L/y*, where L is the local length scale of turbulence and y* is a char-

acteristic wall distance. Here a quadratic function is used as suggested by Naot and

Rodi (1981):

31 2 "
2 cu k3 /2

f with L- - (39)

where c, -0.09 as in the k-c model and K -0.42. The characteristic wall distance .;.'"-

y* is determined from the following integration: '.

2w1

1 2 f (40)

e Y* 0 s

The resulting expression for a duct is rather complex and can be found in Naot and

Rodi (1981).

It was intended first to bring this algebraic-stress model in line with the other

model described above, but this could not be done in the time available.

NUMERICAL SOLUTION PROCEDURES

All methods employ finite-difference procedures, and, apart from method 2DEV,

these procedures were well tested before the calculations for the Stanford Confer-

ence. A few coinon features of the various schemes will be described first. The '4,"

finite-difference equations were derived by integrating the differential equations

ov,tr volumes so that the schemes are all conservative. The finite-difference

equ ,:1o.-! are brought into tridiagonal matrix form and are solved with efficient
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recursion formulae. Finally, all the schemes use hybrid differencing for the

discretization of the convective terms (central differencing for grid Peclet numbers

Pe < 2 and upwind differencing for Pe > 2), except for the streamwise convection in

parabolic situations when no discretization assumption is necessary.

2DP-Methods

The fully implicit, marching-forward procedure of Patankar and Spalding (1970) is

used which is suitable for 2D shear layers that are parabolic in the x-direction.

This scheme requires 1D-storage, and the pressure it, either prescribed or, for duct

flows, determined from 1D-forms of the momentum and continuity equations. Because of

small lateral velocities, Pe is usually below 2 so that mainly central differencing is

used and numerical diffusion is not a problem. The method uses a dimensionless stream

function as lateral coordinate which causes the grid to expand automatically as the

shear layer grows.

2DETHY

This method uses the iterative code of Gosman et al. (1974) for steady, 2D

recirculating flows employing a rectangular staggered grid and requiring 2D-storage.

At each iteration, the momentum equations are solved first with a guessed pressure

field from the previous iteration, and a Poisson-type pressure correction is then

solved to obtain corrected values for pressure and velocities that then satisfy the

continuity equation. In recirculation areas, the upwind differencing may cause sig-

nificant numerical diffusion when the grid is not very fine.

2DEV

This method solves the equations with the recently developed code of Leschziner ,.-. .

(1980) for unsteady 2D-elliptic flows. A boundary-fitted, quasi-orthogonal grid is

used that allows slopes of top and bottom of up to about 20 ° . A two-step, three time

level ADI-method is used that is implicit in time. Otherwise, the scheme is the same

as that of 2DETHY. '-4..

3DFP-Methods
The Implicit marching-forward procedure of Patankar and Spalding (1972) is used

which is suitable for 3D flows that are fully parabolic in x-direction. 2D-storage is

required for all variables. The solution at each cross-section is the same as that in

the 2D-elliptic scheme 2DETHY; at each step the pressure-correction equation is solved

iteratively until mass is conserved.

3D?? ..

The partially parabolic procedure of Pratap and Spalding (1976) is used that

allows upstream pressure effects, but no other upstream effects (e.g. no reverse

flow). Basically the procedure is the same as in 3DFP, but now with 3D-storage for
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the pressure (still 2D-storage for other variables) and repeated application of the

fully parabolic 3DFP-method, where at each sweep the pressure field is updated until

convergence is achieved. A rectangular grid is used in the y-z-cross-section, but the i- - '

streamwise coordinate x can be curved. .,-...-.

CHOICE OF METHOD FOR THE INDIVIDUAL TEST CASES

The first choice was according to the dimensionality of the problem: one-dimen-

sional, two-dimensional and three-dimensional problems were calculated with 1D, 2D and

3D methods respectively. All 2D-shear-layer cases were calculated with the parabolic

2DP-methode, and all 2D-situations with separation with the elliptic 2DE-methods. In
the latter cases, situations with rectangular geometry were treated with 2DETHY and.7

those with non-rectangular geometry with 2DEV. All three-dimensional cases where

upstream pressure effects were negligible were calculated with the fully parabolic

methods starting with 3DFP, while cases with significant upstream pressure effects -.

- (here only 0512) were calculated with the partially parabolic method 3DPP.

In addition to the choice of the solution procedure, different turbulence models

can be chosen in connection with some of the procedures. The standard k-c was used

whenever this appeared possible. In some cases, the low Reynolds number version of

this model was also employed for comparison purposes; in boundary layers with relami-

narization and with blowing or suction only the low Reynolds number version could be

applied. The standard k-c model is also not suitable to account for longitudinal

*., curvature effects on the turbulence such as occurring in curved shear layers, wall-

- proximity effects that are of importance in wall jets, and secondary motion of the

second kind prevailing in straight ducts. In these cases, an algebraic-stress model

was used. In Cases 0511 and 0512, where the secondary motion is pressure dominated,

the standard model was thought to be sufficiently accurate. . "

DISCUSSION OF THE RESULTS AND COMMENTS ON INDIVIDUAL CASES ." ..,

a) One-dimensional homogeneous turbulent flows (methods 1DSE, 1DAS)

Case 0371 (isotropic grid turbulence)

In the model, the decay of q2 (- 2k) is determined entirely by the constant cc2

in the c-equation. The present constant c.2 a 1.92 yields q2  t*"' A value of

1.83 would be needed to get the faster decay of the data. However, ce2 - 1.92 is the

more suitable value for many other flows.

Case 0372 (rotating turbulence)

Rotation can have no influence in the present model when the shear stresses are

zero as was approximately the case in this experiment. Hence, the calculations are

the same as for the previous case, but with different Initial conditions. In the
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experiment, the decay rate decreased with increasing rotation, and this brings the

rimental decay curves closer to the predicted ones. The ratio of the fluctuations

is predicted to approach unity quite rapidly while in the experiment this

ratio remains constant or even increases. Hence, the pressure-strain model employed

cannot simulate this observed behavior.

Case 0373 (return to isotropy)

The return to isotropy is generally fairly well simulated by the model of Rotta -

(1972) (term involving cl in the uij-equation (21)). A smaller value for the con-

stant c1 would have given better quantitative agreement, but the value 1.8 adopted

here gives generally better results for shear flows than the value 1.5 recommended in -. :

Launder et al. (1975). Further, when the isotropy is approached, the model appears to

overpredict the return to isotropy. Concerning Case 0373B, it is strange that u

sa ould have remained constant in the expetiment as it was almost a factor of 10

smaller than v

Case 0374 (plane strain distortion)

In the previous cases without production the algebraic-stress model 1DAS predicts

isotropic turbulence according to Eq. 26. This is the first case with production and

hence 1DAS can be used to simulate the development of the individual stress-components,

and results are therefore now included also with this model. The stress-equation

model simulates the distortion under the influence of plane strain fairly well, the

algebraic-stress model predicts u and w correctly but v is from the beginning too

high.

Case 0375 (axisymmetric strain)

Here results with the IDAS-model are included only for contraction ratios of 1

because for larger ratios negative u -values resulted, so that the model is not really

applicable in such situations of fairly strong negative production. The observed dip

in u and the rise of v towards the end of the contraction are underpredicted by the

stress-equation model, but this is exaggerated by the plots; the discrepancies are

* only up to about 30%.

Case 0376 (homogeneous shear flow)

In case A, all the stress components are predicted too low so that the kinetic

energy is also too low. This is primarily the consequence of the shear

stress W being predicted too low which then gives too low production of kinetic.-.

energy. It is interesting to note that in Launder et al. (1975) the shear stress was

predicted correctly with the same model, but with somewhat different constants. The

difference between the model IDSE and 1DAS is not very significant in this case. In

case B where a much stronger shear was applied, an incorrect initial value of C was
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provided by the organizers, and only the the results obtained with the corrected value

should be compared with the data. When this is done, model 1DSE can be seen to

describe the development of the individual stress components fairly well, but it L ....

should be mentioned here that much better agreement was achieved when the transport
'. - .. , od

of V was not neglected but was also related to the transport of k according to Eq. 25 .

(effectvely 8ij was removed in the denominator of (26)). In this case the ratio of

production of k to dissipation, P/e, is of the order of 2, so that the term (P/c-I) in

the denominator of (26) has a significant influence.

b) 2D-shear-layer flows

These flows were calculated with the 2DP-methods, using 40 grid points across the .

layer and forward steps of one momentum thickness for boundary layers and typically

0.05 layer widths in free shear flows in the 2DPHR-methods, and 100 cross-stream grid

points and forward steps of 0.25 momentum thickness in the 2DPLR-methods using a low-

Reynolds-number turbulence model. Grid-refinement tests were carried out, and the

grid density quoted were found to be more than sufficient for the results to be grid- ' -

Independent.

Case 0612 (flat-plate boundary layer) Methods 2DPHR, 2DPRA

The calculations were started at a momentum thickness Reynolds number of 450 with

turbulent conditions. The initial velocity profile was fitted carefully, but this

yielded a shape parameter H of only 1.5, compared with the given value of 2.2. Be-

cause of the few experimental points across the layer for x < lm, the measured inte- "-"

gral parameters are probably not very reliable in this range. Further downstream, ..

method 2DPHR predicts cf too high by 5% and H too low by 3%, while method 2DPLR gives

cf somewhat better but H slightly worse. Method 2DPHR predicts the velocity profile

in the log-law region very well at the last station (the matching point in the log-law

was at y+ - 300) but in the outer part the velocity is slightly low. On the other

hand, the method 2DPLR predicts the velocity slightly high in the log-law region, as .. 4

is typical for the Lam-Bremhorst (1978) turbulence model. A calculation was also

carried out with method 2DPHRA, in which cp is reduced near the wall due to the wall-

proximity correction, and the results are very similar to those with 2DPHR, cf being -

lower by 1.2% and H higher by 0.4%, so that the agreement with the data is slightly .,

improved.

Case 0141 (boundary layer with dP/dx > 0) Methods 2DPHR, 2DPLR

Both methods predict the wall shear stress and the shear-stress distribution in

the initial region of positive pressure gradient fairly well, but overpredict the

shear stress as separation is approached. Associated with the high shear stress are

too high velocities near the wall. It appears that the turbulence model must be

blamed for this, as the Navier-Stokes solution of Murphy and Rubesin (1979) gave no , , .
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better results than the boundary-layer calculation. It is mainly the c-equation that

must be blamed, because it yields a length-scale that lies above the universal

experimental variation tm - y.

