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ABSTRACT

Since videspread use of the finite element methcd bagan
. in the early 1960's, much effort has been devoted to the
H development of the method itself, wvhile only recently has
there been any research directed at ainimizing the discreti-
zation error by a proper selection of the element grid. This
H paper examines some recently propos2d grid optimization
techniques and applies them to some one- and two-dimensional
linear self-adjoint boundary value probleas. Guidelines
regquiring minimal scftwara modification are recommended to
assist <the analyst in obtaining iaproved finite element
solutions.




" ~
TABLE OF CONTENTS b
A" Io INTRODUCTIDN ) * o ° * e - ° . . o . ° - ® . . 9 'i‘:
A. HISTORICAL BACKGROUND . « « « o o o o « o o « 9 B
B. INVESTIGATIVE APPROACH « « « « « o « o « o o o 11 A
C. OBJECTIVES « ¢ « ¢ o ¢ o © s @ o« o« o o © o @« o 13 E.:
R
II. CRITERIA FOR GRID REFINEMENT . . o « « « o o « « o 14
A. SOLUTION PARAMETER VARIATION . . v « o « « « o 14 T
B. GRID ITERATION ¢« « « o o o o o o o o o « o o« o 15 e
e
C. ELEMENT RESIDUALS o « « o « o o « o o o o « « 16 23
D. A-POSTERIORT ERROR ESTIMATES « o « « « o« o « o 17 =
; III. METHBCDS OF GRID REPINEMENT + « « « o o« o « o « o« » 19 \
o
A. COSVERGENCE OF GRID REPINEMENT . . « « « « o « 20 N
. B. HIERARCHICAL PINITE ELEMENTS « « « « « « o « o 23
/ Iv. GRID OPTIMIZATION TECHNIQUES v « « o o o o o o o o 26 ;’r
W~
. A. MATHEMATICAL PROGRAMNING o o o o o o o o o o o 27 :g”
B. CONTOURING « + ¢ o « o s o o « o o o o o « « « 29 &
C. SEBCTIVB RBFINB!E“T o . . . ] - . . - * 'y . Y 31
DQ SUBDOHAIN ISOLATION e e o o ¢ o o . e @ o @ 3“ :::::
B. asa GR‘DING [ ] * L ] [} [ ] [ ] * [ ] [ ] L ] [ ] [ ] [ ] [ ] - L ] [ ] 35 g::
2]
V. APPLICATION TO ONE-DIMENSIONAL PROBLEMS . . . . . 38 M~
A. ELASTIC CABLE PROBLENM « « o o o « « o o o o o« 39 R
: A
B. TAPERED BAR PROBLEM « ¢ 2 « o o o o o o o « o U8 e
o
C. GUIDELINES FOR ONE-DIMENSIONAL GRID :
OPTIHIZ!TIOU ° - - . L] Y ] 3 . . L] - e . ) Y e 3 . 50 “—
- VI.  APPLICATION TO TWO-DINENSIONAL PROBLENS . . . . . 53 s
A. DROBLEM DESCRIPTION « « o « o o « « o« o « « o 54
. B. COMPUTER IMPLEMENTATION .« . « « « « « « « o « 56
e
b
4 i

Y ;i P AT 7 Y T g IR R PR I Gt RN AR LRI - -y
Rayee), ARG AT AT L YGRS \.,'-_-" BN ._\ ‘-\ b o . __}.-\. \._ ..\'_ o



NPT T 2/ A o T Lt Al ™ s
S 0 Dl AR 0 SR e UM ACRANL RTINS B B ANLANS sall SrL AR bt A -t \'"I"-'-"‘“'-"-7.7'7'-;'.‘7."'.-:-'.1

- :
|
e C. ASYNPTOTIC ERROR ANALYSIS FOR UNIPORN 5
o3 REPINEMENT o « o o ¢ o o o o o o« o o o s o s o o o« 57 ;
D. PROBLEN SCLUTION WITH GRID OPTIMIZATION . . . 63 i

1« CONtOUTINg o ¢ o« o o o o« o o o s o o o« « o 63 !

2. Selective Refinement . . « « ¢« « ¢ ¢« o o . 70 5

3. Subdomain Isolation .« « o« ¢ ¢ o ¢ o o o o 19 b

v 1

4. MeSh Grading « « = « « « o + ¢ o o o o . o 84 i

e E. GUIDELIFES POR TWO-DIMENSIONAL GRID ;
4 OPTIMIZATION ¢ o o o « « o « o « o o o o o o « o o 89 :
9y ¥
i“:\ N

ViI. CCNCLUSION AND RECOMMENDATIONS « o ¢ ¢« o o o « » o« 94

APPENDIX A: FORMULATION OF THE BLASTIC CABLE PROBLEM . . 96
i A. PROBLEM STATEMENT . ¢ ¢ o « o ¢ s o « o« « o o 96
o B. PBOBLEM SOLUTION « o « « « « « o« o« o o o« « « & 97

3 APPENDIX B: FORMULATION OF THE TAPERED BAR PROBLEM . . . 98
3 A. PROBLEM STATEMENT . « « « « « o o« o« o o o« « o 98
@ B. PROBLENM SOLUTION « « « « « « o « o« o o « o o « 99

N - APPENDIX C: PORMILATION OF THE TORSION PROBLEM . . . . 100
i A. DPROBLEN STATEMENT .« « « ¢ o o « ¢« o o« « « « 100
. B. PROBLEN SOLUTION . « « o « o o o « o o o o o 101

LIST or RBBBRB’CBS L ] L] - L] Ld * L] - L] L ] L ] L] L] L ] * L] - L] 103

INITIAL DISTRIBUTION LIST ¢ « « « o ¢« o o« « o« o« o o « « 106




YT VIR R S X e TR W iR cm St ot e L M. e G T b prlt s R R Pl Pl WS T T T e e

LIST OF TABLES

Ny 1. Tension Cable Problem Solution Results
II. Tapered Bar Probles Sclution Results .
III. Reversed Tapered Bar Solution Results
‘ Iv. Contouring Solution Results . . . « &«
E v. Selective Refinement Solution Results
, vI. Selective p-Version Solution Results .

viI. Subdomain Isolation Solution Results .

N VIII. Mesh Grading Solutisn Results . . . .
e Ix. Comparison of Two-Dimensional Rasults

‘}
Ly
N

r

“ag
3
T
\,‘
R

" - e I P P S L PR PR P R IS L SRR L -t -
MY N NS 'V A0S i\!-ﬁ:q.;\:.v,’_‘ N



Al i SR

ARy
[ A )

AN

I T S

LIST OF PIGURES

Rt A

1
:}:
kK
Z
3]
4
e
e

4.1 Some h-Versicn Subdivision Schemes . . « « . . . 32

~ 4.2 Graded Nesh for a Perforatad Square Plate . . . 37
- S.1 Tension Cable Deflecticn on Blastic
ﬁ POUNARALION o o ¢ ¢ @ o ¢« o o« « ¢ o « o« o« o o « o U0
i 5.2 Tension Cable Rofinements . . ¢ ¢« ¢« ¢« ¢ « o o o U1
5 5.3 Linearly Tapered Bar Under Axial Loading . . . . 44
" S.4 Tapered Bar Refinements . . . . ¢ ¢ ¢« ¢ o« « o« o 46
g 5.5 Reversed Tarpered Bar with Distributed Load . . . 48
ﬁ 5.6 Reversed Tapered Bar Refinements . . . . . . . . 49
- 6.1 Cross-section of Shaft vith Keyvay . . « « « « . 50
« 6.2 Uniform Linear and Quadratic BElement Grids . . . 58
i 6.3 Keynode Placement for Isoparasetric Mappirg . . 59

6.4 Asymptotic Convergence for Unifora

. Refinement . « « ¢« ¢ o o ¢ o ¢ o o ¢ o ¢ o o o » 61
: 6.5 Stress Distribution on Shaft Keyway . . . « . . 62
Y 6.6 Contouring for the Torsion Punction . . . . . . 65
% * 6.7 Contouring for the Shear Stress Punction . . . . 66
' 6.8 Contouring for the SED Puncstion . ¢« ¢ ¢ « ¢ o« « 67
? 6.9 Selective Refinement Proceiure - Linear
ELOBODtS « « ¢ o ¢+ .t e e e o e e e e e e e s T2
§ 6.10 Selective Refinement Procedurs - Quadratic
- BlemBNEtS o <« ¢ ¢ ¢« ¢ o ¢« s o ¢ o o o o o o o o o 13
2 6.11 Selective Refinement Employing p-Version . . . . 77
% 6.12 Subdomain Isolation ~ Linaar Elements . . . . . 80
1 6.13 Sabd>main Isolation - Quadratic Elements . . . . 81
! 6.14 Mesh Grading - Linear Elemants . « ¢« « « « « « . 86
E 6.15 Mesh Grading - Quadratic Blements . . « « . o o 87
§ A. 1 Tension Cable Under Distributed Loading . . . . 96

.

7

RIRRAC D L WA RN 0 o0 o SNV g o v
‘ [t 4 2

AR A By



o ey T

LG P e

A . L.

St

P o™

PR

L e

§ I Gh

e

. E

o

. \‘4

L i vt W

B.1
c.1

“i“‘f,l vy -‘.' .

id B

PP

&

S S T A R S

PN N N e U N A A A LD pea e e 0 9 b R A

~Tapered Bar with Applied Loads . .
Cross-section of Shaft with Keywvay

WY "~ " . 575 Py .

-~

98
100




A WL R M &

]
X
1
|
9
\
y

I. LEIRODUCIION

The critical concern in any finite element analysis is
the adequacy >f the selected aesh to provide reliable soclu-
tion results within some reasonabla cost range. The goal of
finite element grid optimization then becomes one of
obtaining maximum soclution accuracy for a prescribed anal-
ysis cost. While this objective is janerally not realized in
today's videspread use of finite element analysis, the effi-
cient computation of solutions with optimal accuracy will
become paramount to the engineer as finite element methcds
are applied to increasingly difficult dynamic, nonlinear,
and evolution probleas.

A. HISTORICAL BACKGROUND

In the early 1960's, with the help of the high speed
digital cosputer, finite element methods revolutionizad
probles solving in engineering. Since that time the ma jor
research efforts have concentrated on 2xpanding the theoret-
ical basis of the method and extending its application in a
variety of fields. Only recently has there been significant
attention directed at minimizing finite element solution
errors by properly defining the 2l2a2nt grid. EBarly attempts
at distributing the nodes and chocsiag the elements <to
ensure scme degree of confidence in the solution accuracy
wvere predominantly dependent upon the analyst's engineering
Judgement and experience, since thare were nd> established
procedures for accomplishing this objective. Even these
atteapts tcwvards grid optimization have become largely
ignored with the advent of automatic mesh generators, which
have drastically reduced preprocassing costs while

J_‘J‘J
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Zi accomplishing little in improving solution accuracy. Taese
programs automatically construct the element grid, usually
in a unifors manner, after <the user merely defines the

jé . problem and specifies the number of elements ¢o be used. To
?3 establish convergence and achieve the desired so>lution accu-
8 . racy, the user simply repeats ths analysis using a finer
' sesh of uniformly distributed elements while monitoring such
;ﬁ convergence indicators as successive solution valuss at
%; coason nodal points or the asymptotic increase in the energy

content of the mesh. Tke often Jdisastrous flaw in such a
practice is that for nearly degenarate problems which
exhibit very large gradients, the asymptotic range is only
sntered for an extreasely large number of degrees-of-freedonm,
often beyond computer liaitations [Ref. 1]. In this case,
unifora mesh refinement may produce apparent convergence,
: vhen in fact the solution accuracy is poor. Therefore, the
jﬁ need for a finite element grid optimization procedure is
& clearly evident.

The first formal attempts at finite element grid optimi-
zation did not begin until the early 1970°'s. These early
approaches involved the inclusion 5f the nodal coordina<zes
as dependent variables in the minimization of the potential

enexrgy functional [Ref. 2]. Unfortunately, <the resulting
" systes of equations is highly nonlinear and the computa-
o tional effort involved in its solation is so great +hat
- similar accuracy can be obtained at a fraction of the
= expense, siaply by employing a very fine mesh. Clearly, this
% sethod does not apprcach the finita alement grid optimiza-

. tion goal of achieving a specified solution accuracy for a
“ ainimus analysis cost. Por this reason, virtually all of the
grid optimization techniques since daveloped are based or a
“near-optimum strategy wvhereby nearly-optimal solution
results are obtained without the computational inefficiency
of a numerical optimization analysis. The growing emphasis

x
i+
S

10

""""""""" T INEIN  RILRA
'\i._\j- PSR

-

w o Ne T » e a N RN
v twte te T JTe Tl JTe e R



™,
~
X
LS
4

:‘.
2
1

v 5

heSs
2 5

[ S

AN N

'
3

- i)
SRR

e

»'y Yt a's-
PSR PR 5.5 8

.
%
-

has been on adaptivity, a procedure for efficient construc-
tion of near-)ptimum grids by the iterative application of
some criterion, based on data already computed from the
solution for a previous grid. This procedure is far more
efficient than the conventional approach of repeating the
analysis using successively finer uniform grids.
Experinental self-adaptive finite element codes have
recently been developed. Starting from the user's initial
idealization, these programs automatically gererate a near-
optimum grid and solve the resulting equations.

