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Abstract

All failure detection methods are based, either explictly or implicitly

on the use of redundancy, that is on (possibly dynamic) relations among the
measured variables. Consequently the robustness of the failure detection pro-

cess depends to a great degree on the reliability of the redundancy relations
given the inevitable presence of model uncertainties. In this paper we address
the problem of determining redundancy relations which are optimally robust
in a sense which includes the major issues of importance in practical failure
detection and which orovides-us with a significant amount of intuition
concerning the geometry of robust failure detection. In addition, %e provide
a procedure, involving the construction of a single matrix and the computation
of its singular value decomposition, for the determination of a complete
sequence of redundancy relations ordered in terms of their level of robustness.
This procedure also provides the basis for comparing robust levels of
redundancy provided by different sets of sensors.D T IC
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I. Introduction

In recent years a wide variety of techniques has been proposed for

the detection, isolation, and accommodation of failures in dynamic systems

(see, for example, the surveys in [1,41 and the numerous papers in the

more recent literature). Some of these methods have been developed starting

from general, abstract dynamic models, while others have been produced in

the context of particular applications. While the general methods provide

the basis for what in principle should be a widely applicable failure detection

methodology, their very generality often tends to obscure (or at best fail

to highlight) the important concepts that must be considered in the design

of practical and reliable failure detection systems. On the other hand,

while the methods that have been developed for specific applications may directly

address these basic concepts, this is typically done in a very problem-specific

manner which makes it difficult to separate out those aspects of the design

that can be generalized and those that cannot.

As a result, there does not at present exist a satisfactory general design

methodology for robust failure detection algorithms. The general

approaches to failure detection that have been developed take as their starting

point mathematical models of both the system under consideration and of the types

of failures that may occur. However, if one attempts to use one of these

approaches in a top-down or "canned" manner in which one generates the

requisite overall models and then essentially plugs them in to the approach chosen,

the likely result will be a failure detection algorithm that does not work

satisfactorily. The typical reason for this is the presence of discrepancies

between the behavior of the actual system and that predicted by the model on
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which the detection and isolation algorithm is based.

The explanation for this sensitivity to model uncertainty is relatively

simple. In one way or another all failure detection methods generate signals

which tend to highlight the presence of particular failures if they have

actually occurred. Consequently, if any model uncertainties have effects

on the observables which are at all like those of one or more of the

failure modes, these will also be accentuated. From this perspective we

see that the issue of robustness for failure detection is fundamentally

different from the issue of robustness in filtering and control. In parti-

cular, the goals of filtering and control are typically to keep error

signals small and also to attenuate high frequency effects. On the other hand,

the goal of failure detection is to accentuate particular error signals and in

fact to amplify the transient, high frequency portions of these signals (in

order to minimize detection delay). Consequently, one would expect that very

different approaches would be needed to design robust failure detection

systems which must be maximally sensitive to some effects (failures and

minimally sensitive to others (model errors).

One approach to solving this problem is to attempt to compensate the

detection algorithm by estimating uncertainties on-line or by attempting

to detect such uncertainties and disting~ish them from failures as part of

the detection algorithm [6, 7, 121. The other alternative is to attempt

to directly design a failure detection system which is insensitive to model

errors. The work described here focuses on the latter alternative. The

initial impetus for our approach came from the work reported in [5, 13], which

document the first and to-date by far most successful application and flight
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testing of a failure detection algorithm based on advanced methods using

analytic redundancy. The singular feature of that project was that advanced

methods were not applied in a purely top-down manner. Rather, the dynamics

of the aircraft were decomposed in order to analyze the relative reliability

of each individual source of potentially useful failure detection information.

In this way a design was developed that utilized only the most reliable

information.

In [2] we presented the results of our initial attempt to extract the

essence of the method used in [9, 13) in order to develop a general approach

to robust failure detection. As discussed in those references and in others

(such as (3, 7-9]), all failure detection systems are based on exploiting

analytical redundancy relations or (generalized) parity checks. These are

simply functions of the temporal histories of the measured quantities which

have the property that they are small (ideally zero) when the system is

operating normally. As we discuss in the next section, essentially all of

the recently-developed general detection methods make implicit, rather than

explicit use of all of these relations, and for this reason a top-down

application of any of these methods mixes together information of varying

levels of reliability. What would clearly be preferable would be a general

method for explicitly identifying and utilizing only the most reliable of the

redundancy relations. Several researchers [2, 3, 7-9] have discussed methods

for specifying all possible redundancy relations for a given model (see [3]),

but the problem remains of finding the most reliable of these relations

given the presence of uncertainties. One criterion for measuring the

reliability of a particular redundancy relation was presented in [2] and was
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used to pose an optimization problem to determine the most reliable relation.

This criterion has the feature that it specifies robustness with respect to

a particular operating point thereby allowing the possibility of adaptively

choosing the best relations. However a potential drawback of this approach

is that it leads to an extremely complex optimization problem. Moreover,

if one is interested in obtaining a list of redundancy relations in order

from most to least reliable, one must essentially solve a separate optimi-

zation problem for each relation in the list.

