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SOME ALTERNATIVES TO BAYES' RULE

Persi Diaconis

and

Sandy Zabell

ABSTRACT

We review Bayes' rule, Jeffrey's rule, and Dempster's rule as methods

of revising probability judgments based on new evidence.

1. INTRODUCTION

There are several different approaches to what might be called "the

mathematics of changing one's mind." The most frequently discussed method,

Bayes' rule, changes a prior or initial probability P to a posterior or

final probability P*, based on the occurrence of an event E. It speci-

fies that for any event A:

BAYES' RULE P*(A) = P(A and E)/P(E)

Bayes' rule is not (at least directly) applicable if

New information does not arrive in the form "event E occurred"

(e.g., the murderer was a woman), but instead in the form, "the

odds on E have changed" (e.g., the murderer was likely to have

been a woman). This is sometimes called the problem of probable

knowledge.

Even if "E occurs," we may not have thought about E beforehand.

Thus we will not have previously assessed either P(A and E) or

P(E), and will therefore be unable to make direct use of Bayes'

rule. We will call this the problem of unanticipated knowledge.

1q



This vwtw focuses on two proposed alternatives to Bayes' rule for

revising probability assessments in the face of new inforration: Richard

Jeffrey's rule of conditioning and Arthur Dempster's rule of combination.

Section 2 describes Jeffrey's rule. Section 3 describes upper and lower

probabilities and Dempster's rule for their combination. Section 4 shows

that the two rules are in fact closely connected: Jeffrey's rule is the

additive version of Dempster's rule in those situations where the two rules

are comparable.

Our presentation is intended as an introduction to a growing and already

sizeable literature. It proceeds mainly by a series of examples. For refer-

ences to the literature on the limitations of Bayes' rule and for further

information on Jeffrey's rule see Diaconis and Zabell (1982); for further

references on upper and lower probability and Dempster's rule see Shafer

(1976, 1982).

2. JEFFREY'S RULE OF CONDITIONING

While the mathematics of Bayes' rule presupposes some given event E,

Jeffrey's rule assumes the existence of a partition {El, E2, ... En) on

which new probabilities P*(Ei) are given (the elements of a partition are

by definition, mutually exclusive and exhaustive). It specifies that for

any event A:

n
JEFFREY'S RULE P*(A) = I P(AJEi) P*(Ei)

i=l

Jeffrey's rule is mathematically equivalent to, and hence applicable only if
El

it is judged that the "J-condition"
By

(J) P*(AIE i) m P(AlE i) Distribution/
Availabillty Codes

Avail and/or-

) Dist Special
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holds for all A and i. The J-condition can be interpreted as stating that

the only impact of the new evidence was to change the probabilities on the

elements of the partition; given an element of the partition, the new and

old probabilities agree.

Example 1 (Uncertain Perception). Suppose we are about to hear one of

two recordings of Shakespeare on the radio, to be read by either Olivier (E)

or Gielgud (Ec), but we are uncertain as to which, and we have a prior with
1 1

mass on Olivier and . on Gielgud. After hearing the recording, one

might judge it fairly likely, but by no means certain, to be by Olivier. The

change in belief takes place by direct recognition of the voice. If the only

impact of hearing the recording is to change the odds on Olivier and Gielgud,

in the sense that for any A, P*(AIE) = P(AJE) and P*(AIEc) = P(AIE), then

after assessing P*(E) we may proceed to apply Jeffrey's rule. (Of course,

the former might well not be the case; for example the quality of the record-

ing might convey additional information as to its date or manufacture.)

Richard Jeffrey has argued that examples of this type are the norm:

"it is rarely or never that there is a proposition for which the direct

effect of an observation is to change the observer's degree of belief in

a proposition to 1" (Jeffrey (1962), p. 171).

Example 2 (Unanticipated Knowledge). Suppose we are thinking about

three possible trials of a new surgical procedure. Under the usual circum-

stances a probability assignment P is made on the eight possible outcomes

n = (000, 001, 010, 100, 011, 101, 110, 111} where 1 denotes a successful

outcome, 0 not. Suppose a colleague informs us that another hospital had

performed this type of operation 100 times, with 80 successful outcomes.

This is clearly relevant information and we will obviously want to revise

our opinion. The information cannot be put in terms of the occurrence of an
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event in the original eight point space E and Bayes' rule is not directly

available.

Diaconis and Zabell (1982) discuss four possible approaches to the

problem of forming P* - complete reassessment, retrospective conditioning,

the use of exchangeability, and Jeffrey's rule. We review here the use of

Jeffrey's rule, as an example illustrating how natural partitions {E1

can arise.