B. INVESTIGATIVE APPROACH

In undertaking any numerical optimization task, the
analyst aust first define <+he objective along with any
constraints to be imposed upon the objective variables; aad
finally a numerical algorithm must be prescribed to perform
the optimization, preferably one which will do so effi-
ciantly for the particular problem. Since the term "optimum"
sost often rafers to a solution obtaired by mathemctical
progranming, which is very inefficient for grid optimiza-
tion, a near-optimum grid obtained by application of an
adaptive procedure, henceforth will be termed an optimum
grid. However, before such a grid can be determined to
satisfy the stated cbjective of obtaining maximum solution
accuracy for a prescribed cost, the terms "accuracy" and
"cost™® amust be defined; but, more iaportantly, the optimiza-
tion goals must be specified. This is critical because grid
optimization can be implemented in various forms depending
upon the optimization goals, which will, in general, bse
determined by the original purpose for performing the finite
elament analysis [Ref. 3] For example, if the purpcse of
the analysis is ¢to5 evaluate a local quantity, such as the
saximua value of the dependent variable or one of its
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derivatives, then the nodal distribution should be denses:
in the region where that maxiamum is laterminad. If, on the
other hand, the interest is on an integral quantity of +he
dependent variable cver a region of the domain, then the
nodes should bes assigned to achieve a uniform distribution
\’ of the error over that ragionm. Por the purpose of this
investigation, attention will be focused on the three finite
element resultants with the most significance in solid
mechanics and other fields in which finite elament analysis
is employed: the maximum value of the dependent variable, or
solution; the maximum value of the gradient of the solution;

and the integral of the solution over the domain.
In order to define the solution accuracy, it will be

necessary to compare the error in the solution resultant
obtained using an optimal grid to tha error obtained using
some baseline grid with <the same nuaber of degrees-of-
fresdom. For convenience, the refaranca grid chosen will be
a uniforam grid, or omne with all 2lements of the same crder
and approximately the same size, with the understanding that
no knowledgeable analyst would atteapt to use such a grid in
the solution of a prcblea with largs gradients.

The definition of analysis cost will be greatly simpli-
fied by making the assumption <that it is directly propor-
tional to <the number of degrees-of-freedom used +to obtain
. the solution. In reality the cost depends on many factors, ;
some of which are very difficult to  quantify. H
Understandably, the number of degrzes-of-freedom is not the !
sole measure of computational costs, but it appears to be an .
adequate measure of preprocessing and postprocessing costs N
vhich often account for the major portion of the +otal ;
analysis.

This investigaticn will concentrat2 on the use of finite
element grid optimization methods for solving problems of
structurali mechanics. While this area has dominated *ae
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literature on the subject, the tachniques presented herein -3
extend equally as well to any field for which variatiornal
principles apply.

There are tvo key questions which must be answered prior
to the adaptive application of finite e.ement gri
optimization:

(1) What criterion, based on the results of an initial
finite element analysis, should be used to indicate
regions where the original grid is inadeguate ?

(2) What method of grid refinement should be employed ?

Considerable attention will be devoted to these gquestions in
the next two chapters.

C. OBJECTIVES
The objectives of this investigation are:

(1) To examine some recently developed grid optimization
techniques which have reached the state of practical
application.

(2) To implement some Oof these techniques in the solu-
tion of some cne- and two-dimensional 1linear self-
adjoint boundary-value probleas.

(3) To drawv a comparison among thase applied techniques
in terms of solution accuracy, analysis cost, and
ease of implementation.

(4) To reccamend =ome guidelines to assist <*he analys:
in obtaining optimal finite element solutions
employing currently availabls or 2asily amerdable
softvara.
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II. CRITERIA FOR GRID REPINEBENI

¢ The primary thecretical concern in the application of
- adaptive grid optimization 4is the selection of <+the refine-
ment criterion. In cthar vords, one must decide upon which
solution parameter, obtained from an initial idealization,
may most appropriately be used to give some indication as ¢to
vhere the initial grid is inadequate and thus needs refine-
ment. There are several coapeting proposals concerning the
most appropriate <choice of a refinsment criterion. In
) reality, the decision must be based upon such factors as the
type of probleam being solved, which criterion is most prac-
tically 4implementegd, and wvhether accuracy is desired

id Pt Pl

% locally, globally, pocintwise, or with respect to an integral
2 quantity. The following are some of <*the aore practical
. refinement criteria used in grid optimization at present.

A. SOLUTIOB PARANETER VARIATION

3 The wmost direct, computationally inexpensive, and
. earliest proposed indication of where an element griad
§ requires refinement is a measure of the variation of some
solution parametar over the domain. It is only logical that
a piecevise polynomial approximation would experience the
most difficulty in modeling the desired response in those
regions where the solution or its rasultants were either not
smooth or wera characterized by large gradients. Therefore,
the basis of this criterion is to refine the mesh in those
areas wvhere a solution parameter varies rapidly, with the
S implication that the optimum mesh is one for which the solu-
tion parameter variation over seach element is uniform
throughout the doamain. The first consideration in the

e e, 2,
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application of such a “criterion is to find a scheme for
distributing the nodes ¢> achieve such a coaditiorn. For
one~dimensional probleas the task is trivial, but one vay to
ensure equal variation over each element in higher dimen-
sions is to position the nodes alongy equidistant contours of :
the chosen parameter. This 4is precisely the procedure éﬁ
prescribed for a practical optimization technique known as X
contouring. TIhe other consideration is the determination of 2
vhich solution parameter is to be used. Ian fact, several
solution parameters have been found to work quite well
(Ref. 4], but the most commonly used and the one that is
consistent with the potential enerjy minimization formula-
tion is <the strain energy density [Ref. 2]. Because its
employment rejuires only wminor software changes and it has
been found ¢to produce excellent rssults, this refinement
criterion vas used extensively throughout the course of this

RS ) ARRRAN

rasearch.

B. GRID ITERATION

Another, rather basic but lass direct, method of
locating regions of the mesh to be refined is known as grid
iteration, which can be implemented in one of twe ways. An
initial coarse grid analysis may b2 repeated using either a
finer or a higher order mesh, and a comparison of the resul-
tants of intarest between the two solutions will identify
those areas of the dcmain where rafinement is nmost effec-
tive. Another approach is based on *‘he assumption that the
greatest benefit is to be gained by refinement in those
regions vhere a small perturbation, like +he introduction of
a single additiomal degree-of-freeioa, produces the graeatest
change in the solution or one of its resultant parameters.
Since additional degrees-of-freedoa would be expected to
produce the greatest change in those regions where +the

15
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desired response varied most rapidly, refinemsents based on
this method provide results very similar to those obtainad
using the solution paramster variation criterion already
discussed. The grid iteration method may at first appear to ,
be more computationally axpensive, but it was developed to :
be most efficiently implamented employing a special family
of slements. These elements, called "hierarchical®, possess =

LRI e

Y
£

% some very desirable properties for this application and will t
ﬁ be discussed in the next chapter. .
| C. BELEHENT RESIDUALS

§ The wmajor drawback with refinement criteria based on ;

b solution parametar variations is that their applicability ;
4 appears limited to elastostatic problems. Por this reascn, 5
5 several investigators have recently daveloped grid refine- -
f meat criteria based on element residuals, which appear prca- §~
'ﬁ ising for application to all types of finite element §
: . probleas, including nonlinear analysis. The r2ason for this ;

s is that the residual has essentially <*the same ameaning s
E X regardless of the problem type [Ref. 5]. Por example, E
% consider the governing differential equation, f
D{ul]-£f=0 i

§ defined cn some domain, where D[ ] is a linear or nonlinear %;
i differential operator, and the dependent variable u and the :

? non-homogeneous term f ars both functions of the indeperdent s
- variablas. Let the £finite slement approximation to the

g solution of the differential equation be § ¥ u. Applying the

ﬁ differential sperator to the approximation gives rise to the 8
'% residual, which is defined as 5
) R=D( d]~-¢

% . and is not idantically zero unless the finite element solu-

; tion is exace. G
g .
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The key t> using the residual as a critarion £or deter-
aining regions of the domain wvhere refinemen:t is recessary
is the local residual on the element lavel, vwhich indicates
the contribution of the element to the total error of <he
finite elenment approxisation. Since the residual is a point-
vise gquantity, the useful measure of the element error
contribution is a nors of the element residual, or the inte-
gral over the element of the product of the residual and
some vweight functicn. The integration is aost readily
performed using numerical juadrature. The grid optimization
st:alcgy then becomes one of refining <the mesh so as to
equi-distribute ths element residual norms, by forcing thea
to beccme saaller and more uniform o>ver the domain.

There are some dravbacks o the elament residual refine-
sent criterion which have not yet been fully resolved, such
as appropriate sslections of <the ressidual aora and the
veight function, and in the computation of the residual
itself. While the evaluation of the rasidual presents no
particular difficulties in the intsrior of the element, it
is rarely detsrminable at the edges. The reasoaz for this is
that in formsulating the finite element approximation the
elenent shape functions are definsd so as to provide only
that degree of ocontinuity required to adequately model the
physical problea; the most frequant consequence being that
D[d)] is undefined along the interelement boundaries.
Unfortunately, this singularity cannot be ignorsd and a more
coaplicated analysis must be applied in order +to bound the
residual contributions at these boundaries [Ref. 6].

D. A-POSTERIORI ERROR BSTIHNATES

A sophisticated extension of the element residual
criterion is one based on computabls error estimates from an

initial finite element analysis. This utilizes the energy
17
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norm of thke residual, in vhich c¢ase the weight function is
the residual itself. Ressarch in raliable error estimates
vas pioneered by Babuska [ Ref. 7, B] for 1linear guadrilat-
eral elsments and aore recently by Zienkiewicz [Ref. 9] for
higher order elements. The nmajor difference £roam the
residual criterion is that instead of equi-distributing the
element residual norms over the domain, <they are normalized
to compute error indicators for the elements, wvwhich ars in
turn used to compute reliable pointwise error estimates for
the solution as well as the energy error over the domain.
These gquantities are of primary importance because <*hey
provide not only an indication of where additional refine-
ment is most effective, but also a maasure of the quality of
the mesh 0 detersine whether additional refinement 1is
necessary [Ref. 9]. The optimization strategy is to obtain
a nearly uniform distribution of the error indicators
throughout the domain, which corresponds to minimizing the
error in the anergy nora. The refinement procedure may prog-
ress until all the lccal errors ar3 within some prespecifiad
tolerance. While the practical utility of such a refinement
criterion is obvious, the mathematical devslopment and the
algorithms involved are rather complicazed. However, the
process is not coaputationally expansivs, and there now
exists a prototype self-adaptive finit2 element code, FEARS,
vhich isplements this refinement criterion [Ref. 10].

18
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III. UETHODS OF GRID REFINENENT

Once it has been determined where the initial element
grid is inadeguate and needs refinement, the next considera-
¢ion is hov the idealization in +these areas should ba
iaproved. The choice of the refineaent method to be employed
say vell be a more important decision than the selection of
one of the refinement criteria previously discussed, since
a- least one investigator has observed that for a particular
method of gril refineaent, the various refinemant criteria
produce essentially the same solution resuits [Ref. 11].

6rid refinement is ths process 5>f introducing additional
degrees-of-freedom into selected ragions of the finite
elament grid, and may be performed by one of three methods:

(1) The pclynomial degree of tha slaments remains fixed,
usually a¢t a 1lov value, vhile the size of the
elements is reduced. This has become known as the
h-version since element size is commonly denoted by
the letter h.

(2) The size of the eleaments, usually €ev in number,
remains fixed while <*he polynomial degree of +he
elements is increased. This has become known as the
p-version since polynomial orier is commonly denoted
by the letter p.

(3) The sizs of the elemsnts may b2 reduced concurrently
with an increase in their polynomial order. This is
known as the ccmbined h- and p-version of the finite
element aethod.

19

. ) A Y "' - hC - TW CW e . T et e e A R T - - -
N I, S S S A SRR S RS PU RO SO At AR O\ SRR




MR A A 0t S S LR N R A el 3 Ll g (- 2 A el ;-'1
P

A. COBVERGENCE OF GRID REFINEMENT

It 4is well known ¢that tha finita elem2nt mathod
converges with an increasing number of degraees-of-freedcm;
in fact, this is the justification for i«s development.
Therefore, ths appropriate measure 5f the effectiveness of a

- particular grid refinement method should be the associated
rate of convergence, which generally will be affected by the
smoothness of the approximated function over the subdomain
of interest. It has been lemonstrated that when the refine-
ment is performed uniforamly over the domain, the associated
rate of convergence is asymptotic, provided the number of
degrees-of-fraedom is sufficiently large (Ref. 1]. The
asymptotic rate 5f convergence is often ameasured as the
slope of the error versus cost curve in the linear, or
asysptotic, range wvhen plotted on a log-log scale. in
perforaing such an error analysis for the displaceaent
formulaticn of the finite element method, the error |is

. usually the relative strain energy error, approxima%ed by

the energy norm, and the cost is assumed to be some simple
function of <the average element size or the number of
degrees-of-freedoa [Ref. 12: p. 726]. only in <the past
several years has <there been any significant research
coaparing the relative merits of the differsnt methods of
grid refinement. Since the solutions of elliptic boundary
value problems are wusually very smooth over convex domaias
excoapt in the vicinity of corners, most of this research has
focused on soluticns exhibiting singularities, vhich
severely hinder the rats of convergence, as in prcblems of
fracture mechanics and in dowmains with rCe-entrant corners

(Ref. 1, 13, 14, 15].