Cases 0142, 0143 (conical diffuser) Method 2DPHR

Calculations were started at the initial plane (x -- 0.055u) vith measured pro-

files of U and k. In Case 0142, the initial c-distribution was determined from mea-

surements of 77, k, and aU/Oy via (11). For Case 0143 the same procedure was applied

near the wall, but calculations were carried out with two different values of C in the

core region (r < 0.8R). The first value (ER/AU - 0.0034) was chosen to give approxi-

mately the correct decay of k along the diffuser axis and the second value (cR/U3 =

0.0106) corresponds to a reasonable choice of the length scale L-k 3/2/cO.55R in pipe

flow and was used also by the group of Launder et &l. The results for Case 0143 can

be seen to be quite sensitive for the initial e, the higher value yielding generally

much closer agreement with experiments for cf, U, and W-, but at the same time produc-

ing a decay of k along the axis (not shown here) which is considerably faster than the

measured one. As in Case 0141, the friction factor cf is overpredicted also in Case

0142 and the veloc-ty is too high near the wall (and too low at the center), only that

the agreement is even worse here because the adverse pressure gradient is higher. The

worse agreement in cf is also due to the fact that the wall friction is made dimen-

sionless with the square of the local centerline velocity, and this is underpredicted

(at the last station by 10%). In Case 0143 the adverse pressure gradient is smaller,

and hence the better predictions with the higher initial c-value are consistent with

the results for Case 0142. .'

Case 0211 (boundary layer with free-stream turbulence) Methods 2DPHR, 2DPLR

Calculations were started with free-stream turbulence of various intensities and .'.

length scales, and the various runs produced a correlation between the increase in

skin friction and the free-stream turbulence parameters similar to the measured one,

but there is considerable scatter. For method 2DPHR there is no clear influence of

the initial turbulence conditions, while for method 2DPLR the high intensity calcula-

tion with low length scale reacts faster to the rapid decay of free-stream turbulence

due to a large dissipation connected with the small length scale and produces only a

mall increase in skin friction. It is interesting to note that in the range of

practical interest (value of the abscissa of about 1) the correlation of the different

runs is fairly good. It should be mentioned that the Acf plotted is very sensitive

to small changes in actual Cf values, so that the scatter and the differences between

measurements and calculations are blown up. The parabolic increase in Acf at small

intensities is predicted correctly. On the whole the results on the plot submitted

indicate that Acf is predicted about 302 too low. Simulations of individual
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experimental runs of Hancock (1980) and a direct comparison with his results yielded

much better agreement.

Case 0281 (relaminarizing boundary layer) Method 2DPLR

Calculated 0, H, and the velocity profiles are in good agreement with the data.

The calculated cf is very sensitive to the specification of the free-stream velocity

(here the data points were interpolated by cubic splines), as small irregularities in

the pressure gradient produced the large irregularities occurring in the present

results. Further there were difficulties in fitting representative initial profiles

for the turbulence variables, which leads to the sharp initial drop of cf.

Cases 0241, 0242, 0244 (boundary layers with blowing and suction) Method 2DPLR

In Case 0241 of constant blowing under zero pressure gradient, the trend of a

sharp reduction of cf by the blowing is predicted correctly, but not to the same

extent as shown by the data• The momentum thickness 8 is predicted well, while the

displacement thickness 6 is too low. In Case 0242 with constant suction under

adverse pressure gradient, the method predicts correctly that cf is constant, but the

value is 5% below the data. The velocity profiles and hence the shape factor are well

predicted but both momentum and displacement thickness are too high, indicating that

the calculations settle at a somewhat different equilibrium than the measurements. In %

Case 0244 with constant suction at zero pressure gradient the velocity profiles are

very well predicted and also the shear-stress profiles for small negative F-values, -

while the shear stress is somewhat overpredicted for higher negative F-values,

although the shape of the irv-proftle agrees well.

Cases 0231, 0232, 0233 (curved boundary layers) Methods 2DPHRA, 2DPLRA

For these cases, the high-Reynolds-number and the low-Reynolds-number algebraic-

stress models yield approxima ely the same results. In Case 0231 with weak convex ,

curvature, momentum thickness and shape parameter are predicted well, while cf is too

high, although this is exaggerated in the plot at the last station the discrepancy is

about 10%. The reduction of the stresses v and 77 by the curvature is underpre-

dicted. In sumary, the models do not respond sufficiently to weak curvature. For

Case 0232 with weak concave curvature, cf, e, H and the velocity profiles are fairly

well predicted. At the last station, xs - 1.123, the destabilizing influence of con- . ,

cave curvature on v and u is underpredicted, indicating again that the models do not

respond sufficiently to weak curvature. Case 0233 with strong convex curvature and

subsequent recovery is predicted well in the curved section but not so well in the

recovery section. The models predict a fairly fast recovery, and while the measure-

meats also show fast recovery in the turbulence quantities, the mean velocity field

and the friction factor show only very slow recovery. For experiments in a similar

apparatus, doubts have been expressed previously (Gibson et al., 1981) about the
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two-dimensionality of the measurements in the recovery section. Finally, the stresses

u , v and uv are fairly well predicted except f or the overshooting of u and uv at

the end of the curvature. Finally, it should be mentioned that calculations with the L. 9
standard k-c model have underpredicted the influence of curvature in this case signif-

icantly.

Case 0261 (equilibrium plane wall jet) Method 2DPHRA

The dependence of the half-width spreading on the velocity ratio UE/UM is pre-

dicted correctly by the algebraic-stress model within the experimental accuracy. It

should be mentioned that the standard k-c model yields a half-width spreading 0.09 for

the situation with zero free-stream velocity (UE - 0). The influence of the velocity

ratio on the location of maximum velocity y. is also predicted correctly, but the

velocity maximum is consistently too close to the wall, which can be seen also from

the velocity profile. This is a consequence of the use of an eddy-viscosity model

which does not allow a separation between the point of maximum velocity and the point

of zero shear stress. The latter is predicted correctly and so are the profiles of uv

and v for the velocity ratio UE/UM - 0.38. The calculated cf-values are about 5 to

10% above the Bradshaw-Gee curve, but they are still within the experimental range

given in the evaluation report. These results show that wall-proximity effects are

well simulated by the present algebraic-stress model.

Case 0263 (wall jet on log-spiral) Method 2DPHRA

While the spreading rate is slightly overpredicted for a plane wall jet, it is

underpredicted increasingly as the curvature (characterized by K = x/R) increases.

For K - 2/3 the agreement in the asymptotic spreading rate is still very close and

consequently the shear stress is also predicted reasonably well. The turbulent

kinetic energy shows larger deviations from the data because it is not as directly

affected by the algebraic model as is the shear stress. ".

Case 0311 (plane mixing layer) Method 2DPHR

The calculation was started with the measured velocity profile and with profiles

for k and c as in developed turbulent boundary layers. For small x/Oi-values, there

is fairly good agreement with the data, but the asymptotic spreading rate is underpre-

dicted by about 7%.

Case 0331 (curved mixing layer) Method 2DPHRA

The calculations were started at the nozzle exit with similarity profiles and a

layer thickness of 3mm. The shear-layer calculations were carried out in a (s,n)- . .

coordinate system where s follows the curved centerline of the mixing layer given in * .. 4.

Castro and Bradahaw (1976) and n is perpendicular to s. The pressure was assumed

atmospheric at the zero-velocity edge and was calculated in the layer according to
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Eq. 7. The resulting velocity on the high-velocity side agrees well with measure- --.. 4

nents. The development of the shear-layer width is predicted well, but the location

of the profiles in the curved region is not in agreement with the data provided by the .

organizers. it is likely, however, that these data are not correct, and should be

shifted to the left. The model produces the reduction of the shear stress by the

curvature. The recovery of the shear stress after the curvature is too fast, as the .

predicted values overshoot the plane-mixing-layer values, and approach these only

further downstream. The reduction of the lateral fluctuations is also produced (and

again somewhat overpredicted at 60*), and here the recovery is in fairly good agree- -'A -

ment with the data. The mean velocity profiles in the recovery region are also in

accord with the measurements.

Cases 0381, 0382, 0471 (2D-wakes) Method 2DPHR

The symmetric (0381) and asymmetric (0382) wakes of Andreopoulos are calculated

very well, including the development of the shear-stress peaks in the asymmetric case.

The velocity profiles in the symmetric trailing-edge flows of Case 0471 (I and II) are

also fairly well predicted. The shear stress in case I agrees with the data in the

boundary-layer region and again far downstream in the wake, but is too low in the

immediate vicinity of the trailing edge. The measured shear stress is probably high ...

in this region because of the finite trailing-edge width. A similar shear-stress - .

behavior can be observed for case II, only that here the calculated shear stress is

already low in the boundary layer. In both cases I and 11, the turbulent kinetic

energy is also predicted low in the vicinity of the trailing edge but agrees fairly

well with the measurements further downstream in the wake. The data points indicate -

that there was significant free-stream turbulence, and this may have caused high

k-levels. In case III of an asymmetric trailing-edge flow, the boundary-layer calcu- p1_

lation on the upper surface (y > 0) is rather poor because separation is approached.

The initial disagreement is carried down to x/80 - 70, so that history effects are .

particularly important in this flow. The vastly different levels of shear stress on " .

the two sides of the trailing edge are predicted correctly, but the maximum on the '

near-separation side is shifted towards the outer edge of the flow. This shift is

also retained as the flow develops downstream.

c) 2D-Flows with separation regions

Case 0421 (backward-facing step) Method 2DETHY

Thirty-two grid points were used in both x- and y-direction with a concentration

in the shear layer springing off the corner. Much finer grids could not be used, so

that the solution obtained with the hybrid differencing scheme is probably not - -

eatirely grid-independent. The results portray the often observed fact that the

method underpredicts the length of the recirculation zone; the reattachment length
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xR/H is 5.8 compared with a measured value of 7. As a consequence, the velocity pro-

file at x/H - 5.33 is not well predicted. Further downstream, the predicted

profiles are better, but the recovery (x/H - 13.33) is also not too well described.

4 This is somewhat strange in view of the good agreement of the shear stress in the

Sdownstream region. The shear stress is fairly vel predicted also in the immediate

vicinity of the step, but assumes too high values in the curved shear layer bordering

the recirculation zone. Here, the standard k-c model does not account properly for

the stabilizing effect of the curvature. Further weak points of the method when ap-

plied to recirculating flows are the c-equation in its present form, the wall func-

tions which are suitable really only for shear layers, and the hybrid differencing

scheme that may introduce a fair amount of numerical diffusion.

