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OPTICAL SIGNAL PROCESSING

1.0 INlRODUCTION

VAs the bandwidth of signals increase and as the electromagnetic

environment becomes increasingly dense, processing operations such as

convolution, spectrum analysis, correlation, ambiguity function generation

and filtering become computationally intensive operations. Optical systems

have the capability to perform a large number of complex mltiplications and

additions per unit time. As the bandwidth increases, the number of

computations increase as the square of the bandwidth because the degrees of

freedom of the signal is linearly proportional to bandwidth and the

allowable computational time interval is a inversely proportional to

bandwidth. Optical processing provides high-speed, parallel computations so

that digital post-processing techniques can be used for lower-speed, serial

computat ion.

The research effort described in this report has resulted in several

innovative optical processing techniques for improved performance; it covers

the three-year period from 1 October 1980 to 30 September 1983. The major

accomplishments can be divided into three areas: (1) interferometric

spectrum analyzers, (2) acoustic spreading in both single and multichannel

Bragg cells, and (3) adaptive optical processing based on transversal

filtering with feedback. In the following paragraphs, we sumarize the key

results in each area; further details can be found in the referenced journal

articles that have been published.

..% , -v ,:.-;'.., , .-. . . . - . .. . . . . . . . . . . . . . . . .
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2.0 INTEUI OMETRIC SPECTRUM ANALYZERS

A conventional Bragg cell power spectrum analyzer that measures the

instantaneous frequency content of a videband signal generally has a dynamic

range of 25-30 dB. We developed an interferometric spectrum analyzer

technique that uses a unique reference wavefront which serves as a

distributed local oscillator. As a result, the photodetectors measure the

instantaneous amplitude of the frequency content rather than the

Fri instantaneous power. The dynamic range is thereby doubled in dB so that,

,41 for an equivalent set of system parameters, the dynamic range is 50-60 dB.

In addition to providing a significant increase in the dynamic range,

the distributed local oscillator provides a fixed offset temporal frequency

at each photodetector position. The post-detection circuitry for each

photodetector element is therefore identical; furthermore, both the

amplitude and phase of the instantaneous spectrum can be measured if

desired. Because the scattered light ins not frequency shifted, the system

is such less sensitive to scattered light. Another advantage of this

technique is that short pulses, such as those from radar systems, can be

detected even though their duration is less than the Bragg cell transit

time.

Further details are provided in Reference 1 in which the results of the

analytical effort was published. Since that time, Harris has completed a

feasibility study and prototype development effort for AFAL. The

experimental results are in excellent agreement with the theory.

2
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3.0 ACOUSTIC SPREADING IN BRAGG CELLS

An acousto-optic device operated at high RF frequencies is often called

a Braga cell. A piezoelectric transducer is bonded to a suitable

interaction medium to convert an electrical into a traveling acoustic

pressure wave. This pressure wave, in turn, causes an index of refraction

change that modulates the light in space and time. The acoustic wave, as it

propagates away from the transducer, spreads in much the same way as does

light from a smell source. We analyzed the effects that this acoustic

spreading has on some optical processing operations.

jFor a single transducer Bragg cell, the principal effort of acoustic

spreading is a curvature of the Fourier spectral components. The locus of

this curve is a parabola whose vertex is at the position corresponding to

the UF frequency and whose focus is at the optical axis. The degree of

" curvature is dependent on the anisotropic nature of the interaction medium;

a special case is an isotropic medium for which the parabola degenerates

* into a circular function.
2;

The effects of this curvature on spectrum analysis is a function of the

size of the photodetector in a direction orthogonal to that of the acoustic

propagation. For a photodetector having a very large size (one which would

be acceptable if the curvature were rot present) the effect is to cause the

peak value of the diffraction pattern to move toward the optical axis by 4%

of its main lobe width, to increase the main lobe half power points by 3%,

3
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and to increase the sidelobe levels by 5 dB on the side of the main lobe

toward the optical axis. Analysis shows that these effects can be

controlled by reducing the size of the photodetector with a penalty in the

light collecting power of about 10Z. Further details of this analysis and

*experimental results are given in a paper which was published in Applied

Optics (Reference 2).

The acoustic spreading manifests another problem in Bragg cells having

multiple transducers. The phenomena is that the spreading acoustic wave from

a given transducer overlap with waves from adjacent transducers. An

analysis of this phenomena showed that the optical effects of acoustic

spreading can be compensated by a holographic optical element placed in a

combination image/Fourier plane. At an image plane of the Bragg cell, we

find that the corrected light distribution is constrained to lie within
channels whose height is nearly equal to that of the transducer. We

demonstrated that, for a 12-channel Bragg cell operating over an 80 MHz

bandwidth, the usable aperture (defined as that region for which the channel

information does not overlap) could be increased from 101 to 100Z.

Furthermore, the channel packing density can be increased by a factor of

four. Details of this analysis and the supporting experiments will be

published in the December 1983 issue of Applied Optics (Reference 3).

4.0 ADAPTIVE OPTICAL PROCESSING

The transversal filter is widely used in digital data processing. An

even wider range of applications are possible when feedback loops are used;

we have developed a method for implementing such operations optically. The

basic concept is to consider a Bragg cell as being equivalent to a delay

line which can be tapped optically instead of electrically. In this

fashion, very wide bandwidth signals can be processed.

4
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Fundamental to the notion of transversal filtering is the need to
produce the appropriate tap weights. An innovative way to produce them

optically is to use two orthogonally oriented Bragg cells arranged so that

they are mutually imaged at a given plane. We show that if the light in

this plane is integrated along one of the diagonals, the tap weights are

produced. A convenient way to perform the integration is to create the two-

dimensional Fourier transform of the tap weight image plane and to evaluate

the transform along a line normal to the diagonal over which the integration

is to be made.

The processing is completed by interferometrically adding the Fourier

transform of the signal to be processed to the Fourier transform of the tap

* weights. This total light distribution is then square-law detected by a

single element photodetector to produce an estimate of the received signal.

." *Depending on the application, the estimate is further processed

electronically and the difference between it and the received signal

u provides the feedback signal. Thus, the system adapts to a changing signal

*, environment.

-. 'The chief advantage of this optical processing technique is that

transversal filtering concepts can now be applied to signals having
bandwidths in the 50 MHz to 500 MHz range. The system has an excellent

dynamic range because it is interferometric in nature and is linear in light

amplitudes. The tap weights contain both amplitude and phase information
which provides for increased computational accuracy. Scattered light from

the undiffracted beam does not affect the performance of the system. Details

of this concept are contained in a paper published in Applied Optics

(Reference 4).

The finite length of the Bragg cells impose a constraint on the number

of signal components that are integrated to produce the tap weights. We

9 5
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performed several computer simulations of the adaptive filtering system to

characterize and determine the performance due to this limitation (digital

systems can integrate signal contributions for an indefinite period). The

application we chose to illustrate these effects is that of notch filtering

or frequency excision. We found that we can improve the performance of the

system significantly if the tap weight plane is tapered so that the

readaptation phenomena is minimized as signal components leave the tap

weight plane (the accumulator). In principle, the performance could be

improved if the taper were extended to also weight the signal components as

they enter the accumulator; this was not tested in the simulations. The

taper is equivalent to using a "leaky" integrator in conventional analog

systems.

The simulations show that the performance improves as the number of tap
weights increase; this argues for using Bragg cells having a large time-

bandwidth product. We also found that the system adapts rapidly so that

notches can be quickly formed to track agile jammers. Notch depths of the

order of 30-40 dB were obtained, depending on the time-bandwidth product and

the number of taps used. Since the time-bandwidth product of Bragg cells

are exceptionally high, a much larger number of tap weights are available

as compared to digital processing systems. The results show that the finite

length of the accumulators is not a serious drawback for many applications,

particularly those in which the system must operate in a rapidly changing

signal environment. The performance of the system then approaches tkat of

one having an infinite accumulator and the feedback gain value needed to

give equivalent tracking performance. Details of these simulations are

given in a paper that has been accepted for publication by Optical

Engineering (Reference 5). A paper, summarizing these results was given at

the SPIE Conference on Advances in Optical Information Processing in January

1983 at Los Angeles. A short paper also appears in the conference

proceedings (Reference 6).

6



5.0 SCIENTIFIC PERSONNEL

The principal investigator on this contract was A. VanderLugt.

A.M. Bardos, Senior Scientist, and G.S. Moore, Associate Principal Engineer,

assisted in some portions of the work and were partially supported by this

contract.

