
D-R135 912 UCLA DEMODULTION ENGINE(U)
CLIFORNIA UNIV LOS NGELES I/2

DEPT OF COMPUTER SCIENCE R SAiDR MAR 83 UCLR-ENG-83-23

UNCLASSIFIED MR0-2C 0.4F/G 9/5 N

ENhhhhhh

12.

UIII B'll m .;
L

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

L -- r. *-.-. .- *;F- 1q

COMPUTER SCIENCE DEPARTMENT

'Sz

'4I

-~ ELECTE

UCLA DEMODULATION ENGINE

* . May 1983
CSD-830518

Ramin Sadr 83 12 16 066 'ENG-8323

kk I'Ni

COMPUTER SCIENCE DEPARTMENT OFFICERS

Dr. Algirdas Avifienis, Chairmap
Dr. Bertram Russell, Vice Chairman
Dr. Milos Ercegovac, Vice Chairman

Dr. Gerald Popek, Vice Chairman
Mrs. Arlene C. Weber, Management Services Officer

CENTER FOR EXPERIMENTAL COMPUTER SCIENCE

Dr. Gerald Popek, Director
Dr. Terence Gray, Associate Director

MANUFACTURING ENGINEERING PROGRAM

Dr. Michel A. Meikanolf, Director

This report Is part of a continuing series of technical reports Initiated In January
1981 and Is Issued by the Computer Science Department at UCLA. This technical
report presents the latest research results established by faculty members and
research staff of the Department. UCLA Computer Science Department Technical
Reports are directed to the professional community and range from the presentation
of short technical contributions to complete Ph.D. dissertations. For a complete list
of reports In this series you may contact the Computer Science Department Archivist
at the address elow.

University of California, Los Angeles
Computer Science Department
School of Engineering and Applied Science
3732 Boelter Hall
Los Angeles, California 90024

~~.--.',---~~~~~60 !L *----

Accession For CP ? I
DTIC TAB 11C0
Umaunced 0 INSPECTED

JustficaionComputer Science Report No. CSD-83-1
______________, UCLA Report No. ENG-83-23

Distribution/ March 1983
Availability Codes

'vail and/or
Dist Special

UCLA Demodulation Engine

by
Ramin Sadr

Computer Science Department
School of Enginet-ring and Applied Science DI

University of California n EI-ECTE
Los Angeles 4OE '6 9

This research, conducted under the direction of Professors
Vance Tyree and Jim K. Omura, was sponsored by the Defense
Advanced Research Projects Agency, Department of Defense
Contract MDA 903-82-C-0064 (Advanced Teleprocessing
Systems).

DISTIBTION STATTF-1rnNT A
Approved for public release;

Distribution Unlimnited

A- a- A-.

ABSTRACT

This report describes the VLSI design and implementation of a Viterbi algorithm processor for simul-
taneous data demodulation and phase tracking of Minimum Shift Keying signal.

During the 1981-82 academic year, graduate students in the VLSI course (CS258A-C) at UCLA
designed the implementation of this system as a one-year class project, and with support from ARPA
(Advanced Research Project Agency of the Department of Defense), fabricated this processor on a sin-
gle chip, using 4-micron NMOS technology. UCLA Demodulation Engine can be used as an inexpensive
digital radio receiver in a variety of applications.

Bsackgound and Acknow nt

In August 1981, Professor Jim Omura submitted a proposal to ARPA for support of my
research to design a VLSI chip for a Viterbi algorithm processor that simultaneously performs data
demodulation and phase tracking of Minimum Shift Keying signals.

Under supervision of my Ph.D. advisor, Dr. Jim Omura, the VLSI system architecture was
developed in September 1981. 1 sincerely thank him for his guidance and encouragement throughout
the project.

In November 1981, Vance Tyree, the coordinator and instructor of the VLSI program at
UCLA, decided to adopt the implementation of this Viterbi algorithm processor as a class project for
the UCLA one-year graduate course sequence on VLSI. Professor Tyree was instrumental in the fabri-
cation of the chip and supervision of related design activities. He supervised my work while I was also
involved in coordinating student project groups in the design effort.

I acknowledge our debt to ARPA for funding this project; to ISI (Information Science Institute)
for handling fabrications and making other services available for the project; and to UC Berkeley for
providing the Caesar software package, which definitely made the effort in the implementation phase of
this project very time effective. I would also like to thank Lillian Larijani and Terry Peters for editing
and assembling the final report and Ruth Pordy for the illustrations.

Contributions made to the project by other participating graduate students are acknowledged at
the beginning of each relevant chapter. I must also make special mention of the interest and accommo-
dations provided by Dr. Leonard Kleinrock of the Computer Science Department.

.- a. .

Table of Contents
page

I Formulation and Description of UCLA Demodulation Engine..1
1.1 Introduction .. 1
1.2 Final Chip .. 1
1.4 MSK.. 3

2 VLSI System Design ... 6
2.1 Introduction .. 6
2.2 Overview.. 6
2.3 Branch Metric Generator.. 12
2.4 Trellis Processing Unit .. 15
2.5 Central Processing Unit... 18

2.5.1 Survivor ... 18
2.5.2 Normalization... 21

2.6 Memory ... 21
2.6.1 Accumulated Metric Memory ... 21
2.6.2 Path Memory ... 21

2.6.2.1 Path Memory Truncation... 23
2.6.2.2 Path Memory Organization... 23

2.7 System Architecture ... 26
2.8 Controller.. 26
2.9 Floor Plan .. 30

2.9.1 Current Requirement for the Subsystems.. 30
2. 10 Discussion and Variations of the System Design .. 30

2.10.1 Architectural Trade-Offs.. 32
2.10.2 System Application of the Chip.. 33

2.10.2.1 Closed-loop Carrier Phase Tracking Application 35
2.10.2.1 Modification for Other Applications.. 35

A Note on This Report.. 35

3 Branch Metric Generator.. 36
3.1 Project Description... 36*13.2 Implementation .. 36
3.3 Cells .. 38
3.4 Timing Analysis .. 38

4 Central Processing Unit ... 46
4.1 Project Description ... 46
4.2 Implementation .. 46
4.2 Cells .. 47
4.3 Timing Analysis .. 48

5 Trellis Processing Unit 56
5.1 Project Description... 56
5.1 Implementation .. 57
5.3 Cells .. 57
5.4 Timing and Simulation .. 57

6.1 Project D escription 60
6.1.1 Accumulated Metric Memory ... 60
6.1.2 Path Memory ... 60

6.2 Implementation .. 61
6.3 Cells ... 61
6.4 Timing and Simulation .. 62

7 Controller... 70
7.1 PROJECT DESCRIPTION ... 70
7.2 Implementation .. 70

7.2.1 Level-Sensitive Scan Design... 72
7.2.2 The Control Signals... ... 72

7.3 Cells ... 75
7.4 Timing and Simulations... 78

Appendix A Theoretical Derivation of the Receiver... 88
A. I MSK.. 88

A. 1.2 MSK with Random Phase .. 90
A.2 Receiver Design... 92
A.3 Summary... 97

Appendix B MICROCODES ... 98

Appendix C PIN ASSIGNMENT ... 102

References.. 105

iv

List of Figures
page

1.1 UCLA Demodulation Engine.. 2

1.2 Bit Error Probability for MSK.. 5

2.1 Phase Space.. 7

2.2.a Trellis Diagram.. 10

2.2.b Viterbi Algorithm - Flow Chart ... 11

2.3 Path Merging.. 13

2.4 Multiplier.. 14

2.5 Quantizer .. 16

2.6 TPU .. 17

2.7 CPU .. 19

2.8 Survivor .. 20

2.9 Accumulated Metric Memory ... 22

2.10 Path History ... 24

2.11 Path Memory .. 25

2.12 System Architecture... 27

2.13 Controller .. 29

2.14 Floor Plan.. 31

2.15 Supervising the UCLADEMOD .. 34

3.1 CSA Tree of a Positive Multiply .. 39

3.2 CSA Tree of a positive Vector Multiply 40

3.3 Logic Diagram of The Branch Metric Generator .. 41

3.4 Multiplexer .. 42

3.5 Input Gates.. 42

3.6 Full Adder.. 43

v

3.7 Half Adder.. 44

3.8 Floor Plan ... 45

4.1 CPU Block Diagram...5o

*4.2 CPU Floor Plan ... 51

4.3 CPU Cells (6-bit Adder, Subtractor and Comparator)... 52

4.4 P,G,S Generation ... 53

4.5 Carry Lookahead Logic Diagram .. 54

4.6 Circuit Diagram for Delay Analysis... 55

5.1 TPU ... 58

5.2 TPU Floor Plan ... 59

6.1 PM Block Diagram.. 63

6.2 AM Block Diagram... 64

6.3 Memory Control Signals ... 65

6.4 Register Cell .. 66

6.5 Memory Floor Plan... 67

6.6.a Decoder Transistor Model ... 68

6.6.b Path Memory Register ... 68

6.6.c Transistor Model for Basic Register Cell.. 69

6.6.d Circuit Model for Delay for FIFO register ... 69

7.1 Controller.. 71

7.2 The Instruction PLA Truth Table ... 73

7.3 Control Signals.. 74

7.4 Loop PLA Truth Table.. 76

*7.5 TPU's Toggle Flip-Flop.. 77

7.6 Modified Toggle Flip-Flop ... 77

4, vi

7.7 Divide-by-3 Counter .. 79

7.8 Divide-by-16 Counter ... 80

7.9 Program Counter Truth.Tal... 82

7.9 Program Counter TuhTbe... 81
710Superbuffers .. 83

7.1 CrcitModel for Delay Calculation of the Program Counter..................................... 85

7.1Pt Model for Delay Calculation of the Program Counter 86

7.1 CrcitModel for Delay Calculation of the Instruction PLA 87

A.1 MSK Modulator.. 89

*A.2 MSK State Diagram.. 91

A.3 Quantized Phase Space ... 93

A.4 Digital Communication Problem ... 94

C. I Pin Connection... 104

vii

CHAPTER 1
Formulation and Description of UCLA Demodulation Engine

1.1 Introduction

This report describes the design and implementation of a chip for simultaneous data demodula-
tion and phase tracking of Minimum Shift-Keying (MSK) signal using the Viterbi algorithm.
Knowledge of the basic Viterbi algorithm is assumed throughout this report.

MSK belongs to a larger class of modulations called Continuous Phase tulations (CPM)
which, because of their superior spectral characteristics, are also referred to as -width efficient

modulation techniques 16,7,81. The need for efficient use of bandwidth has grom nsiderably with
increased usage of digital techniques to transfer data, voice, facsimile, video inform ." ic.

The practical application of these modulations has been limited by a lack of an effective phase
estimation algorithm. With simultaneous phase estimation and data detection, the Viterbi algorithm
overcomes this fundamental problem and eliminates the need for a separate phase tracking system.

",.. Using the generalized Viterbi algorithm [3,41 to find the optimum sequence is equivalent to
the dynamic programming solution for estimating the states of a finite state machine. The Viterbi algo-
rithm has many other applications in the areas of convolutional codes, intersymbol interference chan-
nel, data compression, text recognition, etc. [1,41. It is hoped to present such a general framework for
design of the Viterbi algorithm processor that the architecture of this VLSI chip could be easily
modified for other applications.

1.2 Final Chip

A typical role of this chip in a digital radio is shown in Figure 1.1

This chip is fabricated using 4 micron* NMOS technology. The design methodology and tech-
niques used are based on the Mead & Conway [21 approach to VLSI system design. This system, pack-
aged on a single 64-pin package, occupies a full size 7150x7100 micron 2 die. Operating at 15 MHz, it
has an effective bit rate of about 650 Kbps. This chip has 1000 bits of memory organized as 30 bit long
First-In First-Out (FIFO) registers with special background/foreground data transfer capability and fast
6-bit binary multiplier in the signed magnitude form to compute two dimensional vector inner product
for real numbers. Testing is facilitated by using level sensitive scan design techniques in the controller

"X-2 micron, where minimum feature si7e is 2X.

.4

* . . a. - * * .. j
4' . % % V V % s . a -* *.',.' .'.-, .. *. . , -. . .'..- . . - '. .. . -.-.

'0

.00

I.W

z

~D

ww
00

I-ca
WC

oW 0
E0D

LL.

w I

cc

1

.cc

4u

2

*

section and by direct links to the inner cells of the system via the output pads. There is a global Reset

on the chip to interrupt the system operation and reset all the sub-systems. All cells and subcells are

* custom designed for this chip.

The design is a synchronous sequentially pipelined Viterbi Algorithm processor. It assumes bit

timing is obtained external to the chip.

1.4 MSK

The complete derivation of the demodulator for simultaneous data demodulation and phase

tracking of the MSK signal is contained in the appendix A. The present section is a summary of those

results in the appendix which will be used in Chapter 2.

The MSK transmitted signal has the form
x(t) = IJiP Cos(wt +O(t))

where for MSK

0(t) - "i" t-nTs n-I) + "

S2 T,~ ~ 2.~~ Tt K= a t <() n T,

• . nT 5<(t<nT5

and

- Carrier frequency
T= Symbol duration time

a, = Transmitted data where a E 1+1,-1I
E, - Energy of the transmitted signal

TS

For the usual point-to-point communication channel, the signal at the receiver is

y (t) = x 0,o) + n(1)

where n(t) is white Gaussian noise with double-sided flat spectral density Sn(o)-No /2.

With ideal knowledge of phase and frequency, the optimum MSK receiver computes
(n+I) T

y,,,(I)= f, (y(t),2.P Cos(w(t+2(t-nTs)/T,)dt
T, 2

The bit "I" corresponds to + 1 and bit "0" to -i.

