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Introduction

The objective of this research is to provide basic data needed to design
a high temperature aluminum base alloy useful to 375°C.

According to the Wagner-Lifshitz-Slyozov (W-L-S) theory for diffusion
controlled coarsening of a dispersed phase the average radius ,at time t, Ez
is proportional to Q:DCot) where g is the interfacial energy, D is the
diffusivity of the rate controlling element, and Co is the solubility limit.
For microstructural stability at high temperatures, the dispersed phase must
be thermodynamically stable, and the product gDC, must be small. Thus infor-
mation about g, D, and Co are needed as the basis for design of Al alloys for

elevated temperature use. If D and Co are known, then measurement of r, vs. t

t

at constant temperature gives g. Low values of ¢ are expected when there is

good lattice matching across the interface between dispersed phase and matrix.
Another important consideration is the stability of the microstructure

under fatigue loading conditions. Cyclic plastic deformation generates

vacancies which amplify the diffusivity. Since D is proportional to

(Cve‘qm/kT) where C,, is the vacancy concentration, q, is the motion energy

of vacancy-atom exchange, k is the Boltzmann constant and T is the absolute

temperature, even a factor of 2 or 3 increase in the vacancy concentration

should have a profound effect on the microstructure.
During the past year the following topics were under study:

1. Al-Fe-Ce alloy. Further work was done on characterizing
the dispersed phase in this alloy. Creep studies were
begun and the particle coarsening during creep was deter-
mined and compared with the particle sizes in the absence

of an applied load at the same time and temperature.
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Al-Al X alloys. Additional compositions were investigated

seeking better lattice matching between the Al and Al,X. The

best matching was obtained with AL (V ., 2r ,,. ). Dilute
supersaturated solid solutions of Aly2r in Al and AL (V ., Zr ,..)
in Al were prepared by arc melting. Precipitation and coarsening

of the precipitates were studied in this alloy.

Al-Fe-Mo-V alloy. The dispersed phases were characterized and
the coarsening rate of the stable phase was wmeasured at 475 and
575°C and compared to Al-Fe-Ce,




l. Studies of Al-Fe-Ce Alloy

1.1. Identification of the dispersed second phase in the Alcoa Al-Fe-Ce
t alloy T

- X-ray diffraction study of pieces of the forged Al-7.5 wt.% Fe-3.4 wt.%
Ce material aged at 475 and 575°C for varied lengths of time indicated that the
same dispersed phase(s) is (are) present in the matrix after aging at either
temperature. These peaks could not be attributed to the Al Fe or Al Fe phase.

According to the phase diagram of Zarechnyuk (1), the composition of the alloy :

lies in the Al-AlaFe-AlloFeQCe-criangle, as shown in Fig. 1. He suggested that
Al Fe,Ce is body centered tetragonal but was not able to solve the structure.
Thus lattice parameters are not yet available.

To find the characteristic diffraction lines of the AlloFeZCe inter-

| metallics for comparison with the diffraction information obtained in the aged
alloy, an alloy whose composition is designated by (1) in Fig. 1 was prepared
by arc melting swall pieces of a casting whose nominal composition is Al ,Fe,Ce
with the necessary quantities of Al and Fe. The casting actually contained

three phases.

While Fig. 1 shows the nominal composition of alloy 1, the actual
composition may be somewhat depleted in cerium. The arc melted button was %
annealed 24 hours at 500°C in argon, water quenched, and then a diffractometer
scan of a polished surface was taken. The diffraction peaks of alloy 1 are
compared with those in the 475 or 575°C aged Alcoa Al-Fe-Ce alloy in Table 1
after eliminating the Al peaks. Common diffraction peaks in both specimens
attributable to A11°Fe=Ce are indicated. The diffraction data gives partial

§ confirmation for the phase diagram of Zarechnyuk et al. (1) and indicates
that the second phase in the Alcoa Al-Fe-Ce alloy may be his Al, ,Fe Ce phase.
The d-spacings of alloy 1 which do not appear to match d-spacings of the

aged Alcoa Al-Fe-Ce alloy mostly correspond well with the d-spacings for

FeAl, (2). The weak 5.43 and 5.12} peaks observed in the Alcoa Al-Fe-Ce,
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however, are absent in alloy 1. Thus additional research is require!l to

determine the phase or phases present in the Al-7.5 wt.% Fe-3.4 wt.% Ce alloy.