Suppose that the original probability P was exchangeable, that is,

P(001) = P(Ol0) = P(l00), P(llO) = P(10l) = P(0ll). In the situation des-

cribed, the colleague's report says nothing about the order of the trials and

we may thus require the new P* to remain exchangeable. Consider the partition

(Eo, El, E2 E3}, where Ei is the set of outcomes with i ones: E0 =

(0001, E1 = {001, 010, 100, E2 = (110, 101, 011}, E3  ( {111}. The exchange-

ability of both P and P* is equivalent to Jeffrey's condition:

P(AIE.) P*(AjE) ,

and so, to complete the assignment of P*, we need only undertake an assess-

ment of P*(Ei). Then P* is determined by Jeffrey's rule: for any set A

n
P*(A) l P(AIE.) P*(E)

Example 3 (Bayes' Rule). If (1) the partition consists of a set E

and its complement Ec, and (2) if P*(Ec) = 0, then Jeffrey's rule reduces

to Bayes' rule P*(A) = P(A[E).

Diaconis and Zabell (1982) link the J-condition with the statistical

concept of sufficiency, and show that Jeffrey's rule gives the closest prob-

ability P* to P with prescribed values P*(Ei). Our 1982 paper also
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gives continuous versions of the rule, and an analysis of Jeffrey's rule

when two or more sources of evidence are considered simultaneously.

3. UPPER AND LONER PROBABILITIES, AND DEMPSTER'S RULE OF COMBINATION

We begin our discussion with an example drawn from Diaconis (1978).

It concerns the well known problem of the three prisoners:

Of three prisoners, a, b, and c, two are to be executed

but a does not know which. He therefore says to the jailer,

'Since either b or c is certainly going to be executed, you

will give me no information about my own chances if you give me

the name of one man, either b or c, who is going to be executed.'

Accepting this argument, the jailer truthfully replies, 'b will be

executed.' Thereupon a feels happier because before the jailer

replied, his own chance of execution was two-thirds, but after-

ward there are only two people, himself and c who could be the

one not executed, and so his chance of execution is one-half.

Is a justified in believing that his chances of escaping execution

have improved? Consider the set of possible outcomes

S = ab) (ac) (b,c) (c~b)l

where, for example, (a,b_) means a will live and the jailer answers b.

In the classical Bayesian solution of this problem (see, e.g., Gardner (1961),

Chapter 19), a, b, and c are assumed equally likely to be pardoned and if a

is to be set free, it is assumed that the jailer will answer by choosing b

or c with probability 1% These assumptions translate into the probability
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P on S with P(a,b)= P(a,c) P(bc) P(c,b)= and Bayes'6 3,

rule gives

P (a,b) _1

P(a livesjjailer says b) = P(a,b) + P(c,b) 3

i.e., a's chances have not improved.

We will discuss three ways to model this problem using upper and

lower probabilities P,, P*. Upper and lower probabilities are functions

defined on the subsets of a set S satisfying

Cl P.(0) = 0, P.(S) 1

C2 P (A)= -P*(A c)

and the inequalities

C3 P,u(A u ... u An ) > Z P*(A£) -
" P*(A. n A.)

ni<j 1 )

+ -1)+ - n + P,(A1 n ... n An )

Conditions Cl, C2, and C3 will be motivated later on. For the present we
*

note that the definitions imply P, < P , so that the upper-lower pair

(P,, P*) may be thought of as bounds on some "true probability" P, with

P, < P < P. A simple example is the vacuous upper-lower pair

P,(A) = 0 if A c S , ps= 1

The vacuous pair is often suggested as a way of quantifying a state of "no

knowledge."

Arthur Dempster has suggested that, given the occurrence of an event E,

the appropriate way of modifying an upper-lower pair to a new upper-lower

pair incorporating the new information is via:

6
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DEIMPSTER's RULE P'CAJE) = P*(A n E)/P*(E)

A motivation for Dempster's rule will also be given later. First we return

to the three prisoner problem and show how it bay be analyzed using

different upper-lower pairs and Dempster's rule.

Model 1. Suppose that prisoner a models his (lack of) knowledge

by putting the vacuous upper-lower pair on the four-point set S. Then

the definitions imply P*( will livejjailer says b) = 1, P,(a will live!

jailer says b_) = 0. Thus, with no assumptions on the problem, the jailer's

information does not reduce his uncertainty, and the conditional upper-lower

pair remains vacuous.

