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I. INTRODUCTION

With a sufficiently high current, the ponderomotive force arising from
the interaction of the directed momentum of particles with the magnetic wiggler
in a free electron laser (FEL) drives a space charge wave in the beam. Although
this increases the efficiency of the device, one drawback in the use of a high-

current, nonneutral beam--typically produced by a Marx-type generator--is that

the beam can rapidly expand due to its own space charge effects. To remedy
this, it is natural to introduce an axial magnetic guide field in addition to
the magnetic wiggler field necessary for laser operation. However, the combined
influence of these fields may inhibit beam propagation and degrade the amplifi-
cation properties of the system. For example, the collective cyclotron modes
of the beam due to the presence of the guide field can compete with the FEL
mode, and, on the level of single particle motion, interaction between the
gyromotion and the periodicity in the axial momentum due to the presence of
the wiggler can induce a resonant transfer of the axial momentum for that in
the perpendicular direction. Since this leads to dispersal of electrons within
a beam, an increase in spectral width and a reduction in gain is inevitable.
For efficient operation it is therefore imperative that the orbits of the
electrons be free of large amplitude variations in axial velocity and that the
off-axis drifts be limited in extent so that the electrons do not reach the
walls of the drift tube.

The present paper is addressed to the single particle aspect of these
probleﬁs, hich might be referred to as issues concerned with orbital stability,
including beam propagation and directed-beam quality. Specifically, a pertur-
bative technique of sufficient generality to study the nonlinear stability

properties of wiggler fields of arbitrary geometry superimposed on a strong
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uniform axial guide field is developed and applied to the case of a periodic
wiggler.

It should be emphasized from the outset that the formalism presented
herein is applicable to electric and magnetic fields satisfying the full set
of Maxwell's equations including, in principle, all self fields. However, for
simplicity in this study only vacuum fields will be considered. The use of the
correct functional form for a solenoidal (div B = 0) and irrotational (rot H = 0)
magnetic field, aside form satisfying the constraints imposed by Maxwell's
equations,1 is particularly important in the case of a linear wiggler since the
net drift of guiding centers induced by the azimuthal asymmetry of the field
dictates that the off-axis variation of the magnetic field be included.

For sufficiently small wiggler fields nonlinear orbital stability is
assured for certain classes of particles. Put differently, these classes are
characterized by bounded (but not necessarily small) oscillations of gyroradius
and of axial velocity. The parameters characterizing these classes are deter-
mined and the optimal values for maximizing the number of particles undergoing
l1imited excursions in axial velocity may be deduced. While boundedly oscillating
in axial velocity, the guiding centers of these particles experience a mean drift
off axis which restricts the maximal interaction length of the drift tube. This
propagation length is also determinable from the analysis.

With increased wiggler strength, bounded motion is no longer allowed above
some threshold value which depends on the region of phase space. In other words,
as the wiggler amplitude increases, the “"confined" classes alluded to in the .
foregoing are eliminated one after the other until no region of phase space

contains within itself electrons whose motions are bounded. When a given con-

fined class is eliminated, the electrons therein experience large changes in




axial velocity as they jump from one resonance to the next in a haphazard

manner, increasing the effective parallel temperature of the beam and thereby
reducing the gain. The analysis which follows furnishes numerical values for
the wiggler field strength below which such undesirable effects are avoided.
The organization of this paper is as follows. In Sec. Il a simple
generali.ation of the usual definitions of magnetic moment, gyrophase, and
of guiding-center coordinates is employed to rewrite the single particle
Hamiltonian in a form suitable for analysis of the effects of resonance
between the gyromotion and the periodicity induced in the axial motion by
the wiggler. In Sec. III it is shown that, provided the motion is dominated
by a single resonance, the system possesses a hidden symmetry, which is mani-
fested by the presence of a conserved quantity that is independent of the
Hamiltonian. This fact allows a complete qualitative description of all
possible motions of a particle propagating through the drift tube, as detailed
in Sec. IV. Section V considers the possibility of stochastic motion under the
influence of multiple resonances. The analysis presented in this work is put

into perspective by examining the results of a free electron laser experiment

in Sec. VI.
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II. HAMILTONIAN FORMALISh

In principle, starting from Newton's equations of motion for an electron
under the combined influence of a magnetic wiggler and an axial magnetic guide
field application of perturbation theory permits the determination of many of
the orbit characteristics needed for most FEL applications. Such an approach
has already been successfully applied to the case of a longitudinal magnetic
m‘gg]er.2 It turns out that a significant generalization and simplification
can be simultaneously effected in problems of this nature by use of powerful
Hamiltonian techniques.

A vector potential representing a linear magnetic wiggler of the form
(0, 8H coskz ch ky , -8H sinkz sh ky) with period 2mk” ! along the z-axis

superimposed on a guide field (0, O, Ho) may be written as

1

A= (-Hy + 8HK™ sinkz ch ky, 0, 0) ,

where ch ky and sh ky are the hyperbolic cosine and sine of ky, respectively.