In this paper we look at an alternative measure of reliability for a

redundancy relation. Not only does this alternative have a helpful qeo-

metric interpretation, but it also leads to a far simpler optimization

procedure involving only one singular value decomposition. In addition, it Allows

us in a natural and computationally feasible way to consider issues such as

scaling, relative merits of alternative sensor sets, and explicit tradeoffs

between detectability and robustness.

In the next section we review the notion of analytic redundancy for

perfectly known models and provide a geometric interpretation which forms the

starting point for our investigation of robust failure detection. Section III

addresses the problem of robustness using our geometric ideas, and in that

section we pose and solve a first version of the optimum robust redundancy

problem. In Section IV we discuss extensions to include three important

issues not included in Section III: scaling, noise, and the detection/robustness

tradeoff. Our approach is illustrated with an example in Section V, and we

make some concluding remarks in Section VI. ,K'~.eo .oo v)

'91
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II. Redundancy Relations

In this paper we focus attention on linear, discrete-time systems,

and in this section we consider the noise-free model

x(k+l) = Ax(k) + Bu(k) (1)

y(k) = Cx(k) (2)

where x is n-dimensional, u is m-dimensional, y is r-dimensional, and A, B,

and C are perfectly known. A redundancy relation for this model is some linear

combination of present and lagged values of u and y which should be identically

zcro if no changes (i.e. failures) occur in (1), (2). As discussed in [2),

redundancy relations can be specified mathematically in the following way.

The subspace of (p+l)r-dimensional vectors given by

PA jW' CA = 0 (3)
p=

-CA

is called the space of parity or redundancy relations of order p. The reason

for this terminology is the following. Suppose that W e P • Then (1) - (3)P

imply that if we partion w into (p+l) subvectors of dimension r

=' = [ '..... cci] (4)

then at any time k

p , i-i
r(k) = iE0 'Oi [y(k-p+i)- jE CA-- Bu(k-p+j)] = 0 (5)

The quantity r(k) is called a parity check. A simpler form for (5) (which

we will use later) can be written in the case when u - 0 (or, equivalently,

if the effect of the inputs are subtracted from the observations before
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computing the parity check). In this case

y~ (k-p)

r(k) =Q'Iy(k.-p+1) (6)Ly~k) J

To illustrate the notion of parity relations, consider a system in

which we observe bothavelocity and an acceleration variable. Let yl(k)

denote the output of the velocity sensor and y2 (k) the output of the

1
acceleration sensor. If the sampling rate i-) is hiqh enough (so that

acceleration is essentially constant over time intervals of length T),

an obvious parity check (of order 1) is

r(k) = y1 (k) - y1 (k-1) - Ty2 (k-l) (7)

Note that this is a valid parity check under the stated assumptions even

if the velocity and acceleration variables are embedded in a far more

complex system (for example if these are sensors measuring variables of one

part of a large mechanical system or if drag and damping effects are present).

The importance of this point is made clear in what follows.

To continue our development, let us assume that*

# 0 (8)
p

Let us denote the components of w. asi

i il, W ir 
(9)

Since at least one element of w is nonzero, we can normalize w so this
p

component has unity value. In order to illustrate several points, let us

assume that the first component, (0 P = 1. In this case (5) can be

If p -0, then the parity relation is actually of order p-l, since
p I

[c0 ..... i' e P0 p-1 p-1 "!
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rewritten

p-1  p r
Yl(k) =- Z Wl y(k-pi' - i E 2 E i ys(k-p+i)
1 i=0 il ' 1 =0 s=2 is s

p i-I
+ j C' CAi  Bu(k-p+j)] 0 (10)

1=0 j=0 1

In our example (10) reduces to

Yl(k) = y 1 (k-l) - Ty 2 (k-1) (11)

There are two very important interpretations of (10). The most obvious

is that the right-hand side of this equation represents a synthetic measurement

which can be directly compared to yl(k) in a simple comparison test. The

second interpretation of (10) is as a reduced-order dynamic model. Specifically

this equation is nothing but an autoregressive-moving average (ARMA) model

for y (k). That is y1 (k) is expressed in terms of its own lagged values and

of the present and past values of a set of exogenous variables, namely the

remaining sensor outputs y21...,yr and the input u. (From the point

of view of the evolution of y1 according to (10), y2'...' yr and the components

of u are all regarded as inputs). Equation (11) makes this point quite clear,

as y1 satisfies a first-order difference equation driven by the measurement

of acceleration. As this measurement would of necessity capture all sources

of acceleration or deceleration (e.g. thrust and drag), damping terms (such

as drag) do not appear explicitly.

This second interpretation, which views a parity relation as a reduced-

order dynamic model, allows us to make contact with the numerous existing
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failure detection methods. Typically such methods are based on a noisy

version of the model (1), (2) representing normal system behavior

together with a set of deviations from this model representing the several

failure modes. Rather than applying such methods to a single, all-encompassing

model as in (1), (2), one could alternatively apply the same techniques to

individual models as in (10), (or a combination of several of these), thereby

isolating individual (or specific groups of) parity relations. For example,

this is precisely what was done in [5, 13]. The advantage of such an

approach is that it allows one to separate the information provided by

redundancy relations of differing levels of reliability, something that is

not easily done when one starts with the overall model (1), (2) which

combines all redundancy relations.

