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SUMMARY

N\
) Current methodology for the analysis of categorical data can be traced to two papers

pudblished in 1900, one by Pearson and one by Yule. The keys to the linking of their ideas
have been the use of linear models and inferential tools due to Fisher. After 50 years of

research, statisticians have come close to developing a comprehensive approach to categorical

data problems that stresses three basic themes: inlerpretability. flexibility, and computability.

This paper surveys the evolution of this comprehensive approach and classes of problems for
which it has proven useful. A concluding section contains some speculation on unsolved

methodological problems of current interest and on future developments.

-

\
\

Key Words: Chi-square goodness-of-fit tests; Conditional independence; Cross—classifications;

Loglinear models; Interactions; Rectangular arrays.

v




AR At it it A g Padir i S aad - s o i e o |

1. Introduction

As recently as the late 1960's, the perception of most statistics students and users of statistical

methods was that the analysis of categorical data consisted primarily of topics such as 2X2

tables and Fisher's exact test, chi-square tests for goodness-of-fit, and examining the models of
independence or homogeneity of proportions in two-way contingency tables. The reality was
that by 1965 the statistical literature contained over 150 papers on methodology for contingency
table analysis including techniques for the analysis of multi-way tables using loglinear models
(e.g. see the partial bibliography in Kastenbaum, 1970, which goes up to 1965, and the -
subsequent bibliography through 1974 by Killion and Zahn, 1976). The intervening 15 years
have seen a dramatic change in both the perception and the reality. The development and
elaboration of the loglinear model approach to categorical data analysis has led to the
publication of at least a dozen books and monographs on the topic (for a partial list see
Fienberg, 1982a), and the basic ideas on the use of loglinear models for multi-wa‘y arrays now
appear in many textbooks on statistical methodology beside material on muiltiple regression and

ANOVA, whose linear heritage they share.

The key features of what is viewed by many as a comprehensive approach to the analysis of
categorical data can be traced back to two unrelated papers, both of which appeared in 1900.
In one of these papers. Pearson (1900) proposed the chi-square test for comparing observed
and expected frequencies, and derived its asymptotic X® distribution when the parameters
underlying the expected frequencies are known a priori (for further details and a discussion.
see Plackett, 1983). This result, as amplified by Fisher (1922) to adjust the degrees of freedom
(d.f.) for the estimation of parameters. forms the basis of the usual asymptotic theory used to
check on the goodness-of-fit of loglinear and other models. In the other paper, Yuie (1900)
described the structural relationship among categorical variables by means of functions of
cross-product or odds ratios. In particular he developed a general notation for 2" contingency
tables and the concepts of partial and joint association for dichotomous variables. Fisher

(1922) did pull these ideas together for IXJ contingency tables, showing that the chi~square test
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for independence had (I-1)J-1) d.f. This is roughly where the development of categorical data
analysis stood when Fisher first visited Iowa State Univeiity in the summer of 1931, just
before the founding of the Statistical Laboratory. (It was on this occasion that Fisher learned
that A.E. Brandt had developed a formula for computing the chi-square statistic in a special

case, and Fisher incorporated into one of his lectures at Ames (Box, 1978).)

Over the years, there has been considerable interest in the analysis of categorical data at Jowa
State University. Snedecor (1937) included material on it in the first edition of Statistical
Methods. and Cochran (1940, 1942) wrote on the topic during his ISU vears. Later editions of
Statistical Methods incorporated Bartlett's work on 2X2X2 tables although Snedecor's (1958)
paper incorrectly noted that Bartlett's test for no-second-order interaction and a test proposed
by Lancaster are "asymptotically equal.” Other ISU faculty and graduates who have made
methodological contributions to the topic include R.L. Anderson, K. Hinkelman,

O. Kempthorne, and K. Koehler.

The next section of this paper gives a brief historical review of the development of ideas on
loglinear models and their use in the analysis of categorical data over the past 50 years. Then
in Section 3, we describe the use of loglinear models for contingency tables, stressing alternate
representations of the models and their interpretations. In Section 4 we indicate how loglinear
models have been adapted to other forms of categorical data analyvsis, and the links between
these new methods and loglinear models for multi-way contingency tables that facilitate
computation of parameter estimation. We conclude the paper with some speculation on

unsolved methodological problems of current interest and on future developments.

No single approach can ever be expected to be the only sensible one for a broad class of
statistical problems such as those associated with the analysis of categorical data. Yet the
interpretability and flexibility »f the loglinear model approach and the computational methods

available for its application have moved us towards a comprehensive approach to the analysis

of categorical data.