The corresponding single-particle (relativistic) Hamiltonian .# is given by

.x’zlcz - mzc2 pz + p§ + (Px + ony - méQk'l sinkz ch ky)z,

A

H

,

wherein Qo = qu/mc and 6Q = q8H/mc are the gyrofrequencies of a particle
of charge q and (rest-) mass m in magnetic fields of intensity Ho and &H,
respectively. The momenta P, py,and Px are related to the velocities

v (i=x,y,2) in the usual way:3
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%? P =vymv_ + (q/c)A
%! X X x
) with
b 2 . 2, 2\, 2%

= - -2

| y=[1-(v ¢+ vyt v et
% »

¥
“t the relativistic factor, being related to the Hamiltonian (or energy) via
‘t = Ymcz. In the present analysis, in which self fields are neglected and
e the only external fields are magnetic, the energy # and the relativistic
-
v}j factor y are constants of the motion. The gyrofrequencies corrected for
»ﬁ s e s s e rel _ rel _

<% the relativistic mass variation are Q°" = QO/Y and &Q = 6Q/y .

z It is usual practice in studying particle motion in, say, a magnetic
H . .

%} trap or in the earth's magnetic field to use, in lieu of the momenta P>
‘i: certain adiabatic invariants which are constants of the motion to great

n accuracy for slowly varying fie]ds.4 One such variable is the magnetic

. N

. moment 1 = IVL|2/2|H| , with Vl being the component of velocity perpen-
fﬁ dicular to the magnetic field ﬁ. Introduction of a (generalized) magnetic
o moment is expedient in the present case, too, since it is a strict constant
\‘

N of the motion in the absence of, and undergoes slow evolution in the presence
Q"l

3 of, a small amplitude wiggler.

' Effecting a transformation (x,Px; y,py; Z,pz) > (6,13 Y,mQOX; Z,pz)
’; via

T -1 2. 2

= +

ff w= (2m) [(Px mﬂoy) + py] ,
::‘. = +
i ;) arctg[(Px mQOY)/Py] ,

n",‘
o _ -1

Juin Y = '(mo) px ’

.';: X=x+ (m )-1 ’

X o’ Py

-
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o the Hamiltonian may be rewritten as
3 ~ mnsQ. 2 _ .2 -1 . . .
-3§ - (3a?) =P, + ZmQOu + k ZmGQmQOp sing sinkz ch k(Y -p sing)
2
W + (B2[ch 2k(Y - psing) - coszkz] - (M2)2ch 2k(Y - p sino)cos2kz
2k
£¥ wherein
-
b1 2u k&
AP = _L 2
=g » (1)
()
<. and
fi'!
7 X=x-pcost ,
3
~ Y=y +psino
ﬁ: Defining
:ﬁ:
- € = 6"/”0 = (SQ/QO s
%
o - 2
:4 a (on/Zk) .
Y; and
o z =k (2)
v
N
if and noting that 3Csh(kY - ¢ sing) = -sino ch(kY - ¢ sing), the Hamiltonian
- can be expressed as
s
E% .%’-»eza = p§ + Zonu - 8car sinkzac sh(kY - ¢ sing) +
..--\

N '1-

+ eza[chZ(kY - £ sing) - cos2kz] - eza ch2(kY -z sing)cos2kz .

The crucial point that must be emphasized is that in the absence of the

wiggler (8H = ¢ = 0) the foregoing definitions for u, 6, X, Y, and p correspond
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to the usual definitions of magnetic moment, of gyroangle, of the x-, and

y-components of the guiding-center, and of gyroradius of the particle in the
(uniform) gquide field Ho, Fig. 1. This correspondence does not persist with
a non-zero wiggler field, in part due to the appearance of Px + mQOy -- which
equals Ymv, plus a correction term proportional to the vector potential of the
wiggler -- in the definitions. Notwithstanding, the generalized transformation
effected in this paper is exact and designed with a view tn constructing a
simple perturbation theory in powers of ¢ .

Let it be noted, too, that the change of variables u* : belongs to the
class of canonical transformations which in essence means . the equations

of motion for the new variables are given by the usual formulas; thus

N o= -3g-#

5= a2 + o) (3)
'Y _ #_ pz -

z = apé SERA (4)

etc. In particular, since the expression for.# is not an explicit function
of the x component of the guiding-center, X, the y component of the guiding-
center, Y, which is conjugate to onX, is a constant of the motion. This is
merely a reflection of the fact that, in terms of the original variables, K
and hence .# are independent of x, which implies that Px is a constant of

motion.
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.;f ITI. RESONANT INTERACTION

{;ﬂ In the context of the present analysis, resonance refers to the matching

;} between some integer multiple 2 of the gyrofrequency and the effective frequency

X of the modulated motion along the z axis; i.e., 26 + kz = 0, which may be

re-expressed as nge] + kvZ =~ 0 on using Egs. (3) and (4). Such a resonance,

22: commonly referred to as a coupling resonance, induces a vigorous exchange of

{‘i energy between the longitudinal and perpendicular degrees of freedom of a particle
traversing the device. As is well-known, gyrotrons operate by transforming the

;; perpendicular energy of the particles into electromagnetic radiation at the

(Ef cyclotron frequency Q/y. Free electron lasers, with their very favorable wave-

';: length scaling (Aradiation = %Awigg]er/yz),depend for successful operation on

{EQ the emission of radiation originating from the directed energy of the particles.

5. For this reason and also to avoid the possibility of the radiation level being

. reduced by Landau damping, in FEL experiments a considerable amount of emphasis

ES is attached to the generation of beams with as little energy spread as possible.

