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1. INTRODUCTION
\‘/‘ In the applied forecasting literature much attention has been lavished on questions about the
evaluation of probability forecasts, and the subjectivist view of probability has been invoked to

aggregate probability forecasts over a diverse set of events or statements, (e.g. sec Fischhoff and

McGregor. 1982). "~ One crilerion invoked in such evaluations is that of calibration: a set of

statements or evenls is considered and we ask if x percent of those assigned probability x of

being correct prove to be correcl, for ecach value of x. From this perspective, weather

forccasters generally have been found to perform well (Murphy and Winkler, 1974. 1977).
What is especially helpful in the evaluation or:“;.l—c_l{ ;;obabihl)' forccasters is that thevy make
forecasts about a long sequence of events {e.g. rain on a given day), and thus it makes sense
to think about probability functions associated with the forecasts. In this paper we focus on a

criterion for comparing forecasters. refinement, which goes beyond that of calibration,(see the

related discussion in Winkler, 1982).

The formal setting we consider is the same as that presented in DeGroot and Fienberg (1982.
1983). Consider two forecasters who at the beginning of each period n in a sequenlial process
(n = 1,2....) must independently specify their subjective probabilities that a particular event An
will occur during the period. Assume that each forecaster in specifving the probability of An
is aware of the values of various variables that are potentially relevant to the occurrence of
An. including which of the previous events Al. A:’ A"_’ have actually occurred. We wish
to compare the two forecasters on the basis of their subjective probabilities of the events Al.
A .. A,, and the subsequent observation of exactly which of those events occurred, for large

values of n.

It is possible to think of our forecasters as economists who at the beginning of each period
must specify their probabilities that the value of a particular commodity will rise during the
period, or as medical diagnosticians who specify their probabilities that a patient has a
particular disorder (e.g. see Habbema, Hilden, and Bjerregaard, 1978, and Hilden. Habbema and
Bjerregaard, 1978a. 1978b). As in DeGroot and Fienberg (1982, 1983). however. we present the




basic results of the first four sections of this paper in the context of two weather forecasters.
Day after day, they must specify their subjective probabilities, x and y, that there will be at
least a certain amount of rain al some given location during a specified time period in the
day, and we refer to the occurrence of this weli-specified event as “"rain." We make the
assumption that x and y are restricted 1o a given finite set of values 0 = X, < X, < .. < X =

1, and we let X denote the set {xo. LIPS S xk}.

5

In Section 2, we present the basic notation and formal definitions of the concepts of
calibration and refinement. Then we go on to describe the relationship between these
concepts and the classical concept of sufficiency, and we summarize various results on when
one well-calibrated forecaster is at least as refined as another given in DeGroot and Fienberg
(1982, 1983) and DeGroot and Eriksson (1983). In Section 3, we present 1wo concepls
introduced by Vardeman and Meedan (1983), semi-ca/ibration and rain (or dry)-domination,
which impose different restrictions on the probability distributions of the forecasters than do
calibration and sufficiency or refinement, and we discuss how these different concepts are

related.

In Section 4, we introduce the notion of strictly proper scoring rules and describe their use
in comparing forecasters. We give a proof of a basic partitioning result for strictly proper
scoring rules, described earlier in DeGroot and Fienberg (1983). We also give a result on the
relationship between Schur-convex measures of the quality of forecasters and strictly proper

scoring rules presented in DeGroot and Eriksson (1983).

In Section 5, we turn to the muitivariate or vector~probability forecasting situation in which
the events of interest have three or more possible outcomes. For example. in the weather
context the event may be tomorrow's maximum temperature and the possible ouicomes may be
grouped into 5°C intervals. The forecasters are required 1o announce their subjective

probabilities associated with each of the s 2 3 possible outcomes.
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2. CALIBRATION AND REFINEMENT

We begin by considering two forecasters, A and B. and we define the joint probability
function. g(x.y.8), for the random variables associated with the ith event l:‘.l in a sequence
where x and vy are forecaster A's and B's subjeclive probabilities of rain, respectively, and 8 =
1 if the outcome 1s rain or # = 0 otherwise. The overall performance of forecaster A can be

characterized by two functions defined on X

(1) the probability function

vA(x) = ?«X % gix.y.4)

which gives the probabilities or relative frequencies with which forecaster A makes
each possible prediction x,
(ii) the conditional probability function

p X = Z. X gx.y.1)/ v (x)

which give the conditional probability or relative frequency of rain given forecaster
A’s specific prediction x.
The functions » '(x) and ps(x) for forecaster B can be defined similarly. Finally the long run

frequency of rain is

F T RX veX glx.y.1).

