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INELASTIC DEFORMATION OF METALS AND STRUCTURES

UNDER DYNAMIC AND QUASI-STATIC CYCLIC LOADING

by

A.M. Eleiche and M.M. Megahed
ABSTRACT

Studies on cyclic plasticity during the second year of
the contract has developed along a theoretical approach to
the problems involved. It is hoped, however, that this
approach will furnish a good basis for useful and meaningful
tests on components operating under cyclic plasticity conditions.

-~ The investigations of the modes of cyclic plastic behaviour
in tubes under internal pressure and cyclic thermal gradient
have been continued.— The results obtained so far are summarized
in Part 1»->An approximate uniaxial model of the biaxial tube
problem is used for studying the influence of the hardening rule
on the cyclic plastic behaviour. Comparisons are made between
kinematic and isotropic hardening rules. These two theories
represent the extremes of cyclic plastic behaviour.. To avoid
the drawbacks of the uniaxial model, a two-dimensionhl numerical
solution utilizing kinematic hardening has been also developed.
Results obtained are in better correlation with experiments.
Present efforts on the tube problem will make use of a plasticity
model which can faithfully represent the observed cyclic harden-
ing and cyclic creep.

In Part 2, -the cyclic plastic behaviour of specimens used
in the so~called pulley test are studied using linear kinematic
hardening theory. The pulley test simulates the cyclic thermal
stresses by means of cyclic bending of a thin specimen around
the circumference of a freely rotating pulley. Theoretical
results for stress and strain behaviour are obtained for both
wire and strip specimens. -€omparlsons with test results show
qualitative agreement. 1In view of these comparisons, greater
insight has been gained on -the implications of cyclic creep of
the behaviour of components operating under cyclic loading.

~o
“In Part 3, the reference stress method - which has
been used with great success in the analysis of creeping struc-
tures - is applied to the analysis of components operating under
conditions where cyclic hardening and cyclic creep are dominant.

The technique is quite simple; it provides a direct relationship \”

between the behaviour of the structure at a given point to the
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result of a uniaxial test conducted at the reference conditicne
of stress or strain amplitudes. Accordingly, the analysis is
reduced to the determination of the reference test conditions.
This elegant procedure obviates the need for extensive testing
programmes aimed at describing accurately the behaviour of
metals. The technique is illustrated for beams under both
uniform and non-uniform bending and comparisons with published
test data show excellent agreement,
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PART 1 -

ANALYTICAL AND NUMERICAL INVESTIGATIONS
OF THIN TUBES UNDER INTERNAL PRESSURE

AND CYCLIC RADIAL TEMPERATURE GRADIENT

ABstract

The elasto-plastic behaviour of trin tubes under internal
pressure and cyclic radial thermal gradient is irnvestigated for
non-~linear temperature distribution across the tube wall. The
following simplifying assumptions are introduced: 1) an equivalent
uniaxial model, which ignores the effect of axial stress on the
tube behaviour, is adopted, 2) the nrnon-linear temperature
distribution is approximated by means of a bilinear relation,
3) the plastic behaviour of the material is rerresented by a
linear kinematic hardening model. The numerical procedure is
modified to handle the isotropic hardening rule in a similar

manner to that for handling kinematic hardening.

Results of this investigation show that the bilinear
temperature distribution introduces new modes of cyclic plastic
deformation which are not present for linear distribution.

Also, the bilinear distribution is found to cause more stringent
ratchetting limits, larger ratchet strains and larger amplitudes
of cyclic plasticity when compared with those due to the linear

distribution.

The numerical programme is further improved so as to solve
the tube problem in a generalized plane strain form, i.e. in two
dimensions, and thus the need for an equivalent uniaxial model

no longer exists. This two dimensional numerical solution is

| ;‘



also modified to include isotropic hardening. Outputs of

the programme for the uniaxial model under both kinematic
aﬁd isotropic hardening rules as well as those for the
biaxial model under the kinematic harduning rule are in good
agreement with analytical and experimental results. The j
biaxial model under the isotropic hardening rule is still

under convergence and accuracy checks.

The results are also compared with experimental results
available in the literature for the plastic ratchetting of
thin tubes tested in a sodium loop and operating above the

shakedown limit.

1. Introduction

A unique high temperature structural design problem in
the Liquid -Metal-Fast-Breeder-Reactor (LMFBR) results from

the frequent thermal transients that can occur in heat

exchanger tubes during the reactor startups and shutdowns.
These intermittent thermal shocks can produce progressive
inelastic deformation (ratchetting) and significant fatigue

damage.

Ratchetting of pressurized thin tubes under cyclic thermal
transients has been investigated by Miller /1/ and Bree /2/
using perfect plasticity assumptions. Mulcahy /3/ realized
the unrealistic representation of the behaviour of austenitic

steels by perfect plasticity and therefore analysed the tube




problem using a linear kinematic hardening modei. These studies
copsider a linear temperature distribution across the tube wall.
In practice, however, temperature is distributed non-linearly
across the wall as seen in Fig. la which reproduces the basic
features of Corum et al /4/ tests on ratchetting of 304 stain-
less steel tubes. Although the kinematic hardening modei
accounts for an idealized Bauschinger effect, it does not
reproduce some equally important facts of the cyclic plastic
behaviour of metals such as cyclic ha.dening, cyclic creep

(material ratchetting) and cyclic relaxation.

In the present work, the non-linear tenpcrature distribu-
tion across the tube wall is taken into account Dby means of a
bilinear approximation. A linear kinematic hardening model is
used for the analysis and both the kinematic and isotropic
hardening models are employed in the numerical solation, Tn
common with previous work, /1/, /2/ and /3/, the two-dimensional
tube problem is reduced to an equivalent uniaxial one by ignoring
the effects of the axial membrane stress and magnifying the

thermo-elastic stress.

The elasto-plastic solution is obtained in a sémi-analy—
tical form and the computer is employed to perform some of the
tedious manipulations associated with the ratchetting regimes,
The results show that the bilinear temperature distribution
introduces new modes of deformation not associated with the

linear distribution /1,2,3/. For example, operating conditions




above shakedown will exhibit cyclic plasticity which is
cpnfined to the inner skin of the tube only as compared

with cyclic plasticity at both the inner and outer skins

for the linear temperature distribution. Also, the bilinear
distribution introduces more stringent ratchetting limits,
larger ratchet strains and larger amplitudes of cyclic
plasticity at the inner skin of the tube wall, which in turn
enhances fatigue damage in the tube /5/. The previous
arguments are found to be true for isotropic harde;ing as

could be seen from the numerical results.

The two-dimensional kinematic hardening solut:ion
technique gave similar regimes of deformation to those obtaindd
from the uni-axial model. Although the stress distribution
at a certain cycle is not very much different in magnitudes,
its form is considerably different from those obtained for
the uniaxial model. This may be attributed to the bi-axiality
effects. Also the ratchet strains, cumulative strains and
amplitudes of cyclic plasticity are markedly lower than those

for the equivalent uniaxial model.

The present elasto-plastic results are used to analyse
the tube ratchetting tests carried out by Corum et al /4/ on
thin tubes made from initially annealed 304 stainless steel
under severe thermal downshocks between 1100°F and 800°F,
Fig. la. In these tests, each thermal shock is followed by a hold

period at 1100°F which causes accumulation of time-dependent




creep strains. This creep strains can be evaluated using

the technique developed by Ainsworth /6,7/ which yields an

upper bound on creep deformation per cycle when iocad variar:ior

exceed the shakedown limit.

2. The Elasto-Plastic Problem

Consider a thin tube (inner radius a and outer radius bj

under an internal pressure P and a cyclic thermal gradiect of

maximum value AT distributed non-linearly ACross 1ts= wiali

thickness t. The non-linear temperati: e distribution may be

approximated by means of a bilinea: relation such that :

T(x) =0 for O s x < h
T(x) = -~ AT (x-h)/(1-h) for h ¢ x < 1 |
where x = (b-r)/t, i.e. x = 0 at r = b and x = 1L a4t v = a
Elastic thermal stresses are given by (/8/1:
Ea AT .
= - = - -h)yaSoo - O ES
Tq g, (1 h)2(l-v) for 0 § x h
(2)
- e o (1 Ea 8T x-h Eua &T _
0y = 9, (1 h)2(1—v) M v i vy for h € x « 1

These stresses are cyclically superimposed upon the membrane

stresses due to internal pressure, which are given by

o

= -~ PD
oe = 202 T

where D is the mean diameter of the tube.