E; However, even if the electrons entering the drift tube were almost entirely mono-

‘?¥ energetic, coupling resonances would greatly augment the energy spread and seriously

}fﬁ degrade the gain. It is precisely for this reason that the study and control of

33 coupling resonances is of paramount importance to the success of free electron lasers.

- To perform an analysis correct to 0(52), the hyperbolic functions are

;é expanded in terms of modified Bessel €unctions of the first kind,In, and all but

2; the rapidly varying second-order terms retained in the expression for the

;; Hamiltonian:

- ela = pl+ 2m0u+4e?‘zmi"+l[exp(1‘€n) - (-1)" exp(-ig )] F (KY)2I ) (2)

. + eZa1_(20)ch2ky - (-1)*c%al,, (2t)ch2kY coszg, (5)

- 0
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’2.
o2 =ne + kz , 6
& “n (6)
1\.
2 F(kY) = %[exp(kY) - (-1)" exp(-kY)] (7)
e
o and a prime denotes differentiation with respect to the argument. Now, the
';L equation of motion for g is given by
Iz § = o= el 4 26“21n1ex (i£) = (1) exp(-ig J]F, (V) [213(2)] + alc)
N o [exp exp .
4
..f For a particle that is resonant at, say, the second harmonic, i.e., E? =20 + kz
~ ’
‘.‘ . . . 3 - 3
‘}3 is the slowly varying phase, the terms involving Cn#? = {(ng + kz)m‘2 will be
— rapidly oscillating and are not expected, on intuitive grounds, to have a substan-
,ﬁi tial effect on the motion. The only exception to this being the n=1 harmonic
2
;:3 since au[cli(c)] ~ 1/t and for sufficiently small gyroradii it overwhelms the
slowly varying second harmonic (i.e., resonant) term. In the Appendix the
f: ponderomotive potential due to the rapdily oscillating terms is calculated and
_fj shown to be nondivergent and its effect on the mean motion to be uniformly on
- the order of 62. Accordingly, all the rapidly varying first order terms and
'ﬁi the slowly varying second order terms may be safely dropped, and the resonant
P Hamiltonian written as
= p? + 2mp + aeai® exp(i,) - (-1)F exp(-i JF (K)EL (2) + ... (8)
1&
:: A significant feature of the single resonance Hamiltonian (8) is that it
b,
- pertains to a system with two degrees of freedom Upz.ﬂ,(u,e)] and yet the
S -,
N variables z and © appear in the linear combination kz+ 98 only. The presence
"’
N of this hidden symmetry is quite common in nonlinear mechanics and there is a

[

standard procedure in identifying the constant of motion associated with it.

AQ.. .
NN 1B




G, LE,
Calt il

=

-11-

The equations of motion for the axial momentum and for the magnetic moment are

given by
s o 2€0 1 % . 2 . .
b, = -3~ ;ﬁrkl [exp(1£2) + (-1) exp(-lia)]FchQ ,
> o L2EQL, 2R . [} . ,
uo= -ag#= Eaitlexp(igg) + (-1)7 exp(-ig))]F Iy

Dividing the first expression by the second,

dpz de/dt

& - duat S K

hence it is clear that as an electron moves under the influence of a single
resonance its direction of motion in (pz,p)-space is a straight line whose
gradient is given by the quotient of the constants k and &, whence, on

integration
zpz - kp = constant.

Having identified this constant of the motion, it is now a simple matter to
use it in order to reduce the dynamical system to one with a single degree of
freedom. This may be accomplished in a number of ways, the most expeditious
being, perhaps, through the transformation (pz,z; u,0) - (I,EI; J,gJ) given
by the generating function

g amQ SLZon

S = (20 + kz)—21- —2274+ J , L#0,
k2 K k?’

which is chosen in such a way as to belong to the class of canonical transfor-
mations [cf. statements preceding Eq. (3)]. The connection formulas between

the old (pz,z; u,8) and new (I,EI; J,gJ) variables are furnished by5
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Noting that éI==O corresponds to resonance between the modulated axial motion
f and the gth harmonic of the gyromotion, and referring to Eqs. (3) and (4), it
: is evident that the (dimensionless) variable I measures the departure of the

axial momentum from the resonant value -lmno/k. Next, defining

ps =
ti

(———)I{’-I-ZJ ,

Eq. (8) may be rewritten as

Hy = 12+ 5 M e(ieg) - (-1)F exp(-ig NIF (KNEL (2) + ., (1)

L

from which it immediately follows that J (being conjugate to EJ) is conserved.
That J is conserved is entirely an artifact of the single resonance approximation.
This is clearly brought out by deriving the equations of motion for P, and q

not from the single resonance Hamiltonian given by Eq. (8) but from Eq. (5).

3 It is then apparent that the direction of motion de/du is no longer constant.

Another perspective of this phenomenon is gained by noting that there are only
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;i? two global symmetries associated with this problem as manifested by the absence
v of any explicit dependence on time or on the x-coordinate variable in the Hamil-
‘:‘-

'}: tonian. Conservation of J, however, is related to an imposed symmetry, which is
N unbroken as long as the nonresonant interaction terms in the Hamiltonian are
S ignorable. The importance attached to conservation of J insofar as it relates
ES to constraining the spread in energy of a beam traversing the drift tube is

oo discussed in the following sections.