B -5 R AN LA




S A4 2% S i) e T——ae P e P o
{.‘_- B R ST G Wi e P M Mt e ; AR AT S AN S L e e A At s it v v

2. A Brief Review of Loglinear Model Developments

The literature on the analysis of categorical data contains hundreds of papers authored by
many of statistics' most distinguished researchers. In this section, we trace a path through this
literature of the past S0 years that highlights the evolution of the loglinear model and its
application. This brief review ignores the contributions of a large number of individuals who
focussed primarily on other forms of models, methods of estimation other than maximum
likelihood, and issues such as the adequacy of large-sample properties of test statistics. For an
alternative review and a discussion of nonstandard applications see Imrey, Koch, Stokes, et al.

(1981, 1982).

Although Yule (1900) focussed on the cross-product ratio as a measure of association in 2X2
tables and developed ideas on association in 2" tables, 35 years passed before Bartlett (1935)
utilized Yule's ideas to define the concept of second-order interaction in 2X2X2 tables. For a

2X2 table with expected values {mu_}, Yule's cross-product ratio is:

e = L322 2.1

m
m 121 112 122

m
211 21 212 222

was based on equaling the values of < in each layer of the table, i.e.,

;

12

m m m m
e 221 = 112 222 (2'2)

m_m m_m
121211 122 212

Bartlett then went on to derive maximum likelihood estimates of the {m.,u} by solving a cubic

equation.

It was not for another 20 years that Roy and Kastenbaum (1956) were to generalize Bartlett's

approach to IXJXK tables. Their method, as described in Kastenbaum and Lamphiear (1959).

DRI % AP PR P, - § LN A
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computationally complex (involving an iterative solution of (I-1)(J-1(K-1) simultaneous third-
degree equations), and neither the model nor the method was easily generalized to higher
dimensions. Indeed, it was not until Birch (1963) converted Bartlett's and Roy and
Kastenbaum’s multiplicative definition of no-second-order interaction to an additive analysis-
of -variance-like model in the logarithmic scale that key features of the loglinear model
approach 0 multi-way tables emerged (see also the development in Good, 1963). Birch also
presented a simple yet elegant result that linked the basic sampling distributions for
contingency tables (Poisson and multinomial) and at the same time elucidated the relationship
between loglinear and logit models. What remained to be done before the approach could be
implemented in practice was to come up with a simple computational technique for solving the

likelihood equations.

The timing was propitious because iterative techniques that involved large numbers of
computations had recently become a reasonable way to solve maximization problems due to the
availability of high-speed computers. While working on the National Halothane Study in
1965-66, Bishop rediscovered an iteralive procedure proposed for a related cat'egorical data
problem by Deming and Stephan (1940).  Although others (e.g. see Darroch, 1962) had
proposed eguivalent iterative techniques for special cases, Bishop (1967) presented a relatively
general computer program implementing the Deming-Stephan algorithm and showed how it was
applicable for solving the likelihood equations associated with the class of loglinear models

described by Birch.

Many statisticians were now focussing on loglinear model methods, and adapting them for use
in connection with the analysis of incomplete contingency tables, Markov chains, and other

non-standard problems. Important advances were made by authors such as Bhapkar, Bock,

Darroch. Goodman, Haberman, Kullback. Plackett, and Nerlove and Press. One specific line of
work, initiated by Nelder and Wedderburn (1972). linked the analysis of categorical data using
loglinear and logit models to the analysis of measurement data linear models with normal

errors via what they called generalized linear models. As implemented in the computer
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package GLIM (Baker and Nelder, 1978), this approach provided additional stimulus for the use
of loglinear models and presented an alternative to the iterative proportional fitling technique

introduced by Bishop.

The research work of the 1960's treated the problems associated with categorical data analysis
using loglinear models as being separate from those involving other forms of linear models and
sampling distributions other than Poisson and multinomial. But as the work of Nelder and
Wedderburn showed, these separate streams of research could be linked. The key to the
linkage was the existence of general results on exponential families and their sufficient statistics
that originated in the 1930's with Fisher (e.g. see Dempster, 1971, and the discussion in
Andersen, 1980). From the perspective of exponential family theory the interpretation of
loglinear models was even closer to that of linear models than the parallel notation suggested.
In the next section, we describe some of the loglinear model results that are part of this more
general statistical theory, but we also stress special aspects of the interpretation of loglinear

models and a unique loglinear/multinomial result due to Birch.

3. Loglinear Models, Contingency Tables, and Likelihood Theory

A. Notation for the 2X2 table

It has been suggested, only partially in jest, that virtually all important statistical ideas can be
described and illustrated in the context of the 2X2 contingency table. While this is clearly not

the case, the 2X2 table provides a useful starting place for a discussion of loglinear models.