X

A forecaster is said to be we//-calibrated if p(x) = x for all x ¢ X such that v(x) # 0.
Thus a forecaster is well-calibrated if the forecaster’s predictions can be accepted at face
value, i.e. given that the forecaster predicts x, the conditional probability of rain is x. DeGroot
and Eriksson (1983) give three different interpretations for the quantities v(x) and p(x), based
on (i) limiting or theoretical values for an infinite sequence of days, (ii) the actual relative
frequencies for a finite sequence of n days, and (iii) subjective probabilities of an observer
who is comparing the forecasters. We proceed using interpretation (iii), although we sometimes

use language that is associated with (i).
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For various reasons, being well-calibrated is usually regarded as a desirable characteristic of a
forecaster. For example. Pratt (1962) and Dawid (1982) show that a probabilily forecasier who
1s coherent in the sense of de Finetti (1937) must be calibrated almost surely. However, as
Murphy and Winkler (1977). Dawid (1982). and DeGroot and Fienberg (1983) note, even if a
forccaster as well-cahibrated his predictions are not necessarily accurate in all respects nor are
they necessarily of much use 1o anyone. For example, the forecaster whose prediction on each

day is » 1s well~calibrated but cleariy uscless as a forecaster once we know ..

Consider two weli-calibrated forecasters A and B whose predictions are characterized by their
probability functions vy and vy In DeGroot and Fienberg (1982, 1983). we introduce a
concept of refinement which induces a partial ordering on the class of all well-calibraled

forecasters. This concept is defined as follows:

A stochastic transformation h(y |x) is a non-negative function defined on XXX such that

Z x hly|x) = 1 for every xeX (2.1)

X

Forecaster A is said to be at /east as refined as forecaster B if there exists a stochastic

transformation h(y |x) such that

EX h(y | x)v A(x) =y B(_\') for yeX 2.2
?;X h(ylx)xVA(x) = yva(y) for yeX (2.3)

Following DeGroot and Eriksson (1983) we denole this relationship by the symbols A.tB. The
stochastic transformation here plays the role of an auxiliary randomization which we could use
1o generate predictions with distribution H()') from A's predictions. as in (2.2). Equation (2.3)
is required in the definition to ensure that the predictions generated by this process are well-

calibrated.

If A ZB and the probability functions . and v, are not identically equal. then A is said

o be more refined than B. We denote this relationship by the symbols A > B.

The relationship A }_B is both reflexive and transitive. and induces a partial ordering (but




not a total ordering) among well-calibrated forecasiers. In these terms, the forecaster who

makes the same prediction n each day is /east-refined in lhe scnse that any other well-

calibrated forecasier is at least as refined as he is. It is possible that 4 is not one of the
allowable predictions Xpo Xooe N0 In that case, there is a value of i (3 = 0.1....k-1) such
that \ Cop < N and Dc¢Groot and Fienberg (1982) show that a forccaster who uses only the
values X and X, 8 his predictions in such a way that he is well calibrated will now be least~
refined. At the other extreme. the forecaster whose prediction cach day is either x = 0 or x
= 1 and who is alwavs correct is most-refined in the sense that he is more refined than an)

other well-calibrated forecaster.

For any well-calibrated foreccaster il must be true that

:‘:‘X Xv(x) = 4. 2.4)
Since every distribution with mean u can be thought of as the v{(x) of some well-calibrated
forecaster, the comparison of well-calibrated forecasters using the relalionshipzis equivalent 10

the problem of the comparison of all distributions on X with a given mean .

The left-hand side of expression (2.3) resembles the form of a conditional expectation. This

observation leads to the following result:

Theorem 1 (DeGroot and Eriksson, 1983). The relationship A}_B is satisfied if and
only if there exist discrete random variables X and Y such that the marginal
probability distribution of X is Vo the marginal probability distribution of Y is v 5

and E(X|Y) = V.