Cases 0422 and 0423 (sudden expansion with inclined duct walls) Method 2DEV

These predictive cases were calculated with 35 grid points in the x-direction and

23 in the y-direction and the results are again not entirely grid-independent. In

Case 0422 where only the top wall is inclined, the pressure coefficient increases with

the angle a as expected. It is interesting to note that there is little difference

between a 6a and 10o, indicating a deterioration in diffusor performance. The

reattachment length xR increases with a (as was to be expected), but as in Case 0421,

this length is probably underpredicted significantly for the same reasons as given

above. In Case 0423 with both top and bottom walls inclined at the same angle (con-

stant area), the difference between the maximum and minimum value of cp,w at a given a

is constant which appears correct for a constant-area duct. The lowering of the pres-

sure in the recirculation region with increasing a also seems reasonable as the

deflection of the streamlines must set up a lateral pressure gradient. The reattach-

ment length x R is influenced little by the angle a and this may be due to the follow-

ing counteracting phenomena. First, it may be expected that the stagnation streamline

would take a larger distance to meet the lower wall as the slope is increased, but on

the other hand the lower pressure generated in the recirculation zone acts to pull the

shear layer down. Again the reattachment length is very likely to be underpredicted.

It appears that for this kind of recirculating flows a more accurate differencing

scheme is necessary, but also a refined turbulence model as well as refined wall func- -'-

tions.

d) Three-dimensional flows

In the three-dimensional calculations, only relatively coarse grids could be used

(15-20 grid points in y- and z-direction) and the results are probably not grid-

independent. However, for Cases 0111, 0112, 0113 and 0511 where the secondary veloci- .- %

ties are relatively small, numerical diffusion is not a serious problem; it may be

more severe in Case 0512.
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Case 0511 (Wing-body junction) Method 3DFP

According to Shabaka and Bradshaw (1981), there are large regions of negative-:

eddy-viscosity in this flow so that method 3DFP should fail badly. However the fric-
tion coefficient and the longitudinal velocity distribution appear to be not too sen-

sitive to locally wrong assumptions so that they are surprisingly well predicted. ..-

There are larger discrepancies on the secondary velocity components, particularly in

the corner region. There, the eddy-viscosity assumption breaks down and the shear -

stress V is also poorly predicted. On the whole however, the results are better than

expected.

Case 0512 (flow in curved rectangular channel) Method 2DPP

The calculations were carried out with a 14 x 17 grid in the cross-sectional

planes (covering half the channel) 20 grid planes before and after the straight sec- Iq% "..

tion, and 30 grid planes in the curved part of the channel. The change in shape of

the velocity contours due to the secondary motion is generally predicted well, but the

velocity levels in the center-portion of the channel are consistently lower than in

the measurements so that certain measured isovels do not exist in the calculations.

This is particularly true for 6 - 90, where the smallest velocity for which an

experimental isovel was given is UO/Uref - 1.1, while the maximum calculated velocity

was 1.08. Isovels for lower velocities are included in Plate 129 to show that the

shapes of the velocity contours are similar to the measured ones. The low longi-

tudinal velocities in calculations are probably due to an overprediction of the

secondary motion which causes a transport of low moment, m fluid from the wall regions

*to the center. Plate 130 shows that already at 0, the secondary motion is

larger than measured (maximum value is 0.11) and this continues as the flow goes

around the bend. At 906, the agreement of predicted and measured radial velocity is ,,. -

quite reasonable according to Plate 131, but it should be mentioned that near the

bottom wall much larger negative velocities appear in the calculations than have been '.-.

observed. Since other strongly curved channel flows have been calculated successfully

with the same method by Leschziner and Rodi (1979), the reasons for the poor agreement - "

in the present case are not clear.

Cases 0111, 0112, 0113 (duct flows with turbulence-driven secondary motion) -

Method 3DFPA

In Case 0111 of flow developing in a duct from a uniform inlet profile the

secondary velocity is underpredicted by almost a factor of 2 whence the bulging of the . :

longitudinal velocity and k-contours towards the corners is by far not as strong as in .h .

the experiments, and the streamwise velocity development is predicted rather poorly

along the corner bisector. It should be reported that the influence of the terms

involving gradients of the secondary velocities in the algebraic-stress model was
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found very strong. In fact when these terms were omitted, as was done in most calcu- -"'

lations of this flow reported in the literature, such a strong secondary motion devel-

oped that the calculations became unstable. In many of the previous calculations

mentioned, this problem was avoided by omitting the source terms producing the secon-

dary motion at the first grid points near the wall. In Case 0112 of a rectangular

channel with partially rough walls, the longitudinal velocity contours are predicted . -

fairly well, even though the secondary motion is again underpredicted by a factor of

almost 2. The longitudinal velocity and the fluctuating components u, J, and J.

" along the plane of symmetry agree reasonably well with the data, while the shear

stress has a maximum near the wall that is not present in the experiments. Plausible

* results were obtained for the predictive case (0113) of flow developing from non-

uniform inlet profiles in a duct produced by subdividing a larger square duct with the -

aid of a cruciform, although the bulging of the velocity contours in the cruciform .

corner and the corresponding secondary motion towards this corner are probably some-

what too large at the initial stations.

CONCLUDING REMARKS

Many of the test cases, and in particular most of the 2D-shear-layer situations,

were calculated with satisfactory accuracy with the k-e model and its low-Reynolds- -

number and algebraic-stress variants. It should be emphasized that these variants

reduce to the standard parent model when low-Reynolds-number, longitudinal-curvature

and wall-proximity effects are absent. It should also be emphasized that all the

calculations were carried out with the same set of empirical constants. Problems were

noted in the application to shear layers in adverse pressure gradients and to recircu-

lating flows, where also the hybrid differencing scheme used in the present work is

probably not accurate enough. Lastly, for three-dimensional flows the calculations

generally show the correct trends, but the accuracy !n the details is sometimes poor; ' -

in particular the turbulence-driven secondary motion is underpredicted significantly ,-.. L

by the present model. ..-...
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Lag Entrainment, Viscous Garabedian and Korn and

Advanced Viscous Garabedian and Korn Methods) .

by
P. D. Smith

Computor Group Number: 32

Cases 0141, 0231, 0232, 0233, 0612, 8101, 8411, 8621

The calculations which have been made for this Conference are of two types:

(a) flows involving boundary-layer calculations for a prescribed external flow (Cases

0141, 0231, 0232, 0233, 0612, 8101 and 8411) and (b) flows involving an interactive

calculation between the viscous and inviscid parts of the flow field (Case 8621).

Type (a) calculations were made with the lag-entraiment method of Green et al.

(1973). This method, which is fully described in the previous reference, uses the '

momentum integral equation, the entrainment equation and an equation for the stream-

wise rate of change of the entrainment coefficient. This last equation, developed

from the equation for shear stress, which Bradshaw, Ferries and Atwell (1967) derived

from the turbulent kinetic-energy equation, allows account to be taken of the influ-

ence of the upstream flow history on the turbulent stresses. The method also allows

for the effects of secondary influences, such as longitudinal surface curvature (Cases

0231, 0232 and 0233), upon the turbulence structure to be taken into account.

Type (b), interactive, calculations have been made with the viscous Garabedian

and Korn method developed by Collyer and Lock (1978, 1979). For the inviscid part of

the flow the method is based on the work of Garabedian and Korn (1971) and Bauer, .....

Garabedian and Korn (1972). The development of a satisfactory solution, when shock

waves of appreciable strength are present, is obtained by the use of a "partially

conservative" finite-difference scheme in the inviscid method. This approach is based

upon an empirical scheme (involving a variable X here taken to be 0.4), which ensures

that the pressure jump at a shock wave provides a reasonable approximation to the true

Rankine-Rugoniot shock jump. For the calculation of the boundary-layer development a

laminar boundary layer, calculated by the Thwaltes method modified for compressibility

proposed by Curls (1962), is assumed to occur from the stagnation point to a specified

transition point. At transition, continuity of momentum thickness is assumed. The

turbulent boundary layer and the wake downstream of the airfoil are calculated by the

lag-entrainment method of Green at al. (1973) described above.

RA Bedford, England
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An iterative procedure is employed to obtain consistent solutions for the invis-

cid flow and the boundary layer. After every few iterations of the inviscid scheme

the current pressure is calculated on the airfoil surface and along the wake. This is

used to determine the current values of the boundary layer and wake displacement and

momentum thicknesses. The boundary conditions for the inviscid scheme are modified to

take account of the viscous effects by means of the "equivalent source" or "surface

transpiration" model. Under-relaxation is used in applying the boundary conditions.

An allowance for curvature effects of the boundary layer on the pressures on the -..

airfoil and in the wake is included in these boundary conditions.

In addition to the calculations for Case 8621 with the standard viscous

arabedian and Korn method, calculations have also been made with what is termed here

the Advanced Viscous Carabedian and Korn method in which the boundary-layer method has

been improved to make allowances for the effects of pressure gradients normal to the

surface and the effects of the turbulent normal stresses. These improvements have

been detailed elsewhere (in East, 1981; Lock and Firmin, 1981), but as both these

references are very recent, some details are given below.

The method uses a curvilinear coordinate system s,n with s along the wall and n

normal to it. The wall curvature is denoted by kw (taken positive if the wall is

concave upwards). The concept of the equivalent inviscid flow is introduced as an

analytic continuation of the inviscid flow outside the shear layer right down to the

surface. Values appropriate to the equivalent inviscid flow are denoted by the sub-

script i, wall values by the subscript w. In terms of the difference between the real

viscous flow and the equivalent inviscid flow the equation of continuity may be
written - -.

- (Piu i - Pu) +,I- [(I - kvn)(piv i  - :)] = 0 ()°.".. :/.,a an

which when integrated from n - 0 to n 6 yields ". "

d
Piviw s f (puiui pu)dn (2) *:--

We may define a displacement thickness eT as

T 1 8 " "
iu.,w o (p:ui  pu)dn (3)

w 0

so that the transpiration velocity viw required in the matching process is given by -.

1 d ,-.. %
viw M i do (iwu )  (4) ,.

The usual displacement thickness 6* is defined by the equivalence of mass flows

Nil -:4'.:
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f pu dnu f u dn (5)
* ii 0

or
J P u dn-P u T(6)

Note that if Pjuj is invariant with n, then 8and 8* are identical.

Similarly we may derive a streamwise momentum integral equation f or the differ-

ences between the real viscous and the equivalent inviscid flows. After the neglect

of two higher-order terms related to the wall curvature, this reads

1 d 2 Tduiw Cf 1 d
To- (Piwvuiwl) + -2 ro~ - ~ i - (pi pdn +f Pu' dn] (7)

p iwLiw iw Piwuiw 0 0

where the momentum thickness e io defined by

PiwU~w88 -W f P I - pu )dn

so that

- ~ I [Pu(U~~, - u)+ u - u)]dn (8)

If the toe on the right-hand side of Eq. 7 are neglected and Ui is set equal to Diw,

the ordinary first-order momentum integral equation Is recovered.