3

, . 4,,, ; , : - . - . .. -- - . - -. . - - . . -. . -

Y.M ,(l--f"T' yO) /2-P Sin (w, t+ 2-(t-nT,)/T,)dtt (n+I)T

•,. (O) Ts Y(" .'T - Cos(wt--(t-nT,)/T,)dt
Y", (0 nLs 2_

y, (O) "".-r y (0),12P Sin (w, t-2'n+)T (t-nr,)1r, Idt

and uses the metric

bm(a.) = m(.y,,;Sn,a.) = y,(a,)Cos S.+yn,(a,)Sin Sn

where X. - (y., ,y(0) , ,y,(1),y.,(0))

. in a four state Viterbi decoder. Here S. = n_-- a, taking values in 4-{O, M, 1-r .
2 '2 2

The bit error probability curve for coherent MSK is shown in Figure 1.2.

With unknown values of carrier phase, the phase space [0,27r) is quantized into Q equal spaced
intervals. The unit circle is approximated by the quantized phase space 4 = (0, A, 2A . . (Q-1)A

where A - Random phase perturbations are modeled as equally likely transitions to the adjacent
Qquantized phase states; hence the state transition equation becomes

., S, - S._ +a._ -M-+O .- n

where the discrete random phase perturbations 4, E (-A,O,+A) and a,, E (-i,+1I for all n. The
branch metric expression in this case is

m(S;S,,+,) - y,,(a,,)Cos(S,,+,) +y,(a,,)Cos(S,+O4,) (1.1)

We shall denote m(S,;S,,+,) as bm(a,,) for notational simplicity.

The bit error probability bound for this demodulator as a function of signal-to-noise ratio

(Es/NoJ dB is shown in Figure 1.3 for ideal known phase case and for both 16 and 32 levels of quantiza-

tion (Q- 16,32) with unknown phase perturbations. The bound itself is about 1 db off from the ideal
case for known constant phase. Additional degradation due to the random phase term is small even for
16 point quantization of the phase space.

We assume throughout this work that bit timing is ideal and available from outside the Viterbi
algorithm processor.

4

"'- " a " . ' -.. . - '-.' - -" -.. * " - '- .

,,, 10-:

6

4 BOUNDS

2 IDEAL COHERENT

32 QUANTIZED LEVELS

o- 16 QUANTIZED LEVELS

4

2

* .1 8EXACT

s -

< 6-

0
cc 4-
I.

0

S 2

w

, a -

4 -

2-

8-

6-

4-

10-8
7 8 9 10 11 12 13

Es/ No (dB)

Figure 1.2. Bit Error Probability for the MSK using the Viterbi Algorithm

5

-1 --ta---_

CHAPTER 2
VLSI System Design

2.1 Introduction

The system design in this chapter describes every subsystem in terms of:

a. inputs and outputs.

b. digital units: registers, counters, arithmetic logic unit (ALU), programmable logic array (PLA).

c. microprograms: programs consisting of microsequences which chronologically describe data
transfer within the system (included in the Appendix B).

The design of the Viterbi algorithm processor is specialized in this chapter for simultaneous
data demodulation and phase tracking of the MSK signal with random phase.

A single processor architecture is considered where there is one central processing unit (CPU)
which results in a sequential form of the Viterbi algorithm. This assumption significantly simplifies the
implementation task and, upon successful completion, could easily be generalized to a parallel multipro-
cessor design for higher data rate. The generalized design approach is further discussed in Section 2.8.

The system design of the Viterbi algorithm processor is closely related to simulating the struc-
ture of the trellis diagram . Knowledge of all possible transitions during one period of the trellis
diagram in our case of study will uniquely determine the trellis diagram for all time
t-n T,,n-l,2,3,...

2.2 Overview

The overview section outlines the method for obtaining the trellis diagram in our case and a
brief review of the Viterbi algorithm.

Quantizing the phase space (0,21r] around the unit circle into 16 equal space intervals gives
quantized phases or "states" as shown in Figure 2.1. The phase space is then

S- (0, 2r 3w 15i
8 8'8 . 8

"1

PJ

6

IN - ,, - - - -. " "
AA'. ?. . .!. °, o - .mt ,' ,, 4., .. A .2 4..m. a. .. , .- - -- -.--- Ia -- " .*"

sin

5 4 28

6
2

.9

08 "Cos

9 I

M.S.K. STATE TRANSITION EQ:

, E 0,+ a,, E + 1,- 1)
8' 8

iFigure 2.1. Phase Space

The state transition equation for the MSK with random phase is

S . - S . -_ I+ a . --_ , + 0

where S. El4, a. E (+I,-il and 0,. E {---i-O.
8' 8'

In order to find all possible transitions defined on the phase space, note that, for MSK, when

"bit I" is transmitted, it causes a rotation of + -, when "bit 0" is transmitted, it causes a rotation of

22

state as shown in Figure 2.1 for State #1. Note that there are six possible transitions to each state,3 for

bit "1" ,3 for bit "0".

The numbering of the states in the trellis diagram is arbitrary; numbers are assigned to the six-
teen states counter-clockwise around the unit circle as shown in Figure 2.1.

The transition Table 1 summarizes all the useful information represented by the trellis diagram

in one transition. In this table the first column is the present state, and the next six columns are those
last states which lead to the present state.

The notion of the present states and the last states of the trellis diagram will be used often.

The "Present States" denoted as I are the states of the the trellis diagram at time nT,, and the "Last
States" denoted as LS are the states at time (n-l)T,, as shown in Figure 2.8.

PIB A ID Le WIN III 12

I L41 L• L U NI I

I 4 5 a Is is 14 1 0

2 6 a 7 I I 1 IS s

3 0 7 G 14 If IS
4 7 6 0 is is I a

S 1• 1 10 II I I 4 •

7 I11 11 is I a

S SI is Is 3 4 4 a
i I si 14 4 5 4 -1 0

IO Is 14 If a Y 7 .4
II 14 is is 9 7 a 4 .4

Ia Is I I I a 9 4 4

I3 Is I I a • 10 0 .1
14 I 2 a a iO 11 a 4

II I 3 4 10 II 11 -

to 3 4 I 11 Is II 6 4
PhM a4 .10 -40 0 .4

6V 171 OUSO mm mU

Table 1. Transition Table

,,.-

- 77 X-7-77-7

The trellis diagram is obtained by evolving all the possible transitions in time as shown in Fig-

ure 2.2.a In this case of study, the trellis diagram is composed of too many transitions; therefore, only a
portion of the trellis diagram is depicted. The key point here is that all possible sequences of phase
and data are represented by paths in the trellis diagram. The most likely path is found by the Viterbi

algorithm.

The Viterbi algorithm is summarized in Figure 2.2.b. This flowchart is a simple representation

of how this algorithm is used to find the optimum path in the trellis diagram. This flowchart outlines

the sequencing of the Viterbi algorithm on the the trellis diagram; in this case the trellis diagram is
composed of 16 states, and a single processor is used to find the survivor at each state. Here

Acc met(i;N) - Accumulated metric of the state i at time N
m(ij) - branch metric value for transition j--> (j leads to i).

The branch metric values are defined only for the subset of the last states which are connected

to the present state i on the trellis diagram; the branch metric values for each present state are deter-
mined by the observed signal y(t) and (XI,X2). From 1.1 the branch metric values are

m(S,;S.+,) = yr(a,)Cos(S. +0.) +yn, Sin(Sn +0,)

Let XI -Cos(S, +0,) and X2-Sin(S, +0.). The estimated phase values for the transitions

caused by bit "I" to the present statel for LSI is ".! for LS2 is 0 and for LS3 is +--. Hence, for
8' 8

example X I in each case is

for LSI X-Cos(LS2+j-M-) ,for LS2 X1-Cos(LS2+O) ,for LS3 XI-Cos(LS2-j+j-).

Therefore, (XI-Cos(LS2),X2-Sin(LS2)), similarly for bit"0" the above is true with LS2 replaced by
LS5.

bm(l)- yc(]) XI +y(I) X2 bit -I- (XI -Cos(LS2),X2-Sin(LS2))

M(ij) bm(O)- yc(O) XI +y,(O) X2 bit -0- (XI-Cos(LSS),X2-Sin(LS5))

S These branch metric values are real valued. Accumulated metric values of all sixteen states are
initially set at zero. A new set of m(ij) values is available every T, second, during which time it is
necessary to to find the survivors of all sixteen present states of the trellis diagram. The branch chosen
at each state is such that it maximizes the accumulated metric value of the present state; this branch is
the so-called "survivor." The bit which causes this transition is stored. This results in 16 survivors at
each state during each T, second. Applying this procedure for nT, n - 1,2,3,4.... seconds, the sur-
vivors comprise 16 connected paths. While applying the Viterbi algorithm to find the optimal path, the

9

" . v ", ..*.- . . ,, ,',- , • -.-.

~~1*

44.4

0#

01

a.~~~- 7q J - S '-N ~. .. -

STARTD

CLEAR ALL

QUANTIZED SELECT

BRANCH METRIC j:j-i

FIND OPTIMUM PATH
FROM jj--i i.e.

Acc Met(i;N) - Max[Acc Met(J;N-1) + m(J;I)J

STORE A
Properly using the:

"STORAGE ALGORITHM"

ERSTOUTPUT (iN YE (SAENOTMEtN

Figure 2.2b. Viterbl Algorithm - Flow Chart

tails of all 16 paths, merge together (with high probability) after a sufficiently long time. The merged

tail is indeed the optimal path. In our case, after 30T, we start outputting the oldest bit. Truncation of

the path memory is discussed further when we describe the memory. A typical situation at t-30 T, is

shown in Figure 2.3.

The following terminology is defined for cycles of the trellis diagram which will be used in this

chapter (Refer to Figure 2.2).

i. Symbol cycle: epoch taken to perform 16 nodal cycle, this time is equal to the data duration
time Ts.

ii. Nodal Cycle: epoch taken to find the survivor of a state. This period consists of 6 branch

cycles.

iii. Branch Cycle: epoch taken to add the branch metric to the last state of the accumulated metric

value.

The system design begins at the inputs to this chip. It will be shown that these inputs are the

quantized In-phase and Quadrature components of the observed signal y(t) during each Ts second. The

quantization is necessary to perform digital processing.

2.3 Branch Metric Generator

It is not possible to use m(ij) as the inputs to this chip for all possible values of i and j. The

equations for m(ij) are restated here

y,(O)X1+ys(l)X2 "0"

where y, (1), y, (1) y, (0) and ys (0) are the In-phase and Quadrature components of the observed signal

for bit "I" and "0".

It can be deduced from the above equation or table 1 that there are 32 unique values of m(ij),

and if 4 bit quantization is assumed, this will result in 128 inputs to the system. This point is an exam-

ple of system design trade-off. For practical implementation, this number of input pins is physically

unrealistic on a single package.

The solution adopted is shown in Figure 2.4'.

'Due to round-off error, this solution is less accurate than having the quantized m(ij) available.

12

S -. '. -

, 1 , ± . .. - - - i I

aa.

9..

CM

5*5l

13C

-1 -.- -.- -. .W - .-- . . -

0

x x

0 0

a a:
z W .

LU E.00.

Cq 0

-r 0 +0i

z z

x

14

This solution introduces two multiplications and one addition operation to the complexity of the

system requirement. Its advantage is that it requires only 16 input pins consisting of 4 bits each for

y,(l), y(I) yc(O) and y,(O) where in binary signed magnitude form taking values in [-7,71 interval.

These inputs are quantized outside the chip using a 15-level quantizer with input-output relationship as

shown in Figure 2.5.

Every state of the trellis diagram possesses a unique vector (XI,X2); the inner product of this

vector is taken by the appropriate In-phase and Quadrature components input to generate the branch

metric values. XI and X2 take values in the 1-1,11 interval. Each of these two inputs is represented by

six bits in fixed point signed magnitude form. A factor of +7 is also added to all the branch metric

values inside the Multiplier, to make the branch metric values non-negative integers to simplify com-

parison tasks by the CPU (discussed in section 2.5.2) .

2.4 Trellis Processing Unit

The function of this subsystem is to

i. model the connectivity of the states of the trellis diagram;

ii. generate XI, X2.

Each of the sixteen present state #s and sixteen last state #s is coded using 4 bits in binary

presentation form.

,. The block diagram for the TPU is shown in Figure 2.7. The 4-bit I-counter points to the

Spresent state I and is incremented at the end of a nodal cycle.

The TPU is designed to output all last states connected to the present state I on the trellis
diagram, i.e., for a given present state, it outputs the row of the last states shown in Table 1. This is

accomplished simply by noting the following relations between the present states and the last state

using modulo-15 addition. These relations become obvious by referring to Table(l).

LSI=Ie3, LS2-LSIfI, LS3-LS2el

LS4II1, LS5=LS4$i, LS6=LSSl

Modulo- 15 addition

These relations for the last states are implemented by a PLA and a counters. At the beginning

of a nodal cycle the !E3 PLA implements modulo-15 addition of the content of the I counter and 3

and the LS counter is loaded with this value (LSI), the LS counter is then incremented to generate LS2

and LS3. It was noted by the TPU design team that, if 3 is added to 1, adding I I could be accom-

plished by inverting the most significant bit of the I 3 result.