We begin by denoting the observed count for the (i,j) cell of a 2X2 contingency table by X
and the towals for the ith row and jth column by X, and X, respectively. The {x”} are;.
typically taken to be realizations of random variables whose expectations we denote by {mu_}.
These expected values can now be rewritten in loglinear model form using analysis of variance

(ANOVA) notation:

lo, =y +u +u_ .
g mu ul(l) 24y 12015) (3 1)

where




. Zu =Xu = :Zu = 2u = 0. (3.2)

IRRIL] ;2P 120 o 12Gj)

Although the model is in a general form to be applicable to IXJ tables, for 2X2 tables there

are only 4 distinct parameters: u, U u,m. and umm. The 3 subscripted parameters are
expressible as
mm
u =l log L322, (3.3)
1200 m m
1221
m m
u =% log 112 (3.4)
HY R m m
21 22
and
% mllm’l 3 )
u., = log -2t (3.5
1222

We note that u_  ~is simply a function of Yule's cross-product ratio, ¢ = mm_/mm,

an

and u ~and u -~ are functions of similar cross—-product ratios.

Setting u = 0 is equivalent to setting ¢ = 1 and corresponds to independence of the

12(11)
variable for rows and the variable for columns. Thus we have seen two special features of

loglinear models:

(i) all subscripted parameters are expressible as logarithms of cross-product ratios
or functions of them,

(ii) setting some loglinear model parameters equal to zero often leads to a model
which can be interpreted in terms of independence of variables underlying the
dimensions of the table.

These features, which are shared by loglinear models for IXJ and multi-way tables. mean that
loglinear models can be interpreted using both the ANOVA-like structure or generalizations of

cross—product ratios and independence concepts.

The use of ANOVA-like notation here is at least in part illusory, however. There is no
response variable on the left-hand side of equation (3.1), only a log-expected count. Thus the
u-term parameters really cannot be thought of as "effects” of one variable on another. This

form of ANOVA interpretation will prove useful only when we can convert a loglinear model
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into a logit model, as we illustrate in the next subsection.

B. Loglinear models for IXJXK tables

For a three-way table of counts, {xuk}. the general loglinear model for the corresponding

expected values, {muk}. can be written as:

logm =u+u + U +u +u_ +u +u +u o (36)
1k 1) 2y 3 1201 130k) 23(5k) 123Gjk)

where, as in the usual ANOVA model, all subscripted parameters sum to Zzero over each

subscript, e.g.

u =XZu  =ZXu__ =0 3.7)
vt o 124) 1 12365k

In the special case where 1 = J = K = 2, there are only 8 distinct parameters: u, u o

and u Each of the 7 subscripted parameters are expressible as

u u u , U .
3’ Tizan’ an’ T23any’ 1230111)

a function of the ratio of two cross—product ratios, e.g.

1 m m m m
u = _ log 22 12 222 ) (3.8)
123011 8 m m m m
121 2n 1227212
and
1 m m m m
u = _ log ( 11121 12 122\ 3.9)
13011) 8 m m m m
211 221 212 222

These expressions are standard ANOVA-like contrasts for the log-expected counts. In an IXJX
K table each subscripted u~term can be rewritten as a linear combination of the logarithm of
the ratio of cross-product ratios associated with the corresponding parameters for all possible

2X2x?2 subtables.

In the 2X2X2 table, setting u = 0 is equivalent to Bartlett’s condition for no-second-

123011

order interaction given in expression (2.2). In the IXJXK table, setting um“jk) = 0 for all i, j
and k is equivalent to Roy and Kastenbaum's generalization of Bartlett's condition. This is one
of four special cases of the general loglinear model, (3.6), found by setting sets of u-terms

equal to zero:

P PO AR AL
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@) ulZl(ijk) =0

Mu_=u_ =0, (3 versions)
1263 123G %)

€)u. =u_ =u__ =0, (3 versions)
12Gj) 13Gik) 1230igk?

(du = =y = =0
12Gi)) 130k) 23(ik) 1230k)

each for all i, j, and k. The other three special cases each can be re-expressed so that an
interpretation in terms of independence is possible. Model (d) corresponds to complete
independence among the variables for the three dimensions of the table. Model (c)
corresponds 1o independence of variable 1 and variables 2 and 3, considered jointly. Finally
Model (b) corresponds to conditional independence of variables 1 and 2 given the value of

variable 3.