6.0 REFERENCES

1. A. VanderLugt, "Interferometric Spectrum Analyzer," Applied Optics,

Volume 20, page 2770, August 1981.

2. A. VanderLugt, "Bragg Cell Diffraction Patterns," Applied Optics,

Volume 21, page 1092, March 1982.

g 3. A. VanderLugt, G.S. Moore and S.S. Mathe, "Multichannul Bragg Cells:

Compensation for Acoustic Spreading," accepted for publication in

Applied Optics; will appear in Volume 22, December 1983.

4. A. VanderLugt, "Adaptive Optical Processor," Applied Optics, Volume 21,

• .page 4025, November 1982.

5. A. VanderLugt, "Optical Transversal Processor for Notch Filtering,"

accepted for publication in Optical Engineering; will appear in

. Volume 23, May-June 1984.

6. A. VanderLugt, "Optical Transversal Processor," SPIE Conference

Proceedings, Volume 388, November 1983.

t 7,°.=,



APPENDIX A

INTERFEROMETRIC SPECTRUM ANALYZER

c-. REPRINTED FROM APPLIED OPTICS

VOLUME 20, PAGE 2770, AUGUST, 1981

la



Reprinted from APPLIED OPTICS. Vol. 20. page 2770. August 15. 1981
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Interferometric spectrum analyzer

A. Vader Lut

Dynamic range is a key performance parameter for spectrum analyzers. The dynamic range of a Bragg cell
power spectrum analyzer is generally limited by the dynamic range of self-scanned photodetector arrays.

I.. Interferometric techniques can be used to increase the dynamic range: but it is at the expense of increasing
the number of photodetectors required, when the interference is introduced in the spatial domain, or a large
photodetector bandwidth, when the interference is introduced in the temporal domain. In this paper we
describe an interferometric approach wherein a second Bragg cell generates a spatially modulated reference
waveform to produce an interference term that has a constant temporal frequency for all spatial frequencies.
The advantages of this approach are lower photodetector bandwidth, improved dynamic range, improved
cross talk suppression. more efficient use of the Bragg cell time-bandwidth product, immunity to scattered
noise, and improved short pulse detectability. The chief disadvantage is the need for a discrete element
photodetector array: when such arrays become available in hybrid or integrated packages, an additional ad-
vantage will be that of parallel postdetection processing.

I. Introduction bandwidth product, and the overall efficiency of the
Optical processing techniques can be used to produce system. Power spectrum analyzers that use self-

the instantaneous spectrum of wide bandwidth signals. scanned photodetector arrays are generally limited to
Lambert' described how acoustooptic Bragg cells can a 25-35-dB dynamic range due to the squaring opera-
be used to convert an electrical waveform f(t to an tion on FrW.t) and the inherent dynamic range lini-
optical waveform that is a function of both space and tation of the array. As the photodetector dynamic
time. If the cell is coherently illuminated, the optical range improves, the laser power is the next important
system displays the Fourier transform of that segment limitation to achieving a large dynamic range since
of the waveform present within the cell. The complex Bragg cells have been developed having very large dy-
valued Fourier transform can be described as namic ranges.

fOne method for increasing the dynamic range is to use
Fr =.) (fu) exp4-jwju) du. (1) an interferometric spectrum analyzer whose output is

proportional to the instantaneous magnitude spectrum
where T is the processing time of the cell and w is a IFTo.t)I. King et al.2' describe heterodyning tech-
temporal radian frequency. Generally, Fr(w,t)is called niques for recovering both the amplitude and phase
the instantaneous spectrum of the input waveform f(t); information in a light distribution. In ,heir system the
we note that it is a function of the present time t as well interference of an unmodulated reference beam with
as a segment of its past history. Fr(w,t) produces a temporal frequency proportional to

A photodetector array at the Fourier plane senses the the input signal frequency w. Since the fractional
instantaneous energy spectrum IFr(w.t ) 12: such a sys- bandwidth of the input signal is usually -50%. centered
tern is generally called a power spectrum analyzer. A on a frequency of several hundred megahertz. the in-
key performance parameter of any spectrum analyzer terference term occurs at a rather high frequency that
is the achievable dynamic range which is a function of varies as a function of the spatial frequency.
the laser power. the dynamic ranges available from the In this paper. I describe an interferometric spectrum
Bragg cell and the photodetector array. the time- analyzer in which a spatially modulated reference beam

is used to reduce the temporal interference frequency
to a small and fixed value over the entire spectrum.

The authur s with Harris Corporation. Advanced T.chnology Discrete element photodetectors having a small band-
Department. Government Systems Group. P 0. Box 7, Melbourne. width and a low noise equivalent power can then be
F!,,rida.."t. used: an additional benefit of discrete detectors is that

Receiven M F'ehruarv 9 the postprocessing operations are more flexible and can
.-4):39 ,1 1627 -it),.OO.5. be performed in parailel to reduce the output data
."98i Qontcal S, ncetv ,)i America. rate.
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KUA""U"" "the negative diffracted order, which is highly suppressed
by the Bragg mode of operation, can be ignored. A

wow< fraction a of the laser power P is directed into the signal
-- 14M beam so that the amplitude factor AI is equal to (aPI

"=- L) 12, where L is the length of the cell. The effects of
weighted illumination and optical losses will be con-
sidered later.

% Z"Z,, The amplitude light distribution for the first dif-
-'. - "fracted order, if we ignore a time delay T/2, is

Fig. 1. Interferometric spectrum analyzer. AL(Pt) -jMLA 1  U f(t - x/v) expjw(t - xlv)J exp(-jpx)dx.

Self-scanned arrays cannot be used with this tech- (3)
nique because they integrate over a time period large where p is a radian spatial frequency variable related
compared with 21r/w. and the information contained in to a physical distance in plane P2 by p = 27rw/XF, X is
the interferometric output is lost. Turpin3 and Bader4 the wavelength of the source, and F is the focal length
desc-ibe interferometric spectrum analyzers which of lens L2. Through a change of variables, we can re-

• produce a spatial fringe structure instead of a temporal write Eq. (3) as
fringe structure; self-scanned arrays can be used in such
systems, but the number of elements must be increased A.(p.t) - -jvm1 Ai exp4-jpct) f-r f(u) expljui(p - p.)Idu.
to resolve the spatial fringes. Although discrete pho- (41T/

todetectors are not the most elegant for use in systems
having a large time-bandwidth product, fairly large The integral portion of Eq. (4) is similar to Eq. (1) ex-
arrays have been implemented,5 and advanced photo- cept that it is centered at a position corresponding to p,
detector fabrication techniques8 may produce inte- in plane P2 , and the limits of integration are slightly
grated devices having attractive operational features. different because we ignored a time delay equal to T/2

Some additional advantages of interferometric in the representation given by Eq. (2). The exponentialspectrum analysis are improved cross talk rejection, phase factor shows that the light frequency is shifted
immunity to scatter noise, short pulse detectability, and linearly as a function of p. Since pv - w, the light dif-
uninterrupted evaluation of the spectrum. In Sec. II fracted by any continuous waveform has the same
we describe the basic theory of the interferometric temporal frequency as the signal component.
spectrum analyzer and establish the required charac- Suppose that the input signal waveform has a cw
teristics of the reference beam. In Sec. III we determine component of frequencY wk and amplitude Ck. The
the photodetector geometry and postdetection band- light distribution in plane P2 can then be calculated
width required to achieve a given frequency resolution. from either Eq. (3) or (41:
In Sec. IV we analyze and compare the performance of Al(p.a) - jmtA ILCk exp(-jwot)sinc[(p -pk)L/2r], f5)
candidate reference-beam waveforms. In Sec. V we
compare the laser power required and the dynamic which reveals that the spectrum of a sinusoidal input
range obtained by this interferometric method with is a (sinirx)/wrx function, centered at pk, whose ampli-
those of a power spectrum analyzer. tude is proportional to Ck. The entire function (in-

cluding the sidelobes) is multiplied by a phasor of fre-
SII. Basic Theory quency wk. Equation (5) further shows that the fre-