We temporarily step back and consider the comparison of two arbitrary forecasters A and B. !
who are not necessarily well calibrated. For any given forecaster, let f(x|§) denote the !
conditional probability function of the forecasier's predictions given #. Thus. f(x|1) can be
regarded as the frequency function of the forecaster’'s predictions on days when rain actually
occurs. and f(x|0) as the frequency function on days when rain does not occur. It follows

that for xeX.




f(x]1)

P/ 4 (2.5)

)0 = {1 - p()e(x)/QQ - A (2.6)
Thus we can also use the probability function f(x]6) for & = 1 and § = 0 to characterize a
forecaster's predictions. Let forecasters A and B have conditional probability functions fa(xlﬂ)

and fB(,\'|H). Following Blackwe!l's (1931, 1952) work on the comparison of cuperiments we

say that A is sufficient for B if there exisls a stochastic transformation h{y|x) such that

Zyhy|x)f (:]8) =1 (|6 for yeXand 6 =01. (2.7)

L €

Using the relationships (2.5) and (2.6) we can now prove

Theorem 2 (DeGroot and Fienberg, 1982). Consider two forecasters A and B whose
predictions are characterized by v (x), p (x). v (x). and p (x). Then A is sufficient

for B if and only if there exists a stochastic transformation h such that

?_;x h(y[x);'A(x) = l'B(_V) for y«X. (2.8)
and
Z x by [x)p G () = p (¥)x L) for yeX (2.9)

Now if we again restrict attention to well calibrated forecasters we get the following corollary:

Corollary 1. Consider two well-calibrated forecasters A and B. Then A ka if and

onlv if A 1s sufficient for B.

Thus we can use results from the comparison of experiments to compare two wcll-calibrated
probability forecasters A and B. For any well-calibrated forecaster. let F denote the

distribution function corresponding to the probability function v. i.e.
F() = 2v(x) for 0 <t 51 . (2.10)

{x:% e X.x<t}

Theorem 3 (DeGroot and Eriksson, 1983): The relationship AtB is satisfied if and
only if

5; FA(I)dl > S FB(l)dx forall 0 < s < 1. (2.11)

0

The relationship (2.11) is one of several equivalent decfinitions of second-degree stochastic




dominance (e.g. see Fishburn and Vickson, 1978), and we see that it is equivalent to the

relationship A z_B. This leads to yet another equivalence:

Theorem 4 (Hardy, Littlewood, and Polya. 1919, 1934): The relationship A_Z_ B is
satisfied if and only if. for every continuous, convex function ¢ defined on the

unit interval,

AZ‘X c(x)vA(x) 2 X c(x)va(x) . (2.12)

A€

Finally. there is a simplification of the second-order stochastic dominance relationship that

can be expressed only in terms of the probability functions v and Vo

Theorem 5 (DeGroot and Fienberg. 1982): The relationship A }_ B is satisfied if and
only if

7 (=x)y (x)=v (x)} 20 forj=1, .. k-1. (2.13)
1=0 I A i B
If at least one inequality in (2.13) is strict, then A} B.

By a direct application of this theorem, we can gain insight into the refinement relationship

through the following Corollary:

Corollary 2: Suppose A and B are well calibrated forecasters such that

»-B(x‘) 2 "A(x,) i=1, .. k-1 2.149)

and vB(xo) = vB(xk) = 0. Then AZ_ B. If one of the inequalities in (2.14) is strict,
then A _t B.
Thus we see that, in a rough sense. A is more refined than B if A spreads his probabilities

into the extremes (in this case to 0 to 1) more than B.

As we have seen from (3.5). in order to determine whether A is sufficient for B. we need
only know the marginal probability functions fA(x|0) and fB(xlﬁ) of A and B separately.

However, in order to determine whether forecaster A is sufficient for both himself and




forecaster B together, we must know the joint probability function v(x,y) = g(x.y.1) + g(x.y.0)

of the predictions x and y of A and B. as well as the conditional probability of rain given the

two predictions x and y:

P = gxyl) /ovixy) (2.15)

Then we can use the following result:

Theorem & {(DeGroot and Fienberg., 1983): Forecaster A is sufficient for the pair of

forecasters (A.B) if and onlv if

pY) = p (X)) for xeX and veX (2.16)
If follows that, if A sufficient for (A B). then A is sufficient for B. The converse, however. is

not necessarily true.

