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A BSTRACT

since widespread use of the finite element method began

in the early 1960'st much effort has been devoted to the

development of the method itself, while only recently has

there been any research directed at minimizing the discreti-

ution error by a proper selection of the element grid. This
paper examines some recently proposed grid optimization
techniques and applies them to some one- and two-dimensional
linear self-adjoint boundary value problems. Guidelines
requiring minimal software modification are recommended to
assist the analyst in obtaining improved finite element
solutions.
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The critical concern in any finite element analysis is

the adequacy of the selected mesh to provide reliable solu- .'k
tion results within some reasonable cost range. The goal of

finite element grid optimization then becomes one of

obtaining maximum solution accuracy for a prescribed anal-

ysis cost. Vhile this objective is generally not realized in
today's widespread use of finite element analysis, the effi-

cient computation of solutions with optimal accuracy will

become paramount to the engineer as finite element methcds

are applied to increasingly difficult dynamic, nonlinear,

and evolution problems.

A. HISTORICAL BACKGROUND

In the early 1960's, with the help of the high speed

digital computer, finite element methods revolutionized

problem solving in engineering. Since that time the major

research efforts have concentrated on expanding the theoret-

ical basis of the method and extending its application in a
variety of fields. Only recently has there been significant

attention directed at minimizing finite element solution

errors by properly defining the element grid. Early attempts

at distributing the nodes and choosing the elements to
ensure scme degree of confidence in the solution accuracy

were predominantly dependent upon the analyst's engineering

judgement and experience, since there were no established
procedures for accomplishing this objective. Even these

attempts tcwards grid optimization have become largely

ignored with the advent of automatic mesh generators, which
have drastically reduced preprocessing costs while

9



accomplishing little in improving solution accuracy. Th6se
programs automatically construct the element grid, usually
in a uniform manner, after the user merely defines the

problem and specifies the number of elements to be used. To

establish convergence and achieve the desired solution accu-

racy, the user simply repeats the analysis using a finer

mash of uniformly distributed elements while monitoring such

convergence indicators as successive solution values at

common nodal points or the asymptotic increase in the energy

content of the mesh. The often disastrous flaw in such a

practice is that for nearly degenerate problems which
exhibit very large gradients, the asymptotic range is only
entered for an extremely large number of degrees-of-freedom,
often beyond computer limitations [Ref. 1]. In this case,
uniform mesh refinement may produce apparent convergence,

when in fact the solution accuracy is poor. Therefore, the

need for a finite element grid optimization procedure is

clearly evident.

The first formal attempts at finite element grid optimi-

zation did not begin until the early 19701s. These early

approaches involved the inclusion of the nodal coordinates
as dependent variables in the minimization of the potential

energy functional (Ref. 2]. Unfortunately, the resulting

system of equations is highly nonlinear and the computa-

tional effort involved in its solution is so great that

similar accuracy can be obtained at a fraction of the
expense, simply by employing a very fine mesh. Clearly, this

method does not apprcach the finite element grid optimiza-

tion goal of achieving a specified solution accuracy for a

minimum analysis cost. For this reason, virtually all of the

grid optimization techniques since developed are based on a

"near-optimum" strategy whereby nearly-optimal solution

results are obtained without the computational inefficiency

of a numerical optimization analysis. The growing emphasis

10
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47.

has been on adaptivity, a procedure for efficient construc-

tion of near-3ptimum grids by the iterative application of

some criterion, based on data already computed from the

solution for a previous grid. This procedure is far more

efficient than the conventional approach of repeating the
analysis using successively finer uniform grids.

Experimental self-adaptive finite element codes have

recently been developed. Starting from the user's initial

idealization, these programs automatically generate a near-
optimum grid and solve the resulting equations.

B. INVESTIGATIVE APPROACH

In undertaking any numerical optimization task, the

analyst must first define the objective along with any
. constraints to be imposed upon the objective variables; and

finally a numerical algorithm must be prescribed to perform

the optimization, preferably one which will do so effi-

ciantly for the particular problem. Since the term "optimum"

most often rafers to a solution obtained by mathematical

programming, which is very ineffizient for grid optimiza-

tion, a near-optimum grid obtained by application of an

adaptive procedure, henceforth will be termed an optimum

grid. However, before such a grid can be determined to

satisfy the stated objective of obtaining maximum solution
accuracy for a prescribed cost, the terms "accuracy" and
Tcost" must be defined; but, more importantly, the optimiza-
tion goals must be specified. This is critical b.cause grid

optimization can be implemented in various forms depending

upon the optimization goals, which will, in general, be

determined by the original purpose for performing the finite

element analysis [Ref. 3]. For example, if the purpose of

the analysis is to evaluate a local quantity, such as the

maximum value of the dependent variable or one of its

J11"



derivatives, then the nodal distribution should be denses:

in the region where that maximum i's etermined. If, on the

other hand, the interest is on an integral quantity of the
dependent variable cver a region of the domain, then the

nodes should be assigned to achieve a uniform distribution

of the error over that region. For the purpose of this

investigation, attention will be focused on the three finite

element resultants with the most significance in solid

mechanics and other fields in which finite element analysis

-is employed: the maximum value of the dependent variable, or

solution; the maximum value of the gradient of the solution;

and the integral of the solution over the domain.
In order to define the solution accuracy, it will be

necessary to compare the error in the solution resultant

obtained using an optimal grid to the error obtained using

some baseline grid with the same number of degrees-of-

freedom. For convenience, the reference grid chosen will be

a uniform grid, or one with all elements of the same crder

and approximately the same size, with the understanding 6hat

no knowledgeable analyst would attempt to use such a grid in

"- the solution of a prcblem with large gradients.

The definition of analysis cost will be greatly simpli-

fied by making the assumption that it is directly propor-

tional to the number of degrees-of-freedom used to obtain

the solution. In reality the cost depends on many factors,

some of which are very difficult to quantify.

Understandably, the number of degrees-of-freedom is not the

sole measure of computational costs, but it appears to be an

adequate measure of preprocessing and postprocessing costs

which often account for the major portion of the total

analysis.

This investigaticn will concentrate on the use of finite

element grid optimization methods for solving problems of

structural mechanics. While this area has dominated the

12



literature on the subject, the techniques presented herein

extend equally as well to any field for which variational

principles apply.

There are two key questions which must be answered prior

to the adaptive application of finite erement grid

optimization:

(1) What criterion, based on the results of an initial

finite element analysis, should be used to indicate
regions where the original grid is inadequate ?

(2) What method of grid refinement should be employed ?

Considerable attention will be devoted to these questions in
the next two chapters.

C. OBJECTIVES

The objectives of this investigation are:

(1) To examine some recently developed grid optimization

techniques which have reached the state of practical

applicat ion.

(2) To implement some of these techniques in the solu-

tion of some cne- and two-dimensional linear self-

adjoint boundary-value problems.

(3) To draw a comparison among these applied techniques

in terms of solution accuracy, analysis cost, and
ease of implementation.

(4) To recommend some guidelines to assist the analyst

in obtaining optimal finite element solutions
*mployinq currently available or easily amendable
so ftware.

13
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The primary theoretical concern in the application of
adaptive grid optimization is the selection of the refine-

ment criterion. In cther words, one must decide upon which

solution parameter, obtained from an initial idealization,
may most appropriately be used to give some indication as to

where the initial grid is inadequate and thus needs refine-

ment. There are several competing proposals concerning the
most appropriate choice of a refinement criterion. In
reality, the decision must be based upon such factors as the
type of problem being solved, whi-th criterion is most prac-

tically implemented, and whether accuracy is desired
locally, globally, pointwise, or with respect to an integral
quantity. The following are some of the more practical

refinement criteria used in grid optimization at present.

A. SOLUTION PIRARTER VARIATION

The most direct, computationally inexpensive, and

earliest proposed indication of where an element grid
requires refinement is a measure of the variation of some
solution parameter over the domain. It is only logical that
a piecewise polynomial approximation would experience the

most difficulty in modeling the desired response in those
regions where the solution or its resultants were either not
smooth or were characterized by large gradients. Therefore,
the basis of this criterion is to refine the mesh in those

areas where a solution parameter varies rapidly, with the

implication that the optimum mesh is one for which the solu-
tion parameter variation over each element is uniform
throughout the domain. The first consideration in the

14



application of such a 'criterion is to find a scheme for

distributing the nodes to achieve such a condition. For

one-dimensional problems the task is trivial, but one way to
ensure equal variation over each element in higher dimen-

sions is to position the nodes along equidistant contours of
the chosen parameter. This is precisely the procedure
prescribed for a practical optimization technique known as

contouring. rhe other consideration is the determination of

which solution parameter is to be used. In fact, several

solution parameters have been found to work quite well

[Ref. 4], but the most commonly used and the one that is

consistent with the potential energy minimization formula-

tion is the strain energy density [Ref. 2]. Because its

employment reuires only minor software changes and it has
been found to produce excellent results, this refinement
criterion was used extensively throughout the course of this
research. "

B. GRID ITERRTIO]

Another, rather basic but lass direct, method of

locating regions of the mesh to be refined is known as grid
iteration, which can be implemented in one of two ways. An
initial coarse grid analysis may be repeated using either a

finer or a higher order mesh, and a comparison of the resul-
tants of interest between the two solutions will identify .2
those areas of the domain where refinement is most effec-

tive. Another approach is based 3 the assumption that the

greatest benefit is to be gained by refinement in those
regions where a small perturbation, like the introduction of

a single additional degree-of-freedom, produces the greatest

change in the solution or one of its resultant parameters.
Since additional degrees-of-freedom would be expected to

produce the greatest change in those regions where the

15

* q .. ,



desired response varied most rapidly, refinements based on

this method provide results very similar to those obtained

using the solution parameter variation criterion already
discussed. The grid iteration method may at first appear to

be more computationally expensive, but it was developed to

be most efficiently implemented employing a special family

of elements. These elements, called "hierarchical", possess

some very desirable properties for this application and will
be discussed in the next chapter.

C. EEENT RESIDUALS

The major drawback with refinement criteria based on

solution parameter variations is that their applicability

appears limited to elastostatic problems. For this reason,
several investigators have recently developed grid refine-
ment criteria based on element residuals, which appear prom-

ising for application to all types of finite element

problems, including nonlinear analysis. The reason for this

is that the residual has essentially the same meaning
regardless of the problem type [Ref. 5]. For example,

consider the governing differential equation,

D( u - f =0
defined cn some domain, where D [ ] is a linear or nonlinear

differential operator, and the dependent variable u and the

non-homogeneous term f are both functions of the independent
variables. Let the finite element approximation to the

solution of the differential equation be a u. Applying the
differential operator to the approximation gives rise to the

residual, which is defined as

R-D f i ]- f

and is not identically zero unless the finite element solu-

tion is exact.