In order for a finite element analysis to be bo+h effi-
cient and reliable, <the asyaptotic convergence range should
te antered for as few degrees-of-freedom as <rTeasonably
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possible. In general tha p-version satisfies this requize-
sent better than the h-varsion. #hile it has been =stab-
lished that p-convergence will n2cessarily occur vhenevar
h-convergence occurs, the converse is not true. For exanmple,
if the h~version using a uniform gJrid of linear elements is
applied to a nearly deganerate problem, <*he rnumber of
degrees-of-freedcm required <for entry into the asyaptotic
range may be beyond the computer's round-off limitations, in
vhich case convergence will not occur unless the polynomial
order is incrsased [Ref. 1]. Numarical experiments on such
probleas clearly indicate that “he p-version requires
considerably fewer degrees-of-freedom than the h-versicm to
achieve the same degree of accuracy. Recent analyses
(Ref. 1, 13] >f the asymptotic rata of convergence in anergy
for non-smooth solutions, using anifora refinement with
sufficiently high numbers of degress-of-~freedom, have demcn-
strated that the p-versison cannot have a slover rate of
convergence than the h-version. Purtharmore, if the singu-
larity is confined to elemsnt boundarias, as is usually the
case, *“he error for p-method is inversely proportional to
the number of degrees-of-freedon, whereas the error is
inversely proportional to <the squara root of the number of
degrees-of-frasedoa in the h-version. In other words, for
this special class of probles, the rate of convergence for
the p-varsion is tvice that for the h-version, which is due
primarily to the ability of highsr order polynomials <+o
*absorb® singularities occurring at the element boundaries.
This implies, at least f£o5r this type of problem, <tha*t in
order to0 aminimize the error for a specifised number of
degrees-of-freedoa, the best strategy is no* <+o subdivide
the domain uniforamly, but to use iust3ad a singla element of
increasing polynoaial order [Ref. 15].
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Since it is unlikely <that ona would atteapt <to solve
such a probles using uniformly finsc grids, a msore useful
coaparison between the convergence rates of the two versions
would be based on adaptive refinemeant employing one of the
solution-based criteria discussed in the previous chapter.
It so happens that the h-version, wvhen used with optimally
refined meshes, can have 1 higher convergence rate than the
uniformly distributed p~version, provided <that ths element
order is sufficiently high. Howevar, the p-versiocn can also
be employed with an optimal refinement criterion. While
there are yet no proven theoreas concaearning the convergence
rates for non-uniform refinement, obtaining tha dasired
solution accuracy with optimal p-distributions appears to be
much less sensitive to the particular choice ¢of the elements
to be refined than with optimal h-refinasment (Ref. 13].

It would seenm plausible that an even better optimization
strategy woull involve a proper coabination of both the h-
and p-versions. It has basn demonstrated for problems with
corner singularities, that a proper sequence of
h-refinesments combined concurrently with the proper sequence
of p-distributions results in extremely high convergence
rates, conjectured tc be exponential [(Ref. 15]. However,
this proper combinaticn is difficult to deteraine, and adap-

tiva refinement based on the combined h- azd p-versions
poses some difficult data management probleas. To avoid this
problems a more promising approach, proposed by Babuska and
Szabo [Ref. 1], employs a graded mesh in which the element
sizes are first reduced according to> a geometric progression
tovards the singularity, followed by determining the optinmal
p-distribution for thoss elements using an adaptive
criterion. However, obtaining ths optimal combination when
eaploying this schems can be a delicat2 matter and, astcund-
ingly, the highest accuracy is achi2vad when the polynomial
oriar of the alements actually increases with distance from
the singularity.

22

A 4

¥ | ROEALASE

DOIN. & DR SRUTI

AT

X

L ]
.



..............

PR ol EAEM

’

There are some additional advantages of the p-version ﬁ?
wor+h aentiocaing. Because the p-version employs fewer E;
elenents, there are lessar preprocassing and postprocessing i;
costs than for the h-version. Furthermore, when bandwidth fﬁ
minimization and sparse matrix solution techniques are used, i&
tha solution time for the p-version is approximately the ;ﬁ
sapé as for the h-version for a specified number of iﬂ

degrees-of-freedom, and the p-version appears less suscep~
tible to round-off errors. Pinally, the p-version is simpler
to implement adaptively than the h-version when hierarchical
elements are amployed [Ref. 13]).

e
—t

O

B. HIERARCHICAL FINITE BLEMENTS

The hierarchical concept was first in+roduced as a
sinple method for implementing the p-version and as a
conveniert device fcr imposing boundary continuity between
elaments of different polynomial order (Ref. 9]. Since tken

. 2 useful family of eleaments based on the hierarchical
concegpt has bsen developed and incorporated into COMET-X, an
experimental finite element code, 3avaloped by Szabo, which
salf-adaptively emplcocys both the h- and p-versions of the
finite element method [Ref. 1a].

For a brief descripticn of the hierarchical concept
consider the conventional finite 2lement <formulaticn which
produces the following system of a2quations:

X s gn) (Egm. 3.1)

vhere r 1= the number of degrees-of-freedom, K, is the
- nxn global stiffness matrix, %“” is the finite element
approximation of the exact solation, ard g“” is the
n-component global 1load vector. When n higher order
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degrees-of-fraedcm are added to the original system using
conventional refinesment methods the system of -equations

becoaes:

sm) %(M): s(nﬁn) (Eqr. 3.2)

vhare the contributions to K ... and g““““from the refined
elements result in a completsly diffarent set of coeffi-
cients., If, on the other hand, 4his refinement had been mads
hierarchically, the equations would bacome:

K K, a(n) £(n)
q(n) ,\,(n,m) ~ N
= (Bgn. 3.3)
(m) (m)
ﬁomnu g0nnm by 5

wvhere 5ﬁﬂ and gn)are the stiffress matrix and £force vector
from the criginal system of equations for n degrees-of-
freedom appearing in Equaticn 3.1. However, gmﬂis no“ the
nodal values of <the finite elem2nt sclution for the R

additional degrees-of-freedon, but instead represents the
difference between those values and the pointwise values
obtained from <the lower order polynomial interpolation for
the unrefined mesh of n degrees-of-freedon.

The primary advantage of hierarchical elements is imme-
diately observable from Equation 3.3. Because the shape
functions of an element of order p constitute a subset of
the shape functions of an element of order p+1, the local
stiffness matrix and force vector for each hierarchical
element is embedded in the stiffaess matrices and £force

vectors of all hierarchical elements of higher order.
Therefore, the global stiffness matrix %n)and force vector
50” of <the original system are praserved, thus saving

53 IDDCCRRTS ) 0
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considerable time and effort expended on computing the coef- K
ficients fcr successive refinements (Ref. 14]. Anctter
advantage is that the hierarchical form of the global s*iff- .
ness matrix is more diagonally dominant than <+he one ‘
resulting from a conventional refinemert, resulting in
improved conditioning and faster <convergence when iterative
solvers are eaployed (Ref. 9]. Another benefi: of hierar-
chkical elements, which arises from the "add-on" rnature of
+he rnedal variables ¢f the higher order degrees-of-freedcn,
is that the problem of maintaining boundary continui+

between elements of different poiyncmial order becomes
trivial., 1Instead of intrcducing global constraint equations
for the higher order degrees-of-fressdom, the nodal variables
are simply set equal to zero anéd conda2nsed out, as if “hey :
were zero-valued Dirichlet boundary conditions [Ref. 2]. i

There are twc major drawbacks with hierarchical elenents
that bhave hampered <their widespread acceptability. The

first, which has already been mention2d, is that the nodal
variables for the higher order degrees-of-freedom represent
difference values rather than the aore easily idantifiable
values of the dependent variable itsalf. Seccndly, when
implementing the h-version of ths finite element method,
special integration rules must be introduced when the subdi-
vided element is in hierarchical form [Ref. 9]. £ course,
the latter problem can be evaded by using the p-version, fcr
vhich the hierarchical concept was developed. In spite of
the disadvantages of hierarchical elements, their consider-
able computational efficiency and utility for grid optimiza-
tion will certainly result in their widespread utilization
in future adaptive finite element zoises.
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IV. GRID ORTIHIZATION TRCHNIQUES

Once the analyst has identifiad where the initial grid

. needs enrichment and decided which refinemert method to
employ, he must then determine a systematic prccedure, or
algorithnm, to perform the refinament accordirg <+¢o the

SAYSILT o St

EP L
1

‘t 1 : j .

neY

.

L

{\.

;%: criterion selected. The ultimate goal of such 2 procedure is

S to design an element grid which meets <the optimization

™ objective of obtaining maximum solution accuracy for a spec-

‘ﬁs ified analysis cost. #While the aralyst may or may not have .
'53 an indicaticn of the accuracy of the solutiorn, he should i
A have a preconceived notion of cost, or how much effort he is )
ﬁﬁ willing to expend to arrive at a batter solution. Therefora, ﬂ
.ﬁZ vith some knowledge of the 4grid cptimization <technigues :
~2§ available and an understanding of the advantages and disad- f
“ . vantages of each, the analyst can rsalize the grid optimiza- ’
., tion goal.

fﬁ There ars essentially two adaptive grid optimization

f% strategies:

e (1) Grid refinement, in which the initial analysis is

fﬁ performed o5n a relatively <coarse grid, and new

at degrees-of-freedom are added to the same grid by the

o iterative apglication of the solution-based

:_ criterion.

C3e (2) 6rid modification, in which the initial analysis is

iﬂ performed asing a prespecified cuaber of

= degrees-of-freedom, and the solution-based criterion

:? is employed to shift degrees-of-freedom from certain

i; regions «0 others. This may involve coamplete grid

A redefinition in ap effort ¢5 obtain a near-optimum

’ grid in a single cycle.

2
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i; Much of the interest lately bhas been in the development i
-, cf ccmplicated self-adaptive software packages which mirni- j
Y. mize the impact of the user's skill on the final solution. 4
\ﬁ ' Ideally, the analyst would merely define the problem and +ka

'ﬁ prograa would automatically generat2 and analyze the optiaunm

b - grid employiny one or more of thess tachniques, possibly at

8 the user's cption.

::

A. HNATHESATICAL PROGRAMNING

o

_ §o discussion of grid optimization techniques would be

@? complete without a brief description of mathematical

é programaing, mnot only because it is how grid optimization

5 wvas earliest atteampted, but wmore dimportantly, it is

fq precisely what the engineer envisions when he hears the ternm

% "optimization®. It is not a grid optimization technigue, per

vﬁ se, but rather a numerical process o5f achieving any optimi-

iﬁ zation obdective, once it is explicitly defined in mathemat-

_ ) ical terms. 1In solid mechanics tha finite eleament method is

I% a numerical mathod for minimizing the potential energy func-

ii tional, which in discretized form may be written:

"1

:S =%k wl Ku - ul £ (Egqn. 4.1)

< v UG

;f where: g is the global displacement vector

"5 X is the global stiffness ma*rix, and

fi £ is the global load vector

s

:: In the classical finite element formula“ion, the potential

N energy is minimized with respect to ths nodal displacemeants,

?: which implies satisfaction of <the following stationnary

4 conditions:

¥
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(i = 1,2.-oo'n) (Eqn. '4.2)

wvhere n is tha nuaber of degrees-of-freedom. This leads to
the very familiar systea of linear a2gquations:

5 a- 5 = 2 (Egqn. 4.3)

However, since and 5 are functions of <the nodal coordi-
nates, then the potential energy could be nminimized wit
respect to the nodal coordinates as well. This would require
satisfaction of the following additional stationary
conditions:

axj = 0 (j = 102.---,“' (Eqn- uoa)

where m is the number of nodal cooriinates, xj. This differ-
entiation leads to the less familiar system of non-linear

equations:
Tk ot = 1,2 a) (Eqn. 4.5)
151,\1‘ 3xJ}e-aij=0 1Ceseey . .

This, tken, is the mathematical statement of the grid cpti-
mization problem for the elastostatic case. The nodal
displacement variables may be eliminated by wminimizing the
potential energy with respect to ths2 nodal coordinates only,
subject <¢o the iaplicit constraint <that Equation 4.3 is
alvays satisfied [Ref. 4]. Unfortunately this does not help
mauch because the objective function is still nonlinear,
rendering mcst numerical optimization algorithms inefficient
and unreliable. The difficulty is svan furthar compounded by
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2 the requirement that the nodal variables be subject to side
corstraints in order to maintain the d2fined boundary of the

o domain and ¢> ensure *that the slements neither distort q
fﬁ ' excessively nor overlap one anothar. For all except the o
&j simplest of probleas, these constraints may be even more ﬂ
: - severely nonlinear than the objective function, resulting in g
s the analysis becomaing prohibitively expensive [Ref. 2]. For H
lé this reason, mathematical programming in finite element grid i
 % optimization has been abandoned in favor of some equally ﬁ

reliable, yet far mcre computationally efficient grid opti-

e mization techniques. However, these early efforts with
ig mathematical programming were not totally in vain because
vﬁ they gave rise to the contouring techniques.
'g B. CONTOURING
v,
Eg Since mathematical prograaming is infeasible for grid
2 optimization, further investigations were conducted to
_ - suggest some guidelines to enable the analyst to construct a
'% grid with similar topological featur2s of <the numerically
iﬁ : optimized grid without the computational effort involved.
EX ' Turcke [Ref. 4], in employing mathematical programming in
the socluticn of some simple two-dimensiocnal elastecstatic
probleas, observed that there was a very definite element
"f pattern common among probleas involving high strain gradi-
;; ents and that the nodes of the numerically optimized grid
. generally ¢tended to be aligned along contours of some
;% response function being modeled. Consaquently, in performing
a analyses on grids whose construction was based on con*ours
E; derived from an initial analysis, it was determined that the

following provided grid characteristics in regions of high
strain gradients similar to the numesrically optimized grig,
but at a fraction of the coamputational expense:

3
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e cont-urs of displacement

e contours >f msaximum principal stress

e contours 2f msaximum shear stress

e contours of strain energy density (isocenacgetics)
e principal stress trajectories (isostatics)

Since the strain energy density is the response which is
consistent with the principle of minimum potential energy,
isoenergetics are the most commonly used contours along
vhich element edges are aligned [(Raf. 4]. However, there
still remains the gquestion of how to position the nodes
along the contours. Por this reason, isostatics have beccame
increasingly popular because the principal stress trajecto-
ries form a "flow net" of orthogonal curves which can guide
the analyst in the layout of the elamants [(Ref. 16].