15

".4

INPUT 7

6 0111

5 0110

40101

3 0100

2 0011

1 0010

0 0001

1001 OUTPUT

1010 -1

1011 -2l1 J-2
1100 -3

1101
-

1110 -5

1111 -6

.9 -7

Figure 2.5. Quantizer

16

-

0~
_0

0 8
(0

00

C.)D

i~0

z

x

w

>-i

17

XI and X2 are generated using a clocked input PLA, where (XI-Cos(LS2), X2-Sin(LS2))

for bm(l), and (XI =Cos(LS5), X2= Sin(LS5)) for bm(O).

2.5 Central Processing Unit

The function of the Central Processing Unit is:

i i. finding the "survivor".

ii. normalizing the accumulated metric values.

This unit is the subsystem which performs all the computations required by the Viterbi algo-

rithm. The size of the data path in the CPU is determined by the number of bits presenting accumu-

lated metric value. The magnitude of all the accumulated metric values is always bounded, in our case

"" the maximum spread between the largest and the smallest accumulated metric value is 14 [1]. Thus,

* the data path size for accumulated metric value is taken conservatively as 6-bits, positive integer in

fixed point binary form (radix=2). The accumulated metric values are periodically normalized inside

the CPU to avoid any overflow within the data path.

The block diagram for the CPU is shown in Figure 2.7.

2.5.1 Survivor

At every state of the trellis, the "survivor" of the state I is found by adding the branch metric to

the appropriate accumulated metric value of the last states, (total of 6 possible), connected to the

present State I. The largest among the 6 accumulated metric values is then chosen. This value will be

. the new accumulated metric value of that state, as shown in Figure 2.8.

The survivor block is composed of a 6 bit register containing the result of the accumulated

metric value added to the the branch metric values denoted as Am+bm register, a 6 bit register con-

. taining the survivor's accumulated metric value which is set to zero at the beginning of a nodal cycle, a

6-. 5 bit register containing the LS (last state) and the D (decoded bit) provided by the TPU corresponding

to accumulated metric value read from the memory, a 5 bit register containing the LSS "Survivor's Last

State" and Dout "Decoded bit" and the survivor comparator.

The survivor comparator output is a single control line which goes high, if the content of the

survivor's accumulated metric value register is less than the Am+bm register, then Am+bm and its

corresponding LS and D are shifted in parallel to the survivor's accumulated metric value register and

.",the LSS register. Otherwise, the content of the accumulated metric and LSS registers remains

unchanged. Once this process is repeated six times for a present state I, the survivor's accumulated

metric value and its corresponding LS and D are sent via the memory. To begin the next nodal cycle,
the survivor's accumulated metric value register is cleared. The above procedure is repeated for the

next present state of the trellis diagram.

18

dj

0cw
0

w
a.

m oE 0
(a+ Lu

C 0 x zr
0 cc

<- ->

co 0o
I-- -

I0 0.
co- 0

< .
3. z

.)

z ~z0
00<

I <u

00~ w
~0Lu 0 m .

w « cr

4. E r
mo)

W C.) 2'9
r w 00... .

....... L a

. W x. L. . -* . . .

LAST PRESENT
STATE STATE

n+1 e~~nl

k -AccMet(i,n)

+mOi,k)

200

2.5.2 Normalization

To avoid overflow of the accumulated metric value data path, the normalizer subtracts a con-
stant from all accumulated metric values read from the memory, this constant is found by feeding back

- the survivor's accumulated metric value to a comparator (normalizer comparator). If the input value to

this comparator is less than the normalizer register (initially set to all Is), the input value shifts in
parallel into the normalizer register.

At the end of the symbol cycle, the normalizer register contains the smallest accumumlated
S, metric among all 16 survivor values. Its content is shifted into the register N (initially set to all Os),

and this value is subtracted from all accumulated metric values coming in to the CPU in the next sym-

bol cycle.

2.6 Memory

In order to provide more memory for the data, it was decided not to store the phase values of
* the paths in the trellis diagram. This can be done without any loss of generality since the Viterbi algo-

rithm takes into account the random phase in the expression for the the branch metric values.

The memory requirement is partitioned into two independent sections: Accumulated Metric
Memory and Path Memory.

2.6.1 Accumulated Metric Memory

The main issue in designing this subsystem is the number of 6 bit length registers needed for

the Accumulated Metric Memory.

The Viterbi algorithm requires the knowledge of both the accumulated metric value at time nTs

and (n-1)Ts. Therefore, a pair of 6 bit registers are used for each state to store accumulated metric
;" value of that state at time nTs (back-up register) and (n+)Ts (front register). This yields 32 rows of

6 bit registers. The "back-up" registers are addressed by the LS values provided by the TPU-, their con-

tents are only READ during each branch cycle. The "front" registers are addressed by the present State

I and are used only to WRITE the survivor's accumulated metric value at the present state at the end
of each nodal cycle. The contents of the front and are replicated, front to back, at the end of every

symbol cycle.

2.6.2 Path Memory

The path memory stores all data bits corresponding to the 16 survivor paths found by the
* Viterbi algorithm during each symbol cycle. An interesting property of the Viterbi algorithm is the

negligible loss of optimality by truncating the paths on the trellis diagram at some fixed lag time NTs
* and outputting the oldest bit of any of the 16 paths.

P, 21

4"2

MSB LSB

*REPLICATE WRITE/READ >-ACCUM. METRIC

ACCUM. MET. I/U

w0

LS

ACCUM. MET.
___ STATE 15 I I I

BACK-UP REG

Figure 2.9. Accumulated Metric Memory

22

2.6.2.1 Path Memory Truncation

The length of each path memory register is dependent on the truncation point N on the trellis,
i.e., how many NTs seconds one should have to wait before outputting the oldest bit.

This has been subject of previous research f1I], and it is shown that with high probability the
best path among all 16 paths could have diverged from the correct path for only a reasonably short

* span. We have thus taken N-30; for each 16 paths this requires a 30 bits length shift register which
stores the decoded bit "13" corresponding to the transition of each survivor.

* 2.6.2.2 Path Memory Organization

- When the flow chart of Figure 2.2.b is sequenced at each state of the trellis diagram, it results
in a survivor path which stems from the last state of the survivor connected to the present state 1. This

* is shown in Figure 2. 10, in this example the survivor's last state "LSS" for present state I and 2 is 4.

The issue here is the number of 30 bit long shift registers needed for the path history. The
memory is organized as 32 rows of 30 bit long shift registers as shown in Figure 2.11. These 32 rows
are divided into 16 pairs of "back-up" & "front" registers. The front registers are also used as FIFO
(First In First Out) registers. The CPU finds the survivor's last state, LSS; the LSS addresses the
corresponding back-up path register; its contents are then shifted in parallel to the front shift register
addressed by the present state 1; and D is then shifted, serially, into the front path register. This is how
the path history of the trellis diagram is mapped into the memory. In essence, the back-up is used for
what the path "was" at time (n-1)Ts, and the front contains the history of what the path "is" at time
nTs.

At the end of a symbol cycle, the content of each front register is shifted in parallel to its
corresponding back-up register before starting the next symbol cycle; thus, at the beginning of every
symbol cycle, the contents of the front and back-up registers are the same for each state. This defines
our Storage Procedure refered to in Figure 2.2.b

The special property of this memory is, namely, it's dual shift register with capability of copying
in parallel the front register into the back-up register and vice versa. The block diagram of the path

* memory is shown in Figure 2.11.

23

00
c4-

z 0

U.

10I G)000

24J

TRANSFER
BACK-UP TO FRONT

REPLICATE SHIFT

PATH0302
0 D31D9J JD

LSS t w
1 0

D w

PATH29D
1 3529D

BACK UP REG

~~25

2.7 System Architecture

The system architecture is shown in Figure 2.14, which summarizes our system processing and
interface requirements.

This chip operates in a pipelined processing mode. One complete cycle of this system is
described in this section. It is assumed that everything is RESET to zero, (except normalizer register,
which is set at 63).

The inputs to this chip are: y,(), y,(l), y,(-l) y,(-l), the In-phase and Quadrature com-
ponents of bit I and 0 quantized to 4 bits each. The TPU provides (XI,X2) pointed by the present

'state 1, so the branch metric generator first computes bm(l) and then bm(0). For every present state 1,

its corresponding last states and decoded bit D are each outputted via the CPU. The last states are also
sent to the the accumulated metric memory. The accumulated metric memory outputs the accumulated
metric value from the back-up addressed by its last state via the CPU. This value is normalized and
then passed over to the adder, that value is added to the branch metric and passed over to the survivor
comparator, which compares this value with zero initially. The above is repeated 6 times. At this
point, the survivor comparator register holds the largest value among the accumulated metric, the last
state of the survivor, and the decoded bit D, which has caused this transition. The accumulated metric
value of the survivor is sent to the accumulated metric memory which is written in the front accumu-
lated metric value register of the present state I. This value is also fed back to the normalizer compara-
tor, which always holds the smallest value it encounters throughout its processing time. The last state
of the survivor, LSS, and its decoded bit D are sent via the path memory, which uses LSS as the path
address of the corresponding back-up path register. The content of the back-up register is transferred
to the front register addressed by the present state, and D is then shifted into that front register
(FIFO).

I, the present state is incremented, and the above procedure is repeated 16 times.

At the end of 16 "nodal" cycles, which constitute a "symbol" cycle, the front and the back regis-
ters are replicated in pairs, and the normalizer constant is passed over to the subtractor to be used in
the next symbol cycle.

*, 2.8 Controller

The CONTROLLER is composed of a stored program in a memory which is sequenced in time.

The outputs of the controller are called the control bits. The operations performed within the system

are determined by the sequence of control bit patterns supplied by the controller. These control bits
are called microcodes and are stored in the control memory.

26

-, ..

iii

BRANCH METRIC Yc() V(

BRANH MERICTRELLIS
GENERATOR PROCESSING

UNIT

bm X2

Din

6S BTRAT COMPARATOR

SbAcc Met IN Acc~bt OUTT

~ DATA UT TO HETUSE

NOMAIATO

'LS
FigureO 2.1ARTO 2.PysemArhiecur

STAT

Acc Me IN Ac~e 27

I I fl it if

"MEMORY

Each microcode "word" is defined as the series of stored bits used during each state of the con-
troller'. The process is to shift out sequentially each word composed of L bits and use k of these L bits
as the state feedbacks to the "micro path," which determines the next state of the controller. The
remaining L-k bits are the control bits which will strobe physical points of the system. The pattern of
these control bits is determined by the timing requirements of each subsystem. The controller struc-
ture was designed at a time when none of these requirements were defined; so, a general design
approach was adopted as shown in Figure 2.13.

The instruction PLA contains the microprogram for sequencing all the subsystem. Minimizing
the size of the control memory (or the instruction PLA) is equivalent to minimizing the number of
words (or states) in the control memory. This objective requires the micro path to handle "Do Loops" 2

to sequence the control memory. To separate the issue of timing and sequencing, the metric-free con-
cept of the sequence domain is used to derive the micro-path for the controller. The flow chart of Fig-
ure 2.2.b contains the abstraction for sequencing the Viterbi algorithm.

The condition for a jump at the end of the loop depends on the number of iterations in every
loop. The number of iterations in every loop consists of

i. nodal cycle, which contains 6 branch cycle

ii. symbol cycle, which is composed of 16 nodal cycles.

This requires two counters in the micro-path which count the number of iterations for each
case. To encode this conditional jump, two bits of every word in the control memory are dedicated to

specify the jump using tO, tl. Depending on the state of tO, tl, one of the following happens in the
micro path

to tI

0 0 increment present address

0 1 jump to NA at the end of nodal cycle

1 0 jump to NA at the end of branch cycle

I I jump to NA at the end of symbol cycle

- Here NA stands for the next address field in the microcode word as shown in Figure 2.13.

'We shall use direct control scheme, where we provide a dedicated bus for each physical point of the
system to be controlled; hence, the length of each word is fixed.

2 Do Loops in the sense of iterating an algorithm a fixed number of times.

28

......................c

I Length L i

NET CONDITION CONTROL BITS
ADDRESS CODE ____________

LENGTH k 114 LENGTH L - k

Coute CONTROL MEMORY

VIA
SUBSYSTEMS

LOADNA t
'A,

Figure 2.13. Controller

- 29

-b .- r -

I-7 7

The control bit section of the instruction PLA contains the microcodes included in the Appen-
" " dix B. The role of each microcode word is to initiate certain functions within the system and will be

described in Chapter 7.

* "2.9 Floor Plan

The floor plan, shown in Figure 2.14, was designed to minimize the length of busses which link

. different subsystems together. It was aimed to place the higher bandwidth ports as closely as possible.

The final design of the floor plan contains NO overcrossing of VDD and GRD lines, enhancing power

distribution within the chip.

The floor plan implemented is not optimum, but it was the best choice within the time con-

straints luring the design effort.

2.9.1 Current Requirement for the Subsystems

The electrical current requirements for every subsystem was estimated using both SPICE simu-

lations and hand estimates. All the VDD and GRD busses are designed to handle these current values

Branch Metric Generator 40ma

Central Processing Unit 35ma
Trellis Processing Unit 35ma

Controller 40ma
Accumulated Metric Memory 30ma

Path Memory 100ma

This concludes our discussion on the system requ;,ements of the UCLA Demodulation Engine.
We are now ready to investigate the hardware implementation of this system.

The following section is intended solely to cover the variations of this system design and will

not be used later.

2.10 Discussion and Variations of the System Design

The critical issues at the system level are addressed in the following sections. Section 2.10.1

focuses on the issues of the architecture of this chip, and section 2.10.2 focuses on tits. ,nonitoring and

variations of the application of this chip as a part of a digital communication receiver.

30

'.". - .'-- ' 4.i..