From consideration of the momentum equation In the direction normal to the sur-

face and from experimental evidence East (1981) has shown that the terms on the right-

hand side of Eq. 7 may be approximated as

81 2* +62 6 8 -f (pi -~d - PwUiK (+6)+f v'd (9) .
0 0

*d2T
where K x

do

and

f (pul - pv')dn- 0.072 pIVwuiw 1 ) (10)
0 Teq

whrs I 1- 1+1)1 02 m), R - TIT and CT and CT eqare parameters (actu--

ally maximum shear-stress coefficients) occurring in the lag-entrainment equation.

The result of an Interactive calculation is the velocity distribution over the .tA
airfoil, Uiw, or its equivalent, the pressure distribution, Piw. The required result

t,331



is the pressure distribution in the viscous flow, Pw, and this is found to be given by

P - P °o
i- 2 (e+ ) (11) 

Piwu iw

Two additional modifications have also been made to the boundary-layer calcula-

tion method when used in the "Advanced Viscous Garabedian and Korn" calculations.

First, the skin-friction law has been modified to include a low-Reynolds-number

effect; and second, in evaluating the effects of curvature upon the turbulence struc-

ture, a lag equation with a lag length of ten boundary-layer thicknesses has been

introduced. 7
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CoMPARISON OF COMPUTATION WITH EXPERIMENT

Sumary Report

(Prediction of Complex Turbulent Flows using the PEOENICS Computer Code) *'

by -

A. K. Abdelmeguid, S. Y. Goh, J. IleSbusi, D. B. Spalding

Computor Group Number: 33

Cases 0141, 0142, 0143, 0421, 0512, 0612 ""'

INTRODUCTION

PHOENICS is a flow-simulating computer code developed for the solution of fluid-

flow problems; these may be transient or steady, compressible or incompressible, lami-

nar or turbulent, and one-, two-, or three-dimensional. This sumary describes the

calculations performed on six of the Stanford Conference test cases which are steady

and incompressible (Cases 0612, 0141, 0142, 0143, 0421, and 0512).

THE GOVERNING EQUATIONS

The full three-dimensional governing equations for the present calculations are .

as given in Appendix A. The conservation equations of the velocities, turbulence

energy and turbulence dissipation may be expressed in the form of a single equation

for a generic fluid variable *, in vector notation, as:

T (p#) + div(Pj + ) "S (1) 

where P is the fluid density, * is the velocity vector, is the diffusive-flux

vector, and S# is the source of + per unit volume. The source term S# includes the

pressure-gradient term and the viscous and body-force terms. The diffusive flux is

assumed to obey the following relationship:

, - r, grad*

where r denotes the exchange coefficients. The exchange coefficient of the momentum

equations, the eddy viscosity, is calculated from the k-c turbulence model described

by Launder and Spalding (1974). The equation set (1), together with a pressure-

correction equation derived from the continuity equation, are expressed in their

finite-difference form. The solution procedure for these finite-difference equations

is a development of that first reported by Patankar and Spalding (1972).

Imperial College of Science and Technology, Department of Mechanical Engineering,

Exhlbition load, London S7, Ingland
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A SPECIAL JEATUn OF TUE PUMEICS CODE

An Important feature of the computer code is that it allows to the user to switch
the solution procedure to that appropriate to solve economically (both in terms of

computer tine and storage) the equations of the particular type of flow. One of the

following options say be activated by the user-
(a) the whole-field solution of the pressure-correction equation, for

flows which exhibit strong elliptic effects;
(b) the repeated-march slab-by-slab solution of the pressure-correction p.">:

equation, for flows in which the elliptic effects are small; and -.-.-.
(c) the single-march slab-by-siab solution of the pressure-correction

equation, for flows which are parabolic in nature. ,.'.

DETAILS OF CALCULATIONS

Flows of a Parabolic Nature (Cases 0612, 0141, 0142, 0143) .

The governing equations of the above-indicated cases reduce to those of the two-

dimensional (plane or axisynmoetric) boundary layer. The variables solved in each of .

these cases were pressure p, the two components of velocity U and V, the turbulence

energy k, the turbulence dissipation c, and the pressure correction p'. The grid was

expanded to fit the flow domain of interest and the solution was obtained by marching

integration in the longitudinal direction. For the half-grid cell element next to the

wall, a "wall function" modified to account for pressure gradient, as proposed by
Spalding (1977), was employed. The constants for the log law of the wall suggested by

Colas and Hiret (1968) were adopted.

(a) Flat-plate boundary layers (Cases 0612 and 0141) ' '

For these two flat-plate cases, the grid was made to expand with the boundary-

layer growth so that the cros-stream width of the grid was proportional to x 0 8 where -

x was the longitudinal distance. The initial grid width was taken as 0.012 m and the

f low was assumed to be turbulent from the start. A grid-independent solution was

obtained with 87 forward steps of a size equal to the grid width, 21 cross-stream grid " ""

points, and 5 Iterations of the solution of all variables at each forward step. This

was checked by halving the forward-step size, and by increasing the number of cross-

strem grid points to 25 and the number of iterations to 8 in turn, without signifi-

cant change in the predicted results.

In Case 0612, the predicted results of the skin-friction coefficient Cf and the

shape factor 8, for x les than I a, were found to be sensitive to the initial veloc- '

ity-profile specification. To procure better agreement of the predictions of the W- M

shape factor for x less than 1 m, the power of the initial velocity profile was in-

creased from 1/7 to 3/4. This change in the velocity-profile did not affect the pre--. -

dicted results of Cf or R for x greater than I a.
The initial profile for k was obtained by fitting a cubic polynomial between the

free-streas and the near-wall values of k as proposed by Ng (1971). The initial
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values of dissipation e were deduced from k and wLm vhere L. was obtained from

Escudier's formula (see Spalding, 1980).

The computer time per cell per forward step per variable was 0.0349 sec and the

total time of the run was 319 sec on the Perkin-Elmer 7-32 computer.

Case 0141 was computed in the same manner as Case 0612, except that the velocity

In the free stream was calculated from the given measurements of the pressure coeffi-

cient by assuming that Bernoulli's equation applies in the free stream. It was found

necessary to assume an initial free-stream velocity of 26.2 m/s to obtain a solution

of the free-stream velocity which matched the measured value of 26.0 m/s at x - 1.04 m.

A further check of grid independence of the solution was made by putting 5 extra .'.'...

cross-stream grid points between the first and the fifth grid points near the wall,

without any significant change in the results. The computer time per cell per forward .-...-

step per variable was 0.0363 sec and the total time of the run with 75 forward steps

was 286 sec on the Perkin-Elmer 7-32 computer.: .

(b) Conical diffusers (Cases 0142 and 0143)

The grid for these two axisymmetric cases was made to fit the whole of the dif-

fuser. The computations were started upstream of the divergent section and the ini-

tial velocity U and turbulence energy k were assumed uniform across the duct. The

magnitude of the initial U and k were chosen so as to provide solutions of U and k at

the symmetry axis which matched the following measured values at x = -0.055 m:

Case 0142 0143

U 43.8 20.7 m/s

k 0.0219 13.9 m2 /s 2

The starting distance xo and the pressure coefficient Cpw were assumed as follows:

Case 0142 0143

Xo  -0.9 -0.5 m

Cpw 0 -10.03

The solutions presented are for a forward step size of 0.125 times the local duct

radius, 29 cross-stream grid points and 5 iterations of all variables at each forward

step. By arranging the cross-stream grid points to be closer to one another near the

wall, grid-independent solutions may be obtained with 25 cross-stream grid points.

Halving the step size did not have any significant effect on the predicted results.

It may be observed in Plates 22 and 26 for Cases 0142 and 0143, respectively,

that the predictions of Urf/U2 at x - 1.813 m were approximately twice as large as

the measured values. (Note that at x - 1.813 m, uIr/U 2  plotted on twice the scale

of the measured values.) This is surprising considering that the predictions of pres-

sure coefficient, the skin-friction coefficient, and velocity distribution are in fair

ogre me ut with the measured values.
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For Case 0142, the computer time per cell per forward step per variable was

0.0449 sec and the total time of the run with 176 forward steps was 987 sec on the

Perkin-Elmer 7-32 computer. The corresponding values for Case 0143 were 0.0430 sec

and 774 sec (144 forward steps), respectively.

The Backward-Facing Step (Case 0421)

For this case, the two-dimensional governing equations for continuity, the veloc-

ity components U and V, the turbulence energy k, the turbulence dissipation c, and the

pressure correction p' were solved. A Cartesian coordinate system was employed. The

grid was made to fit the duct and step. A wall function derived from a 1/7-power

velocity profile was used for the half-cell elements next to all walls. The calcula-

tions were started at x/H - -4 using a velocity profile generated from the given

measured data at this station. The boundary-layer thickness at the north wall was

assumed to be the same as that at the south wall. The initial value for k was assumed

uniform across the duct and equal to 1.00 m2/s. The turbulence dissipation c was

deduced from k and tm as in Case 0612.

The grid lines were distributed non-uniformly over the flow domain with a larger

number of grid points in the mixing layer just off the corner of the step. Grid-

independence checks on the solution were performed up to a grid specification of 30 ....

grid lines in the transverse direction and 50 grid lines in the main flow direction.

Although the trend in the results showed that the predictions approached in the direc-

tion of the measurements with greater grid refinement, a grid-independent solution had

not been reached. Further work is currently being carried out to refine the grid.

The computer time per cell per sweep over the flow domain per variable was

0.00152 sec and the total time of the run (for a total of 140 sweeps) was 1600 sec on

a CDC 6600 computer.

The Curved Rectangular Duct (Case 0512)

Except for the transient terms and the Reynolds normal-stress terms, the full

three-dimensional governing equations were solved in this problem. The curvature

effects wer* introduced by way of the centrifugal force term pU2/R and the "Coriolis"

term pVU/R in the respective momentum equations. A Cartesian coordinate system was

used with the stretching of the distances, areas, and volumes of the cell elements in
the curved section of the duct accounted for by multiplying with "stretching factors,"

which are functions of the radius of curvature. The given continuity-corrected data

of initial values were used. Errors arising out of interpolation between the measured

velocity data to obtain values at the grid nodes were corrected by multiplying the

interpolated velocity with a correction factor to ensure that the bulk velocity re-

mained unchanged. A print-out of the mass flow calculated at each section confirmed

that mass conservation was satisfied. The initial values of k and e were calculated
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from the mesured data. A vail-function similar to that of Case 0421 was used for the
half-call element next to all walls.