Since contouring involves the radefinition of the grid,
as opposed to a grid refinement, its primary advantage is
that the enriched mesh is not constrained to <the element
configuraticn of the previous mesh. Therefore, there is no
limit to the amount of enrichment per <cycle which can be
performed and it is concaivable that an coptimum mesh could
be generated in a single cycle [Ref. 2]. However, while the
computational cost of repeated analyses is reducegd, the
preprocessing costs involved in constructing the contours
and redefining the mesh can become guite high, especially if
the contours ara complex. Algorithms for perforaming these
+asks in tvo-dimensional domains have been proposed
[Ref. &, 11], but they are not extendable <to three-
dimensional probleas. The major obstacle €for <+two- and
three-dimensional domains is <that it is often difficult to
constrain <the element edges *o the contours without the
elements becoming elcngated or distortad to the degree that
numerical inaccuracies result. Another difficul+y, not
addressed in the literature, is hdw the contour increments

30
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should be selected vwhen <the response function is non-
monotonic over the domain.

C. SELECTIVE REFINEMNENT

The most commonly employed grid optimization “echnigue
is that of selactive refinement. As its name implies,
sslected elements from a given mesh are enriched while the
original element grid remains 2ssentially intact. The
elements selected for refinement ars determined by the iter-
ative apglication of the solution-based criterion to indi-
cate vhich elements contribute most to the solution error.
The refinement can be performed by either +the h-versiocn or
the p-version, or even the combined version if so desired,
but the choica is most often predetermined by the capabili-
ties of the available preprocessor. Since the addition of
nev degrees-of-freedom over several iterations can guickly
enlarge the problem, it is advisable to perfora the initial
analysis with a reasonably coarse grid of optimally shaped
elements, that 1is nearly square quadrilaterals or nearly
eguilateral triangles. This is especially important in the
h-version where it is desirable ¢t> prevent the successive
subdivision »>f elements from producing elongated new
alements. One refinement technique which will ensure this is
ths so called "father-to-four sons" subdivision scheme in
vhich a single gquadrilateral or <triangular element is
replaced by four new ones by adding and conrecting midside
nodes on the edges ¢f the original elemen: as shcwn 1in
Figure 4.1, The major difficulty in selective refinement
arises when the addition of a noie along an edge of the
elament to be subdivided creates a higher polynomial ordered
edge for an adjacent element which is not tc be subdivided.
There results an incompatibility in the interpolation of the
dependent variable along this interalesment boundary. Such is
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Pigure 4.1 Scae h-Version Subdivision Schemes.

the case in the h-version scheme of Pigure 4.1 and it also
arises in the p~-version when two elszmants of different poly-
nomial order share a common edgs. When +this si%uation
occurs, +he additional degrees-of-freedom d0 1ot actually
represent degrees-of-freedom at all because they must be
numerically constrained to the polynomial interpolant of the
lover order. Such ccnstraints are usually imposed in one of
three ways: global ccanstraint equations may be written; the
constraints my be incorporated in the 2lemasntal basis; or
hierarchical forms may be used with the excess degrees-of-
freedon simply set to zero and condansed out (Ref. 2].

There are some other selective refinement <echniques
which do not require any major software modifications. 1In
+he h-version, the continuity problem may be circumvented by
employing any of the coarse-to-fina mesh transition schemes
for which all of the element edges remain of the same poly-
nomial order [Ref. 17: p. 210]. Howevar, it is impossible
to enmploy these schemes without permitting some ela2ment
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3 z
f} distortion, and the refinement must nearly always be "
‘é performed interactively rather than automatically. For the :
f: p-version, interelement continuity can be easily ensured by f
P eaploying variable-noded iscoparamestric elements, which %
 3 perait a single element to possess edges of differing poly- ﬁ
.ﬁ nomial orders [Ref. 17: p. 125} g
o The analyst must also exercise care when adding new g
. nodes to the boundary of the domain to ensure that the 3

appropriate boundary conditions are determined and applied.
Furthermore, if the bcundary is curved, ¢the coordinates of
the new node should be computed such that it is placed on’
the actual boundary and not necessarily on the edge of the
element being refined [Ref. 2].

The important advantage of the selective refinement
technique is that once an appropriate refinement criterion
has been determined, selecting candidate elements for

ag ek 0

AR

fa o 0,

Vi

R
A LA &

IE refinement in each cycle becomes straightforward. The
A refinement can then be continued indefinitely to achieve
~ . very high accuracy, but becaus2 the solution phase is
‘;g repeated for 2ach cycle, it is desirable to hold tha aumber
@j of cycles tc 2 ainiaum. Because th2 nodes from the previous
i;’ mesh remain fixed for each cycle, selective refinement is
» ideally suited for iterative solution methods. The solution
jg values obtained from the previous cycle, combined with
=3 interpolated values for the new degreses-of-freedom, provide
F& an excellent initial guess for the next cycls [Ref. 2].

| The major disadvantage is that the 1limited amount of
:& refinement which can be performed in each cycle may necessi-
ﬁi tate several cycles tc obtain an optimum grid. In addition,
t; if new degrees-of-freedom require interelement continuity
- constraints, data @wsanagement can bacome cumbersome unless
;I the constraint is performed hierarchically.
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D. SUBDOMAIN ISOLATION

One of the obvious disadvantages of the selactive
refinement technique is that the solution must be completely
repeated €for each <cycle when, in fact, the number of
degrees-cf-freedom added in each cycle may be few in compar-
ison to the total for the problem. 1In addition, the number
‘ of elements requiring refinement in each cycle may only
‘? account for 2 small portion of the dqomain. Although the
- refinement criterion has indicated whare <the grid is inade-

quate and the approximation is likaly “o be poor, the solu-
¥ tion is repeated in each cycle for those nodes where the
error is presumably small. Besides the apparent computa-
tional inefficiencies, ¢this shortcoming severesly restricts
the amount of refinement which can be performed in the
subregicns of interest since it is desirable to confine the
size of the problem within reasonable limits. An altecnative
approach is to reforsulate the problea for those subregions
. vhere refinement is necessary and to accept the results of
the initial analysis as an adsquate solution for the
remainder of the domain. The elesments requirirg further
refinement, vhich ccnstitute isolatsd subdomains of the
original problen, can generally be subjected to signifi-~
cantly greater refinement than woull otherwise be practical.
The solution obtained froa the initial analysis is then used
in imposing boundary values on those degrees-of-freedonm
located on the boundaries of an individual subdomain. These
can, 4in turn, be used to generate the boundary conditions
for any additional boundary degrees-of-freedom introduced by
the refinesent using an appropriate interpolation scheme.
This grid optimization technique, which the author terms
"subdcsain isolation®, has some further advantages over
selective refinement. The subdomain may be selected arbi-
, trarily small such that excellent results may be obwtained
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vith a single cycle using uniform refinement. Therefcre, the
difficulties involving coarse-to~fine <transition schenmes,
element elongation and interelemeat continuity can be
avoided. Furthermore, one can choosa as many subregions for
refinement as desired without creating an excessively large
problen.

The obstacle which may prevent this technique from being
readily accepted is the notion that, by imposing erroneous
boundary conditions on the subdomains, the convergence of
the finite element method to the =2xact solution in these
regions has somehow been tampered with. This aversion may be
somewhat abated by considering a simpls extension of
Saint-Venant's Principle [Ref. 18: p. 33]. Although the
conditions are not rigorously satisfied at the boundary,
wvhich may result 4in significant changes in the response
locally, the affect at some sufficiant distance away will be
negligible. The numerical evidence supports this premise.
#hile errors in the boundary valu2s may somewhat rastric:
the accuracy >f the dependent variable, great improvemsents
can be realized in the accuracy of its gradie=nts, which is
more often the goal of the optimization. Since the initial
analysis provides the boundary valuas for the subdomains, it
is desirable that its solution be as accurate as reasonably
possible. Fortunately, since subsagqua2nt refinements are not
performed on the original grid, tha initial analysis may
involve significantly mors degrees-of-freedom than in the
case of selective refinement.

E. HESH GRADING

The final grid optimization <technique ¢to be discussed
eaploys a mesh for which the eleament sizes are successively
reduced, according to some geometric sequence, tovards a
selected region of the domair. On2 might argque that mesh
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grading is not really an optimization technique sincz it is
most often applied on an "a-priori" basis cather “+han adap-
tively, and that it does not lend itself well to the itera-
tive application 2f a solution-based criterion. However, the
technique is simple to use and its implementation requires
fev softvare modifications. Furthermore, a solution-based
refinement criterion can be used t> give a measure of the
guality of <the mesh to indicate whether a more pronounced
grading may prove beneficial. Depending on the ssclution
parameter of interest, mesh grading can provide excellent
accuracy at a low analysis cost. This refinement method must
therefore be considered aamong ths grid optimization
tschnigues.

Por the less elaborate finita element preprocessors,
mesh grading is often the omnly refinement means available
vithout rescrting to a uniformly finer mesh involving many
more degrees-of-freedcm. The most common method of implemen-
tation 4in tw-dimensions is to first define the problem
domain in temms of a curvilinear gquadrilateral by selecting
four keynodes along the problem boundary. Then the boundary
nodes are spaced according to soms geometric sequence based
on the user-provided bias parameters vwhich determine the
density of <the nodes <towards selacted points on the four
quadrilateral edges. Pinally, curves are generated +o
connect ttke boundary nodes on opposite edges 5f the quadri-
lateral, thus producing a graded mesh. This process, which
can also be extended to three-dimensions, is the mesh gener-
ation scheme employed in tke finite element code GIFTS
[(Ref. 19].

The major disadvantage of mesh grading is that in order
to achieve sufficiently small elamsnts in <*hs region of
interest, the alements must grow successively larger away
from that region. This may be very undesirable, especially
if refinement is called for in mors than one region of the
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domain, in which case the mesh aust be generated and graded
by subdomains, thereby <complicating <the data management

involved.
Another disadvantage is that unless the dcmain rossesses
some special geometric symmetry, 2xcessive 2lement

KB w4 SPRMIENINT - RIRICIILIRE A WY

Pigure #.2 Graded Mesh for a Perforated Square Plate.

elongation will wuswually result if a highly pronouncad
grading is raquired. Some configurations are particularly
vell suited for refinement for massh grading such as the
classical perforated square plate problem ir solid mechanics
shown in Figure 4.2.
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V. JPRLIGATION 10 ONE-DIMENSIONAL PROBLEMS

ol e

-

Nov that the necessary tools for performing grid op*imi-
D, zation have been intrcduced, it is time to employ them in an
- attempt to obtain optimal solutions to some practical prob-
leas in engineering. An obvious starting point for such an
investigation is the one-dimensional boundary value problenm.
While most ¢f the fruitful research in grid optimization has
concentrated on problems of highar dimensions, <+the one-
~ dimensional problem is a very convenient device £or studying
W finite element grid ocptimization. Foremost, one-dimensional
{’ finite element models possess a unique connectivity in that .
adjacent elements meet at their end nodal points. Therefore, !’
refinement by the h- or p-versions, or by relocating nodal ;f
points becomes a trivial task, which does not involve any of ;f
the difficulties so frequently sncountered with higher ]
) dimensicnal probleas, such as pressrving interelement conti-
nuity and maintaining optimal element shapes. Furthermore,
one~dimensionmal studies can often provide valuable insight
to the solution of more difficult higher dimensional

-

»

ik i3 o]

P s 1t il

_ problens.
:‘ The primary concerns in the selection of the prchlems *o

-, te studied were as fcllows:

- (1) there should exist an analytical solution to provide
a means of reliable error analysis;

1

# (2) the solution and its resultarts should exhibit

! sufficiently high gradients so that the effective-
ness of the grid optimization is readily observed.
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Because of the complexity and a1 certain degree of arbi-
trariness involved in the computation of element residuals
and a-posterivsri error estimates, the solution parameter
variation is the refinement criterion of choice. There are
several solution parametars which are easily computed,
requiring =mizimal softvare changes to an existing finite
element code.

Furthermcre, for the one-dimensional investigation, it
vas decided to simplify the analysis by exploiting the
linear elements. While it is grantad that improved solution
accuracy may generally be obtained by employing higher ordec
elements, it will be assumed <that conclusions based on the
use of linear elements can be applied as well to elements of
higher pclynomial order.

A. ELASTIC QABLE PROBLEN

Consider an alastic cable unisar tension T, stretched
between two points a distance 2L apart. If the «cable is
supported by 3 Winkler, or elastic, foundation of modulus k,
and a concentrated load P is applied at the midspan, the
resulting deflection v(x), (0O £x L), is as shown in
Pigure 5.1, The analytical solution and finite elament
approach for this problem are presented in Appendix A.

The initial finite elsment analysis was performed using
ten linear elements of uniform length. From this initial
analysis the approximate distribution of the following solu-
tion resultants was cbtained over tha domain:

e the displacemant, v (the solution)

e the slope, Vv!

e the strain energy, U

e the strain energy density, SED (dU/dx)
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';j Figure 5.1 Trension Cable Deflection on Elastic Poundation.

3 :
:; Subsequent analyses were performed for finite element 1aodels iy
:§ using the same number of elements, but with the nodes redis- -
. . tributed to achieve approximately uniform variation of the i
24 above parametars over each element. Note that the strain :
7:j . energy refinement criterion producas =2lements of identical R
'ﬁ? strain energy content. In addition, the problem was solved

" employing graded element models of various adjacent element

7\' length ratios. The resulting elemeant models based on these

ﬁ refinement <criteria are shown in Pigure 5.2 (a-f). The

:; graded mocdel (b) fecr an element 1la2ngth ratio of 1.2 is

T' presented for comparison because it produced good overall

-;i © solution results.

