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Abstract

\- Single particle trajectories in a free electron laser device consisting

of a linear periodic wiggler superimposed on a strong uniform axial guide

field are examined by a formalism suitable for perturbation analysis and L

adaptable to wigglers of arbitrary geometry. For motion locked on to a

single resonaece (between the gyromotion and the periodicity induced by the

wiggler in the axial velocity) and for sufficiently weak wiggler fields,

bounded oscillations of the gyroradius and axial velocity are possible for

a limited region of parameter and phase space. Optimal parameters for which

the largest fraction of particles entering the drift chamber experience limited

excursions in gyroradius and in axial velocity are determined. The mean drift

of the guiding center off axis is used to determine the allowable length of the

wiggler and of the drift tube for beam propagation. With increasing wiggler

field bounded motion is eliminated, leading to transition between resonances,

chaotic motion and significant spread in axial velocities of electrons. Com-

parison with experimental results is presented. -
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I. INTRODUCTION

With a sufficiently high current, the ponderomotive force arising from

the interaction of the directed momentum of particles with the magnetic wiggler

in a free electron laser (FEL) drives a space charge wave in the beam. Although

this increases the efficiency of the device, one drawback in the use of a high-

current, nonneutral beam--typically produced by a Marx-type generator--is that

the beam can rapidly expand due to its own space charge effects. To remedy

this, it is natural to introduce an axial magnetic guide field in addition to

the magnetic wiggler field necessary for laser operation. However, the combined

influence of these fields may inhibit beam propagation and degrade the amplifi-

cation properties of the system. For example, the collective cyclotron modes

of the beam due to the presence of the guide field can compete with the FEL

mode, and, on the level of single particle motion, interaction between the

gyromotion and the periodicity in the axial momentum due to the presence of

the wiggler can induce a resonant transfer of the axial momentum for that in

the perpendicular direction. Since this leads to dispersal of electrons within

a beam, an increase in spectral width and a reduction in gain is inevitable.

For efficient operation it is therefore imperative that the orbits of the

electrons be free of large amplitude variations in axial velocity and that the

off-axis drifts be limited in extent so that the electrons do not reach the

walls of the drift tube.

The present paper is addressed to the single particle aspect of these

problems, ihich might be referred to as issues concerned with orbital stability,

including beam propagation and directed-beam quality. Specifically, a pertur-

bative technique of sufficient generality to study the nonlinear stability

properties of wiggler fields of arbitrary geometry superimposed on a strong
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uniform axial guide field is developed and applied to the case of a periodic

wiggler.

It should be emphasized from the outset that the formalism presented

herein is applicable to electric and magnetic fields satisfying the full set

of Maxwell's equations including, in principle, all self fields. However, for

simplicity in this study only vacuum fields will be considered. The use of the

correct functional form for a solenoidal (div A = 0) and irrotational (rot ) = )

magnetic field, aside form satisfying the constraints imposed by Maxwell's

equations, 1is particularly important in the case of a linear wiggler since the

net drift of guiding centers induced by the azimuthal asymmetry of the field

dictates that the off-axis variation of the magnetic field be included.

For sufficiently small wiggler fields nonlinear orbital stability is

assured for certain classes of particles. Put differently, these classes are

characterized by bounded (but not necessarily small) oscillations of gyroradius

and of axial velocity. The parameters characterizing these classes are deter-

mined and the optimal values for maximizing the number of particles undergoing

limited excursions in axial velocity may be deduced. While boundedly oscillating

in axial velocity, the guiding centers of these particles experience a mean drift

off axis which restricts the maximal interaction length of the drift tube. This

propagation length is also determinable from the analysis.

With increased wiggler strength, bounded motion is no longer allowed above

some threshold value which depends on the region of phase space. In other words,

as the wiggler amplitude increases, the "confined" classes alluded to in the

foregoing are eliminated one after the other until no region of phase space

contains within itself electrons whose motions are bounded. When a given con-

fined class is eliminated, the electrons therein experience large changes in
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axial velocity as they jump from one resonance to the next in a haphazard

manner, increasing the effective parallel temperature of the beam and thereby

reducing the gain. The analysis which follows furnishes numerical values for

the wiggler field strength below which such undesirable effects are avoided.

The organization of this paper is as follows. In Sec. II a simple

generalization of the usual definitions of magnetic moment, gyrophase, and

of guiding-center coordinates is employed to rewrite the single particle

Hamiltonian in a form suitable for analysis of the effects of resonance

between the gyromotion and the periodicity induced in the axial motion by

the wiggler. In Sec. III it is shown that, provided the motion is dominated

by a single resonance, the system possesses a hidden symmetry, which is mani-

fested by the presence of a conserved quantity that is independent of the

Hamiltonian. This fact allows a complete qualitative description of all

possible motions of a particle propagating through the drift tube, as detailed

in Sec. IV. Section V considers the possibility of stochastic motion under the

influence of multiple resonances. The analysis presented in this work is put

into perspective by examining the results of a free electron laser experiment

in Sec. VI.