As arqued by Bree /2/, the effect of o,

that of Gor

(4)

18 opposite

and hence ignoring o, should yield conservative
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strain estimates., This reduces the two dimensional problem

to that of a slab prevented from bending and subjected to a
steady mechanical stress op = PD/2t in addition to the
temperature cycle given by equations (1), Fig. lb. The

corresponding uniaxial thermal stresses are,

at(x) = - (l—h)ct for o €« x ¢« h
(5)
o, (x) = - (1-h)o, + 2 (x-h) h ¢ x <1
t t TT:ET °t

where Op = % EaAT/(l-v) is one half of the total thermal
stress across the tube wall, Fig. lb. An operating condition

will therefore be defined in terms of cp and Ty

The elasto-plastic analysis is carried out using a
linear kinematic hardening material model, Fig. 2, where the
slope of the plastic portion is assumed to be a constant BE.

This yields the flow rule as,

dep 3 do o do (6) i
where K = (1-8)/8 is the material hardening parameter. For

simplicity, all material constants E, v, a, K and oy are

assumed to be temperature independent.

In the isothermal condition, the uniaxial model is
subjected to a uniform stress cp, and upon application of the ,
thermal gradient during the firt half cycle, the stresses will

increase in the cold fibers and decrease in the hot ones.




Consequently, two distinct stress fields are possible, the
first involves tensile yielding only, Fig. 3a, and the second
involves both tensile and compressive yielding, Fib. 3b. The
elasto-plastic stress-strain relations for the stress field

of Fig. 3a are:

€y = cl(x)/E for o<x<h
ey = [o,(x) = 20 (x-h)/(1-h)]/E for hexcy, (7)
e, = [0(x) = 20 (x~h)/(1-h) + K(o)(x) - oy)] for y,<x<l

where Yy is the plastic front. Equilibrium and compatibility

conditions are expressed by:
1

gp = 0[ gl(x) dx and e = constant (8)

Since o,y (y;) = Oy the constant e, becomes equal to [cy—20+(yl—h)/

(1-h)]/E and the integrals in the equilibrium equation can now be

evaluated to yield y, as:

y, = - % + % J(14K) (1+Kh%) + K(1+K) (1-h) (l—op/oy).oy/ct. (9)

Fully elastic behaviour is assured if Yy, ® 1 which implies (using

Eq. (9)) that:

g, € (cy - dp)/(l+h) (10)

t
Compressive yielding occurs at x = o if ol(o) < - oy which is

equivalent to (using Eg. (9)):

2
(0p /0 )% # [(1+x)(1-cp/oy) - 2(1+Kh)]. (o, /o )/(1-h) ~ K 3 0
(11)




Operating conditions which satisfy inequality (11) will cause
both tensile and compressive yielding during the first half
cycle (Fig. 3b) and the solution of the corresponding elasto-

plastic problem yields the following expression for the strain

61:
€q =[cy-2ct(yl-h)/(l-h)]/E = -[uy+20t(zl-h)/(l-h)]/E, where
2 2 2
g = (1+h )(ot/oy) +(1-h) (1+K) (1 op/cy).ct/oy+K(l~h )] (12)
l

2.0t/0y (ot/ay + K(1-h)

Subsequent thermal cycling gives rise to either elastic shake-

down, cyclic plasticity or ratchetting, as shown in Fig. (4).

3. Elastic Shakedown, Cyclic Plasticity and Ratchetting

For operating conditions which satisfy Eq. (11), the
stress fields shown in Figs. 5a and 5b are possible during the
second half cycle. The stress field of Fig. 5a involves cyclic
plasticity at the inner skin of the tube while the stress field
of Fig. 5b involves cyclic plasticity at both the inner and

outer skin of the tube.

The elasto-plastic analysis of the stress field in Fig. 5a

yields the plastic front Yo given by Eq. (13)

y, = - % + % f(1+1<)(1+Kh2)+zx(1+x)(1—h)oy/ct \ (13)

Shakedown will occur if Y, 2 1 which is satisfied if

o, € 2 oy/(1+h) (14)

t
and such shakedown behaviour is termed as Sl (Fig. 4). In
Fig. S5a, cyclic plasticity will not occur at the outer skin

(x=0) ionh(o) < Zoy and such condition is satisfied if

—— _.;ﬁa=:========gnn....--;--n-u-—------ﬁ--u--ii;




op < 9y [/QK—ZKh—l)z + 4K(1-m) 2 - (K - 2kh-1)]/(1-%) (15

t

Thus, thermal stresses which satisfy Eq. (15) bLut vicloo:z
Fg. (14) produce cyclic plasticity ar the i1nne. skin only, and
such behaviour is called Fl in Fig., 4. Note that for h = ¢,
Egs. (14) and (15) become identicali, viz, o, < 20y and regime

F, is not present as in Mulcahy's analysis /3/ fur linear

1
temperature distribution.

The stress field of lrig. Sb will occur when therfwal
stresses violate Eq. (15) and cyclic plasticity takes place
at both the inner and outer skin of the tubte. Such behaviour
is termed F_, in Fig. 4. 1t can be shown that F, wiil continue

2
during subsequent temperature cycling if

2 2 : 2
[ (14kh )-(1+K)op/ch.(ot/cy) +x(1—h){3—2<1+x;op/ay].ct/ay+2x

(1-h) % s o (16)

as shown in Fig. 4.

Cyclic plasticity may also take place when the response
of the model exhibits tensile yielding only during the first
half cycle (Fig. 3a). A possible second half cycle stress
field which corresponds to such behaviour is shown in Fig. 5c

and the corresponding plastic front Y, is given by Eg. 17.

-

1 1

y, = - %+ % 7(14K) (1+xn%)

) + 2K(K+l)(1-h).ay/ot (1M




This mode of cyclic plasticity is similar (o
reversed plasticity is confined to the inner skin onty. Su=h
behaviour is termed F3 in Fig. 4 and it can be shown that the
condition for its continuation during subsequent thermal
cycling is

/oy+x‘(1—h‘/(1+x;<: e

2 2 2 A .
{(1+K) (l+cl/o‘y) -4 (14+Kh )] . (Ut/cy) ~2K (1-h) (3-1:?/(17{) 0y

Shakedown will occur if v. > 1 ari s.fe) € g and these

<7

conditions are satisfied if,

< 2{1FK) s (o, = o ) and n < io /(l+n) (19)
K(1+h) (1-h*) Y P .

This shakedown behaviour is termed g, in Fig, 4.

Ratchetting takes place for operating conditions which
violate Egs. (16}, (18) or (19) as can be seen from Fig. 4 for
the ratchetting regimes Rl' R2' R3 and Koo In the ratchatting
regime Rl’ which takes place at thermal stresses below =h:

shakedown limit (o, = 20y/(l+h)), a ¢cvrlic stress field which

produces cyclic permanent deformation is shown in Fig. 54,

The accumulated ratchet strain is obtained tnro.ighn:

i

numerical evaluation of the recurrence relations for the !
. !

corresponding Yn and y by a simple computer algorithm, {

n+l
Elastic shakedown is approached asymptotically as the cyclic

steady state following an initial phase of transient ratchetut.r:. ;

In regime R transient ratchetting takes place while

2’
cyclic plasticity is occurring at both the inner and outer skin
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of the tube (Fig. 5e) until a cyclic steady state similar to

F2 is approached asymptotically. In regime R3, the transient
response consists of two consecutive phases of ratchetting
mechanisms. In the first phase, ratchetting takes place
according to a mechanism similar to that present in Ry until a
sufficient degree of hardening is attained such that the
mechanism shown in Fig. 5f is activated. 1In this second phase
of Ry, ratchetting is developed while cyclic plasticity is
taking place at the inner skin of the tube, Clearly, the cyclic
steady state for R3 will be similar to that present in Fl and F3.
In the ratchetting regime R4, ratchetting is developed through

three consecutive phases. Rl is employed in the first phase, the

second phase is similar to the second phase of R, and the third

phase is the same as R Consequently, the cyclic steady state

9

for Fz, R2 and R4 are similar.