Consider the interferometric s-rstem shown in Fig. I; quency resolution is 2,.ru/L if we use the Rayleigh cri-
this system does not suggest how a practical spectrum terion for resolution. We will use the function A I(p.t)
analyzer would be configured but, is used to explain the as given by Eq. (5) extensively in subsequent analyses;
theory of operation. The two Bragg cells are illumi- first, however, we consider the spectrum of short pulses
nated b-i a collimated source of it onochromatic light at whose duration may be less than or equal to the pro-
the Bra;g angle. The signal waveform f(t) is applied cessing time of the cell.
to the ti ansducer of the Bragg cell located in the lower Consider the case of a pulse having a duration To less
leg of the interierometer at plane P1. Lens L2 produces than or equal to T and having a carrier frequency Wk.
the Fourier transform of the complex light amplitude Let the time of arrival be at t - 0; at some later time t.
a II xt) leaving the cell: for a low modulation index we the leading edge of the pulse will have moved to a po-
have a series expansion for the signal given by sition - 1/2L + ut. Consider the output for the time in-

terval 0 < t < To so that the trailing edge of the pulse
ax.- A1 l + jm 1fti - xi) cos[wtt - xv)! + H.O.T.!, t2) has not yet entered the cell: we have that

where m I is the modulation index, v is the velocity of the _.,+..
acoustic wave within the cell. and w, is the center fre- Aip.r) = j.4Al JL, expiuit - .tiu - T 2)]
quency of the applied rf signal. The higher order terms
can generally be neglected if the fractional bandwidth × exp -ipx dx.
is <5Oc. Further. we are usually interested in only the where we have now included the delay factor Ti'2 in the
positive diffracted order so that the constant as well as integral. After a change of variables, we tind that

15 August 1981 Vol. 20. No. 16 APPI-UED OPTICS 2771
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*A-lp. jm Alt expljpL/2i expl-jp + pvt't21 is obtained from Eq. (7 which shows that the centroid
X sinclip - p)t, ti

2 rj. I-) of the pulse, located at -L/2 + tu/2. is moving at one

This result shows that the spectrum of the pulse is half the acoustic velocity. The number of cycles in the

centered at pk and that as t increases, the amplitude of pulse is pkLt/ 2 which increases as the effective pulse

the sinc function increases while its width decreases. width increases. For a very long pulse the centroid is

We are particularly interested in the temporal fre- fixed at the optical axis and the number of cycles in the

quency behavior of this function. Note that at pR, the pulse is fixed at phvT/2rr - pkL/2r.

centroid of the sinc function, the temporal frequency We now turn our attention to the question of gener-
is Wk which is the frequency of the carrier. In contrast ating a reference beam that will produce an interfero-

to the case of a cw signal, however, the sidelobes of the metric fringe structure having a fixed temporal variation

sinc function have a frequency (p + pR )v/2r which at all spatial frequencies. A spatially modulated ref-

varies continuously as p varies. In particular. note that erence beam will produce a fixed offset frequency be-
at some spatial frequency pk + Ap, the temporal fre- cause the light distribution at the Fourier plane will

* quency is w + Aw/2. have a temporal and spatial frequency relationship
The last situation we consider is that of a pulse whose similar to that of the signal spectrum. The reference

leading and trailing edges are both within the aperture distribution must. however, be displaced in plane P,
of the Bragg cell. Let t - 0 be the time at which the relative to the signal spectrum so that the spatial dis-
trailing edge of the pulse has just entered the cell; then, placement does not affect the temporal frequency dis-
for 0 < t < (T - TO), we have tribution. The spatial displacement can be achieved

-c by rotating the combining beam splitter through a small
*4,(p.t)i A -. n ...uTo angle or by placing a prism immediately after the ref-

JL2 erence-beam Bragg cell. In either case. the reference-
X expl-jiak(t - x/v - T/2)1 beam waveform at plane P., will be displaced to produce
X expi-jpx )dx a fixed frequency offset over the entire spectrum as we
jmiAiuTo expjpiL - vT)/21 shall now show.
x expijp~vTo/2) expi-jput) We denote the bandwidth of the Bragg cell by W so

r X 3inc[(p - phwT./2r. 18) that the time-bandwidth product is TW. We begin by
choosing a reference-beam waveform that is a pulse of

We see that the sinc function has an amplitude and a unit amplitude and length L/TW. Such a signal is
width that are determined by vTo; both are independent equivalent to one resolution element at the plane of the
of time. As before, the temporal frequency at Pk is Wk). Bragg cell. The Fourier transform of this narrow pulse
The frequency of the sidelobes at some spatial fre- can be obtained directly from Eq. (8) if we replace vT)
quency p = pR + Ap is equal to Wk + Aw. by L/TW and replace p by p + Pd, where Pd represents

We can now summarize the three cases discussed so the small displacement between tne reference and signal
- far. In each case, the temporal frequency at the cen- beams at plane P.,. The reference-beam distribution

troid of the sinc function is Wk. At some incremental in plane P2 then becomesspatial frequency Ap away from the centroid. we find

that the temporal frequency of the sidelobes differs Atp.t i - .A. expTW) exp(-jp + p. Wt
from that at the centroid by zero for the case of a cw
signal (or a very long pulse), by Aw/2 for a pulse with X sinc[fp + pd - pc L,2rTWI. ( 10)

only its leading edge in the aperture, or by Aw for a pulse where D is a phase term that is not a function of time and
with both leading and trailing edges within the aperture. p, is the same center frequency as that used in the signal
The explanation for this phenomenon is that in the first beam Bragg cell. The envelope of the reference beam
case neither edge defining the pulse moves in time since is not. of course, constant in p as we desire, but is a sinc
it is the aperture of the Bragg cell that determines the function that is a factor of TW broader than the signal
signal length. In the second case one edge moves, but distribution. For the moment, we shall assume that the
the other is stationary: in the third case. both edges reference beam is constant over the frequency band.
move at the same velocity. The temporal frequencies The intensity at plane P., is given by the squared
in the sidelobe structure, then, contain the information magnitude of the sum of the signal and reference-beam
about where the centroid of the pulse is located within distributions:
the Bragg cell. For example. if we collect the terms in lip. ) - IA-p.t 4- .-.,ip.r-Ui
p from Eq. (8). we have a term

IA..p.V gJp., iA p.ti-+ -- Re(A 1  'p.T'P.ti. 112
- exp[-i-L,2 -4 + CT2- 9 where denotes complex conjugate. Each photode-

which shows that the centroid of the pulse is at -Li2 + tector will integrate light over an interval ph - AID to
. .t + ,T,,2: the centroid moves at the velocity of the p -- Ap. where ph denotes the center position and 2Ap

acoustic wave. The residual phase term in Eq. 18) is the width of the photodetector. Let I he one halt" he
then expljpCT,/2) which is a constant: the argument ratio of the width of the photodetector to the ;pacin
pk-T,,. ; is equal to one half the number of carrier ccles between the photodetectors ..o that Ap 2. L. Th

contained in the pulse. A similar calculation for the integrated intensity fir the 'ir-t term oft Eq. 12) .

case of a pulse with only the leading edge in the aperture caiculated lv isini Ei. 5 :
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.. % " 21) If we have R photodetectors per resolvable frequency.
2 I.i.Pp) 2dp 2.mi.4'LC, v13) the center spacing is /RT. and, if the duty cycle is O <

which is valid for 3 < 0.4. The integrated intensity for d < 1, the width of each photodetector is dIRT. Sup-

the second term of Eq. (12) is obtained from Eq. (10): pose that the postdetection bandwidth is a rectangular
function of width bIT centered at fd. The effect of the

Q2 f lp,-- mA.L(TW)
2. (14) postdetection bandwidth is to accept light if the dif-

-T. ference frequency between the cw signal and the refer-
The contribution to the output from the third term of ence beam falls within the bandpass and to reject it
Eq. (12) is obtained by combining Eqs. (5) and (10): otherwise. As an example, suppose that the cw signal

"'" has a frequency of 300 MHz and that the reference-
2"( - 2 Re{A1i(p.tA .P{t)Idp beam frequency is adjusted geometrically so that it is

310 MHz. The interference beat frequency will then
.4dm 1m.,.A1A-2 L c c c- 15 be fd - 10 MHz, and the narrowband postdetection

TW filter will accept all the light near the centroid of the sinc
We see that the third term is proportional to the function associated with the signal. As noted in Sec.

magnitude of the signal multiplied by a constant tem- II. the entire sinc function oscillates at a temporal fre-
poral offset frequency PdV = wd which can be set at a quency of 300 MHz so that. as we move the photode-
convenient value. This term can, therefore, be sepa- tector away from the 300- MHz position, we continue to
rated from the signal and reference-beam bias terms, collect light until the difference between the reference
as given by Eqs. (13) and 114), by postdetection filtering, and signal frequency exceeds fd ± b/2T. For example.
Since Q3(t) is not a function of pk, the same temporal if the frequency resolution of the system is 1IT - 3 MHz
frequency offset is provided by the reference beam for and if b is chosen to be 1, we fnd that when the photo-
any input signal. The reference beam, in this sense, is detector is placed at a position corresponding to 301.5
a distributed local oscillator whose temporal frequency MHz (or 298.5 MHz). the output of the narrowband
can be changed by a simple geometric adjustment. filter rapidly falls to a low value.