- .
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II. HAMILTONIAN FORMALISM

In principle, starting from Newton's equations of motion for an electron

under the combined influence of a magnetic wiggler and an axial magnetic guide

field application of perturbation theory permits the determination of many of

the orbit characteristics needed for most FEL applications. Such an approach

has already been successfully applied to the case of a longitudinal magnetic

wiggler.2  It turns out that a significant generalization and simplification

can be simultaneously effected in problems of this nature by use of powerful

Hamiltonian techniques.

A vector potential representing a linear magnetic wiggler of the form

(0, 6H coskz ch ky , -6H sinkz sh ky) with period 2uk-1 along the z-axis

superimposed on a guide field (0, 0, Ho ) may be written as

A = (-Hoy + 6Hk sinkz ch ky, 0,0)

where ch ky and sh ky are the hyperbolic cosine and sine of ky, respectively.

The corresponding single-particle (relativistic) Hamiltonian .*'is given by

2 2 2 2 2 2 -1 2
Jr2/c mc =Pz + py + (Px + no y - m6 -k sinkz ch ky)

wherein S1= qH /mc and 60 = q6H/mc are the gyrofrequencies of a particle
0

of charge q and (rest-) mass m in magnetic fields of intensity H and 6H,

respectively. The momenta pz Py' and P x are related to the velocities

v (=x,y,z) in the usual way:
3

VA

S.'

*,
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Pzy ymvzy"

Px = ymVx + (q/c)Ax '

with

2 2 + 2  2 2
y = [1 (v /+ v + v C-

the relativistic factor, being related to the Hamiltonian (or energy) via

.*= yMw2 . In the present analysis, in which self fields are neglected and

the only external fields are magnetic, the energy .A and the relativistic
4,.

factor y are constants of the motion. The gyrofrequencies corrected for
_rel = oyad6rel= /

the relativistic mass variation are o = /y and 6 =
0 0

It is usual practice in studying particle motion in, say, a magnetic

trap or in the earth's magnetic field to use, in lieu of the momenta pig

certain adiabatic invariants which are constants of the motion to great

accuracy for slowly varying fields.4 One such variable is the magnetic

. moment P = I.L2/21HI , with v being the component of velocity perpen-,-

dicular to the magnetic field H. Introduction of a (generalized) magnetic

moment is expedient in the present case, too, since it is a strict constant
'

of the motion in the absence of, and undergoes slow evolution in the presence

of, a small amplitude wiggler.

Effecting a transformation (X,Px; y' p y; zp z ) (6,1j; Y,noX; z,p Z )

via

p (2n [(P + mQoy) 2 + p2

0 x 0 y

e = arctg (P + nQ y)/p I
x 0 y

Y ( 0y 1 -no'P x  ,

X = x + Ono)-1py.4Pv

4%l
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the Hamiltonian may be rewritten as

- () p 2 + 2m6 p sine sinkz ch k(Y -psine )
94 2k z 0, 0 n~~

+ (-I)2 [ch 2k(Y -p sine) - cos2kz] - (m6Q)2ch 2k(Y -p sino)cos2kz
2k

wherein

(1
L.,,.: P 2p m )2 ,1

and1..

X x - p cose

Y y + p sine

Defining

c = 6H/HO = 67/Q 0

ct= (m/2k)
2

and

C = kp , (2)

and noting that C sh(kY - C sine) = -sine ch(kY - C sine), the Hamiltonian

can be expressed as

".J " ̂ - 2 = 2 + 2mto& - 8cc sinkz sh(kY - sine) +

p z + 2MQI 8chc(Y sin)a C

c2t[c(kY - sine) - cos2kz] - ot ch2(kY -C sine)cos2kz

The crucial point that must be emphasized is that in the absence of the

wiggler (6H = = 0) the foregoing definitions for 0 e, X, Y, and p correspond

. '. . . * * " 
"

' . ' .. -
"

" - ". . . . . ." " " " " "- . . . . . . ' ' . . . . - .+ • - , .. . - - ". . . ,
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to the usual definitions of magnetic moment, of gyroangle, of the x-, and

y-components of the guiding-center, and of gyroradius of the particle in the

(uniform) guide field H0 , Fig. 1. This correspondence does not persist with

a non-zero wiggler field, in part due to the appearance of Px+ m 0y -- which

equals ymvx plus a correction term proportional to the vector potential of the

wiggler-- in the definitions. Notwithstanding, the generalized transformation

effected in this paper is exact and designed with a view tn constructing a

simple perturbation theory in powers of s.