When a linear temperature distribution (h=0) is assumed
across the tube wall, the resulting cyclic steady state is
either shakedown for o, < 2°y or cyclic plasticity at- both the
inner and outer skin of the tube for o, > 2oy. It is now clear

that due to the bilinear temperature distribution (h > o), new

modes of behaviour (Fl, F3 and R3) are discovered in which cyclic

plasticity is confined to the inner skin of the tube, v

4. Discussion of Results

The results of previous sections were assembled into a {
computer program described in detail in a previous report /9/ i

whose input is the problem parameters 1 < K <=, o < h < 0.5
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and the operating condition as defined by o < o < 9 and

0 <o, < =, The program is provided with 10 routines which

yield stresses and strains corresponding to E, Sy Sz, Fyv F2'

3 and R4. In the ratchetting regimes, the cyclic

steady state is assumed to be reached whenAep(x=o) does not

F3,‘R1, Ry, R

change by more than 10_6 per cycle. Examples of the transient
ratchetting behaviour in Rl' Rz,.R3 and R, are shown in Fig. 6a.
It is seen that most of the ratchet strain accumulaées during

the first 20 cycles or so. The number of cycles required to

reach the steady state depends mainly on the hardening parameter
K. As K becomes larger, the material plastic behaviour approaches
that of perfect plasticity and consequently a larger number of
cycles is required before the steady state is reached. However,
for austenitic and many high strength steels K =~ 40 -~ 50 which
imply that the steady state will be reached after the first

20 to 30 cycles.

In Fig. 6b the effect of h is clear. The ratchet strains
as well as the cumulative strain are considerably lower in the
case of linear temperature distribution (h=0) than for the
bilinear distribution. This is true for both kinematic harden-

ing and isotropic hardening results as could be seen from Fig, 6c.

An overall view of the results may be gained from the
contours of total ratchet strains as shown in Fig. 7 for a
thin tube made from 304SS whose monotonic properties at 900°F

are used to calculate pressures, temperatures and strains. It




may be noted that the contours of equal ratchet strains are

almost parallel to the ratcheting limit (the line which
separates R regions from S and F reqions) and, correspondingly,
ratchet strains are more sensitive to changes in pressures than
changes in temperatures. In fact, ratchet strains are reduced
slightly as AT becomes very large (for AT > 250°F in Fig. 7).
However, these large temperature differences are not likely

to be encountered in practice. .

The important result which emerges from the present work
is the effect of the bilinear temperature distribution parameter
h on the tube behaviour. As stated earlier, for h > o new modes
of deformation (Fl, F3 and R3) are introduced in which cyclic
plasticity is confined to the inner skin of the tube. This is
shown in Fig. 8a where it can be seen how h affects the form of
stress distribution for a certain set of loading parameters
(those used in Corum's tests). The cyclic plasticity at the
inner surface of the tube observed for h = 0.328 is not present
for h = o. This is true for both kinematic and isotropic harden-

ing solutions.

Figure 8a shows the effect of h on the ratchetting limit
and it is seen that ratchetting starts to take place at smaller !
mechanical loads as h becomes larger. This effect is more
prominent above the shakedown limit (ct = Zsy). Fig. 8c shows
the effect of h on asymptotic ratchet strain at op = 6.40 ’

Y
3°y' It is seen that ratchet strain attains a maximum

¢




value at h = 0.27. Thus, an analysis based on linear tempera-

ture distribution is likely to underestimate the likelihood of
ratchetting as well as the value of ratchet strain. The effect
of h on the amplitudes of cyclic plasticity which are of
interest when designing against low cycle fatigue is shown in
Fig. 8c. At h = o, cyclic plasticity of equal amplitude takes
place at both the inner and outer skin of the tube and as h
becomes larger,cyclic plasticity amplitudes increase at the
inner skin (x=1) and decrease at the outer skin (x=o0). For
example, at h = o, Aep(o) = Aep(l) = l.50y/E while at h = 0.3,
Aep(l) = 3 oy/E,Aep(o) * o which means that the higher value

of h doubles the amplitude of cyclic plasticity at x = 1,

This can be shown to reduce the fatigue life by about thirty

percent (using the Coffin-Manson relation /5/:Aep.Ng°5 = constant).

5. Analysis of Inelastic Benchmark Ratchetting Tests

Two thermal ratchetting tests have been conducted by
Corum et al /4/ on 304SS thin tubes. 1In the first test, a
tube was subjected to 13 thermal downshocks between 1100°F and
800°F in a sodium loop under internal pressure of 700 psi which
is reduced to zero for 2 hrs subsequent to each thermal shock
in order to transfer the liquid sodium from the drain to the
source tank. Following each thermal shock, the tube was kept
at 1100°F for 160 hr. The measured temperature distribution

across the tube wall (Fig. la) was non-linear and may be

reasonably approximated by a bilinear relation with h = 0,328




R

1
{

- 15 =~

as discussed earlier. The maximum temperature difference
across the wall was about 167°F and corresponds to an outer
skin temperature of 1000°F and an inner skin temperature of

830°F.

Using the monotonic properties at an average temperature
of 900°F, the full solution map is constructed as shown
previously in Fig. 7 which shows that the operating conditions
of this test lie within the ratchetting regime R3. The cyclic
accumulation of ratchet strain calculated on the basis of mono-

tonic data at 900°F is shown in Fig. 9 as dotted lines.

Ainsworth /6,7/ developed a method by which an upper bound
on creep strain per cycle can be determined for structures
subjected to load variations above the shakedown limit. The
creep strain is bounded by the cyclic plasticity solution of
a similar structure that does not creep. Thus, considering a
uniaxial tube model subjected to internal pressure P(t) and
cyclic temperature T(x,t), both of cycle 1, and denoting the
cyclic plasticity solution for a similar structure, which does
not creep, subjected to the loading conditions P(t) + p and
T(x,t) by u*(x,t), an upper bound for axial creep displacement

is given by
1 - - n_*
au e = [ f D [y o (x,t)] 4V dt, (20)
oV '

where p is an additional constant positive load yet to be

determined and D is the rate of creep energy dissipation.
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The bound is evaluated at the value of p which minimizes the
right-hand side of Eqg. (20). Note that the earlier analysis
of the elasto-plastic problem yields the stress field o*(x,t).
Asguming that creep is governed by Norton's law and substitu-

ting for D by Kon, Eq. (20) becomes,

1 n+l
T n ,n+l 1 *
bu < K — (m) > oj o (x) dx, (21)

Most of the creep strain takes place at the hold
temperature of 1100°F and the short term creep rates /10/ at
1000-2000 hrs are used for evaluation of the bound for the
test. The stress index n is obtained as n = 3.655, /10/, at

the level of stresses present in the tests.

The final predictions of plastic and creep ratchetting
are compared with experimental results of the test in Fig. 9.
The values of yield stress are oy = 11.15 ksi during the
first half cycle and °y = 14,47 ksi during subsequent cycling
which corresponds to a cyclic plasticity amplitude of + 0.05%
as obtained from initial calculations based on the monotonic
data at 900°F. The creep strain is 0,.,0156% per cycle which
corresponds to an optimum additional pressure p = 346.4 psi.
Fig. 9 shows that the theoretical predictions are in excess

of the observed strains by about 40% for the test.

The predicted ratchet strains are found to be very
large when compared with the experimentally observed ratchet

strains (the experimental results for the test are also shown

~



in Fig. 9). This overestimation of observed strains 1s seen |
to be due to the use of the monotonic stress - strain data
and the kinematic hardening rule which ignore the cyclic

hardening properties of the tube material.