Once again we get, in addition to the ANOVA structure, the two features of loglinear models

alluded to above:

(i) all subscripted parameters are expressible as logarithms of ratios of cross-
product ratios or functions of them,

(ii) several special cases of the general model are interpretable in terms of
independence or conditional independence.

To these features we can add a third when there is a distinction between explanatory and

response variables for the underlying dimensions.

Let us begin with the case of a 2xXJXK table in which the first variable is the response, and
the other iwo are explanatory. The odds of being in category 1 of the response variable
versus being in category 2, given the levels of the explanatory variables, are a natural quantity
of interest. The log-odds can be expressed in terms of the loglinear model parameters simply

by taking differences. i.e.

m
log <-—‘-l‘--) =logm - logm_
m 1k 25k
25k
=2 [u +u +u oy ]
11 12009 1301K) 12301 jk)
Relabelling the u-terms using a new set of parameters w = 2u w. = 2u w =

' ruajpt 3w

u w = . .
136k’ and 213000 2",23”,” we get the /ogit model
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m
log(—l-l"—-)=w+w,+w ‘W, (3.10)
m 2(j) 3(k) 23(jk)
2jk
where
Sw_=JYw = F¥Iw_  =3XIw__ =(. (3.11)
J 20j) k k113 3 234k k 23Gk)

The ANOVA-like parameters in this logit model are interpretable in terms of the "effects” of
the explanatory variables on the log-odds of the response.  For example, wnw is the
interactive effect of variables 2 and 3 on the log-odds when variable 2 is at level j and
variable 3 is at level k over and above the separate effects for variabl- ! and 3. Note that
none of the u-terms in the loglinear model involving only the explanato .zriables are present

in the logit version of the model.

For an IXJXK 1table in which the first variable is the response, the loglinear model of

expression (3.6) can be rewritten as a set of I-1 logit models for the log-odds,

m

log (__w_) i=1 2 .. 11,

mljk
with each logit model being of the form of expressions (3.10) and (3.11). If we use a
transformation other than logarithmic for the odds in (3.12), then we get other members of
Nelder and Wedderburn’s GLIM family. For example, the probit or integrated normal scale is

-\
Q [mljk/(muk * mijk)]

where ¢7'(") is the inverse of the cumulative normal c.d.f. Among the members of the GLIM
family, only the logit (or loglinear) model includes as special cases the models that are
interpretable in terms of independence and conditional independence of the underlving

variables.

Even in the absence of the statistical estimation results in the following subsection, the
interpretability of loglinear models makes them an ideal candidate for the basis of a

comprehensive approach to the analysis of categorical data.

C. Key results from likelihood theory

There are three standard sampling models for the observed counts in contingency tables. We

SRttt i S S g EIAACHAS T T v v
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N begin by describing them for a singly subscripted vector of t cells, x = (xl. xz', xl). This
{. notation for an arbitrarily-structured collection of t cells will prove to be of greal use in the
non-contingency-table problems described in the next section of the paper. For the 2X2 table
-. .. t = 4, and for the general three-way table t = [JK. Now let m' = (ml. m, .. ml) be the
» vector of expected values that are assumed to be functions of unknown parameters §' = (0,.
82, 95), where s < t. Thus we can write m = m(#). The three sampling models are:

v POISSON MODEL. The {x} are observations from independent Poisson random

variables with means {m } and likelihood function

L xl

"... [ml exp(-ml)/xl!]. (3.12)
MULTINOMIAL MODEL. The total count N = Z:_l X is a random sample from an
infinite population where the underlying cell probabilities are {m /N}, and the

likelihood is

- NENT I (m '/x. (3.13)
PRODUCT-MULTINOMIAL MODEL. The cells are partitioned intv sets, and each

set has an independent muitinomial structure. as in the multinomial model.

Loglinear models in this setting come about by representing the vector of log expectations

N
»

- ‘v l“. ‘- 'l'
R R

2T = (log m. .. log ml) as a linear combination of this parameter in the vector §. The
. following pair of results now follow directly :.om exponential family theory for the Poisson

and multinomial sampling schemes.

RESULT 1. Corresponding to each parameter in £ is a minimal sufficient statistics
(MSS) that is expressible as a lincar combination of the {xl}. {(More formally. if M
is used to denote the loglinear model specified by m = m(4), then the MSS's are
given by the projection of x onto M, PMx.

