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INELASTIC DEFORMATION OF METALS AND STRUCTURES

UNDER DYNAMIC AND QUASI-STATIC CYCLIC LOADING

by

A.M. Eleiche and M.M. Megahed

ABSTRACT

Studies on cyclic plasticity during the second year of
the contract has developed along a theoretical approach to
the problems involved. It is hoped, however, that this
approach will furnish a good basis for useful and meaningful
tests on components operating under cyclic plasticity conditions.

The investigations of the modes of cyclic plastic behaviour
in tubes under internal pressure and cyclic thermal gradient
have been continued.-71he results obtained so far are summarized
in Part l%-,>An approximate uniaxial model of the biaxial tube
problem is used for studying the influence of the hardening rule
on the cyclic plastic behaviour. Comparisons are made between
kinematic and isotropic hardening rules. These two theories
represent the extremes of cyclic plastic behaviour. To avoid
the drawbacks of the uniaxial model, a two-dimension~l numerical
solution utilizing kinematic hardening has been also developed.
Results obtained are in better correlation with experiments.
Present efforts on the tube problem will make use of a plasticity
model which can faithfully represent the observed cyclic harden-
ing and cyclic creep.

In Part 2, the cyclic plastic behaviour of specimens used
in the so-calledpulley test are studied using linear kinematic
hardening theory. The pulley test simulates the cyclic thermal
stresses by means of cyclic bending of a thin specimen around
the circumference of a freely rotating pulley. Theoretical
results for stress and strain behaviour are obtained for both
wire and strip specimens. --GQmparisons with test results show
qualitative agreement. In vii~w of these comparisons, greater
insight has been gained on -he implications of cyclic creep of
the behaviour of components operating under cyclic loading.

In Part 3, the reference stress method *M - which has
been used with great success in the analysis of creeping struc-
tures - is applied to the analysis of components operating under
conditions where cyclic hardening and cyclic creep are dominant.
The technique is quite simple; it provides a direct relationship
between the behaviour of the structure at a given point to the
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result of a uniaxial test conducted at the reference conditicnE
of stress or strain amplitudes. Accordingly, the analysis is
reduced to the determination of the reference test conditions.
This elegant procedure obviates the need for extensive testing
programmes aimed at describing accurately the behaviour of
metals. The technique is illustrated for beams under both
uniform and non-uniform bending and comparisons with published
test data show excellent agreement.



TABLE OF CONTENTS

Page

Part 1 - Analytical and Numerical Investigations
of Thin Tubes Under Internal Pressure and
Cyclic Radial Temperature Gradient 1

Abstract 1

1. Introduction 2

2. The Elasto-Plastic Problem 5

3. Elastic Shakedown, Cyclic Plasticity and
Ratchetting 8

4. Discussion of Results 11

5. Analysis of Inelastic Benchmark Ratchetting Tests 14

6. Conclusions 18

7. References 19

Part 2 - Kinematic Hardening Analysis of Ratchet
Strain in the "Pulley Test" 33

Abstract 33

1. Introduction 33

2. The Equivalent Bree Problem 35

3. Modes of Cyclic Plastic Behaviour 36

4. Accumulation of Ratchet Strain
a. Kinematic hardening solution 40

b. Perfect plasticity solution 42

5. Discussion of Results and Conclusions 42

6. References 45

Part 3 - Applications of References Stress Method

(RSM) in Cyclic Plasticity Analysis 55

Abstract 55

1. Reference Stress Method in Creep Analysis 55

2. Cyclic Plasticity Analysis 58



TABLE OF CONTENTS (Cont0,

3. Comparison with Test Results

4. Cyclic Creep Analysis i2

5.. Conclusions

6. References 61



LIST OF ILLUSTRATIONS

Figure

Part 1 - Analytical and Numerical Investigations of
Thin Tubes Under Internal Pressure and
Cyclic Radial Temperature Gradient

la Transient temperature distribution across
the tube wall and its bilinear representation 21

lb Equivalent uniaxial model, temperature

distribution and elastic thermal stress 21

2 Linear kinematic hardening model 21

3 Stresses during the first half cycle 21

4 Modes of behaviour for a uni.axial tube
model (K = 40, h = 0.2) 22

5 Cyclic plasticity and ratchetting behaviour 23

6a Examples of ratchet strair accumulation
(K = 40, h = 0.2, ay/E = C,.. %) 24

6b Kinematic hardening re- . ,r:s foC 3fl 5
at a = 0.675 a and a. 2.74 a 25

P Y -y

6c Isotropic hardening results for 301 ..
at ap = 0.675 a y and at = 2,74 c, 26

7 Full solution map and contours of total
ratchet strain for a tube wit'. .t = 21.51,
h = 0.328 using monotonic properties of
3C"4 SS at 900 F (a = 11.15 x 23V si.,
E = 23.3 x 10 psi, c = 11 x 10-6!°F,
K = 38.56 and v = 0.3) 27

8a Stress distributions during first cycle as
obtained numerically for h = 0 and h = 0.328
for both kinematic and isotropic hardening
rules, for a 0.675 a and a = 2.74 a
for 304 SS P t Y 28

8b Effect of h on ratchet boundary 2q

8c Effect of h on ratchet strain and amplitudes
of cyclic plasticity 29

9 Comparison between model predictions and
experimental results for test-i 30

10 Characterization of cyclic hardeninq in
304 SS 31



Figure ,- a., e

Part 2 - Kinematic Hardening Analysis of JiatctI
Strain in the "Pulley Test"

la Schematic illustration of the pulley test

lb Samples of observed ratchet strain 1?

2 a) Elastic stress field
b) Equivalent multi-bar assembly
c) Geometry of wire specimen
d) Geometry of strip specimen 48

3 The two possible stress fields due to first
cooling 48

4 Bree diagrams and contours of ratchet
strains 49

5 Transient and steady state stress fields
and plastic strains for the ratchetting
regimes 50

6 Algorithm for determination of ratchet
strain 51

7 Perfect plasticity and kinematic hardening
solutions for the accumulation of ratcnet
strain in a wire specimen 52

8 Comparison between exact perfect plasticity
solutions for ratchet strain per cycle and
linearized lower bound estimates 53

9a Operating conditions and Bree diagram for
ratchetting tests on copper wites 54

9b Applicability of Eq. (18) for estimation of
primary ratchet strains in the copper wire
tests 54

Part 3 - Applications of Reference Stress Method
(RSM) in Cyclic Plasticity Analysis

1 Monotonic, ith cycle and steady state cyclic
stress-strain curves for 99.9% pure copper 68

2a Monotonic stress-strain curve for pure copper 69

2b Test data and reference stress predictions
for a 4-point beam bending test on pure
copper 69



3 Cyclic steady-state behaviour for

a) beam under cyclic curvature
b) solid bar under cyclic twist 70

4a RSM predictions of test results of simple
beam under cyclic central deflection 71

4b RSM predictions of test results of simple
beam under cyclic central load 71



PART 1

ANALYTICAL AND NUMERICAL INVESTIGAT!CA. 3

OF THIN TUBES UNDER INTERNAL PRESSURE

AND CYCLIC RADIAL TEMPERATURE GRADIENT

Abstract

The elasto-plastic behaviour of thin tubes under internal

pressure and cyclic radial thermal gradient is investigated for

non-linear temperature distribution across the tube wall. The

following simplifying assumptions are introduced: 1) an equivalent

uniaxial model, which ignores the effect of axial stress on the

tube behaviour, is adopted, 2) the non-linear temperature

distribution is approximated by means of a bilinear relation,

3) the plastic behaviour of the material is retresented by a

linear kinematic hardening model. The numerical procedure is

modified to handle the isotropic hardening rule in a similar

manner to that for handling kinematic hardening.

Results of this investigation show that the bilinear

temperature distribution introduces new modes of cyclic plastic

deformation which are not present for linear distribution.

Also, the bilinear distribution is found to cause more stringent

ratchetting limits, larger ratchet strains and larger amplitudes

of cyclic plasticity when compared with those due to the linear

distribution.