’uJ It is worth pointing out that since Y is a constant of the motion, the
o

i effective coupling constant in the expression for the Hamiltonian, Eq. (11) is
;:i eFm(kY). Referring to Eq. (7) it is manifest that this effective coupling constant
. for even & is much smaller than that for odd & for those particles whose guiding
':h centers are close to the axis (kY<« 1), indicating a much weaker interchange
A between axial and perpendicular degrees of freedom in the former case.

@i The equations of motion are given by

.

-

R

%: mre]

~ ; . . ') . !

- t- -agi/6’= 0 & i*fexp(ig,) + (-1)" exp(-igy)F ey (12)
L

‘:é rel

'.\ s _ 0 € A+ : o (- L _3 I

3 g, = —3—{o1 s 5 enie,) - (1 el DR 3) SPNCE)
~~
A and rel

» s g R+] . 2 . '

& X = —5— el [exp(1£2) - (-1) exp(-1£2)]F2+1CI2 . (14)
oy
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IV. MOTION IN A SINGLE RESONANCE

Since the Hamiltonian given by Eq. (11) is conserved, the dynamical system
(or flow) generated by it is integrable; in other words, it is possible, in
principle, to solve Eqs. (12)-(14) to express the development of I, £a and X
as functions of time. It turns out that, not unlike many other problems, it
is far more expeditious and convenient to use the energy conservation theorem
to determine, and describe the salient features of, the possible orbits than
to attempt to unravel, and extract useful information from, the algebraically
complicated solutions of the equations of motion.

Upon squaring and combining Egs. (11) and (12) in such a way as to

eliminate the dependence on the angle Eq> there results the following energy

conservation theorem:

L2+ v =0, (15)
(o}

wherein the effective potential is given by

v = - 197 -5 neR)® (16)

with
L
r = ef2(1 +3)]° . [Using Egs. (1), (2) and (9)]
Note that since £ >0, the last expression imposes the constraint I>-J. One
further constraint is obtained by eliminating I from Eqs. (9) and (10), squaring

the resulting expression for J, and combining with the expression for H2 given

before Eq. (11):

1 2 2
2 _ o (keyiTyer 2 4 xvay29E [ _Kva z,2
oy = GEOHTE -1 - ) [ "+ 1462

[} rel
0
” 2
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where the last expression is derived for ¢ « 1. Recalling that Qo< 0 for

electrons it follows that J2

>H, for (kC/Iﬂol)[Yz -1- (yvl/c)zféz 1,
which is generally the case. However, for completeness the case J2< H2
! will be considered, too. It is now possible to classify the motion according
as the four sign combinations for J and Hg, and as sketched in Fig. 2. In
! plotting the effective potential it is useful to note that the first term in
Eq. (16) is a biguadratic with zeros at tH% for HQ:>O, and of parabolic form
with a (single) minimum above the abscissa at 1 =0 for H2< 0. The second
term in Eq. (16) is a monotonically decreasing function of ¢ (and of I) with
a zero at I=-J. Additionally, it is apparent from Eq. (15) that allowed
motion is confined to 'V'(I)< O with the sum of the kinetic and potential
energies being zero, i.e., lying on the abscissa.

It is simple to show that, within the context of the single resonance
approximation, bounded motion for J< 0 and J2> H2 (Figs. 2(e) and 2(g)} is
impossible; in other words the form of the effective potential is always as
shown in Figs. 2(e) and 2(g)--with one, and only one, intercept on the abscissa.

) '"V'(I)=0 implies that

: 2 _ .2
b I - I-I2 =+ 5

L
? 2 el

2. 2

Being interested in I>0, I°>J%, and noting that J2> Hy for Figs. 2(e) and 2(q),

it follows that
- 2e i
I = (Hz + zlellcll)

Since the left member of this equation has a constant gradient, whereas the

right member has a monotonically increasing gradient, and also since the right

member always starts below the left member, there can only be one root, as
indicated in Fig. 3.

Corresponding to Fig. 2(a) (H2< 0, J>0), the roots of 'V'(I)=0 are
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given by

= g_fi_ 1 !5 18
I=x(H + 12|Fg|r,12) , (18)

the left and right members of which are shown in Fig. 4. The root denoted by
]1} in this figure is always present, whereas the roots denoted by .2 and 3
disappear for sufficiently large €, as indicated by the short-dash curves in
Fig. 4, thereby eliminating the possibility of bounded motion in this case.
The critical value of ¢ may be estimated as follows. Assuming that cli may be
approximated by

Cli =a, *+ bzl s ag’bz >0 , (19)

in the vicinity of the roots ké? and K5>’ substitution of this into the upper
branch of Eq. (18) and the requirement of the equality of the roots of the
resulting quadratic equation yields the critical wiggler strength above which

bounded motion is not possible:

2
-2 HZ

Ecﬂm . (20)

Although this formula indicates the scaling of € to calculate its value

in particular cases requires an estimate of a, which, due to the transcendental

2
nature of the Bessel function Il(c), necessitates a numerical root determination
of Eq. (18).

For the case represented by Fig. 2(c), the roots of 'V'(I) = 0 are deter-

mined by
2 X 5
I =+(H + ;%}Fllr,ll)z , for |I| > H?
2 . | i
I =+(H - -%[Fllr,r )2, for [1] < HZ

2
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The points marked (1) through (5} in Fig. 5 show all the possible roots in the

PR I M

general case. The root denoted by :i) always exists, whereas the pair ,?) and

‘D‘ -

CE) and the pair (E) and [3) coalesce, respectively, and disappear as € increases.