The total optical power collected by a photodetector The narrowband filter is therefore highly effective in
isthesumofEqs.(13),(14),and(15). When the optical reducing cross talk in the spectrum analyzer. The
power is multiplied by the photodetector sensitivity S. sidelobe levels decay rather slowly so that. in the ab-
expressed in A/W, and we account for the optical ef- sence of filtering, they contribute to an erroneous
ficiencies of the signal and reference beams (e. and e,), measurement of the true signal levels at nearby
we find that the photodetector output current is frequencies. Since the filter can suppress out-of-band

signals by :30-40 dB in addition to the inherent roll-off
itt) - I + i.2 + i31t) of the sidelobes, it is not necessary to control the side-

- 2dmjA1f.LSCj' + 23 miA4,LS/(TW)2  lobe levels by input aperture weighting.
The postdetection filtering does not, however. pre-

.C 4dmtmA;A . - C c(Wt + (16) vent the detection of narrow pulses. In Sec. II we
TW showed that the spectrum of a pulse whose duration is

Each photodetector in the Fourier plane produces a <<T is a sinc function whose sidelobes oscillate at a
signal similar to i(t) except that the value of Cj, will vary frequency proportional to their distance from the cen-
depending on the strength of that frequency component troid. The interference frequency is therefore fixed
in the input signal. Because the output current is over a large spatial range so that any photodetector
proportional to C, instead of I C , 2. as it would be for within the sinc function envelope will respond with the
a power spectrum analyzer, the improvement in dy- proper output. This result can be seen by noting that
namic range is significant. We now consider the factors Eq. (8) contains a term exp(-jpvt) that. when multi-
that determine the value of the parameter d associated plied by the term exp[+j(p + Pd)Vt] from the reference

. with tae photodetector geometry and postdetection beam as given by Eq. (10). produces a fixed interference
" bandwidth. frequency.

A second benefit of narrowband filtering is in re-
-' Ill. Photodoeector Geometry and Bandwidtt- solving two signals closely spaced in frequency. As
. In Fig. 2 we show the light distribution in the Fourier shown in Fig. 2, two received signals spaced by 1IT Hz

plane caused by two ew signals that are just resolved by
the Rayleigh criterion. For sake of clarity, only the -
central lobe of the sinc functions as given by Eq. (5) are __

shown: we can also represent the signals by sincfT7)
which show that the signals are separated by I/T Hz.
The reference beam is shown as a uniform amplitude
light distribution whose temporal frequency is offset by -
a fixed amount from that of the central frequency of the . ,. "
sincifT) functions. That is. if f is the temporal fre- '

quency of a cw ignal. the reference-beam frequency at Fig. 1. Reference and ignal benm iistnhution in the F,,%irler p ane
the centroid is f, f + ff. where/a pu/2 -  for two ,, itnais.
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may occur at any position relative to a set of photode-
tector elements. We must ensure that the response
from a photodetector is sufficiently high when it is
sampling the light at the centroid of any sinc function
to provide accuracy and sufficiently low at the midpoint
between sinc functions to provide resolution. Since the
received signals may occur at any position relative to the
phot clrs. we must find a way to relate the number: ~of photodetectors per frequency, tespatial duty cycle,------

and the postdetection bandwidth to the required dip * * w w w
between resolvable frequencies.

The first step is to determine the response of a fixed wg. 3. Convolution of a sinc(t 7 function and a photodetector of
photodetector to a cw signal as a function of its fre-
quency. The output of the photodetector will be the
convolution of a sinc(fT) function with the rectangular
function of width dIRT (representing the photodetec- T
,or), followed by a multiplication with the bandpass l)c
fi"er function. The postdetection filter function is
appr, ximated by a uniform response for Ifl 1 b/2T and VINT
a lineariy decreasing response from i1/ - b/2T to fI -

qi2T as shown in Fig. 3. This function is, aside from
pesband and stop-band ripple, similar to that produced + + +
by an elliptic filter. Since the convolution is nearly -E i -
constant over the defined range of frequencies, the net ,
result can be represented by

Fig. 4. Worst-case signal position relative to the photodetectors fori Ctf) -d/RT; 0 S i I S bl2T, resolving two frequencies.

d "z
- - b- ( f - bl2); b/2T S IfI S ql2T, q o b.RT Req-bSfq (17) as well as to ensure that the magnitudes of the

0; fX0I2T. (1 frequencies are accurately measured. In the limit as the
The smallest dip between two frequencies occurs when slope of the filter becomes very high, we have that q -
the midpoint between the frequencies falls between two b and Eq. (20) reduces to R > l/(1 - b). If Eq. (18) is
photodetectors. This condition is shown in Fig. 4 where also satisfied, we find that R = 2 is the minimum num-
we show C(I) centered at the positions corresponding ber of photodetectors per resolvable frequency.
to two resolvable frequencies. Since we have already For h - 0.5. which corresponds to a 3-dB dip between
accounted for the convolutional effects introduced by frequencies, Eq. (20) becomes
photodetectors having a finite size. we can now deter-
mine the response from a given photodetector by using R (21)
the value of C(f) at a point corresponding to the center I - q/2 - b/2

of the photodetector. The output of the photodetector Again, if we use the equality from Eq. (18), and let q
nearest the center of C(f) is equal to C(fo). The largest 2b. we have that b = 0.4 and R - 2.5.
possible value of Ifol is 1/2RT, and we require that the One of the key advantages of using narrowband
output be constant for any frequency less than Ifol. By postdetection filtering, then, is to provide the necessary
referring to Fig. 3. we see that this condition is satisfied dip between cw signals with a number of photodetectors
if per frequency that is close to the theoretical limit. The

natural dip between the two Rayleigh resolved
R I 1/b. (18) frequencies will vary from zero to 1.3 depending on the

The outputs from the two photodetectors symmet- relative phases of the two spectral components.
rically positioned about the midpoint are equal and have Equation (20) shows that a fixed dip of value h can be
values given by C(/f). The second relationship can then achieved independently of the phase relationship
be obtained by requiring that without increasing the length of the Bragg cell to sepa-

rate physically the spectral components.
C1 1): hC fo. 119) We now calculate the relationship between R and the

where 0 < h < I is the desired dip between the two Bragg cell length for a power spectrum analyzer.
frequencies. Since fI = 1/2T - 1i2RT. we use Eqs. (M Gaussian illumination is generally used to control the
and 119) to obtain the relationship that sidelobe levels to meet the cross talk requirements.

IThis, in turn. causes a loss in resolution which must be
R a •,20 restored by increasing the Bragg cell length. We denote

I - qt 1 - - the increased cell length by L1 so that the input aperture
The inequalities as given by Eqs. 1 IS) and ,201 must illumination function. in terms of amplitude, is given

be satisfied to achieve a given dip between frequencies bv
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atxi - At expf-4Tf x"/L2), 22) so that, with a geometric displacement of the reference
w i c t v cwaveform, a fixed offset frequency is produced at each,'.'. where TI is a truncation ratio whose value is chosen to phtdetoloain 3teamiuesoldo b

control the sidelobe level.7 The intensity response of photodetector location; (3) the amplitude should not be
the system to a cw input frequency is then obtained by a function of time; (4) the duty cycle should be high so
squaringste ourirnfr n of tn o d b that short duration signals are not missed; and (5) the
squaring the Fourier transform of a (x): light is efficiently used. The major drawback to the use

lipi exp4-p2LL/8T1). (23) of a narrow pulse as the reference signal is that a fraction
-By following the same procedure as before, we find th of only 1/TW of the light at the Bragg cell is intercepted

the convolution of 1(p) with a small photodetector of by the pulse.
width dIRT yields a normalized result that is very close An equivalent way to generate a traveling pulse is to

obeing use a chirp waveform to activate a Bragg cell situated
to b Gaussian: so that the focused beam scans across plane P3. If we

41r.........2L24 ry
C(f) e 4 I f2(4 project the rays produced by a traveling impulse from

RT (_e T-2T , plane P3 toward the source, we find that the Bragg cell
where we have replaced pv with 2 rf. The worst-case must have a length equal to 2L, given that the chirp rate

condition for resolving two frequencies occurs when the is equal to the bandwidth of the signal divided by the

midpoint between those frequencies lies at the midpoint processing time T. The focal length of the chirp is then

between two photodetectors. Since the intensities add, equal to L 2/XTW, which is of the order of several meters

the relationship that must be satisfied is for typical values of these parameters. The advantages
of this approach are that sharply formed impulses are

C(f4 ) + C f + ,) < hC(fo). (25) produced at plane P;3 and that the resultant reference
(f beam in the Fourier plane is a plane wave. The disad-

where fi (R -1 )/2RT and the maximum value of Ifol vantages are that a Bragg cell of twice the time-band-
is l/2RT as before. For a dip of h = 0.5 between width product is required and the length of the optical
frequencies, we find that Eq. (25) is satisfied when system is excessive.