The nunerical programme is further improved so as to solve

the tube problem in a generalized plane strain form, i.e. in two

dimensions, and thus the need for an equivalent uniaxial model

no longer exists. This two dimensional numerical solution is
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also modified to include isotropic hardening. Outputs of

the programme for the uniaxial model under both kinematic

and isotropic hardening rules as well as those for the

biaxial model under the kinematic hardening rule are in good

agreement with analytical and experimental results. The

biaxial model under the isotropic hardening rule is still

under convergence and accuracy checks.

The results are also compared with experimental results

available in the literature for the plastic ratchetting of

thin tubes tested in a sodium loop and operating above the

shakedown limit.

1. Introduction

A unique high temperature structural design problem in

the Liquid-Metal-Fast-Breeder-Reactor (LMFBR) results from

the frequent thermal transients that can occur in heat

exchanger tubes during the reactor startups and shutdowns.

These intermittent thermal shocks can produce proqressive

inelastic deformation (ratchetting) and significant fatigue

damage.

Ratchetting of pressurized thin tubes under cyclic thermal

transients has been investiqated by Miller /1/ and Bree /2/

using perfect plasticity assumptions. Mulcahy /3/ realized

the unrealistic representation of the behaviour of austenitic

steels by perfect plasticity and therefore analysed the tube
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problem using a linear kinematic hardening model. These studies

consider a linear temperature distribution across the tube wall.

In practice, however, temperature is distributed non-linearly

across the wall as seen in Fig. la which reproduces the basic

features of Corum et al /4/ tests on ratchetting of 304 stain-

less steel tubes. Although the kinematic hardening model

accounts for an idealized Bauschinger effect, it does not

reproduce some equally important facts of the cyclic plastic

behaviour of metals such as cyclic hadening, cyclic creep

(material ratchetting) and cyclic relaxation.

In the present work, the non-linear temutLature distribu-

tion across the tube wall is taken into account by means of a

bilinear approximation. A linear kinematic hardening model is

used for the analysis and both the kinematic and isotropic

hardening models are employed in the numerical solition. Tn

common with previous work, /1/, /2/ and /3/, the two-dimensional

tube problem is reduced to an equivalent uniaxial one by ignoring

the effects of the axial membrane stress and magnifying the

thermo-elastic stress.

The elasto-plastic solution is obtained in a semi-analy-

tical form and the computer is employed to perform some of the

tedious manipulations associated with the ratchettinq regimes.

The results show that the bilinear temperature distribution

introduces new modes of deformation not associated with the

linear distribution /1,2,3/. For example, operating conditions
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above shakedown will exhibit cyclic plasticity which is

confined to the inner skin of the tube only as compared

with cyclic plasticity at both the inner and outer skins

for the linear temperature distribution. Also, the bilinear

distribution introduces more stringent ratchetting limits,

larger ratchet strains and larger amplitudes of cyclic

plasticity at the inner skin of the tube wall, which in turn

enhances fatigue damage in the tube /5/. The previous

arguments are found to be true for isotropic hardening as

could be seen from the numerical results.

The two-dimensional kinematic hardening solution

technique gave similar regimes of deformation to those obtained

from the uni-axial model. Although the stress distribution

at a certain cycle is not very much different in magnitudes,

its form is considerably different from those obtained for

the uniaxial model. This may be attributed to the bi-axiality

effects. Also the ratchet strains, cumulative strains and

amplitudes of cyclic plasticity are markedly lower than those

for the equivalent uniaxial model.

The present elasto-plastic results are used to analyse

the tube ratchetting tests carried out by Corum et al /4/ on

thin tubes made from initially annealed 304 stainless steel

under severe thermal downshocks between 11000 F and 800 0 F,

Fig. la. In these tests, each thermal shock is followed by a hold

period at 11000 F which causes accumulation of time-dependent



creep strains. This creep strains can be evaluated using

the technique developed by Ainsworth /6,7/ which yields an

upper bound on creep deformation per cycle when load variar,. s

exceed the shakedown limit.

2. The Elasto-Plastic Problem

Consider a thin tube (inner radius a and outer radius b)

under an internal pressure P an, a cyclic thermal :aditu . ot

maximum value AT distributed non-lineai:Iy -ic.rosq it> will

thickness t. The non-linear temperatuce distribution may be

approximated by means of a bilineai celation such that

T(x) = 0 for 0 1 x h

T(x) = - AT (x-h)/(l-h) for h i x <

where x = (b-r)/t, i.e. x = 0 at r = h and x - i at V

Elastic thermal stresses are given by (/8/;

=Ea A T for 0 4 x . h
08 = c z  - (l-h) 2 (io

(2)

o = a - (1-h) Ect A T + x-h E AT f r h r x 1e z 2(l-V) 1-h l-h

These stresses are cyclically superimposed upon tne membrane

stresses due to internal pressure, which are given by

08 = 2a PD (4)

where D is the mean diameter of the tube.

As argued by Bree /2/, the effect of a is opposite

that of a., and hence ignoring az should yield conservative
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strain estimates. This reduces the two dimensional problem

to that of a slab prevented from bending and subjected to a

steady mechanical stress o = PD/2t in addition to the

temperature cycle given by equations (1), Fig. lb. The

corresponding uniaxial thermal stresses are,

at(x) = - (l-h)at for o 4 x 4 h

(5)

at(x) = - (l-h)at + 2 (x-h) h 4 x 4 1
(1-h) 0 t

where at = EcaT/(l-v) is one half of the total thermal

stress across the tube wall, Fig. lb. An operating condition

will therefore be defined in terms of a and a t

The elasto-plastic analysis is carried out using a

linear kinematic hardening material model, Fiq. 2, where the

slope of the plastic portion is assumed to be a constant BE.

This yields the flow rule as,

d 1-B da K da (6)

E E

where K = (1-8)/S is the material hardening parameter. For

simplicity, all material constants E, v, a, K and ay are yi
assumed to be temperature independent.

In the isothermal condition, the uniaxial model is

subjected to a uniform stress a p, and upon application of the

thermal gradient during the firt half cycle, the stresses will

increase in the cold fibers and decrease in the hot ones.
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Consequently, two distinct stress fields are possible, the

first involves tensile yielding only, Fig. 3a, and the second

involves both tensile and compressive yielding, Fib. 3b. The

elasto-plastic stress-strain relations for the stress field

of Fig. 3a are:

e1 = al(X)/E for o~x~h

l = [01 (X) - 2at(x-h)/(l-h)]/E for h~x~yI (7)

El = [aI (x ) - 2at(x-h)/(l-h) + K(al(x) - ay)] for Yl<x~l

where yl is the plastic front. Equilibrium and compatibility

conditions are expressed by:

1

p= f al(x) dx and C = constant (8)

Since al(y I ) = ay, the constant e becomes equal to [ Y-2c+(Yl-h)/

(1-h)]/E and the integrals in the equilibrium equation can now be

evaluated to yield y, as:

- 1 (l+K)(l+Kh ) + K(l+K) (1-h)(1-a /ay). /at (9)
K K p y yt

Fully elastic behaviour is assured if y1 j 1 which implies (using

Eq. (9)) that:

' (a - ap)/(l+h) (10)

t  y p

Compressive yielding occurs at x = o if ai(o) 4 - a y which is

equivalent to (using Eq. (9)):

(a 2 + [(l+K)(1-a ) - 2(l+Kh). (at /ay)/(l-h) - K o
t / y -p/y
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Operating conditions which satisfy inequality (11) will cause

both tensile and compressive yielding during the first half

cycle (Fig. 3b) and the solution of the corresponding elasto-

plastic problem yields the following expression for the strain

E:
C1 :

Ei =[ Y- 2at(Yl-h)/(l-h)]/E = -[,y+2at(Zl-h)/(l-h)]/E' where

(l+h 2 ) (at/a ) +(l-h) (l+K) (1-a /a (a1)+(l-h2

t Y ~ p y .tYl =  (12)
2.at/ay (at/ay + K(l-h

Subsequent thermal cycling gives rise to either elastic shake-

down, cyclic plasticity or ratchetting, as shown in Fig. (4).

3. Elastic Shakedown, Cyclic Plasticity and Ratchetting

For operating conditions which satisfy Eq. (11), the

stress fields shown in Figs. 5a and 5b are possible during the

second half cycle. The stress field of Fig. 5a involves cyclic

plasticity at the inner skin of the tube while the stress field

of Fig. 5b involves cyclic plasticity at both the inner and

outer skin of the tube.