The cyclic hardening behaviour of 304SS is character-
ized in Fig. 10 which shows the percent increase in yield
stress against the number of cycles and the amplitude of
reversed plastic strain. Yield stress is defined here on
the basis of bilinear representation of cyclic hardening
loops /10/. The method suggested here to account for cyclic
hardening makes use of the monotonic yield stress during the
first half cycle only and the 13th cycle yield stress for
subsequent cycling. The 13th cycle yield stress is evaluated
at an amplitude of cyclic plasticity Aep which is representative
of the test conditions. An upper bound for Aep can be
evaluated on the basis of the monotonic data. This approach,
however, ignores the effects of other important phenomena
such as cyclic creep (material ratchetting) and cyclic relaxa-
tion, which are present when plastic cycling takes place around

a mean value of stress and strain respectively.

One obvious reason behind the conservatism of the
predictions is the modelling of the biaxial tube problem by
means of an equivalent uniaxial model in which the egquivalence

is based on the stresses given in Fig. 9. The uniaxial model

I, v y|
S SR 0t e - gy
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is likely to predict larger hoop strain accumulation. The
results of the biaxial kinematic hardening programme are

also shown in Fig. 9. These seem to be the nearest to the
experimental results though creep strains are not taken into
consideration. This may be attributed to the lack of inter-
action between plasticity and creep in the classical theories

of inelastic deformations used in the present analysis.

It is also possible that creep strains are reduced due
to prior cyclic hardening /11/. However, in the absence.of
reliable constitutive relations which accounts for this inter-
action, classical theories provide conservative strain

estimates for the conditions of the present tests.

6. Conclusions

The main conclusions of the present work can be summarized
as follows :

1. Comparisons between the modes of behaviour for linear and
bilinear temperature distributions across the tube wall
show that a bilinear distribution introduces new modes of
deformation in which cyclic plasticity is confined to the
inner skin of the tube.

2. Also, bilinear distributions are shown to introduce more
stringent ratchetting limits above the shakedown limit,
larger ratchet strains and larger cyclic plasticity ampli-
tudes at the inner skin of the tube when compared with

corresponding linear distribution.




3.

It is demonstrated that the cyclic hardening phenomenon

should be taken into account in the analysis of ratchetting

‘conmponents above the shakedown limit. An approximate

method which accounts for cyclic hardening is used in the
present work.

The equivalent uniaxial model of thin tubes yields conserva-
tive estimates of observed strains in tube ratchetting

tests and the biaxial model was found to be very close to

the experimental results, though cyclic creep and relaxation
are ignored.

The inclusion of the isotropic hardening rule into the
computer programme increased the ratchet strains and changed
the solution map completely. This is to be further investiga-

ted in future work.
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PART 2

KINEMATIC HARDENING ANALYSIS OF RATCHET

STRAIN IN THE "PULLEY TEST"

Abstract

The classical Bree problem-which represents an
uniaxial model of a thin tube subjected to comhined
internal pressure and cyclic thermal stress across
its wall-can be simulated by means of the pulley test
in which a wire or strip specimen is subijected to
combined steady tensile stress and cyclic bending
stress. In this paper, accumulation of ratchet strain
in the pulley test is investigated using a linear kine-
matic hardening material model from which perfect
plasticity can be generated as a special case. The
results of the investigation show that asymptotic
ratchet strains are linearly related to the excess in
mean stress <, above its value Ub* at the ratchetting
limit regardless of the thermal stress amplitude.
Comparisons with test results on copper wire specimens-
which exhibit non-linear hardening rate-confirm the
qualitative validity of this simple relation. Divia-
tions between theory and experiment are attributed to
metallic cyclic creep. Further, perfect plasticity
results are shown to be well predicted by a linearized

lower bound estimate.

1. INTRODUCTION

Incremental strain growth (or ratchetting) and low
cycle fatigue damage can be major causes of failure of
mechanical com onents subjected to cyclic thermal load-
ing. One of the common ratchetting problems in power

R i
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generation industries is that of a thin-wall=s/ pire ;
subjected to combined internal pressure and mv-~lic
thermal gradient across its wall which is known as

the "Bree problem" {1]. Testing of such cowpenents
under realistic thermal conditions usually involves
prohibitive cost in terms of eaquirmrent and strain
neasuring devices [2,3}. Such d:fficulties have mati-
vated the development of simpler tests in which cvelic the.
rmal stresses are simulated by means of cyclic bend-
ing. This is achieved by what is termed ag tre

"pulley test" [4,5,6] in which a wire or a strip spe-
cimen of the material whose behavicour is to be inves-
tigated is cyclically bent around the circumference of

a freely rotating pulley while subijected to steady
tensile load as illustrated in Fia. (la}. Considering
the segment ABC where AB=BC=TFf  snd f is the radius

of the pulley, when the dead weichts W are in position
(1), AB is subjected to <ombined tensiorn and pending
while BC 1is subjected to tension only. Alterratively,
when the dead weights are moved to position (2}, BC

will be subjected to combined tension and bhending

while AB is subjected to tension only. In this manner,
the cycli- vertical movement of the dead weights brings
about a combination of steady tension and cvclic bending
in segments AB and BC of the specimen. The interaction
hetween elastic and plastic strains during this loading
cycle causes incremental strain growth which manifists

itself in cyclic lengthening of the specimen,

The pulley test has been utilized by Megahed et
al (4] as a simple test by which the concepts of rat-
cheting and shakedown can be illustrated experimentally.
Figquvwe (lb) shows a sample of the results obtained for
the cyclic strain growth of copper wire specimens., It
18 seen that the observed behaviour resembles to a great
extent the ordinary creep behaviour, i.e. an initial

primary stage followed by a secondary stage of constant
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cyclic strain rate. The prediction of observed steady

state rates by means of rapid cycle solutions has been

discussed by Megahed et al [5]., Ng [6] conducted

ratchetting tests on thin strip sppecimens using a
pulley apparatus to investigate the behaviour of 316
stainless steel at room and elevated temperatures.

In this paper, theoretical solutions for the deve-
lopment of primary ratchet strain in both wire and
strip specimens are generated using the kinematic
hardening plasticity theory. This theory has the ad-
vantage of simulating the Bauschinger effect observed
in many metals but lacks the capability of reproducing

the cyclic phenomena of metals, viz, cyclic hardening,

cyclic creep and cyclic relaxation which have a pro-

nounced influence on the behaviour of s ructural com-

ponents subijected to cyclic loading (7]. However, the

solutions presented here provide an estimate of cyclic .
strain growth as predicted by a classical theory of

plasticity commonly employed in manv inelastic finite

element packages ([8].

2. THE EQUIVALENT BREE PROBLEM

Elastic bending stresses which arise in a specimen
of thickness d bent around a pulley of radius § are
given by + o, where o, = E4d/29 . The stress varia-
tion along the thickness of the specimen is given by:

T(x) = Ub + L8 (2x~1) (1)
where is the direct tensile stress due to dead

Up '
weights and x is a dimensionless position variable

along the thickness d with x = 0 at the point of speci-
men contact with the pulley and x = 1 at the most outer
fiber (Fig. 2a). It is clear therefore that the cvyclic

vertical travel of the dead weights gives rise to a

cyclic elastic stress field which varies between
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o (x) = Ub and o(x) = % + oo (2x-1). It can be
shown that an equivalent problem-which produces the
same cyclic stress field as above-is that of an
assembly of infinite number of bars which are allowed
to deform in the axial direction only under the com-
bined effect of a uniform tensile stress g and a
cyclic thermal strain gth (x) which cyclicglly varies
between -~ 20;. x/E and zero (Fig.2b). In the multi-
bar assembly, the constant total strain is the sum of
elastic and thermal strain components, i.e. £(x) = o(x)
/E=2 oy x/E = constant = C whivh gives the stress
history o(x)

is Aftr(x) da

EC+20E.X. The equilibrium conditions

]

Ub' AO where AO is the cross-sectional

area of the specimens and dA is the area of a bar at
the relative position x. Note that AO = 1, dA = dx
for a strip specimen of unit width and Al =T /4 4dA=2
f;TI:;T. dx for a wire specimen of unit diameter
(Fig.2c). The constant total strain C can be obtained
by satisfying the above condition of equilibrium and
the elastic stress field o(x) is obtained as o(x) =

o5 + o . (2x-1) which is the same as eq. (l). Upon

t
removal of thermal strain, o(x) becomes equal tc op -

3., MODZIS OF CYCLIC PLASTIC BEHAVIOUR

In the elasto-plastic solution, a linear flow
rule and a kinematic hardening rule are employed. Thus,

plastic strain increments are given by
ae? = £ ao (2)

where K = (1-8)/8 and 8E is the slope of the linearized
plastic portion of the stress-strain curve. The kine-
matic hardening rule implies that the size of the

yield surface remains constant at 20} while its center

changes continuously due to plastic deformation.