16
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The key to using the residual as a criterion for deter-

mining regions of the domain where refinement is necessary

is the local residual on the element level, which indicates

the contribution of the element to the total error of the

finite element approximation. Since the residual is a point-

vise quantity, the useful measure of the element error

contribution is a norm of the elemenkt residual, or the into-
gral over the element of the product of the residual and

soae weight funticn. The inte ration is ost readily

performed using numerical guadrature. The grid optimization
strategy then becomes one of refining the mesh so as to

egui-distribute the element residual norms, by forcing then

to become smaller and sore uniform over the domain.

There are soe drawbacks to the element residual refine- :4
sent criterion which have not yet been fully resolved, such

as appropriate selections of the residual norm and the

weight function, and in the computation of the residual

itself. ehile the evaluation of the residual presents no

particular difficulties in the interior of the element, it
is rarely determinable at the edges. The reason for this is
that in formulating the finite element approximation the
element shape functions are defined so as to provide only

that degree of continuity required to adequately model the

physical problem; the most frequent consequence being that
D ' ] is undefined along the interelement boundaries.

Unfortunately, this singularity cannot be ignored and a more
complicated analysis must be applied in order to bound the

residual contributions at these boundaries [Ref. 6].

D. &-POS!3310l1 ER101 ESTIMATIS

A sophisticated extension of the element residual

criterion is one based on computablis error estimates from an

initial finite element analysis. This utilizes the energy

17
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norm of the residual, in which case the weight function is

the residual itself. Research in reliable error est!ates

was pioneered by Babuska [Ref. 7, 8] for linear quadrilat-

eral elements and more recently by Zienkiewicz (Ref. 9] for

higher order elements. The major difference from the

residual criterion is that instead of equi-distributing the

element residual norms over the domain, they are normalized

to compute error indicators for the elements, which are in

turn used to compute reliable poiatwise error estimates for

the solution as well as the energy error over the domain.

These quantities are of primary importance because they

provide not only an indication of where additional refine-

ment is most effective, but also a measure of the quality of

the mesh "o determine whether additional refinement is

necessary (Ref. 9]. The optimization strategy is to obtain

a nearly uniform distribution of the error indicators
throughout the domain, which corresponds to minimizing the
error in the energy norm. The refinement procedure may prog-

ress until all the lccal errors a=e within some prespecified

tolerance. while the practical utility of such a refinement

criterion is obvious, the mathematical development and the

algorithms involved are rather complicated. However, the
process is not copuationally expensive, and there now

exists a prot3type self-adaptive finite element code, FEARS,
which implements this refinement criterion (Ref. 10].
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Once it has been determined where the initial element

grid is inadequate and needs refinement, the next considera-
tion is how the idealization in these areas should be

improved. The choice of the refinement method to be employed

may well be a more important decision than the selection of

one of the refinement criteria previously discussed, since

at least one investigator has observed that for a particular
method of gril refinement, the various refinement criteria

produce essentially the same solution results [Ref. 11].."
Grid refinement is the process of introducing additional

degrees-of-freedom into selected regions of the finite
element grid, and may be performed by one of three methods:

(1) The pclynomial degree of the elements remains fixed,
usually at a low value, while the size of the

elements is reduced. This has become known as the
h-version since element size is commonly denoted by
the letter h.

(2) The size of the elements, usually few in number,

remains fixed while the polynomial degree of the
elements is increased. This has become known as the

p-version since polynomial orler is commonly denoted
by the letter p.

(3) The size of the elements may be reduced concurrently
with an increase in their polynomial order. This is

known as the ccmbined h- and p-version of the finite

element method.

19
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A. CONVUIGIRCR OF GRID RBFPIRBENT

It is well known that the finite element method

converges with an increasing number of degrees-of-freecm;

in fact, this is the justification for its development.

Therefore, the appropriate measure of the effectiveness of a
particular grid refinement method should be the associated
rate of convergence, which generally will be affected by the
smoothness of the approximated function over the subdomain

of interest. It has been demonstrated that when the refine-

ment is performed uniformly over the domain, the associated

rate of convergence is asymptotic, provided the number of
degrees-of-freedom is sufficiently large (Ref. 1]. The

asymptotic rate of convergence is often measured as the
slope of the error versus cost curve in the linear, or

asymptotic, range when plotted on a log-log scale. in

performing such an error analysis for the displacement
formulaticn of the finite element method, the error is

usually the relative strain energy error, approximated by

the energy norm, and the cost is assumed to be some simple

function of the average element size or the number of

degrees-of-freedom [Ref. 12: p. 725]. only in the past

several years has there been any significant research

comparing the relative merits of the different methods of
grid refinement. Since the solutions of elliptic boundary
value problems are usually very smooth over convex domains

except in the vicinity of corners, most of this research has

focused on soluticns exhibiting singularities, which

severely hinder the rate of convergence, as in prcblems of
fracture mechanics and in domains with re-entrant corners

(Ref. 1, 13v 14, 15].

In order for a finite element analysis to be both effi- '."

cient and reliable, the asymptotic convergence range should

be entered for as few degrees-of-freedom as reasonably

20



possible. In general the p-version satisfies this requi:e-
ment better than the h-version. While it has been estab-
lished that p-convergence will necessarily occur whenever
h-convergence occurs, the converse is not true. For example,
if the h-version using a uniform grid of linear elements is
applied to a nearly degenerate problem, the number of

degrees-of-freedm required for entry into the asymptotic
range may be beyond the computer's round-off limitations, in
which case convergence will not occur unless the polynomial

order is increased [Ref. I]. Numarical experiments on such
problems clearly indicate that the p-version requires
considerably fewer degrees-of-freedom than the h-version to
achieve the same degree of accuracy. Recent analyses
[Ref. I, 13] of the asymptotic rate of convergence in energy

for non-smooth solutions, using uniform refinement with
sufficiently high numbers of degrees-of-freedom, have demon-

strated that the p-version cannot have a slower rate of
convergence than the h-version. Furthermore, if the singu-
larity is confined to element boundaries, as is usually the
case, the error for p-method is inversely proportional to
the number of degrees-of-freedom, whereas the error is
inversely proportional to the square root of the number of
degrees-of-fredom in the h-version. In other words, for
this special class of problem, the rate of convergence for

the p-version is twice that for the h-version, which is due

primarily to the ability of higher order polynomials to
"absorb" singularities occurring at the element boundaries.
This implies, at least for this type of problem, that in
order to minimize the error for a specified number of

degrees-of-freedom, the best str tegy is not to subdivide
the domain uniformly, but to use iustsad a single element of

increasing polynomial order [ef. 15].
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Since it is unlikely that on. would attempt to solve

such a problem using uniformly finer grids, a more useful

comparison between the convergence rates of the two versions

would be based on adaptive refinement employing one of the

solution-based criteria discussed in the previous chapter.
It so happens that the h-version, when used with optimally

refined meshes, can have a higher convergence rate than the

uniformly distributed p-version, provided that the element

order is sufficiently high. However, the p-version can also

be employed with an optimal refinement criterion. While

there are yet no proven theorems concerning the convergence

rates for non-uniform refinement, obtaining the desired

solution accuracy with optimal p-distributions appears to be

much less sensitive to the particular choice of the elements

to be refined than with optimal h-refinement (Ref. 13].

It would seen plausible that an even better optimization

strategy would involve a proper combination of both the h-

and p-versions. It has been demonstrated for problems with

corner singularities, that a proper sequence of

h-refinements combined concurrently with the proper sequence
of p-distributions results in extremely high convergence

rates, conjectured tc be exponential (Ref. 15]. However,

this proper combinaticn is difficult to determine, and adap-

tive refinement based on the combined h- and p-versions

poses some difficult data management problems. To avoid this
problem a more promising approach, proposed by Babuska and

Szabo (Ref. I], employs a graded mesh in which the element

sizes are first reduced according to a geometric progression

towards the singularity, followed by determining the optimal

p-distribution for those elements using an adaptive
criterion. However, obtaining the optimal combination when

employing this scheme can be a delicate matter and, astound-

ingly, the highest accuracy is achieved when the polynomial

order of the elements actually increases with distance from

the singularity.
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There are some additional advantages of the p-version
worth mentioming. Because the p-version employs fewer
elements, there are lesser prepro:assing and postprocessing
costs than for the h-version. Furthermore, when bandwidth
minimization and sparse matrix solution techniques are used,
the solution tine for the p-version is approximately the

same as for the h-version for a specified number of
degrees-of-freedom, and the p-version appears less suscep-

tible to round-off errors. Finally, the p-version is simpler
to implement adaptively than the h-version when hierarchical

elements are employed [Ref. 13].

B. RIERCICAL FINITE RLE UEITS

The hierarchical concept was first introduced as a
simple method for implementing the p-version and as a
convenient device fcr imposing boundary continuity between
elements of different polynomial order (Ref. 9]. Since then
a useful family of elements based on the hierarchical
concept has been developed and incorporated into COMET-X, an
experimental finite element code, developed by Szabo, which
self-adaptively employs both the h- and p-versions of the
finite element method [Ref. 14].

For a brief description of the hierarchical concept
consider the conventional finite element formulation which

produces the following system of equations:

K U(n)l f (n) (Eqn. 3.1)

where n is the number Of degrees-of-freedom, 4(n) is the
n x n global stiffness matrix, (n) is the finite element
approximation of the exact solation, and is the
n-component global load vector. when a higher order
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degrees-of-freedom are added to the original system uszng

conventional refinement methods the system of equations

becomes:

nn) fn = f(nl) (Eqr. 3.2)

where the contributions to K(nf) and f(n'm)from the refined
elements result in a completely different set of coeffi-

cients. If, on the other hand, this refinement had been made

hierarchically, the equations would become:

[K() K (nm (n) f(n)
% % II = (Eqn. 3.3)KK I( Li(M

L (m,n) KV'M fIm

where K(j) and ;n)are the stiffness matrix and force vector

from the criginal system of equations for n degrees-of-

freedom appearing in Equation 3. 1. However, umis not the

nodal values of the finite element solution for the m

additional degrees-of-freedom, but instead represents the
difference between those values and the pointwise values
obtained from the lower order polynomial interpolation for

the unrefined mesh of n degrees-of-freedom.

The primary advantage of hierarchical elements is imme-
diately observable from Equation 3.3. Because the shape
functions of an element of order p constitute a subset of

the shape functions of an element of order p+1, the local

stiffness matrix and force vector for each hierarchical
element is embedded in the stiffness matrices and force
vectors of all hierarchical elements of higher order.

Therefore, the global stiffness matrix Knand force vector
(n) n)adfrevco

f(n) of the original system are preserved, thus saving
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considerable time and effort expended on computing the coef-

ficients for successive refinements [Ref. 14]. Another

advantage is that the hierarchical form of the global stiff-

ness matrix is more diagonally dominant than the one

resulting from a conventional refinement, resulting in

improved conditioning and faster convergence when iterative

solvers are employed (Ref. 9]. Another benefit of hierar-

chical elements, which arises from the "add-on" nature of

the nodal variables of the higher order degrees-of-freedcm,

is that the problem of maintaining boundary continuity

between elements of different polynomial order becomes

trivial. Instead of introducing global constraint equations

for the higher order degrees-of-freedom, the nodal variables

are simply set equal to zero and condensed out, as if they

were zero-valued Dirichlet boundary conditions [Ref. 2].