The elasto-plastic analysis of the stress field in Fig. 5a

yields the plastic front Y2 given by Eq. (13)

1 + 1(1+K) (I+Kh2)+2K(1+K) (l-h)ay/at (13)Y 2 =-9 K + t

Shakedown will occur if y2 >, 1 which is satisfied if

at  2 a y/(l+h) (14)

and such shakedown behaviour is termed as S1 (Fig. 4). In

Fig. 5a, cyclic plasticity will not occur at the outer skin

(x=o) ifAa2 (o) < 2ay and such condition is satisfied if
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+ 4K(1-h(1--)
a [/(K-ay 2Khl 2 + 4K(l-h)2 _ (K - 2Kh-1) /(1-h,1i

Thus, thermal stresses which satisfy Eq. (15) b t kvl _

Eq. (14) produce cyclic plasticitv at the i:n s.kin oniy, a'ad

such behaviour is called F1 in Fig. 4. Note that for h = o,1!

Eqs. (14) and (15) become ider,ticai, viz. a r< 2o ana rtgitr,

F is not present as in Mulcahy's analysis /3/ lui. tlia

temperature distribution.

The stress field of eig. 5b wiil occur when therma±

stresses violate Eq. (15) and cyclic plastiiity takes pla-.ze

at both the inner and outer skin of tre tute, Such behaviour

is termed F2 in Fig. 4. It can be shown that F2 wi2l continue

during subsequent temperature cycling if

r22
[(IKh 2 )- ( + K )rjp / Cy j  .( (t/ay) 2+K(-h) [3-2(+K up /a y].at/ y e+2K 2

z

(1-h) o (16)

as shown in Fig. 4.

Cyclic plasticity may also take place when the response

of the model exhibits tensile yielding only during the first

half cycle (Fig. 3a). A possible second half cycle stress

field which corresponds to such behaviour is shown in Fig. 5c

and the corresponding plastic front Y2 is given by Eq. 17.

1 + I /1+KnlKh 2  + 2X(K4.)(l-h).a /a (17)

Y2 Y t
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This mode of cyclic plasticity is smni±.

reversed plasticity is confined to the inner skin cn S,

behaviour is termed F3 in Fig. 4 and it can be shown that the

condition for its continuation during subsequent thermal

cycling is

(apa 2 42[(l+K) -4(l+Kh2)].(at/a y) -2K (1-h) (3-P /( .) /'a+K- a(l-h(]+-K K's '

Shakedown will occur if v- .i .o) a - ano thi:

conditions are satisfied if,

4 (1+K) (19)

K(l+h) (1-h2 ) Y

This shakedown behaviour is termed S2 in Fig. 4.

Ratchetting takes place for ooerating conditions which

violate Eqs. (16), (18) or (19) as can be seen from Fig. 4 tor

the ratchetting regimes RI, R2 , R3 and k, In the r. tc;'ettinq

regime RI, which takes place at thermal stresses below ile

shakedown limit (at = 2a /(l+h)), a cclic stress field which
y

produces cyclic permanent deformation is shown in Fig. 5d.

The accumulated ratchet strain is obtained ti1rw> A

numerical evaluation of the recurrence relations for the

corresponding yn and yn+l by a simple computer alqorithm.

Elastic shakedown is approached asymptotically as the cyclic

steady state following an initial phase of transient ratr~hEtt.r :

In reqime R2, transient ratchetting takes place while

cyclic plasticity is occurring at both the inner and outer skin
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of the tube (Fig. 5e) until a cyclic steady state similar to

F2 is approached asymptotically. In regime R3, the transient

response consists of two consecutive phases of ratchetting

mechanisms. In the first phase, ratchetting takes place

according to a mechanism similar to that present in R until a

sufficient degree of hardening is attained such that the

mechanism shown in Fig. 5f is activated. In this second phase

of R3 , ratchetting is developed while cyclic plasticity is

taking place at the inner skin of the tube. Clearly, the cyclic

steady state for R3 will be similar to that present in F1 and F3*

In the ratchetting regime R4, ratchetting is developed through

three consecutive phases. R1 is employed in the first phase, the

second phase is similar to the second phase of R3 and the third

phase is the same as R2. Consequently, the cyclic steady state

for F2, R2 and R4 are similar.

When a linear temperature distribution (h=o) is assumed

across the tube wall, the resulting cyclic steady state is

either shakedown for at < 2ay or cyclic plasticity at both the

inner and outer skin of the tube for at > 2a Y. It is now clear

that due to the bilinear temperature distribution (h > o), new

modes of behaviour (FI, F3 and R 3) are discovered in which cyclic

plasticity is confined to the inner skin of the tube.

4. Discussion of Results

The results of previous sections were assembled into a

computer program described in detail in a previous report /9/

whose input is the problem parameters 1 < K < o, o < h < 0.5
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and the operating condition as defined by o < ap < aYnd

0 < at < M. The program is provided with 10 routines which

yield stresses and strains corresponding to E, SI, S2 , F1 , F2,

F3 , Ri, R2, R3 and R In the ratchetting regimes, the cyclic

steady state is assumed to be reached when r (x=o) does not

change by more than 10- 6 per cycle. Examples of the transient

ratchetting behaviour in Ri, R2, R3 and R4 are shown in Fig. 6a.

It is seen that most of the ratchet strain accumulates during

the first 20 cycles or so. The number of cycles required to

reach the steady state depends mainly on the hardening parameter

K. As K becomes larger, the material plastic behaviour approaches

that of perfect plasticity and consequently a larger number of

cycles is required before the steady state is reached. However,

for austenitic and many high strength steels K 40 - 50 which

imply that the steady state will be reached after the first

20 to 30 cycles.

In Fig. 6b the effect of h is clear. The ratchet strains

as well as the cumulative strain are considerably lower in the

case of linear temperature distribution (h=o) than for the

bilinear distribution. This is true for both kinematic harden-

ing and isotropic hardening results as could be seen from Fig. 6c.

An overall view of the results may be gained from the

contours of total ratchet strains as shown in Fig. 7 for a

thin tube made from 304SS whose monotonic properties at 900°F

are used to calculate pressures, temperatures and strains. It
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may be noted that the contours of equal ratchet strains are

almost parallel to the ratcheting limit (the line which

separates R regions from S and F regions) and, correspondingly,

ratchet strains are more sensitive to changes in pressures than

changes in temperatures. In fact, ratchet strains are reduced

slightly as AT becomes very large (for AT > 2500 in Fig. 7).

However, these large temperature differences are not likely

to be encountered in practice.

The important result which emerges from the present work

is the effect of the bilinear temperature distribution parameter

h on the tube behaviour. As stated earlier, for h > o new modes

of deformation (F,, F3 and R3 ) are introduced in which cyclic

plasticity is confined to the inner skin of the tube. This is

shown in Fig. 8a where it can be seen how h affects the form of

stress distribution for a certain set of loading parameters

(those used in Corum's tests). The cyclic plasticity at the

inner surface of the tube observed for h = 0.328 is not present

for h = o. This is true for both kinematic and isotropic harden-

ing solutions.

Figure 8a shows the effect of h on the ratchetting limit

and it is seen that ratchetting starts to take place at smaller

mechanical loads as h becomes larger. This effect is more

prominent above the shakedown limit (at = 2 y). Fig. Bc shows
y a

the effect of h on asymptotic ratchet strain at a 0.4a

at = 3a y. It is seen that ratchet strain attains a maximum
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value at h 0.27. Thus, an analysis based on linear tempera-

ture distribution is likely to underestimate the likelihood of

ratchetting as well as the value of ratchet strain. The effect

of h on the amplitudes of cyclic plasticity which are of

interest when designing against low cycle fatigue is shown in

Fig. 8c. At h = o, cyclic plasticity of equal amplitude takes

place at both the inner and outer skin of the tube and as h

becomes larger, cyclic plasticity amplitudes increase at the

inner skin (x=l) and decrease at the outer skin (x=o). For

example, at h = o, Acp (O) = AEp (1) = 1.5y /E while at h = 0.3,

Ac p(1) = 3 o y/E,Ac (c) = o which means tn]at the higher value

of h doubles the amplitude of cyclic plasticity at x = 1.