- -,-. -. '--' - - -

a

~1

1*

14

I - - -

/

a
a

* , * S

=

* - - . a

- Se a

a SIlo

-- I I I

Figure 2.14. Floor Plan

* - * . - - -- * * S

2.10.1 Architectural Trade-Offs

I. Serial Processing

The main goal regarding architecture for this chip was to fit everything on a single die
This objective was met only at the cost of serial processing.

, II. Parallel Processing

To increase the overall speed of the Viterbi algorithm, parallel processing becomes
necessary. In a full parallel Viterbi algorithm processor, all metric calculations are processed in

- parallel, and accumulated metric values and the path memory are updated at once. It can be
roughly estimated that a full parallel processed 128-state Viterbi decoder would require an order
of 200,000 transistors, which is beyond the capability of today's VLSI technology. A comprom-
ise between serial and parallel architectures must be made to transform the system into a single

chip.

There are some properties of the trellis diagram which are advantageous to a parallel

architecture. The so-called "butterfly" operation can be used to simultaneously compute the

branch metric values of multiple numbers of states on the trellis diagram.

Ill. Bit Slice Architecture

A bit slice design is a highly structured architecture which can be expanded into an n
bit processor with minimal waste of area and can be easily tested.

When soft decision decoding is used, it normally requires the branch metric generator
block to compute the branch metric values. This block occupies a reasonable area of the total
available space; therefore, it cannot be repeatedly used for every slice.

When hard decision decoding' is used, the bit slice design can be quite useful since, in
*this case, the branch metric calculations are simple to perform.

The challenging design problem in the bit slice architecture for the Viterbi decoder is
the interconnection network for the slices, it may be possible to simulate the trellis diagram's
structure by using direct links among the slices. This approach eliminates the need for a
separate block (TPU) providing the necessary information embedded by the trellis diagram.

IV. Timing and Controller

In hard decision, observed vectors are binary bits, and the branch metric values are Hamming
distances.

32

,- . --,

A different approach to timing and the architecture of the controller was to design self-
timed (21 blocks at the subsystem level. The complex problems of topological organization and
interface of the subsystems for a self-timed system design were the main reasons this approach
was not considered.

V. Fault Tolerance

In real time applications, uninterrupted operation is essential, and the chip must per-
form reliably. Error detection and correction logic can be used effectively to decrease the pro-
bability of failure. However, fault tolerance was not considered in designing this chip because
the physical space needed by this type of circuitry seemed prohibitive.

2.10.2 System Application of the Chip

On board a modern digital communication system, it is natural to assume availability of a
microprocessor (e.g., Z80,MC6800) for an inexpensive mobile radio receiver or a medium size proces-

sor (e.g., LSI 11/23) for a communication satellite system. This processor can be used to supervise the
demodulation process performed by UCLADE. The capability of executing sophisticated testing algo-
rithms to take full advantage of the outputs provided by this chip depends upon the processing abilities
of the supervisor. Output information can be used to both monitor and test the chip. These inputs and
outputs as shown in Figure 2.15 are

1. Reset-I bit resets all subsystems.

2. Freeze-I bit freezes the controller state; all activities in other subsystems are halted.

3. Test Clock-4 bits can be used for level-sensitive scan design techniques available in TPU and
controller. (Shift signal, inputs and outputs are used to shift in test values in the program
counter in the controller).

4. Control Signals (CTS)-8 bits, 5 bits are the address lines to the set of microcodes executed by
the controller.

5. Present State ()-4 bits is the state for which the chip is presently finding the survivor.

6. Survivor's Last State (LSS)-4 bits is the survivor's last state for the present state I.

7. Accumulated Metric Value-6 bits is accumulated metric value of the survivor.

8. Normalizer Constant-6 bits can be used to monitor the .ge of accumulated metric values.

.4. 33

< LU

000-

o No
-j- 0 -

0'~ wUC
wo C.

0D
I-- o ww

0

CD ui

C.)

-w Z

wU,

34

CDl~ a ~ A t CV . .-- . .~At .

Preferably, multiple numbers of this chip are used and operated concurrently; hence, the super-
visor can, by monitoring the outputs from a set of UCLADE chips, use polling algorithms to switch to
the "operating" chip.

A discussion of real time testing of the chip using the test clock for level sensitive scan testing
is included in chapter 7.

2.10.2.1 Closed-loop Carrier Phase Tracking Application

Recently, researchers [13,141 have suggested using the Viterbi algorithm processor in a closed
loop system for tracking and acquisition as opposed to our usage of the open loop application, which
assumes the carrier is fully synchronized. The phase values estimated by the Viterbi algorithm can be
used by a decision-directed phase lock loop to adjust the correlators phase values and carrier frequency.

As stated earlier in sec.2.6, it was decided not to store decoded phase values, but as a result of
our approach to simultaneous phase and data estimation, the TPU can be modified to output phase
values via the path memory.

2.10.2.1 Modification for Other Applications

The Viterbi algorithm is used for convolutional codes, inter-symbol interference channels and
so on. The differences among these applications are only in the computation of the branch metric
values and the connectivity of the trellis diagram. Hence, the basic architecture of this chip remains
intact, but the branch metric generator and the TPU have to be modified for the particular application.

A Note on This Report

1. Simulation, at the subsystem level was not possible because of lack of appropriate simulation
software at UCLA. The only simulation results available at this time are transient time simula-
tion results for path delay calculations by SPICE, included in this report.

3

"' " 35

CHAPTER 3

Branch Metric Generator

Contributors:

Tim Broadnax

Erich Huang

Judith Chou

3.1 Project Description

The branch metric generator generates branch metric values as its outputs. The operation

required to compute bm(l), bm(O) is a two dimensional vector inner-product using the expression

bm(l) - Yc(1)XI + Ys(1)X2

bm(O) - Yc(O)XI + Ys(O)X2

Inputs to the branch metric generator from the TPU are X1, X2 and Yc(1), Ys(1), Yc(O),

Ys(O) are system inputs, denoted as (y, (l) ,Yn,(0) , y,,s(1) ,y,,(0)) in Chapter2. X1 and X2 are each
five bits (1 sign, 4 fraction); Yc and Ys are each 4 bits (1 sign, 3 magnitude). Each pair of Yc and Ys

is multiplexed, one at a time; therefore, the multiplier computes bm(l) and then bm(O) (4 bits magni-

tude).

3.2 Implementation

The basic tradeoff in designing the multiplier was speed vs area. The design group felt that the

fastest possible implementation would be a Booth multiplier; however, the space necessary seemed

prohibitive. A good compromise was found by using the Carry Save Adder Scheme (CSA).

For positive inputs, the implementation is standard shift and add. The following example illus-
trates the multiplication operation:

36

7 . -- -77C7 Q7 7 -7 7 .

'-'

multiplier 0001 1
mwI cand
pout 001 5

01111

The first bit of the multiplicand is tested; if it is a 1, the multiplier is added to the partial pro-
duct, originally 0. If the second bit is 1, the multiplier is shifted left (multiplied by 2) and added to the
partial product. The process is repeated for all 4 bits.

The CSA tree is shown in Figure 3.1. The branch metric generator performs the vector multi-
plication in parallel, and products are combined. This results in only one level of Carry Lookahead

Adders; thus, faster operation can be expected.

For non-positive inputs, the two sign bits are Xored together. An output of 1 indicates that the
2 inputs are of different signs, and the product will be negative; in this case, 2's complement arithmetic
is employed . If the multiplicand bit is 1, each multiplier bit is inverted before being added to the par-
tial product, and an appropriate carry is added since negative numbers are realized by inverting all bits
and adding 1.

The following example illustrates this procedure.

(2) and'°' ~ ~~multi~plier I0 !)
mu m~tilicand
prodlict 111021 W5) 1110

1110001

The resulting logic diagram is shown in Figure 3.2.

In one row of CSAs, 7.5 is added to the output. The factor of 7 was discussed in Chapter 2,
and the .5 rounds off the truncated output. The logic diagram for the Branch Metric Generator is
shown in Figure 3.3.

It should be pointed out that, due to the functions easily realized in MOS, the gates in this
diagram are NOT exactly the ones on the chip, but the logic is unchanged. For example, the XOR-
AND combinations are realized with an XNOR-NOR combination since this implementation is faster
ar.J requires less space.

It doesn't matter what arithmetic is used since the final output bm is always positive.

43
4 37

.4,- 5 - - ':-.:, '' -... " - . '.-.- i i .- ;. ,. : -.- ,?;: ' .:2:''~ o': i " 'i i i:'• • . :

3.3 Cells

I. Input pads & Multiplexers: The input multiplexing, (Ys, Yc), is achieved by the input pads.

The pads are 100 X wide and 106 X long. The multiplexers are directly beneath the pads as

shown in Figure 3.5.

2. Input Gating: The gate cells implement the circuit shown in Figure 3.6. In order to generate

W and V signals for latter use, it takes X bits from the bottom and the sign of Y bits from the

right side. The W signals will be inputs to the AND gates, which feed the adders. The V sig-

nal gets ANDed with the multiplier for carries and sign extension.

3. AND Gates: The AND function is implemented with a NOR gate which takes inverted inputs.

4. Full Adder: The most important cell of this block is the full adder. This cell is used 33 times.
,.4 It has 3 inputs and 2 outputs (sum, carry). The transistor-level implementation used is found

in Carr & Mize's book [11] as shown in Figure 3.7.

5. Half Adder: The half adder uses the same basic scheme as the full adder. It has 2 inputs and

one output (sum) as shown in Figure 3.8..*

6. Carry Lookahead: The multiplier group decided to use carry lookahead instead of Manchester

carries because it was felt that, by doing so, less space would be used. Because it is reasonably

fast without being overwhelmingly complex, the lookahead is generated 2 bits at a time.

There are actually 3 different lookaheads cells. The first takes 4 inputs, 2 for each bit position,
and generates Cout. The next cell takes this signal and 4 additional inputs and generates Cout.
The last cell takes these 2 inputs and produces a carry for the final add.

7. Overall chip: The floor plan, shown in Figure 3.9, shows the overall dimensions. The top
width is bounded by the number of input pads, 16 resulting in a width of 1600 X. After the ini-

tial input logic, however, the multiplier narrows to 500 X.

3.4 Timing Analysis

Based on several SPICE runs made on the simple building blocks of this subsystem, it was

deduced that it would take 25 nsec for an input to ripple through input gating. It will take 20 nsec for
signal to pass through a full adder, and there are 5 layers of full adders.

The final estimated delay for this subsystem is 170 nsec.

38

X4 X3 X2 X1 XO

CLA CLA CLA CLA CLA FF FF

B7 Be B5 B4 B3 B2 B, Bo

H - HALF ADDER
F - FULL ADDER

FF - FLIP FLOP
CLA - CARRY LOOKAHEAD ADDER

B-XY

Figure 3.1. CSA Tree of a Positive Multiply

39

x w

J3 0 -

LL m

LL j cr -

LL 4-O>

LLU..j<

4-

75
:D 0

LL0

LL-

LU..

400

LL.

CY >-

U4-

L 0
CYC

C4u

CYC

C4-

Eo

0

EE

x 7

0 .)

4M'C

- ~ 2.

;. -- W w wv

Vdd

SQ

Q- SA+-S

Figure 3.4. Multiplexor

GTS

XA-X B..X

XE

sX

UA UB UE

v=- x-A+ ...T+x EI+T9Sx EY)

U-VEDXi

Figure 3.5. input Gates

42

X- " . - - . - - -.

VDD _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Q~= BC+(+B+CQ5

Figue 36. Fll dde

43c

C

0OUT sum

B A
B]

Lo Figure 3.7. Half Adder

44

1600x

INPUT PADS

650A

:'- 2
Stttttt tttttt

X2 X,

B3 B 2 B, Bo

Figure 3.8. Floor Plan (Plate J)

hi 45

'.. .

CHAPTER 4
Central Processing Unit

Contributors:

Farshad Meshkinpour
Kameyar Varzandeh
Larry Fitzsimmons

4.1 Project Description

The block diagram for the CPU is shown in Figure 4.1. Detailed operation of the CPU was dis-
cussed in chapter 2. In the CPU, all the numbers in the data path are represented by 6 bits positive
numbers, and all operations are performed using 2's complement number system. (2's complement is
sclected so that subtraction can be implemented by using simple adder.)

To summarize the functional requirement of the CPU, an adder is needed for adding accumu-
lated metric value to the branch metric values bm (1) and bmn (0)-, a subtractor is required to subtract
the normalizing value, and two comparators are used -- one for finding the constant for normalization
and the other to find the survivor.

p.

The floor plan of the CPU is shown in Figure 4.2.

4.2 Implementation

Two options for the architecture of this sub-system are available:

to use a central arithmetic logic unit (ALU) which performs addition, subtraction and com-
parison. This approach would require various registers and a complex data path so that one
operation is performed each time and the result routed to the proper register.

ii. to use dedicated cells so that various operations can be don(simultaneously within the data
path This approach would require a multiple number of adders. subtractors and comparators.

46

.* *1 -

The second oprion was selected by (he CPU group since building an adder and converting it to
a subtractor and comparator provides an easier, faster and more structured design, although the first
option would occupy less area.

The system RESET in the CPU interrupts all operations and clears all registers except the Nor-
malizer register, which is reset to all one.

* 4.2 Cells

The hierarchy of the cells in the CPU is organized using 5 basic cells. The parent cells are
* listed below, and their siblings are then described. The layout of each parent cell is shown in Figure
* 4.3.