In the next two sections we address the main problem of this paper,

which is the determination of optimally robust redundancy relations. The

key to this approach is obtained by re-examining (3). Specifically, from

this equation we see that W e P if and only if W is orthogonal to the rangep

of the matrix

CA (12)

ICAP]

This suggests a geometrical interpretation of parity relations. In particular,

consider the model (1), (2) with u = 0, and let Z denote the range of the

matrix in (12). Then a complete set of parity relations of order p is given

by the orthogonal projection of the window of observations y(k), y(k-l),...,y(kp)

onto the orthogonal complement. G,of Z. To illustrate this, consider an
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example in which the first two components of y measure scaled versions of

the same variable, i.e.

Y2 = LY (13)

Then, as illustrated in Figure 1, in yl - y2 space the subspace Z is simply

the line specified by Eq. (13). Furthermore, in this case the obvious

parity relation is

r = y2 - Cty1  (14)

which is nothing more than the orthogonal projection of the observed pair of

values y1 and y2 onto the line G perpendicular to Z (Figure 1). For inter-

pretations of the space P in purely matrix terms and in terms of polynomialp

matrices we refer the reader to [9] and [31, respectively. It is the

geometric interpretation, however, which we will utilize here.
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G Z ,\ Observed value
of (y, Y2 )

",,

Value of the parity relation
r = y? - ay,

Figure 1: An Example of the Geometric Interpretation of

Parity Relations.
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III. An Anqular Measure of Pcr-stness

"-insider a model containing imperfectly known parameters , process

noise w and measurement noise v:

x(k+l) = A(n)x(k) + B(tj)u(k) + w(k) (15)

y(k) = C(TO)x(k) + v(k) (16)

where n is a vector of unknown parameters and where the matrices A, B, C

and the covariances of w and v are functions of n• Let K denote the set

of possible values which n can take on. In their work [2] Chow and Willsky

used the following line of reasoning. If the parameters of the system

were known perfectly and if there were no process or measurement noises,

then according to (5) we could find a vector w' = [w ...... w') and a vector
0 p

i= [NO .... ,p_ 1 Iwith

p•

S W' CA - B (17)
i j=i+l i

so that

p p-l

r(k) = i W!y(k-p4-i) - Z W u(k-p+l) = 0 (18)
10 1 1=0 1

In the uncertain case, what would seem to make sense is to minimize some

measure of the size of r(k). For example one could consider choosing the w

that solves the minimax problem

min max E [r(k) ]2 (19)

WI, TleK x0 ()
U0II f-- 1 u0

Note that with this formulation of model uncertainty one can incorporate
the possibility of neglected dynamics by state augmentation. if one has
an upper bound on the order of this dynamics.

L ii
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where the constraint Hl w fl : 1 is made to avoid the trivial solution of

S= = o. Here the expectation is taken for each value of n and assuming

that the system is at a particular operating point, i.e. that u(k) = u

and that x (n) is the corresponding set point value of the state, i.e.

x (TI) = A(Ti) x (YI) + B(n)u (20)
0 0 0

This criterion has the interpretation of finding the approximate parity

relation which, at the specified operating point, produces the residual with

the smallest worst-case mean-square value when no failure has occurred.

Alternatively, one could consider a less conservative criterion by replacing

the worst case maximization over n by a weighted integral over n, where the

weighting function can alternatively be thought of as a probability distri-

bution over n.

Let us make several cozmments concerning the procedure just described.

In the first place the optimization problem (19) is a complex nonlinear

programming problem. Furthermore, the method does not easily give a

sequence of parity relations ordered by their robustness. One can, of course,

obtain such a sequence, but at substantial computational cost. In particular

if W 1 is the solution to one of these optimization problems one can then

solve for the next best parity relation by re-solving the optimization problem

with the additional constraint that the solution must be orthogonal to the

previously determined relation, i.e. 'iwc = 0. Clearly this process can be

iterated but at each stage we have an optimization problem of essentially

the same level of difficulty as the original one. Finally the optimum parity
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relation clearly depends upon the operating point as specified by u and
0

x 0(n). In some problems this may be desireable as it does allow one to0

adapt the failure detection algorithm to changing conditions (although

it requires solving the optimization problem for every likely operating

regime), but in others it might be acceptable or preferable to have a

single set of parity relations for all operating conditions. The approach

developed in this paper produces such a set and results in a far simpler

computational procedure.

To begin, let us focus on the noise-free, undriven model

x(k+l) = A(Tl)x(k) (21)

y(k) = C(i)x(k) (22)

Referring to the previous discussion, we note that it is in ceneral impossible

to find parity checks which are perfect for all possible values of T). That is,

in general we cannot find a subspace G which is orthogonal to

Z(M) = Range (T)A ( 1) (23)

U(n)Al(n) 
p

for all n. What would seem to make sense in this case is to choose a subspace

G which is "as orthogonal as possible" to all possible Z(n). Returning to

our simple example, suppose that y2 = ayl but a is not known precisely. Rather,

what we do know is that

a m < a < a (24)mmn - - max



-14-

In this case we obtain the picture shown in Figure 2. Here the shaded

regions represents the range of (yI, Y2) values consistent with y2 = OYl

and with (24). Intuitively what would seem to be a good choice for G

(assuming that CL is equally likely to lie anywhere in the interval (24)

is the line which bisects the obtuse angle made by the shaded sector in

Figure 2. It is precisely this geometric picture which is generalized

and built upon in this paper.

In particular, one natural generalization of the concept depicted

in Figure 2 is obtained by noting that G in this figure is the line which

maximizes the minimum angle between itself and any line in the shaded

sector. In general one can extend this idea by defining the cosine of the

"angle" between two subspaces H and M as the maximum inner product of a unit

vector in H with a unit vector in M. An equivalent definition which we will

find useful is that the cosine of the angle between H and M equals the maximum

magnitude of the projection of any unit vector in H onto M, i.e.

cos (f H,M) sup P py (25)
y6H M

where PM is the orthogonal projection onto M. As shown in Appendix A.1,

(see also [16)), if we use the same symbols H and M to denote matrices whose

columns form orthonormal bases for the corresponding subspaces, then

cos (I (H,M)) = a (H'M) (26)

From this point we will use the same symbol to denote a subspace and a matrix
whose columns form an orthonormal basis for the subspace.
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...,.-- , , " - -z -- ----Z ( a )
,, a~min s ma x

Figure 2: Illustrating the choice of G in the presence

of uncertain parameters.

~Ji

At
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where GMAx(H') is the maximum singular value of H'M (see Appendix A.0.).

Note that this definition of the angle between subspaces

has the property that, if H(I M is larger than :0}, the angle

between H and M is zero. Thus the angle between any two, distinct two-

dimensional subspaces in 3-space is zero, as the intersection of these

spaces is a line. While this may at first glance appear troublesome, it

makes good sense for the problem at hand. Recall that computing parity

checks corresponds to projecting onto a chosen subspace (say, M) the most

recent history of output values which under normal conditions take values

in a second subspace (H). If H11 M 3of fol, then for some output histories

within normal limits one will find that one or more of the computed parity

checks will be large.

Returning now to the problem of determining robust parity checks we

see that choosing a subspace G to maximize the minimum angle (or equivalently

to minimize the maximum cosine of the angle) between it and Z(n) as n ranges

over K is equivalent to

2
min max a (G'Z (n)) (27)

G'G = I eK MAX

Here the condition G'G = I simply ensures that the columns of G form an

orthonornal basis for G. Furthermore, once we have obtained the solution

+
to (27), the optimum set of parity relations is obtained as

G y (k-l) I  28

)(k ) (

tWe note that the actual projection onto G is given by GG' (see Appendix

A.1); however, if dim G s, then all the multiplication by G does is to
coordinatize the set of parity checks (the s components of (28)) in the
higher-dimensional space in which G sits as a subspace.

S[

4.. 1L... ..... a -- " _ -- + _
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Thus the rows of G' correspond to individual parity relations as in (4).

While the problem just stated has a simple and conceptually useful

geometric interpretation, it suffers from several drawbacks and limitations

which we address in the remainder of this and the next section. The first

is, that, although the criterion explicitly involves singular values, whose

calculation is relatively easy, the minimax problem (27) represents an

extremely complex nonlinear programming problem (on the same order of

difficulty as that investigated in [2]). One can improve things somewhat

by considering the less conservative criterion obtained by replacing the

worst-case maximization over n in (27) with an expectation over n (3];

however the resulting formulation is still a complex nonlinear programming

problem. On the other hand, if we consider a variation on this idea we

obtain a far simpler problem which also has other important advantages. To

do this, however, we must make the assumption that K, the set of possible

values of n,is finite. Typically what this would involve is choosina

representative points out of the actual, continuous range of parameter

values. Here "representative" means spanning the range of possible values

and having density variations reflecting any desired weightings on the

likelihood or importance of particular sets of parameter values. For

the example in Figure 2 this would correspond to choosing a finite set

of values of a between a . and a . If all values of a are equally likely,min max

the samples chosen would be uniformly spaced; however if a. represented themin

more likely extreme or the one which we view as the most critical, we would

choose a higher density of points near this value. However this is accomplished,

-'-
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we will assume for the remainder of this paper tnat n takes on a discrete

set of values n = i,....L, and will use the notation A. for A(h i), Z.I I

for Z(f0 = i), etc.

To obtain a simpler computational procedure for determining robust

redundancy relations, we proceed as follows. Rather than computing the anale

of G with Z. and choosing G to maximize this on the average, we reverse1

these two steps: We first compute an average observation subspace Z which
0

is as close as possible to all of the Z. and we then choose G to be the1

orthogonal complement of Z . This idea is also illustrated in Figure 2,0

where the average observation space Z is depicted as the line which bisects0

the shaded region, and the line G then represents its orthogonal complement.

In the general case let us first note that the Z. are subspaces of
1

possibly differing dimensions embedded in a space of dimension N = (p+l)r

corresponding to histories of the last p+l values of the r-dimensional

output. Consequently, if we would like to determine the s best parity

checks (so that dim G = s), we would equivalently like to find a subspace

Z of dimension N-s. We define a criterion for the best choice of Z in
0 0

the following manner. Let Z ,...,Z L denote matrices of sizes N x V.,

i = 1,... ,L (where V. = dim Z.) whose columns form orthonormal bases for1 1

the corresponding subspaces, and let M = I+...+ L. Define the NXM matrix

Z = [Z: Z Z] (29)
1. 2. L

Thus the columns of Z rwpresent directions in which observation

histories may lie under normal conditions. The optimum choice for Z is0!o-~
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then taken to be the span of the (not necessarily orthonormal) columns of

the matrix Z which minimizes
0

2 - Z (30)

subject to the constraint that rank Zo = N-s. Here 11-"1 F denotes the

Frobenius norm which is defined as

11D12= E IdI 12 (31)

Thus the matrix Z is chosen so that the sum of the squared distances
0

between the columns of Z and of Z is minimized subject to the constraint
0

that Z have only N-s linearly independent columns.
0

There are several important reasons for choosing this criterion, one

being that it does produce a space which is as close as possible to a specified

set of directions (in fact, the importance of this will be made even more

clearly in Section 4.1). A second is that the resulting optimization problem

is easy to solve. In particular let the singular value decomposition (see

Appendix A.0) of Z be given by

Z =U 7V (32)

where 1 0o
;0= [ j (33)

"N

Here 01< 2 <. .< TN are singular values of Z ordered by magnitude. Note we

have assumed N < M. If this is not the case we can make it so without changing

Ar
t -



the optimum choice of Z by padding Z with additional columns of zeros. As0

shown tn [17] (see also [18]), the matrix Z minimizing (30) is given by
0

Z =U s+l 0 V (34)

"N

Moreover, since the columns of U are orthonormal, we immediately see that

the orthogonal complement of the range of Z is given by the first s left0

singular vectors of Z0, i.e. the first s columns of U. Consequently

G = [ul s u(35)

1. s

and ul,... ,u are the optimum redundancy relations.

There is an alternative interpretation of this choice of G which provides

some very useful insight. Specifically, recall that what we wish to do is to

find a G whose columns are as orthogonal as possible to the columns of the

Z.; that is, we would like to choose G to make each of the matrices Z.G as1 2.

close to zero as possible. In fact, as shown in Appendix A.2, the choice of

G given in (35) minimizes
L

J(s) = L ff Z.G ( (36)
i-l i F

yielding the minimum value

2J(s) 2 (37)
i1i

As noted in the Appendix, the same choice for G also minimizes other

related criteria,.which yields additional insight.
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There are three important points to observe about the result (36), (37).

The first is that we can now see a straightforward way in which to include

unequal weightings on each of the terms in (36). Specifically, if the w.1

are positive numbers, then

L L 2
z11  '1Vw ZGII 2 (38)

so that minimizing this quantity is accomplished using the same procedure

described previously but with Z. replaced by vA. Z. As a second point1 1 1

note that the optimum value (37) provides us with an interpretation of the

singular values as measures of robustness and with an ordered sequence of

parity relations from most to least robust: u is the most reliable parity

2
relation with G I as its measure of robustness, u2 is the next best relation

2
with 02 as its robustness measure, etc. Consequently from a single

singular value decomposition we can obtain a complete solution to the robust

redundancy relation problem for a fixed value of p, i.e. for a fixed length

time history of output values. To compare relations for different values

of p it is necessary to solve a singular value decomposition for each; this

is illustrated for an example in Section V. The third point to be noted is that

the above solution does not depend on which particular orthonormal basis

Z. is chosen for the i-th subspace above.3.
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IV. Several Important Extensions

In this section we address several of the drawbacks and limitations of

the result of the preceding section and obtain modifications to this result

which overcome them at no fundmental increase in complexity.

4.1 Scaling

A critical problem with the criteria of the preceding section is that

all vectors in the observation spaces Z. are treated as being equally likely~1

to occur. If there are differences in scale among the system variables this

may lead to poor solutions for the optimum parity relations. To see this

consider a simple example in which two measurements y1 and y2 are related

to two state variables x1 and x 2 by

Yl = x1  (39a)

Y2 = x + flx 2  (39b)

Suppose that x1 has a magnitude of order 1, that n is of order 1,

and x2 is of order 10- 6 . It is clear that yl-y 2 is a reasonable parity

check. However, the previous criteria would indicate otherwise, since they

implicitly consider all possible values of x I and x2 to be equally

likely.

To overcome this drawback, we proceed as follows. Suppose that we

are given a scaling matrix P so that with the change of basis

Px (40)
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one obtains a variable which is equally likely to lie in any direction.

For example if covariance analysis has been performed on x and its covariance is Q,

then P can be chosen to satisfy

Q = P-l(pI) - (41)

and the resulting covariance of is the identity. Similarly, if one

assumes an unknown-but-bounded model for x [101

x' Sx < 1 (42)

then the appropriate choice of P is such that

S = P'P (43)

As a next step, recall that what we would ideally like to do is to

choose a matrix G (whose columns represent the desired parity relations)

so that

CiAi G' A i P- I

Go . Gx G' U (44)
• 1

is as small as possible. In the preceding section we considered all directions

in Z. = Range (Ci) to be on equal footing and arrived at the criterion (36).

Since all directions for E are on equal footing, we are led naturally to the

following criterion which takes scaling into account

L
2 s[ (45)

As in (38), we can multiply the C. by positive scalars to take into account

unequal weightings on the term in (45).
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Using the result [17] cited in the previous section we see that to

find the Nxs matrix G (with orthonormal oolumns) which minimizes J(s) we

must perform a singular value decomposition of the matrix

C= ["C C - U ZV (46)

2 2 2
where o1 <2 < .. <O N  and U = [u 1 u2  UN . Then uI is the best

parity relation with a2 as its measure of robustness, u2 is the next best,

etc., and

s 2
J*(s) (47)

Note in this case that the columns of C represent the (not necessarily

orthogonal) directions in which the observations are most likely to lie.

Finally, in anticipation of the next subsection, suppose that we use the

stochastic interpretation of , i.e. that

E[ '] = I (48)

In this case if we define the parity check vector

1= 1'Ci  (49)

then

E( Iui11 ] = E[E'CGG'C. ] E[tr(C GG'C.,')]1 1 1

= tr (C.GG'C.) =11CiGH 2  (50)

4.2 Observation and Process Noise

In addition to choosing parity relations which are maximally insensitive

to model uncertainties it is also important to choose relations which suppress

noise. Consider then the model
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x(k+l) = A.x(k) + D.w(k) (51)
I 1

y(k) = C x(k) + v(k) (52)

1

where w and v are independent, zero-mean white noise processes with co-

variances Q and R, respectively. In this case the time window of observations

is given by

~y(k) C ~'w(k)2l [v(k-)j
y(k+l ciA

x(k) + + (53)

_(k +p) C.A. (kC A) V

L 1 - . '-F

Y(k) 11 W(k) V(k)

where

0 0 ....... 

C.D. 0..
1 .

D. = C A.D. C.D, • (54)
1 1 1 1 I. ".

0
" p-2  '.C.A.-ID. C.A. D. . C.D.

11i 1 1 1 1 11

Assuming x and y have attained stationarity and writing x(k) = P- (K)

for an appropriate P, we obtain

Y(k) = C i(k) + DiW(k) + V(k) , Var = I (55)

Using the interpretation provided in (50), we obtain the following

natural generalization of the criterion (45):

L
J(s) = jl E[II w112  (56)

-- ~* -- -.. - .--. -
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G'Y(k) (57)

when Y(k) is generated by the ith model.

Using the independence of (k), W(k), and V(k) and the fact that r has the

identity as its covariance we find that

L
J(s) i i C' Gil + tr (D'GG'D + tr (GG'R)II (58)

where

R = (R.(59)
(0 0) 0R

We now write

L -

tr(D' GG'Di) + tr(GG'R); = tr (GG'N) (60)i~l 1 1

where

L

N D.QD' + LR (61)

Let S be a matrix such that

N = SS' (62)

Then we can write

L 2 , j
L 'CG"i + 2 s'GK (63)i(s) = i=lI i 'F F

Consequently, the effect of the noise is to specify a sinqle additional set

of directions, namely the columns of S, to which we would like to make the

columns of G as close to orthogonal as possible.

From this it is evident that the optimum choice of G is computed by

performing a singular value decomposition on the matrix

:c C i S] = U E V (64)

with U 2 <." . As before,(64) provides a comrete set of parity relations
1-2-
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ordered in terms of their degrees of insensitivity to model errors and noise.

4.3 Detection Versus Robustness

The methods described to this point involve measurina the quality of

redundancy relations in terms of how small the resultina parity checks are

under normal operating conditions. That is, good parity checks are maximally

insensitive to modeling errors and noise. However, in some cases one miaht

prefer to use an alternative viewpoint. In particular there may be parity

checks which are not optimally robust in the senses we have discussed but

are still of significant value because they are extremely sensitive to

particular failure modes. In this subsection we consider a criterion which

takes such a possibility into account. For simplicity we focus on the

noise-free case. The extension to include noise as in the previous subsection

is straightforward.

The specific problem we consider is the choice of parity checks for the

robust detection of a particular failure mode. We assume that the unfailed

model of the system is

x(k+l) = A (n) x(k) (65)u

y(k) = C (r)) x(k) (66)u

while if the failure has occurred the model is

x(k+l) = Af (n) x(k) (67)

y(k) = Cf () x(k) (68)

For example, if we return to the simple case y2 = (yI' then under unfailed

conditions one might have

- --.~'.~q.....Am.- ~ .
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- +

O- < 0 < a (69)
U- - U

while after a failure

- +
CL < C < ±f (70)

This is illustrated pictorially in Figure 3 In this case one would like to

choose the line G onto which one projects so that one gets a small value if

no failure has occurred and a large value if a failure occurs. That is,

we would like G to be "as orthoaonal as possible" to Z (n) and "as parallelu

as possible" to Z f(n).

Returning to the general problem, we aqain assume that n takes on one

of a finite set of possible values, and we let Cui and Cfi denote the counter-

parts of C. in (44) for the unfailed and failed models, respectively. What

we now have is a tradeoff. Specifically, we would like to make Z'. G asui

small as possible for all i and to make C'i G as large as possible. A natural

criterion which reflects these objectives is

L

J(s) m in2 E -- , G 2 (71)
G'G=I il ui F fi

If we define the matrix

H=[ ~ :.: ~ :... (72)
S fl f2. fL Cul. u2. . uL

M1 columns M 2 columns

then

J(s) = min tr 'G'HSH'G} (73)
G'G=I
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Z f(71)

Figure 3: Illustrating Robust Detectability
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where

M M1 2

S = (74)t'I ;M
It is straightforward (see [3]) to show that a minor modification of the

result in [17] leads to the following solution. We perform an eiaenvector-

eigenvalue analysis on the matrix

HSH' = U A U' (75)

where U'U = I and

A=0 (76)

with A < A <...< A and U =u ... J. Then the optimum choice of G
1- 2- < AN 1. . *N)

is

G -[ul u (77)

and the corresponding value of (73) is

S
J = i A (78)

Let us make two comments about this solution. The first is that

upto M of the A. can be negative. In fact the-parity check based on u.
2 1

is likely to have larger values under failed rather than unfailed conditions if and

only if Ai < 0. Thus we immediately see that the maximum number of useful

parity relations for detecting this particular failure mode equals the number
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of negative eigenvalues of HSH'. As a second comment, let us contrast

the procedure we use here with a singular vAlue decomposition, which

corresponds essentially to performing an eigenvector-eigenvalue analysis of

HH'. First, assume that the first K of the X. are negative. Then, define

2 2 2
01 1_I 2 2 GK K

2 2
a+12= - IK+ 1 "* at,. 2N  = 1 (79)

From (75) we have that

HSH' = UZSZU' (80)

where

Z = ".(81)

Assuming that Z is nonsingular, define

V = E-I Ul H (82)

Then (81), (82) imply that V is S-orthogonal

VSV' = S (83)

and that H has what we call an S-singular value decomposition

H UEV (84)

-[
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V. An Example

We consider here an example, adapted from [11], representinq the linearized

dynamics of a three machine power system. The continuous dynamics of this

5th-order system are

£(t) - Fx(t) (85a)

y(t) - Cx(t) (85b)

x'(t) A r ,ASCFc A , d  (86)

with .w r , Awc and Ad being the relative angular velocities of the generator

shafts with respect to a reference and A6 and A6d the relative angles.c d

The F matrix in (85) is

f 1 .00756 .00486 .00733 -.00181

0 0 377 0 0

F - .0122 f32 f33 .0304 -.00454 (87)

0 0 0 0 377

-.292 .163 -.0292 f f

where f1 1, f33 and f55 are the damping factors whose values are in the

range from -. 15 to -. 2, and f32 and f 5 4 are sprina coefficients whose

values are not known precisely and can change from -. 1 to -. 4. The

constant value 377 in F comes from the angular frequency of 60 Hz.

We consider two C matrices.

1 0 0l 000 0

C C- 0 1 0 C2  0 0 1 0 0 (88)

0 0 1 0 0 0

representing alternative sensor complements.

In order to apply our results we used a discretized version of (85).

Because the fastest angular frequency in any mode of this system is

_f1
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approximately 6.09 [11], we choose a samplinq interval of 0.25s which is roughly

1/4 the period of the fast mode.

As we have indicated we assume that model uncertainties appear

only in the elements fll f33 ' f55 ' f and f of F. To apply our
11, 3 5 32 54

methods we must first discretize the uncertainties, and we do this by choosing

several "extreme points". Specifically, we assume that the parameters assume

one of the three sets of values listed below:

f11 f32 f33 f54 f55

i =1 -.2 -.1 -.2 -.1 -.2

i 2 -.15 -.4 -.15 -.4 -.15

i 3 -.15 -.2 -.15 -.2 -.15

We applied the results of Subsection 4.1 to four cases:

case 1 p=6, C=C.1

2
case 2 p=6, C=C

case 3 p=4, C=C1

case 4 p=4, C=C

and the results are depicted in Figure 4. In this figure we plot J*(s)

in (47) versus s for each of the four cases. This illustrates how our method

can be used to compare different sensor configurations (choices of C) and

different length data windows (p). For this example Case 1 is the superior

one since its curve lies below the others. Note also that each individual

curve also provides a useful visualization of the effective level of redundancy

in the system. If the curve has a dramatic "knee" (as it does in each of
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case 2 case 3&84
J*s)l

case
10-

li S
7 15

Ficnure 4
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the four cases in the figure), one obtains a clear indication of the number

of independent parity checks that can be made reliably. Note that the incre-

2
mental change J*(s+l) - J*(s) is precisely Cs+l' so that what we are seeina

in the figure is a sharp increase in the magnitude of the sinaular values

for values of s beyond the knee.
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VI. Conclusions