This can be shown to reduce the fatigue life by about thirty

percent (using the Coffin-Manson relation /5/:Acp N = constant).
p f

5. Analysis of Inelastic Benchmark Ratchettinq Tests

Two thermal ratchetting tests have been conducted by

Corum et al /4/ on 304SS thin tubes. In the first test, a

tube was subjected to 13 thermal downshocks between 11000F and

8000F in a sodium loop under internal pressure of 700 psi which

is reduced to zero for 2 hrs subsequent to each thermal shock

in order to transfer the liquid sodium from the drain to the

source tank. Following each thermal shock, the tube was kept

at 11000F for 160 hr. The measured temperature distribution

across the tube wall (Fig. la) was non-linear and may be

reasonably approximated by a bilinear relation with h = 0.328
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as discussed earlier. The maximum temperature difference

across the wall was about 167 F and corresponds to an outer

skin temperature of 10000F and an inner skin temperature of

830 F.

Using the monotonic properties at an average temperature

of 900 0F, the full solution map is constructed as shown

previously in Fig. 7 which shows that the operating conditions

of this test lie within the ratchetting regime R3 . The cyclic

accumulation of ratchet strain calculated on the basis of mono-

tonic data at 900 0F is shown in Fig. 9 as dotted lines.

Ainsworth /6,7/ developed a method by which an upper bound

on creep strain per cycle can be determined for structures

subjected to load variations above the shakedown limit. The

creep strain is bounded by the cyclic plasticity solution of

a similar structure that does not creep. Thus, considering a

uniaxial tube model subjected to internal pressure P(t) and

cyclic temperature T(x,t), both of cycle T, and denoting the

cyclic plasticity solution for a similar structure, which does

not creep, subjected to the loading conditions P(t) + p and

T(x,t) by a (x,t), an upper bound for axial creep displacement

is given by

Au 1 T T n-C -L f f o (x,t)l dV dt, (20)

np o V In+

where p is an additional constant positive load yet to be

determined and D is the rate of creep energy dissipation.
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The bound is evaluated at the value of p which minimizes the

right-hand side of Eq. (20). Note that the earlier analysis

of the elasto-plastic problem yields the stress field a (x,t).

Assuming that creep is governed by Norton's law and substitu-

nting for D by Kan , Eq. (20) becomes,

n n+1 1 1 n+l
A nl K1 f a (x) dx, (21)

0

Most of the creep strain takes place at the hold

temperature of 1100 F and the short term creep rates /10/ at

1000-2000 hrs are used for evaluation of the bound for the

test. The stress index n is obtained as n = 3.655, /10/, at

the level of stresses present in the tests.

The final predictions of plastic and creep ratchettinq

are compared with experimental results of the test in Fig. 9.

The values of yield stress are a = 11.15 ksi during they

first half cycle and a = 14.47 ksi during subsequent cyclingy

which corresponds to a cyclic plasticity amplitude of + 0.05%

as obtained from initial calculations based on the monotonic

data at 900 0 F. The creep strain is 0.0156% per cycle which

corresponds to an optimum additional pressure p = 346.4 psi.

Fig. 9 shows that the theoretical predictions are in excess

of the observed strains by about 40% for the test.

The predicted ratchet strains are found to be very

large when compared with the experimentally observed ratchet

strains (the experimental results for the test are also shown
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in Fig. 9). This overestimation of observed strains is seen

to be due to the use of the monotonic stress - strain data

and the kinematic hardening rule which ignore the cyclic

hardening properties of the tube material.

The cyclic hardening behaviour of 304SS is character-

ized in Fig. 10 which shows the percent increase in yield

stress against the number of cycles and the amplitude of

reversed plastic strain. Yield stress is defined here on

the basis of bilinear representation of cyclic hardening

loops /10/. The method suggested here to account for cyclic

hardening makes use of the monotonic yield stress during the

first half cycle only and the 13th cycle yield stress for

subsequent cycling. The 13th cycle yield stress is evaluated

at an amplitude of cyclic plasticity Ac p which is representativep

of the test conditions. An upper bound for Ac can bep

evaluated on the basis of the monotonic data. This approach,

however, ignores the effects of other important phenomena

such as cyclic creep (material ratchetting) and cyclic relaxa-

tion, which are present when plastic cycling takes place around

a mean value of stress and strain respectively.

One obvious reason behind the conservatism of the

predictions is the modelling of the biaxial tube problem by

means of an equivalent uniaxial model in which the equivalence

is based on the stresses given in Fig. 9. The uniaxial model
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is likely to predict larger hoop strain accumulation. The

results of the biaxial kinematic hardening programme are

also shown in Fig. 9. These seem tobe the nearest to the

experimental results though creep strains are not taken into

consideration. This may be attributed to the lack of inter-

action between plasticity and creep in the classical theories

of inelastic deformations used in the present analysis.

It is also possible that creep strains are reduced due

to prior cyclic hardening /11/. However, in the absence of

reliable constitutive relations which accounts for this inter-

action, classical theories provide conservative strain

estimates for the conditions of the present tests.

6. Conclusions

The main conclusions of the present work can be summarized

as follows :

1. Comparisons between the modes of behaviour for linear and

bilinear temperature distributions across the tube wall

show that a bilinear distribution introduces new modes of

deformation in which cyclic plasticity is confined to the

inner skin of the tube.

2. Also, bilinear distributions are shown to introduce more

stringent ratchetting limits above the shakedown limit,

larger ratchet strains and larger cyclic plasticity ampli-

tudes at the inner skin of the tube when compared with

corresponding linear distribution.
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3. It is demonstrated that the cyclic hardening phenomenon

should be taken into account in the analysis of ratchetting

components above the shakedown limit. An approximate

method which accounts for cyclic hardening is used in the

present work.

4. The equivalent uniaxial model of thin tubes yields conserva-

tive estimates of observed strains in tube ratchetting

tests and the biaxial model was found to be very close to

the experimental results, though cyclic creep and relaxation

are ignored.

5. The inclusion of the isotropic hardening rule into the

computer programme increased the ratchet strains and changed

the solution map completely. This is to be further investiga-

ted in future work.
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PART 2

KINEMATIC HARDENING ANALYSIS OF RATCHET

STRAIN IN THE "PULLEY TEST"

Abstract

The classical Bree problem-which represents an

uniaxial model of a thin tube subjected to combined

internal pressure and cyclic thermal stress across

its wall-can be simulated by means of the pulley test

in which a wire or strip specimen is sub-ected to

combined steady tensile stress and cyclic bending

stress. In this paper, accumulation of ratchet strain

in the pulley test is investigated using a linear kine-

matic hardening material model from which perfect

plasticity can be generated as a special case. -he

results of the investigation show that asymptotic

ratchet strains are linearly related to the excess in

mean stress 5 above its value vp* at the ratchetting

limit regardless of the thermal stress amplitude.

Comparisons with test xesults on copper wire specimens-

which exhibit non-linear hardening rate-confirm the

qualitative validity of this simple relation. Divia-

tions between theory and experiment are attributed to

metallic cyclic creep. Further, perfect plasticity

results are shown to be well predicted by a linearized

lower bound estimate.

1. INTRODUCTION

Incremental strain growth (or ratchetting) and low

cycle fatigue damaqe can be major causes of failure of

mechanical com onents subjected to cyclic thermal load-

inq. One of the common ratchettinq problems in power

h1ECMlkG nib =
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generation industries is that of a thin-wa]]- pire

subjected to combined internal pressure and cyclic

thermal gradient across its wall which is known as

the "Bree problem" [1). Testing of such components

under realistic thermal conditions usual ly invol,,-s

prohibitive cost in terms of eouiol'oent and strain

measurine devices [2,3J. Such difficulties hnve mnft-i-

vated the development of simpler tests i-r whLch cyclic the_

rmal stresses are simulated by means of cyclic bend-

ing. This is achieved by what is termed s t e
"pulley test" [4,5,61 in which a wire or a strip spe-

cimen of the material whose behaviour is to be inves-

tigated is cyclically bent around the circumference of

a freely rotating pulley while subjected to steady

tensile load as illustrated in Fic. (la). Considering

the segment ABC where AB=BC-T? and P is the radius

of the pulley, when the dead weichts W are in position

(1), AB is subjected to .-ombined tensiori and bending

while BC is subjected to tension only. Alternatively,

when the dead weiqhts are moved to position (2) , BC

will be subjected to combined tension and bending

while AB is subjected to tension only. In this manner,

the cyclic vertical movement of the dead weights brings

about a combination of steady tension and cyclic bending

in segments AB and BC of the specimen. The interaction

between elastic and plastic strains during this loading

cycle causes incremental strain growth which manifists

itself in cyclic lengthening of the specimen.