'

This is indicated by the short-dash curves in Fig. 5. (In general, either pair

Pty ity

can merge and disappear first with increasing €.) Employing a linear approxima-
) . . L . . .
- tion of the form (19) to the right of -sz in Fig. 2(c) yields the following
; solutions for 'V'(I) = 0
~ "E| 2€ %
? I=SFlby = (H - SIF la)*
“,: 2 2'
? where a term of order ez in the parentheses has been dropped by virtue of the
b fact that Hz is correct to order . Root (:) corresponds to the lower sign in
§ this expression:
N
-\‘ 2 ;,
c' > - ;_ - _ e 3
S I = 22|F2’|b2’ (Hl 2—2-“:2"32) ° (21)
;: and the condition for the reality of this root furnishes an estimate of the
N
fi threshold value for the wiggler strength above which the local maximum in the
vicinity of 1=0 in Fig. 2(c) does not constrain the particles to the left or
X to the right of the ordinate:
~
)
2%,
€c® 2 Fla, (22)
ﬁ Using the same linear approximatior. [with the same values for Q and bl that
. 1 L
? appear in Eq. (21)], the intercept to the left of I= —H; in Fig. 2(c) is given
by
- < _ € 2 i
0 Zlelbl - (Hg + 2|F2|al) . (23)
' 2 L
}j The following cases may now be distinguished. For very small values of
) .
" the wiggler strength, bounded oscillations of gyroradius and of axial velocity

S Y ._a
~ . S
SRS Rt
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of the electrons are possible in between the roots (i] and <§/, and in between
\é) and ﬂ;}- with the two regions being disconnected. With increasing e, either
the roots “2) and {3, or the roots (4 and (5" disappear first. In the former
case, e>¢e_ with €¢ given by Eq. (22), and the particles oscillate back and
forth between the roots <i} and (E}. In the latter case, bounded motion between
the roots ;i and 2 is allowed only. [Since 1<0 in this interval, it follows
from Eq. (10) that only those particles whose axial momenta exceed the resonant
value are confined.] Now for € greater than the value indicated by Eq. (22),
bounded motion is completely eliminated.

It is worth pointing out the analogy between the motions for the particular
cases sketched in Figs. 2(a) and 2(c) and that of a pendulum. Figure 2(a) corre-
sponds to the case in which the pendulum bob oscillates back and forth about the
equilibrium, with limited excursion in both the momentum and the angular dis-
placement about zero. This is usually referred to as libration. For motion
corresponding to that in either of the minima in Fig. 2(c), the bob rotates
clockwise or counterclockwise, with the angular displacement changing by 2m
on each complete revolution.

While for confined motion the gyroradius and axial velocity oscillate
about certain constant values, the guiding center coordinate X oscillates
about a mean value which itself drifts away from the axis. This mean drift
may be determined in the following way. The fixed points(i,gl)of the equa-
tions of motion (12) and (13) corresponding to the equilibria depicted in

Fig. 2(a) are determined from 1 =él==0:

z 2

exp(ig,) + (-1) exp(-igl) =0 ,

S el e g - N
21 + 2 [exp(ig,) - (-1)" exp(-i£,)]F, 35(cI}) = 0
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Linearizing Eqs. (12) and (13) about (I’El) and combining, there results the

~

following equation of motion for 6g, = 62- 51

- = Te] Zi AA. € 2 ]
651 t(mo ) 22F2;12(1 + Q_ZFQB?EIQ)GEQ

t(m;el)Z €

L

whence the characteristic exponent [for 6&2 ~ exp(rt)] for oscillatory motion

in a trough is given

x o= xictale N (IF, [21))% (24)

In the terminology of charged particle accelerators |iA| is referred to as the

frequency of phase oscillations (the oscillations of the resonance phase gm).

One remarkable feature of the formula for the frequency of phase oscillations

js its scaling with €.

The position of stable equilibrium (621 ~ -651) for phase oscillations due
to even-% coupling resonances corresponds to the condition that the gyrophase
and the effective "axial phase" be in quadrature, i.e., 26 + kz = 7/2 or 3n/2,
and is dependent on whether Y is greater than or less than zero. The position
of stable equilibrium for phase oscillations for odd-f coupling rescnances
corresponds to the phases being in phase or antiphase (28 + kz = 0 or 7),

irrespective of the y component of the guiding center.