1.2. The effect of plastic deformation on coarsening in the Al-Fe-Ce alloy

An Al-8.8 wt.% Fe-3.7 wt.% Ce billet was obtained from the Air Force
Materials Lab in Dayton which had been prepared from gas atomjzed powder by
cold isostatic pressing, hot isostatic pressing and extrusion. The micro-
structure of the material, Fig. 2a, is markedly more homogeneous than that
of the forged material examined earlier. Additionally, the second phase
particles have undergone noticeable coarsening associated with the thermo-
mechanical treatment. Figure.Zb, a higher magnification micrograph of the
thin foil of Fig. 2a, illustrates that a large number of second phase
particles are located along subgrain boundaries. This finding will need
to be considered during subsequent analysis of the coarsening kinetics in
this material.

Several specimens machined from the extruded material were crept at
elevated temperatures. The creep curves of several of these specimens are
presented in Figs. 3 through 5. Tests were terminated after 60 hours in
cases where fracture had not occurred. The curves do not exhibit well
defined regions of secondary creep, as often expected in dispersion strengthened
materials. The specimens which fractured exhibited large strains (up to 35%)
and ductile cup and cone fractures.

Shadowed two stage replicas of the alloy within the gage section
and material just outside the gage section were prepared to examine the
effect of creep deformation on the particle size. Figures 6 and 7 illustrate
a noticeable enhancement of particle coarsening in the deformed regions.
Values for volume fraction of second phase V., surface area per unit volume S,

and particle mean intercept length for deformed and undeformed regions of




several crept specimens are presented in Table 2. An insufficient number of
specimens have been crept at this time to construct a plot of intercept length
cubed vs. time to conform with the LSW theory predictions, but preliminary
calculations of the enhanced vacancy concentrations are included in Table 2.

They are in the range 2 to 4.
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Fig. 2.

TEM micrographs of thin foils of the
Al-8.8Fe~3.7Ce extrusion in the as-received
condition. (a) low magnification and (b)
high magnification.
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(a)

(b)

Fig. 6. TEM micrographs of replicas of specimen
crept at 316°C, 4750 psi in regions (a) away
from the gage section and (b) within the
gage section.
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TEM micrographs of replicas of specimen
crept at 425°C, 2500 psi in regiouns (a)
away from the gage section and (b) within
the gage section,
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(b)




2. Studies of Al Alloys with AL, X Dispersoids

2.1 Lattice parameters of AL(Ti,V,Zr Hf)

Because of the similarity between the crystal structures of Al and
ALX (t&; space groups) an aluninum based alloy containing suitable Al X
dispersoid particles may be the basis for a high temperature Al alloy. In order
to reduce the interfacial energy and the driving force for particle coarsening,
it is desirable to adjust the lattice parameters or Al X by varying X.

Table 3 gives crystallographic data on some tetragonal Al; (X) com-
pounds selected because of their lattice parameter similarity to Al. The two
variants DOy, and DO,, differ by a modulation along their c-axis. Thus, two
phase regions exist between DQO,, and DO,, compounds. For AL,V the lattice
parameter, a, is approximately 7, less than a of aluminum; however, the mis-
match in the ¢ directions is less than 3%. For both the Al,Zr and the Al Hf
the mismatch in the a direction with Al is only 1% while the mismatch along
the ¢ axlis ranges from 5 to 7%.

In the previous annual report it was shown that matching with Al
was better for Al; (Ti, ,¢2r,, ,5) than for either Al,Ti or Al,Zr (3). Similarly,
Al (Tio, g-HE, 15) showed better matching than AL, Ti or Al Hf. The research
during the past year was aimed at further improving this matching. Al X com-

pounds containing V and additional Al, (Hf,2r,V) compositions were investigated.

Experimental Procedures

The method used previously for alloy preparation was followed. Small,
approximately 5 grams, Al-2 at.%(Ti,V,Zr,Hf) alloy buttons were made in a
gettered argon atmosphere by nonconsumable W arc melting using a water cooled
Cu cathode as the crucible. The Al was 99.996% pure, the Ti and V were

Johnson-Mathey spectrochemical grade, and the 2Zr and Hf ware cut from crystal

- _q.; ;:’&:‘ o AT N
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bars prepared by the Van Arkel process, i.e., thermal reduction of iodides.
Each button was melted four to five times, and inverted between melting to
insure homogeneity, and then annealed for 24 hours at 475°C. The presence of
large intermetallic compound particles were verified by optical metallography.

For powder x-ray analysis, the buttons were powdered with an automatic
filing machine, and the fraction passing through a 150 mesh screen was used.
The specimens were annealed at 330°C for 4 hours to remove any residual
stresgses incurred during filing and then mixed with Si powder for an x-ray
peak position standard. The diffraction data were obtained with Cu-Kx

radiation in a Rigaku "Geigerflex'" D/max-IIA x-ray diffractometer.

Results and Discussion

Al-V-Zr System

The a and ¢ lattice parameters of AL, (Zr,V,_,) compared to a, for the
Al (ss) are shown in Figs. 8a and b, respectively. Previous results from the
Al-Ti-Zr-Hf system are also included for comparison. The open svmbols re-
present the results of the present alloys while the closed circles are JCPDS
data for the Al,Ti, Al,V, Al,Zr and Al,Hf intermetallic compounds, cards
#2-1127(1), #7-399(4), #2-1093(5) and #13-512(6), respectively. The nearly
horizontal dashed lines in Figs. 8a, b and the following figures represent
the cubic lattice parameter, a,(ss) and 4ay(ss), respectively, of the Al
solid solution measured from the present x-ray data. Since a,(ss) is very
nearly equal to ap of Al(Aay(0.1%)), one may conclude that virtually all of
the T{, V, Zr and Hf are present in the intermetallic AL, (X)-type compounds.
For AL,Ti and Al,V, a// 2 1s plotted rather than a and 2c is plotted rather

than ¢ for better comparison with ¢ of the AlyZr(ss)-type compounds (DO,,).

In all cases, the measured values of a and ¢ for Al,Ti, ALV, Al,2r and
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Fig. 8 Lattice parameters of Al Hf-Al,Ti, AL Zr-Al,Kf,
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compounds contained in Al alloys with 2 at.?% solute.
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AL, Hf prepared by arc melting are in good agreement with the JCPDS compiled

data.

As mentioned previously, since the structure of AL,Ti and A13V is DOaz
while the structure of the Al, (Zr,Hf) is DQ,,, there must be a two phase
region in the psuedo-binary system for each combination of the above DQ,,
and DQ,; intermetallic compounds. Such was observed in the previous study
of the AL, Ti-Al,Zr for Al (Zr,Ti;_, ) with x between 0.125 and 0.250; however,
for the Al;V-Al;Zr the discontinuous region is shifted to between 0 and 0.125
for AL, (Zr, V,_, ).

A3 previously observed in the AlaTi-AlaZr gystem (3), the addition of
Ti to AL, (Zx, Ti;_,) increases the lattice mismatch along the a-axis with Al;
however, the mismatch between ba, and ¢ is greatly reduced. This same re-
gsponse is also observed when V is increased in Al, (er Vx—x); however, less
change along the a-axes -is found in the V containing compounds compared to
those with Ti. 1In -che Al-V-Zr system, the compound demonstrating the least

average overall lattice mismatch (§=2.39%) is Al (Vo.evszro.las)' Here,

. . 100-20-aGLD , CeLD-
3 LT aaD Za(AD) .

Al-V-Hf System

Similar to the above, data for Al (Hf V;__ ) are also presented in

Figs. 8a and b. Once again, no detectable solid solubility of V or Hf in

Al was found. Similarly, a two phase field was found to exist for Al (HE Vx-x)

between x = 0 and 0.125. The alloy demonstrating the least average overall

lattice mismatch was Al(V

o.a7sf 155 ) where & = 2.69%.

Al-Ti-Zr-Hf System

Numerous quaternary compounds in the general system AL, (Ti,V,Zr,Hf) were




then investigated to further characterize the lattice parameter variation

near the discontinuous region. The results for the Al (Thy ¢ 2n HE) o))
and Al, (’Ii.o.a,’5 Zr, Hfo.lzs—x) intermetallic compounds are shown in Figs. 9a,b
and 10a,b, respectively. As expected, Vegard's law is obeyed between combina-
tions of psuedo-binary compounds with identical cryscal structures. Further-
more, the addition of Hf to the AlaTi-AIGZr system acts to shift the discon-
tinuous region of the lattice variation towards x = 0.125. The compound

giving the minimum mismatch is AL (T, 4,52 ) wich 6=2.70%.

r0-109375 Hf0.015625
Al-V-Zr-Hf System

The a and ¢ lattice parameters for the psuedo-ternary AL, (V5 g0 21k Hfy 155-x)
compounds are shown in Figs. l0a and b, respectively. Here only the DO, , edge
of the two phase field was investigated. Again Vegard's law was rather glosely

followed.

Al-Ti-V-2r System

Along these same lines, the variation in lattice parameters a and ¢ for
Al, (Ti, Vo.,’s_x Zro.zs)are shown in Figs. lla and b, respectively. It was hoped
that the addition of V, replacing Ti, would promote an improved mismatech along
the c-axis while maintaining a nearly equivalent mismatch along the a-axis

(see Table 1). However, this was not the case.

Similarly as in the Al-Ti-Zr-Hf system, a psuedo-ternary phase diagram
of the Al,V-Al,Zr-Al,Hf system is presented in Fig. 12. Since all the alloys
were annealed at 475°C, the diagrams probably apply for this temperature. The
extents of stability of the DO,; and DQ,, phases are shown a?!.ong with the
approximate location of the two phase fields, i.e., the designation Al,V(ss)

refers to a solid solution having the DQ;; crystal structure while Al, (Zr ,Hf) (s8)

refers to a solid solution having the DQ,, structure.
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Fig. 10.
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Fig. 12.
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As shown in the Al1-Ti-Zr-Hf system, while the addition of V to AL Zr or
AL Hf increases the mismatch of the a lattice parameter with aj for the Al(ss),
the mismatch of ¢ with 4aj of the Al(ss) is improved. Once again, the least
mismatch for V in Al,V-Al Zr or Al, V-Al Hf occurs with the maximum V allowable
without forming the DQ,, crystal structure, e.g., Al, (Ti,V) phase. In spite
of the fact that ¢ for Al Hf matches 4a, of the Al(ss) better than Al,Zr, V
has a larger effect on ¢ of Al,Zr so the least average overall lattice mismatch
occurs in this system.

From the average overall lattice mismatch point of view, the most
promising intermetallic compounds for possible elevated temperature applica-
tions are presented in Table 4.

Table 4. Al:3 (TL,v,Zr ,Hf) intermetallic compounds demonstrating
minimum average overall lattice mismatch

Average Overall Lattice

ermetallic Compound Mismatch (8)
Al 2r 2.83;.
AL, (%, 40625 138 ) 2.39%
Al; (V5 g5 HE; 135 ) 2.69%
AL, (Tl 195275, 109375 B 015835 ) 2.70%

2.2. Precipitation characterization during the decomposition of hyper-
peritectic Al-Zr and Al-V-Zr alloys

To evaluate the effect of lattice mismatch between the intermetallic
particle and the Al matrix on particle coarsening kinetics, the precipitation
sequences in some of the more promising alloys previously presented in Table &
were determined. In the past, numerous attempts have been made to characterize
the decomposition of both sub- and hyperperitectic Al-Zr alloys (8-13). 1Im

general, the precipitation sequence is commonly given by

Solid Solution - Cubic Al,Zr (rods & spheres) - Tetragonal Al,Zr .
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Experimental

Small, approximately 3.5 gram, Al-0.35 wt.% Zr and Al-0.40 wt.% V-0.10 wt.%

Zr alloy buttons were made in a gettered argon atmosphere by nonconsumable W
arc melting using a water cooled Cu cathode as the crucible. The large copper
volume ensured very rapid solidification (~ 1P °K/sec) which resulted in the
formation of a supersaturated solid solution. The Al was 99.9967 pure; the V
was Johnson-Mathey spectrochemical grade, and the Zr was cut from crystal bars
prepared by the Van Arkel process. Each button was melted four to five times
and inverted between melting to insure honogeneity.

The buttons were initially cold rolled 95% to enhance precipitation in
the as cast, supersaturated solid solution. Isothermal aging was performed in
a vacuum furnace (10"® torr) for periods ranging from 0.5 hours to 150 hours
or until the equilibrium tetragonal phase formed. Thin foils for TEM were
prepared by electropolishing in a solution of 807 methanol-207% perchloric acid
at 150V and at less than -70°C. The foils were examined in a Hitachi H-700H

STEM microscope.

Observations

A1-0.35 wt.% Zr

Neither optical nor electron microscopy revealed the presence of any
particles in the as-cast structure. The first indication of decomposition
from the supersaturated solid solution was observed after 0.5 hours at 45C°C.
Small, approximately 20 nm, spherical particles appeared throughout the matrix
in a rather inhomogeneous distribution (Fig. 13). With continued aging, no
significant change in average particle size was noted; however, the density
of particles increased. Electron diffraction from such particles showed
them to be cubic (LL,) with nearly the lattice parameter of the Al matrix.

Similar structures have been observed by other workers in both sub- and




Fig. 13. Bright field micrograph of Al,Z2r particles in Al
matrix after isothermal aging of 0.5 hrs. at 450°C.
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Fig. 1l4. Weak bean, dark fleld micrograph of Al,Zr rods
intermixed with spherical particles after iso-
thermal aging of 13.5 hrs. at 450°C.

27




hyperperitectic Al-Zr alloys (6-12).

With continued aging the spherical particles appeared to align them-
selves along preferred directions: (100), (110) and (111). It was not until
13.5 hours that rods, aligned along similar directions, intermixed with
spherical particles were observed (Fig. 14). Numerous models have been pro-
posed to explain the formation of these rods; however high magnification
micrographs (Fig. 15) support the model proposed by Nes (11). Here, preci-
pitation on a dislocation agsociated with helical climb may explain the
appearance of long rod-shaped precipitates. After 20 hours of aging, surface
energy apparently drives these rods to thin down locally and pinch off
(Fig. 16), ultimately forming the equilibrium tetragonal phase (Fig. 17).
Similarly, these equilibrium particles are oriented along (100), (110), and
{111) directiona. As expected, the equilibrium shape appears platelike with

faceted caps.

A1-0.40 wt.% V-0.10 wt.% Zr

Once again, neither optical nor electron microscopy revealed the pres-
ence of precipitates in the as-cast structure. In fact it was not until
1 hour of aging at 450°C that small (~ 10 nm) spherical particles were
observed (Fig. 18). The decomposition sequence was identical to that observed
in the Al-0.35 wt.% Zr alloy; however, the kinetics were appreciably slower.
For instance, rod-shaped precipitates were not observed until after 50 hrs.
of aging at 450°C as compared to 13.5 hrs. in the Al-Zr alloy (Fig. 19).
Similarly, the equilibrium, tetragonal phase was not prevalent until after
100 hrs. of aging as compared to 20 hrs. in the previous system (Fig. 20).
This deceleration in kinetics 1is attributed to the improved lattice matching
for the Ala(vb.svsz‘b.1zs) phase. Furthermore, the shape of the equilibrium

phase no longer exhibits faceted caps as previously found for the Al,Zr phase.

I |




RN  50nm

Fig. 15. Precipitation of Al ,Zr rod on a dislocation associ-
ated with helical climb. 15 hrs. at 450°C.

Fig. 16. After 20 hrs. at 450°C, rod shaped particles are
apparently driven to thin and pinch off as shown
by this micrograph. Electron diffraction patterns
indicate the narticles are now tetragonal.
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Fig. 17. Equilibrium tetragonal Al,Zr phase after 20 hrs.
isothermal aging at 45C°C.

Fig. 18. Bright field micrograph of spherical AL, (V) ., 2
particles after 1 hr. at 450°C.
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Fig. 19. Weak beam, dark field micrograph of cubic rod shaped
particles after isothermal aging for 50 hrs. at 450°C.

3‘ e, ‘\ oy

»-

favg = 15.3nm

3
:
{
[
.

&

Y .

Fig. 20. Bright field micrograph of equilibrium tetragonal

Al, (vo_evszro_las) phase after 100 hrs. at 450°C.
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These plate-shaped particles with hemispherical caps were pres.:t even after

150 hours of aging.