The pulley test has been utilized by Meqahed et

al (4] as a simple test by which the concepts of rat-

cheting and shakedown can be illustrated experimentally.

Fiqu:e (lb) shows a sample of the results obtained for

the cyclic strain growth of copper wire specimens. It

is seen that the observed behaviour resembles to a great

extent the ordinary creep behaviour, i.e. an initial

primary stage followed by a secondary staqe of constant
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cyclic strain rate. The prediction of observed steady

state rates by means of rapid cycle solutions has been

discussed by Meqahed et al [5]. Ng [61 conducted

ratchetting tests on thin strip sppecimens using a

pulley apparatus to investigate the behaviour of 316

stainless steel at room and elevated temperatures.

In this paper, theoretical solutions for the deve-

lopment of primary ratchet strain in both wire and

strip specimens are generated using the kinematic

hardening plasticity theory. This theory has the ad-

vantage of simulating the Bauschinger effect observed

in many metals but lacks the capability of reproducing

the cyclic phenomena of metals, viz, cyclic hardening,

cyclic creep and cyclic relaxation which have a pro-

nounced influence on the behaviour of s ructural com-

ponents subjected to cyclic loadinq [7] . However, the

solutions presented here provide an estimate of cyclic

strain growth as predicted by a classical theory of

plasticity commonly employed in many inelastic finite

element packages [8].

2. THE EQUIVALENT BREE PROBLEM

Elastic bending stresses which arise in a specimen

of thickness d bent around a pulley of radius Y are

given by + Ct where t = Ed/2? . The stress varia-

tion along the thickness of the specimen is qiven by:

*(x) = ap + tt (2x-l) (1)

where cp is the direct tensile stress due to dead

weights and x is a dimensionless position variable

along the thickness d with x = 0 at the point of speci-

men contact with the pulley and x = 1 at the most outer

fiber (Fig. 2a). It is clear therefore that the cyclic

vertical travel of the dead weights gives rise to a

cyclic elastic stress field which varies between
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S(X) = a- and cr(x) = up + at (2x-l) It can be
pt

shown that an equivalent problem-which produces the

same cyclic stress field as above-is that of an

assembly of infinite number of bars which are allowed

to deform in the axial direction only under the com-

bined effect of a uniform tensile stress a- and a
th r

cyclic thermal strain E (x) which cyclically Varies

between - 2a . x/E and zero (Fiq.2b) . In the multi-
t.

bar assembly, the constant total strain is the sum of

elastic and thermal strain components, i.e. E(x) = o-(x)

/E-2 ct x/E = constant = C whivh gives the stress

history o(x) = EC+ 2 t. x. The equilibrium conditions

is Afa(x) dA = c- . A where A is the cross-sectional
At(P 0 0

area of the specimens and dA is the area of a bar at

the relative position x. Note that A = 1, dA = dx0

for a strip specimen of unit width and A = 9/4,dA=2

x(1-x) . dx for a wire specimen of unit diameter

(Fig.2c). The constant total strain C can be obtained

by satisfying the above condition of equilibrium and

the elastic stress field o(x) is obtained as a-(x) =

+ t. (2x-l) which is the same as eq. (1). Upon

ppremoval of thermal strain, a-(x) becomes equal to p

3. MODES OF CYCLIC PLASTIC BEHAVIOUR

In the elasto-plastic solution, a linear flow

rule and a kinematic hardening rule are employed. Thus,

plastic strain increments are given by

dEp  da- (2)

where K = (i-0)/ and OE is the slope of the linearized

plastic portion of the stress-strain curve. The kine-

matic hardening rule implies that the size of the

yield surface remains constant at 2ty while its center

changes continuously due to plastic deformation.
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Upon the application of thermal strain £th(x)

for the first time (first cooling), the resulting

elastoplastic stress field in the multi-bar assembly

may involve tensile yielding at the outer fibers
(Fig.3a) or both tensile yileding at the outer fibers

and compressive yielding at the inner fibers (Fig.3b).

For the case shown in Fig. (3a), the stress-strain

relations are given by:

I = [ri(x) -2at.x]/E for O<x a 1

(3)
Ei = [ci(x) -2o .x+k(ol(X)-oy)]/E for a(x) x-l

where aI is the elasto-plastic interface. gince

o(a 1 ) = ty, the total strain El is therefore given

by:

£1 = [i- 2 t . al/E (4)

substit .ting CI in eq. (3) provides the stress field

Wl(x) which upon insertion in the equilibrium condi-

tion and evaluating the resulting integrals yields

the following expressions for alI

16K =(a (K+I) y - K (2al-l) (5a)

for the wire specimens where the function X,(a) is

defined by:

=(a [aIa3/2 -l1
(a) = [a(l-a)]3+16 (2a-l) [sin (2a-l)+2(2a-l)-

a(l-a) ]/3

(6)

and,

a1 =[-1+] (1+k) l+k y/t" (l - /ct) I /K (5b)

for the strip specimen.
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Equations (5a) and (5b) can be used to determine

the operating conditions (cp ,0t) which give rise to a

given state of deformation. For example fully elastic

behaviour (which is equivalent to a, > 1) will occur

if tp + t 4yu , which could be easily verified from

Fig. (2a). Also, compressive yielding will commence

at x = 0 if a-i(0) obtained from eq. (3) becomes less

than - y. This condition is equivalent to al1 / t

which upon substitution in eqs. (5a) and (5b) yields

16K X (a) ; K+2 (1+k) y (7a)
t --- - 9t

for the wire specimen and,

( -) + [K+I) (i-.- P) !!- 0 (7b)
Iy y y

for the strip specimen. Equations (7a,b) define the

locii of operating conditions corresponding to the

limiting state between the two stress fields shown in

Figs. (3a,b).

Analysis of the stress field shown in Fig. (3b)

is dealt with in a similar manner to above. The stress-

strain relation are given by:

cI =[i(x)-2 t'x+K(cr(x)+cy)1 /E for 0 <x <b I

(8)
El =[ i(x) -2 I " x]/E for b, x < a,

Ei =(Ci (x) - 2 O.x+K( 1 (x)-) ]/E for a1  x

Noting that 0l(bl) = -y and c1(a.) =", it follows

that;

[y-2%'al ]/E = - +2(r'blJ/E (9)
£1 t y
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Nute that the width of the elastic core al-b I =1 - ('/wt"

The plastic fronts a and b can be determined from the1
following relations:

16K [- (10a)-3-- [%(bl) - %(al)] = (K+l) - (ly a
"J _ Ut tr

for the wire specimen and

c +(K+l) (l-0 )+K0 /(btb 1 1trtr +]KJp y(10b)2[t/ + K]

for the strip specimen.

Incremental strain growth or ratcheting will take

place only if the center line of the specimen (x=0.5)

experiences tensile plastic deformation due to first

cooling. Corresponding operating condition can there-

fore be determined by imposing the condition a1=0.5

on the above results. This procedure defines the

ratchetting limits as:

2 K at- (
SY 0  y for t - 2_ (lla)y

(K+l) t-K 16K[%( . - t) -)(0.5)
t TW

for trt: 2ly (11b)
t- y

for the wire specimen and,

p + 1 K grt- 1 for a-t 2a- (12a)
Ty T i'y

_P._t 1 t K K for cr- 2 Uy (12b)

y y

for the strip specimen. Operating conditions which

satisfy eqs. (lla,12a) will give rise to elastic

shakedown (regions Sl, S2) and those which satisfy
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eqs (lla,12b) give rise to reversed plast-citt'i

F) as shown in the interaction or Bree diagram of

Fig.C4). The steady tensile stress which 2efines the

ratchetting limit as determined from the above inequa-

lities is denoted by *. Note that ratchetting limits
p

corresponding to perfect plasticity material (Figo4b)

can be generated from the above results by letting

K--.0. This yields the familiar results of Bree [1]

for the strip specimen and the analogous results for

a circular Bree element. It is noted that the rat-

chetting limits c * corresponding to perfect plasticity

do not differ considerably from kinematic hardening

solution for K = 50 (Fig. 4a) which is characteristic

of many strain hardening materials.

4. ACCUMULATION OF RATCHET STRAIN

a. Kinematic Hardening SolutiLon

Elasto-plastic analysis of loading cycles subse-

quent to the first cooling shows that ratchat strain

accumulates by means of two distinct mechanisms deno-

ted as R, and R2 (Fig. 4a) . The ratchettinq mechanism

R operates at a- < 2 cr as well as during the initial

phase of the intermediate regime RI--.R 2 ' The recha-

nism P2 operates at at- 2 u- as well as the second

phase of regime R1 ---R2. Defining a typical cycle N

by the (n-!) th cooling and nth heating half cycles,

where n=2No Figure (5a) shows the cyclic stress

field present during the Nth transient cycle and the

steady state of the mechanism R and Fig. (5b) shows

the analogous stress field for mechanism R2 . It is

seen that R1 will invariably exhibit tensile yielding

which takes place in the fibers an-l< x < 1 during

cooling and in the fibers 0< x<a n during heating.

The analysis shows that an1 < 0.5 < a during

the transient staqe but as cycling continues

both a and anl approach the value of 0.5 at the
n

L L. .. - . ,;. , ., 1 r ' I I I ' 1 1 1 I . . . . I I . . I
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steady state. Figure (6) summarizes the results obtained from

the elasto-plastic analysis of the ratchetting mechanisms. It

is shown that the plastic strain increment during the Nth

cycle 6N is given by:

6N = (an - an l 2a/E (13)

Hence, 6N -0 at the steady state and the behaviour approaches

an elastic shakedonw state.

In regime R2, the cyclic stress field exhibits both

tensile and compressive yielding during each half cycle as

shown in Fig. (5b). Again at the steady state (an #a n_0.5)
6 N0 and the plastic fronts corresponding to compressive'N

yielding bn and bn 1 approach 0. 5+1r/t, 0.5- y/ t respectively.
Thus, the behaviour at the stationary state is that of a re-

versed plasticity at the inner and outer fibers of the assembly

and there will be an associated elastic core cf width 2U/cr .
The spatial variations of plastic strain at thce stationary

state are illustrated in Fig. (5). It is clear that the cyclic

reduction in the increment of ratchet strain is due to strain
hardening and the presence of cyclic plasticity above a-t= 2cr

y
is due to the employment of the kinematic hardening rule. In

the intermediate regime R1  +R2, the behaviour changes from

R1 to R2 when sufficient hardening has evlolved such that re-

verse yielding in compression starts to take place.

The manner by which the final results are presented

in Fig.(6) is very convenient for computer programming. These

results have been used to determine the cyclic accumulation

of ratchet strain for operating conditions representative of
the three regimes; RI, R2 and Rl R2 as shown in Fig.(7. For

K = 50, which is characteristic of many alloy steels, the

behaviour approaches a steady state in about 50 cycles. The

computer program has also been used to generate the contours

of the asymptotic values of ratchet strain EP(O.5) in the Bree

diagram as shown in Fig.(4a). Further discussions of ratchet
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strain contours and their relations with the limit rtean .

r* will be presented in the following section of the paper.
P

b. Perfect Plasticity Solution

The perfect plasticity solution for the accumulation

of ratchet strain can be generated from the kinematic

hardening results by letting the strain hardening co-

efficient K . This has the following effects?

1. The intermediate ratchet mechanism R1 - R2

will not be present in the manner described

earlier since the switch from R1 to R2 is

primarly due to strain hardening. Hence, this

intermediate regime will involve tensile yielding

only in exactly the same manner described earlier

for mechanism R1 employed belowat - 21 as shown
1 y

in Fig. (4b).

2. Ratchet strain will accumulate in equal incre-

ments per cycle and hence total ratchet strain

is unbounded as shown in the examples of Fig. (7).

Letting K- in the recurrence relations presented in

the algorithm shown in Fig.(6) yields the following

closed form expressions for ratchet strain in the strip

specimen-

6= 2 ot/E. [1-2 V(y7t] for regime (RI )

2 (14.)
N= 2u /E.[ c /y -i ] for regime (R2 )

which is the familiar result obtained by Bree [ 1.

The corresponding results for the wire specimen can not

be reduced to ciosed forms and will still have to

programmed.

5. DISCUSSION OF RESULTS AND CONCLUSIONS

The results of ratchet strain accumulation obtained in

previous section are now compared with simplified bounding
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results [9] as well as experimental observazil- - n

ratchetting limits cr * separate tJ a ratchettLInc
p

regime from shakedown regime for ct< 2I and .. : a "cbettirn

regime from reversed plasticity for zr+> 2! -  For pertect

plasticity models, Ponter and Cocks [9; derived a linearized

relationship between the increase in ratchet displacement per

cycle and the increases in mean and cyclic thermal stresses;

UCp'at above the shakedown limit. This result -s used to ob-

tain a simple lower bound which for kinematically determinate

structures shows that for moderate thermal loading, the cyclic

increment of ratchet displacement is greater than four times

the elastic displacement of the body .-f If- were subjected only

to the increase in mean stress abo-e-' 'T 'r *- This; P P P
result is strictly correct for loads Delow the snakedown limit

ct = 2 ay. Ponter and Cocks [91 com7cre9 the lower bound result

with exact solution for the class:s: c, .3-ee Drcol2m which is

equivalent to the strip specimen ir- -he r)esenr work.

Figures (8a,b) compare exact solution.s w-,, the iineari-

zed lower bound for wire and strip specimens CT- , ,=2Vy
t y

which lie below the shakedown limit (c. : 2u ) . well as at

t cr ,t = 6c which exceeds crt. The linearilzed lower

bounds at t>t are calculated by excluding the regions of

reversed plasticity at the inner and outer fibers. For example,

when a strip specimen is subjected to Ct = 4C., reversed

plasticity takes place at the inner fibers 0 x 0.25 and the

outer fibers 0.75 < x <1 and the fibers 0.254 x 4 0.75 experie-

nce elastic deformation only (Fig.5). The lower bound is cal-

culated for an equivalent elastic strip of width= 0.5 and

subjected to the original axial force which means that the

effective mean stress is doubled. The comparisons shown in

Figs. (8a,b) indicate that the lower bounds are quite close

to exact sol itions except when a- approache - cr
P v

Investigations of kinematic hardening predictions of

asymptotic ratchet strain at the core of the specimen shows

that PKh(0.5) is linearly related to the excess in cT above

a- in the following manner:
p
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PI
k h pp

at any value cf t eitner below or abovea- 2r Thet

dependence of plastic strain on at is implied 2_. :e kr_-

ation of a- * with a- It is interesting to note -hat thep t
rate of change of plastic strain with respect tocr equa].L

p
the linear strain hardening coefficient K/E This means

that the stress state at the core of the specimena-(0.5) is

given by the stress-strain curve of the material. In fact,

examination of the stress states at x = 0.5 as obtained from

the computer program shows that:

( 5) r +a - - a- (161V 0 P

Althouch the above results a-e :,otained for linear k'ne-

matic strain rcening material, analogous results for non-

linear hardenmnc can be derived, This may be checked b n

siderng t tests conducted by Meoaed et al

4,5] on c [pr er w res whose operating conditionsc and ratche-

ttinn 7imits f7' . rsnown in Fiq.( a;o The stress-strain

cu, e of tbf copper aires exhibits non-linear harden-ino which

can ) f1-_--. 'Ale power 10aw;

- ,n (17)

where o is the elascic limit, A, n are materlal constants.

Hence, the result for P(0.5) which should be applied to non-

linear hardening material in an analogous manner to eq. (15)

should be:

(P(0,5)%A (t a ,)1/n (J8)
P P

recalling the sample of observed ratchet strain shown in

Fig. (1) and noting that the steady ratchetting rate attained

after the initial primary stage is mainly due to cyclic creep

phenomena [5l , ratchet strainEP(0.5) appearing in eq.(181 is
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interpreted as the primary ratchet train com ° ;Y:ent

Figure(9b) shows the experimental primarv rtcict strain a.

three levels of at against (o -O*) compared with the stress-
P P

strain curve of the material. It is clearl-, seen that the

experimental CP (0.5) lie c, n a single curve which supports the
universal dependence of ratchet strain onao-- . However, the

p p
experimental curve ofE p(0.5)* lies abo'e the stress-strain
curve of the material and the diviation is attributed to pri-

mary cyclic creep t5l
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PART 3

APPLICATIONS OF REFERENCE ST}PESS MLL'JL (RSM

IN CYCLIC PLASTICITY ANALYSIS

Abstract

The concept of reference stress method (RSM) relies on

relating the inelastic deformation behaviour of a structure

at a specific point with the behaviour of a uniaxial specimen

under reference test conditions. The RSM has oroved success-

ful in time-dependent creep analysis ince it obviates the

need for excessive collection of material data. In -his

paper, the RSM is applied to evaluate the plastic behaviour

of components subjected to cyclic loading condirons where

phenomena such as cyclic hardening, cyclic softening, cyclic

creep and cyclic relaxation are dominant. Sever-l examples

of beams under both uniform and non-uniform bending are dis-

cussed. Comparisons between the results of RSM and several

independent test results show very close agreement.

1. Reference Stress Method in Creep Analysis

The reference stress method RSM has been under develop-

ment during the past twenty years as an approximate technique

for analysis of creeping structures. Excellent reviews of the

RSM may be found in the works of Krausil], Ponterr2]and Sim[31.

In order to recapture the basic concepts of the technique, a

beam with rectangular cross-section (b x 2h) is considered.
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The beam is subjected to steady bending moment M and its

material creeps according to Norton's creep law;

= AT n (1)

Assuming that plane sections remain plane during creep, the

strain-curvature relations are;

S(y) y = A a- (y) (

where K is the curvature rate and y is a coordinate along the
depth of the beam. Substituting T(y) as obtainedfrom eq.(2)

in the equilibrium condition,

y
M 2b Of'(y).y.dy (3)

yields the curvature rate K as

A~ 4_ n + (4)

Equation (4) can be rewritten as:

n 1
n  I . f(n) (5)

where

C . M f [2n+nl] (6)

The function f(n) can be made to be weakly dependent on the
creep exponent n by proper choice of the valueof c . Consi-

dering that 3en & 11 for most creeping metals and making

f(3) = f(ll) yields a value ofc= 1.003. The corresponding

values of the function f(n) - as listed in Table (1) -
exhibit very little dependence on n. Adopting an average
value of f - 1.578, the curvature rate is written as:

K=1.578 1. 0[1.003 t4/bh 2] (7)
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Table 1 Values of f(n) for beam under pure bending

n f(n) K[RSM] /K [Exact]

3 1.572 1.004

5 1.584 0.996

7 1.584 0.996

9 1.579 0.999

11 1.572 1.004

Hence,the beam curvature rate is. obtained directly from the
results of a single creep test conducted at a reference stress

2
01 = 1.003 M/bh The errors envolved in the approximate solution
are really quite neglegible as can be seen from the ratio

k [RSMiJ /K [Exact] listed in Table (1).

The identification of the reference stress in the above

procedure relies on making the function f(n) weakly dependent on

the creep exponent n and hence may prove difficult for components

which have no exact creep solution. An alternative and effective

way for determining to depends on scaling down the limit load

solution corresponding to perfectly plastic material with yield

stress cy. It can be shown that the ratio a/-y equals M/ML
o Y

where ML is the limit bending moment, i.e.

a/ty= M/4 (8)

In cases where no exact limit load expression is available,tests

on perfectly plastic models of the prototype structures may be

utilized.

The RSM has been verified experimentally for beams of both

rectangular and tubular sections under both steady and variable

loads. Creep of components such as plates, tubes and panels

have been studied using the RSM. In the following section,the

RSM is applied to analysis of structures made from cyclic har-

dening material under conditions of repeated loodreversals.
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2. Cyclic Plasticity Analysis

Initially annealed metals are known to exhibit cyclic har-

dening when subjected to repeated reversals of load [4] . The

hardening rate can be quite large during the first few cycles

but decreases contineously until a cyclic steady state is

reached early in fatigue life. The steady state of a cyclically

hardening metal is characterized by the cyclic stress-strain

curve which connects the cusps of settelled hysteresis loops

obtained at different strain (or stress) amplitudes. The

transient cyclic hardening characteristics can be represented

by a family of cyclic stress-strain curves which connects the

cusps of hysteresis loops at equal number of cycles and diffe-

rent strain amplitudes as shown in Fig.(l) for 99.9% pure

copper.

When a structure made from cyclic hardening metal is

subjected to repeated load reversals, its behaviour will reflect

the hardening characteristics of its material in terms of its

load carrying capacity or deformation amplitudes. In order to

apply the reference stress method to cyclic plasticity, a

simple example of a rectangular beam (bx2h) subjected to cyclic

curvature ±K is considered. It is required to determine the

conuitions of a reference uniaxial test which can be used to

characterize the beam behaviour. The family of cyclic curves

shown in Fig. (1) may be represented by

u-B= B E m = m (N) (9)

where N is the number of cycles. Taking the range of 0.14m

.0.5 which fits the observed hardening, the problem can be

solved in a manner analogus to the creep problems. Again

assuming that plane sections remain plane and neglecting elastic

strains, the moment curvature relation at the instants of cur-

vature reversals is obtained as:

M-bh2  2  . B ( ± kh)m (10)

which can be written as:
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M = bh 2  f (m) - ( ± ()

where
2

E =0kh , f (m) 2 mO (m 2)oJ'

Enforcement of f(O.1) = f(O.5) yields o<= 0.674 and the corres-

ponding variation of f with m is as listed in Table (2). Hence

the moment curvature relation can be written as

M = 0.993 bh 2  a (+ 0.647 kh) (12)

i.e. the bending moment is determined directly from the results

of a reference uniaxial test conducted at Co = + 0.647 times

the surface strain (kh).

Table 2: Values of f(m) for beam under cyclic curvature

m f(m) M[RSM] /M [Exact]

0.1 0.995 0.998

0.2 0.992 1.0

0.3 0.991 1.001

0.4 0.992 0.998

0.5 0.995 0.963

Another example of the application of RSM 's provided by

considering the cyclic torsion of a solid bar (rad. = a, length=L)

subjected to repeated reversals of twist angle e. Assuming the
validity of von-Mises relations, the reference strain solution
for the twisting moment T is:

3T = 1.205 a a (+ Co) , = 0.426a 9/L (13)

when the structure is subjected to controlled history of pres-
cribed deformation, the reference uniaxial test is conducted

under reversed strain conditions. On the other hand,when the

structure is subjected to controlled history of prescribed
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loads, the referenee uniaxial test is conducted under reversed

stress conditions. Reference stress relations in the latter

case will be similar to those used in creep analysis.

The above results describing cyclic pure bending of beams

are utilized to generate solutions for a host of allied beam

bending problems, e.g. cantilevers and simply supported beams.

The final results are summarized in table (3). The range of

0.1L mL0.5 is used throughout.

Table 3. Reference Test Solutions in Cyclic Plasticity

Structure Loading history Reference stress(or strain)solution

Rectangular + K M=0.993bh2. cr[Co] , o= t - 0.647kh
beam
(bx2h) + M K=I.557H E o -- - lE00.M/bh 2

Solid bar + G T=l.205 a3 a-[Co] ' o t 0.426,ae/L(rad=a,3Length=L) + T @=2.354L/a.E c-o] r = + 0.829.T/a 3

Cantilever +S at tip P=I.±58. "a[Eo] , ±o= l.966.&h/L 2

(L) under + tti = O 2
Tip Load .Pat tip &=0 483 *E"ao] ' co = + 0.876PL/bh

Cantilever + 6 at tip c=2.39bh2  2
-- a-[Eo] ' o= - 2.804.9h/L

(L) under LdistributedL2 2
load + q (uniform) 2=0 331 h E ,crol , no= + 0.428.qL 2/bh2

Simple Beam +6 at center P=2.316---.[Eo] , e= t 1.966gh/L 2

M2 ) under Lcentral load +P at center S=0.483L .E to] , (o = + 0.438.PL/bh 2

3. Comparison With Test Results

The refernece test results are compared with three sets of

experimental data for beam bending. The first set of tests are

conducted by OldroydI51 on rectangular copper beams under pure

bending in an attempt to derive the uniaxial stress-strain curve

from the moment-curvature curve by use of Nadai's bending formula
161 . Only monotonic loading is considered in the tests. Hence, --sa
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a monotonic stress-strain curve and the central deflection.vs.end

load in a four-point beam bending test are determined as shown
in Fig. (2). Application of eq. (13) yields the reference test

predictions which are seen to be in close agreement with the
results of the bending test.

The second set of test data7] involves cyclic bending
of rectangular beams made from initially annealed 99.9% pure
copper until the cyclic steady state is reached. The tests are
conducted under repeated reversals of curvature and the bending
moment is determined. The reference test calculation are based

upon the uniaxial cyclic stress-strain curve. An exact numeri-

cal solution for the moment-curvature relation is also determined

on the basis of representing the uniaxial cyclic curve by a

Ramborg-Osgood relation. Figure (3a) compares the test results
with both the reference test predictions and the exact numerical
procedure. Very close agreement is obtained. Figure (3b) shows

similar calculations for the cyclic twist of a solid circular bar.

The third set of data are conducted on simply supported

304 stainless steel beams subjected to repeated reversals of
central load and central deflections at 1100 0F. Ten cycles
of load (or deflection) are completed. The experimental results
are shown in Fig. (4a,b). The reference test predictions are

based on the 10th cycle cyclic curve obtained by connecting the
cusps of three hysteresis loops determined at + E- 0.4, 0.6 and

1% . The cyclic curve is fitted to a bilinear relation; £Z
+ 4 ( - ) v)J /E where cy is a material yield stress -10000psi

193 . Using this relation, the reference strain preditions for
the central load P after 10 cycles of reversed deflection

- * 0.1" in a simple beam with b - 1", h - 2" and 2L - 24"

gives 5290 lbs as compared with 5480 lbs from the test results.

An excellent agreement of less than 4% error. In the second
test, a simply supported beam is subjected to ten repeated
reversals of central load p - + 2000 lbs. The references stress
prediction for the 10th cycle deflection range gives 0.082" as
compared with an experimental deflection of 0.113". A less
satisfactory agreement than the deflection controlled test but

still may be accepted in view of the smaller plastic strains
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involved in the load controlled test. It is interesting to

note that the present predictions compare very well with a
full transient analysis of the beam problem [9]

4. Cyclic Creep Analysis

The phenomenon of cyclic creep is the cyclic strain
growth observed in metals when subjected to the combined

effect of steady and cyclic load components. A closely

related phenomenon to cyclic relaxation of stress under the

combined effect of steady and cyclic strain components.

Plots of cyclic creep strain against cycles are quite

similar to the conventional time-dependent creep curve
with a primary stage of decreasing strain rate, a secondary

stage of constant strain rate and a tertiary stage with

increasing rate before the specimen fails due to fatigue.

The strain growth is usually accompanied by a hysteresis

loop. Hence, the total plastic strain during a typical

load cycle is composed from a small reversed component and
a drifting growth component (4] .

The steady cyclic rate of strain growth depends on the

maximum stress ( and the stress amplitude do- of the stress

cyclell0] , i.e.

N *n n (14)

Tests carried out on different grades of commercially pure Copper (10,111

show that the values of n,X depend kargely on the level of c* as
compared with the material yield stress. For example; n=3.2,

= 0.03 at ar*/Wy = (0.5-1), n = 4.6, 5 = 0.2 at o*/Uy =1-1.5
and n=18, Wz03 at a4 whereit. the I% yield stress. Hence,

it may be generally stated that for the range of maximum

stress encountered in design, the values of 2L nLli0 and

0.02Z YL 0.2 are acceptable.

The material law in eq. (14) is used here to estimate

the effects of cyclic creep on deformations of structures

subjected to cyclic loading. The solution is expressed
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in- a reference stress form. This is achieved through

using the so-called rapid cycle solution applied successfully

in the analysis of time-dependent creep deformation in com-

ponents subjected to cyclic loads with short cycle times

compared with the material time scale[123. The technique

provides an upper bound on cyclic structural deformation.

In rapid cycle solution, the cyclic stress field in the

structure is assumed to be composed from the cyclic linear

elastic stress field and a residual stress field which is

in eqnilibrium with zero external forces. The magnitude of

the residual stress field is determined by enforcing the

compatibility of cyclic strains resulting from the cyclic

stress field over a complete cycle of load. The theoretical

basis for the rapid cycle solution may be found in ref. [123

and its application to the analysis of cyclic growth of

structures are found in ref. [10, 11]

As an example, consider a rectangular beam subjected to

the cyclic history of bending moment which varies between MIM 2

The cyclic elastic stress field is:
3 M1

( 2 13 y during 1st half cycle
bh

3 M2
2 3 2 y  during 2nd half cycle (15)
2bh

3 M -M2a()= 312 .

W r ( Y ) b h 3 '

Hence the cyclic stress field 0 is assumed as the sum Ci-? i.e.,
3M1

dy) = 3 -1.y +- (y) during 1st half cycle
bh (16)

MuY) 3 2 .y (y) during 2nd half cycle
2 bh2

where P (y) is the residual stress field which should satisfy

the equilibrium conditions

;f(y) .ydy =0, Jo(y). dy 0 (17)
-h _h
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Compatibility of cyclic creep strains resulting from c (y) and

cr(y) requires that;
n In

- .Y+P (y] [ = N.y (18)

where KN is the cyclic curvaturerate. Hence,j'(y) is given

by:

f'(y) = 1 y -bh.3 bh3

Upon substitution in the equilibrium conditions, KN is obtained

as:

S= An n .2bh3M (20)

U "L~~ J [4bh J

It is noted that the associated cyclic stress field may

possess a singularity at y=O which can be seen from eq. (19)

for nXAl. The singularity may be overcome by introducing an

assumption that the maximum stress at y=O does not exceed an

upper limit which may be taken as some multiples of the

material yield stress. A similar procedure has been used in

ref.[0] in the analysis of ratchet strain rates in a circular

Bree element.

The curvature relation, eq. (20), may be expressed as:

* n (o2n 1

K = A( l-* max) n(2'max )  • 1 f(n,S) (21)

where

a* 3 b2 =3 (M_ 2

max 2 1 max (M1-M2 )/bh

n
f(n,) = 2n+l-n. (22)

3n i v1*2



The values of c, ,,. c 1-i-, bt; -,rac -- ! r t ,,

...ngs o !'. I. z 02 -L. J.2 sucrL t . .

.s weakly dependant upon n and . Taking fl2,0.02i = f(iUC<h

and f(2,0.2) = f(l0,0.2) orov - .

o(2 which yield their respective values as:

= 671. The corresponding variation of f

with n,S does not vary from the mean vcUU,- - i. ,6 y more

than + 2.8% as shown in table (4), :Ience cnc fii.-I resib. io,

reference stress solution is:

K 1.596 N [0.67 1  crax, 0.592 -,a (23)

Table (4) Values of f(n,g) iiond in cyclic creei- of u:,,

'= 0.02' .

n=2 1.552 1.581 1.612

n=4 1.575 1.609

n=6 1.573 i.611 1.638

n=8 1.564 i. i.627

n=10 1.522 1 595 1

iote ti-a cioseness of coefficient:; - those c&2ined
in the case of cyclic plastiIca .t ;E (3be

An analogous result for cyclic creep r , .tilewr

under an end load which rarics b.ween p, p2 can be easily

obtained as:

2
L2 F ,:, U..

LL
0.466 F.- N L2b f : , ,.

5. Conclusions

The reference stress method can be ap1. a':..-

sLructureSmade from cyclically hardened materials. T*, technique

is extremel- useful during the initial :, of d-;>n r:i

i .. redAces the problem to condu-ti.. .. • "
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hardening test at the reference value of stress (or strain)

amplitude. The accuracy of the technique has been demons-

trated through comparisons with published test results and

exact numerical solutions for simple beams. Checks on more

complex components such as plates, panels and tubes should

be conducted.

The applicability of the RSM to analysis of cyclic creep

behaviour of structures is demonstratedby extending the use of

the so called rapid cycle solution used in time-dependent creep

analysis. Tests on components operating under conditions where

cyclic creep is dominant are required. In principle, the RSM

can be applied to analysis of structures under cyclic relaxa-

tion conditions.
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