There are two major drawbacks with hierarchical elements

that have hampered their widespread acceptability. The

first, which has already been mentioned, is that the nodal
variables for the higher order degrees-of-freedom represent

difference values rather than the nore easily identifiable

values of the dependent variable itself. Secondly, when

implementing the h-version of the finite element method,

special integration rules must be introduced when the subdi-

vided element is in hierarchical form [Ref. 9]. Of course,

the latter problem can be evaded by using the p-version, for

which the hierarchical concept was developed. In spite of

the disadvantages of hierarchical elements, their consider-

able computational efficiency and utility for grid optimiza-
S;tion will certainly result in their widespread utilization

in future adaptive finite element zzodes.
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Once the analyst has identified where the initial grid

needs enrichment and decided which refinement method to

employ, be must then determine a systematic procedure, or
algorithm, to perform the refinement according to the

criterion selected. The ultimate goal of such a procedure is

- to design an element grid which meets the optimization

objective of obtaining maximum solution accuracy for a spec-

ified analysis cost. While the analyst may or may not have

an indication of the accuracy of the solution, he should
have a preconceived notion of cost, or how much effort he is

willing to expend to arrive at a batter solution. Therefore,

with some knowledge of the grid optimization techniques

available and an understanding of the advantages and disad-

vantages of each, the analyst can realize the grid optimiza-

tion goal.

There are essentially two adaptive grid optimization

strategies:

(1) Grid refinement, in which the initial analysis is

performed on a relatively coarse grid, and new

degrees-of-freedom are added to the same grid by the

iterative a pplicati on of the solution-based
criterion.

(2) Grid modification, in which the initial analysis is

performed using a prespecified number of

degrees-of-freedom, and the solution-based criterion

is employed to shift degrees-of-freedom from certain

regions to others. This may involve complete grid

redefinition in an effort to obtain a near-optimum

grid in a single cycle.
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Such of the interest lately has been in the development

cf ccmplicated self-adaptive software packages which mini-

mize the impact of the user's skill on the final solution.

Ideally, the analyst would merely define the problem and tha

program would automatically generata and analyze the optimum

grid employin; one or more of these techniques, possibly at

the user's cption.

A. HATHBUATICAL PROGRABUING

No discussion of grid optimization techniques would be

complete without a brief description of mathematical

programming, not only because it is how grid optimization

was earliest attempted, but more importantly, it is

precisely what the engineer envisions when he hears the term

"optimization". It is not a grid optimization technique, per

se, but rather a numerical process of achieving any optimi-

zation objective, once it is explicitly defined in mathemat-

ical terms. tn solid mechanics the finite element method is

a numerical method for minimizing the potential energy func-

tional, which in discretized form may be written:

u7= u 1 - u f (Eqn. 4.1)

where: u is the global displacement vector

K is the global stiffness matrix, and

f is the global load vector

In the classical finite element formulation, the potential

energy is minimized with respect to the nodal displacements,

which implies satisfaction of the following stationary

conditions:
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aui a 0 (i z 1,2,...,n) (Eqn. 4.2)

where n is the number of degrees-of-freedom. This leads to

the very familiar system of linear equations:

u - f =0 (Eqn. 4.3)

However, since and f are functions of the nodal coordi-

nates, then the potential energy could be minimized with

respect to the nodal coordinates as well. This would require

satisfaction of the following additional stationary

conditions:

axj = 0 (J = 1#2r....a) (Eqn. '4..4)

where m is the number of nodal coordinates, xj. This differ-

entiation leads to the less familiar system of non-linear

equations:

3fT

T - I = 1,2,...,m) (Eqn. 4.5)

This, then, is the mathematical statement of the grid opti-
ization problem for the elastostatic case. The nodal

displacement variables may be eliminated by minimizing the

potential energy with respect to th. nodal coordinates only,
subject to the implicit constraint that Equation 4.3 is

always satisfied [Ref. 4]. Unfortunately this does not help

much because the objective function is still nonlinear,

rendering mcst numerical optimization algorithms inefficient
and unreliable. The difficulty is even further compounded by
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the requirement that the nodal variables be subject to side
corstraints in order to maintain the defined boundary of the
domain and to ensure that the elements neither distort

excessively nor overlap one another. For all except the
simplest of problems, these constraints may be even more
severely nonlinear than the objective function, resulting in
the analysis becoming prohibitively expensive [Ref. 2]. For
this reason, mathematical programming in finite element grid
optimization has been abandoned ia favor of some equally

reliable, yet far more computationally efficient grid opti-
mization techniques. However, these early efforts with
mathematical programming were not totally in vain because

they gave rise to the contouring techniques.

B. COTORIM

Since mathematical programming is infeasible for grid
optimization, further investigations were conducted to
suggest some guidelines to enable the analyst to construct a
grid with similar topological features of the numerically
optimized grid without the computational effort involved.

Turcke (Ref. 4]0 in employing mathematical programming in
the solution of some simple two-dimensional elastostatic
problems, observed that there was a very definite element
pattern common among problems involving high strain gradi-
ents and that the nodes of the numerically optimized grid
generally tended to be aligned along contours of some
response function being modeled. Consequently, in performing
analyses on grids wbose construction was based on contours

derived from an initial analysis, it was determined that the

following provided grid characteristics in regions of high

strain gradients similar to the nuamerically optimized grid,
but at a fraction of the computational expense:

29
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" cont-urs of displacement
" contours of maximum principal stress

* contours of maximum shear stress

* contours of strain energy density 
(isoenergetics)

* principal stress trajectories (isostatics)

Since the strain energy density is the response which is

consistent with the principle of minimum potential energy,

isoenergetics are the most commonly used contours along

which element edges are aligned [Ref. 4]. However, there

still remains the question of how to position the nodes

along the contours. For this reason, isostatics have beccme

increasingly popular because the principal stress trajecto-

ries form a "flow net" of orthogonal curves which can guide

the analyst in the layout of the elaments [Ref. 16].

Since contouring involves the redefinition of the grid,

as opposed to a grid refinement, its primary advantage is
that the enriched mesh is not constrained to the element

configuraticn of the previous mesh. Therefore, there is no

limit to the amount of enrichment per cycle which can be

performed and it is conceivable that an optimum mesh could

be generated in a single cycle [Ref. 2]. However, while the

computational cost of repeated analyses is reduced, the

preprocessing costs involved in constructing the contours

and redefining the mesh can become quite high, especially if

the contours are complex. Algorithms for performing these Z'

tasks in two-dimensional domains have been proposed

(Ref. 4, 11], but they are not extendable to three-

dimensional problems. The major obstacle for two- and
three-dimensional domains is that it is often difficult to

constrain the element edges to the contours without the

elements becoming elcngated or distorted to the degree that

numerical inaccuracies result. Another difficulty, not

addressed in the literature, is how the contour increments
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should be selected vhen the response function is non-

monotonic over the domain.

C. SELECTIVE R FINBRENT

The most commonly employed grid optimization technique
is that of selective refinement. As its name implies,

selected elements from a given mesh are enriched while the
original element grid remains assentially intact. The

elements selected for refinement are determined by the iter-

ative application of the solution-based criterion to indi-

cats which elements contribute most to the solution error.
The refinement can be performed by either the h-version or
the p-version. or even the combined version if so desired,

but the choice is most often predetermined by the capabili-

ties of the available preprocessor. Since the addition of

new degrees-of-freedom over several iterations can quickly
enlarge the problem, it is advisable to perform the initial

analysis with a reasonably coarse grid of optimally shaped

elements, that is nearly square quadrilaterals or nearly
equilateral triangles. This is especially important in the

h-version where it is desirable to prevent the successive
subdivision of elements from producing elongated new
elements. One refinement technique which will ensure this is

the so called "father-to-four sons" subdivision scheme in
which a single quadrilateral or triangular element is
replaced by four new ones by adding and connecting midside
nodes on the edges cf the original elemen: as shown in

Figure 1.1. The major difficulty in selective refinement

arises when the addition of a nole along an edge of the
element to be subdivided creates a higher polynomial ordered

edge for an adjacent element which is not to be subdivided.
Ther* results an incompatibility in the interpolation of the
dependent variable along this interalement boundary. Such is
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Figure 4. 1 Sena h-Version Subdivision Schemes.

~the case in the h-version scheme of Figure 4.1 and it also

4

arises in the p-version when two elaments of different poly-

nomial order share a common edge. When this situation

occurs, the additional degrees-of-freedom do not actually

represent degrees-of-freedom at all because they must be

numerically constrained to the polynomial interpolant of the
lower order. Such ccnstraints are usually imposed in one of
three ways: global constraint equations may be written; the

constraints may be incorporated in the elemental basis; or

hierarchical forms may be used with the excess degrees-of-

freedom simply set to zero and condensed out (Ref. 2].
There are some other selective refinement t.chniques

which do not require any major software modifications. In

the h-version, the continuity problem may be circumvented by

employing any of the coarse-to-fine mesh transition schemes
for which all of the element edges remain of the same poly-

nomial order [Ref. 17: p. 210]. However, it is impossible

to employ these schemes without permitting some element
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distortion, and the refinement must nearly always be

performed interactively rather than automatically. For the

p-version, interelement Continuity can be easily ensured by

employing variable-noded isoparametric elements, which

permit a single element to possess edges of differing poly-

nomial orders [Ref. 17: p. 125].

The analyst must also exercise care when adding new

nodes to the boundary of the domain to ensure that the

appropriate boundary conditions are determined and applied.

Furthermore, if the bcundary is curved, the coordinates of

the new node should be computed such that it is placed on
the actual boundary and not necessarily on the edge of the

element being refined (Ref. 2].
The important advantage of the selective refinement

technique is that once an appropriate refinement criterion

has been determined, selecting candidate elements for
refinement in each cycle becomes straightforward. The

refinement can then be continued indefinitely to achieve

very high accuracy, but because the solution phase is

repeated for each cycle, it is desirable to hold the number

of cycles tc a minimum. Because the nodes from the previous
mesh remain fixed for each cycle, selective refinement is
ideally suited for iterative solution methods. The solution

values obtained from the previous cycle, combined with
interpolated values for the new degrees-of-freedom, provide

an excellent initial guess for the next cycle [Ref. 2].

The major disadvantage is that the limited amount of
refinement which can be performed in each cycle may necessi-
tate several cycles tc obtain an optimum grid. In addition,

if new degrees-of-freedom require interelement continuity

constraints, data management can become cumbersome unless
the constraint is performed hierarchically.
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D. SUBDOBIM ISOLATION

One of the obvious disadvantages of the selective

refinement technique is that the solution must be completely
repeated for each cycle when, in fact, the number of

degrees-of-freedom added in each cycle may be few in compar-
ison to the total for the problem. In addition, the number

of elements requiring refinement in each cycle may only

account for a small portion of the domain. Although the

refinement criterion has indicated where the grid is inade-

quate and the approximation is likely to be poor, the solu-

tion is repeated in each cycle for those nodes where the

error is presumably small. Besides the apparent computa-
tional inefficiencies, this shortcoming severely restricts

the amount of refinement which can be performed in the
subregicus of interest since it is desirable to confine the
size of the problem within reasonable limits. An alternative

approach is to reformulate the problem for those subregions
where refinement is necessary and to accept the results of
the initial analysis as an adequate solution for the

remainder of the domain. The elements requiring further

refinement, which ccnstitute isolated subdomains of thi
original probLem, can generally be subjected to signifi-

cantly greater refinement than woull otherwise be practical.
The solution obtained from the initial analysis is then used

in imposing boundary values on those degrees-of-freedom
located on the boundaries of an individual subdomain. These
can, in turn, be used to generate the boundary conditions
for any additional boundary degrees-of-freedom introduced by
the refinevent using an appropriate interpolation scheme.