1 . 6 bit Adder -- This cell consists of the following:

a. input adder cells-

b. carry generation and carry cells,

C. output cells.

S2. Subtractor -- This cell consists of the following:

a. complete adder circuit, except that carry in to the lsb is a logic I;

b. inverter cells to complement the B input.

3. Comparator -- This cell consists of the following:

a. input adder cells;

b. inverter cells to complement the B input;

c. modified carry generations and carry in cells.

4. carry generation -- The CPU utilizes 2-bit slice design for carry generation. Internal lookahead

was accomplished for the initial carry out. Carries ripple from slice to slice. General carry loo-

kahead Boolean equations for a 4 bit slice are

CO = C,,,
C, = G0+P0 C0

C2 = G1+P1G0+PiP0 G0

C3 - G2+P2G, +P2P1 Go+P 2P1 POGO

The carry generation cell is modified by deleting I inverter, 1 nor gate and 8 polysilicon outputs.

47

C4 - G3+P 3G2+P 3 P2G1 +P 3 P P1 Go+P 3P2P1 PoGo

Cs = C., = Go, +Pou, Co = C,n into the next slice

where: Po = A0 (BoorA E D Bo Go - AoBo

P,= A I E BorA 1 e B, G, - A1 B,
P2 f= A 2 E B2orA2 E B 2 G2 = A 2B2

P3 = A 3 1 B3 rA 3 E B3 G3 - A 3B3

Sum output equations are:

So AoIBo+Co = PoDCo

S --A E B@ C = P C,
S= A @ B (C = P2 C 2

S3= A S B + C = P3 + C 3

The logic diag for this cell is shown in Figure 4.5.
The selected carry generation scheme uses the 2-bit slice design as shown in Figure 4.4. This
approach was selected because it minimizes the area and utilizes simple pass transistor logic to
generate P & C in parallel. This cell is 76 x long and 52 A wide.

5. Inverters -- The A-B inverter is designed for generating both polarities of A and B input sig-
nals. It is attached to an adder when the adder is used as subtractor or comparator. It is also
used in the P and G generation. It is 35 x by 36 x.

6. P, G and S generation -- To implement the propagate and generate signal of the CLA, the cir-

cuits are shown in Figure 4.4. A basic XOR gate is used to implement these functions.

4.3 Timing Analysis

To estimate the operating speed of the 6-bit carry generation cell, which is composed of 2-bit

slices, were made for the A+B, A-B and comparison circuit designs. These estimates represent the
worst case delays using SPICE and hand estimates as shown in Figure 4.6.

. A+B Mode

The total delay for propagating a logic "0" from slice to slice is 68t, using t = 0.3 nsec,
the speed is in order of 20.4 ns for addition.

" II. A-B Mode

48

'." .. .a.' .11. • ' • 2 2. L. . -4 '

W71

The total delay for propagating a logic "0" from slice to slice is 73t, using t = .03 nsec;
the speed is 21.9 nsec.

Ill. Comparison (6-Bits design)

In this mode, loading is reduced because many outputs used in addition are not used.
The carry from the last slice is used as a flag. The total delay is 39t; therefore, the speed is
11.7 nsec.

.4

-..%

d '49

t)
.I..

-7N

Bm LS & D

(6 bit)COMPARITOR

NORMALIZED tC.MTI

NORMALIZER

+ACC.METRIC

Figure 4.1. CPU Block Diagram

50

FROM
MULTIPLIER

bm Lacth bm Lacth bm+Acc
LOAD An

4 RESET SURVIVOR

____ FROM

mR R R R T

ACC E E E E E S5
G Bm + An G G G SURVIVOR• A COMPARATOR

1 1 LS.6 6 6 6
BITS BITS BITS BITSI

LOAD
LAST

STATE
" NORMALIZER

"LCOMPARITORSS

E NORMALIZER
G INVERTOR

"S LOAD 5REG ,,el--NORMALIZER5

,'. LATCH N

, "UREAD ACC. MET.
MUXWRITE ACC. METRIC VIA

FROM OR V;A PATH MEMORY

ACC. METRIC MEMORY

Figure 4.2. CPU

51

4 "FULL ADDER"

BLOCK DIAGRAM:

CELL 1 CELL 2 CELL 3
6ZA -/ --

CARRY
ADD GEN. OUTPUT

INPUT CELLS CELLS S
CELLS

B"6 LSB CIN '0'

CELL 4

"SUBTRACTOR"

"4 BLOCK DIAGRAM:

CELL 1 CELL 2 CELL 3

A -6
• . CARRYAADD GEN. OUTPUT

INPUT CELLS CELLSS
CELLS

B6
-LSB CIN - '1'

CELL 6 CELL 5

"COMPARATOR"
4'/

CELL1 CELL 8 1 Cout"-'0' iff A< B

A 6/ MODIFIED

ADD CARRY

INPUT GEN.

CELLS CELLS

B LSB CIN='1'

CELL 6 CELL 5

Figure 4.3. CPU Cells

52

a.'... -.
4

P0P 0 Go P1 G

POOPI P2C0 0u

to NEXT
2-BIT

INPUTSLICE
CELL
FOR
LSB
CIN

A+B3
OR
A-B3

00 o P0 P0 t,~ C1 P1 P1 C2 C2

TO0FOR So

C2 - G, + PG 0+PPOC 0

Figure 4.4. P,G,S Generation

53

w

00
I- 0.
Cl) +

0. a

0.0

+ ++ +

CLu

Ll I

C4u

0. 0L

IL CL

00

CYu

54-

-77-

o ~o ,

c'JL CCJ

J0

i x 0

0 L0

I-..

cc 0 c

0. 0

CL E

0

00

0 0

(5 55

M- ca.

< . - - . .. , .

CHAPTER 5

Trellis Processing Unit

Contributors:

Dan Asta

Alida Meinberg

Judith Chou

"* 5.1 Project Description

The Trellis Processing Unit (TPU) is the subsystem of the Viterbi processor which generates
the information necessary to address other subsystems'. The ouputs of the TPU are the values of I,
LS, D, Xl, X2. The only inputs to this sub-system are the control signals supplied by the controller.
The role of this subsystem was discussed in Chapter 2.

In the actual implementation of the TPU, it is necessary to provide some delay in the path of

the LS values in order to allow sufficient time for the multiplier to compute bm(1) & bm(O). The
necessary delay is provided through an addition of a three word FIFO queue which is loaded as the LS
values are generated.

When the system RESET occurs, the value of I and the queue are reset to all zeros. The
rounters used in this sub-system can also be used in a shift register mode for level-sensitive scan test-

;* ing.

The block diagram for the TPU is shown in Figure 5.1.

In a strict sense, the TPU could be regarded as part of the controller of the chip since it does not
perform any function on the data path.

56

5.1 Implementation

The logic diagram of the TPU is shown in Figure 5.1

The considerations for the architecture of the TPU are: speed, layout simplicity and area con-

sumed by the subsystem. The parent cells in this sub-system are:

I. Present State I Counter -- This is a static up counter using toggle flip-flops as its cells.

2. i E 3 PLA: A PLA accomplishes this addition, for the 1+11 addition, the inversion of the
MSB is strobed by an RS flip-flop.

3. Metric Coefficients X1, X2: These coefficients are coded in five bits with an additional bit
reserved for sign. These are generated using a PLA.

4. Last State (LS) Counter: For each present state, LS(1)=1+3 is loaded into this counter, which

is then run twice to generate LS(2) and LS(3). During the second period, the counter is loaded
with LS(4) =I P 1I and then incremented twice. This counter is a parallel load counter.

5. The Queue: The queue is composed of 3 levels of master slave flip-flops for each LS and D
bit, the queue is loaded synchronously when the LS counter becomes stable.

6. The Floor Plan: Was arrived at as a good compromise between efficient signal routing and

efficient interface with other subsystems as shown in Figure 7.2.

5.3 Cells

These cells are discussed in detail in chapter 7.

a. D Flip-Flop, Master Slave: This cell is used as the building block of the queue.

b. Toggle Flip-Flop: This cell is used as the building block of all the counters in the TPU.

5.4 Timing and Simulation

1. 1+3 PLA: Trise = 2.5 ns

2. X I, X2 PLA: Trise = 3.4 ns

3. Up Counters: Trise = 20 ns

57

•,- - , . - ".'1

VDD

GND

LATCHES + BUFFERS

i,,

%w

tL. W

COEFFICIENT
+ PLA

w0

•0 - -j -

- SR-FLIP 1+3
FLOPS PLA

I COUNTER

LATCHES + BUFFERS

Figure 5.1. TPU

58

I

INCREMEN*r 1
I COUNTER

ccMSB __

I- * REG. PL

BUFFERS X,2 - - -- RE
* BUFFERS

PLA (0+3)
Xl, X2

COKLS COUNTER -LOAD LS
MSB __

IQUEUE I D 3WOS

LS OK I I
* LOAD QUEUE I D
* RESET QUEUEI I

BUFFERS]

VIA CPU AND ACC METRIC MEMORY

Figure 5.2. Trellis Processii o, Unit

59

CHAPTER 6

Memory

Contributors:

Bill Reber I
Steve Stillman 2
James Bohannon

6.1 Project Description

The memory is composed of two independent blocks, namely, the Accumulated Metric
Memory and the Path Memory. Nevertheless, the basic cells for both subsystems is the same.

Special features of the memory are the dual foreground/ background parallel shift capability,
global RESET and each cell is laid-out such that it can be used both as a source or destination within

* each column of the memory.

6.1.1 Accumulated Metric Memory

The CPU may store a survivor's accumulated metric value in the AM. The storage location is
* determined by the "state" of the system. The state is supplied to the AM on the "I" bus, which is four
* bits wide. Similarly, whenever the CPU needs to use the accumulated metric memory, the state is sup-

plied by the LS bus.

6.1.2 Path Memory

The TPU generates the output bit for each of the sixteen states. Each time one is generated,

the path of the preceding survivor state is copied to to the path of the present stat((source path
* selected by the LSS bus, destination path selected by the I bus). The present path is then shifted one

bit, and the new bit is appended. The convention is that bit #0 is the new bit, and #29 is the oldest.
During the shift, the high bit is discarded.

Path Memory

2 Accumulated Metric Memory

60

6.2 Implementation

To accomplish selection of registers, a 4-to-16 decoder is used. The decoder should also have
inputs to select all or none of the registers.

I. PM1 Decoder -- For the path memory, one decoder is used for the front registers, and an addi-
tional one is required for the back-ups.

II. AM Decoder -- The accumulated metric memory only needs one decoder with extra logic to
connect to either the main registers or the back-ups. This can be done since the registers will
never be selected at the same time. For this reason, inputs/outputs can be accomplished on the
same bus.

The paralleled transfer of the back-ups to the main registers is facilitated by connecting the
front and back-up register cell to the same bus. The basic memory cell contains two bits, one for the

* main and the other for the back-up.

It turns out that the operations of copying one path to another, shifting the new path and
inserting the input bit can be combined into a single operation. This is done by selecting source and
destination path registers at the same time. Since copying takes place only from a main register to a
back-up register, and not vice-versa, then, by simply connecting the output of each main register bit to
the "right hand bus" and connecting the input of the back-up register bit to the "left hand bus," the shift
is accomplished at the same time as the copy. The input bit DIN is connected to the left-most bus.

The timing diagram as shown in Figure 6.3 depicts the relative timing of the control signals.
The duration of each pulse can be increased, depending on the system clock frequency. All registers
are static.

6.3 Cells

1. Register Cell -- The basic register cell (burreg) used in the memory was designed using buried
contact. The size of the burreg is 55 X x 56 x *. This resulted in 34%/ reduction in the area of
the entire memory as opposed to using the butting contact. The circuit and transistor models
for the basic register cell are shown in Figures 6.6.b, 6.6.c.

11. Decoder -- The decoders are designed with the use of simple pass transistor logic. Control lines
run vertically, and output select lines run horizontally. The transistor model for the decoder is
shown in Figure 6.6.a

Ill. The overall floor plan is shown in Figure 6.4.

The design team originally designed the butting contact version. and its size was 122 x x 71 X.

61

.* 6.4 Timing and Simulation

There will be certain set-up times involved for events taking place in the memory. The follow-

ing names will be defined to describe the delays:

Path Memory

1. PDst - decoder set-up time

2. PMst - memory array stabilization time

- Accumulated metric memory

I. Adst - decoder set-up time

2. AMist - memory array stabilization time

3. AMost - memory array stabilization time for the output

Both Memories

I 1. XFRst - length of XFR required

2. RSTst - length of RST required

The timing delays are:
PDst 92 ns
PMst 228 ns
ADst 117 ns

AMst 152 ns
XFRst 768 ns
RSTst 768 ns

*The various circuit models used for these estimates are shown in Figure 6.4.

62

- *J

00

CD w
>O

w

-a

4...0.- -O
,Z,< E

0o0 0

w-w w"w

LO e I- I- 0<
vO C Cl) Q Zo

M cc co
ww w <. -0

a,
0 -f CC> cc cCc -

tE
0, w zoD (

.04

°Q -

w w

C , ,-),
o.,

Cd w
0 L

4., I w

C163

D .3: <
.-.- -

.-

PM - BLOCK DIAGRAM

"LATCH I" LA CH "I"
"LSS" DIN (INPUT BIT) SYSTEM OUTPUT

ENABLE TO BIT 0 (DOUT)
SELECT ALL *FROM BIT 29

"XFR, . REGISTER 0

DECODER DECODER (MEMORY ARRAY)

REGISTER 15

SELECT LINES RUN HORIZONTAL

Figure 6.2. Path Memory

64

%" A.