PR

R (xy

for the first time (first cooling), the resulting

Upon the application of thermal strain Ct

elastoplastic stress field in the multi-bar assembly
may involve tensile yielding at the outer fibers
(Fig.3a) or both tensile yileding at the outer fibers
and compressive yielding at the inner fibers (Fig.3b).
For the case shown in Fig. (3a), the stress-strain
celations are given by:

€, = [a‘l(x) -2 o;__.x]/E for 0K x < a,
(3)
€ = (v‘l(x) -20't.x+k(trl(x)—q-y) ]/E for als Xl

where a, is the elasto-plastic interface. Since

Ui(al) = vy, the total strain €, is therefore given
by:

€, = [u; -~ 20.. a,l/E (4)
substit .ting €, in eg. (3) provides the stress field

ul(x) which upon insertion in the equilibrium condi-
tion and evaluating the resulting integrals yields

the following expressions for aj:

o, -0
18 X(ay) = (k+1) LB - K2 (2a -1 (5a)

t

for the wire specimens where the function ¥ (a) is

defined by:

~ (a) = l[a(k-a)13/2+16 (2a-1) [sin"}(2a-1)+2(2a-1)-
/a(l—a)]/3‘
(6)

and,
ay =[-1+Jrkl+k)[l+k u&/o&.(l-ub/uk)] /K (5b)

for the strip specimen,
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Equations (5a) and (5b) can be used to determine
the operating conditions (Ub ,Uk) which give rise to a
given state of deformation. For example fully elastic
behaviour (which is equivalent to a, =z 1) will occur
if u'p + trtstry , which could be easily verified from
Fig. (2a). Also, compressive yielding will commence
at x = 0 if 0”1(0) obtained from eq. (3) becomes less
than -T,. This condition is equivalent to a1<°§//"'t f

which upon substitution in egs. (5a) and (5b) yields

o (1+k) T _+ @
16K X (&_X) > K2 p Yy (7a)
t

3T 2 crt

for the wire specimen and,

o o o
t, 2 p =

(a_—') + [K+1) (1~ U,.—')]. F - K< 0 (7b)
Y Yy Y

for the strip specimen. Eguations (7a,b) define the
locii of operating conditions corresponding to the
limiting state between the two stress fields shown in
Figs. (3a,b).

Analysis of the stress field shown in Fig. (3b)
is dealt with in a similar manner to above. The stress-

strain relation are given by:

€ =[°i(x)-—2°'t,x+1<(0‘1(x)+0'y)]/E for 0 gx b,
(8) ‘
Cl =[°"l(x) -ZU't.x]/E for b1 £ X € a, ,

€ =[0'1(x) -2 U",x+K(a‘l(x)..0'y) 1/E for 3, € X g 1

1—
Noting that U'l(bl) = - U'Y and ‘Tl(al) =U'y, it follows
that;
= Y- = -
€ [U‘Y 2 t.a.ll/E [U'y+2°”t.bll/E (9)




Note that the width of the elastic core al-bl =1 —(g/ah.

The plastic fronts a; and bl can be determined from the
following relations:

o o
18X (b)) - X(ap)] = (K+1) e v (10a)

for the wire specimen and

- o
L Ty YD) (-0 4K /ey Loy
1 ZIU;/Q; + K]

for the strip specimen.

Incremental strain growth or ratcheting will take
place only if the center line of the specimen (x=0.5)
experiences tensile plastic deformation due to first
cooling. Corresponding operating condition can there-
fore be determined by imposing the condition a1=0.5
on the above results. This procedure defines the

ratchetting limits as:

2 K Tt 2 ou
F * TR BT ?él foru't__ﬁ.zY (11la)

Y Y

k?

T Uy ¢ 16K
(K+1) &-E -K ;féﬁ-[x(o.s-vy/o-t) -X%(0.5)

N
for wt_.ZU; (11b)

for the wire specimen and,

[+ g
p,1 K 7t ya
y y
Tp.%t 1 "t/ K
. _ D
—5-;2— BT &, ST for oy = 20, (12Db)

for the strip specimen. Operating conditions which
satisfy eqs. (lla,l2a) will give rise to elastic
shakedown (regions S1, S2) and those which satisfy
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eqs (lla,12b) give rise to reversed plasziczty . «icn
F) as shown in the interaction or Bree diagran of

Fig.(4). The steadv tensile stress which defines the

lities is denoted by Ub*. Note that ratchetting iimits
corresponding to perfect plasticity material (Fig.4b)
can be generated from the above results by letting
K-—=g. This yields the familiar results of Bree (1]
for the strip specimen and the analogous results for

a circular Bree element. It is noted that the rat-
chetting limits o _* corresponding to perfec: plasticity
do not differ considerably from kinematic hardening
solution for K = 50 (Fig. 4a) which is characteristic

of many strain hardening materials.

4. ACCUMULATION OF RATCHET STRAIN

a. Kinematic Hardening Solution

Elasto-plastic analysis of loading cycles subse-
quent to the first cooling shows that ratchat strain
accumulates by means of two distinct mechanisms deno-
ted as Rl and R2 (Fig. 4a). The ratchettirg mechanism

R
1 t
phase 0f the intermediate regime Rl“'RZ‘ The mecha=

operates at o <:2u§ as well as during the initial

nism F2 cperates at U£.>2Uy as well as the second
phase of regime Rl-—»RZ. Defining a typical cycle N
by the (n-1) th cooling and nth heating half cycles,
where n=2N. Figure (5a) shows the cyclic stress

field present during the Nth transient cycle and the
steady state of the mechanism Ry and Fig. (5b) shows
the analogous stress field for mechanism Rz. It is
seen that Rl will invariably exhibit tensile yielding
which takes place in the fibers a,_1<x< 1 during
cooling and in the fibers 0< x<a, during heating.
The analysis shows that a _, < 0.5 <« a, during
the transient stage but as c¢ycling continues

both a, and a 1 approach the value of 0.5 at the
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steady state. Figure (6) summarizes the resulis obtained from
the elasto-plastic analysis of the ratchetting mechanisme. It
is shown that the plastic strain increment during the Nth
cycle GN is given by:

Sy = (a,-a ;). 20 /E (13)

Hence, GN >0 at the steady state and the behaviour approaches

an elastic shakedonw state.