‘3 As previously mentioned, th2 solution resultants of

fé primary interest are the maximum 3displacement, the maximunm

ff slope, and the integral of the displaca2ment over the domain,

VQ because they represent important analogous solu*tion results

;g in nearly all fields in which finite element analiysis is

3 often performed. The accuracy obtained in “hese values for

X' %

40

CARIY, %%

WXy

s

T AT - T e T e T AT m T m T T AT At T ettt Lt et L m o m e mia e me o mt At e et e e e e e .
~ ., ~ ~




1T 1T 1 T T T T T T

(a) Uniform

REENE S gL ] R
« a « 1 v ‘e ., N
el BRIl OO

. ..‘.“.
A d s

0 N | i 1 1 ]

(b) Graded 1.2

»

», R
LA T BN

AN

N I O I I L | _

(c) v

(0 0 1 I O [ 1

(@) !
ANIIRN NN 1

] (e) U
IR |

(£) SED

11100 |

(9) Umod

Uil il | | |

(h) SED

mod

Pigure 5.2 Tension Cable Refineamerts.
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b,
each of the refined models is presented in Table I. As can i;
be seen in Fijure 5.2, the strain energy and strain erergy -
density criteria prcduced extrems variations of =lement B
length while the <criteria of displacement and slope resul‘ Eﬁ
Ry
| “~
)
i
TABLE I o
Tension Cable Problem Solution Results .
Prcblem Parameters: L = 100 in,
k = 1 ESl
T = 1000 1b
P = 1000 1b
Varijation Percentage Relative Error
Refinement L
Criterion v (max) v' (max) L, vdx
Uniform -0.40 0. 36 0.12
Graded (1. 2) -0.19 0. 07 0.17
v -0.18 0.06 0.39
\A -0.23 0.05 0.87
o -1.03 0.05 3.58
SED -1.29 0.05 4.17
o (mod) -0.53 0.04 1.63
SED (mod) -0.51 0.03 1.48

in more moderate variationms. It can be observed in Table I
+hat the more pronounced refinements based on energy distri-
buticn result in greater accuracy £for the maximum slope but
with the accompanying severe penalty of significantly poorer
estimations o>f the wmaximum displacement and the integral
quantity. Por +his particular problem <the unifcrm grid
provides optinmal accuracy of the integral quancity,




therefore refinement cannot reduc2 its error. Yfet great
improvement in the accuracy of <ths maximum slope and mcdest
inprovement in the accuracy of <the maximum displacement can
be achieved with moderate refinements based on the displace-
ment and slops distributions.

One might assume, and correctiy so, that the ability of
the energy refinements to produce the best accuracy for the
maximum slope is due to the extrem=2ly small elements which
rasult in the area wvhere that quantity occurs. PFurthermore,
it would be correct to propose tanat the reason for *“hese
:etineleits producing poorer estimatas <han the uniform
model for the other two quantities of interest is that the
excessively large elements in the rsgions of 1low gradients
severely overstiffen <the model theres. It would <then seen
plausible tc improve the accuracy for the maximum displace-
ment and the integral quantity by redistribu+ing <*he nodes
in these regions to prevent such excessively large elements.
This was done by arbitrarily employing a grading scheme <o
+he three largest elements to produce the wmodified refine-
ments based on strain energy and strain energy density shown
in Figure 5.2 (g) and (h). As car be seen in Table I, such a
modification did indeed significantly reduce the -errors in
the wmaximum displacement and the integral, but it even
further improved the accuracy for the maximum slope.

One might conclude from Tabls I that the best overall
msodel wvas obtained using the graded mesh, and that since it
is easier to obtain, it should be deemed the optimal grid.
But this particular grading was chaosen for precisely that
reason and was presented osnly as a meaas cf comparison. 1In
practice, the selecticn of a grading ratio is somewhat arbi-
trary and msaking an adequate choica may be difficul<.

There is Justifiable confusion as to which cefinemen+
produced the "best" solution accuracy for this problem and

t raises perhaps the most important issue in the subject of
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grid refinement. Before any optimization process can be
pursued, the optimization goals must be explicitly defined.
Clearly, as is the case in this problem, +he designa<ion of
the cptimum grid would depend he2avily upon which of <the
three solution resultants is most critical to ¢he analysis.

B. TAPERED BAR PROBLEN

The linearly tapered bar under axial 1loading has
received considerable attantion anl was one of the early
problems for vhich analytical grid optimization was
employed. Consider a tapered elastic bar of length L and
modulus E, fixed at one end, with an axial load P applied at
the other, . for which the axial displacement u(x),
(0 € x <1, is desired. The cross-sectional area varies
linearly from A  at the fixed end to A, at the tip, as shown

e/

Pigure 5.3 Linearly Tapered Bar Under Axial Loading.

in Figure 5.3. The analytical solution and finite =2lement:
approach are presented in Appendix B.

1Y)

...............................

LT S S T . N S A A VR L)

/A A S A AR A AR S AR A A A e A pAR N I o o S o oS A e sop ads e SR




= o et 4 e S IR A P RO A/ i B B O e i AN S i as S S A A St e

vl One of the significant features of the tapered bar
problem is that the maximum stress can be very difficult to
model accurataly, and it is for precisely these problenms

X
[N i TR

EE X exhibiting 1large strain gradients that grid optimization
ﬁﬁ becomes most beneficial. Interestingly, the stresses
é; obtained at the element wmidpoints are exact £-. this
- problem, and the difficulty arises froam the inability of the
 $§ constant slope shape functions to model the nmaximum stress
‘§; occurring at the boundary. In exawmining this problem,
s Prager [Bef. 20] demonstrated analytically that when each
. element has the same strain energy content, the relative
ﬁﬁ error in displacement is identical for all the nodes.
,é Hovever, this phenosenon appears peculiar to this prcblem f
g2 and the au+<hor does not subscribe to such a measur. of an p
" optimum grid. Judging *he effectiveness of a particular *
ot refinement based upon the deviation or the mean value of the
;; pointwise errors generally temnds to be unfavorable to cpti-
‘&' mization procedures since they almost always introduce many
- ) mora nodes in those regions where the response is most
A difficult tc model. Hence, an improvad solution may have a
jﬁ : larger mean value of the pointwise errors [Ref. 3].
4 The critecria employed in the refinement of <the tapered
4 bar model are identical to those used in the cable problem

and their effects are shown in Pigure 5.4 (a-e). Two 2axcep-
tions are that nov the displaceament and strain energy

- criteria produce identical refinemsnts, and the graded model
24 chosen as the best overall is nowv based on a grading ratio
2 of 1.4, producing a more drastic rafinament than that of 1.2

for <the cable. This furt her dJdemonstrates the difficulty
involved in obtaining adequate element grids on an
wa-priori” basis.

- The solution results are presented in Table II and the
i a0ost readily apparent observation for <+his problem is the
2 : large errors in the wmaxiaum slops, which would severely

L% 45




(a) Uniform

(b) Graded 1.4

{c) uand U
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Tapered Bar Refinements.
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TABLE II
Tapered Bar Probleam Soclation Results

T e

P
v e e
a’ata®at tEY

Problem Parameters: L = 100 in

A = 1.5 in2 -

A= 0.5 in2 o

E = 10x10¢ psi .

P = 10x103 1b ;

varjation Percentage Relative Error N

Re ement - X
Criterion u(max) u' (max) udx A

G

Onifornm -3.80 -37.5 0.68
Graded (1. 4) -0.78 -4,1 0.14
u 3 1} -0085 -1006 0015

u! -1.81 =7.7 0.33
SED -6.54 -3.6 1.18

- P D D D @D WD D D D W WD D AREP YD R R D L b @D R RGP D AP AP GD WD WD D WD W W

SED (mod) -1.99 -3.6 0.36

underestimate the maximum stress. These results are based on
quadratic extrapolaticn of the exast slopes at the element
midpoints, since the linear shapas functions would produce
even poorer estimaticns of the maximum slope. As before, the
more extreme refinement based on the strain energy density
variation rrovides the most accurate estimation of the
maximua slope, but with the accompanying degradation in
estimates for maximum displacement and the integral of
displacemen+. Again, the large errors in these values may
be significantly reduced by employing a grading scheme to
restric: the size of the larger elements as shcewn in Pigure
S.4 (f). Unlike the previous problem, such a modification
has no effect on the estimate of maximum slope because of
+the extrapclation of the el ement midpoint slopes, which are
exact ragardless of the elsment modal.
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A different version 52f the tapered bar probien, " for
vhich the displacement and strain 2nergy criteria will not
produce identical <refinements, involves replacing the
concentrated tip load P with a linearly varying axially
distributed load q(x), specified by the values at *he fixed
end g, and the tip q.. The problem may be further modified
by reversing the bar such that the maximum slope occurs at
the fixed end, while the maximum 3displacement occurs at the

Pigure 5.5 Reversed Tapered Bar with Distributed Load.

free end as shown in Pigure 5.5. The case of the linearly
varying distributed load is included in the formulation in
Appendix B.

This problem was solved for a uniformly distributed load
using the same procedure as in the previous ¢wo problems.
The refinement models are presentad in PFPigure 5.6 and the
solution results in Table III. Tha observations are consis-
tant with those made in the previous probleas, but now one
would likely agree <that the refinement based on the strain
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Pigure 5.6 Reversed Tapered Bar Refinenents.
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TABLE III
Reversed Tapered Bar Solution Results

Problem Parameters: L = 100 in
A = 2.5 inz
- R R
=

q = 180 Eb/in
Varjation Percentage Relative BError
Refinement
Criterion u(max) 4t (max) 2dx

- e @ w wwm - - Crsoces SCocceeoes - - - -

Uniforn -5.5 -39.4 -7.1
u -2.0 -7.5 -2.6
u! -2.7 -8.1 -3.4
U -3.7 -5.9 -4.7
SED -11.9 -3.4 -15.3

energy density would represent an optimal grid, provided
that modifications are introduced to prevent any elements
from growing axcessively large.

C. GUIDELINES FOR ONE-DINENSIONAL GRID OPTIMIZATION

The most important lesson to be learned from <his one-

dimensional study is that the grid optimization procedurse is
necessarily dictated by the optimization goal, or the under-
lying purpose for performing the finite element analysis. No
elament grid can possibly provide optimum accuracy for evsry
solution resultant cf interest. In solving these simple
problems, a balance has been sought for achieving adegquate

accuracy for three of the more important solution
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resultants, vith emphasis on the maximum value of +he deriv-
ative of the dependent variable, which mere cftern is not
only the mcst important part of the solution but also the
most Adifficult to obtain accurately in finite =zlement
analysis.

The important grid optimization <techniques of intro-
ducing mcre degrees-of-freedom by subdividing +the elements
or increasing their polynocaial order have beer intentiorally
omitted in favor of <the optimization strategy of seeking
maximaum solution accuracy for a specified number of
degrees-of-freedom using linear elzments. This is because
such a procedure is not so straightforward in two-
dimensional problems where the number of degrees-of~-freedoam
are dependent on some geome tric considerations, which do not
appear in problems of one-dimension. Based on this choice of
optimization strateqgy, it appears the strain energy density
variation provides the most useful criterion for the adap-
tive refinement of the initial grid. VYet all three problenms
demonstrated some pathological results that can arise when
the elements are permitted to grow sxcessively large in the
regions where the strain energy density varies the least. In
applying a scheme tc restrict the size of the largest
elaments, no mention has been made of how ¢tc determine when
an element is excessively large. It has beccme the experi-
ence of the author that any ela2ment representing over half
of the dcmain should probably be considered t>o large, and
measures should be employed to restrict its size.

It would appear, at lsast for these classes of problsas,
that this difficulty of decreasing accuracy of a particular
solution parameter for successive rafinements can be ignored
by merely accepting the largest valua among the cycles as
the most accurate sclution result. PFor example, it was
desonstrated that the refinement based on straia energy
density provided significant improvement in the accuracy for
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ﬁ the maxisum slope but underestimated the maximum displace- .:

: sent even mor2 than the initial uniform grid. Assuming tha+t ff

; the linear elsment mcdel alvways underastimates such maxinma, ii

¥ the maximum slope for refined grid and the maximum displace- -4

§ sent for the unrefined grid could b2 accepted as the optimal =4
results of the analysis. The <fallacies of such a procedure

. are that, first, the refinement may not represent the

§ optimal grid as it has been defined and, second, for self-

g adaptive finite element codes the wuser is provided with the

“optimum grid® of the final cycle and the solution results
thereof.

Melosh and Marcal [Ref. 21] have proposed an alternative
use of the rafinement criterion based on strain enerqgy
density variation which avoids the problem of excessive
element growth altogether. Beginning with a reasonably
coarse unifora grid, those elements with the greatest strain
energy density variation are selectively refined by either
subdividing thea or increasing their polynomial oxzder with
the intrcduction of additicnal dejress-of-freedom. While
such a procedure does not equi-distribute the element strain
energy variations, it can reduce them all to some presgeci-
fied tolerance, such as a2 percentage of the average slement
2 variations for the initial analysis. Because this procedure
A is particularly attractive for gril refinement in probleas
of higher dimensions, it will be employed extensively for
the study of grid optimization for two-dimensional probleas
in the next chapter.
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VI. ARPLICATION IO IWO-DIMENSIONAL PROBLEHNS

.

Since investigators began working in the field of finite ;&
element grid osptimization in the early 1970's, nearly all of :E
the effort has been devoted to the development of a systea- E%

atic procedure for obtaining optimal grids f£orc two-
dimensional problems of elasticity. Even today <there are
several competing approaches to this problem and no partic- T
ular one has yet been overwvhelaingly accepted as the
preferred method 5f grid optimization. While it is the two-
dimensional problem for which most of these technigues have
been developed, their application to such can be much more P
difficult than for the one-dimensisnal case. Almos* invari-
ably wvhen pesrforsing grid refinement on two-dimensional
dcmains, the analyst is confront2d with the problems of
maintaining interslement compatibility and preventing severs
. element distcrticen.