*TIMING DIAGRAM (RELATIVE ONLY)

RST Rt PM A

X FR

LATCH I

AM.OUT 1 DATA I DATAI

WNI VALID IVALID
AM.IN -

PM.NO

,4 READ

I-MAIN SYSTEM LOOP IN METRIC

I- I I
""I I I

SYSTEM "I" IS STABLE
* RESET LOOP 3 TIMES, LOOP 3 TIMES,

OUTPUT OUTPUT
METRIC TO CPU TO CPU

(1) XFR is the same for AM and PM.

(2) "LS" and "LSS" must be stable a certain amount of time
before raising AMIN or AMOUT to allow the decoders to
set up.

4%

Figure 6.3. Memory Control Signals

.4

-. 65

" ° -. -= -t r*-

BIT i i/o BUS

SELECT SELECT
BACK-UP TRANSFER FRONT

(SELECT (TRANSFER
4REGISTER j, BACK-UP BACK-UP

TO WRITE) TO FRONT)

()=COMPLEMENT

Figure 6.4 Logic Diagram for an Accumulated Metric Register Cell

66

MULT. TPU

CPU CONTROL.

3445)k

LS II LSS

AM PM PM

oM D D 2170X 86
AM E E E PM 86

C CC C

31 20X

Figure 6.5. MEMORY FLOOR PLAN

67

THE MODEL FOR WORST CASE DELAY

INPUT VDD ENABLE SELECTALL

(L= 8,.)V. ,:W= 2,k VDD

SL= 2X

W- 4X
SELECT

,W= w 2x -SELECTION

L= 2XSIGNAL

PDst IS INCURRED HERE r JEALE SELECT
VDD ALL

Figure 6.6.a. Decoder Transistor Model

THIS IS THE BASIC FLIP-FLOP CIRCUIT USED:

"OUT

~SELECT =- .. J

4.%

SELECT

Figure 6.6.b. Path Memory Register

68

•%........ . .

1 /O BUS (LEFT) VDD VOD 1/O BUS (RIGHT)

8/2 8/2

DESTINATION 2/20
FROM

DECODER

XFR

SOURCE8/82
FROM

DECODER

SELECT - _

Figure 6.6.c. Transistor Model for Basic Register Call

R C1 R2 C3:-C- CI,4 (30 - 2x2 x TRANSISTORS)

DECODER)

Figure 6.6.d. Circuit Model for Delay Analysis

69

CHAPTER 7

Controller
Contributors:

Ramin Sadr
Wade Mergenthal*

Steve Yinger

Joe Jensen

7.1 PROJECT DESCRIPTION

The system structure of the controller was discussed in chapter 2. At every clock cycle, the

controller sequences through a memory and outputs a word of information. The bits in this word are

used as control signals to functions in other parts of the chip. The control signals are to be used, not as
a two-phase clock to gate latches, but as a window during which a particular function is to occur. The

controller itself operates on a two-phase non-overlapping clock and outputs a new set of control signals

on the rising edge of phi 2. These outputs remain valid until the next phi 2. One clock cycle is the
period for one phi I and phi 2.

The most direct approach to implementing the microprogram is to store the instructions in

sequential order in a memory. To sequence through the instructions, we need a program counter which
increments every clock cycle and provides the next highest address. However, in the Viterbi algorithm,

many of the calculations have to be done over and over again; so, it would be advantageous to imple-
ment some of the instructions in loops. Two kinds of loops are needed, one that is done 16 times and

the other 3.

7.2 Implementation

The block diagram for the controller is shown in Figure (7.1).

Control signals sent to other parts of the chip go directly into superbuffers specially designed to
boost their drive capability. The remaining seven bits are used by the controller itself. Two of these

bits, called tO and ti, are used together to indicate the end of a loop and identification of the particular
loop ended. If tO and ti both equal zero, then we are in the middle of the loop and want only to incre-

ment the program counter and continue on to the next i.-- ruction. If, however, we are at the end of a
loop, then tO and tl indicate such. Also connected to the loop PLA are a divide-by-three counter and a

Special thanks are due to Mr. Mergenthal for his work on this subsystem.

70

0 1
0<i ____

0 /
CdYO'i8Zu

00

(Ok<NO UOJN JLfldN

cr 00 co-0 W-8 -UC

00
-J-

ccd 0 'O
0~ 0)

I- 0n 0

(0lhVNA<0 HOI-0ind-i

0W OzO

CI) -

W Z U) cIto 0
m~ U-

Cl)71

-
-

- -.
' . 3Z 9-

*, divide-by-sixteen counter. These are used to indicate how many times the respective loop has been
executed. They are both down-counters and will have all zeros in them when the loop has been exe-
cuted the proper number of times. When the end of a loop is indicated by tO ani tI, the luop PLA
looks at the appropriate counter and decides if it has been executed the proper number of times. If it

* has, the loop PLA allows the program counter to be incremented to exit from the loop and decrements
the appropriate loop counter. If the loop has not been executed enough times, the loop PLA sends a

• ,signal to load the address of the beginning of the loop into the program counter. It also decrements the
* appropriate loop counter. The address of the beginning of the loop is provided from the instruction
* PLA as the other five control signals to the controller from the instruction word.

It takes two full clock periods for information to be cycled through the controller. As one
instruction is being output, the address of the next instruction is being output from the program
counter. At the same time, the address of the next instruction after that is being determined by the

. loop PLA. This means that tO and t1 must indicate the end of a loop, not in the last instruction in the
loop but in the next to last instruction in the loop. The jump address of the beginning of the loop must
also be in this same instruction. This means that the minimum loop size is two instructions. This is

,' indicated in Figure 7.2, which gives the contents of the instruction PLA.

7.2.1 Level-Sensitive Scan Design

The controller was designed using Lhe level-sensitive design approach as outlined in the paper
"A Logic Design Structure for LSI Testability" by E. B. Eichelberger and T. W. Williams [121. Their

approach required that all internal storage elements be designed to operate as shift registers as well as
normal storage nodes. All our static latches were designed with shift register capabilities. The second
requirement was that the design be level-sensitive (LST).

The program counter in the controller is modified such that it can also be used as a shift regis-
ter for LST testing, for this purpose the main clock is frozen and a test clock is introduced to shift
in/out the p.c content via an output pad. Both clocks are inverted at the clock pads then or'ed below th

* -16 counter.

7.2.2 The Control Signals

The control signals generated by the instruction PLA are shown in Figure 7.3.

The controller, as well as parts of the rest of the chip, must be initialized upon power-up. A
global RESET pulse is provided for from off-chip. In order to be effective, it must last for at least 3
full clock periods. The signal then gates transistors in the controller to force the tO and tl outputs high,
the jump address lines low and to reset the 16-counter, 3-counter, and 30-counter. This forces the first
instruction, TO, to be output from the controller, which contains two signals to the CPU for initializa-
tion. The TO instruction will remain valid for two clock periods after the reset line goes low. On the
third clock cycle, the next instruction, TI, will be executed, which contains one more reset signal for

72

A 3)NVO 00 0n 00 0o 0 - 0 c0 o (0 - 0 0~ 0 - c

Od 0 - r- - 0 - 0 '.0 - 0 - -0 - 0 - 0 - 0 - 0 - c,

Cd 0 000 00 0 0-------------- - - 00 00 OO0 0

(ON Yd))31VN3 0000 0 0o00000000o00 oooo ooo0o- -oJ

I poilb' o oo0o o ----------- -- oo 0o 0o o o o CC\)

8jx 0 0 - - - 0 0 0 0 0 0 0 0 0 C, 0 0 0 0 0 0 - - N
JM 3 OOV ooo o oo oo o oo o oo oo o oo -

3-iGVNE) 000000 00- -0 00 0--0 00 -0 0

OV38 13V4D 000 0C)C0 0000- - 00 00- .- OOOO t c

Ha'v1NN 0 000 00 0 000 00 0-0 00 0 00-0 000 F-

~Nooos'l o -oo-oo01oo0 oooooooooo.- - - N

dOAAtnsSJ3,,R3 -0 0 C.00 00 00 00 00 00 00 00 0 00 f- l

ZX VLX HOIJ1-------------- ------ - -- 0-------------------

0 000-0 0 000 0- 0 0 0 0 0.- 00 0-0

0- 0 O 0 ~ O o o o o o o - -00

U) 0 00 0 00 00 00 00 00 0 0 00 000
0LU~~

00000o 000-o0ooo0 0000 0-0-0 0 0

L~i
M (C HON813 (C) HONV88

b06ei'NAS

.73

0

v

ci-

Nl

0

I.-a

(00

-J) a C)

m0 E E

(0 0 iC

o a. a:

00
LL.

74

PlN

the CPU. After this, the controller cycles in its normal manner to instruction T2, etc.

Following are descriptions and designs for each of the components in the block diagram:

7.3 Cells

L. Ins.ruction PLA

The instruction PLA is a PLA made through use of the "mkfsm" program having 5

inputs, 26 p-terms and 34 outputs. The inputs are clocked by phi 1, and the outputs are

clocked by phi 2. Each row of the PLA contains one instruction word of the microprogram

corresponding to the system timing diagram shown in Figure 7.3. The contents of the PLA are

shown in Figure 7.2. The instruction words are labelled from TO through T25, each

corresponding to one clock cycle on the system timing diagram. Loops are indicated by lines on
the left side of Figure 7.2. The p-term number associated with each word is on the right. This

PLA is 396 lamda x 286 x and has 5 inputs, 32 outputs and 22 p-terms.

I1. Loop PLA

The loop PLA is used to determine what is done when the end of a loop is reached. It

has four inputs (tO, t, 16-counter zero and 3-counter zero), three outputs (decrement-16
counter, decrement 3counter and load program counter) and seven p-terms. The inputs and

outputs are not clocked directly at the PLA. This PLA was made with "mkfsm", and its truth
table is shown in Figure 7.4. This PLA is 132 X x 132 A and has 4 inputs 3 outputs and 7 p-

terms.

Ill. Counters

As has already been mentioned, there are four counters in the controller, one of which

has not yet been implemented. All are synchronous counters, and all are built using a modified
version of the TPU group's toggle flip-flop as the basic building block. Following is a focus on
that basic cell and the design method used to construct the counters. Afterwards, each counter
will be discussed individually.

Divide-by-3 counter is a 2-bit down-counter used to count the number of iterations of

the branch loop (Recall that this computes the new accumulated metric for a transition.). The
Reset line shown on the block deagram will be connected to the LOAD input, and DIN is set
so that, after 3 passes through the loop, the counter state will be 00. For this counter, DIN(O)

is tied to GND, and DIN(I) is tied to +5 Volts. The Reset need only occur once- after the 00
state, the counter is set to return to the 10 state. We want phi I and phi 2 to decrement the

counter only at the end of an iteration of the appropriate loop- so, when we do not want to

decrement, a pass transistor to GND and ENbar is provided to ground T. The counter will be
allowed to decrement only when ENbar (shown on block diagram as Decrement l6bar) is low.

75

• .._;. .1:

0 0 0 01 1 0
0 0 0 1 1 1 0

INCREMENT 0 0 1 0 1 1 0 p term # p term
ALWAYS 0 0 1 11 1 0

0 1 0 0 1 0 0

NODAL 0 1 0 1 1 0 0 2 to

CYCLE 0 1 1 0 1 0 1 3 io
0 1 1 1 1 0 1 4 t,
1 0 0 0 0 1 0

BRANCH 1 0 0 1 0 1 1 5 tj -to

CYCLE 1 0 1 0 0 1 0 6 tj •3zero
...1 0 1 1 0 1 - 1 7 to • 1I6zero
1 1 0 1 1

SYMBOL 1 1 0 1 1 1 1
CYCLE 1 1 1 0 1 1 1

TY1Y 1i 1 1

INPUT #- 1 2 3 4 1 2 3 - OUTPUT #

DECREMENT3 = f + to

DECREMENT16 = to + tl

LOAD PC = (t1 .to)+ (t1 •3zero) + (to 1 6zero)

Figure 7.4. Loop PLA Truth Table

76

L5 DIN

b
T

-' Figure 7.5. TPU Group's Toggle Flip-Flop

W97HIPT DIN

PREVO
NEX

LOADSHFa

Figure 7.6. Flip-Flop Modified to Include Shifting Capability

77

To indicate to the loop PLA when the count has reached zero (i.e., the proper number of loop
iterations completed), the counter outputs are NORed together; the signal 3zero goes high at
that time. The transition table and counter block diagram are shown in Figure 7.7. Its size is
240 x by 86 x.

Divide-by-16 counter is a 4-bit down counter used to count the number of times the

nodal loop is executed (once for each of the 16 states in the trellis). As with the 3-counter, the

Reset line will connect to LOAD and will set the counter to a predetermined value -- for this
counter, 111 ; therefore, for each ce', DIN is tied high. ENbar has the same function as in
the 3-counter, as does the NOR gate, which has 4 inputs for this counter. On the 16th itera-

tion, 16zero goes high, ant the loop PLA will not allow another iteration. The next state will
" again be 1111, ready for another series of iterations. The transition table, Karnaugh maps and

block diagram appear in Figure 7.8. The size of this counter is 495 X x 96 X.

IV. Program counter

This is a 5-bit up-counter which provides the address of the desired instruction word to
the instruction PLA. The two major differences between it and the 3- and 16-counters are: I.

The DIN inputs are not tied high or low but are connected to the loop-beginning-address field
of the instruction word. This allows a jump to occur when the loop PLA instructs. 2. The
ENbar feature is not incorporated in this counter because there is never a time when we do not
want to increment. We want to run continuously on phi 1 and phi 2. Also, instead of Reset,

LOAD will be connected to the loop PLA -- instruction word 00 contains the initialization
information for this counter. The flip flop cells for this counter are modified to allow shifting

for level-sensitive scan testing. The transition table, Karnaugh maps, and block diagram appear

in Figure 7.9. The size of this counter is 552 A x 99 A.