I- 0.76TLRR - 1). 126) Another way to generate the reference beam is to
drive the Bragg cell in plane P,1 with a chirp directly.8

Suppose we set R = 2.5 for comparison purposes and set Lens L2 then focuses the chirp at plane P4 so that, at the
T1 - 1.7 which ensures that the maximum sidelobe is Fourier plane, the expanding beam covers the signal
down by at least 40 dB., We then find that L 1 - 2.15L spectrum. The chirp waveform can be represented

% which shows that the length of a Bragg cell used in a by
power spectrum analyzer must be more than twice as rt) - cos( ut + C-- e,
long as that required for an interferometric spectrum
analyzer. The impact of the larger aperture required for a chirp of increasing frequency on a carrier A, The
in a power spectrum analyzer is significant since the Fourier transform of the chirp. valid over the spatial
increased length translates directly into the need for an frequency range corresponding to the bandwidth of the
increased time-bandwidth product to achieve equiva- signal, is
lent performance. A e~)j22L/2 ex[ (tI4 - T - x,'v

Another advantage of the interferometric approach A11p2t) - jm+A+ JL' ex+-J --
is that any scattered noise caused by stationary ele- +

ments in the system is rejected by the narrcwband filter x (t -- I expV-I p + pxldx
because it does not interfere to produce in-band com-

. ponents. This feature also causes the light distribution m.L o exp(-j(p + (cr1
at the optical axis to be rejected. V TW

We conclude this section by calculating the value of f. ip+ Pd-P, 2 (27)

the parameter 3 which is equal to one hag of the ratio x ext - 4rW

of the width of the photodetector dIRT to the spacing where 2,rW is the bandwidth of the rf signal and the
1/T between resolvable frequencies. We choose d = 0.7, chirp rate is 2,7r W/T. We see that Eq. (27) is similar to
which, for R - 2.5. gives a value for d equal to 0.14: this Eq. 110) but with two notable differences: (1) the am-
value justifies several assumptions made in Sec. II in plitude is larger by v YV. which increases the efficiency
connection with deriving Eq. (16). of the system: and (2) the sinc function envelope is re-

placed by a Fresnel amplitude diffraction pattern.
- IV. Roforomc Waveform Figure 51a) shows the focused spot at plane P, for the

In Sec. II we used a narrow pulse as the reference- instant in time when the Bragg cell is just filled with one
beam waveform to develop the basic theory of a fixed chirp function. At plane P,, the spatial extert of the
offset frequency interferometric spectrum analyzer. reference beam is equal to that of the signal spectrum:
The narrow pulse approximates a delta function that the amplitude is uniform except near the edges of the
provides most of the desired properties of the reference ipectrum where the ripple effects of the Fresnel dif-

• waveform in the Fourier plane which are that 1 ) the fraction pattern are evident. At a time T 2 ;ec later.
amplitude should be uniform in spatial frequency: 12) the reference waveform consists of parts of two chirp
the spatial and temporal frequencies should be coupied functions that produce two focused spots in plane P4 as
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*"-codes have been studied for applications such as gen-
erating random phase masks for holography, recovering
imagery from coded aperture systems, and spectral

NUMshaping.9- 16 Generally, only the spatial properties of
fthese codes have been considered; we are interested in

both the spatial and temporal properties of their Fourier
transforms to determine whether they are better than
those of a chirp waveform.

* >, A shift register sequence is one whose period, or frame
"; J-L length, is N < 2' - 1, where N is the number of ele-

-,- ments in the frame and r is an integer. If the period is
/ [ equal to 2'-1, the sequence is said to have maximal

. "' " ' length and has the properties (1) that in every period
the difference between the number of + I's and -l's is
equei ,b one; (2) that in every period the longest run of

Fig. 3. Chirp reference beam: I aj Braggcellwithonechirpsegment. +I's and - I's is equal to r, and for each run of length m
and l b) Bragg cel with one half of two chirp segments. + 1 there are two runs of length m; and (3) that the au-

tocorrelation function has only two values. Such se-
quences can be produced by an r-stage linear shift reg-

shown in Fig. 5(b). Each spot has increased in width ister having the appropriate feedback.,7

" by a factor of 2 but each expands to cover only one half Figure 6 shows the magnitude of the Fourier trans-
of the spectral range. Thus, as the chirp waveforms form of an N = 26 - 1 - 31 element sequence at time t

, move through the Bragg cell, the reference waveform = 0 and t = T/31; that is, in a time interval corre-
in the Fourier plane will generally consist of two seg- sponding to one shift position of the PNS in the input
ments of Fresnel patterns which move at the same ve- plane, the magnitude changes by the amount shown.
locity. If the chirp duty cycle is not 100%, there will be At the integer frequencies the normalized magnitude
a small gap between segments which should not ad- is exactly equal to one for any shift position.II The
versely affect the performance of the system. Fourier transform is symmetric about the spatial fre-

When the chirp waveform is used, the integrated in- quency N/2; in an optical system the sequence modu-
tensity of the desired output term is similar to Eq. (15), lates a carrier so that the spectrum is centered at p,. In
except that TW is replaced by v W, and the chirp practice the input waveform will consist of a sequence
produces a residual spatial fluctuation that is a potential of narrow pulses so that the spectrum must be shifted
source of time-amplitude modulation on the output and multiplied by a sinc function as given by Eq.

-. current of the photodetector. Since the Fresnel pattern (10).
travels at a high velocity, the modulation is well outside As shown in Sec. 111. we need at least 2.5 photode-
the postdetection bandwidth so that there is no tem- tectors per resolvable frequency which means that some
poral modulation on the output due to spatial fluctua- photodetectors will be located where the spectrum is not
tions. uniform in either space or time. Further, since photo-

A second type of time-amplitude modulation of the detectors of finite size must be used to collect optical
reference function at the Fourier plane arises from the
movement of the input chirp waveform under the
Gaussian input illumination. A frequency woj wiihin p

the bandwidth of the chirp will appear at a fixed posi- !
tion pj in the Fourier plane; its amplitude as a function I

* lof time, however, is determined by its position in the
input plane. Since a severe truncation of the Gaussian
illumination is not needed to control the sidelobe levels. 
we can reduce the amplitude variatitfl at the expense , I * '11!,J 1
of some loss of light. A reasonable compromise is to , M II
truncate the Gaussian illumination at the exp(-I/2) I
points at the edges of the aperture which leads to a
.25% variation in the output current over the time in- , 1 11
terval T. This time-amplitude modulation is not a
concern because it can be eliminated by the bandpass
filter if fd >> LIT. The chirp reference waveform.
therefore satisfies most of the requirements set forhat g.. . .
the beginning of this section. a 3 N 1 a 9 a 2 . S s d s

An alternative reference-beam waveform that is PA-AL ERMU

continuous in time is a pseudonoise sequence iPNS)
whose Fourier transform also satisfies many of the Fig. 6. Magnitude of the Fourier "ranstorm . a pseuconlnse e-
-tated requirements. These sequences and similar quence for two idjacent ,hitt positions.
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2 T at intervals of L and that the entire distribution movesI with velocity v. The Fourier transform of the extended
I signal g (x) 1s then

G(p) - u expf-jpvt) F(p0-) j -. nT). (28)
A T m

a6 We now account for the finite aperture in the input

• m-Y--. *---,--i 1plane by convolving G(p) with the aperture function
1. I A(p) - L sinc(pL/27r) to get

i G(p)- F eip(-j2rnt/T)sinc(pvr/2r - n). (29)

a z's . , - - -Equation (29) shows that the Fourier transform consists
.1 I . [of a set of sinc functions spaced at intervals of 2r/L,

. . ..._._.. which is consistent with our notion of the spatial reso-
,a m ts ''I I~' .i. 2. .. x lution of the optical system. These sinc functions takea asSQ1111 5N 26 ,a ,2S 0 N X on the sample values F(21rn/T) and oscillate at a tem-

i HIT ,CISrTION poral frequency of 2irn/T. The final step is to multiply

Fig. 7. Magnitude as a function of shift position for G(p) by sinc(pL/2rTW) to account for the finite du-

funci sit iration of each pulse in the PNS or by a rectangular
function for the case of a chirp.