Let it be noted, too, that the change of variables u, oelongs to the

class of canonical transformations which in essence means the equations

of motion for the new variables are given by the usual formulas; thus

e = T'= rel + ) , (3)

PZ _~

a pX= y= vz , (4)

etc. In particular, since the expression for. is not an explicit function

of the x component of the guiding-center, X, the y component of the guiding-

center, Y, which is conjugate to moX, is a constant of the motion. This is

merely a reflection of the fact that, in terms of the original variables, A

and hence .Jt are independent of x, which implies that P is a constant of

motion.
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III. RESONANT INTERACTION

In the context of the present analysis, resonance refers to the matchinq

between some integer multiple Z of the gyrofrequency and the effective frequency

of the modulated motion along the z axis; i.e., d + kz = 0, which may be

re-expressed as Zrel + kvz 1 0 on using Eqs. (3) and (4). Such a resonance,
0

commonly referred to as a coupling resonance,induces a viqorous exchange of

energy between the longitudinal and perpendicular degrees of freedom of a particle

traversing the device. As is well-known, gyrotrons operate by transforming the

perpendicular energy of the particles into electromagnetic radiation at the

cyclotron frequency Q/y. Free electron lasers, with their very favorable wave-

length scaling (Xradiation ), wiggler/Y 2)depend for successful operation on~ ~raoperatio wig le

the emission of radiation originating from the directed energy of the particles.

For this reason and also to avoid the possibility of the radiation level being

reduced by Landau damping, in FEL experiments a considerable am3unt of emphasis

is attached to the generation of beams with as little energy spread as possible.

However, even if the electrons entering the drift tube were almost entirely mono-

energetic, coupling resonances would greatly augment the energy spread and seriously

degrade the gain. It is precisely for this reason that the study and control of

coupling resonances is of paramount importance to the success of free electron lasers.

To perform an analysis correct to o(E 2), the hyperbolic functions are

expanded in terms of modified Bessel "unctionsof the first kind,I n, and all but

the rapidly varying second-order terms retained in the expression for the

Hamiltonian:

J . 2  P 2 + 2rop+ 4> in+l [exp(i n exp(_i- nn Fn(kY)CI ()

+ 62 oI(2c)ch2kY - (-l) 2 I2 (2)ch2kY cos2F.  , (5)

° o". . . .
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-" wherein

Cn nO + kz , (6)

F n(kY) - [exp(kY) -(-) n exp(-kY)] (7)

and a prime denotes differentiation with respect to the argument. Now, the

. equation of motion for a is given by

.= ,=rel + ..in+l[exp(in ) _ (_l)n exp(_in + ,,(2
0 ym n n'

For a particle that is resonant at, say, the second harmonic, i.e.. 2 = 20 + kz

is the slowly varying phase, the terms involving .02 (no + kz)n02  will be

rapidly oscillating and are not expected, on intuitive grounds, to have a substan-

tial effect on the motion. The only exception to this being the n=1 harmonic

since aP [tI'()]. - 1/c and for sufficiently small gyroradii it overwhelms the

slowly varying second harmonic (i.e., resonant) term. In the Appendix the

ponderomotive potential due to the rapdily oscillating terms is calculated and

shown to be nondivergent and its effect on the mean motion to be uniformly on

the order of 2 . Accordingly, all the rapidly varying first order terms and

the slowly varying second order terms may be safely dropped, and the resonant

" .*Hamiltonian written as

p = + 2nco + 4£ci l[exp(i 2 ) - (-1)Z exp(-i )]F z(kY)cIj( ) + ... (8)

A significant feature of the single resonance Hamiltonian (8) is that it

pertains to a system with two degrees of freedom [(pz,.z),(p,8)] and yet the

variables z and 0 appear in the linear combination kz+9P0 only. The presence

of this hidden symmetry is quite common in nonlinear mechanics and there is a

standard procedure in identifying the constant of motion associated with it.

,, .-. ,.-.',- -,-,. ., . . . . . ,....... . . .... .,. -.. . . . , .. , .- . ,-
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The equations of motion for the axial momentum and for the magnetic moment are

given by

pz'"= Ye= 2' -'kit[exp(i ) + (-1)t exp(-ic)F I

= -a(x'= ?-m-9i exp(ir.) + (-1) exp(-iC)]F rI

Dividing the first expression by the second,

dp dpz/dt

dp dji/dt '

hence it is clear that as an electron moves under the influence of a single

resonance its direction of motion in (pzP)-space is a straight line whose

gradient is given by the quotient of the constants k and Z , whence, on

integration

"p z - kp = constant.

Having identified this constant of the motion, it is now a simple matter to

use it in order to reduce the dynamical system to one with a single degree of

freedom. This may be accomplished in a number of ways, the most expeditious

being, perhaps, through the transformation (pzZ; P90) (l, i; JEj given

by the generating function

2

S (toe + kz)- - ----J ,

k Kk
'

which is chosen in such a way as to belong to the class of canonical transfor-

mations [cf. statements preceding Eq. (3)]. The connection formulas between

the old (pzz;p,o) and new (1,CI; J,) variables are furnished by
5
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z2 M3- oS = -- - (1 + J) ,(9)

P= k a -k , (10)

S = k (to + kz)

k

- ry 0

k

t2 M
-: ~- k ;

! j- 8S = k---

Noting that ZI= 0 corresponds to resonance between the modulated axial motion

and the tth harmonic of the gyromotion, and referring to Eqs. (3) and (4), it

is evident that the (dimensionless) variable I measures the departure of the

axial momentum from the resonant value -iffo 0/k. Next, defining

Hi k Ye - 1 - 2J

Eq. (8) may be rewritten as

H9 = 12 + -L it+lexp(i) (-I)t exp(- 1 )]F (kY)cIj(c) + (11)

from which it immediately follows that J (being conjugate to Fj) is conserved.

*. That J is conserved is entirely an artifact of the single resonance approximation.

This is clearly brought out by deriving the equations of motion for pz and 1,

not from the single resonance Hamiltonian given by Eq. (8) but from Eq. (5).

, It is then apparent that the direction of motion dp z/d1i is no longer constant.

Another perspective of this phenomenon is gained by noting that there are only

nna. , . : -- '- ,,-. , ----.. , -.. . .. .. . . . .- .- -. ... _. . . . .. _ . .. .. .. -,
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two global symmetries associated with this problem as manifested by the absence

of any explicit dependence on time or on the x-coordinate variable in the Hamil-

tonian. Conservation of J, however, is related to an imposed symmetry, which is

N unbroken as long as the nonresonant interaction terms in the Hamiltonian are

ignorable. The importance attached to conservation of J insofar as it relates

to constraining the spread in energy of a beam traversing the drift tube is

discussed in the following sections.

It is worth pointing out that since Y is a constant of the motion, the

effective coupling constant in the expression for the Hamiltonian, Eq. (11) is

JFz (kY). Referring to Eq. (7) it is manifest that this effective coupling constant

for even z is much smaller than that for odd z. for those particles whose guiding

centers are close to the axis (kY<< 1), indicating a much weaker interchange

between axial and perpendicular degrees of freedom in the former case.

The equations of motion are given by

rel
=-ad=e 0-2 L-[expMi ) + (-1) exp(-iE)]F£I, , (12)

rel

j 21 + -6 i %+ [exp(iE ) - (-1)t exp(-iE )]FO I , (13)

and _rel

o E. i +1
2k i +[exp(i ) - (-i)t exp(-iE )]Fk+,1 I (14)

.'.

Pi
. . . .
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IV. MOTION IN A SINGLE RESONANCE

Since the Hamiltonian given by Eq. (11) is conserved, the dynamical system

(or flow) generated by it is integrable; in other words, it is possible, in

principle, to solve Eqs. (12)-(14) to express the development of I, F, and X

as functions of time. It turns out that, not unlike many other problems, it

is far more expeditious and convenient to use the energy conservation theorem

to determine, and describe the salient features of, the possible orbits than

to attempt to unravel, and extract useful information from, the algebraically

complicated solutions of the equations of motion.

Upon squaring and combining Eqs. (11) and (12) in such a way as to

eliminate the dependence on the angle Ez, there results the following energy

conservation theorem:

(2y) 2 + V'(I) = 0 , (15)

wherein the effective potential is given by

'V'() = (H - 2 [LF(kY)CIj]2  (16)

with

J i[2(I + j)] [Using Eqs. (1), (2) and (9)]

Note that since C>0, the last expression imposes the constraint I> -J. One

further constraint is obtained by eliminating I from Eqs. (9) and (10), squaring

the resulting expression for J, and combining with the expression for H. given

before Eq. (11):

, = ([v) 2 ] - + )2]
0

= ( 1 ) 2 ( 1- (YYJI)] - ( 2 + 2 2( 7
.0 c~] ,(7
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where the last expression is derived for c<1. Recalling that 0 <0 for

electrons it follows that J 2>HZ for (kc/1Qo0 )1y 
2  1 - (yv,/c) 2 1 ,

which is generally the case. However, for completeness the case J2< H

will be considered, too. It is now possible to classify the motion according

as the four sign combinations for J and H., and as sketched in Fig. 2. In

plotting the effective potential it is useful to note that the first term in

Eq. (16) is a biquadratic with zeros at ±H2 for H >0, and of parabolic form

with a (single) minimum above the abscissa at I=0 for H <0. The second

term in Eq. (16) is a monotonically decreasing function of C (and of I) with

a zero at I=-J. Additionally, it is apparent from Eq. (15) that allowed

motion is confined to 'V'(I)e0 with the sum of the kinetic and potential

energies being zero, i.e., lying on the abscissa.

It is simple to show that, within the context of the single resonance

approximation, bounded motion for J< 0 and J2 > H Z [Figs. 2(e) and 2(g)] is

* impossible; in other words the form of the effective potential is always as

shown in Figs. 2(e) and 2(g)--with one, and only one, intercept on the abscissa.

'V'(I)= 0 implies that

1~2 _-H _ 2
I H -Ll

2

Being interested in I>0, 12>J2, and noting that J2> H for Figs. 2(e) and 2(g),

it follows that

6, 22
I = (H +

Z 2

Since the left member of this equation has a constant gradient, whereas the

right member has a monotonically increasing gradient, and also since the right

member always starts below the left member, there can only be one root, as

indicated in Fig. 3.

Corresponding to Fig. 2(a) (H < 0, J> 0), the roots of 'V'(I)= 0 are
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given by

I ±(H + 26IFjIc.I) (18)

the left and right members of which are shown in Fig. 4. The root denoted by

1) in this figure is always present, whereas the roots denoted by 2 and 3

disappear for sufficiently large c, as indicated by the short-dash curves in

Fig. 4, thereby eliminating the possibility of bounded motion in this case.

The critical value of e may be estimated as follows. Assuming that I i may be

approximated by

?I'=a + b I , a,b > 0, (19)

in the vicinity of the roots 2) and 3), substitution of this into the upper

branch of Eq. (18) and the requirement of the equality of the roots of the

resulting quadratic equation yields the critical wiggler strength above which

bounded motion is not possible:

-2H

(20)
cc 21F . a

Although this formula indicates the scaling of £c to calculate its value

in particular cases requires an estimate of az which, due to the transcendental

nature of the Bessel function I (), necessitates a numerical root determination

of Eq. (18).

For the case represented by Fig. 2(c), the roots of 'V'(1) = 0 are deter-

mined by

I = ±(H + -FI'0) for III > Ht
I + 929..9

±(H - F ) for ji<

i9
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The points marked through (5, in Fig. 5 show all the possible roots in the

general case. The root denoted by Ji) always exists, whereas the pair _2) and

0 and the pair (-A\and () coalesce, respectively, and disappear as c increases.

-q This is indicated by the short-dash curves in Fig. 5. (In general, either pair

can merge and disappear first with increasing c.) Employing a linear approxima-

tion of the form (19) to the right of -Hk 2 in Fig. 2(c) yields the following

solutions for 'V'(I) = 0

I - IFt b, ± (H9' - IFIa.)

92 2

where a term of order 2 in the parentheses has been dropped by virtue of the

fact that HX is correct to order c. Root (D corresponds to the lower sign in
vthis expression:

?> = --IF9Ib -(H -
2 IF~IaR) , (21)

2.

and the condition for the reality of this root furnishes an estimate of the

threshold value for the wiggler strength above which the local maximum in the

vicinity of I=0 in Fig. 2(c) does not constrain the particles to the left or

to the right of the ordinate:

iC zc=2I~ (22)

Using the same linear approximatioit, [with the same values for az and b that

* appear in Eq. (21)], the intercept to the left of I=-H 2 in Fig. 2(c) is given

by

I< = - F9Ib - (Ht + 2 FtIa,, (23)

The following cases may now be distinguished. For very small values of

the wiggler strength, bounded oscillations of gyroradius and of axial velocity

'S.-.
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4of the electrons are possible in between the roots and '2j and in between

; 23 £)and k4 )- with the two regions being disconnected. With increasing c, either
• o.the roots 2r and 5 , ,5" disappear first. In the former

case, E> 5 c with cc given by Eq. (22), and the particles oscillate back and

forth between the roots and (4'. In the latter case, bounded motion between

the roots .1and 2 is allowed only. [Since I< 0 in this interval, it follows

• .2 from Eq. (10) that only those particles whose axial momenta exceed the resonant

value are confined.] Now for E greater than the value indicated by Eq. (22),

bounded motion is completely eliminated.

It is worth pointing out the analogy between the motions for the particular

cases sketched in Figs. 2(a) and 2(c) and that of a pendulum. Figure 2(a) corre-

sponds to the case in which the pendulum bob oscillates back and forth about the

equilibrium, with limited excursion in both the momentum and the angular dis-

placement about zero. This is usually referred to as libration. For motion

corresponding to that in either of the minima in Fig. 2(c), the bob rotates

clockwise or counterclockwise, with the angular displacement changing by 2ff

on each complete revolution.

While for confined motion the gyrorddius and axial velocity oscillate

about certain constant values, the guiding center coordinate X oscillates

about a mean value which itself drifts away from the axis. This mean drift

may be determined in the following way. The fixed points(I,C)of the equa-

tions of motion (12) and (13) corresponding to the equilibria depicted in

Fig. 2(a) are determined from I= =0:

exp(i) + (-1) exp(-i) 0

2+ 0+1.-" (-1) (+1 ^ 021 + -- i'[exp(i ) - (I exp(-i 4)]F9 i( I;) = 0
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Linearizing Eqs. (12) and (13) about (I,E) and combining, there results the

following equation of motion for SE= C ^

t ( rel)2 E ^
£0 92 1 + -i2 ii ii

+(rel 2 : ^1

whence the characteristic exponent (for 6 ~ exp(xt)] for oscillatory motion

in a trough is given

S±i e1FrelI(FIF k ) I (24)

In the terminology of charged particle accelerators Ji)j is referred to as the

frequency of phase oscillations (the oscillations of the resonance phase ).

One remarkable feature of the formula for the frequency of phase oscillations

is its scaling with c.

The position of stable equilibrium (6 - for phase oscillations due

to even-i coupling resonances corresponds to the condition that the gyrophase

and the effective "axial phase" be in quadrature, i.e., to + kz = T/2 or 3rr/2 ,

and is dependent on whether Y is greater than or less than zero. The position

of stable equilibrium for phase oscillations for odd-i coupling resonances

corresponds to the phases being in phase or antiphase (to + kz = 0 or

. irrespective of the y component of the guiding center.

The general solution for I close to a stable fixed point is given by

I=I cosiX(t- to). Eliminating the angle dependence between Eqs. (11) and

(14), using this solution for I, and integrating the resulting equation for

X, there obtains
".~ 2rel
,'.~~ ~ FI^^2t)

X= Xo - 2 Fj4 (Hi - 12/2)t - (I/2x sin20(t - ,
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'-4

so that the mean drift of the guiding center is given by

2 F+I( ),rel

X = X° - LI2rHe 12 t (25)
o 2k F9, 0.

This formula may be used to determine the length of the drift tube compatible

with propagation of a beam of electrons with given values for the constants of

motion, H, Y, etc.

The characteristic exponent (24) is derived for stable oscillation (or

libration) around the resonance value I= 0, corresponding to the potential

minimum of Fig. 2(a). The rotational states of Figs. 2(c), 2(d), and 2(f)

are not determined by the fixed points of the equations of motion. The

frequencies of oscillations in these minima are now determined. For a minimum

located at I,

d2 ,V,(I
V'(I) = 'V'(1) + + ... , for II -'dl2 ^

so that the energy conservation theorem (16) may be used to obtain

2, ^I -- - t rlt + constant

[ ~dl r
[-.'1) d 2  v '  ( - )2 . .

StigI- I ''( Id sin , this expression becomes

-, reld2'V / d = - t + constant

.V. ,d fd Cos 2 + ..,

.-# whence

I d 2lV' J

.'
1oO

r22I I constantxsin 2 'e2d2 Io,,rel It + constant
d2Vh/12j1 - -
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V. CHAOTIC MOTION

The discussion of the preceding section is predicated upon the assumption

that the motion of an electron is influenced by a single resonance, as expressed

by the expression for the Hamiltonian, Eq. (11). This premise is justified so

long as the particle remains close to .resonance; in other words in = n6 + 0

is close to zero for n= Z and far from zero for all other n. For wigglers of

sufficiently small strength a "trapped" electron executes small amplitude

oscillations in the vicinity of the resonant value for p z" As the amplitude

of these oscillations increases with c, there comes a point where the neighboring

resonances (n= 1± 1) perturb the motion to such a degree that the motion may

no longer be considered to be locked to a single resonance (n= Z). Under these

circumstances a given electron can wander from one resonance to the next, with

significant interchange of energy between the parallel and perpendicular degrees

of freedom. This, patently, is an undesirable mode of operation for a free-

electron laser. In addition to particles with large excursions in axial velocity,

the particles whose motion, as discussed in the previous section, is unbounded

belong to the class of particles wandering between neighboring resonances.

It may be recalled that, according to the discussion following Eq. (8),

the appearance of the variables B and z in the combination to+ kz in the expres-

sion for the Hamiltonian implies a hidden symmetry in consequence of which a

conserved quantity, independent of the Hamiltonian, could be shown to exist.

This constant of the motion, denoted by J, is strictly conserved so long as

the single-resonance approximation is valid. With4$"and J being conserved, the

two-degree-of-freedom system represented by (8) is integrable according to well-

known classical theorems. 6  If the single-resonance approxiamtion is not valid,

I

, ,- , ' .,' ' .' . . . .' ..-.... ' ' - . - ' " '- .. -. " .." -. " - . '. ".'- .
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J is no longer conserved and evolves in time at a rate determined by the

intermixing of the neighboring resonances with the fundamental resonance

(n=i).

Adapting Chirikov's 7 overlap criterion, an estimate of the threshold to

stochastic behavior is easily obtained. This criterion requires that the

', wiggler strength be such that the sum of the half-widths of two neighboring

resonances exceed the separation between them, i.e.

2(Ap ml
z + (AP)+I ' k

where Apz denotes the resonance width. Using Eq. (10) this may be rewritten

in terms of Al:

S >2AII£ + (z, ± _)AI.L+I Z 2 (26)

As an example, for the case discussed in the preceding section, where a particle

oscillates between the roots Qi and .21 of Fig. 2(c), AI, , i.e.,

AI9 = _2EIF lb + (H£ + --IF.a) - (H ---IF la,)

or
A19 = 2.?EIF 1 - 1 (27)

,2 CFa~

where 2c = [H£ + (2c/t 2 )IFL aLJ + [H- (2c/t 2))IFja£] , and assuming that the

interpolation given by Eq. (19) is approximately valid down to C=0, so that

J= at/b. Substitution of Eq. (27) into the left-member of (26) will determine

if for a given value of c the motion is integrable or not. Alternatively, one

may use the inequality (26) to calculate the threshold wiggler strength for

stochastic motion. A crude estimate of the time Ttr taken by an electron to

traverse a single resonance is obtained from Eq. (24) to be

o re
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iT> 1
Ttr- rl~

It must be borne in mind, however, that due to the random nature of resonance-

crossing a given electron may or may not move onto an adjacent resonance after

a time on the order of Ttr"

* Finally, let it be noted that the threshold wiggler strength required for

stochastic behavior, determined from Eq. (26),has no a priori relation to the

threshold value required for unbounded motion under the influence of a single

-" resonance, Eq. (20) or Eq. (22).

..

4.

I

4
- . . . . . . . . .

* J. ***** . . . . . . . . .. - . . . . . . .

. . . .. . . . . . . . . . . . . . . . . .
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VI. COMPARISON WITH EXPERIMENT

To begin with, it should be emphasized that the analysis presented in

this paper of the problem of beam propagation in a drift tube in the presence

of a linear magnetic wiggler and an axial magnetic guide field is predicated

upon the validity of the perturbation scheme based on the smallness of c (the

ratio of the wiggler field strength to that of the axial guide field). With

this proviso, it is interesting to examine some of the particle dynamics

relevant to a free electron laser experiment carried out by Roberson et al. 8

at the Naval Research Laboratory (NRL).

In the experiments an electron beam from a hot cathode induction linac

is used to drive a free electron laser. The beam is accelerated through a

potential difference of about 350 volts (y = 1.68) before impinging on the

anode of roughly 1 cm in diameter and entering the drift tube. The linear

wiggler has a period of 3 cm and the guide field strength is 2.2 kOe, so that

the particles are ostensibly near the Z= 2 resonance harmonic. Measurements

indicate a spread in the initial perpendicular speed of v,/c 1 0.08-0.24.

Fig. 6 shows the effective potentials 'V'(I) over a limited range of I for

the Z= 2 and Z= 1 resonances in the case of a particle whose y component of

guiding center coordinate is at 0.1 cm and for c=0.1. For the Z =2 resonance

the initial value of the gyroradius is p =0.35 cm. For both resonances it is

seen that oscillatory motion about I = 0 (corresponding to exact resonance) is

possible. Fig. 6(c) shows, very schematically, the "islands" surrounding each

resonance wherein a particle oscillates as its perpendicular and parallel

energies are interchanged due to a coupling resonance. Examination of Fig. 6(c)

evinces that for a particle initially locked in the 2= 2 resonance, the Z= I

,' ' ', " - .' '""i - - .' " . ....- .
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resonance induces a mild perturbation in its motion. A similar picture emerges

for the case where the initial gyroradius is somewhat smaller. For example,

- for p=0.1 cm the width of the Z=2 island is about three times smaller than

- that for p=0.35 cm, whereas the Z =1 island is not modified to any great extent.

, The case depicted in Fig. 7 (also for c = 0.1) corresponds to a guiding center

of 0.3 cm. Examination of Fig. 7(c) indicates that for a particle initially

*. locked in either of the resonances, the other resonance induces a strong per-

*turbation in its motion, if not completely dislodging and causing it to wander

from one resonance to the other. According to the discussion preceding Eq. (12)

- the example of Fig. 7 is roughly equivalent to the case for which Y= 0.1 (as

*in Fig. 6) but with =0.32. Figure 8 shows the effective potentials for a

particle on the extreme edge of beam as it enters the wiggler and whose y

component of the guiding center is at 0.5 cm. In this case the initial gyro-

radius is chosen to be p=O0 .1 cm, thus allowing passage of the particle through

the anode (whose diameter is roughly 1 cm). The relevant features to note in

Fig. 8(c) as compared to Figs. 6(c) and 7(c) are the increased width of the

-. Z=2 resonant island (due to its dpendence on sh kY) and the slight shrinkage

of the Z 1 resonant island (due to its dependence on kp). Overall, it is

manifest that resonance interaction (between the = : 1 and Z = 2 harmonic, at

least) is much weaker than the earlier cases with the larger gyroradius. The

example in Fig. 8 is roughly equivalent to one with guiding center Y=0.3 cm

and c= 0.2

Two remarks of relevance to all the cases just described are in order.

First, the Z=3 harmonic is expected to have a negligible influence on the

* particle motion in this parameter regime since it is not an energetically

allowed resonance. Second, the location and the width of the Z= 1 resonance

* * * --. I



-26-

island in Figs. 6-8 is such that it is always intertwined with the Z =0 resonance,

so that if a particle enters the Z=I resonance the influence of the Z=0 harmonic

is likely to be significant.

A quantity that should be quite relevant in an experiment whose aim is

to propagate a beam down a drift tube is the mean drift of the x component of

the guiding center X, as given by Eq. (25), assuming that a particle remains

trapped in a single resonance while traversing the tube. If the length of the

tube is L cm, X may be approximated by

trel

o F!(H 12) c L
0 k v- Vz

whence X - X -1.4 cm for the particle locked on the t=2 resonance in Fig. 7(a)

and propagating through a tube of length 60 cm.