V. Buffers

The Superbuffers are designed to handle the current requirement to derive the control
lines. From the chip layout, it was determined that the longest path among the control busses

is 2200 A. Assuming five loads per line, the capacitance was estimated at .83 pFarad or an
equivalent of 130 loads. The logic diagram of the superbuffer and its transistor model are

shown in Figure 7.10. This cell was also laid out to fit almost within the pitch of the output
control lines from the instruction PLA.

7.4 Timing and Simulations

A level-sensitive design is not dependent on risetime, falltime, minimum delay of the indivi-

dual circuits or wire delays. The only dependence is that the total delay through a number of levels be

less than some value.

78

'"~~ . '-' ' --i. ,

Divide- by- 3 down- counter

TRANSITION TABLE:
Input Present State Next State

T1 To Q1 Q0 Q1 Q0
1 1 1 0 0 1
0 1 0 1 0 0
1 0 0 0 1 0

ON RESET, SET PRESENT STATE TO 10

To = Q0+ 01 -=

THIS LEADS TO:

Q- 01"3ZERO"

,.T O U T,

ALSO, BOTH CELLS GET:
LOAD, SHIFT, 1 0 2,LD/SHIFT

Figure 7.7. Divide-by-3 Counter

79

,. -. • . % ° % . • . . - .

Divide- by- 16 down- counter

TRANSITION TABLE:

Input Present state Next state

T3 T2 T1 TO 03 Q2 01 Qo Q3 02 Q Qo
0 0 0 1 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 0 1 1 0 1
0 0 0 1 1 1 0 1 1 1 0 0
0 1 1 1 1 1 0 0 1 0 1 1
0 0 0 1 1 0 1 1 1 0 1 0
0 o 1 1 1 0 1 0 1 0 0 1
0 0 0 1 1 0 0 1 1 0 0 0
1 1 1 1 1 0 0 0 0 1 1 1
0 0 0 1 0 1 1 1 0 1 1 0
0 0 1 1 0 1 1 0 0 1 0 1
0 0 0 1 0 1 0 1 0 1 0 0
0 1 1 1 0 1 0 0 0 0 1 1
0 0 0 1 0 0 1 1 0 0 1 0
0 0 1 1 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1

BY INSPECTION,

00 00 00
10 0110 00Q10O0021 1o 0 0 1 021 1 0 0 0 0o.Q

1 0 O 1 1Q 1 0 10 0 a 0 0 0 0Q21I 03 021 1 03 0210000

I T2 - TZ- 1 T3-0 0+01- Qo+Ql+Q21

+03

To 00 T, T2 T3

ALL CELLS ALSO GET:
SHIFT, 110 2, LOAD, LD SHIFT 16 ZERO

Figure 7.8. Divide-by-16 Counter

80

0 E

I-c

C) z

0 0

CLC

~ z 0

G E
0 0

81
• .0.

c,,,j- ir

*i I,-

°w
o°,

7*7-
-.- 7

-

S-" Program counter

- TRANSITION TABLE:
Input Present state Next state

T4 T3 T 2 T, To 04 Q3 Q2 Q1 00 Q4 03 02 Q1 Qo

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
", 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 0 1 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0 0 0 0 1 0 1
0 0 0 1 1 0 0 1 0 1 0 0 1 1 0
0 0 0 0 1 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 0 0 1 1 1 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0 0 1 0 0 1
o 0 0 1 1 0 1 0 0 1 0 1 0 1 0
S0 0 0 1 0 1 0 1 0 0 1 0

0 o 1 1 1 0 1 0 1 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0 0 0 1 1 0 1
0 0 0 1 1 0 1 1 0 1 0 1 1 1 0
0 0 0 0 1 0 1 1 1 0 0 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 1 0 0 0 1
0 0 0 11 1 0 0 0 1 1 0 0 1 0
0 0 0 0 1 1 0 0 1 0 1 0 0 1 1

0 0 1 1 1 1 0 0 1 1 1 0 1 0 0

0 0 0 0 1 1 0 1 0 0 1 0 1 0 1
0 0 0 1 1 1 0 1 0 1 1 0 1 1 0
0 0 0 0 1 1 0 1 1 0 1 0 1 1 1
0 1 1 1 1 1 0 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 0 0 0 1 1 0 0 1
0 0 0 1 1 1 1 0 0 1 1 1 0 1 0
0 0 0 0 1 1 1 0 1 0 1 1 0 1 i
0 0 1 1 1 1 1 0 1 1 1 1 1 0 0

, 0 0 0 0 1 1 1 1 0 0 I 1 1 0 1
0 0 0 1 1 1 1 1 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0 1 1 1 1 1

-. 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

BY INSFECTION,

Q0 Q0 Q

0 i ,000rl 0 1 0 01

i" 0 1 1 -1' 0 0 0 0'I 0i

02 0 -0 Q20 0 1 00Lo.. 12 0 0(0 0oQ 0 1 0 02t pj -)3-i!

"'Q, Q, Q,

I:. T, - Q0 T2 - QoQ1 To T---, T3 - QoQ1 Q2 1 + 2, -

T= T+ 5+02+?

Figure 7.9. Program Counter (Continued)

82

*- . , - - - . s X ! s .

SUPERB UFFER

VDD

S.B.CLOAD 0 .83PF

22

42/

837 -- , .8 p

Our design is a sequential design controlled by a two-phase non-overlapping clock. As long as
the delay through the maximum number of levels is less than half the clock period, our design meets
the level-sensitive requirement. For 10 Mhz operation, this time is 50 ns. Using SPICE, the longest
path is simulated to determine maximum clock frequency.

The models for SPICE simulatiun .f the program counter and the instruction PLA are shown in
Figure 7.11,12,13. These two cells are the dominant blocks in terms of the speed limitations within the
controller. The results are stated here:

Program counter

Propagation Delay-- 39 ns

Settling Time--22 ns
Instruction PLA

Propagation Delay-- 30 ns

Settling Time--45 ns

84

.

co

c'J

oo:
0

CD E
ca

w 0
-i Q-

00

C, V)

4 o -'

0 D-

0

0

04 04

CNC

c'J C,4

85

IP

TOGGLE FF

PATH 1 00

TOGGLE FF L

Figure 7.11. Circuit Model for Delay Calculation for the Program Co!)nter

86

D-i35 92 UCLA DEMODULTION ENGINEU)
C LIFORNIA UNIV LOS NGELES 2/2

DEPT OF COMPUTER SCIENCE R SAOR MAR 83 UCLA-ENO-83-23M0A983-82-C-8864

1 UNCLA-'SSIF ED

F/G 9/5 NEhhERhhhhi
IEE..

1.8.

I b.i

III II2

III m 13-- L
11111.25 .4____

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

%. .S , - .

.t. ~ ~ ~ ~ ~ ~ (C .- .t L.- - , *-

I')

C.)

870

TOGGLE FF

PAATH

PATH 3 800X

TOGGL FF INSTRUCTION
TOGGLE FFPLA

Figure 7.11. Circuit Model for Delay Calculation for the Program Counter

86

., .~v. i .*,T .- - . . . -. - -

APPENDIX A
Theoretical Derivation of the Receiver

A.I MSK

MSK belongs to a larger class of modulation techniques called Continuous Phase Modulations
(CPM) which are also referred to as bandwidth efficient modulations [7,8,91 because of their superior

spectral characteristics. The CPM signals use the constant envelope Frequency Modulated (FM) signal
to transmit digital data in Radio Frequency (RF). The transmitted signal can be written as

X(I;g) - FCoJ, + fak ik v fog(.rkT) d1

where
E, is the energy of the transmitted signal
T, is the symbol duration time in Seconds
ak is the data symbol E I -±1, ± 3, ±,. . ± M)
f, is the carrier frequency in Hertz.f, - 21rw,
g(t) is the premodulation filter
hk is the modulation index

MSK is the simplest form of the CPM signals with
(binary data) ak E 1+1,-1) [0'-!, i-+J

hk - 1h for all k
g {) hT, 04, t< T,

10) T,<4,t

Figure A.I illustrates the MSK modulator. The output of the premodulation filter gGt) is

0 t 4, n T,

f0 ()d 7 -f () d 7 -n27 , nT < <(n+l1) T

1h (n +0)T, 4

Hence, for the interval nT, t< (n +) T,, the MSK transmitted signal is

" a,(i-nT,) ,
T 2, T2j_

We define the "state" at the n"' time interval as

88

-j 1)j jt~z-p s , .-)-i .,Ji) J -m .- 9 e' .l" = ' '*'lmq .o .) • . 'h. - -. "*b -" "" " " " -'

.,' L ,)' ': .'*. .. . , ' - .''..'-. - .-''. '. '..''."..-'....''..-"3'.-''- ..''..'"'",".' ,''-.'' '-" -. ," '" %.''- -'.

0

-o:

U.

+

0I~, 0

o 4- 0

4- 0 CO1J
3F c

00

COC)

LL

1 II

S , a, Modulo-2ir
i-0

.The discrete process, S., can only take on four possible values since ao E 1+1,-I). Therefore, the
"phase" space for MSK is

- 0 -2-2

The "state transition equation" in this case is

S. - S,,- + -M a,-t Modulo-2vr S. E D (A.1)

Using (A. I), the state transition equation can be modeled by "the state diagram" as shown in Figure
A.2.

A.I.2 MLSK with Random Phase

In practice because of a lack of an ideal phase reference the MSK transmitted signal is

g(:;a4) . , Z oo~ + a n ,) + M-1a+~,Al; .FE Cj f Ma.(+ a + 40(t)

where .O(t) is a stochastic process around the unit circle, this process has been studied previously
18,14,151 and in practice this process is usually a slowly varying random process. Therefore, it is

assumed that the phase process remains constant during each t E iT,(i+) T), i-0,1,2 ... interval.

In our proposed approach the phase space [0,27) is quantized into Q equal spaced intervals, as
shown in Figure A.3.

40 - (0,A,2A , (Q-)4} where A - 2v
Q

Hence the process 10(t)) can be approximated by the discrete Markov chain 19;1 where

0i - Oj-i + 4bi Modulo-21r 0, E 4b

and 6 is an independent identically distributed (i.i.d) sequence.

The Markov chain model 9, i - 0,1,2.... is essentially a quantized approximation to the true
phase process 0() and with enough quantization values it can be made as accurate as necessary. Gen-
erally, channel noise will be the dominant source of degradation and, beyond a certain level of quanti-
zation, finer quantization would not affect the overall performance.

90

An~ E 1+1;-I)/

0

Figure A.2. MSK State Diagram

9'

%I F. -1 . . .

The quantized phase space for Q- 16 is shown in Figure A.3. 0 constitutes the state space of
the first order Markov chain S. at time nT,. For MSK with random phase, the state at time nT, is

S, - a,+ ,) Modulo-2i ; S E 4b
1-0

The state transition equation is

S, -St +"a-.I + b,- Modulo-2v

where

S. E a. E+,-I} {6ME(-A,O,A)

The assumption that , E (-A,04 means that the random phase process o(Modulo-2vr) jumps only
to adjacent quantized phase values or it remains unchanged during a symbol interval T, seconds. A
typical state transition for Q- 16 is shown in Figure 2.3.

A.2 Receiver Design

The digital communication problem is depicted in Figure A.4. The transmitted signal x(t;a) is
contaminated with Additive White Gaussian Noise (AWGN) with double sided flat spectral density
No/2. The receiver's goal is to find the best estimate of the data using the observed signal y(t) -

x(t.a) + n(t).

We shall use "soft decision" (11 decoding which reduces the bit error probability as opposed to
"hard decision" [I]. The simultaneous phase tracking and data demodulation of the CPM signals was
studied by Jackson [8].

To find the optimum receiver, the Maximum A-posteriori estimation rule (MAP) is used'.
This estimation rule selects the sequence pair (_Q,j) that maximizes the joint probability of the data and
the phase, given the observed vector Y. That is,

Uj) - Afax-'P(a,Ily)

where a -(a,..a..,a,) 1 £=O- (Y"(Y YL) 2

The phase and the data are independent processes and p(Y) does not affect the maximization,
therefore, the maximization is equivalent to

1 This rule minimizes the probability of error [1].

2 The Gram-Shmidt orthognalization procedure can be used to find this vector.

92

(0(tl (On - I~- + &,j 4E(-A,OAI

-0-cos

(0- 1)A

Figure A.3. Phase Process

93

Max P(QIa,J)P(a)P0)

Furthermore, a, is assumed to belong to the equiprobable alphabet U-{+I,-I}, P(ai-1) - P(a,--I)
1h, thus we have

Max P(Q I ,) P()
(aA)

Denoting natural logarithm as In

Max In P(yIa,O)P(J)

We shall further assume that the phase process is an independent process, so that,

Max in P(QIa,_)P(,)0 P).. ,)(a,t)

The maximization of the conditional probability density P(yla,o), which is Gaussian in this case, is
equivalent to maximizing the L2rokri (Hilbert space) inner product of the transmitted signal x(t;(a,,))

with the observed signal y(t). This rule is given by,

,. kT, ko InP(,)
(ax M 0 t;(a,0b))y(t)dt- _2N

Defining a few terms to simplify the above expression, y(t) is projected along the in-phase and quadra-
ture components of x(t) given by

- rf ("+ r ..t// ,:'o" -.'1 (T C-nr) Iy(W)dt

, (a.) -y +) - it+a (t-nT) dt
fT, 2E ___

Noting the expansions

kT, k-
(i +]

) T
,

foTx(t;(a,!0))y(t)dt = f 4 x(t;(a,))y(t)dt

for ,,T,< r<(n+I)T, x(t;(a,±) =- f T CoTzct +- r+i) +i

2, C t (- aT,) G .r (t-nT,)

T, T, T i(,+S)

where

94

' - % '' '',"' '' , . " ,_, """" ," "" ".'- - • , '. '-"• . '.". •- " " ,' ' .- ' . . ' ,-'' " , * ,"" . ". . -" " .