If we observe the output of a given photodetector for

a long time period T' >> T, we will see the discrete na-
power efficiently, we investigated the spatial and ter- ture of the temporal spectrum of the reference beam.

" poral variations in amplitude for finite photodetectors. Furthermore, if we increase the frame length of the PNS
Figure 7 shows the magnitude variation as a function so that it is greater than T but less than T', we will note
of shift position (equivalent to time) for a photodetector that the discrete temporal frequency resolution will
whose width is dIRT - 0.28, centered at four different increase whereas the spatial frequency resolution is
spatial frequencies. The variation in magnitude as a fixed. The exact nature of the output for the candidate
function of time is of the order of * 15%. which is caused waveforms and an observation time of the order of T
by using a Gaussian input illumination beam truncated will be deferred to a later paper where we will discuss
at the exp(-14) points in amplitude at the edges of the the experimental results.
sequence. We note that the functions are the sums of
sinusoidal functions whose frequencies are I/T and V. Lamar Power and Dynamic Range
multiples thereof; these components can also be re- The current produced by a photodetector is given by
moved by the narrowband filter. As noted before, the Eq. (16); the values of A, and A2 are given by
instanteous output of a spectrum analyzer is generally aP( 1

2  
(I- a 7112Sintegrated for at least T sec. Figure 8 shows the average .A, =  ) . 2 (o

value of the amplitude as a function of spatial frequency • - .Lo
for a full frame of the PNS. Except at zero spatial where P is the power of the laser and a is the fraction

. frequency, where the magnitude is low because the av- of the power directed into the signal beam. The output
erage value of the sequenc. is low, the average magni- current can then be arranged in the form
tude varies by 5%. These variations, along with others ___

such as Bragg cell frequency roll-off and the sinc func- I I ;/",, v
* tion weighting, can be compensated when the system I Vs J

is calibrated. E a
The question of whether the temporal frequencies of A

these candidate waveforms are continuous functions of E
the spatial frequency variable depends on the waveform as
and the postdetection process. Equations (8) and 27) G

suggest that the spectrum of a moving impulse or a chirp c '
waveform is indeed continuous so that the theory is A 4 4

valid if the output is sampled, after narrowband filtering M -,

and envelope detection, once for each time period T.
The results are less clear for the PNS because the a 2

% Fourier transform cannot be calculated in the same way.
Some insights can be gained for the case of longer ob-
servation times such that the reference waveform is a a
repetitious with period T. a ,Z

Let [(x) represent the amplitude of the reference SPAT AL rREUE4C

beam over the time interval T and let F'p be its Fourier Fig. 3. Magnitude averaged over a frame period as a functon "

transform. Suppose that this distribution is repeated spatial frequency.
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that the sensitivity of the photodetector is S - 0.5 A/W.
/" and that 3 - 0.14. The modulation indices mI and m,.

are chosen to keep the intermodulation products at an
acceptable level. If we require third-order two-tone
intermodulation products to be down by at least 50 dB
when 20% of the possible cw signals in the Bragg cell are
saturated, we must keep the diffraction efficiency per
frequency to <0.01. Since the modulation index is

was ,equal to the square root of the diffraction efficiency, we
have that m, - 0.1. The diffraction efficiency of the

, -reference beam can be much higher because inter-
modulation products are not a factor; we choose m 2 -

____...0.7. We will also use a time-bandwidth product of TW
aff 100, and, if we use the chirp reference-beam wave-

form, we replace TW by v TW in Eq. (16) so thatR1
____"____-__-___ _ -"__i(t_) - it + i2 + i 3 t) (36)tea tea C= Nad CUl

qte ,,W,* ,°'I. - 7( 1O-)CiPa

Fig. 9. Dynamic range for interferometric and power spectrum + 3.5(10- 4)P(Q - a) + 9.8(10-)CW.Pla(I - a)!"/2  137)
anBIy'ZeS. from which we note that a = 3.5(10-4), b A t(10-,)C;,

and c - 9.8(10- 4)C, .
uit) - it + i2 + i3(t) The value of g is a function of the parameters asso-

. aP(I - a) + bPa + cPla(1 - a)1112 Cos{ t + b), (31) ciated with the photodetector elements and the required
dynamic range. A dynamic range of 60 dB in terms of

where the coefficients a, b, and c contain the values of input signal power yields a minimum value of Ck - 10- 3

parameters associated with various system components. from which we have that ci = 9.8(10-1). We chose a
Equation (31) represents the general form of the output photodetector having a dark current of id - 10- 9 A, a
of any interferometric system, and the SNR is given by bandwidth of B - 1 MHz, and a load resistance value
the ratio of the output signal power to the sum of the of R - 50 ki. From these parameters we calculate that
shot noise and thermal noise powers: g = 7.2 and, from (35), that the minimum laser power

i3
2(t))R (321 is P = 3.2 mW.

SJR =2eB(iU, + it 4- i2)R . 4kTB We now calculate the dynamic range produced by a
where the brackets denote time average, R is the load power spectrum analyzer that has the same system

resistance of the photodetector, e is the charge of an parameters. The SNR for a power spectrum analyzer

electron, B is the bandwidth, id is the photodetector can be given in a form similar to Eq. (32):

dark current, k is Boltzmann's constant, and T is the SNR - (i)R 138)
equivalent system temperature in degrees kelvin. By 2eBaid + ,)R + 4 TB
using Eq. (31) in (32), we obtain where iI - 7(10-4)CkP; we have set a - 1 because all the

0.5C2P2 oxll - a) laser power can be directed into the signal beam. The
SNR - DjaPI - a) + bPaj + F 133) dynamic range can be found by setting the SNR = 1: we

where D - 2eB and F - (2eBid + 4kTB/R). then have

We want to find the minimum laser power required DRp - 10 Iog[47 (0-)P/V'T, t39)

to achieve a given dynamic range. The procedure is to which, for a laser power of 3.2 mW, gives a dynamic
solve Eq. (33) for the laser power required to produce range of 33 dB. We find that the interferometric
a detectable signal (a SNR of 1) when c has its minimum spectrum analyzer provides 27 dB more dynamic range
value as determined from the required dynamic range, than a power spectrum analyzer for the set of parame-

. After some algebraic manipulations. we find that the ters given.
minimum laser power is obtained when It is frequently cited in the literature that an inter-

a + ( ferometric spectrum analyzer provides twice the dy-
a- '1 namic range in decibels as that produced by a powerwher spectrum analyzer. We now examine in more detail the

where g - Fc /2D a ) . The minimum laser power relationships between the interferometric and power
is then spectrum analyzer dynamic ranges. In Fig. 9 we graph

P -m " ' _Dao'i..g- 1) ,351 the output signal power. as given by the numerators of
C-' Eqs. 132) and t38), as a function of the rf input signal

We are now in a position to make some numerical power. The noise floor is established by the noise
calculations using Eq. (16) as our basis for determining equivalent power of the photodetector. except at high
the values of the constants in Eq. 431). We will assume input signal levels where the system has a slightly higherthat the efficiency of each optical path is E, - - 1,2. noise tdoor caused by signal dependent shot noise.
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As expected, the output vs input line for a power Two types of reference-beam modulation have been
spectrum has a slope of two, whereas the slope is one for studied. A chirp waveform, having the same bandwidth
an interferometric spectrum analyzer. For a given laser at the rf signal, provides a continuum of spatial and
power, the vertical axis intercept point is lower for the temporal frequencies at the output plane and, for most
interferometric spectrum analyzer because (1) half of applications, has adequate amplitude stability as a
the laser power is lost by the recombining beam splitter, function of space and time. We also investigated the
and (2) the reference-beam power is spread over a larger properties of pseudonoise sequences; the same post-
range of spatial frequencies so that the reference-beam detection filtering techniques apply, and, for very short-
amplitude at any particular photodetector is low. pulse or cw signals, the results are similar to those ob-

The dynamic range is determined by the points at tained from the chirp waveform except that the sidelobe
which the two input/output lines intercept the noise suppression effect may not be as strong as with the chirp
floor. A relationship between the interferometric dy- waveform. A potential advantage of the pseudonoise
namic range (DRI) and the power dynamic range (DRp) sequence waveform is that it can be recirculated through
can be obtained by substituting the laser power, as given the Bragg cell and provides phase continuity at the
by Eq. (354, required to provide a given DRt into Eq. output of the system. The choice of which reference-
139. We can simplify Eq. (35) for the case of g very beam modulation to use is dependent on the applica-
much greater than one to the form tion.