The general solution for I close to a stable fixed point is given by
1= i cosik(t-to). Eliminating the angle dependence between Eqs. (11) and
(14), using this solution for I, and integrating the resulting equation fbr
X, there obtains

2.rel
R,Qo

41 22 1,7,,0v2 . 5
X = XO - T—F;’—- ((HQ, -1 /Z)t - _'I_)\(I/Z) S1n21X(t - tO)] ’
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¥ so that the mean drift of the guiding center is given by
’-3 Xox -4 F“"I(H - 1272y e (25)
g o 2 F % 0 )
N
] This formula may be used to determine the length of the drift tube compatible
f with propagation of a beam of electrons with given values for the constants of
motion, Hz’ Y, etc.
' The characteristic exponent (24) is derived for stable oscillation (or
ﬁ} libration) around the resonance value I=0, corresponding to the potential
2
;i minimum of Fig. 2(a). The rotational states of Figs. 2(c), 2(d), and 2(f)
e
f are not determined by the fixed points of the equations of motion. The
_E frequencies of oscillations in these minima are now determined. For a minimum
% located at I,
= - a2 (1) A2 .
N 'V'(I)='V'(I)+%“*—2—"l (I -1+ ..., for [T -T]x1,
L dl T
R I
Ao
. so that the energy conservation theorem (16) may be used to obtain
.::
:...
% dI el
%2 5 = ¢ »——1t + constant
; ~ s\ ~ 2
- [—'V'(I) -5 -2 ]
‘$h dI f
- ~ L
iy Setting I -1 = [-2'V'/(d2'V'/d12)]f sing , this expression becomes
N 1
2 L Qlﬂre
- —ir—jl——j? I dé 2C°S¢ o= * g t + constant |
< d™'v'/dI%) (cos“d + ...)°

: whence
\'1
¥ - v rel

' I - 1= constant x sin|%|%%—— |Qre |t + constant
2 dIZ A0

1

.

) 4
v
o~
l',

*
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V. CHAOTIC MOTION

is The discussion of the preceding section is predicated upon the assumption
:; that the motion of an electron is influenced by a single resonance, as expressed
‘; by the expression for the Hamiltonian, Eq. (11). This premise is justified so
F‘ long as the particle remains close to resonance; in other words én =nd + kz

;; is close to zero for n=¢ and far from zero for all other n. For wigglers of

sufficiently small strength a “trapped" electron executes small amplitude

iy

oscillations in the vicinity of the resonant value for P, As the amplitude

s of these oscillations increases with ¢, there comes a point where the neighboring
v resonances (n=2+ 1) perturb the motion to such a degree that the motion may

:j no longer be considered to be locked to a single resonance (n=%). Under these
;: circumstances a given electron can wander from one resonance to the next, with

| significant interchange of energy between the parallel and perpendicular degrees
be of freedom. This, patently, is an undesirable mode of operation for a free-

3 electron laser. In addition to particles with large excursions in axial velocity,
N the particles whose motion, as discussed in the previous section, is unbounded

) belong to the class of particles wandering between neighboring resonances.

; It may be recalled that, according to the discussion following Eq. (8},

x the appearance of the variables 8 and z in the combination £6 +kz in the expres-
fﬁ sion for the Hamiltonian implies a hidden symmetry in consequence of which a

13 conserved quantity, independent of the Hamiltonian, could be shown to exist.
i' : This constant of the motion, denoted by J, is strictly conserved so long as

}5 the single-resonance approximation is valid. With.#and J being conserved, the
3 two-degree-of -freedom system represented by (8) is integrable according to well-

known classical theorems.6 If the single-resonance approxiamtion is not valid,

S R P T T P - . . . .
ey RIS A T A R T L B P TR AT
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J is no Tonger conserved and evolves in time at a rate determined by the
intermixing of the neighboring resonances with the fundamental resonance
(n=2).

Adapting Chirikov's7 overlap criterion, an estimate of the threshold to
stochastic behavior is easily obtained. This criterion requires that the
wiggler strength be such that the sum of the half-widths of two neighboring
resonances exceed the separation between them, i.e.

miq, |

B(8p,), +%(8p,)) 0 2 ——

where Ap, denotes the resonance width. Using Eq. (10) this may be rewritten

in terms of Al:
2AI|2 + (g Dallg,22 - (26)

As an example, for the case discussed in the preceding section, where a particle

oscillates between the roots (1) and fé) of Fig. 2(c), AIQ =1 - 1° , i.e.,
- =2 " + 2 % 2e %
aly 12|F9,|b9, (Hy QZlelaz) - (Hy - Q_lezlan) ,
or
i 1.1
ALy ’zlez'az(o 7 (27)
2 L 2 L .
where 25 = [Hl + (2/2 )lFl[aZJZ + [HZ - (2e/% )]leal]z, and assuming that the

interpolation given by Eq. (19) is approximately valid down to ¢z =0, so that

J=~ azlbl . Substitution of Eq. (27) into the left-member of (26) will determine
if for a given value of ¢ the motion is integrable or not. Alternatively, one
may use the inequality (26) to calculate the threshold wiggler strength for

stochastic motion. A crude estimate of the time Tip taken by an electron to

traverse a single resonance is obtained from Eq. (24) to be
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Q It must be borne in mind, however, that due to the random nature of resonance-

N

N crossing a given electron may or may not move onto an adjacent resonance after

“w

. a time on the order of Tipe

E Finally, let it be noted that the threshold wiggler strength required for

-

j stochastic behavior, determined from Eq. (26), has no a priori relation to the
threshold value required for unbounded motion under the influence of a single

L

» resonance, Eq. (20) or Eq. (22).
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VI. COMPARISON WITH EXPERIMENT

To begin with, it should be emphasized that the analysis presented in
this paper of the problem of beam propagation in a drift tube in the presence
of a linear magnetic wiggler and an axial magnetic quide field is predicated
upon the validity of the perturbation scheme based on the smallness of ¢ (the
ratio of the wiggler field strength to that of the axial quide field). With
this proviso, it is interesting to examine some of the particle dynamics
relevant to a free electron laser experiment carried out by Roberson et a1.8
at the Naval Research Laboratory (MNRL).