In selecting an appropriate two-dimensional problem for
the application of =scme grid optimization techniques and a
comparison of their effectiveness, it is desirable that the
test case possess the following properties:

e the analytical solution should exist in order to
perform reliable error analysis

e the solution should exhibit sufficiently 1large
gradients to prcvide a meaningful measure of the
refinement effectiveness

o the idealization should have cne degree-of-freedom per
node and possess simple boundary c¢onditions *o
ninimize the computa tional effort involved in
repeated solutions
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by There are few problems that me2t these criteria, but o
5% Saint-Venant torsion of a non~circular section provides a2 -
r good test case. []
A.‘ P

4 .
N o
N A. PROBLEM DESCRIPTION ;*_1
~i .
: ¥
¢ Consider a solid circular shaft of radius "a" made from Y
. ‘
N isotropic material of shear modulus G and having a circular &;
o groove, cor keyway, of radius b along a generator of the f

4
8
3
>
8 b —X
N
\.
¥
1
N Pigure 6.1 Cross-section of Shaft with Keyway.
)
)
o shaft. The shaft cross-section is shown in PFigure 6.1.  The
3 shaft is subjected to an applied torque T which produces
7 an angle of twist per unit length 8. The problem may be
53 solved by finding <the Prandtl torsional stress func:ion ¥
» which satisfies the governing differential equation:
v 'y 2w
:: ax2+ay2+2_0 (Eqn- 6.1)
o+
§

s 54
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subject to the Dirichlet condition that ¥ = 0 on tte
section boundary. The torsional stress func+tion is defined

such that the shear stress T at any point on the domain may ;i
be expressed as: e
f;l-::

T =@ [(?)2 2 2] % (Eqn. 6.2) PR

X + (3y ) é

FPor this foraulation, the angle of twist O 1is prescribed, ?j

-
W

_-'. A ] _ll

rather than the applied torque T. The torgue is is calcu-
lated from the area integral:

T = 2391 v da (Eqn. 6.3)

The analytical solutions of Equations 6.1 and 6.2 are
derived by Sokolnikoff [Ref. 22: pp. 181-183] ard are
presented in Appendix C along with +the evaluation of
Equation 6.3 and a prascribed finite element formulation.
For this problem, the three solution resultants of interest
for the grid sptimization study are:

(1) waximum value cf the dependent variable, or torsion

function ybuax;

(2) maximum value cf the gradient of the dependent vari-
able (a gquantity proportional <*o maximum shearing
stress 7T max) ;

(3) the area integral of the dependent variable over the
domain (a gquantity proportional to the applied
torque T).

These quantities - the dependent variable, its gradient, and
an integral thereof - are selectead as representative of
entities vhese error one might wish <to minimize in a finite
elament analysis.
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B. CONPUTER INPLENENTATION

As can be seen in Pigure 6.1, the domain of this problem
is symmetric about the x-axis, therefore the finite elamenc
solution need only be obtained for the upper half of the
domain. Por all of the solutions presented herein <the
problem geometry is defined by assigning the dimensionless
ratio, b/a = 0.4, and an acceptable upper limit on the anal-
ysSis cost was arbitrarily chosen t> be that corresponding to
approximately one hundred nodal points. The coamputation and
assembly of the finite element matrices and solution of the
resulting systea of equations was parformed using the steady
state heat conduction operations of CAL-NPS [ Ref. 23]. This
group of subroutines comprises an efficient finite element
code for solving Poisson's equation in two or three dimen-
sions and has the additional advantage of permi*tting
variable-noded isoparametric elements.

Since there was no readily available interactive prepro-
cessor which lent 4itself well to adaptive mesh refinament,
the author had 1no choice but to create his own. Since the
problen domain is simply connectad, the automatic mesh
generation was performed employiny inverse mapping of a
single cubic isoparametric element of the serendipity family
onto the problem dcmain [Ref. 24: pp. 228~-229]). Mapped
boundary nodes vwere repositioned to conform to the actual
domain boundary and additional nodes generated during the
refinement process wvere mapped using the same procedure.

Since the finite element code salected for this investi-
gation proviied osutput oanly for the nodal values of the
dependent variable, it was coupled to the author-'s pos*pro-
cessor. Such a postprocessor is necessary in the op+imiza-
tion process for computing nodal values of shear stresses
and strain enargy density, element contributions to torque
and total strain energy, and exact rasults from <*heory.
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;; C. ASYMPTOTIC ERROR ANALYSIS POR UNIFORM EZEFINEMENT i
o The ccncept of asymptotic convargence rate for uniformly j
- refined grids wvas presented in Chapter 3. When <he number of i

iﬂ uniformly distributed degrees-of-freadom is sufficiently
large, the log-log plot of the relative energy error versts
the number of degrees-of-freedom is approximately linear in
the asymptotiz range. The slope of this line represents the

l" ‘4 ‘A.A .‘

’g- asyaptotic rate of ccnvergance in 2ns2:zgy.

:?f It so happens that relative ercor in the <%orque T of
L this prcblea is equal to the r2lative anergy error and
2 therefore exhibits this linear asymptotic behavior on the
§§ log~log plot against the number of uniformly distributed
f? degrees-cf-freedon. Fortunately, the other two solution
f? rasultants of interest behave similarly. This will prove
‘ﬁa very beneficial in performing the error analysis <for this
{S two~-dimensional study for two reasons. PFirst, because it is
ﬁ: unnacessarily difficult ¢to construct an optimal grid with
b the same nuaber of degrees-of-freedom as a uniform grid, the

linear behavior of the solution resultants in the asymptotic
range on the log-log scale permits dinterpolaticn fcr any
nuaber of degrees-of-freedom. Then the solution results for
a uniform gril of the identical number of degrees-of-freedom
provides a reference for comparison to determine the effec-

or e g B P
WSS PISY | SR NI ION

N

AN tiveness of the optimization technique. Sacondly, if the
B3 convergence rate of a particular solution resultant 1is
b
- extremely slow, as is often the casa for paximum stress, it
o becomes diffizult to gain an appreciation of the true effec-
E: tiveness of the optimization. For eaxample, an crder of
e
.ﬁ} magnitude reduction in ¢the relative solution error may
- tequire an order of magnitude increase in the number of
e, degrees-of-freedom using uniform refinement, but relatively
. few additicnal degrees~of-freedom using an optimizazion
2 technique. Therefore, it will be enlightening t5> extrapolate
Ag
N
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Pigure 6.2 Oniform Linear and Quadratic Element Grids.
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;
2N g
; the relative srror versus degrees-of-freedoam curve <*c obtain ;7
? a rough approximation of the number of degrees-of-freedom 1i
: necessary to obtain solution accuracies similac +¢¢ the ;:
! optimal grid, but using successively finer uniform grids. Of ;i
? course, this is only an 3stimation and ignores such reali- &t
~i ties as numerical ill-conditioning and coamputer round-off If
‘ error. ;,
'j A uniform grid is one for which all of the elements are {g
X of the same size h and the same pclynomial order p. Clearly, e
‘E it is impossible to cbtain such a grid for this particular

domain using discparametric mapping, but a n=sarly uniform
grid may be constructed in which the elements are of approx-
- imately the same size. Such uniform grids are shown for the
. cases of linear quadrilateral elements and quadratic seren-
dipity elements (Pig. 6.2). For this goometry, the unifora

; grid is not uniguely defined for a specified number of N
N elements. This is because, in performing isoparametric i:
mapping, thera must be specified four keynoda2s on the actual j?
° domsain bcundary to correspond t¢ the four corner nodes of
2 the parent sgquare. Since this domain has only three “E
] '..'ti
5 &
A Cg— - -~
3
Ry
: —— - i:
3 y
- Pigure 6.3 Keynode Placement for Isoparametric HNapping. .
. T
) 7
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vertices, the placement of the fourth keynode is at the
discretion c¢f tha analyst (Fig. 6.3), and can have a no*ice-
able effect on the solution results.

The asymptotic error analysis wvas performed for the
three solution resultants of interest using uniform grids of
linear and quadratic eleaments. Th2 results are presented in
Pigure 6.4. All of the solution resultants behaved as
predicted with the exception of the maximum torsiom function
value using linear elements, m(l). It appears that the
accuracy of this particular parameter is very strongly
dependent upon the keynode placement. The curve constructed
in PFigure 6.4 represents an averige for sevaral keynode
positions.

While Piqure 6.4 is intended primarily %o serve as a
reference tool for future analyses, it provides some inter-
esting irformation:

(1) Por the cases of maximum torsion function value and
applied torque (and anergy), the asymptotic rate of
convergence using quadratic 2lements is more than
twice that for linear elements.

(2) While the error in torque for the guadratic case is
alwvays smaller than <that for tha linear case, +he
linear grid may provide better accuracy for the
maximum torsion function value ybnax in the pre-
asymptotic range.

(3) Both accuracy and convergenc2 rate in the maximunm
shear stress are only minutely greater for the quad-
ratic element grid than for the linear one.

However, for this last observation, the point must be made
that for the linear element grid, the maximum shear stress
vas obtained by quadratic interpolation rather than from the
linear shape functions. While this will greatly improve the
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3] accuracy cf the maximum shear stress approximation, it will
have no effect on its rate of convargencs. Therefore, if
obtaining an >ptimal estimate of the maximum shear was the
purpose of the analysis, there is much to be said on behalf
of linear elements besides their computational efficiency.
O0f course, this observation is bassd on uniform grid refine-
ment, which would rarely compete favorably with the optiami-
zation techrijues tc be examined.

The reason that the rate of convergence in maximum shear
stress is so poor using uniform refinement for this pr-oblem

Ke)
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e o

T (A)=0

B g,

R B
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T(B) =Thax b
; B
¥
x
o
- Pigure 6.5 Stress Distribution on Shaft Keywvay.
P
Y can be seen in Figure 6.5. The shaar stress varies greatly

over a short listance, by increasing from zero at point A to
its maximum value at point B. As a result, there exists a
region of excessively large strain gradients along the
keyvay which severely hinders the rate of convergence when a
uniform grid is employed. If the keyway radius were allowed
to approach zero producing a singularity in the solution, it
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would 1likely be necessary to employ even higher crdsr
elements via the p-~version in ordar to achieve convergence
using unifora refinement [Ref. 1].

D. PROBLEN SOLUTION WITH GRID OPTINIZATION

The finite element solution of the torsion problasm will
be obtained employing the followingy grid optimization tech-
niques as presented in Chapter 4:

e Ccentouring
- contours of the torsion function; linear elements
- contours of shear stress; linear eleaments
- contours of strain energy density; linear elements

e Selective Refinensent
- h-version; linear elements
- h-version; quadratic elements
- p-version

e Subdcmain Isolaticn
- linear elenments
- quadratic elements

e Hesh Grading
- linear elements
- quadratic elemerts

1. geoptouzing

The ariginal finite element analysis wvas performed
on a uniform grid of 98 1linear elsasnts, 78 nodes, and 72
degrees-of-freedoma. The finite element solution provided the
nodal values of the ¢torsion function ¥ , £from which the
conventional nodal resultants of shear stress T , and
applied torque T wera computed. Based upon *he maximum and

...............................




ey

< s

A v, oo

“a
-

& h

¥

L

3L LAY D

=)

e S A

minimum valuss obtained for each parameter, along with
consideration for their values aloag the boundary, the
contours to be used for nodal placament in sach case were
selected. The number of contours for each case was chosen <o
maintain approximately the same number of degrees-of-freedom
as for the initial analysis.

‘The points for each contour value selected were
obtained by linearly interpolating between the nodal values
of each parameter obtainad froa ths initial analysis. The
contours were constructed by smoothly connecting the points
by hand. The element layout alon3 the contours pos2d the
most formidable problem because th3a coarse-to-fine <tran-
sition often resulted in severe elament distortion, and it
sometimes became necessary to degsnarate guadrilateral
eiements into triangles wvhen the transition was acuts. It
vas decided that the optimal element shapes should be
preserved aleng the contours in regions of highest strass.

The contours obtained and the corresponding grid are
presented for each of the following solution resultants:

e torsion function (Fig. %.6)
e shear stress (Fig. 6.7)
e strain energy density, SED (Pig. 6.8)

The resulting grid for each of the response <function
contours produces smaller elements in the ragion of greatest
stress near the bottom of ¢the kayvay and acound the
periphery of the shaft where the stress is moderately high.
Consaquently, the elements near tha center where the strass
is zero are larger. These, of course, arce the desired
effects for an optimization criterion. A somewhat unusual
behavior is observed at the point of intersection of the
keyway and the shaft boundary whers the stress is also zero.
Apparently, the shear stress graiient is larger than the
gradients in torsion function and the strain energy deasity,
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Pigure 6.7 Contouring for the Shear Stress Function.
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resulting in smaller elements being produced in tha+t region
by the shear stress criterion (Pijy. 6.7) than by the other
criteria. While all of the grids possess to some extent the
desirable features <¢f an optimal grid, the strain energy
density function produces a far more drastic refinement
. tovards the point of maximum stress, while the others repra-
sent more moderate refinements. 1In fact, the SED contours
are sc dense around the keyway that +the <coarse-to-fine
element transition scheme must include degensrate quadrilat-
erals to avoid violating the contours. Ncte also that the
coarse-tc-fine transition for the torsion function rasponse
is fairly smooth whereas the +transition for <+the strain
energy density and shear stress r2finement tends to produce
distorted and elongated elements. TIhis is aggravated by the
fact that, unlike the torsion function, the shaar stress and
strain energy density are not monotonic over the domain.

The solution results obtained for each grid are
presented in the upper half of Table IV. At first glance,
the results of the refinements are disappointing in compacr-
ison to the parenthetic values obtained using a unifora
grid. While all three criteria produce improved accuracy for
the maximuam shear stress, the errors for the maximum torsion
function value grow extramely large. Recalling the observa-
tions made for the cne~-dimensional study, it would follow

. that such behavior is probably due to the wunusually large
elements near the center of the domain. The entries in ¢he
lower half of Table IV reflect the drastic improvement
obtained by simply introducing a faw additional degrees-of-
freedom along <those element edges which grew exceptionally
long during the optinmization process, +thus increasing their
polynomial orjer from one to two. Not only did this modifi-
cation reduce the 1large errors for the maximum torsion
function estimation, but modest improvements were 2a1lso
obtained in the estimations of the other resultan*s as weil.

~ -

............ ~ o
B,
PRI,




*E>posi-Jo-sasibap
JO Isqunu 2wes JO PTIH IedUTT WIOJTUN JOJ SenTes DTIayjusredy

(99°L-) 96°1- (08°*6-) S9°0- (90°0) 8Z°0 LL 8oL 78 (pow) aias

(90°2-) 29°¢- (z8°9-) 8Z°2Z- (L0O°0) LL°0~- 19 68 99 (pow) [

(s9°1-) 61°1L- (oL*s-) nZ°L~ {90°0) 6z°0- 6L oit 8 (pow) $

- T e En A o . S, W G AP T T h W WS W G AP AS D W S W W WS Gh G R SRR ER YR R AR TR G TR G DGR R A G S R W @R e e e

(zg*1-) 1n°n- (02°9-) L8 €- (90°0) 9g°0t 0L (1] z8 aas

(zz°z-) 8°2- (0z°L-) On-2Z- (80°0) n°-2 9G "8 99 L

(oL*t-) 88°1- (00°*9-) 1G - (90°0) 0°S €L zoL 78 \>

TTes /1 Tes / xemy ---mmu%--- 300 SDON WeTd SIn03UD
*ON “oN *ON

130113 9Af3IeToy ebejued.ed

s3Tnsey uoyinTos Hutrinojuod
AI 3T74Y1

1S

T
A
PP N

S -
oo

.:‘ ~
YR

P N

ST

R
-'! -‘: e

69




e N
oL bl

i
(SN

s’

S P S LDE

LoDl

Lt

AR A s

A A

Once agair, the selection of <the optimum grid would depend
predominantly on the optimization goal of the analysis, but
one would likely agree that the strain energy density varia-
tion along with some modification to restrict excessive
element growth provides the superior rsfinement criterionm.

An additional word of caution is in order for the
contouring techniques for grid optimization. Because the
problem must be completely redefined <£from scratch af+ter the
initial analysis, the preprocessing cost can become enor-
mous, eospecially if several cycles are employed +to obtain
more precise contours as some authors suggest. Unless there
is available an interactive automatic mesh generator based
on this technique, such as the on2 described in Reference
(Ref. 11]), ontouring should be abandoned in favor of some
more easily isplemented grid optimization techniques
eaploying similar refinement criteria.

2. Selsect.ve Refipemept

The simplest way to avoid the problems encountared
in the contouring techniques is to perform the initial anal-
ysis on a reasonably coarse grid and then to selectively
refine those elements over which the strain energy density
varies the most. The critical concern then arises as to how
coarse the initial grid should bs. If the preprocessor
employs the necessary constraint conditions to permit the
“father-tc-four-sons" element subdivision scheme directly,
or if hierarchical refinement is employed, then the initial
grid should be Jjust coarse enouah to adaquately define the
problem and to limit the numbar of refinement cycles neces-
sary. The latter becocmes even less >f a concern if iterative
solvers are employed. If, on the othar hand, coarse-tc-fine
transition schemes are used to implement the h-versicn or
only 1lcw pclynomial order elements are available in the
p~version, then the initial grid must be sufficiently fine
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SO as not ¢o0 restrict severely the amount of <refinemen<«
which can be performed in any given cycle. Unfortunately,
the conditions under which this investigation was coaducted
vere those of the latter.

a. The h-Version

Selective refinement by the h-version wvas
performed on both 1linear and quadratic element grids. For
the linear ccse, the initial analysis was performed on a
uniform grid >f 55 elements, 72 andsdes, and 50 degrees-of-
freedom. The 4initial quadratic analysis employed an eight
element uniform grid of 37 nodes and 20 degrees-of-freedon.
The reason far such a great disparity in +the number of
elements for the initial analyses is that subdividing a
gquadratic element introduces many more degrees-of-freedom
than the subdivision of a linear ela2meant. These numbers were
chosen to provide approximately the same number of dagrees-
of-freedcm for the optimum grid of tha final cycle for each
case., The initial analysis is performed and those elements
over which the strain energy demnsity variation is signifi-
cantly greater become candidates for refinement. The refine-
ment is performed by subdividing each candidate element into
four new ones by constructing a <coarse-to-fine transition
zone o©of "buffer" elements around the refined regicn.
Successive analyses and selective rafinements are repeated
until the maxiaum element strain enargy density variation is
approximately that of the remainder of the grid. The process
is further improved wvhen the nodal values of the s+train
energy density are used to indicate the general direction in
which the refinement is to proceed. This permits multiple
refinerents in the same cycle, thereby reducing the number
of cycles required tc arrive at th2 optimal grid. Por *“his
problenm, the linear grid required <tvo cefinemen<t cycles
wvhile the gquadratic grid required zthree cycles. The
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selective refinement process is depicted in Pigures 6.9 and
6.10 for the linear and quadratic element grid,
respectively.

The solution results for each selective refine-
ment cycle are presented in Table V. Ths most impressive
observation t> be made is the significant iaproveaent in the
saximum shear stress estimate for successive cycles. While
there is also modest imprcvement in the accuracy of the
torque estimate for successive cycles, when compared to the
estimate cbtzined frce the uniform grid of <the same nuamber
of degrees-of-freedom and polynoaial order, the refinement
estimate ¢f torque is slightly poorar. This is because addi-
tional degrees-of-freedom are being introduced in only a
small region of the domain but the torjue, and energy, are
global quantities. The author has no satisfactory explana-~
tion vwhy the estimate for the maximum torsion function
inproves for successive refinements of the linear grid but
not for the quadratic case. Howevar, as has already been
mectioned, this particular solution parasmeter appears very
sensitive to such prcblem variables as nodal placements and
elenent shapes; hence, its behavior is difficult <o predict,
even vhen the refinement is appliad to regions rsemo%te from
the point wvhere the smaximum torsion function value occurs,
as wvas the case in these examplas. Por computational
reasons, it is desirable to restrict the number of refine-
aent cycles t9 a necessary ainimuam. In this example, the
quadratic grid required an additional cycle over the linear
grid but this is because it is nacessary to perform the
initial quadratic analysis  using far fewer degress-of-
freedoan. Therefore, the early cycles of the gquadratic anal-
ysis actually represent comparativaly smaller probleas.
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b. The p-Version

8

Before ccntinuing to tha naxt optinizétion +ech-
nique, it is worthwhile to take a gquick 1look a* selective
refinement eaploying the p-version. Because the finite
elenment code used in this investigation only provided for

- element crders of one and two, tha advantages of the method
cannot be fully realized, but the affects of a single cycle
can be examined.

" Begirning with <three wuniform grids with
differing numbers of linear elements, the iritial analyses
were performed. 1In each case, the elsments over which the
strain enerqgy density varied the most were transformed from
4-noded Lagrangian elements into 8-noded sererdipity
elements by the addition of midsiie nodes. The element
grids are shown in Pigure 6.11 and the asterisks denote
those elements for which the polyanomial order was increased.
In this example, the number of 2lements to be refined in

- each case was chosen so as to achieve approximately the sanme
2 nuaber of degrees-of-freedom after 2 single cycle.
- The solution results are shown in Table VI.
3] Significant iasprovements in the 9sstimate of the maximum
) shear stress vere achieved for each case. An improvement in
tke estimated torgue was also realized for all three casss,
but was more noticeable wvhen the number cf refined elements
vas larger. This is because gquadratic alements are far
superior to linear elements in the modeling of dintegral
quantities, as observed in Figure 6.%. Somewhat disturbing
is the increased error in the =2stimate of the maximum
torsion function value observed in two of the three refine-
ments even though the elements in the vicinity of its occur-
rence were not affected. Again, this is likely attributable
+0 the unusual behavior patterns >5f this gquantity already
discussed.
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Pigure 6.11 Selac%ive Refinement Employing p-Version.
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In order to perform aiditional «cycles of the
p-version, it would be necessary to alter ¢the refinemen<
criterion slightly. Because the element sizes do not change
for successive cycles, the need for refinement would neces-
sarily be based on strain enerqgy density variation between
nodes rather than over the elements.

Selective refinement employing the p-version is
most efficiently iaplemented hierarchically, in which case
it acquires some attractive computational advantages. I%t is
unfortunate that time did not permit further investigation
here, but the nesd for future research is evidernt.

3. sSubdomajin Isclation

The refinement criterion and initial procedures in
eaploying subdomain isolation are ijentical to those used in
selective refinement. After the <candidate elements for
refinement are identified, they ara coapletely isclated froa
the remairder of the domain and solved as smaller subdomain
problems. The advantages of the tachaique ace :twofcld. By
isolating the elemants *o be refined <the solution 4is not
repeated in each cycle for +hos2 2ls3ments for which the
initial analysis is assumed adequats. Purthermore, by elimi-
nating wmost of <the degrees-of-freedom over the entire
domain, the subsegquent refinement of the isolated region can
be much greater than would otherwisa be practical.

As before, the *echnique was applied to both linear
and quadratic uniform element grids. Those elements of the
initial analysis over which the strain energy density varia-
tion was exceptionally large were isolated to comprise the
subdomain in 2ach case. There were three such elements of
the initial linear grid and two fer the guadratic grid. Each
subdomain was uniforamly zefined to achieve approximately <*he
sane number of degraees-of-freedom as the initial analyses.
The process is depicted in Pigure 5.12 for *ke linear qrid
and Pigure 6.13 for the quadra%ic case.
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(b) Refinemant of Isolated Subdomain

Pigure 6.12 Subdomain Isolation - Linear Elements.
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; Pigure 6.13 Sabdomain Isolation - Quadratic Elements.
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In performing subdomain isolation <the gecverning
equations remain the same, while only the domain and <the
boundary conditions are altered. When the subdomain
boundary has nodes common to the iaitial grigd, then the
toundary values for those nodes 2re simply the solution
values obtained from the initial analysis. The boundary
values arising from <+he introduc+tion of new boundary nodes
during the refinement process must be generated by interpo-
lation of the soluticn rasults of tha initial analysis. One
of the options for an interpolation scheme is simply to use
+he shape functions of the unrefined elements. This may not
ke desirable in the case of linear elements, so a higher
order interpolation may be employed. In this exampie a third
order Lagrangian polynomial was convenient £2r the linear
case since there are four nodes from the initial analysis
along the right-hand boundary of the subdomain. Since there
are only two such nodes oa the upper bouadary, it is neces-
sary to "borrow" scme adjacent nodal values from the
discarded portion of the domain in the generation of new
boundary values using higher order interpolation.

The solytion results presented in Table VII are
quite remarkable. In a single cycle, the solution accuracy
for the maximum shear siress has increased by a full order
of magnitude. No other optimization technique examined in
this investigation produced such improvemen:s. Note “hat
the higher order polynomial interpolation for the boundary
values did improve the solution results for the linear case.
One of the disadvantages of this technique is %+hat <+he
refinement can produce no improvement in the estimation of
local quantities outside the subdomain. As in this example,
the estiaation of <he maximum torsion function value
obtained from the initial analysis must be accepted as the
optimum since it occurs outside +th2 subdomain. Furthermore,
since i+s value is predominantly affected by refinements in
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‘& regions of high gradients, it is doubtful that isolating a
¢§j new subdomain using the elements adjacent to its point of
" occurrence wvould noticeably improve its accuracy. However,
;}} since the torjue is a globally computed gquantity, refinement
gd will improve the accuracy of its contribution from the
VS subdomain resulting in improvement 5f its accuracy overall
iy as observed in Table VII. It is this strictly local nature
ﬂt; of the subdomain 4isolation technigue which restricts its
:&f applicabili+y. But if +he optimization goals are well
' defined and it is understood under which conditions and for
2 vhat parameters it is effective, it <can be an ex:tremely N
H\ poverful grid optimization technigue. 3
4. Mesh 3zading 2
2 While mesh grading is nearly always performed or an !
f "a-priori" basis, it may also be employed adaptively to
%}; provide a simple grid optimization technigue. After an N
‘ . initial solution has been obtainad, the analysis may be
By repeated using various coambinations of grading ratios in
5; order to achisve a more uniform distribution of the element
g% strain energy density variatioms. Here the grading ratio
I relers to tha constant ratio of adjacent element lengths
o along a boundary of the domain to which grading is applied.
j%‘ Thare are several drawbacks to the techrique, <the first

b

being that a good <combination of grading ratios may be
difficult to obtain in a reasonables number 9£ cycles. The
other difficulty is that if smaller elements are desired in

-

L
3
x
P

;z moce than one region the domzin must be refined and
ﬁ# constructed by subregions.

& Unfortunately, +the domain of +his problem is not
¥ well suited for mesh grading since it possesses no favorable
L, geometric symmetry. Hence, the resulting elemant elongation

9

and distortion would become severe for larger grading
razios. Por simplicity, “he nodal placements will be biased
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oniy along the two domain boundaries adjacent to the point
of maximum stress and the same grading ratio will be applied
for each. This will result in small slaments near the botton
of the keyvay and large elements along the periphery of <%he
shaft. While this is not the most desirable grid topology,
it will produce a more uniform distribution of the element
SED variations.

The technique was applied to both linear and quad-
ratic element grids starting with i uniform mesh and succes-
sively increasing the grading ratis until *the elements along
the shaft periphery exhibited SED variations as large as
those for the elements along the keyway. In both cases this
condition occurred beyond the point where excessive element
elongation would be expected to produce numerical inaccura-
cies. Graded meshes for selected grading ratios r, are showa
in Figure 6.1 for linear elements and Pigure 6.15 for quad-
ratic elements. The solution r2sults are presented in
Table VIII. As can be observegd, +the maximum shear stress
estimate improves for each successive increase in the
grading ratio. However, the cost of such improvement is the
accoapanying degradation in the =astimate of the maximum
torsion function value. This is to be expected since the ¢two
maxima occur at different locations in the domain and there-
fore decreasing the size of the elaaents in the vicinity of
ons will necassarily increase the element size rear the
other. Note that <this degradation is not nearly so severe
for <the quadratic elements, and <+the accuracy actually
improves for a low valu2 of the grading ratio. This is
because the higher order interpolation can better accomodate
larger e2lements. POor both linear ani quadratic element grids
the optiamal accuracy in torgque estimation cccurs for the
moderataly graded meshes.
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TABLE VIII
Hesh Grading Solution Results

Parcentage Relative Error

Gradin
Ratio J ybnax Taax /GO T / GO

-wmme ow - . g = - BB oo SB a2 2 mme e oo

Linear EBlement Grids ( 78 ela2ments, 98 nodes,
72 degrees-oi-freedom )

1.0 0.060 -6.06 -1.77
1.1 0.161 -2.63 -1.56
1.2 0.389 -1.03 =177
1.3 0.679 -0.484 -2.20

Quadratic Blement Grids ( 28 elements, 107 nodes,
76 degrees-of-freedonm )

1.0 -0.0093 -5.26 -0.0116
1.1 0.0063 -1.85 -0.0064
1.2 0.0162 -0.606 ~0.0091
1.3 -0.0246 -0.413 -0.0179

It is likely +that some of the error is a<ttribu+able
to the numerical ipnaccuracies du2 to element distortion.
When applying a grading technique the analyst shculd seek an
equitable balance between the refinement criterion and the

grid topclogy.
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Finally, since the grading ra%io is usually aoplied
to the nodal separation rather than the element edge
leagths, it is advisable to reposition the aidside nodes of
quadratic eleaents so that they lie near the center of the
element edges. This will generally improve the accuracy of
all the solution parameters, especially if the grading is
somewhat extreme.

E. GUIDELINES FOR THO-DINENSIONAL GRID OPTINIZATION

In order to prcvide some guidaslines for obtaining
op~imal finite element solutions for ¢two-dimensional prob-
lens it is helpful tc compare the solution results obtained
for this problem employing the optimization techniques
available. Such a cosparison is presented in Table IX. The
upper portion is for those technijues for which the ini+ial

analysis vas performed using linear elements and the lower
portion using quadratic elements. Note that all of the grids

. employ approximately the same number of degrees-of-freedonm,
wvhich was the chosen aeasure of analysis cost ian this
investigation.

In making this ccaparison it is important to understand
just how significant a change in error actually is. If the
convergence rate of a solution parimstsr is very slow, even
a small reduction in the error may require many more
degrees-cf-freedon. For this reason, the numbers in paren-
theses have been included by 2ach arror to provide a rough
approxinaticn of the number of dejre2es-of-freedom required
to obtain similar accuracy using a unifora g=-id of the sanme
nunber of degrees-of-freedom and el2ments of the same poly-
nomial order as the initial analysis. In some cases, the
analyses were no* actually performal but instead the numbers
in parentheses were obtained by extrapolation of +the error

versus deqrees-of-freedom curve (Fig. 6.4), and ignoring
round-of£f and ill-conditioning effescts.
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The first observation to be mais from Table IX is tha+
{t while all of the optimization techniques produced sigrnifi-

.

{ cant improvements in the accuracy of the maximum derivative -
@ﬁ quantity 7Tmax, the same cannot be said for the maximum ?
ﬁ; soiution quantity max and the integral quantity T. One j
é’ aight even conclude <that grid optimization is not cost é

effective in the ccmputation of <these values since the

L)

strain energy density varia+tion [Ref. 11]. The more likely
source of increasiag error for the optimal grids is the
element distortion which was encountered in all but two
tachniques, selective p-version refinement and subdomain

lﬁ uniform grid provides estimates which are nearly as accu-
Ei rate, and in some cases better, than the optimum grié. This
_i; conclusion would be correct if <+he solution maximum and its
' integral were the only -esultants of interest in performing
53 the analysis. Since the purpose of this study was to find an
S: optimum grid which produced acceptable errors for all the
;2 resultants, the ynifora grid is clearly inadequate.
- Moreover, since in the majority of engineering problems it
%{ is the derivative <c¢f the solution variable which is of
?: primary interest, it deserves special consideration in
55 making this compariscn.
. Furthermore, one might conclude that the reason the
N . error in <+the maximum solution variable is larger for the
f; optimal grid is because the strain enargy density variation
7s criterion alvays concentrates the degrees-of-freedom in the
_ vicinity of the maximum derivative value, which in this case
*55 does not coincide with that of the maximum solution variable
1§ value. However, such a conclusion is incorrect and might
erroneously lead one to attempt refinement where the maximum
a solution variable occurs in an effort to improve its esti-
i@ mate, Other investigations have ravaaled that in nearly all f
,SE cases the maximum accuracies for all three solution resul- }
s tants are obtained by refinement in the regions of highes+ i
kY
L

91




VIS

S T N TR

o S, b S bt

P

Farcd. Padedody

= ';b-.'*i.; B

us‘hli": g A' g, R ;:;-‘_

; “"'.; ":‘;_'_;4 a

e
ot e 3

§ e

& o

~ o

B
N

kL

N A L ok W B0 R Ao G A e A o ol e S e S e B e S Seeciichin Seciie

isolation. Such distortion can be avoided but would require
more sophisticated refinement techniques thar were available
for this investigatica.

A reasonable choice for <the optimum grid in Table IX
would be one¢ for which all three values in parentheses are
as large as reasonably possible taking into consideration
the nuaber of <cycles required to provide such accuracy.
Based on such a criterion, +he author is partial to subdo-
main isolation for the solution of two-dimensional problems
using linear elements, and selective refinement for firite
element solutions using quadratic elements. Clearly, before
a concrete recommendation could be made for a wide range of
applications, many more problems would have to be studied,
but these two technigues vere fairly simple to implement for
a standard finite elemert code and the accelerated conver-
gence of the solution resultants of interest was impressive.
Conceivably, even greater solution accuracies wmight be
obtained by using two or more >f these techniques in
combination. _

Here dgain the crucial element in selecting *he proper
optimization strategy is the precise definition of the
purpose for which the finite elament analysis is ¢o be
perforamed. The results of Takle IX tend <to support the
following recommendations and conclusions:

(1) Regardlass of the optimizatiocn strateqgv chosen,
higher order elements are indispensable if high
accuracies for integral sclution gquantities are
desired.

(2) If the maxinmunm derivative of ths solution variable
is of greatest concern, the strictly local refine-
ments employing subdomain isslation <+techniques can
provide exceptional accuracy £or a minimum number of
refinesent cycles.
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ol (3) If the maxiaum solution variable value occurs at a
?h point in the dcmain removed from the vicinity of the

maximum derivative value, then its best estinmate
'52 will 1likely be obtained using a reasonably fire
§ uniform grid and selectively subdividing elements in
: the regions cf large strain energy density
variations.
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% VII. CONCLUSION AND RECONNMENDATIONS

f% _ The purpose of this paper has bsen to present an over-
s . view of some readily employed finite element grid optimiza-

tion metheds and <to demonstrate their effectiveness in the
2 application %o some simple probleas. This work is by no
means all inclusive and the subject is still in its infancy.
While there are many competing approaches to the problen,
there is much more research to be done before any onmne

g
]
g
T

R

7,

55 becomes widely accepted as a standard analysis tocl. Because

fg of the 1limited time and resourcas available, some of the

fg more sophisticated reofinement critaria and technigues which

ﬁ, have been developed have not been examined in any detail. .
Iy Instead, the approach has been +¢5 axamine those techniques g
k; which can be easily incorporated in a basic finite element '
* . coda, However, it is likely tha* soas recently developed and 3
*5 rather elaborate self-adaptive grid optimiza*ion codes will i
;; soon be available. 8
Uﬁ Also, +this paper has not  .mined the important classes f
V of problems in dynasic and ronlinsar analysis. There is b
v, considerable ongoing research in the extension of these %
3 techniques to such problams, but th2 increased complexity is 1
] evident. Por example, in vibration analysis there is an |
- optimum grid for each unique eigenvalue, but it is for +these

-g; types of prchleas that grid optimization is most promising.

'ﬁ At the beginning of this paper it was stated <hat the

;ﬂ goel of grid optimization was to obtain maximum solution

= accuracy for a given analysis cost. Throughou* this paper i+

;: ) has been shown that, prior to successfully embarking upon

23 such a strategy, the underlying purpose of the analysis must

2, be explicitly defined. Hopefully, it has been demonstrated

- ) that grid optimizaticn is by =no m2ans an unrsalistic goal
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o and is far wmore attractive than the non-adaptive practices .
‘2 :
his videly used tiday. :
e The fcllowing are recommendations for future research !
Py s :
e topics
Y (1) Investigation cf more sophisticated refinement 1
) " criteria based on element residuals and reliable E
;s error estimates. :
, -
iy ,
2 (2) Investigation of grid optimization techniques '
t) employing adaptive application of the p-version. i
p (3) Implementation of a finite saslzment preprocessor for
G performing hierarchical grid refinement.
& _
& (4) Implementation of a self-adaptive finite element :
N code. I
-! .
X N
3 (5) Application of grid optimization techniques to prob- A
N leps of dynanic and nonlinear analysis. N
{ i
o z
N :
W . -..
4 4
N .
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ARREEDIX 2
PORMULATION OF THE ELASTIC CABLE PROBLEN

A. PROBLEN STATBHENT

Consider a perfectly elastic cable initially stretched
tetveen two fixed roints a distance 2L apart and under
tension T. If <the cable bears a distributed 1load per uni+

oo _A .

T‘— v 20 v A r3 r L - — 4 Y S SO A L 4 .T x

V{X)

Pigure A.1 Tension Cable Under Distributed Loading.

length £(x) as shown in Pigure A.1, the governing differen-
tial equation for the downward defaction v(x) is:

2
144 4+ £(x) = 0 (Eqn. A.1)

subject to the essential boundary condition:

v (x= tL) =0 (Egn. 1.2)
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If the distribut;d load is a supportive locad provided by
a Winkler fcundation c¢f modulus k such that

£(x) = - k v(x)

and if a concentrated 1load P is applied at the midspan,
Equation A. 1 becoaes:

2
'r%x—’i-kvao (Eqn. 24.3)

subject to the natural boundary coniition:

gl,‘qﬁ’ "E-éz (Eqn. A.4)

B. PROBLEN SOLUTION

The analytical sclution of tha two-point boundary value
precblea is:

v (x) ,%2 (tanhA L coshix - sinh Ax] (0 € x < L)

(Eqn. 4.5)
vhere A 84 k/T .

The finite element solution is obtained by the Galerkin
formulation using the consistent rather <than the lumped
approximation for the distributed loading.
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ARREERIX B
PORMULATICN OF THE TAPERED BAR PROBLEN

A. PROBLEN SEATENENT

Consider a tapered bar of 1length L and constant amodulus
of elasticity E fixed at one end. The cross-sectional area
A(x) varies linearly froa ‘o at th2 fixed end %o At at the
tig. Let the bar be loaded axially by a concentrated tip
load P, and a distributed load for which the intensity q (x)

varies linearly froa q, at the fixed end to qt at the tip as

< R N o A

G e i B

uxd

L

Pigure B.1 Tapered Bar with Applied Loads.

shcvn in Pigure B.1. The governing differeatial eguation
for the axial displaceament u(x) is:

x&[ng] +q=0 0SxsL) (Bqn. B.1)
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subject to the essential boundary condition:
a (x=0 =20 (Eqn. B.2)
and the natural boundary condition:

; %lx—-t.‘ﬁ%t (Eqn. B.3)

B. PROBLEN SOLUTION

Let a = 1 : At/lo and B =1 - q./9,.

4 For P(x) = P ’J’ g(x) dx the solution is:
b x
1{* et
ulx) = EIO (x) dx

: Lifer, 1 1 8 Bx2
: 3 E 7(1~ 22) - L(1- ) qo].en(l. L) + (1= 52x aL
}! (0 < x <L)
3 (Eqn. B.4)

The finite element solution is obtained by the Galerkin
forsulation using the consistent rather +than the 1lumped
approximation for the distributed loading.
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ARREERIX &
PORMULATION OF THE TORSION PROBLEA

A. PROBLEN STATENENT

Consider a solid circular shaft of radius "a" and shear
modulus G, wvith a circular groove, or keyway, of radiusb
along a generator of the shaft with the cross-section shown

Pigure C. 1 Cross-section of Shaft with Keyway.

in Pigure C.1. An applied torque I will produce an angle of
tvist per unit 1length 6. The a3aguilibrium condition is
satisfied if a torsional stress function ¢ exists such that
the shear stress cosgconents are:

ai - a*‘b
T Ge 3y and sz" GO e
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The governing differential equation for the torsional stress
function Y (x,Y) is:

b 2 2

;:,; ’ Y L 3%, 2 - 9 (Eqn. C.1)

b ax? ay?

' ) subject to the Dirichlet condition, ¥ = 0 on the boundary.

i B. PROBLEN SOLUTION

E"'\; .
o The solution of Eguation C.1 [Ref. 22: pp. 141-183] is: ;
@ .

hi Vix,y) = alx-b2—2—) - H(x2+y?) + g—- (Eqn. C.2)

'?'J 824'

A

%, The maxisum shear stress ocurs at point A (Fig. C.1) and is:

%

5 H
«:i:

i Tmax = GO (2a - b) (Egn. C.3)

The applied torque computed from the area integral: f

TGZGﬁfﬂ’ aa
\

[(4;"-&21:2-21:")« + (2a3b+7ab3)adin a] (Eqn C. Q)

~19

vhere a = arcos (bs2a).
The strain ensrgy per unit length o5f shaft is:

gr = 1 [12 ar = %79 (Eqn. C.5)
EA
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The variaticnal formulation of the finite element
approximaticn is presented in 3etail ia Chapter 6 of

Reference 25.
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