Suppose now that neither A nor B is sufficient for the other. It becomes natural to ask if
we can do better than A or B by using only their predictions. One way to trv 1o do this is
to choose A’'s prediction with probability ¢ and B's with probability 1-2. This results in a
"new forecaster” whom we label as M(cz). If both A and B are well-calibrated then it is
straightforward to show that M(e) is also well-calibrated. Furthermore. it follows directly
from Theorem 3 1hal M(a)Z_A if and only if BlA. and that M(c)_k B if and only if AZ
B. Thus. randomly mixing two well-calibrated forecasters does not allow us to improve upon

either of them in the rcfinement sense.

The second way to use the predictions of two forecasters is to average them (or more
generally take linear combinations). Unfortunately, if A and B are well-calibrated it does not
necessarily follow that the average of A's and B's predictions will be well-calibrated. This is
mos! easilv seen if we average the predictions of the most-refined well-calibrated forecaster.
who always correctly forecasts 0 or 1, and the predictions of the least-refined well-calibrated
forccaster, who always forecasts . Thus if we wish to improve upon A and B by averaging
their predictions, there is the potential loss of calibration. Moreover. even if the resull of

averaging A's and B's forecasts is well-calibrated. it remains unclear whether the distribution of
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the average can be more sprcad than A's and B's distributions.

3. RESTRICTED COMPARISONS

As in many other statistical decision problems. there are essentially two different types of
error that the forecaster might make. He might predict a high probability of rain on a day
when 1t docs not rain or he might predict a low probability of ramn on a day when it does
rain. Some forecasters may control one (vpe of error better than the other. We may thus
wish to consider how to compare two forecasters separately for days on which it rains and for
davs on which 1t does not (i.e. dry davs). This leads to two notions of dominance. introduced
by Vardeman and Mecden (1983). which are both forms of first-degree stochastic dominance

(again sec Fishburn and Vickson. 1978).

We sav that forecaster A rain dominates forecaster B if

Of (x |1) <3 fx |1) for j = 0.1.2..... k (3.1}
1|0 A t<0 B
dry dominates forecaster B if
IOf(x |0) 2 3 f(x IO) for j = 0.1.2..... k. (R
=0 A =0 B

and dominates forecaster B if both (3.1) and (3.2) hold. Condition (3.1) savs that on rainy
davs, A’s predictions have a distribution which is stochastically larger than the distribution of
B's predictions. and Condition (3.2) sayvs that for dry days A's predictions are stochastically

smaller than B's predictions.

The relationships of rain domination, dry domination. and domination. like that of refinement
(or sufficiency). each induce their own partial ordering amongst forecasters. They also provide

alternative ways of demonstrating refincment, as the following result shows:

Theorem 7 (Vardeman and Meceden, 1983): For two well-calibrated forecasters A and

B. if cither (i) A rain donunates B or (ii) A drv dominates B. then AZB.

The rclationship of domination is quite stringent and thus it does not need 10 be combinced

with a condition as strong as calibration to imply sufficiency. Following Vardeman and
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Meeden, we say that a forccasler is semi-ca/ibrated if p(x) is nondecreasing in x for those

values of x with +(x) > 0.

Theorem 8 (Vardeman and Meeden. 1983). If forecasters A and B are both semi-

cahbrated and A domunates B. then A s sufficient for B.

Vardeman and Meeden (1983) go on to use the concepts of domination and semi-calibration.
along with cahbration and refinement, to make comparisons between Bavesian forecaslers who

use stationary n-step Markov chain representations for the sequence of outcomes 6.

4. STRICTLY PROPER SCORING RULES

It has often been suggesied in the slatistical literature that a forecas predictions over a
scquence of days can be cvaluated by the use of a scoring rule whi ssigns @ numerical
vzlue. or score. each day based on the forecaster’'s prediction x and the .. ition of whether
or not rain occurred. i.e. the observation of 4. One property of the use of such rules. when
the forecasler attemptls to maximize the expectation of this score, is that if the forecaster’s
predictions are not restricted to be probabilities. then there is a known transform of the values
of x to values which are probabilities (Lindley. 1982). For the class of proper scoring rules
described below, the values of x must themselves be probabilities.  There is little reason,
however. 1o believe that a forecaster will want to maximize his expecied overall score (e.g. see

the discussion on this point in DeGroot and Ficnberg. 1983. and in Stael von Holstein, 1970).

Our interest in scoring rules in the context of comparing forecasters is somewhat different.
Since we know that the relationship A_>__B induces only a partial ordering on the class of
well~calibrated forecasters, we wish 1o assign a measure of quality m(:) to the probability
function » of every well-calibrated forecaster in order 1o obtain a total ordering of this class.
The values m(s) should be assigned in such a way that the betier the forecaster. the higher his
measure of quality will be. [t is natural to interpret this requirement to mean that if ALB.
then m(, A) 2 m(rB). with strict inequality unless the probability functions vy and v, are

identical.  Indeed. we need not restrict attention to only well-calibrated forecasters. It is
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convenient lo arrr¢ ai the measure m() for the companison of well-calibraled forecasters from

the more general approach of the use of scoring rules which are applicable 1o all forecasters.

We begin by considering an arbitrary scoring rule. Suppose that the forecaster's prediction 15
voand ram ooccurs. Then the forecaster recenes a score g (0. If rain does not occur ke
receises a score g (x).  Since we assume that the forecasier desires 10 mavmize his score. it 1s
rcasonable 1o assume that g:(x) 1S an ncreasing function of x and that g:(\) 1s a decreasing
function of x. If the forecaster's actual subjective probability of rain on a particular day is p

and he makes the prediction x. then his expected score 1s

pgl(x) - (l—p)g:(x) . (4.1)
A proper scoring ruie 1s one for which expression (4.1) 1s maximized when X = p. A strictly
proper scoring rule is one for which x = p is the on/y value of x that maximizes expression
(4.1).  An interesting discussion of these rules. with historical references. is given by Stael von

Holstein (1970, Sec. 3.2).

Examples of strictly proper scoring rules include the quadratic rule (Brier. 1950: de Finetli.
1902, 1965) with gl(.\') = -(x-1)° and g:(‘;) = -x". anc the logarithmic rule (Good. 1952) with
gi(\) = log x and g:(x) = log (1-x). Both of these examples have the symmetry properiy. g‘(\)
= g (1-x). tut this is not a requirement of stricl!v proper rules. An example of an improper

scoring rtule 15 the exponential with g](x) = ¢  and g(x) = e . Here the values that

mavimize the expected score are x = log{(1-p)/p}. i.e. the log-odds.

If a proper scoring rule is used for all of a forecaster’s predictions then we gel an overall

score S for the forecaster. Among all days on which the forecaster's prediction is x. the score

will be g (x) with rclative frequency p(x) and g (x) with relative frequency 1-,(x). Since the

relative frequency of the prediction x for the forecaster is »(x). we have that

S = ?st v(X) {,o(x)gl(x) + {1-p(x)] gV} . 4.0

We now come to the major result of this Section. which shows that this overall score (4.2
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can be partitioned into a component which is a measure of calibration and a component which

measures sufficiency or refinement.

Theorem 9 (DeGroot and Fienberg, 1983): 1f a forecasler's predictions are
characterired by the funciions () and ,{x). and if a proper scomng rule 1s

specified by the funcuions g (x) and g (v), then the forecaster’'s overall score S can

be expressed in the form S = S + S, where

S =X, (0 pn) (e (W-g {p00}] ~ {1-p()) [g:(x)—g:{p(\')}ll. (4.3)
S, = Ty v (el ) (4.2) i
and 1]
p() = 1g () ~ (I-g ) for 0 <1 <1, (4.5

If the scoring rule is strictly proper then ¢(!) 1s strictly convex and S1 atlains its

maumum value only when p(x) = x for every value of x such that +(x) > 0.

Proof: 1t can be verified directly that if S and S_ are given by (4.3) to (4.5) then Sl <+ S_ 15
given by expression (4.2} for S. Thus the first part of the theorem is esiablished. Now

suppose that the scoring rule is strictly proper. To see that ¢(1) is convex. note that

pll) = N [xg](x) * (l-t)g:(x)l. (4.6)
In (4.6). (1) is represented as the maximum of a family of linear functions of t. Hence. (1)

1S convex.

If o() is not strictly convex. then it contains at least one lincar segment. This means that
there must be one parlicular linear function that yields the maximum value in (4.6) for all the
values of t in some interval. But that is impossible, because we know that at any particular

value t = tO(OSt(SI) the maximum in {4.6) is ailained uniquely by the lincar funcuon 1g‘(1) -
) (%)

(I-vg (1). Hence. p{t) must be strictly convex.

Finally. since the scoring rule is stricty proper we know that

Pl (x) + [1-p(x)]g (x) < ]
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PIB [p()] + [1-p(x)]g [ p(x)], (4.7)
with strict inequahity uniess x = p(x). Hence. it can be seen from (4.3) that Sl will be
negative unless p(x) = x for every value of x such that +(x) > 0. in which case S will be

equal 10 zero. =

As we noted above. S 15 a measure of the forecasier’s calibration. which 1s zero onlv for a
1l
well-calibrated forecasier and negalive otherwise. The component S_ provides us with our

sought-after measure 0 give a total ordering for well-calibrated forecasters:

my) = Z(X p(x)v(x). (4.8)
which is S with p(x}) = x. Since p(x) is strictly convex, Theorem 4 implies that if AzB.

then m( \) 2 mi B). with strict inequalily unless v, and v, are identical.

DeGroot and Eriksson (1983) note that there is a direct relationship beiween the 1ota)
ordering provided by the mecasure m and the concept of Schur-convexiiy which playvs an
important role elsewhere in statistics (Marshall and Olkin, 1979). Consider a function m
defined on the class of all probability distributions » over X that have a given mean p. Then
m is said to be strictly Schur-convex if m(v*) 2 m(va) whenever the relation (2.11) is
satisfied with strict inequality unless oS vy The following result now follows directly from

Theorem 4.

Theorem 10 {DeGroot and Eriksson, 1983). Consider a strictly proper scoring rule
based on the functions g and g. and suppose that a measure of quality m is

defined by (4.8) and (4.5). Then m is strictly Schur-convex.

Suppose now that we know the functions v(x) and p(x) that characterize a particular
forecaster’'s predictions. Is it possible for us to use his predictions. and no other relevant
meteorological information. to make our own predictions and to attain a larger value of the
score S than the forecaster himself? The following argument gencralizes the one given in

DeGroot and Fienberg (1983) for the quadratic scoring rule (see also Schervish. 1983).




.
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The forccaster’s score is given by expression (4.2). In order for us to make our predictions,
we must choose a stochastic transformation h(x|y) as follows. If the forecaster's prediction on
a given day 1s ¥, then we choose our prediction at random from X in accordance with the

conditional distribution h(x|y). With this procedure, our predictions are characierized by the

runcuons
-O(\) = .\Z‘X h(x v ty) . (4.9)
p N = ;‘X hx | ) o) () /v (%) 4.10)

Il follows from expressions (4.2}, (4.9), and (4.10) after some algebra. that our score is
S, = Z.)\ ) Z oy [,u(_\')g‘(x) + (l"/}(_\'))g:(,\” hix]y) . (4.11)
For each fixed value of y. the summation over X in expression (4.11) vields a weighted average
of the quantities
p()‘)g‘(x) + {1-p(v)} gz(x) . (4.12)
with weights given by the conditional probabilities h(x|y). Thus 1o maximize the weighted
average. we choose the conditional distribution h(x|y) to put all the probability on the value
of x that mavimize expression (4.12). If p(y)eX the maximizing value is x = p(¥). and we
make the forecaster well-calibrated. With this choice, our value of S: remains the same as
that of the original forecaster. bul our value of S, is now increased 10 0. If p(x)fX. then we
come as close 1o the maximum of expression (4.12) as possible. by selling x egual 10 the
permissible value close 10 p(y) that maximizes (4.12). i.e. we make the forecasier a/most well-
calibrated. Formally, a forecaster is said to be a/most wel/-calibrated (relative to the strictly
proper scoring tule defined by 3 and g:) if for each point yeX such that +(y¥) > 0, the
expression (4.12) is maximized over the points XxeX when x = v. Following Schervish (1983), if
we take an arbitrary forecaster B we refer 10 a second forecaster A who uses this concentrated
function h(x{y) to transform the predictions of B into his own as “"the almost calibrated

version of B." Then our result is:

Theorem 11. Consider a strictly proper scoring rule. Let B be any forccaster and

let A be the almost calibrated version of B. If B is not almost well calibrated. then