In this paper we have developed a series of methods for determining

robust parity relations for failure detection in dynamic systems. These

methods build on the geometric interpretation of parity checks as orthogonal

projections of windows of observations onto subspaces which are as orthogonal

as possible to the observation sequence given the presence of model uncertainties

and noise. We also consider modifications of criteria of this type in order

to take into accrnunt possible differences in scaling among the variables of

the system and the choice of parity checks for the detection of particular

failure model. In each of tho cares we consider we find that a sinale singular

value decomposition (or in the case of Section 4.3, a variation thereof) produces

a complete sequence of orthogonal parity relations ordered in terms of a

meaningful measure of robustness. This allows us to determine the level of

robust redundancy in a system in an extremely efficient manner and to define

those relations which can then be used as the basis for designing robust

detection rules.
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Appendix

A.O Singular Value Decompositions

Let F be an NxM matrix and for the sake of this discussion assume

N < M. The singular values j I... N are the square roots of the eigenvalues

of the matrix FF', and the largest of these MAX(F) is precisely equal to the

matrix norm

sup (x'F'Fx) 2 
2  F' j K = sup (x'FF'x) (A.1)!Ix 11 :

=IxjI = I

The singular value decomposition of F is then of the form

F=UEV (A.2)

where U isan NxN orthogonal matrix (i.e. its columns are orthonormal), V is

an MxM orthonormal matrix, and

1a 0

[Dl:. 0 (A. 3)

Here the columns of U, (u ,...,u N), are known as the left sinaular vectors

of F and the first N rows of V, (v'... v'), are known as the riaht inaular

vector of F. From (A.2) we see that

N
F rE u s.le (A.4)

For more on singular value decompositions, see (14, 15].
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A.1 Singular Values and the Anale Between Subspaces

Let H and M denote both subspaces and matrices whose columns form

orthonormal bases for the correspondina spaces. In general the orthogonal

projection onto the range of a matrix A is given by A(A'A)- IA'. Thus, the

orthogonal projection P M onto M is given by

PM = M(M-M) M, = meh (A. 5)

Consequently

2 2
-im Imm' y 11 (A.6)

Furthermore, any y IF H can be written as y =Hx. Since H'H I jy Il

and thus

2 2
sup P y V=sup IMM'Hx V= sup x'H'MM'MM'Hx

= sup x'H'MM'Hx =a2 (M'H) = G2 (H'M) (A.7)

A.2 Singular Value Decompositions and Optimum Parity Checks

Consider the problem of choosing an Nxs matrix G to minimize

L 'G1 2
J(s) = Zfl .Gf (A.8)

subject to the constrant. that G'G = I. Note first that

i(s) = IJH'GiIj 2 tr (G'HH'G) (A.9)

where

H=[H 'H HJ (A. 10)
1. 2. *. L
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We assume that H has more columns than rows. Let H have the singular value

decomposition

H U 7 V (A. 11)

22
with E as in (A.3) with 7 I < < (N  and with

U = Us u 1 ....

We now show that the minimum value of J(s) is

s
J*(s) j 2 (A.12)

J~l i

and the optimum choice of G is

G = [u: u .... uI (A.13)
1. 2:. s

To do this we use the following elementary result which is a direct consequence

of the Courant-Fischer minimax principle [3, 141: Suppose that

A = (A. 14)
A 21 A22]

is nxn, symmetric, and positive semidefinite. Suppose also that A is mxm

and let Xi(A), Xi(A 1) denote the ith smallest eigenvalue of A and A

respectively. Then

X.(A) < X i(Al) , i = 1,....m (A.15)

Consider, then any choice of G satisfying the constraint G'G = I, and

augment this matrix with N-s additional columns so that the square matrix



-42-

F = (G:D] (A.16)

is orthogonal. Then

F'HH'F = (A.17)

Applying (A.15) to (A.17) and using both (A.9) and the fact that F is

orthogonal we see that

s I s s

i Oi = J= Xi (HH')= 7 . (F'HH'F) < tr (G'HH'G) =IIH'GII (A.18)
i=l F

From (A.14) we see that

HH' = UZ' U' (A.19)

with

2

ZE' =.(A. 20)
0 

N

and from this we see that the inequality in (A.18) becomes an equality if

G is chosen as in (A.13) thereby proving our assertion.

We note that from this analysis we can directly deduce that the same

choice of G minimizes a variety of other criteria. For example, an interesting

one is

det (G'HH'G) (A.21)

which has the interpretation of minimizing the volume of the projection of the

columns of H onto the subspace G. The proof that the same G minimizes (A.21)

I
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is also a straightforward consequence of (A.15). Specifically

s s 5det (G'HH'G) = (G'HH'G) > IT X (HH') = 2 (A.22)

with equality resulting once again if G is taken as in (A.13).