RESULT 2. The maximum likelihood estimate (MLE), m. of m, if it exists, is

IR S - -~ S .
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unique and satisfies the likelihood equations

Pan= Pyx- (3.14)

Necessary and sufficient conditions for the existence of a solution to the likelihood equations
of expression (3.14) are given in Haberman (1974), and for various special cases by a variety of
authors.  Nonexistence occurs when the likelihood is maximized on the boundary of the
parameter space, and this corresponds to some fr1|‘s being equal to zero. Although deriving
constructive conditions for the existence of MLE's has been viewed by many as an esoteric
research problem, in fact it is a critical component to computational methods for solving the
likelihood equations and is of great practical import for those who wish to analyze large sparse

contingency lables.

We now come to the third key result, which was first given by Birch (1963) and which
unifies the three sampling schemes and links the MLE's for loglinear and logit models. For
product-multinomial sampling situations, the basic multinomial constraints (i.e.. that the counts
must add up to -the multinomial sample sizes) must be taken into account. One way 1o think
about this in the context of loglinear models is to recall that. from Result 1, these sample
sizes are marginal totals, which under a simple multinomial or Poisson model are MSS's
corresponding to some of the parameters in # specifying the loglinear model M, i.e., m = m(4)
are fixed by these constraints. What we do is consider a logit model, M', where these

components of # "drop out.”

More formally. let M* be a logit model for m under product-multinomial sampling which
corresponds to a Jloglinear model M under Poisson sampling such that the multinomial

constraints "fix" a subset of the parameters. #, used to specify M. Then Birch's result is:

RESULT 3. The MLE of m under product-muitinomial sampling for the model M’

is the same as the MLE of m under Poisson sampling for the model M

This result is directly related to a more general theorem from exponential family theory

ER t - . N " [P te s
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which states that, if we have an exponential family density in minimal form with MSS's hl. h:‘
h!. then the conditional density for hl. hz, hk given hw, hm. hs has the same
exponential family form. Moreover, the exponential family parameters for this conditional
density are the ones from the original density for which h:’ h:‘ hk are MSS’s, and h,. h:‘
hk are the corresponding MSS's in the conditional density (see Andersen, 1980, pp.82-83 for
a formal statement and proof). What is so special about Result 3, the loglinear/multinomial
version of this theorem especially in the context of contingency tables, is that the MSS's, PMx.
are marginal totals for the original vector, X, and thus the conditional density has the
minimal form for the conditional distribution of the response variables given a set of
explanatory variables, i.e. given the cross-classification of which is fixed by the product
multinomial sampling scheme. This unique feature of loglinear models and their associated
sampling schemes distinguishes them from other forms of linear models. For example, in
standard linear model theory with normal error terms one cannot change one set of linear
model results into another by conditioning on marginal totals unless one is working with a

completely balanced factorial design.

To illustrate these ideas we return to the 2X2X2 table, and the no second-order interaction

model with um(u_k) =0 for i, j, k = 1, 2. For the Poisson or multinomial sampling schemes.

the MSS's of Result 1 are the two-dimensional marginal totals, {xJ b {x ‘}. and {x k}
[F2d [hd *)

(except for linearly redundant statistics inciuded for purposes of symmetry). Using Result 2,

we have that the MLE's of the {muk}. if they exist, must satisfy the likelihood equations.

-~

m =x . ij = 12,

1+ 1)+
m =x , ik = 1,2, (3.15)
1+k 14k

b = X ik =12

If the second and third dimensions correspond to explanatory variables with {x ‘} fixed by
"

design, then we have a product multinomial sampling scheme and the relevant logit model sets

wuw =0 for j =12 and k = 1.2. The MSS's are now {x”’} and {x”k} and the likelihood

equations are still given by (3.15), since the third set of equations simply represent the
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sampling constraints.

D. Computing MLE’s for multi-way tables

As we mentioned in Section 2, for many of the special versions of loglinear models such as
no-second-order interaction in three-way tables, we need to solve the likelihood equations in
expression (3.14) using some type of iterative procedure. The two main competitors are the
Iterative Proportional Fitting Procedure (IPFP, e.g. see Bishop, Fienberg, and Holiand. 1975),
which has linear convergence properties, and Newton's method (or related quadratic convergence
algorithms such as the one used in the GLIM package). For a discussion of advantages and
disadvantages of each of these methods, and the possibility of using hybrid algorithms, see

Fienberg and Meyer (1983).

The IPFP algorithm as implemented in the BMDP package uses a parametrization for
loglinear and logit models different from the parametrization in the version of Newlon's
method used by the GLIM package. Both packages will, however, produce the same estimated
expected values satisfying the likelihood equations. What is needed bnth here, and in the
context of linear models more generally, is flexible software that can convert from one
parametrization to the other with minimal effort on the part of the user. The technology for
doing this already exists. What we need to do as statisticians is remember that the form of
parametrization or the choice of a basis for interpreting linear models need not necessarily be
the same as the parametrization or basis actually used for doing the computation. All too

often we let interpretation drive computation or vice versa. This need not happen.