We have also determined the minimum laser power
P = s/C40 required to achieve a given dynamic range and com-

Since DRI = 20 log(Ck) and c 9.8(10- 4)Ck, we can pared the performance of an interferometric and a
rearrange Eq. (39) in the form of power spectrum analyzer having the same operating

parameters. The dynamic range,)f the interferometric
DR, =-DRp - 10 1og TW/25). (41D system is, in the limit of small time-bandwidth prod-

This result shows that. in the limit of small time- ucts, a factor of 2 larger in decibels than that of a con-
bandwidth products, the interferometric system does ventional system. The improvement in the dynamic
provide twice the dynamic range in decibels as expected. range is a function of the time-bandwidth product and
A small time-bandwidth product has the effect of the absolute dynamic range obtained.
closing the gap between the vertical axis intercept points I thank E. H. Young, Jr., for discussions on the con-
shown in Fig. 9 so that the superior performance of the cept of a fixed offset frequency based on his earlier
interferometric approach is evident at higher input unpublished work, M. L. Shah for discussions and ex-
signal levels. We also note from Eq. (41) that the im- perimental work on the spectrum of pseudorandom
provement factor asymptotically approaches two as the sequences. and G. H. Thaker for the computer simula-
absolute performance level increases for a fixed value tions of the spectrum of pseudorandom sequences.
of TW. Special thanks to A. M. Bardos for stimulating discus-

sions and viewpoints throughout this work which was
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generally limited by the dynamic range available from Ref erems
self-scanned photodetector arrays. Furthermore, the 1. L. B. Lambert. IRE Int. Conv. Rec. i0, 69 1962).
output current is prcportional to the input rf power so 2. M. C. King. W. R. Bennett. L. B. Lambert. and M. Arm. Appl.
that a signifcant amount of laser power is needed to Opt. 6. 1367 11967).
achieve a high dynamic range. Interferometric spec- 3. T. M. Turpin. Proc. IEEE 69.79 11981).
trum analyzers produce an output that is proportional 4. T. R. Bader. Proc. Soc. Photo-Opt. Instrum. Eng. 232. 1
to the input rf magnitude and generally provide more 11980)
dynamic range for a ziven laser power. 5. A. M. Bardos. R. H. Nelson. H. N. Roberts. and C. A. Shuman.

Proc. Electro-Optic Systems Design Conference. Anaheim. Calif..
In this paper a technique is described wherein the 975.

reference beam is spaially modulated and geometrically 6. G. M. Borsuk. Proc. IEEE 89. 100 1981)m
shifted so that the irterference temporal frequency is 7. D. L. Hecht. Proc. See. Photo..Opt. Instrum. Eng. 90, 148
constant over the entire spectrum. This fixed fre- 11976).
quency offset permits a narrowband postdetection filter S. M. L. Shah. Harris C,,rp.: private -ommunicaton.
to separate the signal term from the bias terms at the 9. C. B. Burckhardt. Appi. Opt. 9. 695 1 9701.
output. Furthermore, the filter rejects sidelobe con- 10. R. H. Katyl. Appl. Opt. 1I. 198 1972).
tributions from nearby cw signals so that reduced cross 11. W. C. Stewart. A. H. Firester. and E. C. Fox. Appl. Opt. II. 604
talk levels can be achieved without the need to weight ,1972).

the input illumination. A more uniform input illumi- 12. D.C. Chu and 1. W Cxdman Appi. Opt. I. :716 1972.

nation, in turn. leads to better short-pulse detectability 13. W .1. Dallas. Appl. Opt. 12. :179 !973).
14. M. 1: Gailazher and B. Liu..\ppl. Out. 12. 232S, 97,1.

because the pulse amplitude is more constant over the 15 T. F Kriie. M. 0. Haier. ',V D. Reaus. ana ., F Waikup. Appi.
processing ime ,f the ceil. A further advantage of the Opt. 18. 2, 1979)

ntert.erometric technique is that scattered light does :6. E. E. Fenimore kppi. Cint. 19, £ ii,5 !1'9'
n".ot contribute ro the output because it fails outside the i S. W G,,iimh. ,;fit Revist.' ", juencpi Htiden-Dav. San
oandwidtn of 'he tiiter. Francisco.I !67,

,5 Auus? "981 /oi 20. No. '8 APOLED P'ICS 2-9



;F -1

- APPENDIX B

BRAGG CELL DIFFRACTION PATTERNS

REPRINTED FROM APPLIED OPTICS

VOLUME 21, PAGE 1092, MARCH, 1982

ap



Reprinted from APPLIED OPTICS, Vol. 21. page 1092. March 15, 1982
Copyright © 1982 by the Optical Society of America and reprinted by permission of the copvright ,,wner

i! Bragg cell diffraction patterns

A. VanderLugt
S

The 2-D diffraction patterns produced by fully illuminated Bragg cells can be characterized by curved singu-
larity functions. The degree of curvature is related to the optical wavelength, the acoustic wavelength, and
the degree of anisotropy of the interaction material. Analytical expressions are derived for the singularity
functions, and the impact of the nonideal diffraction pattern in certain signal processing problems is calcu-
lated. The most notable effect is an increase in the sidelobe levels and a slight loss in resolution when Bragg
cells are used in spectrum analyzers. Truncation of the diffraction pattern or the use of the line illumina-
tion, when possible, reduces the degradation of the diffraction pattern.

I. IntroduCtIo molybdate (PbMo0 4) device operated in the longitu-

Bragg cells are widely used as modulators, beam de- dinal mode at a 400-MHz frequency. In the near field
flectors, and analog or digital delay lines for signal of the transducer, the acoustic waves interfere to pro-
processing.1 In each case light waves interact with duce an intricate pattern that has been studied by Cook
sound waves, produced by an electrical/acoustic et al.2 A null is formed at a distance -H 2 /8A from the
transducer, so that the light is modulated in space and transducer, where H is the height of the transducer and
time. The quality of the optical wave front is particu- A is the acoustic wavelength. As the distance from the
larly important in applications such as spectrum anal- transducer increases, the acoustic waves diverge to
ysis, wherein the resolution of the system is significantly produce the far-field interference pattern. Several
reduced if the wave front is distorted. studies have been made in which the sound pressure

One method for testing the optical quality of a wave fields have been calculated and measured by optical
front is to use Fourier analysis techniques which give probing techniques.3 - 9 These analyses begin with the
a direct measure of performance. We examined the observation that the transducer is equivalent to an op-
Fourier transforms of various Bragg cells operating in tical source so that the sound field can be calculated by
the longitudinal wave mode. The diffraction pattern using the Huygens-Fresnel diffraction formula. The
was the expected 2-D sinc2 function, except that in one excitation produced by a finite source is decomposed
dimension the function was curved toward the optical into a family of plane waves, and the far- field pattern
axis. is generally expressed in terms of an angular spec-

The purpose of this paper is to analyze this phe- trum.
nomenon for both isotropic and anisotropic interaction We take a related approach in which we start with the
materials, to illustrate the phenomenon for certain types sound field produced by a transducer of infinitesimal
of Bragg cells, and to calculate its effect on the perfor- height and account for its finite height after we find the
mance of some optical processing systems. Fourier transform of the coupled optical waveform.