A grid-independent solution was obtained for a grid with 34 grid points in the

main flow direction, 20 grid points in the direction of the curvature and 16 grid

points in the lateral direction. This was checked with reference to solutions ob-

tained f or coarser and finer grids. Further, the use of two different procedures (the

arithmetic mean and the harmonic mean) for calculating the mean values between two . -

grid points In the solution procedure produced substantially the same results.

The predictions shoved only qualitative agreement with the measured data up to

71* of the bend. It should be noted that the additional terms resulting f rom the

curvature of the duct in the U, V, W, k, and e equations, as given by Pratap (1975), L

as well as the Reynolds normal-stress terms u2, v' 2 and w'2 in the momentusm equations

had been neglected in the calculations. Until further calculatons with these terms

* included in the appropriate equations are completed, it is not known how they will

affect the predicted results.

The computer time per cell per sweep per variable was 0.00142 sec and the total

time of the run (for a total of 100 sweeps) was 9272 sec on a CDC 6600 computer... .

CONCLUSION

A single flow-simulating computer code has been used to predict six steady and

Incompressible turbulent flows, including flows which are two-dimensional parabolic,

two-dimensional elliptic, and three-dimensional partially parabolic. No attempt has

been made to adjust the "constants" in the standard high-Reynolds number k-c turbu-

lence model incorporated In the computer code. The agreement with measured data was

good for the four boundary layers, moderate for the duct flow and uncertain for the

sudden enlargement.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

by

Y. Tassa

Computor Group Number: 09

Case 8621

SUMM.ARY

The unsteady compressible Reynolds time-averaged Xavier-Stokes equations which

include an algebraic turbulence model, have been applied to the RAE 2822 airfoil for

subcritical and supercritical flow conditions. The program has also the option of

using k-c, but it was not used in our present results. The governing equations are

written in conservation form in a body-fitted coordinate system and solved numerically

using an Alternating Direction Implicit (ADI) procedure. In the following sections an '4

outline is first given of the mathematical formulation, then the grid generation and

the numerical procedure. The boundary conditions and turbulence model are

discussed. Finally, the numerical results and outcomes of our experience with the

present method for calculating complex flow problems are summarized.

MAT MATICAL FORMULATION .

The two-dimensional unsteady compressible Navier-Stokes equations may be written

in a strong conservation form in a general non-orthogonal curvil4.near coordinate sys- -

tes as

where C, n, and T are the independent variables, subject to the general transformation

- E(x,y,t); n - n(x,y,t); T m t (2)

and

{q) '3 q) ; f fEq + E6) fa .1 nt + ni t +iY)) (3)

where:

P Pu +p- T Puv 1(4q F 2 (4) .: .
P PUV O - T y PV + Ty".-.-.. .

2 2 2 u.
puO(+e+u v U +v2 x 2 - I " •- .

5Lockheed Georgia Co., Dept. 72-74, Zone 404, Marietta, GA 30063
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where p is the pressure, P is the density, e the specific internal energy, and X is :

taken as -2/ 3 1'T according to the Stokes' hypothesis. Here x., and y. are the Cartesian .

velocities of the grid point (x,y). In the present calculation the airfoil is sta-

tionary; therefore, x., and YTare taken to be zero. In the above equations all dis-

tances are normalized with respect to the airfoil chord c, the velocities are normal-

ized with respect to free-stream velocity V., the density is normalized with respect

to free-stream density P., and the specific internal energy is normalized with respect

to V2. Re and PRare the Reynolds number and Prandtl number, respectively, and jiTis

the total viscosity. ~

GRID GENERATION

The main advantage of a generalized curvilinear coordinate system is that boun-

dary surfaces in the physical plane are mapped onto rectangular surfaces in the trans- *

formed plane and boundary conditions may be treated more accurately. Also grid points

may be clustered in regions where rapid changes in the flow f ield gradients occur.
The grid generation used in the present work is based on the Thompson method that .

solves two Poisson equations. An "0"-type grid has been used in the present work,

since it gives the best airfoil resolution for the same number of grid points. In the

* present calculation the first grid point is placed 0.0001 chords from the airfoil

..-.. ...

hsurface, and 35 grid points are placed in the p direction. The airfoil surface is

represented by 81 grid points and the outer boundary is placed at 16 chord lengths

from the airfoil surface for the subcritical case and 24 chord lengths for the super-

critical case.

NUMERICAL PROCEDURE -

The numerical procedure used to solve the governing equations is a modified form

of the ileay-McDonald ADI procedure. It is also closely related to the Warming-Beam

algorithm. The method can be outlined as follows: The governing equations are para-

bolic with respect to time. Assuming the flow field is known at a time level tn, the

ADI procedure is used to advance the solution to a new time level t h +1 usinga

fairly large time step. The metric terms E etc., are evaluated numerically at

an intermediate time level tn + 1/2. The mixed derivatives that arise from terms

such as (Cut) etc. are lagged one time step. The flow quantities p, u, v, and e,'.-

at the now time level are written in terms of their values at the known time level and .

incremental quantities. For example,u-
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Terms Involving non-linearities at the time level tn + I are linearized by a Taylor

expansion about the solution at known time level tn . The time derivative aq/at is

written as a two-point backward difference formula at the new time level. Performing

these operations and taking all the quantities at the known time level to the right-

hand side, one obtains a linear matrix equation for the incremental quantities at each

grid point in the computational plane, except at grid points on the boundaries. The . -

matrix equation may be written as:

4n
[A] (Aq) + [B (Aq + T C]j{Aq) - (Rn (8)

The Douglas-Gunn procedure for generating an alternating-direction implicit scheme is

introduced now to solve the above system of equations by approximately splitting Eq. 8

into two equations, where each involves only a one-dimensional operator:

[A](Aq) [B]{aql - (R 9)

[Al{Aq) + [C]{Aq} - [A{Aq}* (10)

Note that

{Aq) {Ap, Au, Av, AeT (11)

Equations 9 and 10 are discretized using second-order accurate central-difference

formulas for the spatial derivatives. This technique leads to a system of block tri-

diagonal matrix structure which may be solved efficiently by a standard block-elimina-

tion procedure. One needs to provide boundary conditions for the unknown {Aq), as

well as for (Aq)* at the boundaries. Once {Aq) is obtained, the flow-field variables

at the new time level is explicitly known. In the present application fourth-order

artificial dissipation terms have been added explicitly to the right-hand side in the

manner suggested by Steger to suppress the high-frequency components associated with

numerical instability that appear in high-Reynolds-number problems. The conservation

of mass momentum and energy is inherent in the equatons and no specific check is done

in the program.

* BOUNDARY CONDITIONS

The present procedure requires boundary conditions to be set on the solid boun-

dary ni nmin, the far-field boundary n - tmax, and at the fictitious cuts E - tmin

and C Emax" At the solid boundary the condition of no slip requires the fluid

velocity to be the same an that of the solid; the solid motion is known. Also, the

adiabatic flow condition (ae/an - 0) has been applied on the solid surface. The

density at the surface may be evaluated in various ways; in the present calculation we
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used two-point extrapolation of the form

4 1PlI - --  - - ,3 (12) te

For the far-field boundary, n - rtmax, the free-stream values have been used since the

boundary 13 reasonably far from the airfoil.

ALGEURAIC TURBULENCE NDDEL

In the present work, the effects of turbulence are simulated using an algebraic

eddy-vLcosity model. Recently, progress has been made in using multi-equation turbu-

lence models in conjunction with Xavier-Stokes equations to simulate the behavior of

separated turbulent flows. Yet numerical results using multi-equation turbulence

models for separated flows are not completely satisfactory. For this reason the sim-

pler, algebraic model was chosen. The algebraic turbulence model used in the present

work is that of Ualdwin-Lomax, who modified the Cebeci turbulence model; this model is

sore suitable for use in Navier-Stokes solvers.

NUMERICAL RESULTS

The numerical results reported here include the subcritical and supercritical
flow conditions over the RAE 2822 supercritical airfoil tested experimentally by Cook
et al. (Case 8621). The test cases calculated are referenced in Cook et al. as test

case (1) and test case (12). The flow conditions are:

Test Case 1 Test Case 12

M. 0.676 0.730 .

a[degj 2.40 3.19

Re/€ * 10-  5.7 2.7

Transition trip x/c 0.11 0.03

As suggested by Cook et al. the angle of attack must be corrected according to the

formula

2 \aQ - - + -- 1(CL + CmJ [radian] (13)

The corrected angles of attack for case (1) and case (12) are 1.787* and 2.734%

respectvely. In the present calculations no Mach-number corrections have been tried

and the free-stream values were used as recommended by Cook et al. The physical

plane, which is "O"-type mesh, is transformed into a rectangular domain using the

Thompson et al. method for grid generation with 81 grid points over the airfoil sur-

face and 35 points in the n-direction.
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The first grid spacing is Ay * 0.0001 c away from the surface and is exponen- -

tially stretched to the outer boundary which is 16 chords away for case (1) and 24

chords away for case (12). The pressure distribution and skin-friction distribution L .9Z
for both cases are shown in Plates 160-165 and 159, respectively. Convergence has

been obtained in about 2000 iterations using impulsive start. The time steps used

start with relatively low, about 2-5 CYL, and increase up to about 100 after the tran-

sient motion has been relaxed.

An interesting experience occurs due to the effect of the outer boundary condi-

tions; when the outer boundary is about 8 chords away, non-reflecting boundary condi-

tions must be used to cancel reflected waves from outflow boundary which otherwise . -

tend to affect the pressure flow field. In the present results the outer boundary is

far enough away not to cause any meaningful changes of the results before steady state

has been reached. This in turn slows down the convergence and requires more time 7

steps to reach convergence. It seems important to use non-reflecting boundary condi- -

tions for an outflow region, particularly for supercritical cases when the outer

boundary is of the order of 8-10 chords away. If the free-stream condition was used

when the outer boundary is about 6 chords away, the reflected waves from the boundary

affected the results very adversely, and the calculations became unstable after a

certain time. The results were obtained using a VAX 11/780.

- . o . .

4-7
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Computation of Turbulent Wakes)

by

D. D. Vandromme*

Computor Group Number: 35

Cases, 0381. 0382. 0471

INTRODUCTION

The first two cases are the prediction of turbulence quantities for incompressi-

ble symmetric and asymmetric yak. flows behind a flat plate. The experimental data

were obtained by Andreopoulos (1978). The asymmetry of the second case (0382) is

induced by a thickening of the boundary layer on one side with sandpaper; the free-

stream conditions are identical. The requirements are the prediction of the mean-

velocity and turbulence correlations up to the third order.