This grid optimization technique, which the author terms
"subdomain isolation", has some further advantages over
selective refinement. The subdomain may be selected arbi-

trarily small such that excellent results may be obtained
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with a single cycle usiLq uniform refinement. Therefcre, the

2difficulties involving coarse-to-fine transition schemes,

element elongation and interelement continuity can be

avoided. Furthermore, one can choose as many subregions for

refinement as desired without creating an excessively large

problem.

The obstacle which may prevent this technique from being

readily accepted is the notion that, by imposing erroneous
boundary conditions on the subdomains, the convergence of

the finite element method to the exact solution in these

regions has somehow been tampered with. This aversion may be

somewhat abated by considering a simple extension of

Saint-Venant's Principle [Ref. 18: p. 33]. Although the

conditions are not rigorously satisfied at the boundary,
which may result in significant changes in the response
locally, the effect at some sufficient distance away will be

negligible. The numerical evidence supports this premise.

While errors in the boundary values may somewhat restrict

the accuracy 3f the dependent variable, great improvements
can be realized in the accuracy of its gradients, which is

more often the goal of the optimization. Since the initial

analysis provides the boundary values for the subdomains, it
is desirable that its solution be as accurate as reasonably

possible. Fortunately, since subsequent refinements are not
performed on the original grid, the initial analysis may

involve significantly more degrees-of-freedom than in the
case of selective refinement.

. nESi GRADING

The final grid optimization technique to be discussed

employs a mesh for which the element sizes are successively

reduced, according to some geometric sequence, towards a

selected region of the domain. One might argue that mesh
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grading is not really an optimization technique since it is
most often applied on an "a-priori" basis rather than adap-
tively, and that it does not lend itself well to the itera-

tive application of a solution-based criterion. However, the

technique is simple to use and its implementation requires

few software modifications. Furthermore, a solution-based

refinement criterion can be used to give a measure of the

quality of the mesh to indicate wtether a more pronounced
grading may prove beneficial. Depending on the solution
parameter of interest, mesh grading can provide excellent

accuracy at a low analysis cost. This refinement method must
therefore be considered among the grid optimization

techniques.

For the less elaborate finite element preprocessors,
mesh grading is often the only refinement means available

without rescrting to a uniformly finer mesh involving many
more degrees-of-freedcm. The most common method of implemen-

tation in two-dimensions is to first define the problem
domain in terms of a curvilinear quadrilateral by selecting

four keynodes along the problem boundary. Then the boundary

nodes are spaced according to some geometric sequence based
on the user-provided bias parameters which determine the

density of the nodes towards selacted points on the four

quadrilateral edges. Finally, curves are generated to
connect tke boundary nodes on opposite edges of the quadri-
lateral, thus producing a graded mesh. This process, which
can also be extended to three-dimensions, is the mesh gener-

ation scheme employed in the finite element code GIFTS

[Ref. 19].
The major disadvantage of mesh grading is that in order

to achieve sufficiently small elements in the region of

interest, the elements must grow successively larger away

from that region. This may be very undesirable, especially
if refinement is called for in more than one region of the
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domain, in which case the mesh must be generated and graded
by subdomains, thereby complicating the data management
involved.

Another disadvantage is that unless the domain possesses
some special geometric symmetry, excessive element

Figure 4.2 Graded flesh for a Perforated Square Plate.

.4elongation will usually result if a highly pronounced

grading is raquired. Some configurations are particularly

veil suited for refinement for mesh grading such as the

classical perforated square plate problem in solid mechanics

shown in Figure 4.2.
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Now that the necessary tools for performing grid optimi-

zation have been intrcduced, it is time to employ them in an
attempt to obtain optimal solutions to some practical prob-

lems in engineering. An obvious starting point for such an
investigation is the one-dimensional boundary value problem.
While most of the fruitful research in grid optimization has

concentrated on problems of higher dimensions, the one-
dimensional problem is a very convenient device for studying

finite element grid optimization. Foremost, one-dimensional

finite element models possess a unique connectivity in that
adjacent elements meet at their end nodal points. Therefore,
refinement by the h- or p-versions, or by relocating nodal

points becomes a trivial task, which does not involve any of

the difficulties so frequently encountered with higher
dimensional problems, such as preserving interelement conti-
nuity and maintaining optimal element shapes. Furthermore,
one-dimensional studies can often provide valuable insight
to the solution of more difficult higher dimensional

problems.

The primary concerns in the selection of the prcblems to
he studied were as fcllows:

(1) there should exist an analytical solution to provide

a means of reliable error analysis;

(2) the solution and its resultarts should e xhibit
sufficiently high gradients so that the effective-

ness of the grid optimization is readily observed.
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Because of the complexity and a certain degree of arbi-"

trariness involved in the computation of element residuals

and a-posteriori error estimates, the solution parameter

variation is the refinement criterion of choice. There are

several solution parameters which are easily computed,

requiring mi2imal software changes to an existing finite

element code.

Furthermore, for the one-dimensional investigation, it

was decided to simplify the analysis by exploiting the

linear elements. While it is granted that improved solution

accuracy may generally be obtained by employing higher order

elements, it will be assumed that conclusions based on the

use of linear elements can be applied as well to elements of
higher pclynomial order.

A. ELASTIC CABLE PROBLEN

Consider an elastic cable under tension r, stretched

between two points a distance 2L apart. If the cable i-

supported by a Winkler, or elastic, foundation of modulus k,

and a concentrated load P is applied at the midspan, the

resulting deflection v(x), (0 <_ x S L) , is as shown in

Figure 5.1. The analytical solution and finite element

approach for this problem are presented in Appendix A.

The initial finite element analysis was performed using

ten linear elements of uniform length. From this initial
analysis the approximate distribution of the following solu-

tion resultants was obtained over the domain:

* the displacement, v (the solution)
* the slope, v'

* the strain energy, U

• the strain energy density, SED (dU/dx)
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Figure 5.1 rension Cable Deflection on Elastic Foundation.

Subsequent analyses were performed for finite element models
using the same number of elements, but with the nodes redis-
tributed to achieve approximately uniform variation of the
above parameters over each element. Note that the strain
energy refinement criterion produces elements of identical
strain energy content. In addition, the problem was solved
employing graded element models of various adjacent element
length ratios. The resulting element models based on these
refinement criteria are shown in Figure 5.2 (a-f). The
graded model (b) for an element length ratio of 1.2 is
presented for comparison because it produced good overall
solution results.

As previously mentioned, the solution resultants of
primary interest are the maximum displacement, the maximum
slope, and the integral of the displacement over the domain,
because they represent important analogous solution results

in nearly all fields in which finite element analysis is

often performed. The accuracy obtained in these values for
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(a) Uniform P

(b) Graded 1.2

(c) v

(d) v'

(e) U

(f) SED

(g) Umo

* mo-

(h) SEDmo

Figure 5.2 Tension Cable Refinements.
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each of the refined models is presented in ]!able 1. As car.

be seen in Figure 5. 2, the strain energy and strain energy

density criteria prcduced extreme variations of element *

length while the criteria of displacement and slope result -

TABLE I
Tension Cable Problem Solution Results

Prcblem Parameters: L = 100 in
k = 1 si
T=1000 .b

P = 1000 lb

IVariation Percentage Relative Error
*Refinement 1

ICrtearion v(max) v' (max) fd

uniform -0.140 0.36 0.12

Graded (1.2) -0.19 0.07 0.17

v -0.18 0.06 0.391
vt-0.23 0.05 0.871

U -1.03 0.05 3.58

SED -1.29 0.05 4.17

U (mod) -0.53 0.04 1.63

SED (mod) -0.51 0.03 1.48

in more moderate variations. It can be observed in T.able I
that the more pronounced refinements based on energy distri-

bution result in greater accuracy for the maximum slope but

with the accompanying severe penalty of significantly poorer I
estimations 3f the maximum displacement and the integral

quantity. For this particular problem the uniform grid

provides optimal accuracy of the integral quantity,
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therefore refinement cannot reduce its error. Yet gr_ e at

improvement in the accuracy of the maximum slope and mcdest

improvement in the accuracy of the maximum displacement can

be achieved with moderate refinements based on the displace-

ment and slope distributions.

One might assume, and correctly so, that the ability of

the energy refinements to produce the best accuracy for the

maximum slope is due to the rxtrem.ly small elements which

result in the area where that quantity occurs. Furthermore,

it would be correct to propose that the reason for these

refinements producing poorer estimates than the uniform

model for the other two quantities of interest is that the

excessively large elements in the regions of low gradients

severely overstiffen the model there. It would then seem

plausible tc improve the accuracy for the maximum displace-

ment and the integral quantity by redistributing the nodes

in these regions to prevent such excessively large elements.

This was done by arbitrarily employing a grading scheme to

the three largest elements to produce the modified refine-

ments based on strain energy and strain energy density shown

in Figure 5.2 (g) and (h). As can be seen in Table I, such a

modification did indeed significantly reduce the errors in

the maximum displacement and the integral, but it even

further improved the accuracy for the maximum slope.

One might conclude from Table I that the best overall

model was obtained using the graded mesh, and that since it

is easier to obtain, it should be deemed the optimal grid.

But this particular grading was caosen for precisely that

S. reason and was presented only as a means of comparison. In1.
practice, the selecticn of a grading ratio is somewhat arbi-

trary and making an adequate choice may be difficult.

There is Justifiable confusion as to which refinement

produced the "best" solution accuracy for this problem and
Sit. raises perhaps the most important issue in the subject of
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grid refinement. Before any optimization process can be
pursued, the optimization goals must be explicitly defined.

Clearly, as is the case in this problem, the designation of

the cptimum grid would depend heavily upon which of the

three solution resultants is most critical to the analysis.

B. TAPERED BAR PROBLEN

The linearly tapered bar under axial loading has

received considerable attention ani was one of the early

problems for which analytical grid optimization was

employed. Consider a tapered elastic bar of length L and

modulus E, fixed at one end, with am axial load P applied at

the other, for which the axial displacement u (x),

(0 - x S L) , is desired. The cross-sectional area varies

linearly from Ao at the fixed end to At at the tip, as shown
0• t

",AE ,P _ -x

Figure 5.3 Linearly Tapered Bar Under Axial Loading.

in Figure 5.3. The analytical solution and finite element-
approach are presented in Appendix B.
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One of the significant features of the tapered bar
.2 problem is that the maximum stress can be very difficult to

model accurately, and it is for precisely these problems

exhibiting large strain gradients that grid optimization

becomes most beneficial. Interestingly, the stresses

obtained at the element midpoints are exact f,. this
problem, and the difficulty arises from the inability of the

constant slope shape functions to model the maximum stress

occurring at the boundary. In examining this problem,
Prager CRef. 20] demonstrated analytically that when each

element has the same strain energy content, the relative

error in displacement is identical for all the nodes.
However, this phenomenon appears peculiar to this problem

and the author does not subscribe to such a measur- of an

optimum grid. Judging the effectiveness of a particular
refinement based upon the deviation or the mean value of the
pointwise errors generally tends to be unfavorable to opti-
mization procedures since they almost always introduce many
more nodes in those regions where the response is most

difficult tc model. Hence, an improved solution may have a
larger mean value of the pointwise errors (Ref. 3].

The criterLa employed in the refinement of the tapered

bar model are identical to those used in the cable problem
and their effects are shown in Figure 5.4 (a-e). Two 9xcep-

tions are that now the displacement and strain energy
criteria produce identical refinements, and the graded model

chosen as the best overall is now based on a grading ratio

of 1.4, producing a more drastic refinement than that of 1.2
for the cable. This further demonstrates the difficulty

involved in obtaining adequate element grids on an

"a-priori" basis.

The solution results are presented in Table II and the
most readily apparent observation for this problem is the
large errors in the maximum slope, which would severely
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(a) Uniform

(b) Graded 1.4

(c) u and U

I 1 1 111 I

(d) u'

(e) SED

(f) SEDmod

FigSr 54 Tapered Bar Ilefiinesents.
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T ABLE I1
Tapered Bar Problem Solation Results

Problem Parameters: L a in IA = 13.5 Ina
A Z 0.5 inz
E a 100lO6 psi
P - lOK103 lb

Variation Percentage Relative Error
Re inement CL
Criterion u(max) at (max) udx

Uniform -3.80 -37.5 0.68 I

Graded (1.4) -0.78 -4.1 0.14 
u ; -0.85 -10.6 0.15

u' -1.81 -7.7 0.33

SED -6.54 -3.6 1.18

SED (mod) -1.99 -3.6 0.36

underestimate the maximum stress. These results are based on

quadratic extrapolaticn of the exact slopes at the element
midpoints, since the linear shape functions would produce

even poorer estimaticns of the maximum slope. As before, the

more extreme refinement based on the strain energy density

variation provides the most accurate estimation of the

maximum slope, but with the accompanying degradation in
estimates for maximum displacement and the integral of

displacement. Again, the large errors in these values may
be significantly reduced by employing a grading scheme to

restrict the size of the larger elements as shown in Figure
5.4 (f). Unlike the previous problem, such a modification

has no effect on the estimate of maximum slope because of

the extrapolation of the element midpoint slopes, which are

exact regardless of the element model.
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A different version of the tapered bar problem, for

which the displacement and strain energy criteria will not I
produce identical refinements, involves replacing the

concentrated tip load P with a linearly varying axially

distributed load q(x), specified by the values at the fixed

end qO and the tip qt" The problem may be further modified

by reversing the bar such that the maximum slope occurs at

the fixed end, while the maximum lisplacement occurs at the

- L

Figure 5.5 Reversed Tapered Bar with Distributed Load.

free end as shown in Figure 5.5. The case of the linearly

varying distributed load is included in the formulation in

Appendix B.

This problem was solved for a uniformly distributed load

using the same procedure as in the previous two problems.

The refinement models are presented in Figure 5.6 and the

solution results in Table III. The observations are consis-

tent with those made in the previous problems, but now one

would likely agree that the refinement based on the strain
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(a) Uniform

(b) u

,-: 
(c) u'

(d) U

(e) SED

(f) SEDmod

Figure 5.6 Reversed Tapered Bar Refineuents.
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Reversed Tapered Bar Solution Results)

Problem Parameters: L = 100 *n

Var .ation Percentage Relative Error
Ref In ement
criterion u(max) at (max) J*1d x

Uniform -5.5 -39.4 -7.1
u-2.0 -7.5 -2.6

Us -2.7 -8.1 -3.4j

U -3.7 -5.9 -4.7

SED -11.9 -3.4 -15.3

SED (mod) -3.1 -3.4 -4.0

energy density would represent an optimal grid, provided

that modifications are introduced to prevent any elements

from growing excessively large.

V C. GUIDELINES FOR ONE-DIMESIOI&L GRID OPTINIZITION

The most Important lesson to be learned from thi"s one-

dimensional study is that the grid optimization procedurs is

necessarily dictated by the optimization goal, or the under-

lying purpose for performing the finite element analysis. No
element grid can possibly provide optimum accuracy for every
solution resultant of interest. In solving these simple

4problems, a balance has been sought for achieving adequate
accuracy for three of the more important solution
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resultants, with emphasis on the maximum value of the deriv-

ative of the dependent variable, which more ofter is not

only the mcst important part of the solution but also the

most difficult to obtain accurately in finite alement
analysis.

The important grid optimization techniques of intro-

ducing acre degrees-of-freedom by subdividing the elements

. .or increasing their polynomial order have been intentionally
omitted in favor of the optimization strategy of seeking
maximum solution accuracy for a specified number of

degrees-of-freedom using linear elements. Ihis is because

such a procedure is not so straightforward in two-

dimensional problems where the number of degrees-of-freedom

are dependent on some geometric considerations, which do not

appear in problems of one-dimension. Based on this choice of

optimization strategy, it appears the strain energy density

variation provides the most useful criterion for the adap-

tive refinement of the initial grid. Yet all three problems

demonstrated some pathological results that can arise when

the elements are permitted to grow excessively large in the

regions where the strain energy density varies the least. In

applying a scheme to restrict the size of the largest

elements, no mention has been made of how to determine when

an element is excessively large. It has become the experi-

ence of the author that any element representing over half

of the domain should probably be considered too large, and

measures should be employed to restrict its size.

It would appear, at least for these classes of problems,
that this difficulty of decreasing accuracy of a particular
solution parameter for successive refinements can be ignored
by merely accepting the largest value among the cycles as

the most accurate solution result. For example, it was

demonstrated that the refinement based on strain energy

density provided significant improvement in the accuracy for
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the maximum slope but underestimated the maximum displacs-

sent even more than the initial uniform grid. Assuming that

the linear element ucdel always underestimates such maxima,

the maximum slope for refined grid and the maximum displace-

sent for the unrefined grid could be accepted as the optimal

results of the analysis. The fallacies of such a procedure

are that, first, the refinement may not represent th.

optimal grid as it has been defined and, second, for self-

adaptive finite element codes the user is provided with the
"optimum grid" of the final cycle and the solution results

thereof.
fielosh and Harcal (Ref. 21] have proposed an alternative

use of the refinement criterion based on strain energy
density variation which avoids the problem of excessive

element growth altogether. Beginning with a reasonably

coarse unifors grid, those elements with the greatest strain

energy density variation are selectively refined by either
subdividing them or increasing their polynomial order with

the introduction of additional dagrees-of-freedom. While

such a procedure does not equi-distribute the element strain

energy variations, it can reduce them all to some prespeci-

fied tolerance, such as a percentage of the average element

variations for the initial analysis. Because this procedure

is particularly attractive for gril refinement in problems
of higher dimensions, it will be employed extensively for

the study of grid optimization for two-dimensional problems
in the next chapter.
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Since investigators began working in the field of finite

element grid optimization in the early 1970's, nearly all of

the effort has been devoted to the development of a system-

atic procedure for obtai!ning optimal grids for two-

dimensional problems of elasticity. Even today there are

several competing approaches to this problem and no partic- .. .

ular one has yet been overwhelaingly accepted as the

preferred method of grid optimization. While it is the two-
dimensional problem for which most of these techniques have

been developed, their application to such can be much more

difficult than for the one-dimensional case. Almost invari-

ably when performing grid refinement on two-dimensional

domains, the analyst is confronted with the problems of

maintaining iaterelement compatibility and preventing severe

element distortion.
In selecting an appropriate two-dimensional problem for

the application of some grid optimization techniques and a

comparison of their effectiveness, it is desirable that the

test case possess the following properties:

* the analytical solution should exist in order to

perform reliable error analysis

" the solution should exhibit sufficiently large

4 gradients to prcvide a meaningful measure of the
refinement effectiveness

- the idealization should have one degree-of-freedom per

node and possess simple boundary conditions to
minimize the computational effort involved in

repeated solutions
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There are few problems that meet these criteria, but

Saint-Venant torsion of a non-cirEular section provides a

good test case. I

A. PROBLEM DESCRIPTION

Consider a solid circular shaft of radius "a" made from

isotropic material of shear modulus G and having a circular

groove, or keyway, of radius b along a generator of the

x

0i

Figure 6.1 Cross-section of Shaft with Keyway.

shaft. The shaft cros-section is shown in Figure 6.1. The
shaft is subjected to an applied toque T which produces
an angle of twist per unit length 9. The problem may be
solved by finding the Prandtl torsional stress function $p
which satisfies the governing differential equation:

25 2
3x2 + 2y + 2 0 (Eqn. 6.1)

a°
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subject to the Dirichlet condition that * = 0 on the

section boundary. The torsional stress function is defined

such that the shear stress T at any point on the domain may

be expressed as:

GO~ + 3 )] (Eqn. 6.2)

For this formulation, the angle of twist e is prescribed,
rather than the applied torque T. The torque is is calcu-

lated from the area integral:

T = 2GeX ' dA (Eqn. 6.3)

The analytical solutions of Equations 6. 1 and 6.2 are
derived by Sokolnikoff [Ref. 22: pp. 141-143] and are

presented in Appendix C along with the evaluation of

Equation 6.3 and a prescribed finite element formulation.

For this problem, the three solution resultants of interest
for the grid optimization study are:

(1) maximum value cf the dependent variable, or torsion

function q/max;

(2) maximum value cf the gradient of the dependent vari-

able (a quantity proportional to maximum shearing

stress Tmax) ;

(3) the area integral of the dependent variable over the
domain (a quantity proportional to the applied
torque T).

These quantities - the dependent variable, its gradient, and

an integral thereof - are selected as representative of
entities whose error one might wish to minimize in a finite

element analysis.
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B. CONPUTER IIPLEBBUTTIOI

ks can be seen in Figure 6.1, the domain of this problem

is symmetric about the x-axis, therefore the finite element
solution need only be obtained for the upper half of the
domain. For all of the solutions presented herein the
problem geometry is defined by assigning the dimensionless
ratio, b/a = 0.4, and an acceptable upper limit on the anal-
ysis cost was arbitrarily chosen to be that corresponding to
approximately one hundred nodal points. The computation and
assembly of the finite element matrices and solution of the

resulting system of equations was performed using the steady
state heat conduction operations of CAL-NPS [Ref. 23]. This
group of subroutines comprises an efficient finite element
code for solving Poisson's equation in two or three dimen-
sions and has the additional advantage of permitting
variable-noded isoparametric elements.

Since there was no readily available interactive prepro-
cessor which lent itself well to adaptive mesh refinement,

the author had no choice but to create his own. Since the
problem domain is simply connected, the automatic mesh
generation was performed employing inverse mapping of a

single cubic isoparametric element of the serendipity family
onto the problem dcain (Ref. 24: pp. 228-229]. Mapped
boundary nodes were repositioned to conform to the actual
domain boundary and additional nodes generated during the
refinement process were mapped using the same procedure.

Since the finite element code selected for this investi-
gation provided output only for the nodal values of the
dependent variable, it was coupled to the autho-'s postpro-

cessor. Such a postprocessor is necessary in the optimiza-
tion process for computing nodal values of shear stresses
and strain energy density, element contributions to torque
and total strain energy, and exact results from theory.
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C. kSYETOT= ERROR ANALSIS FOR UNIFORN REFIIERENT

The concept of asymptotic convergence rate for uniformly

refined grids was presented in Chapter 3. When the number of

uniformly distributed degrees-of-freedom is sufficiently

" large, the log-log plot of the relative energy error versus

. the number of degrees-of-freedom is approximately linear in

the asymptoti: range. The slope of this line represents the

asymptotic rate of convergence in energy.
It so happens that relative ercor in the torque T of

this problem is equal to the relative energy erro_ and

therefore exhibits this linear asymptotic behavior on the

-. log-log plot against the number of uniformly distributed

degrees-of- freed o. Fortunately, the other two solution

resultants of interest behave similarly. This will prove

very beneficial in performing the error analysis for this

two-dimensional study for two reasons. First, because it is

unnecessarily difficult to constru-t an optimal grid with

the same number of degrees-of-freedom as a uniform grid, the

linear behavior of the solution resultants in the asymptotic

range on the log-log scale permits interpolation for any

number of degrees-of-freedom. Then the solution results for

a uniform gril of the identical number of degrees-of-freedom

provides a reference for comparison to determine the effec-
tiveness of the optimization technique. Secondly, if the

convergence rate of a particular solution resultant is
extremely slow, as is often the case for maximum stress, it

becomes difficult to gain an appreciation of the true effec-

tiveness of the optimization. For example, an order of

magnitude reduction in the relative solution error may

require an order of magnitude increase in the number of

degrees-of-freedom using uniform refinement, but relatively

few additional degrees-of-freedom using an optimization

technique. Therefore, it will be enlightening to extrapolate
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()Lin;ea-r Element Grid

A(b) Quadr!Ltic Elemant Grid.,4

Figure 6.2 Uif orm Linear and Quadratic Element Grids.
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the relative error versus degrees-of-freedom curve to obtain

a rough approximation of the number of degrees-of-freedom
necessary to obtain solution accuracies similar to the

optimal grid, but using successively finer uniform grids. Of
course, this is only an estimation and ignores such reali-
ties as numerical ill-conditioning and computer round-off
error. 

k uniform grid is one for whi-ch all of the elements are
of the same size h and the same polynomial order p. Clearly,
it is impossible to obtain such a grid for this particular

domain using isciarametric mapping, but a nearly uniform
grid may be constructed in which the elements are of approx-

imately the sane size. Such uniform grids are shown for the
cases of linear quadrilateral elements and quadratic seren-

dipity elements (Fig. 6.2). For this geometry, the uniform
grid is not uniquely defined for a specified number of
elements. This is because, in performing isoparametric

mapping, there must be specified four keynodes on the actual
domain boundary to correspond to the four corner nodes of
the parent square. Since this domain has only three

Figure 6.3 Keynode Placement for Isoparaeetric sapping.
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vertices., the placement of the fourth keynode is at the

discretion cf the analyst (Fig. 6.3), and can have a notice-

able effect on the solution results.

The asymptotic error analysis was performed for the

three solution resultants of interest using uniform grids of

linear and quadratic elements. The results are presented in
Figure 6.4. All of the solution resultants behaved as

predicted with the exception of the maximum torsion function
value using linear elements, m(1). It appears that the

accuracy of this particular parameter is very strongly

dependent upon the keynode placement. The curve constructed

in Figure 6.4 represents an average for several keynode

positions.

While Figure 6.4 is intended primarily to serve as a

reference tool for future analyses, it provides some inter-

esting itformation:
(1) For the cases of maximum torsion function value and

applied torque (and energy), the asymptotic rate of
convergence using quadratic elements is more than
twice that for linear elements.

(2) While the error in torque for the quadratic case is

always smaller than that for the linear case, the

linear grid may provide better accuracy for the
maximum torsion function value Ymax in the pre-

asymptotic range.

(3) Both accuracy and convergence rate in the maximum

shear stress are only minutely greater for the quad-
ratic element grid than for the linear one.

However, for this last observation, the point must be made

that for the linear element grid, the maximum shear stress
was obtained by quadratic interpolation rather than from the

linear shape functions. while this will greatly improve the
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accuracy cf the maximum shear stress approximation, it will

have no effect on its rate of convergence. Therefore, if
obtaining an 3ptimal estimate of the maximum shear was the

purpose of the analysis, there is such to be said on behalf

of linear elements besides their computational efficiency.

Of course, this observation is based on uniform grid refine-
ment, which would rarely compete favorably with the optimi-
zation techniques to be examined.

The reason that the rate of convergence in maximum shear

stress is so poor using uniform refinement for this p:oblem

7(A)= 0

c/ a
TC B)= 7*max6

Figure 6.5 Stress Distribution on Shaft Keyvay.

can be seen in Figure 6.5. The shear stress varies greatly
over a short listance, by increasing from zero at point A to
Its maximum value at point B. As a result, there exists a
region of excessively large strain gradients along the
keyvay which severely hinders the rate of convergence when a
uniform grid is employed. If the keyway radius vere allowed

to approach zero producing a singularity in the solution, it
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would likely be necessary to employ even higher crder
elements via the p-version in order to achieve convergence
using uniform refinement [Ref. 1]. W

D. PRODLI SOLUTIOV VITH GRID OPTINIZATION

The finite element solution of the torsion problem will

be obtained employing the followiag grid optimization tech-
niques as presented in Chapter (4:

" Ccntouring

- contours of the torsion function; li4near elements
- contours of shear stress; linear elements
- contours of strain energy density; linear elements

" Selective Refinement
- h-version; linear elements

- h-version; quadratic elements
- p-version

" Subdcmain Isolaticn

- linear elements
- quadratic elements

" Noesh Grading

- linear elements
- quadratic elements

The original finite element analysis was performed

on a uniform grid of 98 linear elements, 78 nodes, and 72
degr**s-of -freedom. The fiaite element solution provided the
nodal values of the torsion function * from which the
conventional nodal result ants of shear stress T and

applied torque T were computed. Bised upon the maximum and
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minimum values obtained for each parameter, along with
consideration for their values along the boundary, the

contours to be used for nodal placement in each case were

selected. The number of contours for each case was chosen to

maintain approximately the same number of degrees-of-freedom
as for the initial analysis.

The points for each contour value selected were

obtained by linearly interpolating between the nodal values

of each parameter obtained from the initial analysis. The
contours were constructed by smoothly connecting the points
by hand. The element layout along the contours posed the

most formidable problem because the coarse-to-fine tran-

sition often resulted in severe eleent distortion, and it

sometimes became necessary to degenerate quadrilateral

elements into triangles when the transition was acute. It
was decided that the optimal element shapes should be

preserved along the contours in regions of highest stress.

The contours obtained and the corresponding gril are

presented for each of the following solution resultants:

* torsion function (Fig. 6.6)

* shear stress (Fig. 6.7)
* strain energy density, SED (Fig. 6.8)

The resulting grid for each of the response function

contours produces smaller elements in the region of greatest

stress near the bottom of the keyway and a=ound the
periphery of the shaft where the stress is moderately high.
Consequently, the elements near the center where the stress
is zero are larger. These, of course, aze the desired
effects for an optimization criterion. A somewhat unusual

behavior is observed at the point of intersection of the
keyway and the shaft boundary where the stress is also zero.
Apparently, the shear stress gradient is larger than the

gradients in torsion function and the strain energy density,
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(a) Contours

(b) Correspondi-ng Grid

Figure 6.7 Contouring for the Shear stress Function.
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resulting in smaller elements being produced in that region
by the shear stress criterion (Fig. 6.7) than by the other
criteria. while all of the grids possess to some extent the
desirable features of an optimal grid, the strain energy

density function produces a far more drastic refinement
towards the point of maximum stress, while the others repre-
sent more moderate refinements. In fact, the SED contours i-

are so dense around the keyway that the coarse-to-fine

element transition scheme must include degenerate quadrilat-
erals to avoid violating the contours. Note also that the
coarse-tc-fine transition for the torsion function response
is fairly smooth whereas the transition for the strain
energy density and shear stress refinement tends to produce
distorted and elongated elements. This is aggravated by the
fact that, unlike the torsion function, the shear stress and

strain energy density are not monotonic over the domain.
The solution results obtained for each grid are

presented in the upper half of Table IV. At first glance,
the results of the refinements are disappointing in compar-

ison to the parenthetic values obtained using a unifor-
grid. hile all three criteria prodace improved accuracy for
the maximum shear stress, the errors for the maximum torsion

function value grow extremely large. Recalling the observa-
tions made for the one-dimensional study, it would follow

that such behavior is probably due to the unusually large

elements near the center of the domain. The entries in the

lower half of Table IV reflect the drastic improvement

obtained by simply introducing a few additional degrees-of-
freedom along those element edges which grew exceptionally
long during the optimization process, thus increasing their
polynomial order from one to two. Not only did this modifi-

cation reduce the large errors for the maximum torsion

function estimation, but modest improvements were ,ilso
obtained in the estimations of the other resultants as wsil. 
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Once again, the selection of the optimum grid would depend

predominantly on the optimization goal of the analysis, but
one would likely agree that the strain energy density varia-

tion along with some modification to restrict excessive

element growth provides the superior refinement criterion.
in additional word of caution is in order for the

contouring techniques for grid optimization. Because the

*problem must be completely redefined from scratch after the

initial analysis, the preprocessing cost can become enor-

-ous, especially if several cycles are employed to obtain

more preciSe contours as some authors suggest. Unless there

is available an interactive automatic mesh generator based
on this technique, such as the one described in Reference

(Ref. 11], contouring should be abandoned in favor of some
more easily implemented grid optimization techniques
employing similar refinement criteria.

2. lef~yj ineAannt

The simplest way to avoid the problems encountered
in the contouring techniques is to perform the initial anal-
ysis on a reasonably coarse grid and then to selectively
refine those elements over which the strain energy density
varies the most. The critical concern then arises as to how
coarse the initial grid should be. If the preprocessor
employs the necessary constraint conditions to permit the
'father-to-four-sons" element subdivision scheme directly,
or if hierarchical refinement is employed, then the initial
grid should be just coarse enough to adequately define the

problem and to limit the numlar of refinement cycles neces-

sary. The latter becomes even less of a concern if iterative

solvers are employed. If, on the other hand, coarse-to-fine
transition schemes are used to implement the h-versicn or
only lcw pclynomial order elements are available in the
p-version, then the initial grid maust be sufficiently fine
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so as not to restrict severely the amount of refinement

which can be performed in any given cycle. Unfortunately,

the conditions under which this investigation was conducted

were those of the latter.

a. The h-Version

Selective refinement by the h-version was

performed on both linear and quadratic element grids. For

the linear case, the initial analysis was performed on a

uniform grid of 55 elements, 72 nodes, and 50 degrees-of-

freedom. The initial quadratic analysis employed an eight

element uniform grid of 37 nodes and 20 degrees-of-freedom.

The reason for such a great disparity in the number of

elements for the initial analyses is that subdividing a

quadratic element introduces many more degrees-of-freedom

than the subdivision of a linear element. These numbers were

chosen to provide approximately the same number of degrees-

of-freedca for the optimum grid of the final cycle for each
case. The initial analysis is performed and those elements
over which the strain energy density variation is signifi-

cantly greater become candidates for refinement. The refine-
ment is performed by subdividing each candidate element into

four new ones by constructing a coarse-to-fine transition
zone of "buffer" element s around the refined region.

Successive analyses and selective refinements are repeated
until the maximum element strain energy density variation is

approximately that of the remainder of the grid. The process

is further improved when the nodal values of the strain

energy density are used to indicate the general direction in

which the refinement is to proceed. This permits multiple

refinements in the same cycle, thereby reducing the number
of cycles required tc arrive at the optimal grid. For this

problem, the linear grid required two refinement cycles

while the quadratic grid required three cycles. The

71



(a) Initial -arid

(c) Cycle 1

rigiare 6.9 Saloctive Refinement Procedure -Linear Elements
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selective refinement process is depicted in Figures 6.9 and

6.10 for the linear and quadratic element grid,

respectively.

The solution results for each selective refine-

seat cycle are presented in Table V. The most impressive

observation to be made is the significant improvement in the

maximum shear stress estimate for successive cycles. While

there is also modest improvement in the accuracy of the

torque estimate for successive cycles, when compared to the

estimate obtained frcm the uniform grid of the same number

of degrees-of-freedom and polynomial order, the refinement
estimate cf torque is slightly poorer. This is because addi-

tional degrees-of-freedom are being introduced in only a

small region of the domain but the torque, and energy, are

global quantities. The author has no satisfactory explana-
tion why the estimate for the maximum torsion function

improves for successive refinements of the linear grid but

not for the quadratic case. However, as has already been
mentioned, this particular solution parameter appears very

sensitive to such prcblem variables as nodal placements and

element shapes; hence, its behavior is difficult to predict,

even when the refinement is applied to regions remote from
the point where the maximum torsion function value occurs,

as was the case in these examples. For computational

reasons, it is desirable to restrict the number of refine-
ment cycles to a necessary minimum. In this example, the

quadratic grid required an additional cycle over the linear

grid but this is because it is necessary to perform the

initial quadratic analysis using far fewer degrees-of-
freedom. Therefore, the early cycles of the quadratic anal-

ysis actually represent comparatively smaller problems.
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b. The p-Version

Before ccntinuing to the next optimization tech-
nique, it is worthwhile to take a quick look at selective
refinement employing the p-version. Because the finite

element code used in this investigation only provided for

element crders of one and two. the advantages of the method

cannot be fully realized, but the effects of a single cycle
can be examined.

Beginning wit h three uniform gr-6ds with
differing numbers of linear elements, the initial analyses
were performed. In each case, the elements over which the

strain energy density varied the most were transformed from

4-noded Lagrangian elements into 8-noded serendipity

elements by the addition of midsile nodes. The element
grids are shown in Figure 6.11 and the asterisks denote
those elements for which the polynomial order was increased.

In this example, the number of elements to be refined in
each case was chosen so as to achieve approximately the same
number of degrees-of-freedom after a single cycle.

The solution results are shown in Table TI.
Significant improvements in the estimate of the maximum
shear stress were achieved for each case. An improvement in
the estimated torque was also realized for all three cases,
but was more noticeable when the number of refined elements
was larger. This is because quadratic elements are far

superior to linear elements in the modeling of integral
quantities, as observed in Figure 6.4. Somewhat disturbing
is the increased error in the estimate of the maximum
torsion function value observed in two of the three refine-
ments even though the elements in the vicinity of its occur-

rence were not affected. Again, this is likely attributable
to the unusual behavior patterns of this quantity already

discussed.
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(a) 76 Degrees-of- Freedom- 20 Rafined Elements

(c) 75 Degtees-of-Freedom - Refined Elae'nts

Pigu.e 6. 11 Selective Refinement Employing p-Version.
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In order to perform alditional cycles of the

p-version, it would be necessary to alter the refinement-
criterion slightly. Because the element sizes do not change
for successive cycles, the need for refinement would neces-
sarily be based on strain energy density variation between
nodes rather than over the elements.

Selective refinement employing the p-version is

most efficiently implemented hierarchically, in which case

it acquires some attractive computational advantages. It is
unfortunate that time did not permit further investigation
here, but the need for future research is evident.

3. _ubdomjjn L1Ag~t2u

The refinement criterion and initial procedures in

employing subdomain isolation are identical to those used in

selective refinement. After the candidate elements for

refinement are identified, they are completely isolated from

the remainder of the domain and solved as smaller subdomain

problems. The advantages of the technique are twofold. By
isolating the elements to be refined the solution is not

repeated in each cycle for those elements for which the

initial analysis is assumed adequate. Furthermore, by elimi-

nating most of the degrees-of-freedom over the entire

domain, the subsequent refinement of the isolated region can ..

be much greater than would otherwise be practical.

As before, the technique was applied to both linear
and quadratic uniform element grids. Those elements of the
initial analysis over which the strain energy density varia-
tion was exceptionally large were isolated to comprise the

subdomain in each case. There were three such elements of

the initial linear grid and two for the quadratic grid. Each

subdomain was uniformly refined to achieve approximately the

same number of degrees-of-freedom as the initial analyses.
The process is depicted in Figure 5.12 for the linear grid
and Figure 6.13 for the quadratic case.
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(i) Initial 3rid

(b) Ref ine-mant of Isolated Subdoma.jn

Figure 6.12 Subdomain Isolation -Linear Elements.
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(a) Ini-tial :3rid d

(b) Refinement Of Isolated Subdomaln

Figure 6. 13 Sabdona~n tSolltioa -Quadratic Elenents.
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In performing subdomain isolation the gcverning

equations remain the same, while only the domain and the

boundary conditions are altered. When the subdomain

boundary has nodes common to the initial grid, then the

boundary values for those nodes are simply the solution

values obtained from the initial analysis. The boundary

values -rising from the introduction of new boundary nodes

during the refinement process must be generated by interpo-

lation of the soluticn --asults of tha initial analysis. One

of the options for an interpolation scheme is simply to use

the shape functions of the unrefined elements. This may not
be desirable in the case of linear elements, so a higher

order interpolation may be employed. In this example a third

order Lagrangian polynomial was convenient for the linear

case since there are four nodes from the initial analysis

along the right-hand boundary of the subdomain. Since there

are only two such nodes on the upper boundary, it is neces-

sary to "borrow" some adjacent nodal values from the

discarded portion vf the domain in the generation of new

boundary values using higher order interpolation.

The solution results presented in Table VII are

quite remarkable. In a single cycle, the solution accuracy

for the maximum shear stress has increased by a full order

of magnitude. No other optimization technique examined in

this investigation produced such improvements. Note that

the higher order polynomial interpolation for the boundary

values did improve the solution results for the linear case.
One of the disadvantages of this technique is that the

refinement can produce no improvement in the estimation of

local quantities outside the subdomain. As in this example,

the estiation of the maximum torsion function value

obtained from the initial analysis must be accepted as the

optimum since it occurs outside the subdomain. Furthermore,

since its value is predominantly affected by refinements in
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regions of high gradients, it is doubtful that isolating a

new subdomain using the elements adjacent to its point of
occurrence would noticeably improve its accuracy. However,
since the torque is a globally computed quantity, refinement
will improve the accuracy of its contribution from the

subdomain resulting in improvement of its accuracy overall

as observed in Table VII. It is this strictly local nature

of the subdomain isolation technique which restricts its
applicability. But if the optimization goals are well

defined and it is understood under which conditions and for
what parameters it is effective, it can be an extremely

powerful grid optimization technique.

9hile mesh grading is nearly always performed on an

"a-priori" basis, it may also be employed adaptively to
provide a simple grid optimization technique. After an
initial solution has been obtained, the analysis may be

repeated using various combinatioas of grading ratios in

order to achieve a more uniform distribution of the element
strain energy density variations. Here the grading ratio
refers to the constant ratio of adjacent element lengths
along a boundary of the domain to which grading is applied.
There are several drawbacks to the technique, the first

being that a good combination of grading ratios may be
difficult to obtain in a reasonable number if cycles. The

other difficulty is that if smaller elements are desired in
more than one region the domain must be refined and
constructed by subregions.

Unfortunately, the domain of this problem is not
well suited for mesh grading since it possesses no favorable

geometric symetry. Hence, the resulting element elongation
and distortion would become severe for larger grading
ra-ios. For simplicity, the nodal placements will be biased
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only along the two domain boundaries adjacent to the point

of maximum stress and the same grading ratio will be applied

for each. This will result in small elements near the bottom
of the keyway and large elements along the periphery of the

shaft. While this is not the most desirable grid topology,

it will produce a more uniform distribution of the element
SED variations.

The technique was applied to both linear and quad-
ratic element grids starting with a uniform mesh and succes-

sively increasing the grading ratio until the elements along

the shaft periphery exhibited SED variations as large as

those for the elements along the keyway. In both cases this

condition occurred beyond the point where excessive element
elongation would be expected to produce numerical inaccura-
cies. Graded meshes for selected grading ratios r, are shown

in Figure 6.114 for linear elements and Figure 6.15 for quad-
ratic elements. The solution results are presented in

Table VIII. As can be observed, -the maximum shear stress
estimate improves for each successive increase in the

grading ratio. However, the cost of such improvement is the
accompanying degradation in the estimate of the maximum
torsion function value. This is to be expected since the two

maxima occur at different locations in the domain and there-
fo-e decreasing the size of the elements in the vicinity of

one will necessarily increase the element size nea: the

other. Note that this degradation is not nearly so severe
for the quadratic elements, and the accuracy actually

improves for a low valua of the grading ratio. This is
because the higher order interpolation can better accomodate
larger elements. For both linear aal quadratic element grids

the optimal accuracy in torque estimation occurs for the
moderately graded meshes.
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TBLI VIII

nesh Grading Solution Results

Percentage Relative Ezror

GIingo 4max Tmax /Ga T GO

Linear Element Grids ( 78 elements, 98 nodes,
72 degrees-of-freedom )

1.0 0.060 -6.06 -1.77

101 0.161 -2.63 -1.56

1.2 0.389 -1.03 -1.77

1.3 0.679 -0. 484 -2.20

Quadratic Element Grids 28 elements, 107 nodes,

Eleen Gid ~76 degrees-of-freedom

1.0 -0.0093 -5.26 -0.0116
1.1 0.0063 -1.85 -0.0064

1.2 0.0162 -0.606 -0.0091

1.3 -0.0246 -0.413 -0.0179

It is likely that. some of the error is attributable '
to the numerical inaccuracies dua to element. distortion..
Vhen applying a grading technique the analyst should seek an
equitable balance between the refinement criterion and the
grid topclogy.
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Finally, since the grading ratio is usually applied
to the nodal separation rather than the element edge

leagths, it is advisable to reposition the midside nodes of

quadratic elements so that they lie near the center of the

element edges. This will generally improve the accuracy of
all the solution parameters, especially if the grading is

somewhat extreme.