In regime R2, the cyclic stress field exhibits both
tensile and compressive yielding during each half cycle as
shown in Fig.(5b). Again at the steady state (an =ﬂan_1f0.5)

' 6N 70 and the plastic fronts corresponding to compressive
yielding bn and b,_, approach 0.5+u§ﬁrt, 0°5'°§/¢t respectively.
Thus, the behaviour at the stationary state is that of a re-
versed plasticity at the inner and outer fibers of the assembly

and there will be an associated elastic core cf width 2¢§/UE.
The spatial variations of plastic strain at the stationary

state are illustrated in Fiqg.(5). It is clear that the cyclic
reduction in the increment of ratchet strain is due to strain
hardening and the presence of cyclic plasticity above o= 20§
is due to the employment of the kinematic hardening rule. In
the intermediate regime Ry 4Ry, the behaviour changes from

Rl to R2
verse yielding in compression starts to take place.

when sufficient hardening has evlolved such that re-

The manner by which the final results are presented
in Fig.(6) is very convenient for computer programming. These i
results have been used to determine the cyclic accumulation
of ratchet strain for operating conditions representative of
the three regimes; Rl' R2 and Ri+ R2 as shown in Fig.(7). For
K = 50, which is characteristic of many alloy steels, the
behaviour approaches a steady state in about 50 cycles. The

computer program has also been used to generate the contours
of the asymptotic values of ratchet strain cP(O.S) in the Bree
diagram as shown in Fig.(4a). Further discussions of ratchet

|
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strain contours and their relations with the limit mean =tz

Ub* will be presented in the following section of the paper.

b. Perfect Plasticity Solution

The perfect plasticity solution for the accumulation
of ratchet strain can be generated from the kinematic
hardening results by letting the strain hardening co~
efficient K** , This has the following effects:

1. The intermediate ratchet mechanism Rl+ R,

will not be present in the manner described

earlier since the switch from R, to R, 1is
l primarly due to strain hardening. Hence, this
intermediate regime will involve tensile yielding
only in exactly the same manner described earlier
for mechanism Ry employed belowuo, = 20§ as shown
in Fig. (4b).

2. Ratchet strain will accumulate in equal incre-

ments per cycle and hence total ratchet strain
is unbounded gs shown in the examples of Fig. (7).

Letting K+~ in the recurrence relations presented in
the algorithm shown in Fig.(6) yields the following
closed form expressions for ratchet strain in the strip

specimen:

GN = ZUE/E' [1—2 uk—vb' t] for regime (Rl)
2 (14
6N = 2U§/E.[Ub0£/cy -1] for regime (Rz)

which 1is the familiar result obtained by Bree [1 }.
The corresponding results for the wire specimen can not
be reduced to ciosed forms and will still have to

programmed.

5. DISCUSSION OF RESULTS AND CONCLUSIONS

The results of ratchet strain accumulation obtained in

previous section are now compared with simplified bounding




results [9] as well as experimental observatic-~z: 5§ . Ine
ratchetting limits Ub* separate tliz ratchettinc

regime from shakedown regime for O ¢ 20 and ratchetting
, G

regime from reversed plasticity for w+2 2% . For perfect
plasticity models, Ponter and Cocks [§j derived a linearized
relationship between the increase in ratchet displacement per
cycle and the increases in mean and cyclic thermal stresses;
Up,wt above the shakedown limit, This result 1s used to ob-
tain a simple lower bound which for kinematically determinate 1
structures shows that for moderate thermal locading, the cyclic
increment of ratchet displacement is greater than four times
the elastic displacement of the hodv :f it were subj=cted only
to the increase in mean stress abcve¢; Paoy =U5»=T; . This
result is strictly correct for loads pelow the snakedown limit

*
o = 20 . Ponter and Cocks [2] comparad the lower pound result

J

with exact soluticn for the class:c:i: 3ree problem which is

(1

3

equivalent to the strip specimen ir. *=h

(0]

present werk.,

Figures (8a,b) compare exact soiutions wrnh the lineari-

zed lower bound for wire and strip specimens -+ o, = vﬂ,vt=2U§

* N 2
which lie below the shakedown limit (o = 20 ) a5 well as at
.k o o
o, = 4”§’Ut = 60& which exceeds o . The linearized lower
* t
bounds at u->0£ are calculated by excluding the regions of

reversed pl:sticity at the inner and ocuter fibers, For example,
when a strip specimen is subjected to o, = 4cy, reversed
plasticity takes place at the inner fibers 0< x0.25 and the
outer fibers 0.75 £x €1 and the fibers (.25 x <0.75 experie-

nce elastic deformation only (Fig.5). The lower bound is cal-

culated for an equivalent elastic strip of width= 0.5 and i
subjected to the original axial force which means that the |
effective mean stress is doubled. The comparisons shown in
Figs. (8a,b) indicate that the lower bourds are guite close

to exact sol 1tions except whencb approaches @ .

Investigations of kinematic hardening predictions of
asymptotic ratchet strain at the core of the specimen shows
that € i h(0.5) is linearly related to the excess in Up above

* .

vb in the following manner:
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e 005 s KELNT s KB (-0 ) (o3

k.h p p P
at any value of T elther below or aboveUL* = 20 . The

v

dependence of plastic strain on oy is implied &, wne var. .-
ation of o _x w1th.vt. It 1s 1nteresting to note that tne

rate of‘chanqe of plastic strain with respect tocg equais
the linear strain hardening coefficient K/E Th:s means

that the stress state at the core of the specimeng(0.5) is
given by the stress-strain curve of the material. In fact,
examination of the stress states at x = 0.5 as obtained from

the computer grogram shows that:

O G.5) =T +0 - T (1€}

Although the above results ave :ntained for linear k:.ne-
matic strain .~rdening material, analogous results f£or non-
linear hardeninc can be derived. This may be checked bu crn-~

sidering theo ratcnetting tests conducted by Megahed et al

{4,5] on coprer wires wnnse operating conditicns and ratche-
tting limits %) are shnown in Fig.(%a;. The stress-strain
cur e of the Ccoprer w~lres exhibits non-linear hardeninag which
can se fi~-. o - the power law;
- AT - - ; l/n (.1.7)

where ¢ is the elastic limit, A, n are material constants.

- P . .
Hence, the result forg (0.5) which should be applied to non-
linear hardening material in an analogous manner to eq. (1l5)
should be:

eFy

0.5):A (o -0 *)1/7 (1.8)
P P
recalling the sample of observed ratchet strain shown in
Fig. (1) and noting that the steady ratchetting rate attained
after the initial primary stage is mainly due to cyclic creep

phenomena { 5] , ratchet straincp(O.S) appearing in eq.(18) 1is

- e ———




interpreted as the primary ratchet strain comonent (Fig..oni.
Figure (9b) shows the experimental primarv ratchet strain ac
three levels of T, against (Ub -‘g*) compared with the stress-
strain curve of the material. It is clearl" seen that the
experimental gP(O.S) lie c¢n & single curve which supports the

universal dependence of ratchet strain onub—v* . However, the

p
experimental curve ofep(O.S)* lies abnve the stress-strain

curve of the material and the diviation is attributed to pri-

mary cyclic creep [5} .
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Ratchetting Mechanism Ry

Ratchetting Mechanism R,

Transient
Stress

Field

Steady
State
Stress
Field

Steady
State
Plastic
Strain

Fig(5) Transient and Steady State Stress Fields and Plastic Strains \
for the Ratchetting Regimes
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PART 3

APPLICATIONS OF REFERENCE STRESS METHUU (RSM)

IN CYCLIC PLASTICITY ANALYSIS

Abstract

The concept of reference stress method (RSM) relies on
relating the inelastic deformation behaviour of a structure
at a specific point with the behavicur of a uniaxial specimen
under reference test conditions. The RSM has proved success-
ful in time-dependent creep analysis since it obviates the
need for excessive collection of material data. In this
paper, the RSM 1is applied to evaluate the plastic behaviour
of components subjected to cyclic loading conditions where
phenomena such as cyclic hardening, cyclic softening, cyclic
creep and cyclic relaxation are dominant. Seveval examples
of beams under both uniform and non~uniform bending are dis-
cussed. Comparisons between the results of RSM and several

independent test results show very close agreement.