The improved lattice matching between the equilibrium preciritate and

the matrix affects the shape as well as stabilizing the cubic phuse. Thus Al

[

with Ala(vg_a,SZto.las) dispersoids shows promise for further scudv as the

basis for a high temperature aluminum alloy. 1In additiomn, cubic Al.Zr is used

as a grain refiner in commercial Al alloys such as alloy 7050. Since cubic

Al, (Vg .552%, 135) 18 more stable, there may be some advantages in using it

for grain refinement.
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3. Studies of Al-Fe-Mo-V All.v

For comparison with the Al-Fe-Ce alloy developed by Alcoa, study of
the microstructural stability of che Al-Fe-Mo-V alloy developed by Pratt
and Whitney was undertaken. A small amount of an Al-10 w/o Fe-1.5 w/o Mo-
1 w/o V alloy was obtained from AFML in the form of halves of two broken
tensile specimens.

From x-ray diffraction of the as-received material, the main second
phase was "FeAlg" (14,15). During aging for 5 hours at 475°C almost all
of the dispersed phase was converted to "FeaAl, (16). Table 5 lists the
x-ray lines and their identification for an as-received Sample and for a
sample aged 10 hours at 575°C. Presumably, some of the Mo and V have
entered the dispersed phase so FeAls and FeAl, are nominal compositions.

Figure 21 shows the decrcase in microhardness at room temperature from
aging at 475 and 575°C due tc conversion of the Feal, to FeAl, and coarsen-
ing of the FeAl,. As expected, the hardness decreases more rapidly at 575
than at 475°C.

The microstructures of the Al-10Fe-1.5Mo-V alloy as-received and aged
10 hours at 575°C are compared in Fig. 22a and b which are transmission
electron micrographs of thin foils. Rather large plate-shaped "Al Fe"
particles are clearly seen in the as-received sample. Smaller particles
are also present. During aging for 10 hours at 575°C, there was consider-
able grain growth. The particles now "Al Fe'" are more equiaxed.

Using quantitative metallographic procedures identical to those used
previously for the Al-Fe-Ce alloy, the surface area of dispersed phase per
unit volume S, and the volume fraction of the dispersed phase V,, were

measured. The mean intercept length T is 4Vv/sv. Vv was approximately

20 vol.%.
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Fig. 21.

Microhardness of RSP Al-10Fe-1.5Mo-1V alloy versus coarsening
time at 475 and 575°C.




Fig. 7.

Transmission electron micrographs of
Al-10Fe-1.5Mo0-1V: (a) as-received
3tate and (b) 575°C, 10 hours.
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Figures 23a and b are transmission electron micrographs of surface

replicas of specimnens aged 20 hours at 475°C and 5 hours at 575°C. The
particle shapes are much more rounded after aging at the higher temperature,
the lower tempaerature shapes are quite angular.

The mean intercept lengths are shown versus t in Figs. 24 and 25. 1In
these figures ® is plotted versus t following the L-S-W theory. Data for
the Alcoa Al-Fe-Ce alloy reported last year are plotted for comparison. It
is immediately noticed that the dispersed phase in the Pratt-Whitney Al-Fe-
Mo-V alloy coarsens faster than the digspersed phase in the Al-Fe-Ce alloy.
This same data is plotted as L versus T in Fig. 26. The coarsening rate of
the Al-Fe-Mo-V alloy is approximately 30% faster than the Al-Fe-Ce alloy.

Analysis of the data according to the L-S-W theory was attempted with
the assumption that the dispersed phase has the formula (Fe,Mo,V)AL, .
According to this theory, after a certain amount of coarsening a steady
state size distribution is obtained if the size distribution is normalized
with respect to the average particle radius. Figures 27 and 28 show that
steady state distributions were more or less obtained after 50 hours at 475
or 575°C. Assuming iron diffusion is rate controlling and using the Brails-
ford and Wynblatt (17) correction for the volume fraction effect on inter-
laclal energy, a value of g of 0.15 J/uf was obtained for coarsening at 575°C,
a value consistent with an incoherent interface. If Mo or V diffusion is
considered to be rate controlling, then much much larger values of g are
calculated. This result is thought to be due to a failure of the L-S-W
theory when applied to quaternary alloys. The L-S-W theory was derived for

binary alloys.
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Fig. 25. Plot of L® versus aging time at 475°C.
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