N. GUIDEZNIES FOR T9O-DINBISIOIAL GRID OPTINIZATION

In order to provide some guidelines for obtaining

optimal finite element solutions for two-dimensional prob-

lemas it is helpful tc compare the solution results obtained
for this problem employing the optimization techniques
available. Such a comparison is presented in Table IX. The
upper portion is for those techniques for which the initial

analysis was performed using linear elements and the lower
portion using quadratic elements. Note that all of the grids
employ approximately the same number of degrees-of-freedom,

which was the chosen measure of analysis cost iu this

in vestigation.
In making this ccmparison it is important to understand

just how significant a change in error actually is. If the
convergence rate of a solution parameter is very slow, even
a small reduction in the error may require many more
degrees-cf-freedom. For this reason, the numbers in paren-
theses have been included by each error to provide a rough
approximation of the number of degrees-of-freedom required
to obtain similar accuracy using a uniform g-id of the same

number of degrees-of-freedom and elements of the same poly-
nomial order as the initial analysis. In some cases, the
analyses were not actually perforel but instead the numbers
in parentheses were obtained by extrapolation of the error
versus degrees-of-freedom curve (Fig. 6.4), and ignoring

round-off and ill-conditioning effects.
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The first observation to be male from Table IX is that
while all of the optimization techniques produced signifi-

cant improvements in the accuracy of the maximum derivative
quantity Tmax, the same cannot be said for the maximum
solution quantity V/max and the integral quantity T. One
might even conclude that grid optimization is not cost

effective in the ccmputation of these values since the
uniform grid provides estimates which are nearly as accu-

rate, and in some cases better, thin the optimum grid. This
conclusion would be correct if the solution maximum and its
integral were the only :esultants of interest in performing
the analysis. Since the purpose of this study was to find an
optimum grid which produced acceptable errors for all the

resultants, the uniform grid is clearly inadequate.
Moreover, since in the majority of engineering problems it
is the derivative cf the solution variable which is of
primary interest, it deserves special consideration in
making this compariscn.

Furthermore, one might concl-de that the reason the
error in the maximum solution variable is larger for the

optimal grid is because the strain energy density variation
criterion always concentrates the degrees-of-freedom in the
vicinity of the maximum derivative value, which in this case

does not coincide with that of the maximum solution variable
value. However, such a conclusion is incorrect and might
erroneously lead one to attempt refinement where the maximum
solution variable occurs in an effort to improve its esti-
mate. Other investigations have revealed that in nearly all
cases the maximum accuracies for all three solution resul-
tants are obtained by refinement in the regions of highest

strain energy density variation [lef. 11]. The more likely h

source of increasing error for the optimal grids is the
element distortion which was encountered in all but two
techniques, selective p-version refinement and subdomain
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isolation. Such distortion can be avoided but would require

more sophisticated refinement techniques than were available

for this investigation.
A reasonable choice for the optimum grid in Table IX

would be one for which all three values in parentheses are

as large as reasonably possible taking into consideration

the number of cycles required to provide such accuracy.

Based on such a criterion, the author is partial to subdo-

main isolation for the solution of two-dimensional problems

using linear elements, and selective refinement for finite
element solutions using quadratic elements. Clearly, before
a concrete recommendation could be ale for a wide range of I
applications, many more problems would have to be studied,

but these two techniques were fairly simple to implement for
a standard finite element code and the accelerated conver-

gence of the solution resultants of interest was impressive.
Conceivably, even greater solution accuracies might be

obtained by using two or sore of these techniques in

combination.

Here again the crucial element in selecting the proper
optimization strategy is the precise definition of the

purpose for which the finite element analysis is to be

performed. he results of Table Il tend to support the

following recommendations and conclusions:

(1) Regardless of the optimization strategy chosen,

higher order elements are indispensable if high
accuracies for integral solution quantities are
desired.

(2) If the maximum derivative of the solution variable

is of greatest concern, the strictly local refine-
vents employing subdomain isolation techniques can

provide exceptional accuracy for a minimum number of

refinement cycles.
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(3) If the maximum solution variable value occurs at a

point in the domain removed from the vicinity of the
maximum derivative value, then its best estimate

will likely be obtained using a reasonably fine
uniform grid and selectively subdividing elements in
the regions cf large strain energy density

variations.
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The purpose of this paper has been to present an over-
view of some readily employed finite element grid optimiza-

tion methods and to demonstrate their effectiveness in the
application to some simple problems. This work is by no

means all inclusive and the subject is still in its infancy.

While there are many competing approaches to the problem,
there is much more research to be done before any one

becomes widely accepted as a standard analysis tool. Because
of the limited time and resources available, some of the

more sophisticated refinement criteria and techniques which
have been developed have not been examined in any detail.
Instead, the approach has been to examine those techniques
which can be easily incorporated in a basic finite element

code. However, it is likely that some recently developed and

rather elaborate self-adaptive grid optimization codes will
soon be available.

also, this paper has not .Naiaed the important classes
of problems in dynamic and nonlinear analysis. There is

considerable ongoing research in the extension of these
techniques to such problems, but the increased complexity is

evident. For example, in vibration analysis there is an
optimum grid for each unique eigenvalue, but it is for these
types of problems that grid optimization is most promising.

At the beginning of this paper it was stated that the
goal of grid optimization was to obtain maximum solution

accuracy for a given analysis cost. Throughout this paper it

has been shown that, prior to successfully embarking upon

such a strategy, the underlying purpose of the analysis must
be explicitly defined. Hopefully, it has been demonstrated
that grid optiaizaticn is by no means an unrealistic goal
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and is far more attractive than the non-adaptive practices

widely used today.

The following are recommendations for future research
topics:

(1) Investigation of more sophisticated refinement

criteria based on element residuals and reliable

N. error estimates.

(2) Investigation of grid optimization techniques

employing adaptive application of the p-version.

(3) Implementation of a finite element preprocessor for

performing hierarchical grid refinement.

(4) Implementation of a self-adaptive finite element

code.

(5) Application of grid optimization techniques to prob-

lems of dynamic and nonlinear analysis.
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TOUULA210U OF TELAIC CBLE PRODLE

A. PROlLIN S~k!UlhI

Consider a perfectly elastic cable initially stretched
between two fixed faints a distance 2L apart and under
tension T. If the cable bears a distributed load per unit

LL

V(X)

Figure 1.i Tension Cable Under Distributed Loading.

length f (z) as shown in Figure 1.1I, the governing differen-
tial equation for the downward defection v(x) is:

2

T __T* f~z 0 (Eqn. k.1)

subject to the essential boundary conditi.on:

v (1 t ±4 0 (Egn. A.2)
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If the distributed load is a supportive load provided by

a linkler foundation cf modulus k such that

flz) * - k vx)

and if a concentrated load P is applied at the idspan,
E.quation A. I becomes :

2i
T - k v 0 (Eqn. A.3)

dx,UA.7

subject to the natural boundary conlition:

X O +  - (Eqn. A.4)

B. PROBLER SOLUTON

The analytical solution of the two-point boundary value

prcble is:

IF2) =P/2 (tanh XL coshX - sinh Xx] (0 z < L)

(Eqn. h.5)

where ) =

The finite element solution is obtained by the Galerkin

formulation using the consistent rather than the lumped

approximation for the distributed loading.
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FORMATIUON OF TH TPEE BAR PIOBLZE

A, PDODLIB S2!A!INTI

Consider a tapered bar of length L and constant modulus

of elasticity E fixed at one end. The cross-sectional area

ACI) varies linearly from A at the fixed end to Iat the
0

tip. Let the bar be loaded axially by a concentrated tip

load P, and a distributed load for which the intensity q (z)
varies linearly from q0 at the fixed end to qat the tip as

0 t'

P-x

Pigue 3.1 Tapeced Baz with Applied Loads.

shcvn in Figure 3.1. The governing differential equation
for the axial displacement aCI) is:

r~ i*q -0 (0 S x L) (Eqn. B.1)
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subject to the essential boundary condition:

u (z - 0) - 0 (Eqn. B.2)

and the natural boundary condition:

du x= t (Ecqn. 5.3)

B. PROBLEN SOLUTION

Let I, - /1 and 8 1 - qt/q 0 .

For P(x) - P + ql() dx the solution is:

rxX

(uqn) O .1)-"
U J W (X) x0.

- ~ ~ ~ ~ ~ ~ ~ ta 4n.j~~..~ L1 . ~e(~ ) + (1--) -

(0 < x <_ L)

(Eqn. B.14)

The finite element solution is obtained by the Galerkin
formulation using the consistent rather than the lumped
approximation for the distributed 13ading.
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FORMLATIOI OF THE TORSION PROBLZI

A. PROBLIE 2&1MUIT

Consider a solid circular shaft of radius "a" and shear

modulus G. ith a circular qroove, or keyway, of radius b

along a generator of the shaft with the cross-,section shown

1~Gx

Figure C.1 Crams-section of Shaft with Keyway.

in Figure C.1. An applied torque r will produce an angle of

twist per unit length 9. The aquilibrium condition is j7

satisfied if a torsional stress function * exists such that

the shear stress comEonents are:

T GO 21 and T -GO

ay Z x
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The governing differential equation for the torsional stress

function ' (x, y) is:

+ + 2 0 (Eqn. C.1)
3x2  3y2

subject to the Dirichlet condition, 'P a 0 on the boundary.

B. PROBLEM SOLUTION

The solution of Equation C.1 (Ref. 22: pp. 141-143] is:

*(xy) - a(x-b 2 x  - 2(x 2 +y2 ) + -- (Eqn. C.2)
x 2 +y 2  2

The aaximum shear stress ocurs at point A (Pig. C. 1) and is:

Tmax * GO (2a - b) (Eqn. C.}3)

The applied torque computed from the area integral:

T, 2;0 Lf* dA

- - (4a -a2b2-2b4)cg + (2a3b+7ab 3)6in aJ (Eqn C. 4)

where a = arcas (b/2a).
The strain energy per unit length of shaft is:

of 1 dIs TO (Eqn. C.5)
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The variational formulation of the finite element

approximation is presented in detail in Chapter 6 of

leferesce 25.

'.*

'. '

Io
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