A has a strictly larger score than B.
This theorem can be viewed as providing motivation for the idea of recalibraling forecasters

suggested by Lindley, Tversky. and Brown (1979),

S. COMPARING MULTIVARIATE FORECASTERS
We now turn 1o a consideration of forecasting events with s > 2 outcomes {(e.g. a sct of
temperalure ranges). In such settings the probability forecaster specifies a vector of

probabilities x = (xl.x‘ ..... x). restricted to a finite set X of values lying in the (s-1)-

dimensional simplex. i.e. X 2 0 and Zl‘: X = 1. If the conditional probabilities of the s
outcomes gnen the prediction x are represenled in veclor form by plx) = [,;)(x). ,a:(x).
p(x)]. then the multivariate forecaster is well-calibrated if p(x) = x for all x¢X". Note that
this well-calibrated multivariate forecaster 1s also well-calibrated, in the sensc of Section 2. for
cach binary problem formed by combining the s outcomes inlo two groups: however. a

forecaster who is "marginally" well-calibrated for predicting “rain” or "no rain” may no longer

be well-calibrated when “rain” is divided intc two or more possible outcomes.

More formally, let x = (x1 ..... x) and p(x) = [/)l(x) ..... p X)) Furthermore. let 1 = .1}
represent a partition of the set {l..... s'} into k nonempty, mutually exclusive, and exhaustive
scis I‘.....IL. Then a forecaster is said 1o be marginally well-calibrated with respect to the
partition 1 if

T, px)=Z x forj=l..kand xeX" (5.1)

We can also focus on a particular set of the partition I, say I, and define
n

p(x.1) = P(#=i|# ] forecast x). (5.2

Then we can say that a forccaster is conditionally well-calibrated given the set 1 if
n

X
/)y(.\'.]l) = S — 1el . (5.3)

M|
>

Morcover, because being well calibrated in the multivariate sense is a demanding requirement,
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we mght also wan! to know if a forccaster is well-calibrated for some but not necessarily all
values of x. Let X:)" denote a proper subset of X'. Then we say thal a forecaster is
partially well-calibrated on the subset X;' if plx}) = x for xeXZ)"CX“'. We can now
combine thesc notions of partial. conditional. and marginal calibration in various ways. (In
particular. we note that the concept of conditional calibration sugecsted in DeGroo! and
Fienberg (1982) is in fact a combination of conditional and partial calibration as defined here.)
We also consider an extension of semi-calibration. introduced in Section 3. to the muluivariate

sctling in & special case at the end of this section.

For well-calibrated muluvariate forecasters, we can define the concept of rcfinement by
means of a multivariale stochastic transformation h(x|y).  Consider two well-calibrated
forecasters characterized by their probability functlions v and . Then we say that A is atl

least as refined as B if there exists a stochastic transformation h such that

T h(y[xxTy () = yTv () for yeXT. (5.4)
x €

Note that the analogue of equation (2.2}, i.e.

T hyx)v ) = v (¥) for yeX' . (5.5)
xeX )

is automatically satisfied by summing the s equations in expression (S5.4). Furthermore, we can
immediately define concepts of marginal refinement with respect to a partition I. The concept
of conditional refinement given the sel 1 which also appears to be immediate (in a definitional

n
scnse) is. however, problematic as it involves conditioning of the veclor x on f¢l. These
n

conditional predictions have no operational meaning. because we cannot define them only in
terms of the probability distribution . Similarly, the concept of partial refinement on the

subsct )(0"' C X" also is problematic since two different forecasiers typically place different

amounts of subjective probability on the set X‘o".

At any rate, Theorem 2 and Corollary 1 from Section 2 carry over directly from the binary
casc. i.e.. forecaster A is sufficient for foreccaster B if and only if there exists an appropriate
stochastic transformation. h(x|y). Moreover. supposc we define a multivariate scoring rule,

glx) = [gl(x). ... g(x)). If the forccaster's actual subjective probability is p and he makes
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the prediction x, his expected score is i
Zplgl(x). (5.6)
The scoring rule is strictly proper if expression (5.6) is maximized if and only if x = p. Then

there 15 a direct multivariate analogue to Theorem 9 of Section 2, ie.  cvery strictly proper

scoring rule can be partioned into two components, one of which is zero if the forecaster is

well-calibrated and the other of which is a measure of refinement giving a total ordering for

well-calibrated forecasters.
The following results are also as expected:

Theorem 12. If a mulivariate forecaster A is well-calibrated. (i) A is also
marginally well-calibrated with respect 1o all possible proper partitions 1 of
{1.2....s}. (i1) A is conditionally well-calibrated given the set I C {1.2....s}. and

(iii} A is partially well-calibrated on all proper subsets )(0 c X

Theorem 13. If A and B are well-calibrated multivariate forecasters, and A is at

least as refined as B. then A is also marginally at least as refined as B with respect

1o all possible proper parlilioﬁs 1.
We have, as yet, been unable to provide a collection of refinement conditions for dichotomies
which imply multivariate refinement. Nor have we been able to prove a directly verifiable set
of conditions analogous to Theorem § of Section 3. We can. however. give multivariate

versions of Theorcms 1 and 4 by reformulating results of Blackwell (1951, 1953). Sherman |

(1951). Stein (in unpublished lecture notes). and Strassen (1965). i

Theorem 14. Consider two well-calibrated forecasters A and B. Then A is at least as i
refined as B if and only if there exist discrele random vanables x and y. defined
on the (s-1)-dimensional simplex. such that the marginal probability distribution of

X is ' the marginal probability distribution of Y is Ve and E(X|Y) = Y.

Thecrem 15. Consider two well-calibrated forecasters A and B. Then A is at lcast as
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refined as B if and only if, for every continuous convex function c{x) defined on

the (s-1)-dimensional simplex

p2 cex)v (x) 2 X c(x)v (x) . (5.7)

()} A N B
xeX xtX
We note that cxpression (5.7) in Theorem 15 1s. in our problem. the samic as the condition
used by Fishburn and Vickson (1978) for their definition of multivariate second-degree
stochastic dominance. They also suggest the application of standard feasibility tesis of linear
programming 1o delermine the existence of the stochastic iransformation which we use 10

define refinement.

Furthermore, we have the following direct multivariate extension of a result presented in

DeGroot and Eriksson (1983).

Theorem 16. Consider two well-calibraled forecasters A and B. Then A is at least as

refined as B if and only if there exists a stochastic transformation 5 such that

r x' p(x|y) =y for yeX" . (5.8
x €
Proof: Supposc that A is at least as refined as B. and let h be a stochastic transformation

satisfving (5.4). If we define

h(y | x)r (x)

v (y)
B
whenever rﬂ(y) > 0. and define n(x|y) arbitrarily of v (¥) = 0. then (5.8) follows directly

5.9

n(x|y) =

from (5.4). Conversely, suppose that (5.8) is satisfied for some » and definc the stochastic
transformation h by (5.9). [Note that h(y|x) may be defined arbitrarily if .\(x) = 0.] Then

(5.4) follows directly from (5.8). =

A stochastic transformation » satisfving expression (5.8) is known in the economics literature

as a mean-preserving spread (sce. e.g.. Rothschild and Stiglitz. 1970, 1973).

An interesiing version of the multivariate sectling results when the probability of outcome i

given that the forecaster predicts x depends only on the forccasier's subjective probability X
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for outcome i (This is clearly true if the forecaster is well-calibraicd). We say that the

forecaster is /oca/ if

p(x) = p(x)  i=12..s (5.10)
1 1 &
If the functions p (') are monotonically increasing. then the forecaster is marginally semi-
[
calibrated. in the sense of Scction 3. A special case of locahiny s hincarity. and an interesting
question arises: Under what condiiions on X~ and the p°s is a multihanate forecasler being
t

local equivalent to

px) = bx + b i=1l2..s (5.11)

where ® . b.o b 2 0. and ® -~ B o+ ..+ b =17 If the funcuons . are known to be

continuous on the entire simplex. ths it can be shown that they must be linear for anv local

forecaster.

Suppose we now sav that Forccaster A dominates Forccaster B on the outcome i if the
marginal distribution of the ith prediction component for forecaster A given thal outccme 1
occurs is stochastically Iargér than the corresponding marginal distribution for B. We know
from Theorem 7 of Section 3 thal. if multivariate forecasters A and B are both well-calibrated
and A dominates B on all s oulcomes. then A is marginallv at least as refined as B with
respect to ecach possible outcome. An open question is whether 1t 15 possible to usc calibration,
locality, lincarity as in (5.9). or semi-calibration in connection with somc version(s) of
dominance to imply that one forecaster is sufficient for {or more refined than) another in our

full multivariate sense.
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