The third case correponds to higher-speed wakes. Within this case, three flow

conditions are considered

- Symmetric wake, Mach number M - 0.4

- Symmetric wake, Mach number M - 0.7

- Asymmetric wake, Mach number M - 0.4

Instead of a thin flat plate, the body has a finite thickness and is terminated by a

12°-angle wedge. This induces strong pressure variations both in the streamwise and "

in the cross-flow directions. The requirements for this case are the prediction of

the mean-velocity and Reynolds stresses (shear stress and turbulent kinetic energy).

For all cases, the same numerical scheme is used. The method is a modified ver-

sion of the original Patankar-Spalding marching procedure (1970). ..,

The NavLer-Stokes Equations for Two-Dimensional Parabolic Flow -

The basic approximation for these calculations is to use the boundary-layer form

of the Favre-averaged Navier-Stokes equations. For a two-dimensional steady flow

without heat transfer, the Navier-Stokes equations are reduced to the continuity equa-

tion and one momentum equation for the streanwise velocity component:

- (0U) + - (PV) - 0

a . a + j_ a + [- 12
ax ay-(PUV) Tr a _a

NASA Ams Research Center, Mffett Field, CA 94035
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In order to remove the closure problem, two different turbulence models have been

used. As triple velocity correlations are required for Cases 0381 and 0382, a second- ,

order closure model (Launder-Reece-Rodi) is used. The transport equations for the

four Reynolds-stress components and their dissipation rate are obtained by transform-

ing the Navier-Stokes equations and all modeling assumptions as explained in Launder

et al. (1975). The solution of these equations provides the values of the second-

order moments and the triple velocity correlations can easily be approximated by a r

product of Reynolds stress with their derivatives (see Launder et al., 1975). The

calculation of the third case was not done with this model. A simpler k-e turbulence .44'

model (Jones and Launder, 1972) has been used to predict only the mean velocity, the

Reynolds stress, and the turbulent kinetic energy. The standard form of the model

with no pressure-gradient term is coupled with the Navier-Stokes equations. Any pres-

sure gradient is taken into account only through the body-force term of the longitud-

inal momentum equation.

The Numerical Method

The equations, which are to be solved by the marching procedure, are written .. .

under a comon form, " 4

a.[ at]3
[(A -[ + s,.+I + s

where (xw) are the transformed coordinates:' "

x-K; -_ ; -f pUdy
* lo ,~ .

The equations are then discretized and integrated over an elementary cell, through a

tridiagonal matrix inversion. The equations are solved successively, starting with .

the momentum equation. Experience (see Vandromme, 1980) has shown that no iteration

is necessary at each step, provided that the marching step is small enough.

Practical Aspects of the Computations

Computation grid' pIq
In the cross-flow direction, 200 points are distributed for which the spacing

decreases in the region@ of the velocity gradients. For the boundary-layer calcula-'-_.

tions (Case 0471, x < 0) only 100 points are used in each single layer but starting

from the trailing edge, the two separate grids join each other to make the 200 point

wake grid. The marching step size is calculated at each step as a fraction of a char-

acteristic thickness (usually the half-velocity width). .-
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oundary conditions

The boundary conditions are chosen to be as simple as possible. We used

Dlrichiet-type for the longitudinal velocity and Neumann-type (zero gradient) for the

leynolds-strees components and the dissipation rate.

The Initial profiles are given by the experiments at the trailing edge (Cases

0361, 0362).

For Case 0471, a boundary-layer calculation is started 1 a ahead of the trailing

edge, with equilibrium turbulent boundary-layer profiles. The initial boundary-layer

thickness is adjusted to match the measured data before the trailing edge. At the

trailing edge, the two grids are put together, the low turbulent Reynolds-number cor-

rectLons are shut off, and the wake calculation starts.

The longitudinal pressure-gradient value is given by the experiments and the

boundary values of the longitudinal velocity are determined accordingly.

Typical runs

All calculations ware performed on a DEC-VAX 11/780 computer, on which the aver-

age time for the wake calculation vas 30 mmn of CPU time.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Sumary Report

by

:" J. Viegas, C. C. Horatman and C. Hung

Computor Group Number: 36

J. Viegas C.C. Horstman

Cases 0471, 8101, 8201, 8403, 8601, 8611, 8631, 8632,

8641, 8651, 8661, 8663

The V-H-H group solved an incompressible free-shear flow (Case 0471), five tran-

sonic flows (Cases 8101, 8201, 8403, 8601, 8611), and six supersonic flows (Cases

8631, 8632, 8641, 8651, 8661, 8663) with two- and three-dimensional versions of a

single numerical method using three different turbulence models.

The numerical method used here is the basic second-order, predictor-corrector,

finite-difference, time-splitting method of MacCormack modified by his recently devel-

oped efficient explicit-implicit-characteristic algorithm. These modifications apply

near a surface and result from replacing the basic explicit operator that accounts for

the effects of flux normal to the wall with a combination of more efficient opera-

tors. This hybrid method is described in detail in MacCormack (1976) and Coakley and

Viegas (1977).

The differential equations used to describe the mean flow for this study are the

time-dependent, mass-averaged Navier-Stokes equations for a compressible fluid.

Turbulent transport is included through an eddy-viscosity hypothesis. Zero bulk vis-

cosity is assumed. The resulting equations in double subscript notation and in terms

of mass-averged variables can be written as

ap a
at i (aux ) - 0 (1)

S(Pu) + a (Puu) - (  
(2)

T au
3 ~T i

-(ph) + 2 (pujh) u-2 + ui- a +T u (3)

The quantities qT and T are the total (laminar plus turbulent) heat-flux vector and

the total stress tensor, respectively.
.:....- .:..

NASA-Ames Research Center, Moffett Field, CA 94035
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They are defined by

T u ah r_'t 3h
L Pr Pr as I 3

TT T - <Pu >
ii ij z i

* where

ij ax as 3a
j K

and where ui is the molecular viscosity given by the Sutherland viscosity law, ut is

the turbulent eddy viscosity, and Pr and Prt are the molecular and turbulent Prandtl

numbers, taken an 0.72 and 0.9, respectively. Two algebraic models and a two-equation

model were used for the turbulence in this study. The expressions used for the

Reynolds stress -<Puiuj"> and the turbulent eddy viscosity lit in these models are
outlined In the next few paragraphs.

Turbulence Model 1

In this model, the Reynolds stress is defined by <pu I.u > (1 /10 The .

turbulent eddy viscosity is expressed in terms of an inner and outer eddy-viscosity

function as

11 P11L + ; if y < Y

__ _ _ _ .'0.0168 Pt a ~
lit 6 ;if y> Youter [I + 5.5(y/:)

where yc is the first point at which 11tinner exceeds 11touter* The function I is the

Prandtl mixing length modified by the van Driest damping factor and

I = gcy[l - exp(- rpvlv -. I

where K - 0.4, A+ - 26 are the von Karman and van Driest constants, respectively.

The boundary-layer edge velocity us is set to the maximum value of u for y < yax, %
ya being chosen slightly outside the boundary layer. 6* is the kinematic displace-

ment thickness, and 8 Is the boundary-layer thickness.

Turbulence Model 2
Ithis model the Reynolds stress is also given by (oi /1U)r The turbulent eddy

t iji
viscosity is based on the model of Escudier,

it p(DL) w
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where D is the van Driest damping factor. wis the absolute magnitude of the vortic-

ity:

£is a mixing-length scale:

£-A6 tanh(0.4ldIA8)

and d is a "modified distance":

d -2yz4(y + Z) + r r--T

Here 8 is the value of d at the edge of the boundary layer, A is a constant, and 9W_
PSP are the values of shear stress, density, and molecular viscosity on the wall,

respectively. y and z are coordinates normal to the flow direction x. The constant X

Is taken as 0.08.

Turbulence Model 3

This model is known as the Wilcox-Rubesin two-ecuation model. Here the eddy F

viscosity is given by

Ut y pk/oi (note, all quantities are mass-weighted averages)

The rate equations describing the kinetic energy of the turbulence k and the turbulent

dissipation rate w (w is the turbulent dissipation rate per unit of kinetic energy)

are

a (pk) + ipjk aurE +~i-(Pu~)-Tij j--Bpwk + f.[(u + au)
3 P 2 2 ' u [0 r+ 2.(.L 2P 3 + L_[(U+ all ]

ihr T a ijax iP ax i t ax .

Te xj K ~ iii

11 3 Pk1j+ P ij

and the length scale L is given by

L -i/

Modeling closure coefficients employed are:

*2 /R) ,[ 2

T T

0 -0.09: 0-0.15; a 1/2; -1/2
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1.4.

The stress tensor for this model is given by

-1(S a + )
2 It (inmJ Sami-<P u i PkaiJ +  - iJ + Ck (04)

+ 2

where

au a au au+i
tlJ 2 U Xj ax ) I iil i g x,

and C, the coefficient of the anisotropic terms, is 8/9.

For more details on the analysis or models, see Viegas and Horstman (1979) and

Hung and MacCormack (1978).

Application of the numerical procedure to each of the flow studied was concep-

tually similar. The computational domain is divided into a two-mesh system. An expo-

nentially stretched fine mesh is used near the wll to resolve that part of the flow

where viscous effects are important; the outer flow, which is predominantly inviscid,

is described using a uniform coarse mesh. A uniform mesh is also used in the flow

direction and in the cross-flow direction for three-dimensional flows. The number of

mesh points used and the minimum spacing near the wall varied with the problem and the

turbulence model. Generally, the first mesh point adjacent to the wall is selected ..- '-

such that moving It any closer to the wall would not significantly alter the solu-

tios. For the algebraic models the first mesh point from the wall is taken within+
the viscous sublayer (y + <4); for the two-equation model, the minimum yrequired

was mailer by a factor of 10 or 20. In the flow direction, a grid spacing of from

0.16 to 6 has been successfully applied to various flows, however; typically Ax <

0.56 seems to give grid-independent results. In the cross-flow direction, although

computer-storage limitations have prevented mesh-refinement studies, the results -.

obtained for three-dimensional flows look reasonable in spite of the relatively

coarse mesh used. Typical grid sizes were 100 x 40 for two-dimensional flows and

20 x 30 x 30 for three-dimensional flows. Mesh-refinement studies were done for Cases -

8403, 8601, 8611, and 8631. These had negligible effect on the results. Results are

presented for the different grids used for Cases 8601 and 8631.