4. Flexibility of the Loglinear Model Approach

The likelihood results of Section 3C are quite general and apply to large numbers of
categorical data problems other than those where the parameters in the model are directly
associated with the dimensions of a complete multi-way contingency table. Before the general
results had been derived, statisticians had often approached each special problem as a separate

enterprise, sometimes using loglinear models and someuimes not. For example. the entire

R R P N N N, P S




.
k

T_'.' AR L
g c -
o=

b -

A R A P R T A i i il e D Sl N =i ry —

15

literature on paired~comparisons (David, 1963), and the Bradley-Terry model (Bradley and
Terry, 1952) and its generalizations in particular, was developed without reference to loglinear
or logit models per se. Cox (1970) took special note of the logistic form of the Bradley-Terry
model in his book on the analysis of binary data, and formal links to the loglinear model
theory and literature appeared in Imrey, Johnson, and Koch (1976), Fienberg and Larntz (1976),
and Fienberg (1979). Other examples of where categorical data problems have been
restructured and analyzed directly using loglinear model techniques include capture-recapture
analysis (Fienberg. 1972). latent siructure analysis (Goodman, 1974), Guttman scaling (Goodman,

1975). and Milgram's small world problem (Fienberg and Lee, 1975).

Three other topics that have recently been linked to the loglinear model literature are (a) the
analysis of censored survival daia, (b) the analysis of social anu other network data, and (c)
the analysis of survey and intelligence test data using the Rasch model. We discuss each in

turn, and provide some relevant references.

For the analysis of survival data interest often focuses on the form of the hazard function
hitx) = f(dx)/11 - Feo) (@.1)

where f(tlx) and F(llx) are the pdf and cdf at time t given x, an associated set of fixed

covariates. Cox (1972) introduced a proportional hazards model of the form

hidx) = n (0 - & F 4.2)
and iauch of the discussion by Cox and others (such as Bresiow in the formal discussion
following Cox's paper) made reference to the links between the analysis of expression (4.2) and
the categorical data literature (e.g. through Mantel-Haenszel tests). A more formal linkage is
possible especially in the case where the covariates. x, are categorical and the underlying
hazard function, ho(t). is piecewise constant (see Holford 1976, 1980). In this case not only is
the hazard function loglinear, but so is the likelihood' after using a transformation to an

"equivalent” Poisson sampling model based on an extension of Birch's (1963) result (Laird and

Actually 1t 18 an alfine tranclabion of a loghincar model kel thood
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Oliver, 1981). The latier authors then show how to estimate £ in this special case of Cox’s

Ay

model using IPFP. Related results have been alluded to somewhat less directly by Aitkin and
Clayton (1980) and Whitehead (1980) who explain how to use GLIM to estimate censored

survival data. An important feature of this result is the ease with which it generalizes to

PN S B A e B0 A0 oo
oot T

other related survival problems such as those involving competing risks.

A directed graph consists of a2 set of g nodes. and a collection of directed arcs connecting
pairs of nodes. Such graphs have been used to depict social networks describing relationships
between pairs of individual actors. Let y be a sociomatrix or adjacency matrix with
elements

1 if a directed arc goes from i to j
; 0 otherwise, (4.3)
where by convention, the diagonal terms y, = 0. Holland and Leinhardt (1981) note that for
any pair or dyad in a network, with adjacency matrix y,
vy, * yu(l—yp) + (l-yu) y, * -y )a-y ) = 1. (4.4)
for i = j. and that exactly one of the terms on the left hand side of (4.9) is 1 and the
remaining three are 0. They then suggest the following model to describe these outcomes

(using Y as the matrix of random variables of which the adjacency matrix y is a realization):

log Pr[(l-YU)(l-YJ') =1] = xu
log Pr[‘(l-YU)YP =1] = xu + a + ﬂ. + 8 (4.9)
log PrIY (1-Y ) =11 =X +a + g + 46
log Pr(YUY." =11 = XU te +ta A+ ﬂj + 260+ p,

where the {)\ } are "dyadic" effects included here (but only implicitly in Holland and
1} :

Leinhardt) to assure that the multinomial constraint (4.4) is satisfied. and where

¥ o =X 4 =0. (4.6)

If we assume that the dyads are independent, then we have a product-multinomial sampling

model with one observation per multinomial. Holland and Leinhardt make direct use of
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exponential family theory results on maximum likelihood estimation to estimate the parameters

in (4.5). Fienberg and Wasserman (1981a, 1981b) note, however, that there is a link between

0~ EREMEID -4 o
B e e e .

their model and a loglinear model for a multi-dimensional table representation of the

B

AL
P

probabilities in (4.5). In particular, they work with the four~dimensional array:

=YY
0t 1y g
= Y (1-Y) (4.7)
1io 1) »
X = (1-Y )Y
1001 1) n
X = (1-Y)1-Y).
1)00 1) »

Note that X”_ks = XwL ., because the dyad (i,j) is the same as the dyad (j.i). By using this
redundant representation, we get a contingency table analogue to the Holland-Leinhardt model.
In particular, Meyer (1982) shows that fitting their model via maximum likelihood t0 y = {yu}
is equivalent to fitting a loglinear model 10 the newly created redundant array {xw}. i.e. the

model of no-second-order interaction.

What is especially attractive about the multi-dimensional contingency table representation of
the social network data problem as outlined here is that it generalizes 1o extensions of the
Holland/Leinhardt model (Fienberg and Wasserman, 1981a, 1981b) and it carries over to
networks involving multiple relationships.  For further details, see Fienberg, Meyer. and

Wasserman (1981, 1983).

The final topic of this section also begins with one categorical data representation and ends
up with a different but familiar loglinear representation for a multiway table. The results of
ability tests are often structured in the form of sequences of 1's for correct answers and 0's

for incorrect answers. For a test with k problems or items administered 1o n individuals, we

let

1 if individual i answers ilem j correctly
Y‘ = (4.8)
! 0  otherwise. '

Thus we have a two-way table of random variables {YJ} with realizations {y }. An (
t 3}
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alternative representation of the data is in the form of a nx2* table {W,, , ,} where the
1727 %
subscript i still indexes individuals and now jl,j* ..... jk refer to the correctness of the responses

on items 1,2.....k, respectively, i.e.

i if i responds (jl,j,....jk)
w = - 4.9

My 0 otherwise.

The Rasch mode! (Rasch, 1960 as reprinted in 1980) for the {YU} is

log — 44— = , 4.10

o8 P(Y =0) vty (4.10
where

Iy =2Zv =0. (4.11)

Expression (4.10) is a /ogit model in the usual contingency table sense for a 3-dimensional
array whose first layer is {y } and whose marginal totals adding across layers is an nXk table
¥

of 1's.

Maximum likelihood estimation for the parameters of the Rasch model (4.10) has been the
focus of several authors including Rasch and Andersen. Unconditional maximum likelihood
(UML) estimates can be derived but they have rather problematic asymptotic properties. e.g.
the estimates are inconsistent as n ~» oo and k remains moderate, although they are consistent
when both n and kX » oo (Haberman, 1977). Fischer (1981) provided an interesting link to the

loglinear mode] literature by approach UML estimation via the embedding of the matrix y =

{yu_} into a larger (n+k)X(n+k) matrix of the form:

A=1{al}l= (4.12)

where e is an nXk matrix of 1's. Then he notes that the Rasch model of (4.10) is

transformed into an incomplete version of the Bradley-Terry model discussed at the beginning

of this section.
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Now.‘ we turn to a conditional approach to likelihood estimation (CML) advocated initially by
Rasch. who noted that the conditional distribution of Y given the individual marginal totals
{y“ = yl.} depends only on the item parameters, {v]}. Then each of the row sums {y“} can
take only k+1 distinct values corresponds to the number of correct responses. Next, we recall
the alternate representation of the data in the form of an nx2* array, {W }. as given by

'!llz lk
expression (4.9). Adding across individuals we creale a 2 contingency table, X, with entries

X =W . (4.13)

Duncan (1983) and Tjur (1982) independently noted that we can estimate the item parameters

for the Rasch model of (4.10) using the 2" array x. and the loglinear model

logmJ =“’+Zk1'§,v Yoy, (4.19)
J L <

+

EE TR A
1if j\ = 1 and is 0 otherwise, and

where the subscript j = )'.f_lj. 6J

.y =0. (4.15)

p=0’p .
The amazing result. due 1o Tjur (1982), is that maximum likelihood estimation of the 2*
contingency table of expected values, m = {m , } using a Poisson sampling scheme and the
loglinear model (4.10), produces the conditional maximum likelihood estimates of {v)} for the
original Rasch model. Tjur proves this equivalence by (1) assuming that the individual
parameters are independent identically distributed random variables from some completely
unknown distribution, #; (2) integrating the conditional distribution of Y given {Y|‘=y.} over

the mixing distribution, #; (3) embedding this "random effects” model in an "extended random

model”; and (4) noting that the likelihood for the extended model is equivalent to that for
(4.10) applied to x (using Result 3 of Section 3 above). Fienberg (1981) then noted that the
model of (4.14) is the model of quasi-symmetry preserving one-dimensional marginal totals.

!! first proposed by Bishop. Fienberg, and Holland (1975, Chapter 8).

Cressie and Holland (1983) have independently developed an approach to the Rasch model
similar to Tjur’'s and Duncan’s, and they note other interesting linkages to other aspects of

latent trait models.
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- §. Speculation on Future Developments

F The early parts of this paper represent a look backwards upon the development of the
f methodology for the loglinear model analysis of categorical data. Section 4 is a brief
::' examination of the recent past and the present, stressing how researchers have been effectively

adapting the loglinear model approach to new non-standard categorical data problems. In
keeping with the spirit of the Conference, I have been allowed, indeed encouraged, to end with

some speculation on where we go from here.

The easy part of speculating on the future is to prepare a list of work now underway or
work that may begin quite soon:

(a) Ordinal Variables. Many papers have been written in recent years extending the
comprehensive loglinear approach to problems involving ordinal variables (e.g. Agresti,
1982, or Fienberg, 1982b). A subtle probiem described in passing in these papers is
the use of monotonicity constraints on loglinear parameters to reflect the ordinal
structure. There is also a dual problem involving monotonicity constraints on
marginal totals. The computation of MLE's for such models requires attention as
does the issue of assessing goodness—of-fit.

(b) Two Problems in the Analysis of Network Data. A problem we skimmed by in
Section 4 is the lack of relevance of standard asymptoiic theory for the loglinear
model for network data. The 4-way array used above is of size 432, with a total
count of 2g(g-1). while the Holland-Leinhardt model has 2g parameters. Haberman
(1981) gives some relevant asymptotics for this problem, but more attention is
required before the distribution of goodness-of-fit statistics is in hand. A second
vexing problem for network data is the assumption of dvadic independence. What is
needed is the formulation of a less restrictive model allowing for dyadic dependence,
which includes the Holland-Leinhardt model as a special case.

(c) Logistic Regression Disgnostics. The logistic regression model is a simple

1 extension of the logit model of Section 3 where the explanatory variables are

. -
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continuous rather than categorical (see Fienberg, 1980, Chapter 6). One way to view
such models is as corresponding 10 very sparse cross—classifications, and thus it comes
as no surprise that the usual asymptotic theory for overall goodness-of-fit statistics is
inapplicable. = Landwehr, Pregibon, and Shoemaker (1983) give some interesting
graphical devices for logistic regression diagnostics to help with assessing goodness—of-
fit. More attention to this problem is needed.

(d) Computation. Although computer programs for fitting loglinear and logit models
are now widely available, many of the more interesting applications involve very
large, sparse arrays that do not fit easily into core in most modern computers. Two

directions of research on computations for categorical data will include (1) the

development of programs for personal computers that make effective use of disk and
auxiliary storage space, and (2) the development of programs for array processors that
make effective use of parallel algorithms.

(e) Bayesian Approaches. Many papers have been written on Bayesian approaches to
the analysis of categorical data using loglinear and logit models. No one has yet to
describe an easily implementable Bayesian approach for large multi-way tables.

(f) Applications. To date the applications of the loglinear model methodology have
occurred primarily in the biological, medical, and social sciences. [ believe we can ‘
look forward to new applications in agriculture and in industrial settings. In

particular, 1 foresee the use of loglinear model methodology in the development of

multivariate quality control techniques.

It is more difficult to look further ahead into the future. Now that we have reached the
stage where we have developed a comprehensive approach to categorical data analysis. that
parallels the linear model theory for measurement data, I believe we need to step back. As
useful as the loglinear model approach has proved to be, it is all 0o easy to misinterpret
loglinear model parameters by imparting inappropriate causal interpretations. [ see little hope
for a "grand unified theory"” applicable to all problems in all settings. The key to

understanding longitudinal processes, for example, is the development of formal stochastic
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models and their application to observed data. When the data are categorical and are
measured at several fixed points in time the issue should be: how well does the underlying
stochastic model fit. Instead we tend to fit loglinear or other off-the-shelf models to the
resulting cross—classifications, and then to make loose interpretations about the "ideas™ in the
stochastic model. More careful attention to such problems {e.g. see Cohen and Singer, 1979,
Singer and Cohen, 1980, and Singer, 1981) may bear far more interesting resuits, and will
certainly generate difficult statistical problems in need of solution. Thus, for me. the most
promising direction for statistical research on categorical data analysis is away from the

comprehensive approach described in this paber.
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