One striking aspect of the free electron laser experiment at NRL 8 is that

as the wiggler field is increased, with c taking on the values 0, 0.23, 0.34 and

0.46, no significant reduction in the beam intensity, determined from the x-ray

exposures generated in a tantalum target, is detected as the beam propagates the

entire length of the device. This is in contrast to the results obtained by

numerical simulations of the experiment.9 With the limitations imposed by the

perturbative analysis presented in this paper, it appears that, in the light of

the conclusions drawn from Figs. 6-8, a possible explanation of the experimental

results is the following. Given the very narrow aperture of the anode the

particles with a small scatter in velocity (namely, small v,/c) tend to be locked

onto the t= 2 resonance throughout their passage through the wiggler and undergo

very limited excursions in parallel velocity. Moreover, the guiding centers of

these particles follow trajectories whose y components are constant and whose

°.J

. . . . . . .
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x components drift by small amounts through the tube. However, as indicated by

Fig. 7 there are some classes of particles--those with relatively large gyro-

.4 * radii and close to the edge of beam--whose motion may be quite eratic, wandering

from one resonance to the next and transforming a substantial fraction of their

directed parallel energy into the perpendicular degree of freedom. The experi-

mental observation may therefore be a reflection of the fact that the electron

beams used in the NRL experiments are narrow enough and of sufficiently small

emittance that the fraction of particles whose motion is Brownian is quite

insignificant.

4
.4

.

j4

."

9'
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VII. CONCLUSIONS

Starting with a Hamiltonian formulation of the dynamics of a single

particle traversing a drift tube under the combined influence of a linear

magnetic wiggler and an axial magnetic guide field, it is shown that the

all-important issues of nonlinear orbital stability, propagation and directed-

beam quality may be examined in a very simple manner by using effective-

potential theory. Within the regime of validity of this perturbation theory,

it is concluded that there is a limit on the strength of the wiggler field

above which the propagation of the beam is seriously hampered, leading to a

significant increase in its energy spread and an inevitable reduction in the

gain of the laser.

The efficacy of the Hamiltonian approach, applicable to wigglers of

arbitrary geometry, may be gleaned from the simple way in which a given set

of parameters may be appraised as regards orbital stability and beam quality,

and has therefore much to commend it to those who contemplate such experiments.
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APPENDIX: EFFECT OF HIGH-FREQUENCY TERMS ON THE MOTION CLOSE TO A RESONANCE

The effect of the non-resonant, high-frequency terms on the motion in

proximity of a single resonance may be determined by a standard ponderomotive-

* potential analysis. 10  Assuming that the first-order non-resonant terms in the

Hamiltonian induce small changes 6p, 6pz, 66, and 6z in the variables p, pz, 1,

and z, perturbation of the expression for the Hamiltonian (5) yields

V .2  + m2c2  - 2

c c

P2 + 2p Sp + (Spz) 2 + 2mfoo + 2nrozJ+ z

+ 4ci rexp(i) (-1)1 exp(-i )]F CI + 4ca' l[exp(in) -n (-)nex(-in)]F nC

+ 4a ' i n+lexp(iEn) -()n exp(_i~nF n _"I n' , + 4c ' in+1 [exp(in) + (-)n exp(-i&
.

x F -ox Fn+ n k) o + aI(2C)ch2kY- (-1)1E 2 12(2)ch2kY cos2C,, (Al)

whence

= - in+l[exp(i~n) - (-I) n exp(-iEn)]FnCI' + ympz +
.m m"Z. y

wherein' indicates that n= z is excluded. Using

If
-q n _, 2 )n nn+l6 -- [exp(i~ n) -(-) exp(-i n)]F I 'vi

the lowest order solution for 60 is given by

, '......-......* . . ....- ". .. - ...... ... -...--- ,... ..-...
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66 M- : 2L_ ,nexp(i n+_~ exp(-_itn )IFn (roo/Y)+ kVzym niiiNTnV

similar expressions may be obtained for 6p, 6pz , and 6z. These resulting

expressions are then substituted into Eq. (Al) and the slowly varying terms

retained, leading to the final expression for the Hamiltonian:

.I. 2 m 2 _ 2

2 m - E a
C

Pz 2n2p + 4eai [exp(iC)- (-1) exp(-iE)]F, (kY)Ij(,)

+ 2 Io(2)ch2kY - (-a) 2  c122(2)ch2kY cos2F4  (4ea)2 >
'  F v

ym n + z

2 2 F2

* F ln ) 3 k2  (rl'n) 1 (4 )cos2 ' n
n a - 2 y (rCo/Y)+kvzJ +  I  Ym n (21 -n) 0/y+ kvz

1 -- n (2n I n -n)Qo/y + kvz - 2m (n Q/Y)'+ kv

-, Using

it is simple to check that none of the terms in the ponderomotive potential

leads to divergent behavior for the equations of motion as ..

., * *
.1~~ C
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Fig. 6 (a) and (b) Effective potential 'V'(I) versus I. Ho : 2.2 kOe,

wiggler wavelength 27rk = 3 cm, y = 1.68, c = 0.1,

y component of guiding center Y = 0.1 cm; initial

* gyroradii are 0.35 cm and 0.95 cm, respectively.

(c) Schematic of I = 1 and i = 2 islands determined from

the effective potentials in (a) and (b). Ordinate is

(no 0o'lkpz, abscissa is the resonance phase

= 6 + kz for t = 1 or 2.
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