Model 2. Suppose that a assumes that the initial decision as to who

will live is made at random, but assumes nothing about how the jailer will

act except that he will tell the truth. One way to model this is to consider

the space L = {a,b,c); the probability P on L corresponding to the random

choice of who will live, i.e. P(a) = P(b) = P(c) 1 and the multivalued map

r, from L to the subsets of S, given by

rC a = (_ah) u (ac), r(b) = (b,c), r(c) = (c,b)

Thus r delineates the possible outcomes when a, b, or c are pardoned.

Dempster has described how an upper-lower pair can be constructed on

S whenever a set L, probability P on L, and multivalued map

r: L - subsets of S are given. Define

P*(A) = P{Z E L: r(m) n A # , and P,(A) Pa: rmZ c A)

P* and P, represent the largest aad smallest probabilities that can be

assigned to A consistent with r and P.
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The French mathematician Gustave Choquet (1953) proved the following

important result.

Theorem. Every upper-lower pair constructed in this way from a multi-

valued map satisfies conditions Cl, C2, and C3. Conversely, given an upper-

lower pair satisfying Cl, C2, and C3, there exists a set L, a probability

P on L, and a multivalued map r: L - subsets of S which realizes the upper-

lower pair.

This is the promised motivation for Cl, C2, and C3. Any function P,

satisfying Cl, C2, C3 is said to be a capacity of infinite order. The infinite

system of inequalities C3 are known as the Block-Marschack inequalities in the

psychology of choice; see the article by Batchelder in this volume.

Returning to the three prisoner example, we have for the upper-lower

pair P,, P* that arises from L, P, and r:

P*(jailer says b) = P*{(ab) u (c,b)} = P{a u c) =

I

P,(jailer says b) = 1-P*fjailer does not say bl = l-P*{(a,c) u (b,c)) = .

This result is intiutively reasonable: if the jailer said b when he truth-
2

fully could he would say b - of the time. If the jailer avoided saying

1
whenever he truthfully could, he would say b- of the time. Dempster's

rule of conditioning then gives

P*(a will livejailer says b) = P,(a will livejailer says b) = .

Thus, with this set of assumptions a is justified in reasoning exactly as

described in the original version of the problem. Observe that after Dempster

conditioning the two members of the upper-lower pair are actually equal,

coalescing to a bona fide probability.

A "lazy Bayesian" could regard the formation of an upper-lower pair

based on a multivalued mapping as a way of proceeding without quantifying

8



belief within the elements of rm{). The calculations result in bounds which

would be useful in checking a more refined quantification.

Here is Dempster's motivation for his rule of conditioning, via multi-

valued mappings. Consider a pair of probability spaces and multivalued

mappings:

(Li,P 1 ) A , (L 2 P2 ) 4

(where j denotes the subsets of S). Define a product space (LIxL2, P1xP2)

and rIxr 2: L1xL2 -, by

r Ixr2 9pz2 r1z1)nr2 z)1IX2(i 1 ,£ 2) = r1(zI ) nF{2

It is easy to show that

Dl If r(z) E S then the upper-lower pair associated with r1 is vacuous

and the upper-lower pair associated with the product 1xr2  is identical

to the upper-lower pair associated with r2.

D2 If either the component upper-lower pairs is a probability, then the

product is a probability.

D3 If r1 (Z) E E, then the product yields Dempster's rule of conditioning.

For further discussion of this motivation for Dempster's rule, see Dempster

(1968).

To us, the multivalued mapping approach to upper-lower pairs seems pre-

ferable to their direct use and interpretation (as favored by Shafer (1976)).
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To discuss Model 2 and the example further, consider the general Bayesian

solution to the three Poisson problem: let r a T and 'c be the prior

probabilities that a, b, and c are pardoned, and let p be the prob-

ability that the jailer names b when a is pardoned. Then

P(a,b) - iT a P (a, c) = T a(1-

P(b,c) = iTb " P(c b) = 7Tc

and

P(2 lives jailer says b) = -
iaP + c

For Model 2 we have Tra = with P remaining a free para-For loel2 w hae a = b = c =

meter. This generates a family F of possible probability measures. This

family can be used to define a different kind of upper-lower probability,

say U and L, defined by

U(A) = max{P(A): P E T} and L(A) = min{P(A): P E T'

In this case, it is easy to check that U and are exactly the same as

those derived via the multivalued map L. In general, however, upper-lower

pairs defined by sups and infs will not be capacities of infinite order,

but merely capacities of order 2. Wally and Fine (1979) contains further

discussion.