1. Reference Stress Method in Creep Analysis

The reference stress method RSM has been under develop-
ment during the past twenty years as an approximate technigue
for analysis of creeping structures. Excellent reviews of the
RSM may be found in the works of Kraus(l), Ponter([2)and Sim[3}.
In order to recapture the basic concepts of the technique, a

beam with rectangular cross-section (b x 2h) is considered.
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The beam is subjected to steady bending moment M and its
material creeps according to Norton's creep law;

v = pAo D (1)

Assuming that plane sections remain plane during creep, the
strain-curvature relations are;

.

v (y) =K.y=2ao(y) " (2)

where K is the curvature rate and y is a coordinate along the
depth of the beam, Substituting o (y) as obtainedfrom eq. (2)
in the equilibrium condition,

]

y
M = 2b jr(y).y.dy (3)
0
vyields the curvature rate K as
n n
: M 1 2n+1
R = A . T (&)
[bhi] h [2“]
Equation (4) can be rewritten as:

n 1
K = A% H . £(n) (%)
where
M 2 ].n
n+
o, = “';;g , £(n) = [Zn-ot] (6)

The function £(n) can be made to be weakly dependent on the
creep exponent n by proper choice of the valueof o< ., Consi-
dering that 3¢gn g 11 for most creeping metals and making
£(3) = £(11) yields o value of €= 1.003. The corresponding
values of the function £(n) .~ as listed in Table (1) ~
exhibit wvery little dependence on n. Adopting an average
value of f = 1.578, the cuxrvature rate is written as:

K = 1.578 -}; 0[1.003 M/bhz] (7




Table 1 Values of f(n) for beam under pure bending

n f(n) K (rsM] /I.< (Exact]
3 1.572 1.004
5 1.584 0.996
7 1.584 0.996
9 1.579 0.999
11 1.572 1.004

Hence,the beam curvature rate is obtained directly from the
results of a single creep test conducted at a reference stress

0o = 1.003 M/bhz. The errors envolved in the approximate solution
are really quite neglegible as can be seen from the ratio

K [rsM] /k [exacf] listed in Table (1).

The identification of the reference stress in the above
procedure relies on making the function f(n) weakly dependent on
the creep exponent n and hence may prove difficult for components
which have no exact creep solution. An alternative and effective
way for determining L depends on scaling down the fimit load
solution corresponding to perfectly plastic material with yield
stress ’y' It can be shown that the ratio °b/vy equals M/ML
where ML is the limit bending moment, i.e.

ooy = M/My (8)

In cases where no exact limit load expression is available,tests
on perfectly plastic models of the prototype structures may be
utilized.

The RSM has been verified experimentally for beams of both
rectangular and tubular sections under both steady and variable
loads. Creep of components such as plates, tubes and panels
have been studied using the RSM. In the following section,the
RSM is applied to analysis of structures made from cyclic har-
dening material under conditions of repeated loadreversals.




2. Cyclic Plasticity Analysis

Initially annealed metals are known to exhibit cyclic har-
dening when subjected to repeated reversals of load [4]. The
hardening rate can be quite large during the first few cycles
but decreases contineously until a cyclic steady state is
reached early in fatique life. The steady state of a cyclically
hardening metal is characterized by the cyclic stress-strain
curve which connects the cusps of settelled hysteresis loops
obtained at different strain (or stress) amplitudes. The
transient cyclic hardening characteristics can be represented
by a family of cyclic‘stress-strain curves which connects the
cusps of hysteresis loops at egual number of cycles and diffe-
rent strain amplitudes as shown in Fig. (1) for 99.9% pure

copper.

When a structure made from cyclic hardening metal is
subjected to repeated load reversals, its behaviour will reflect
the hardening characteristics of its material in terms of its
load carrying capacity or deformation amplitudes. 1In orxder to
apply the reference stress method to cyclic plasticity, a
simple example of a rectangular beam (bx2h) subiected to cyclic
curvature :K is considered. It is required to determine the
conuitions of a reference uniaxial test which can be used to
characterize the beam behaviour. The family of cyclic curves
shown in Fig. (1) may be represented by

o =BE , m=m (N) (9)

where N is the number of cycles. Taking the range of 0.1l4m

£ 0.5 which fits the observed hardening, the problem can be
solved in a manner analogus to the creep problems. Again
assuming that plane sections remain plane and neglecting elastic
strains, the moment curvature relation at the instants of cur-
vature reversals is obtained as:

2 2 m
M’bh.m . B ( £ kh) (10)

which can be written as:




2
M =bh", £f(m) . o( 1 go) (11
where
2
£E =¢kh , f(m) = —————rF
o (m+2)c:v<m

Enforcement of £(0.1) = £(0.5) yields o = 0.674 and the corres-
ponding variation of f with m is as listed in Table (2). Hence
the moment curvature relation can be written as

M = 0.993 bh® o (+ 0.647 kh) (12)
i.e. the bending moment is determined directly from the results
of a reference uniaxial test conducted at €, = ¢t 0.647 times

the surface strain (kh).

Table 2: Values of f(m) for beam under cyclic curvature

m £ (m) M [RSM] /M {Exact]
0.995 0.998
0.992 1.0
0.991 1.001
. 0.992 0.998
0.995 0.963

Another example of the application of RSM ‘s provided by
considering the cyclic torsion of a solid bar (rad. = a, length=L)
subjected to repeated reversals of twist angle 6. Assuming the
validity of von-Mises relations, the reference strain solution
for the twisting moment T is:

3

T = 1.205 a o (+ 80) , £E = 0.426a 6 /L (13)

(g}
when the structure is subjected to controlled history of pres-
cribed deformation, the reference uniaxial test is conducted

under reversed strain conditions. On the other hand,when the

structure is subjected to controlled history of prescribed




loads, the referenee uniaxial test is conducted under reversed
ter

stress conditions. Reference stress relations in the lat
case will be similar to those used in creep analysis.

The above results describing cyclic pure bending of beams

are utilized to generate solutions for a host of allied b
bending problems, e.g. cantilevers and simply supported b

eam

eams.

The final results are summarized in table (3). The range of
0.1£m£0.5 is used throughout.
Table 3. Reference Test Solutions in Cyclic Plasticity
Structure Loading history Reference stress(or strain)solution
Rectangular + K M=0.993bh% o [g,] » €= + 0.647kh
beam
_ 1 _ 2

{bx2h) + M K—l.557E-- £ Ero] T + 1.003M/bh
Solid bar + 0 T=1.205 a> o[€,] » €= + 0.42696/L
(rad=a, 3
Length=L) + T e=2.354L/a-a{?oj . Ub= + 0.829T/a

bh? 2
Cantilever +é at tip P=1.158—7 -w[Fo] r €5 F 1.9668h/L
(L)under L : 2
Tip Load +pat tip <S=o.483-H €[] ¢ o= * 0.876PL/bh
Cantilever +§ at tip q=2 39bhz u-[‘a ] € = + 2.8045n/L°
(L) under - x ° ° -
distributed , L 2 2
load +q (uniform) | &=0.3315- EFo] ¢ o= * 0-4289L°/bh

bh? 2
Simple Beam +& at center P=2.316———-¢[£ ] , €=+ 1.9665h/L
(2L) under LB ° ° - 5
central load +P at center 8=0'483H_'€'Eb] r T,= %+ 0.438PL/bh

3. Comparison With Test Results

The refernece test results are compared with three s
experimental data for beam bending. The first set of tes
conducted by Oldroyd(5) on rectangular copper beams under

ets of
ts are
pure

bending in an attempt to derive the uniaxial stress-strain curve
from the moment-curvatuyre curve by use of Nadai's bending formula

[6]1 . only monotonic loading is considered in the tests.

Hence,
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a monotonic stress-strain curve and the central deflection .vs.end
load in a four-point beam bending test are determined as shown
in Fig., (2). Application of eq. (13) yields the reference test
predictions which are seen to be in close agreement with the
results of the bending test.

The second set of test data(7]) involves cyclic bending
of rectangular beams made from initially annealed 99.9% pure

copper until the cyclic steady state is reached. The tests are
conducted under repeated rewersals of curvature and the bending

moment is determined. The reference test calculation are based
upon the uniaxial cyclic stress-strain curve. An exact numeri-
cal solution for the moment-curvature relation is also determined

on the basis of representing the uniaxial cyclic curve by a
Ramborg-0Osgood relation. Figure (3a) compares the test results
with both the reference test predictions and the exact numerical
procedure. Very close agreement is obtained. Figure (3b) shows
similar calculations for the cyclic twist of a solid circular bar.