In the experiments an electron beam from a hot cathode induction linac
is used to drive a free electron laser. The beam is accelerated through a
potential difference of about 350 volts (y = 1.68) before impinging on the
anode of roughly 1 c¢cm in diameter and entering the drift tube. The linear
wiggler has a period of 3 cm and the guide field strength is 2.2 kOe, so that
the particles are ostensibly near the 2 =2 resonance harmonic. Measurements
indicate a spread in the initial perpendicular speed of v,/c ~ 0.08-0.24.
Fig. 6 shows the effective potentials 'V'(I) over a limited range of I for
the 2 =2 and 2 =1 resonances in the case of a particle whose y component of
guiding center coordinate is at 0.1 cm and for € =0.1. For the 2 =2 resonance
the initial value of the gyroradius is p=0.35 cm. For both resonances it is
seen that oscillatory motion about I =0 (corresponding to exact resonance) is
possible. Fig. 6(c) shows, very schematically, the "islands" surrounding each
resonance wherein a particle oscillates as its perpendicular and parallel
energies are interchanged due to a coupling resonance. Examination of Fig. 6(c)

evinces that for a particle initially locked in the % =2 resonance, the =1

., PR TSN o .
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N resonance induces a mild perturbation in its motion. A similar picture emerges
for the case where the initial gyroradius is somewhat smaller. For example,

for p=0.1 cm the width of the £ =2 island is about three times smaller than

.‘-‘-,-‘-l! -

that for p=0.35 cm, whereas the 2 =1 island is not modified to any great extent.
The case depicted in Fig. 7 (also for € = 0.1) corresponds to a guiding center
of 0.3 cm. Examination of Fig. 7(c) indicates that for a particle initially
locked in either of the resonances, the other resonance induces a strong per-
turbation in its motion, if not completely dislodging and causing it to wander
from one resonance to the other. According to the discussion preceding Eq. (12)
the example of Fig. 7 is roughly equivalent to the case for which Y=0.1 (as

. in Fig. 6) but with € =0.32, Figure 8 shows the effective potentials for a

. particle on the extreme edge of beam as it enters the wiggler and whose y

. component of the guiding center is at 0.5 cm. In this case the initial gyro-
radius is chosen to be p=0.1 cm, thus allowing passage of the particle through
the anode (whose diameter is roughly 1 cm). The relevant features to note in
Fig. 8(c) as compared to Figs. 6(c) and 7(c) are the increased width of the

2 =2 resonant island (due to its dpendence on sh kY) and the slight shrinkage

j of the 2 =1 resonant island (due to its dependence on kp). Overall, it is
manifest that resonance interaction (between the £ =1 and £ =2 harmonic, at
least) is much weaker than the earlier cases with the larger gyroradius. The
example in Fig. 8 is roughly equivalent to one with guiding center Y=0.3 cm
and €= 0.2

é Two remarks of relevance to all the cases just described are in order.

\ First, the £ =3 harmonic is expected to have a negligible influence on the

particle motion in this parameter regime since it is not an energetically

allowed resonance. Second, the location and the width of the £ =1 resonance
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3

;ii island in Figs. 6-8 is such that it is always intertwined with the % = 0 resonance,
ii‘ so that if a particle enters the g =1 resonance the influence of the 2 =0 harmonic
;EZ is likely to be significant.

;:: A quantity that should be quite relevant in an experiment whose aim is

3 to propagate a beam down a drift tube is the mean drift of the x component of

iﬁii the guiding center X, as given by Eq. (25), assuming that a particle remains

}? trapped in a single resonance while traversing the tube. If the length of the

- tube is L cm, X may be approximated by

':: , rel

; X=X - &; i%l(“z' f?'/z)ggk £

. 2

.}E whence X - Xo ~ -1.4 cm for the particle locked on the £ =2 resonance in Fig. 7(a)
Eﬁ and propagating through a tube of length 60 cm.

‘ One striking aspect of the free electron laser experiment at NRL8 is that

E;? as the wiggler field is increased, with ¢ taking on the values 0, 0.23, 0.34 and
:; 0.46, no significant reduction in the beam intensity, determined from the x-ray

~ exposures generated in a tantalum target, is detected as the beam propagates the
Eﬁ entire length of the device. This is in contrast to the results obtained by

,S; numerical simulations of the experiment.9 With the limitations imposed by the

f; perturbative analysis presented in this paper, it appears that, in the light of

f; the conclusions drawn from Figs. 6-8, a possible explanation of the experimental
if results is the following. Given the very narrow aperture of the anode the

E: particles with a small scatter in velocity (namely, small v,/c) tend to be locked
%% onto the £ =2 resonance throughout their passage through the wiggler and undergo
EE; very limited excursions in parallel velocity. Moreover, the quiding centers of
;: these particles follow trajectories whose y components are constant and whose

ia

-
N
.
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;i x components drift by small amounts through the tube. However, as indicated by
:; Fig. 7 there are some classes of particles--those with relatively large gyro-
13 radii and close to the edge of beam--whose motion may be quite eratic, wandering
;; . from one resonance to the next and transforming a substantial fraction of their

directed parallel energy into the perpendicular degree of freedom. The experi-

i mental observation may therefore be a reflection of the fact that the electron
- beams used in the NRL experiments are narrow enough and of sufficiently small
& emittance that the fraction of particles whose motion is Brownian is quite

i insignificant.
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VII. CONCLUSIONS

Starting with a Hamiltonian formulation of the dynamics of a single
particle traversing a drift tube under the combined influence of a linear
magnetic wiggler and an axial magnetic guide field, it is shown that the
all-important issues of nonlinear orbital stability, propagation and directed-
beam quality may be examined in a very simple manner by using effective-
potential theory. Within the regime of validity of this perturbation theory,
it is concluded that there is a limit on the strength of the wiggler field
above which the propagation of the beam is seriously hampered, leading to a
significant increase in its energy spread and an inevitable reduction in the
gain of the laser.