Other remarks on the calculated results of V-H-H group follow:

1. Turbulence model 3, the two-equation model, was used for all flows

except the three-dimensional corner, Case 8661.

2. Although two turbulence models (Model 1 and Model 3) have been applied

by V-U-H to Cases 8403, 8601, 8611, 8631, and 8651, we have only pre-

sented the two-equation (Model 3) results. In all cases Model 3 gave

better results than did Model 1 for these flows.
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3. The skin-friction results obtained for the adverse pressure-gradient

flow, Case 8403, are inferior to some prevously obtained from boundary-

layer calculations by Horatman and Hung (1979). This appears to result

because the time-averaged Wavier-Stokes code, which solves the entire

flow field, did not exactly match the given wall-pressure distribution.

4. Turbulence model 2 was the only model we tried on the three-dimensional

swept shock flow (8661). This was because of its relative ease of

applicability and its simple length-scale definition. It appears to

have worked well.

5. Two turbulence models were tried for the three-dimensional flow, Case

8663. This is one of the few cases in which an algebraic model pre-

dicted separated flow results better than a two-equation model.

6. We tried to calculate the free-shear-layer flow (8501). It was found

that the spreading rate was a function of the boundary conditions on

the low-speed side. We did not finish calculating this flow.

In conclusion, we have presented mesh-independent solutions of a single numerical

method (MacCormick's Hybrid Scheme) over a variety of flow conditions for three turbu-

lence models. This method seems to reproduce the overall physics of the flows accu-

rately for these complex flows. For the cases examined the two-equation k-w turbu- ..-....

lence model works well for shock/boundary-layer interactions with very little separa-

tion. For flows with large separation regions, the models tested do not have enough

forward influence. Special turbulence models are needed for flows with separation.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

.. by ' -.

D. Whitfield, A. Jameson, and W. Schmidt-

Computor Group Number: 12

D. Whitfield

Cases 0141, 0612, 8621

Boundary-layer computations were performed using both a direct and an inverse .

compressible, turbulent, mean-flow kinetic-energy integral method; and, transonic

viscous-inviscid interaction calculations were performed uaing a finite-volume Euler

equation method coupled with the inverse boundary-layer method. The direct boundary-

layer-calculation method was used to compute Cases 0612 and 0141. The inverse

boundary-layer-calculation method was used to compute the upper surface boundary-layer -.-

for all five cases of Case 8621. The viscous-inviscid interaction calculation method

was used to compute two cases (cases 6 and 9) of Case 8621. Each calculation method

is summarized below. , .

Direct Boundary-Layer Method ,._ *

The direct boundary-layer method is the mean-flow kinetic-energy integral method..

described in detail in Whitfield (1978). A distinguishing feature of this integral

method is the use of a three-parameter family of analytical velocity profiles that

describe the boundary layer over the entire domain 0 < y < -. The dissipation inte-

gral is integrated using the analytical velocity profile at each streamwise location,

Prandtl's mixing-length theory for the middle region of the boundary layer, and

Clauser's eddy viscosity for the outer region of the boundary layer. The inner-region

portion of the dissipation integral is integrated analytically using results stemming

from the development of the velocity profile as explained in Whitfield (1978). Ini- .

tial conditions of boundary-layer momentum thickness and shape factor are used to -

start the calculations. The equations are solved numerically using a predictor-

corrector scheme.

Inverse Boundary-Layer Method

The inverse boundary-layer method is described in Whitfield et al. (1980). It is

based on an extension of the attached-flow analytical boundary-layer velocity profile

*Mississippi State University, Mississippi State, MS 39762

tPrinceton University, Princeton, NJ 08544

*Dornier GbH, D-7990 Friedrichshafen, West Germany
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of Whitfield (1978) to separated flow. The velocity-profile expression used describes

either attached or separated flow, depending on whether the shdar stress at the sur-

face is positive or negative.

In an inverse boundary-layer method, pressure (or velocity at the edge of the

boundary layer) is a dependent variable, and in this particular inverse method the

displacement-thickness (6 ) distribution is specified. The method used to provide a

rational, a priori, specification of the 6" distribution is the method of Carter

(1979). Carter's method can be written as

$u
*(m+l) . 6*(m) + wa*(m) e.v

6'~~~~~' -6qiw -) 1

where 6' is the new displacement thickness at a streamwise locaton, 6*(m " is the

displacement thickness from the previous iteration, ue,v is the local velocity at the

edge of the boundary layer obtained from the last boundary-layer solution, 1 w1 is

the magnitude of the local velocity vector obtained from the last Euler-equation solu-

tion, and w is the relaxation parameter.

Equation 1 can be used with the inverse method to solve a conventional boundary-

layer problem with known pressure distribution. For such a problem, the known pres-

sure distribution is used to determine the velocity distribution which corresponds to
rql in Eq. 1. In this case the 1+, distribution remains fixed and Eq. 1, with
Iw,i w,

U,v updated after each inverse boundary-layer solution, is used to obtain the con- . ; -

verged 6 distribution. This method was used to solve for the boundary-layer on the

upper surface of the airfoil in Case 8621 using the measured pressure distributions.

The initial 6 distribution was assumed to be that corresponding to a flat plate. A

comparison between direct and inverse solutions for Case 0141 is given in Schmidt

et al. (1981). After four iterations, with w - 2, the difference between the inverse -, ." -,,* .,

and direct solutions is not discernible in Figure of Schmidt et al. (1981). The

inverse solutions for Case 8621 were obtained using w - 2. The numerical method used

to solve the inverse boundary-layer equations was a fourth-order Runge-Kutta scheme.

Viscous-Inviscid Interaction Method

The viscous-inviscid interaction method is described in Schmidt et al. (1981).

It consists of coupling the inverse boundary-layer method with a finite-volume Euler-

equation method using the surface source model. The surface-source model has an ad-

vantage over the effective-displacement-surface approach in that a surface-source mass

flux is imposed as a boundary condition in the inviscid calculation at the physical

body surface and in the wake, and hence mesh adjustment during the iteration process

is not required. The surface-source mass flux, (Pv)n, imposed at the physical surface m

is given by

1541
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d(P u 6)
(pv)n dx (2)

where (pv) n is the local mass flux normal to the surface. The right-hand side of

Eq. 2 is evaluated after each inverse boundary-layer solution to determine (pv)n for

subsequent inviscid calculations.

The viscous-inviscid interaction calculation scheme proceeds in the following

steps:

1. The Euler-equation solution is advanced 50 cycles with (Pv)n 0-

2. An inverse boundary-layer solution is obtained with 6*(1) given by

Eq. 1, where 6*(0) is a flat-plate distribution, Ue,v is constant at "-.

the free-stream value (u..), and Iqlw,i is obtained from the last cycle -M

of the Euler-equation solution.

3. The Euler-equation solution is advanced 50 cycles with (Pv)n held fixed

at the value given by Eq. 2.

4. An inverse boundary-layer solution is obtained with 6*(m+l) given by

Eq. 1.

5. Steps 3 and 4 are repeated until convergence on 6 or cp (surface-

pressure coefficient) is obtained. ..-'.

Viscous-inviscid interaction solutions were obtained for cases 6 and 9 of Case

8621 using w - 1. A 121 x 30 C-type mesh was used with 85 points on the airfoil.

The solutions were started impulsively and the boundary layer was started turbulent

near 15% chord. A free-stream Mach-number correcton of 0.004 was used, as that was

the value used by Lock (1980). .- 1w

This code is operational on the CRAY-1 and the CYBER 203 computers. However, no

significant optimizations have yet been performed to fully utilize either machine,

hence current computation times represent an upper bound and mean very little. Cur-

rently one cycle per mesh point requires 4.2 x 10-  sec on the CRAY-1 and the

CYBER 203 requires about twice this much time. Reasonably converged inviscid solu-

tions require 1000 cycles, although good engineering answers are obtained in 500 to

800 cycles. The viscous-inviscid interaction solutions for Case 8621 are the result

of 2000 cycles.
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COMPARISON OF COMPUTATION WITH EXPERIMENT

Summary Report

(Two-Equation Model of Turbulence)

by

D. C. Wilcox

Computor Group Number: 37
FP lid_

Cases 0141, 0142, 0143, 0241, 0242, 0244, 0311, 0371, 0372, 0374,

0376, 0421, 0612, 8101, 8201, 8403, 8411, 8501, 8621, 8623

The objective of our participation in this Conference has been to use a single

method to compute as wide a range of flows included in the Conference as possible. By

so doing, it has been our hope that we can objectively assess progress made to date in

developing a universally applicable engineering model of turbulence. To accomplish

this objective we have computed 20 flows with a total of 62 separate computations.

The flows we have computed are listed in Table 1.

Table 1. Summary of Flows Computed

Case Number Description No. of Tests

0141/Simple Incompressible B.L. in Adverse Pressure Gradient 1
0142/Entry Pozzorini Low-Core Turbulent Diffuser 1
0143/Entry Pozzorini High-Core Turbulent Diffuser I
0241/Entry Boundary Layer with Blowing -,
0242/Entry Boundary Layer with Suction 1
0244/Entry Boundary Layers with Suction 5
0311/Entry Mixing-Layer Development 1
0371/Simple Homogeneous Isotropic Turbulence 1
0372/Simple Homogeneous Rotating Turbulence 3
0374/Simple Homogeneous Plane Strain 2
0376/Simple Homogeneous Shear 2
0421/Entry Backward-Facing Step 1
0612/Simple Constant-Pressure Boundary Layer 1
8101/Simple Mach No. Effects on Boundary Layer 6
8201/Simple Wall-Temperature Effects on Boundary Layer 6
8403/Simple Compressible B.L. in Adverse Pressure Gradient 9
8411/Simple Compressible B.L. in Adverse Pressure Gradient I
8501/Simple Mach No. Effects on Mixing Layer 3 ..

8621/Entry RAE 2822 Transonic Airfoil 10
8623/Entry DSMA 523s Transonic Airfoil 6

All 62 computations were done using the two-equation model of turbulence devised

by Wilcox and Rubesin (1980) with some minor "fine-tuning" of the closure coeffi-

clents. Computational tools used to solve the equations of motion were (a) a fourth-

*DCW Industries, Inc., Studio City, CA 91604
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order accurate Runge-Kutta integration scheme for the 8 homogeneous turbulent flows

(Cases 0371, 0372, 0374 and 0376), (b) a fully elliptic incompressible program named

EDDYNSI for the backward-facing step (Case 0421) and a compressible/incompressible

boundary-layer program named EDDYBL for the other 53 computations. '1
In the following sections, we present in detail the equations of motion and boun-

dary conditions employed. We then give a brief description of the numerical tools

used followed by a discussion of the various numerical checks made during the course

of the many computations. Finally, we summarize results obtained and outline possible

future avenues of research.