Note here that the conditional probabilities generated by T range

1from 0 to 7", while Dempster's rule of conditioning picks out the unique

1

value p This is a disturbing result fo a Bayesian, since it calls into

question both the interpretation and justification of Dempster's rule.

Either Dempster's rule contains further hidden, implicit assumptions, here

10
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responsible for narrowing down the range of possible conditional probabilities

to but one, or it operates in a manner verry different from ordinary, Bayesian

conditioning, in which case we would wish some further guidance as to its

interpretation and meaning. Mere surface plausibility is insufficient, for

it is possible to suggest at least one equally plausible alternative to

nemnoster's rule, namely

P.(A and B)c

P.(AIB) = P.(B) and P*(AIB) = 1 - P.(Ac B)

This yields a rule of conditioning different from Dempster's, yet the resulting

conditional set functions are capacities. In what sense is one of them right?

(Note that for this method of conditioning the upper-lower pair for Model 2

of the three prisoner problem yields upper and lower conditional probabilities

of 0.)

Model 3. Suppose a knows nothing about the selection process for who

will live, but assumes (or is told) that if he lives, the jailer will choose

randomly between answering b or c. (Of course, if the jailer knows b is

to live, he will answer c, and vice versa.) This problem can be modeled by

assuming that three different probability measures are given on the set

W = {b,c} of the jailer's possible answers: P (b) = Pa(c) = .; Pb(c) = 1;
a - a 2) b =

P (b) = 1. Given the jailer's answer, Chapter 11 of Shafer (1976) proposesC -

a method related to direct use of likelihood for deriving an upper-lowrr pair

on the parameter set L = {a,b,c}. This yields P,(a will liveijailer says b)
1

0, P*(a will livejailer says b) = -" In this model, before questioning the

jailer, a might have expressed his ignorance by P.(a lives) = 0,

P*(a lives) = 1. After learning b will die, a can no longer be so

optimistic.

Again, the comparison with the Bayesian analysis is instructive. Now
1

ia ,b' I are arbitrary and = so that the resulting conditional

probabilities for P(a will live jailer says b) range from 0 to 1.
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Thus while Shafer's method does not suffer in this case 
from the defect of

picking out a unique conditiou'l. probability, the range spanned 
by his

resulting upper-lower pair differs markedly from that arising 
from the

Bayesian analysis, again calling into question both the 
interpretation and

justification for the method.

Dempster (1966) has proposed a different approach to this problem. In

general the two methods do not agree, but in this simple example they do, and

hence the objection just voiced to Shafer's analysis applies with equal force

to Dempster's.

3. RELATIONSHIPS BETWEEN JEFFREY'S RULE AND DEMPSTER'S RULE

Glenn Shafer has observed that Jeffrey's rule and Dempster's rule agree

in certain cases. This is an easy consequence of the three properties Dl-D3

of Dempster's rule given at the end of the preceding section. To be precise,

let Pl be a probability on a set S, let (El be a partition of S,

and suppose that P2 (Ei) are positive numbers summing to I. Define multi-

valued mappings ri from L. - subsets of S as follows:

L= S, r1 (s) = s ,

L2  = (1, ... , n), r2 (i) = Ei

The product of (P1 ,L1,I) and (P2 ,L2 ,r2) combine to give a probability on

S because of property C3. Shafer (1981, Section 7) shows that this is pre-

cisely the probability given by Jeffrey's rule.

Thus Dempster's rule may be viewed as a generalization of Jeffrey's

rule. The difference between them may be summarized as follows:

1. Jeffrey's rule works with ordinary probabilities which have a

well understood interpretation in a variety of real world situations.
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Dempster's rule works with upper and lower probabilities which presently

lack an operational interpretation, objective or subjective.

2. Dempster's rule is a way to pool fairly general types of informa-

tion. If one is willing to work outside the world of well defined probabilities,

upper-lower pairs representing information from very general sources can be

combined. An additive approach to the combination of different types of

evidence is given in Sections 3, 4, 5 of Diaconis and Zabell (1982). The

comparison of the two approaches is instructive: Dempster's rule is based

on an intuitive notion of independence; the method using Jeffrey's rule that

we suggest is not tied to such independence.

Finally, it is worth considering a problem that neither theory claims

to know how to treat. Suppose we have a probability P defined on a class

of subsets of a space S. After observation or reflection we decide

that we need to work with a richer collection of sets !*, perhaps even a

larger basic space S*. For example, new data may force us to consider out-

comes previously thought impossible or unimportant. How should we proceed

to extend P, changing it as little as possible? Several procedures are

available under special circumstances, but any semblance of a general theory

is presently lacking.
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