The efficacy of the Hamiltonian approach, applicable to wigglers of
arbitrary geometry, may be gleaned from the simple way in which a given set
of parameters may be appraised as regards orbital stability and beam quality,

and has therefore much to commend it to those who contemplate such experiments.
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APPENDIX: EFFECT OF HIGH-FREQUENCY TERMS ON THE MOTION CLOSE TO A RESONANCE
The effect of the non-resonant, high-frequency terms on the motion in
proximity of a single resonance may be determined by a standard ponderomotive-

10

potential analysis. Assuming that the first-order non-resonant terms in the

Hamiltonian induce small changes &y, 8P,» 86, and 6§z in the variables y, Py 8,

and z, perturbation of the expression for the Hamiltonian (5) yields

-2 2
=p, +2p,8p, + (8p,)" + 2mQy + 2m2 by

+ 4eai"+1[exp(igz) - (-1)2‘ exp(-igl)]Flcli + dead’ in+1[exp(i£n) - (-l)n\ exp(-i&n)]Fnz;i

, N+l . n . (1S r'1 .n+l . n .

+ dead’ i [exp(1gn) - (-1) exp(-Ign)]Fn—E—Gu+4eaZ' i [exp(lgn) +(-1) exp(-lgw

x F_glt(nge +ksz) + e al (22)ch2ky - (-1)252a121(25)ch2kY cos, , (A1)
whence

. 2 , s+l . n . . P, 2,
&H = -YE""’—‘Z i " [exp(ig, ) - (-1) exp(-1gn)]Fnz_;In + Y—mspz + 76;1 ,

wherein)' indicates that n=g is excluded. Using

. ac
8 = o o= 225 ™ exp(i,) - (-1)" exp(-ig T 5"

the lowest order solution for 88 is given by




. " -T;'_?:'_ .‘"'.‘. u".'I'__ { __‘&"\- w’ _'(\l‘;‘- A.V'{V'_’-'_?__ e __i'._'.?'_ '. ._T

2eq s . n . acI'n/E)u
s = < 2 i [exp(ig )+ (-1) exp(-1€n)]Fn (e ) + kv, ;

similar expressions may be obtained for &u, sz, and §z. These resulting
expressions are then substituted into Eq. (Al) and the slowly varying terms

retained, leading to the final expression for the Hamiltonian:

= p2 + amp + seai® fexp(it, ) - (-1)% exp(-iE,)]F, (KV)zL (x)

2
2 F
2 22 (dea)” n
+ e“al (2z)ch2kY - (-1)"e“al,, (2z)ch2kY cos2t, -
o 28, L ym % (m’207yf+ kv,

Fa(el)? 5,2 ()P F2

2
3 k- n 1y (dea) Y n
X n—————au -7 ym -(——-)———-mo/Y T kvz] +(-1) ym COSZEQIZn, (2% - n)QO/Y + kvz

-

x —2241' EEED-- na(zll cI' ) + EE t190-n%1n . K2 tlontln
2%-n  dp du > 2%-n n’ " ym (?l—n)no/y-*kvz 2ym (nQO/Y77+ka :

Using

2
Iﬁc%%L, ;> 0,

it is simple to check that none of the terms in the ponderomotive potential

leads to divergent behavior for the equations of motion as ¢z 0.
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Fig. 1

Helical trajectory of a particle in a magnetic field H_. Dashed
oval is the projection of the trajectory on z=0 plane, indicating

guiding center coordinates (X,Y), gyroradius p, and gyroangle 8.
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Fig. 3 Sketch used to prove that for J2 > HQ, J < 0 does not allow bounded

motion in the single resonance approximation.
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motion, corresponding to disappearance of roots (:) and (:), for
J> 0, HL < 0 (cf. Fig. 2(a)); €y > €y.
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Short-dash curves correspond to a stronger wiggler field than

Tong-dash curves.
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wiggler wavelength k! = 3 cm, y = 1.68, ¢ = 0.1,

y component of guiding center Y = 0.1 cm; initial
gyroradii are 0,35 cm and 0.95 cm, respectively.
Schematic of £ =1 and ¢ = 2 islands determined from
the effective potentials in (a) and (b)}. Ordinate is
(nno)-lkpz, abscissa is the resonance phase

El =98 +kz forg =1or 2.
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Fig. 7 Same as Fig. 6, except that y component of guiding center Y = 0.3 cm.
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Same as Fig. 6, except that y component of guiding center Y = 0.5 cm

and initial gyroradii are 0.1 (a) and 0.8 cm (b).
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