EQUATIONS OF MOTION

The equations of motion used in all of our computations are those devised by

Wilcox and Rubesin. The model is of the two-equation variety in which the Reynolds-

stress tensor Trj is assumed proportional to the mean-strain-rate tensor Sij according

to ,.

T 2eS 1 auk aP

l'ij " 2Pc(SJ - " i - " 6  (1)"",

where e is the eddy diffusivity, e is the turbulent mixing energy, p is the mass den-

sity, ui is the mean velocity vector, xi is the position vector, and 6ij is the

Kronecker delta. The mean equations of motion are thus written as follows:

aput .. .= 0 (2)

- - P i - Uk (3)

I= Bi- +4 ."§ "INj-j a 1 auk P C

ji k j j L T j

In Eqs. 2-4 p is mean pressure, h is mean enthalpy, ja is viscosity, PrL and PrT are

lauinar and turbulent Prandtl numbers, w is turbulent dissipation rate per unit of

kinetic energy and 0 is a closure coefficient which will be defined below. Before

introducing the two turbulence model equations it is instructive to note that the mean

energy equation (4) appears to find the conventional work term Tijaui/axj replaced

by 0 pwe. This is not an ad-hoc closure approximation, but rather a closure approxi-

mtion consistent with those made below in the turbulent energy equation. The cor-

rectness of Eq. 4 becomes obvious when the resultant equation for total energy, viz.,

[h + (uiui)/2 + e] is formed.
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4 To complete our set of equations, we compute the eddy diffusivity in terms of e

and wi from:

C - e/W (5)

S where 'V* is a closure coefficient given below in Eqs. 8. The equations governing the 4

evolution of e and w are

3p a *u ae (6).A.
j.i.-Tjj yj- - Bpwe + Tx- (Vi + a PC F-(6

*2 aula 2 3 2

(Pj ij0 [+ 2a("-- P ~~+ ~(P+ UPC (7)
L j jX- jX

where I is a turbulent length scale defined as el/2/w. In Eqs. 5-7 there are several

closure coefficients whose values are given in Eqs. 8. ''-

* 2 .

Y A 1-) )exp(-ReT)

* 2
-y 25/27[1 (1 -X )exp(-ReT/1.5)] (8)

1 1/1 63/20 8 -9/100; o 2/3; a 2/3

Note that Re T pe/iop is the turbulent Reynolds number.

In performing the homogeneous turbulent flow calculations, we used the nonlinear

stress/ strain-rate constitutive relation devised by Wilcox and Rubesin (1980) which,

for the high ReT, incompressible cases considered becomes:

T 4( +SSm

where 0J- l/2(3ui/3xj - uj/axi). Additionally, for the rotating homogeneous

flow, Case 0372, we added the Wilcox-Chambers (1977) rotation term to the equation for

0, or,

~WT + 1  +90 <-u'v'> we ~ (10)

where t is time and 0 is rotation rate. Finally, for the transonic airfoil, Cases

6621 and 6623, we used the Wilcox-Chamber. (1977) streamline curvature term, or,

apu a au

-x <-u'v'> -4.5 <-u'v'> R+ (1

where R is surface radius of curvature (positive for convex, negative for concave).
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BOUNDARY CONDITIONS

For all but the 8 homogeneous cases, solid boundaries were present and surface

boundary conditions must be specifiLed. With the exception of the backward-facing 9
step, all computations integrated all the way to the surface, y 0. Surface boundary

conditions were as follows:

2 0*1/2v
uTor Wy - 0 - 0 S R v (12)

where T is temperature and subscript w denotes surface. For the dissipation rate, the

quantity S is a universal function of surface roughness and mass injection rate de-

fined by Wilcox-Traci (1976): -

U (S + S 6/[v +(l + v + SR" (36 /k) 2 + (8/k+)1/2 (13)

vhere a bu is the nondimensional injection rate and k snku /v is the non-

dimensional roughness height. Note that for suction (vw < 0) we take Sb - 0 and in

the limit of zero roughness and injection the near-surface behavior of w is:

wo+i20vs(By 2) as y+o0 (14)

where v is the kinematic viscosity.

For the backward-facing step we used boundary conditions consistent with the law-

of-the-wall, with:

u/u + (s+.4l)log(u yv) + 5.0 1[w + u (s.410*/ 2y) e + u2/0*/2 (15)
T T T

While more accurate boundary conditions (also known as wall functions) are available

for our equations, limited time and funds precluded their use for this Conference.

COMPUTATIONAL TOOLS

Because of their inherent simplicity. we solved the equations of motion for the 8

homogeneous turbulent flow with a straightforward fourth-order accurate Runge-utta

integration scheme and, for obvious reasons, the program requires no further descrip-

tion.

The lion's share of our computations were done with the same program, namely our

tvo-dimensional/axisyumetric compressible/incompressible boundary-layer/shear-layer

program known as EDDYB. which is described in Wilcox (1976). In performing the calcu-

%1(o .4 e~t / y) 2..*1/ , i '5:.-.-.,-:l

lations all compressible cases were done on a UNIVAC 1108 and all incompressible cases

on a TnS-8O Microcomputer. The latter cases were actually done with a version of

4. %

eDD usL in which all of the compressibility terms were eliminated. The program is a -

parabolic marching code which is second-order accurate in both streamwise and normal

directions.

1547

V-.



47- T- 7

The backward-facing step case was done with an incompressible, elliptic program

known as EDDYNSI. The program is a modified version of the TEACH-2E Code described by

Gosman and Iderish (1976); it is also second-order accurate in streamvise and normal

directions.

NUMERICAL CEK

We performed many numerical accuracy tests on a more or less random sampling of

the many cases we computed. In general we tested the effect of total mesh point num-

bar, location of mesh point nearest the surface, and size of streamwise steps taken.

For all of the boundary-layer cases we found 80-100 mesh points normal to the surface
+.4 -I.with the value of y for the point nearest the surface less than unity to be quite

satisfactory. Except for the very strong adverse pressure-gradient cases there is

virtually no loss in accuracy in taking streamwise steps up to about one boundary-

layer thickness. In some of our compressible boundary-layer runs we used as many as

280 points norml to the surface with y+ nearest the surface as small as 0.09. The

difference in computed integral properties over a 100-point calculation was never

found to be more than 2%. %

For the backward-facing step case we used meshes which had a total of 196, 529,

and 870 mesh points. The total number of mesh points had very little effect on pre-

dicted reattachment length, even though local flow properties varied substantially

with the number of points used.

SUMMARY AND OBSERVATIONS

The model employed in our computations predicts flow properties in quite close .-
agreement with experimental data for the constant-pressure boundary layer, the incom-

pressible mixing layer and for flown with surface mass transfer. Additionally, pre- -

dicted effects of Mach number and surface cooling on a constant-pressure boundary

layer are close to measured effects.

For flows with strong adverse pressure gradient, most notably the backward-facing

step, the model's predictions differ substantially from corresponding measurements.

As an almost uniform trend, the model responds much more rapidly to an adverse pres-

sure gradient than has been measured (e.g., Cases 0141, 0142, 0143, 0421) and, upon

removal of the gradient, returns to equilibrium more rapidly than measured (e.g.,

Cases 0142, 0143, 8621, 8623).

Our success with the flows with suction and blowing is in part due to the careful .. 7"

research which has gone into developing appropriate surface boundary conditions for

much flows. This success is perhaps an argument in favor of integrating to the sur-

face (as opposed to using wall functons) for this type of flow.
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Our relative lack of success in computing f lows with strong adverse pressure

gradient is less easy to explain. Perhaps we should expect to do poorly when the flow

departs even slightly from equilibrium upon observing the gross discrepancies between

computed and measured Reynolds-stress development for the homogeneous cases. Yet,

this would be too easy an explanation as the primary culprit is the eddy-viscosity

approximation in the homogeneous case. More plausibly, with a two-equation turbulence

model, we may be attempting to describe too much with too little in the turbulent Z
boundary layer. That is, the near-wall portion of the boundary layer responds on a

grossly different scale from that of the defect layer. Yet, we attempt, from a single

equation (the equation for w), to deduce the scales on which the entire boundary layer

will respond and change. This problem could actually be partly accommodated by using

wall functional A more satisfactory approach, however, might be to use more than a

single dissipation rate. In this way we could concentrate more of the physics of the

boundary layer into the equations of motion. -.
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LOACAIC OF ToE COnuCLUIOUS -...

AND EEAL COMETS IN s THS PROCEUINGS

The 1980-81 AFOSR-TTM-Stanford Conference on Complex Turbulent Flows includes

two major elements:

I. Compiletion of data sets, and test cases based on the data, for use in
formulating models and testing output of computations.

2. Extensive comparison of the output of computations with the data sets.

Considerable effort has been expended to make the work complete in both Part 1 and

Part 2 by provision of: position papers; reporters' summaries; evaluations; and exten-

sive discussions of both details and more general underlying questions. These ele-

ments have been prepared with the active cooperation of the international research
- Swo..

community in order to provide the best collective opinions on the state of the art.

As a result conclusions and comments of a general nature appear at a number of places

in these Proceedings as indicated in the remainder of this section. Considerable

cross-referencing and indexing is also provided to aid the reader.

The general conclusions regarding data appear at the end of Volume I, p. 605.

The four position papers at the beginning of Volume I were intended to set the stage

for the work of the Conference and provide underlying comments about data needs and .

us&s that have not been available previously. Discussions of several important ques-

tions of experimental technique and accuracy appear in the reports of the ad-hoc com-

mittees in Volume I; these reports incorporate the ideas of an unusually large group

of able, experienced experimenters.

The general conclusions about computations appear in three places in Volume II.

First, in three documents at the end of Volume II: (a) Report of the Evaluation Com-

mittee, p. 979; (b) an OPINION by the leading Editor on the strategy of turbulence

modeling with comments and closure, p. 991; (c) the Editors' Concluding Remarks,

p. 1022. Second, in the Reporters' Summaries for various flow classes throughout Vol-

um II; see Table of Contents. Third, in the discussions of individual sessions and

in the concluding discussions, p. 1017.

Other documents that may assist readers in finding particular elements include:

(i) Taxonomies of flows, turbulence models, and numerics in the begin-

ning of both Volumes II and III;

(ii) A Rander's Guide to Volumes I and III, p. xx of Vol. II;

(ILL) Several cross indexes of Cases, Computor Groups, and output at the
beginning of Volume III;

(iv) An index of individual computors on the preceding page.
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