'A.,

Cal

x w

L W IT"
0

So cc,-

_ cf,

LU U

x w 0

Co CL
z c

* I CO 0

cr >-

LU z

8 00

CoO
CCI

9S

S. - ai + Modulo-2wr
j-02

or

- S~,-"af,+r, Modulo-27r

define the "branch metric"
,(n+I)T

my.;a.,S.) A j, y(t)x(:;(a,Ob)dt - y.,,(a,) Cos(S,+0,) + y,,(a.)Sin(S, +,,)

where y E R4 (4-dimensional Euclidean Space).

This maximization problem is reduced to

k
max I m(_.i;ajOi,S) - -L--InP(&)
(0.,b_) i,-O 2

Si - Si_. + 7 a,_ + Oi,;S EO

a - (ao a) ai E 1+1,-I)

and we shall further assume that the phase process 4o, E {iO,-A, i.e., the phase value jumps only to
adjacent quantized phase values. If these transitions are equally likely then
P(,-O) - PCti-A) - P(4i--A) - 1/3, and thus

k

f4) 1-0

The Viterbi algorithm [3,161 is the dynamic programming solution to the above maximization

problem. The state transition equation Si - Si-_I + -Mj-I + 0 j- I can be represented in the form of a

state diagram; the time sequence presentation of the state diagram for i-0,1,2 k is called the
trellis diagram (Figure 2.2.a).

For every transition defined by the state transition equation, there is a metric associated with

this transition, which we shall refer to as the branch metric value and denote as m(S,;S.+1), for nota-
tional convenience. Here this is

m(S,.;S,+1) - y,. (a,,) Cos(S, +,.) + y(a,,)Sin(S. + ,,)

where

96

, - , -.-.... .. .: ., .. ,.,:. -- . , ,. . ,....... .-.__ ..,..

S,,+I - S, + .

The key point in applying the Viterbi algorithm is the forward equation for the value of the accumu-
lated metric value of every state of the trellis diagram given by

AccMet(S,) A Max IAcctfet (S.) + m (S,;S,+I)
S"

with initial condition AccMet (SO) = 0 n = 0,1, 2. k

A.3 Summary

In summary, the mathematical problem is to find (_,j) such that

Max i m(S, S,+1)(O-"h) i=0

where

m (S, ;S,+ 1) = yi., (ai) Cos (S, + (b) +yi, (a) Cos (Si + .0)

S,41 = S,+a, L+ O,

The solution is given by dynamic programming also known as the Viterbi algorithm when there
are finite number of states. The transformation of this formulation of the uptimum demodulator into a
VLSI chip is contained in Chapter 2.

97

,W". °.-.-. . .- . . °..-.- -*. • • . - . - -' :'"',:.,,.' :-''.'".; ""*.- - .. ; '...-....,....-- . .

APPENDIX B
MICROCODES

"Symbol Cycle"

CPU I TPU I MEMORY

TO: Ycs(l),Ycs(-1);accept new input values NOP Dout<--DO;output decoded bit
Coefl < ---- X1 Coef2< ---- X2 I

TI: Call < <Multiplier Routine > >1 Call < <TPU Queue Routine> > NOP
;This call will result in having the first state I-0 Lsl,ls2,Ls3
;in the TPU queue;in the meantime we shall compute bm(l) for 1-0.

DO T8 1-0,15

DO T3 j- 1,3

T2: Call< < Branch metric Routine> > & < <Multiplier Routine> >
;this call is for "0" transitions and the second routine is called
;for to compute bm(l) concurrently.Note here that the second call
;can be extended over the complete cycle of this loop, i.e., while
;the survivor for "0"transition is found we are also computing
;the branch metric for transition "1".

T3: Call < <Survivor routine> > NOP I NOP
;this call is to find the survivor ,again this loop is for "I"

T4: NOP It< ---- It+1 NOP
T5: NOP Coefl < ---- XI Coef2<---X2 NOP

-these two cycles causes the TPU to point to the next state so
'that in the next three cycles the multiplier can compute the

bm(0) for the I-I+1 state.

DO T5 j- 1,3

T4:Call < <Branch metric Routine> >&< < Multiplier Routine> >
;this call is for only "I" transitions, note the comment during
J5.

T5:Call < <Survivor Routine > > NOP I NOP

*, 98

..............................-.-.-.

;At this point we have the so called "survivor" of state I.
;for the corresponding figure refer to , -tern specification
-document pageO0

T6: XN< ---- Y LSS< ---- Yad I NOPl Accmetout< ----- Y Din< ---- Ds
-The survivor's absolute value and it's corresponding state
;output via the memory.In the cpu itself we store the survivor's
;absolute value in the normalization input register to be compared
; with other 16 survivors.

T7:Call < <Comparator Normalization Routine> >1 NOP I PAO) <---BP(LSS)
I BAM(1) <--Accmetout

;CPU compares the survivor accumulated metric to its previous value
;and stores normalization constant.The memory stores the path"properly"
;and the state l's accumulated metric.

T8:Clear I NOP I PA(l)<---shift in---Din
-All CPU registers are Cleared EXEPT YN,to repeat the process for the
;next state .The decoded bit is shifted into the path memory.

T9: N< ---- YN I NOP I NOP
;this cycle is the initialization for the next symbol time operation
;so the normalization constant is clocked into the normalization
;registers ,which is to be used in the < <Branch Routine> >

TIO: YN< ---- Fill with "si l< ---- 0 1Call <<Replicate Routine>>
;the normalization register output is filed with "l"s so that

S, ;in the following cycles the smallest value can be found.
-Memory 's background and foreground registers are replicated.

List of Subroutines:

< <Multiplier Routine> >

tl: bm<-.XI*YI+X2*Y2+7 I NOP I NOP
,This routine has many other submicroinstruction which will be
;appended.its function is to compute the branch metric values

< <Branch Routine> >
tl: NOP ILS< ---- Lsql INOP
t": ;TPU provides the last state j of present state I

t2: NOP I Lsq3< ---- Lsj+3(lt) I Read AM(LS)
,The accumulated metric value of the Is state is read from
;the memory.The queue moves down and a fresh value is input
;to the queue.

t3: A< ---- AM(LS)-N I Dout'l"or "0" NOP

;The accumulated metric is normalized and TPU outputs

99

.bm ,ii '1 "i *" ." ." 5• * . 5 5 . • 2°. '5 - . - . . - . -'" " . " ' . " S"."+" + i +.

* * - A 2 f i - - 5.* .-.
-. • •. "

-k7

;decoded bit via the survivor comparator.

t4: X< ---- A+bm Xad<---LS DX<---Doutl NOP I NOP
;CPU computes the accumulated metric and inputs it via
;the survivor comparator with its corresponding last state
;and decoded bit.

<Survivor Routine > >
tl: if X>Y then: Y< ---- X Yad< ---- Xad DS< ---- D I NOP INOP

;Survivor comparator shifts in the value of x into y register
;if x>y

< <Comparator Normalization Routine > >
tl: ifXN<YN then YN< ---- XN I NOP INOP

-note here that at the end of every symbol cycle YN is
;filled with Is.

< <Replicate Routine > >
tl: NOP I NOP I AM(l)< ---- BAM(i) for all i-0,15

I PA(i) < -- BAP(i) for all i-0,15
;This will occur at the end of every symbol cycle to replicate
;the content of all the backups and front registers in the memory.

< <TPU Queue Routine> >
tl: NOP I Lsq3< ---- Lsl(0)l NOP

ILs< ---- Lsql Ls< ---- Lsql INOP
;this will fill the queue with the last states which lead to 1-0,

namely 3,4,5.

APPENDIX:
X2 ,X1 "coef stored in TPU
It3-index register in TPU
bm" branch metric register
AM(k)"accumulated Metric Value corresponding to state k
PA(k)"Path Memory FIFO corresponding to state k
D"Decoded bit stored in TPU
DS"Survived decoded bit register in CPU
LS"Last state BUS from TPU
LS(j)"Last state from j- 1,6 in TPU
N"Normalization Value Register in CPU
XN"Normalization register input in CPU
YN"Normalization register in CPU
Xad"Survivor Comparator register input address in CPU
Yad'" Survivor comparator register output address in CPU
Y-- Survivor comparator register output absolute value in CPU
X-- Survivor comparator register input absolute value in CPU

100

D u rc aoeto uin

DSSurvivor comparator register output bit in CPU
DX"Survivor comparator register input bit in CPU
Din"-Survivor comparator register input bus from TPU

Coefn2"-registers for XI .X2 cof in CPU multiplier

1.'

.,:

101

W\

APPENDIX C

PIN ASSIGNMENT

Those I/O which are intended for level sensitive scan testing are abreviated as (LTST). Those

1/O which are real valued, their ordering is deooted by MSB standing for the Most Significant Bit and

LSB for the List Significant Bit.

1. Substrate VSS 33. Last State MSB
2. Change input YcYs 34. Last State
3. Test Data Out (LTST) 35. Last State
4. Test Data Input (LTST) 36. Last State LSB
5. Reset (LTST) 37. Unused
6. Shift Signal (LTST) 38. Unused
7. Test Clock (LTST) 39. GRD
8. Main Clock 40. Unused
9. GRD 41. Unused
10. Ys(l) Sign 42. Unused
II. Ys(O) Sign 43. Unused
12. Yc(l) Sign 44. Unused
13. Yc(0) Sign 45. VDD
14. Ys(l) LSB 46. Unused
15. Ys(0) LSB 47. Unused
16. Ys(I) 48. Unused
17. Ys(O) 49. Unused
18. Ys(1) MSB 50. Unused
19. Ys(O) MSB 51 Unused

* 20. Yc(I) LSB 52. Unused
21. Yc(0) LSB 53. GRD
22. Yc(l) 54. SYSTEM RESET
23. Yc(O) 55. Dout (DATA via User)
24. Yc() MSB 56. 1- Present State MSB
25. Ys(l) MSB 57. I- Present State
26. Normalizer Constant MSB 58. I- Present State
27. Normalizer Constant 59. I- Present State LSB
27. Normalizer Constant 60. Present Controller State PO MSB

29. Normalizer Constant 61. Present Controller State PO
30. Normalizer Constant 62. Present Controller State P0

31. Normalizer Constant LSB 63. Present Controller State P0

32. GRD 64. Present Controller State P0 LSB

102


~~~~~~Agr e o 00 . --. *- ~-~- .-

conaoaaaaaccono GOOD

* PKDB64

103



Referems

1. Viterbi, A.J. and Omura, J.K. Principles of Digital Communication and Coding, McGraw Hill
Company, 1979.

2. Mead, C. and Conway, L. Introduction to VLSI System, Addison and Wiley Company, 1980.

3. Omura, J.K. "On The Viterbi Algorithm," IEEE, Vol. IT-IS, January 1969.

4. Forney, G.D. "The Viterbi Algorithm," IEEE Proceedings, Vol. 61, No. 3, March 1973.

5. Viterbi, A.J. Principles of Coherent Communications, McGraw Hill Company, 1962.

6. Anderson, R.R. and Salz, J. "Spectra of Digital FM," Bell Systems Technical Journal, Vol. 44,
pp. 1165-1189, July-August 1965.

7. Aulin T. CPM-A Power and Bandwidth Efficient Digital Constant Envelope Modulation Scheme,
Dr. Dissertation, Univ. Lund, Lund, Sweden, November 1979.

8. Jackson, D.E. Bandwidth Efflcient Modulation and Coding, Ph.D. Dissertation, UCLA, 1980.

9. "Special Issue on: Combined Modulation and Encoding," IEEE Transactions on Communica-

tions. Vol. 29, No. 3, March 1981.

10. Bayer, J.L. Computer Systems Architecture, Computer Science Press, 1980.

11. Carr, W. and Mize, J. MoslVLSI Design and Application McGraw Hill Company, 1972.

12. Eichlberger E.B. and Williams T.W. "A Logic Design Structure for LSI Testability," J. Des.
Autom. and Fault Tolerant Comput., Vol. 2, No. 2, May 1978.

13. Mazur B.A. and Taylor D.P. "Demodulations and Carrier Synchronization of Multi-h
Codes," IEEE Transactions on Communications, Vol. 29, No.3, March 1981.

14. Ungerbock, G. "Channel Coding with Multilevel/Phase Signals," IEEE Information Th. Tran-
sactions, Vol. 28, No. 1, January 1982.

15. Scharf, L.L., Cox, D.D. and Mazereliz, C.J. "Modulo-2 Phase Sequence Estimation," IEEE
Iformation Th. Transactions, Vol. 6, No. 5, September 1980.

16. Macchi, 0. and Scharff, L.L. "A Dynamic Programming Algorithm for Phase Estimation
and Data Decoding on Random Phase Channel," IEEE Information Th. Transactions. Vol. 27,
No. 5, September 1981.

104

, . ._ ,- , -- , ., ,' , '.''' ............ .. .,..,.- .,.. .,. . ,. . . •V. . .



FILMED

DTIC

;Nv:


