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1. INTRODUCTION

'-" In the applied forecasting literature much attention has been lavished on questions about the

evaluation of probability forecasts, and the subjectivist view of probability has been invoked to

aggregate probability forecasts over a diverse set of events or statements. (e.g. see Fischhoff and

McGregor. 1982). One critcrion in'oked in such evaluations is that of calibration: a set of

statements or events is considered and we ask if x percent of those assigned probability x of

being correct prove to be correct, for each value of x. From this perspective, weather

forccasters generally have been found to perform well (Murphy and Winkler, 1974. 19"77).

What is especially helpful in the evaluation of such probability forecasters is that they make

forecasts about a long sequence of events (e.g. rain on a given day), and thus it makes sense

to think about probability functions associated with the forecasts. In this paper we focus on a

criterion for comparing forecasters, refinement, which goes beyond that of calibration , (see the

related discussion in Winkler, 1982).

The formal setting we consider is the same as that presented in DeGroot and Fienberg (1982.

1983). Consider two forecasters who at the beginning of each period n in a sequential process

(n = 1.2....) must independently specify their subjective probabilities that a particular event A

will occur during the period. Assume that each forecaster in specifying the probability of A

is aware of the values of various variables that are potentially relevant to the occurrence of

A . including which of the previous events A. A ...., A have actually occurred. We wishn l 2i-I

to compare the two forecasters on the basis of their subjective probabilities of the events A,

AI .... A and the subsequent observation of exactly which of those events occurred, for large

values of n.

It is possible to think of our forecasters as economists who at the beginning of each period

must specify their probabilities that the value of a particular commodity will rise during the

period, or as medical diagnosticians who specify their probabilities that a patient has a

particular disorder (e.g. see Habbema, Hilden, and Bjcrregaard. 1978. and Hilden. Habbema and

Bjerregaard. 1978a. 1978b). As in DeGroot and Fienberg (1982. 1983), however, we present the
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basic results of the first four sections of this paper in the context of two weather forecasters.

Day after day, they must specify their subjective probabilities, x and y, that there will be at

least a certain amount of rain at some given location during a specified time period in the

day, and we refer to the occurrence of this well-specified event as "rain." We make the

assumption that x and y are restricted to a given finite set of values 0 = x < x < ... < x

1. and we let X denote the set {x x, x .... x.

In Section 2. we present the basic notation and formal definitions of the concepts of

calibration and refinement. Then we go on to describe the relationship between these

concepts and the classical concept of sufficiency, and we summarize various results on when

one well-calibrated forecaster is at least as refined as another given in DeGroot and Fienberg

(1982, 1983) and DeGroot and Eriksson (1983). In Section 3. we present two concepts

introduced by Vardeman and Meedan (1983), semi-calibration and rain (or dry) -domination.

which impose different restrictions on the probability distributions of the forecasters than do

calibration and sufficiency or refinement, and we discuss how these different concepts are

related.

In Section 4. we introduce the notion of strictly proper scoring rules and describe their use

in comparing forecasters. We give a proof of a basic partitioning result for strictly proper

scoring rules, described earlier in DeGroot and Fienberg (1983). We also give a result on the

relationship between Schur-convex measures of the quality of forecasters and strictly proper

scoring rules presented in DeGroot and Eriksson (1983).

In Section 5. we turn to the multivariate or vector-probability forecasting situation in which

the events of interest have three or more possible outcomes. For example. in the weather

context the event may be tomorrow's maximum temperature and the possible outcomes may be

grouped into 5*C intervals. The forecasters are required to announce their subjective V

probabilities associated with each of the s > 3 possible outcomes.

. ... -. ...
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2. CALIBRATION AND REFINEMENT

We begin by considering two forecasters. A and B. and we define the joint probability

function. g(x.y.0). for the random variables associated with the ith event E in a sequence

where x and y are forecaster A's and B's subjective probabilities of rain, respectively, and 0 =

1 if the outcome is rain or 0 = 0 otherwise. The overall performance of forecaster A can be

characterized by two functions defined on X:

(i) the probability function

(x) = + :g(x.y. 0)
'A - x

which gives the probabilities or relative frequencies with which forecaster A makes

each possible prediction x,

(ii) the conditional probability function

A = )X g(x'y.)/vA(x)

which give the conditional probability or relative frequency of rain given forecaster

A's specific prediction x.

The functions r (x) and pB(x) for forecaster B can be defined similarly. Finally the long run

frequency of rain is

x = X Y,X g(x~y,).

A forecaster is said to be well-calibrated if p(x) = x for all x + X such that v(x) # 0.

Thus a forecaster is well-calibrated if the forecaster's predictions can be accepted at face

value, i.e. given that the forecaster predicts x, the conditional probability of rain is x. DeGroot

and Eriksson (1983) give three different interpretations for the quantities v(x) and p(x), based

on (i) limiting or theoretical values for an infinite sequence of days, (ii) the actual relative

frequencies for a finite sequence of n days, and (iii) subjective probabilities of an observer

who is comparing the forecasters. We proceed using interpretation (iii), although we sometimes

use language that is associated with (i).



4

For various reasons, being well-calibrated is usually regarded as a desirable characteristic of a

forecaster. For example. Pratt (1962) and Dawid (1982) show that a probability forecaster who

is coherent in the sense of de Finetti (1937) must be calibrated almost surely. However. as

Murphy and Winkler (1977). Dawid (1982), and DeGroot and Fienberg (1983) note, even if a

forczaster is %%cll-calibratcd his predictions are not necessarily accurate in all respects nor are

they necessarily of much use to anyone. For example, the forecaster whose prediction on each

day is p is well-calibrated but clearly useless as a forecaster once we know y.

Consider two well-calibrated forecasters A and B whose predictions are characterized by their

probability functions v and , B In DeGroot and Fienberg (1982. 1983). we introduce a

concept of refinement which induces a partial ordering on the class of all well-calibrated

forecasters. This concept is defined as follows:

A stochastic transformation h(y x) is a non-negative function defined on XXX such that

x h(y x) = 1 for every xfX. (2.1)

Forecaster A is said to be at least as refined as forecaster B if there exists a stochastic

transformation h(ylIx) such that

Ix h(ylx)) (x) = B (y) for yf X. (2.2)

Ix h(yyx)xv (x) = yv (y) for yfX. (2.3)

Following DeGroot and Eriksson (1983) we denote this relationship by the symbols A _.B. The

stochastic transformation here plays the role of an auxiliary randomization which we could use

to generate predictions with distribution v B(y) from A's predictions, as in (2.2). Equation (2.3)

is required in the definition to ensure that the predictions generated by this process are well-

calibrated.

If A ._...B and the probability functions r and ), are not identically equal. then A is said

to be more refined than B. We denote this relationship by the symbols A B.

The relationship A L B is both reflexive and transitive, and induces a partial ordering (but

Lt



not a total ordering) among well-calibrated forecasters. In these terms, the forecaster who

makes the same prediction p each day is least-refined in the sense that any other well-

calibrated forecaster is at least as refined as he is. It is possible that p is not one of the

allowable predictions x. x ..... x . In that case, there is a value of i (i = 0.1 ..... k-i) such

that x < p < x . and DcGroot and Ficnbcrg (19S2) show that a forecaster who uses on!% the

values x and x as his predictions in such a way that he is well calibrated will now be least-

refined. At the other extreme. the forecaster whose prediction each day is either x = 0 or x

= 1 and who is always correct is most-refined in the sense that he is more refined than an3

oher well-calibrated forecaster.

For any well-calibrated forecaster it must be true that

x ,(x) = . (2.4)

Since every distribution with mean p can be thought of as the v(x) of some well-calibrated

forecaster, the comparison of well-calibrated forecasters using the relationship. _is equivalent to

the problem of the comparison of all distributions on X with a given mean p.

The left-hand side of expression (2.3) resembles the form of a conditional expectation. This

observation leads to the following result:

Theorem 1 (DeGroot and Eriksson, 1983): The relationship A B is satisfied if and

only if there exist discrete random variables X and Y such that the marginal

probability distribution of X is ,, the marginal probability distribution of Y is 1,A B

and E(XIY) = Y.

We temporarily step back and consider the comparison of two arbitrary forecasters A and B.

who are not necessarily well calibrated. For any given forecaster, let f(x 16) denote the

conditional probability function of the forecaster's predictions given 9. Thus. f(x 1) can be

regarded as the frequency function of the forecaster's predictions on days when rain actually

occ.rs, and f(x 0) as the frequency function on days when rain does not occur. It follows

that for xX.
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f(x 1 ) = p(X)v(X)/ (2.5)

f(x(O) = "I - p(x)) (x)/(1 - . (2.6)

Thus we can also use the probability function fNx 1) for 6 1 and 0 = 0 to characterize a

forecaster's predictions. Let forecasters A and B have conditional probabilitY functions f (x 9)

and f (% It). Follov.'ng Black',Cl's (1951. 1952) work on the cornpaison of e\pcrlnicnts we

say that A is sufficient for B if there exists a stochastic transformation h(y x) such that

,:x h(y x) f.(x 1) = fB0 16) for yX and 0 = 0.1 . (2.7)

Using the relationships (2.5) and (2.6) we can now prove

Theorem 2 (DeGroot and Fienberg, 1982): Consider two forecasters A and B whose

predictions are characterized by A(x), pA(x). .8(x). and p B(x). Then A is sufficient

for B if and only if there exists a stochastic transformation h such that

dx h(y x),. (x) = ,,(y) for y, X. (2.8)and €f

I h(y x) p )I (x) P (y) v (y) for ytX. (2.9)

Now if we again restrict attention to well calibrated forecasters we get the following corollary:

Corollary 1: Consider two well-calibrated forecasters A and B. Then A . B if and

only if A is sufficient for B.

Thus we can use results from the comparison of experiments to compare two well-calibrated

probability forecasters A and B. For any well-calibrated forecaster, let F denote the

distribution function corresponding to the probability function v. i.e.

F(t) ,W(x) for 0 t S-1 . (2.10)
{x:x X.xt}

Theorem 3 (DeGroot and Eriksson. 1983): The relationship A L B is satisfied if and

only if

S, F (t)dt > , FB(t)dt for all 0 -< s - 1 . (2.11)

The relationship (2.11) is one of several equivalent definitions of second-degree stochastic

-~ ~ ..---. i
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dominance (e.g. see Fishburn and Vickson, 1978), and we see that it is equivalent to the

relationship A - B. This leads to yet another equivalence:

Theorem 4 (Hardy, Littlewood, and Polya. 1919. 1934): The relationship A B is

satisfied if and only if. for every continuous, convex function c defined on the

unit interval.

X Cx) lX) A 1 c(x) M x) . (2.12)

Finally, there is a simplification of the second-order stochastic dominance relationship that

can be expressed only in terms of the probability functions ,. and v..

Theorem 5 (DeGroot and Fienberg, 1982): The relationship A B is satisfied if and

only if

1- (x-x){v (X)-v (x)) >0 for j = 1 ... k-i. (2.13)
-0 j I A i B

If at least one inequality in (2.13) is strict, then A " B.

By a direct application of this theorem, we can gain insight into the refinement relationship

through the following Corollary:

Corollary 2: Suppose A and B are well calibrated forecasters such that

N - (x) i = 1 .... k-1 (2.14)B A I

and s (x = v B(x) = 0. Then A." B. If one of the inequalities in (2.14) is strict.

then A B.

Thus we see that. in a rough sense. A is more refined than B if A spreads his probabilities

into the extremes (in this case to 0 to 1) more than B.

As we have seen from (3.5). in order to determine whether A is sufficient for B. we need

only know the marginal probability functions fA(x 0) and fB(x 10) of A and B separately.

However, in order to determine whether forecaster A is sufficient for both himself and

-=



forecaster B together, we must know the joint probability function ,(xy) = g(x.y.1) + g(x.y.0)

of the predictions x and y of A and B. as well as the conditional probability of rain given the

two predictions x and y:

p(x,y) = g(x.y.1) / v(x.y) . (2.15)

Then we can use the following result:

Theorem 6 (DeGroot and Fienberg. 1983): Forecaster A is sufficient for the pair of

forecasters (A.B) if and only if

t,(\.y) = /, (x) for xtX and ytX (2.16)

If follows that. if A sufficient for (.,.B). then A is sufficient for B. The converse. however. is

not necessarily true.

Suppose now that neither A nor B is sufficient for the othcr. It becomes natural to ask if

we can do better than A or B by using only their predictions. One way to try to do this is

to choose A's prediction with probability a and B's with probability -a. This results in a

"new forecaster" whom we label as M(a). If both A and B are well-calibrated then it is

straightforward to show that M(a) is also well-calibrated. Furthermore. it follows directly

from Theorem 3 that M(a)_. A if and only if B _ A. and that M(c).. B if and only if A L

B. Thus. randomly mixing two well-calibrated forecasters does not allow us to improve upon

either of them in the refinement sense.

The second way to use the predictions of two forecasters is to average them (or more

generally take linear combinations). Unfortunately. if A and B are well-calibrated it does not

necessarily follow that the average of A's and B's predictions will be well-calibrated. This is

most easily seen if we average the predictions of the most-refined well-calibrated forecaster.

who always correctly forecasts 0 or 1. and the predictions of the lcast-refined well-calibrated

forecaster. who always forecasts p. Thus if we wish to improve upon A and B by a'eraging

their predictions. there is the potential loss of calibration. Moreover. even if the result of

averaging A's and B's forecasts is well-calibrated, it remains unclear whether the distribution of
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the a~erage can be more spread than A's and B's distributions.

3. RESTRICTED COMPARISONS

As in many other statistical decision problems. there are essentially two different types of

error that the forecaster might make. He might predict a high probability of rain on a day

when it does not rain or he might predict a low probabilitx of rain on a day whcn it does

rain. Some forecasters may control one type of error better than the other. We may thus

wish to consider how to compare two forecasters separately for days on which it rains and for

days on which it does not (i.e. dry days). This leads to two notions of dominance, introduced

b\ Vardeman and Mecden (1983). which are both forms of first-degree stochastic dominance

(again see Fishburn and Vickson. 1978).

We say that forecaster A rain dominates forecaster B if

Y', f (x 11) -< 1 f (x, 1) for j = 0.1.2 ..... k. (3.1)
' A n 0 B

dry dominates forecaster B if

, . f (N j0) -> f (x 0) for j = 0.1.2.. k. (3.2)
0 A .0 B

and dominates forecaster B if both (3.1) and (3.2) hold. Condition (3.1) says that on rain\

days. A's predictions have a distribution which is stochastically larger than the distribution of

B's predictions. and Condition (3.2) says that for dry days A's predictions are stochasticali>

smaller than B's predictions.

The relationships of rain domination, dry domination, and domination, like that of refinement

(or sufficiency), each induce their own partial ordering amongst forecasters. They also provide

alternative ways of demonstrating refinement, as the following result shows:

Theorem 7 (Vardeman and Meedcn. 1983): For two well-calibrated forecasters A and

B. if either (i) A rain dominates B or (i) A dr\ dominates B. then A . B.

The relationship of domination is quite stringent and thus it does not need to be combined

with a condition as strong as calibration to imply sufficiency. Following Vardeman and
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Mecden. we say that a forecaster is semi-calibrated if p(x) is nondecrcasing in x for those

%alues of x with v(x) > 0.

Theorem 8 (Vardeman and Meeden. 1983): If forecasters A and B are both semi-

calibratcd and A dominaics B. then A is sufficient for B.

Vardeman and Meeden (1983) go on to use the concepts of domination and semi-calibration.

along with calibration and refinement, to make comparisons between Basesian forecasters 'sho

use stationar\ n-step Marko\ chain representations for the sequence of outcomes 6.

4. STRICTLY PROPER SCORING RULES

It has often been suggested in the statistical literature that a forecas predictions over a
sequence o days can be evaluated by the use of a scoring rule whi -ssigns a numerical

value. or score, each day based on the forecaster's prediction x and the ition of whether

or not rain occurred. i.e. the observation of 0. One property of the use of such rules. when

the forecaster attempts to maximize the expectation of this score, is that if the forecaster's

predictons are not restricted to be probabilities, then there is a known transform of the values

of x to \alues which are probabilities (Lindley. 1982). For the class of proper scoring rules

described below, the values of x must themselves be probabilities. There is little reason.

ho'\er. to believe that a forecaster will want to maximize his expected overall score (e.g. see

the discussion on this point in DeGroot and Fienberg. 1983. and in Stael von Holstein. 19-0).

Our interest in scoring rules in the context of comparing forecasters is somewhat different.

Since wc knos that the relationship A, B induces only a partial ordering on the class of

well-calibrated forecasters, we wish to assign a measure of quality m(6 ) to the probability

function s. of everY well-calibrated forecaster in order to obtain a total ordering of this class.

The values m(,) should be assigned in such a way that the better the forecaster, the higher his

measure of quality will be. It is natural to interpret this requirement to mean that if A B.

then m( ) > m( ). with strict inequality unless the probability functions v and B are

identical. Indeed. we need not restrict attention to only well-calibrated forecasters. It is
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convenient to arr" i ihe measure m() for the comparison of well-calibrated forecasters from

the more general approach of the use of scoring rules which are applicable to all forecasters.

We begin bx considering an arbitrary scoring rule. Suppose that the forecaster's prediction is

x and ra.i o,:curs. Thcni the forecaster rececies a score g (0,. If ra:n does )o! o.c :r hX

receIes a score g(x). Since we assume that the forecaster desires to maximize his score. it is

reasonable to assume that g(x) is an increasing function of x and that g(x) is a decreasing

function of x. If the forecaster's actual subiective probability of rain on a particular da% is p

and he makes the prediction x. then his expected score is

pg (x) -(l-p)g(x) . (4.1)

A proper scoring rue is one for which expression (4.1) is maximi,ed when x = p. A strct/y

proper scoring rule is one for which x = p is the only value of x that maximizes expression

(4.1). An interesting discussion of these rules, with historical references, is gi'en by Stail %on

Holstein (19'70. Sec. 3.2).

Examples of strictly proper scoring rules include the quadratic rule (Brier, 1950: de Finetti,

19t2. 1965) with g(x) = -(x-1)2 and g,(0) = -x, anc the logarithmic rule (Good. 1952) with

g(x) = log x and g(x) = log (1-x). Both of these examples ha'e the symmetr. property, g (x)

Sg,(1-x), but this is not a requirement of strictiv proper rules. An example of an improper

scoring rule is the exponential with g (x) = e' and g(x) = - Here the values that

maximize the expected score are x = log(1-p)/p}, i.e. the log-odds.

If a proper scoring rule is used for all of a forecaster's predictions then we get an overall

score S for the forecaster. Among all days on which the forecaster's prediction is x. the score

will be g (x) with relative frequency p(x) and g,(x) with relative frequency 1-1 (xi. Since the

relative frequency of the prediction x for the forecaster is ,(W. we have that

S = Y x Vx) {,(x)g (x) [-p(x) g(x) . (4.2)

We now come to the major result of this Section. which shows that this overall score (4.2)
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can be partitioned into a component which is a measure of calibration and a component which

measures sufficiency or refinement.

Ttieorem 9 (DeGroot and Fienberg. 1983): If a forecaster's predictions are

Cha I Ctc'd ! the f unctions , W and ,W.' and if a proPer SCOr:nIg rUle is,

specified b\ tile furiciions g W\ and g,(0, then the forecasters oicrall score S can

be ce pressed in the form S S *S .where

S = (1 ) E(xA) Eg (x)-g, ((0) {1,x g (X)-@{ P(x)) 31. (4.3)

S = 0.) 1 "(01. (4.4)

and

W(t =tg.(t - (1-t)g,(t) f Or 0 -. t !5 1 .(4.5)

If the scoring rule is strictly proper thcn p(,.) is strictly convex and S Iattains its

maximum value only when p(x) = x for every value of x such that ,(x) > 0.

Proof: It can be vecrified directly that if S Iand S, are gi'en by (4.3) to (4.5) then S -S is

gi~en by expression (4.2) for S. Thus the first part of the theorem is established. Now

suppose that the scoring rule is sTictly. proper. To see that, p(t) is convex, note that

90i) = IF , E s W t - 0-0 ( -tg(x)J. (4.6)

In (4.6). 00 is represented as the maximum of a family of linear functions of 1. Hence. P(t)

is convex.

If p(t) is not strictly convex, then it contains at least one linear segment. This means that

there must be one particular linear function that yields the maximum value in (4.6) for all the

%alues of tin some interval. But that is impossible. because wve know that at any particular

%aluc t tO(0:5t( 1) the maximum in (4.6) is attained uniquel% by thle linear function tg (t,,

(l-tg~d. Hence. p(t) must be strictlv conmex.

Finally. since the scoring rule is strictly proper 'vc know that

P(x)g 1(x) []Cl-/'(X) )g,(x) :5
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p(X)g[p(x))] [1-p(x)]g.[p(x)].(47

with strict inequality unless x = p(X). Hence. it can be seen from (4.3) that S will be

negative unless p(x) x for every value of x such that i (x) > 0. in which case S will be

equal to zero. *

As we noted above. S is a measure of the forecasictrs calibration, which is zero onl' for a

well-calibrated forecaster and negative otherwise. The component S provides us with our

sought-after measure to give a total ordering for well-calibrated forecasters:

n() = X WI.(W. (4.8)

which is S with p(x) = x. Since p(x) is strictly convex. Theorem 4 implies that if A . B.

then m(, ) 2 m( ). with strict inequality unless . and t. are identical.
B A B

DeGroot and Eriksson (1983) note that there is a direct relationship between the total

ordering provided by the measure m and the concept of Schur-convexity which plays an

important role elsewhere in statistics (Marshall and Olkin. 1979). Consider a function m

defined on the class of all probability distributions r over X that have a given mean d. Then

m is said to be strictly Schur-convex if m(6 ) > m(v ) whenever the relation (2.11) is
A B

satisfied with strict inequality unless . . The following result now follows directly fromA B

Theorem 4.

Theorem 10 (DeGroot and Eriksson, 1983): Consider a strictly proper scoring rule

based on the functions g and g. and suppose that a measure of qualit\ m is

defined by (4.8) and (4.5). Then m is strictly Schur-convex.

Suppose now that we know the functions .(x) and p(x) that characterize a particular

forecaster's predictions. Is it possible for us to use his predictions. and no other relevant

meteorological information, to make our own predictions and to attain a larger \alue of the

score S than the forecaster himself? The following argument generalizes the one gi\en in

DeGroot and Fienberg (1983) for the quadratic scoring rule (see also Schervish. 1983).

-- a - - , , ,.. . . .,.,.
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The forecaster's score is gi'cn by expression (4.2). In order for us to make our predictions.

,e mast choose a stochastic transformation h(x y) as follows. If the forecaster's prediction on

a gi\en day is y. then we choose our prediction at random from X in accordance with the

conditional distribution h(x y. With this procedure, our predictions are characterized by the

= ,X h(xly)iy) (4.9)

Pc(x) = , X h(x y y)p(v (y) (x) (4.10)

It follows from expressions (4.2). (4.9), and (4.10) after some algebra. that our score is

S = 2, )(p) (y)g (x) (1-j,(y))g,(x)) h(xy). (4.11)
0 .t " t I

For each fixed value of y. the summation over x in expression (4.11) yields a weighted average

of the quantities

p(y)g (x)+ - p(y)} g,(x) . (4.12)

with weights given by the conditional probabilities h(x'). Thus to maximize the weighted

a\erage. we choose the conditional distribution h(x ') to put all the probability on the value

of x that maximize expression (4.12). If p(.v).X the maximizing value is x = p(y). and we

make the forecaster well-calibrated. With this choice, our value of S remains the same as

that of the original forecaster, but our value of S is now increased to 0. If p(x)/X. then we

come as close to the maximum of expression (4.12) as possible, by setting x equal to the

permissible value close to pC(v) that maximizes (4.12). i.e. we make the forecaster almost well-

calibrated. Formally. a forecaster is said to be almost well-calibrated (relative to the strictly

proper scoring rule defined by g and g) if for each point yiX such that (y) > 0. the

expression (4.12) is maximized over the points xX when x = y. Following Schervish (1983). if

we take an arbitrary forecaster B we refer to a second forecaster A who uses this concentrated

function h(x y) to transform the predictions of B into his own as "the almost calibrated

\ersion of B." Then our result is:

Theorem 7. Consider a strictly proper scoring rule. Let B be any forecaster and

let A be the almost calibrated version of B. If B is not almost well calibrated, then



A has a strictly larger score than B.

This theorem can be %iewed as providing motivation for the idea of recalibrating forecasters

suggested by Lindley. T\'ersky, and Brown (1979).

5. COMPARING MLTIVARI ATE FORECASTERS

We now turn to a consideration of forecasting ecnts with s > 2 outcomes (e.g. a set of

temperature ranges). In such settngs the probability forecaster specifies a vector of

probabilities x = (x .x .....x ). restricted to a finite set X of values lying in the (s-i)-2

dimensional simplex. i.e. x - 0 and - x = 1. If the conditional probabilities of the s

outcomes ginen the prediction x are represented in vector form bN p(x) = [, (x). P1 ix).

p(x)], then the multivariate forecaster is well-calibrated if p(x) = x for all xiX". Note that

this well-calibrated multivariate forecaster is also well-calibrated, in the sense of Section 2. for

each binary problem formed by combining the s outcomes into two groups: however, a

forecaster who is "marginally" well-calibrted for predicting "rain" or "no rain" may no longer

be well-calibrated when "rain" is divided into two or more possible outcomes.

More formally, let x = (x I .....x) and p(x) = [p W ..... p (x)]. Furthermore. let I = I I

represent a partition of the set {1.sl into k noncmpty, mutually e\clusive, and exhaustive

sets II ..... I Then a forecaster is said to be marginally well-calibrated with respect to theI k,

partition I if

S ,(x) = x for j = I ..... k and xX". (5.1)

We can also focus on a particular set of the partition I. say I, and define

p, (x. I P(O=i I H f I forecast x). (5.2)

Then we can say that a forecaster is conditionally well-calibrated given the set I if

P (x.I = . i, I (5.3)

Moreover. because being well calibrated in the multivariate sense is a demanding requirement.
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we might also want to know if a forccaster is well-calibrated for some but not necessarily all

values of x. Let X"' denote a proper subset of X'. Then we say that a forecaster is
0

partially well-calibrated on the subset X"' if p(x) = x for xX"'CX'". We can now0 0

combine these notions of partial, conditional. and marginal calibration in various ways. (in

particular. wc note that the concept of conditional calibration suggested in DeGroot and

Fienberg (1982) is in fact a combination of conditional and partial calibration as defined here.)

We also consider an extension of semi-calibration, introduced in Section 3. to the multivariate

setting in a special case at the end of this section.

For well-calibrated multivariate forecasters, we can define the concept of refinement by

means of a multivariate stochastic transformation h(xly. Consider two well-calibrated

forecasters characterized by their probability functions v and , . Then we say that A is at

least as refined as B if there exists a stochastic transformation h such that:

X h(y I X)XT (X) = Vt (V) for VXf (5.4)
X ( X ' .A 13

Note that the analogue of equation (2.2). i.e.

I hyx) (x) = , (v) for yEX" . (5.5)

is automatically satisfied by summing the s equations in expression (5.4). Furthermore, we can

immediately define concepts of marginal refinement with respect to a partition 1. The concept

of conditional refinement given the set I which also appears to be immediate (in a definitional
In

sense) is. however, problematic as it involves conditioning of the vector x on O I . These

conditional predictions have no operational meaning. because we cannot define them only in

terms of the probability distribution v. Similarly. the concept of partial refinement on the

subset X" C X' also is problematic since two different forecasters typically place different
0

amounts of subjective probability on the set X'.
0

At any rate, Theorem 2 and Corollary 1 from Section 2 carry over directly from the binary

case. i.e.. forecaster A is sufficient for forecaster B if and only if there ekists an appropriate

stochastic transformation. h(x jy). Moreo'er. suppose we define a multivariatc scoring rule.

g(x) [gx). g(xf]. If the forecaster's actual subjective probability is p and he makes

_ . .... --i
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the prediction x, his expected score is

2pg(x). (5.6)

The scoring rule is strictly proper if expression (5.6) is maximized if and only if x = p. Then

there is a direct multivariate analogue to Theorem 9 of Section 3. i.e. cer.% strictIN proper

scoring rule can be partioned into two components. one of which is zero if the forecaster is

well-calibrated and the other of which is a measure of refinement giving a total ordering for

well-calibrated forecasters.

The following results are also as expected:

Theorem 12. If a multivariate forecaster A is well-calibrated. (i) A is also

marginally well-calibrated with respect to all possible proper partitions I of

11.2...s. (ii) A is conditionally well-calibrated given the set I C 11.2 ..... sl. and

(iii) A is partially well-calibrated on all proper subsets X'" C X'.
0

Theorem 13. If A and B are well-calibrated multivariate forecasters, and A is at

least as refined as B. then A is also marginally at least as refined as B with respect

to all possible proper partitions 1.

We have, as yet, been unable to provide a collection of refinement conditions for dichotomies

which imply multivariate refinement. Nor have we been able to prove a directly verifiable set

of conditions analogous to Theorem 5 of Section 3. We can, however, give multivariate

versions of Theorems I and 4 by reformulating results of Blackwell (1951. 1953). Sherman

(1951). Stein (in unpublished lecture notes). and Strassen (1965).

Theorem 14. Consider two well-calibrated forecasters A and B. Then A is at least as

refined as B if and only if there exist discrete random variables x and y. defined

on the (s-1)-dimensional simplex, such that the marginal probability distribution of

X is ,.. the marginal probability distribution of V is B and E(X I Y) = 1.

Theorem 15. Consider two well-calibrated forecasters A and B. Then A is at least as
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refined as B if and only if. for every continuous convex function c(x) defined on

the (s-1)-dimensional simplex

I c(x), (x) -> c(x) (x) . (5.7)
X"X A R

We note that expression (5.7) in Theorem 15 is. in our problem. the same as the conditio

used by Fishburn and Vickson (1978) for their definition of multivariate second-degree

stochastic dominance. They also suggest the application of standard feasibility tests of linear

programming to determine the existence of the stochastic transformation which we use to

define refinement.

Furthermore, we have the following direct multivariate extension of a result presented in

DeGroot and Eriksson (1983).

Theorem 16. Consider two well-calibrated forecasters A and B. Then A is at least as

refined as B if and only if there exists a stochastic transformation r, such that

XT q;(xly) y1 for yfX, (5.8)

Proof: Suppose that A is at least as refined as B. and let h be a stochastic transformation

satisfying (5.4). If we define

h(y x), W,/ix I y) - Y A (5.9)

whenever v B(y) > 0. and define n(xfy) arbitrarily of ,iB) = 0. then (5.8) follows directly

from (5.4). Conversely. suppose that (5.8) is satisfied for some , and define the stochastic

transformation h by (5.9). [Note that h(yjx) may be defined arbitrarily if W (x) = 0.) Then

(5.4) follows directly from (5.8). *

A stochastic transformation satisfying expression (5.8) is known in the economics literature

as a mean-preserving spread (sec. e.g.. Rothschild and Stiglitz. 1970. 1973).

An interesting version of the multivariate setting results when the probability of outcome i

given that the forecaster predicts x depends only on the forecaster's subjective probability x
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for outcome i. (This is clearly true if the forecaster is well-calibrated). We say that the

forecaster is local if

p(x) = p(x ) i = 1.2.s. (5.10)

If the functions p,(') are monotonical% increasing, then the forecaster is marginally semi-

calibrated, in the sense of Sc,:: on 3. A special case of localit\ is lincaru:,, and an intercsitig

question arises: Under what condiions on X" and the p,'s is a multi\ariate forecaster being

local equi\alent to

t,, x) = bx b i =  1.2.....s. 15.11)

whereb b. b -> 0. and b b b, = I If the functions P arc kno%,n to be

continuous on the entire simplex. th, it can be shown that they must be linear for any local

forecaster.

Suppose we now say that Forecaster A dominates Forecaster B on the outcome i if the

marginal distribution of the ith prediction component for forecaster A gi\cn that outccme i

occurs is stochastically larger than the corresponding marginal distribution for B. We know

from Theorem 7 of Section 3 that. if multivariate forecasters A and B are both well-calibratcd

and A dominates B on all s outcomes, then A is marginally at least as refined as B with

respect to each possible outcome. An open question is whcther it is possible to use calibration.

locality. linearity as in (5.9). or semi-calibration in connection with some version(s) of

dominance to imply that one forecaster is sufficient for (or more refined than) another in our

full multivariate sense.
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