The third set of data are conducted on simply supported

304 stainless steel beams subjected to repeated reversals of
central load and central deflections at 1100 °F, Ten cycles

of load (or deflection) are completed. The experimental results
are shown in Fig. (4a,b). The reference test predictions are
based on the 10th cycle cyclic curve obtained by connecting the
cusps of three hysteresis loops determined at + €= 0.4, 0.6 and
1% . The cyclic curve is fitted to a bilinear relation; € =

[V + 4 (o - o;)J /E where U} is a material yield stress =10000psi
{9) . Using this relation, the reference strain predictions for
the central load P after 10 cycles of reversed deflection s

= % 0,1" in a simple beam with b = 1", h = 2" and 2L = 24"
gives 5290 lbs as compared with 5480 lbs from the test results.
An excellent agreement of less than 4% error. In the second
test, a simply supported beam is subjected to ten repeated
reversals of central load p = + 2000 lbs. The references stress
prediction for the 10th cycle deflection range gives 0.082" as
compared with an experimental deflection of 0.113". A less
satisfactory agreement than the deflection controlled test but
still may be accepted in view of the smaller plastic gtrains
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involved in the load controlled test. It is interesting to
note that the present predictions compare very well with a
full transient analysis of the beam problem [9] .

4, Cyclic Creep Analysis

The phenomenon of cyclic creep is the cyclic strain
growth observed in metals when subjected to the combined
effect of steady and cyclic load components. A closely
related phenomenon to cyclic relaxation of stress under the
combined effect of steady and cyclic strain components.
Plots of cyclic creep strai- against cycles are quite
similar to the conventional time-dependent creep curve
with a primary stage of decreasing strain rate, a secondary
stage of constant strain rate and a tertiary stage with
increasing rate before the specimen fails due to fatigue.
The strain growth is usually accompanied by a hysteresis
loop. Hence, the total plastic strain during a typical
load cycle is composed from a small reversed component and
a drifting growth component [4] .

The steady cyclic rate of strain growth depends on the
*

maximum stress © and the stress amplitude Ao of the stress
cyclell0] , i.e.

€, =ac ™, Ac DY (14)

Tests carried out on difterent grades ot commercially pure Copper [10,11]
show that the values of n,¥ depend Largely on the level of o* as
compared with the material yield stress. For example; n=3.2,
¥= 0.03 at o*/y = (0.5-1), n = 4.6, &= 0.2 at r*/0y =1-15
and n=18, ¥ =03 at U"/t9= L whereoyis the 1 % yield stress. Hence,
it may be generally stated that for the range of maximum
stress encountered in design, the values of 24 ns 10 and
0.02¢ §20.2 are acceptable.

The material law in eq. (14) is used here to estimate
the effects of cyclic creep on deformations of structures
subjected to cyclic loading. The solution is expressed

)
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in.a reference stress form. This is achieved through
using the so-called rapid cycle solution applied successfully
in the analysis of time~dependent creep deformation in com-
ponents subjected to cyclic loads with short cycle times
compared with the material time scale{l2]. The technique
provides an upper bound on cyclic structural deformation.

In rapid cycle solution, the cyclic stress field in the
structure is assumed to be composed from the cyclic linear
elastic stress field and a residual stress field which is
in eqgmilibrium with zero external forces. The magnitude of
the residual stress field is determined by enforcing the
compatibility of cyclic strains resulting from the cgclic
stress field over a complete cycle of load., The theoretical
basis for the rapid cycle solution may be found in ref. [12]
and its application to the analysis of cyclic growth of

structures are found in ref. [10, 11]

As an example, consider a rectangular beam subjected to
the cyclic history of bending moment which varies between My, M5

The cyclic elastic stress field is:

&ﬁy) = % —~l3 . Y during lst half cycle
bh
A 3 M2 .
o(y) = 5 ;;3 .y during 2nd half cycle (15)
M,~-M
avin) - 3152 Ly
bh

. ; “* Ak .
Hence the cyclic stress field O is assumed as the sum T+ i.e.,

M
Fﬁy) = g— —#-y + P (y) during lst half cycle
M

b (16)

3 ——Zz.y +J°(y) during 2nd half cycle

2 bn

iy

where f (y) is the residual stress field which should satisfy
the equilibrium conditions

(y). dy = 0 (17)

b
Jﬂf(y) .y dy = 0,
-h
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Compatibility of cyclic creep strains resulting from o (y) and
o (y) requires that;

M n I ¥n
A% —biej .y+P(Y) %‘ '—l—b—}:zr = f(N.y (18)

where RN is the cyclic curvaturerate. Hence, £ (y) is given
by :

K, 1in ¥ M

= 1 (1-¥n)/n _ 3 1

P = [x—] 3 MM | Y B AR A
£

bh

Upon substitution in the equilibrium conditions, kN is obtained
as:

n n 3n
M 3 (M,-M,)
. 2n+1-nx] 1 1 172
= aleR2Z0ne) L 2, ] (20)
N [ 3n h *| 2bn2 4bh?

It is noted that the associated cyclic stress field may
possess a singularity at y=0 which can be seen from eq. (19)
for n¥3’l. The singularity may be overcome by introducing an
assumption that the maximum stress at y=0 does not exceed an
upper limit which may be taken as some multiples of the
material yield stress. A similar procedure has been used in
ref.[10] in the analysis of ratchet strain rates in a circular
Bree element.

The curvature relation, eq. (20), may be expressed as:

_ * n n¥ 1 \
Ky = A(oﬁ-v max) (% AOPmax) - f £, %) (215
where
* 3 2 3 2
“max = 3 Ml/bh r Ao 57 (M M,) /bh™,
n
£in,8) = _2_1__5_} (22)
3n’d1'q2




The values of o, . . <an be chnven for the oractical
rzages of 2/.nl 10 3.025:5430.2 sucn Loz oo oua% LU, . L
1s weakly dependant upon n and §. Taking £(2,0.02) = f(lu,C.07;
and £(2,0.2) £(10,0.2) provicf~e t-ro volawaonh L=l D S0 and

o which yield their respective values as:

ettt

~i = 0 792, &, = #.671. The corresponding variation of £
e
with n,¥ does not vary from the mean vaiuv~ =~ — 1.34%& by more

than + 2.8% as shown in table (4). llence cne ifira!l resuit foi

reference stress solution is:

. 1
KN = 1.596 i EN [0.671 Uﬁax’ O'BQZZAUEaK] (23)
Table (4) Values of f(n,¥) wvsed in cyclic creep of peons
¥= 0.02 451 R
n=2 1.552 1.581% 1.612
n=4 1.575 1.66¢% 1.84n
n=6 1.573 L.611 L.638
n=8 1.564 L.and 1.627
n=10 1.522 1.595 1.G.7
Note thz closeness of ccocefficients in . [23) wnw rtheoso chhiained

in the case of cyclic plasticitv: Tabig (3).
An analogous result for cyclic creep daeficciinn 0 4 caatilever
under an end load which varies berween p, and p, can be easily

obtained as:

4 L2 . }:',~ ' tfr)v - .‘:")J-L__‘;
' Sy = 0.466 £ E o sa4 e, g o 2T,
» 2 b3 NIV

3. Conclusions

‘
The reference stress method can be apvlisdto anzlo-i< of
\ : - (] - .
: structuresmade from cyclically hardened materials. The technique
; is extremely useful during the initial stzvcn of desicn sings

1
§ -+ reduces the problem to conducztin =+ i v oGl T el

} .
;
|
|
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hardening test at the reference value of stress (or strain)
amplitude. The accuracy of the technique has been demons-
trated through comparisons with published test resuilts and
exact numerical solutions for simple beams. Checks on more
complex components such as plates, panels and tubes should
be conducted.

The applicability of the RSM to analysis of cyclic creep
behaviour of structures is demonstratedby extending the use of
the so called rapid cycle solution used in time-dependent creep
analysis. Tests on components operating under conditions where
cyclic creep is dominant are reguired. In principle, the RSM
can be applied to analysis of structures under cyclic relaxa-

tion conditions.
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