Our model for the acoustic wave front is described with
II. Thermy reference to Fig. 2. The Bragg cell is located in plane

One way to visualize the optical wave front produced P1 , having coordinates x and y, which lies in the front
by a Bragg cell is through use of a schlieren imaging focal plane of a lens having focal length F. The Bragg
technique. Figure 1 shows a schlieren image of a lead cell has length L in the x direction: the transducer has

a height H in the y direction and a width W in the di-
rection of the optical axis. The cell is illuminated by
a uniform collimated beam of monochromatic light.
The acoustic wave produced by a wide transducer

The author is with Harris Corporation. Advanced Technology having a very small height can he represented as cylin-
Department. P.O. Box :37. Melbourne Florida 32901. drical sheets that diverge in the v direction as they

Received 19 October 1981. propagate in the x direction. We shall assume that the
003-6935,82/061092.09501.00O. width of the transducer is nearly equal to the width of
C 1982 Optical Society of America. the Bragg 'ell and ignore effects due to reflections.
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Fig. 1. Schlieren image of a lead molybdate Bragg cell (400 MHz).

mAj Ag (4a. f SS#- exp(-j2wr/A) exp(-(r)> 7 q ~~ -~ FOUER PLANE X exp{--(x1Y]xY

where a = arctan(Q/F) and ~3=arctan(,7/F); the vari-
".ables k and 1 are the physical coordinates in the Fourier

transform plane. We now change to polar coordinates
•. by letting x = r cos and y = r sinO so that Eq. (2) be-
.ipz comes

-4

\L /2

A (aA3 = L /2  exp(-j2rr/A) exp(-(r)

Fig. 2. Fourier transform setup for displaying diffraction patterns. 0 J.vr

X eip (a cosO + 0 sin8)Jrdr0, (3)

where the region of integration extends over the semi-
The acoustic wave front propagation within the cell circle in the right-hand plane of the Bragg cell. It is also

is similar to the optical wave front propagation from a convenient to convert the coordinates in the Fourier
line source. Given an ideal interaction between light plane to the polar form; that is, let a = a cosy and 3 =
and sound, the optical wave front at the exit side of the a sin-y. Considering the integration on 0 first, we
Bragg cell for the negative first-order diffracted light have
is

o(xy) = eip(-j2rr/A) exp(-er), (1) G(r/2,) = exp 1-' cos(y - 6)J dO, )

V, Ar"." which is independent of 7 and equal to10
where r2 _ X2 + y 2 and e is a parameter that accounts
for the frequency dependent attenuation of the acoustic G(r,or) 2rJo(2,rrar/), (5)

* wave as it propagates. We have suppressed the time
dependence of this propagating wave because we are where Jc(z) is the zeroth-order Bessel function of the
interested in only the spatial characteristics of the re- argument z. We now use G(r,a) in Eq. (3) to obtain
sulting diffraction pattern. The optical wave front as L 21rr
given by Eq. (1) does not account for the Bragg angle o J(2rr/)
matching conditions which change the amplitude as a
function of the acoustic frequency. These effects are
not of fundamental importance here; we are interested We can extend the upper limit to infinity if we multiply
in the form of the normalized diffraction pattern of a the integrand by rect(r/L -/2), and, after Eq. (6) has
single acoustic frequency. been solved, we account for the finite length of the

We first consider the situation for a Bragg cell made Bragg cell through a convolution in a with a fnction
from an isotropic medium in which the acoustic veloc- W(a), which is the Fourier transform of the product
ities are equal in all directions. The Fourier transform rect(r/L - '/2) exp(-er). The solution to Eq. (6) is given
of a (xy) is given by by the reiationship"

(b.) +V 
a
2 + b2 1

'
2-
"

S exp( - at)4,,l blt u- ldt a.- 7,21,u + Il
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" , the aperture of the cell, W(a) can be approximated by
sinc(aL/X). Finally, we account for the finite height of
the transducer through a multiplication by sinc dH/

In an anisotropic crystal, the phase velocity of the
acoustic wave varies as a function of the direction of

,10 owl ,1 /hi/;,propagation and the orientation of the crystal relative
to the transducer. Waterman 4 has developed rela-
tionships for the velocities and the relative changes in
velocity for waves propagating in directions close to the
principal axes of crystals. He shows, for example, that
velocity v in the [001] propagation direction for a te-

Fig. 3. Phase vector K(0) and Poynting vector K(x) plotted for s tragonal crystal is

= - . Both vectors follow the dashed circle for isotropic materials

Is = 0). V = (C:l,/p)
10

2, I1

and the relative change in velocity in a direction close

where F(-) is the hypergeometric function. For our to the direction of propagation is

application, we have v = 0 and A = 3/2 so that -IV = -" (C13 + c:,.t)(2c 44 + C : 3 - c:TO 12)

( b(L.r 2c:j (C-:1 - C4 4 )-'~~~ ~~ r 1x(3/2) -/./; 8
"" .4~~(a) =b 

I/
F

1)a2 2,12 L24[ a (8) where cij are the elastic constants, p is the density of the

"where a = j2ir/A and crystal, and 0 is shown in Fig. 2. For small values of P
we can write Eq. (12) as Av = -S02V, so that the phase

b = 2oralX. (9) velocity at an angle 0 is

Since A(a) is the Fourier transform of a (nearly) co- V(O) = v(t - s.2). (13)

phasal optical wave front over the infinite half-plane, We use a negative sign in the relationship for Av to be
we expect A(a) to be a singularity function that behaves consistent with Papadakis5 and Cohen.8  Since the
as a 6 function.' 2 A singularity function in a results if acousic wvelength is a Cohere Sis the
b 2 = -a 2, provided that a 5 0 and that F(-1/4,3/4;1;1) acoustic wavelength is A = 2 drv/, where o is the

is finite. If b2 = -a 2, we use Eq. (9) to obtain acoustic frequency, the wavelength dependence on has
the same form as Eq. (13).

a2 = a2 + ,2 = (,\lA)2. (10) We are now in a position to see how the solution to the

which is a valid solution because a F 0, and we have isotropic case can be modified to account for the an-

that isotropy of certain materials. The coupling of the op-
tical and acoustic wave fronts requires that we first find

F(-1/4,3/4;1;1) = r('1 2) the acoustic pressure field within the cell. In Fig. 3 we
r(5/4)r(1/4) show the acoustic K vector associated with the phase

so that the hypergeometric function is finite. The velocity of a propagating wave. The magnitude of this
3 equation of the singularity function as given by Eq. (10) vector at an angle 0 is given by

is that of a circle having a radius X/A centered on the W 2r
optical axis. As the acoustic wavelength changes for K() v A(l -s - (14)

different rf drive frequencies, the singularity function
is always a circle centered on the optical axis, but its The acoustic energy in an anisotropic material propa-
radius varies inversely with the wavelength, gates at an angle X = 0 + 4/. Auld15 derives a relation-

To complete the analysis for isotropic crystals, we ship between the magnitudes of the phase velocity and
. now consider the effect of the Bragg angle matching the energy velocity in which ve(X) = v(o)/cos4i, where

conditions which have not been explicitly included in € is the angle between the phase vector and the energy
the analysis. To maximize the amplitude of the dif- (Poynting) vector. Furthermore, Papadakis '5 shows
fracted light, the input illumination must be at the that ' = -2so so that
Bragg angle (03 = X/2A). If we illuminate the cell at __"___I
the Bragg angle with respect to the v-z plane, the dif- = - 115

fracted light will be maximized in the direction of - =
7r, and the singularity occurs at a = -X/A. Since the which is valid to terms of the order of y 2. The magni-
position of the singularity is measured with respect to tude of the acoustic K vector associated with the energy
the point at which the undiffracted light is focused flow is then
idefined here as the optical axis), we get the classical le 2 7r

result that the angle between the diffracted and un- K..x)= = , W)

diffracted light is twice the Bragg angle. '" All
The singularity must also be convolved in the radial The scalar product of the Poynting vector and a dis-

direction with W(o), which is the Fourier transform of tance vector defines the pressure at each point within
rectlriL -1,2 exp(-Er). If the attenuation is small over the cell. The scalar product is
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The parabolic form of the singularity function can
*5, also be obtained from Eqs. (20) if we note that 3 XO/A

* and use this value for 3in the expression for a. For the
negative diffracted order, we have

a -[1 - (s - - - (s - 1/2 )(Ad/X)21,
A A

from which we get the result that
A2 S Ala + A/A)

A(1/2 - s)

in agreement with Eq. (19).
Fig. 4. Singularity curves in the Fourier plane for anisotropic Bragg In Fig. 4 we show the singularity function of aniso-

cells, tropic materials for several values of the parameter s.
For s = 0, the singularity function is a sector of a circle.

2ir For s < 0 the singularity function curves more rapidly
K . r - [x + y2/2x(l - 2s], (17) toward the optical axis, whereas for s > 0, the singularity

A function curves less rapidly toward the source. The
where we have used the relationship that x = arc- horizontal difference between the spatial frequency at
tan(y/x) - y/x. The Fourier transform of the optical an angle 0 and that at 0 f 0 is obtained from Eq.
wave front in the anisotropic case is then (20):

A~~a4~~~) = -AzI- [ y2/2.11 - 2s)i} ~a o~ - a. (S - 1/2)02A/.(1A(aA f .. p -j L A.(1
X jFrom this relationship we see that s = i;2 results in a

Xe-p - ax + 0y) exp(-ex)dxdy, (18) singularity function that is a straight vertical line
A etpassing through a = -X/A. Papadakis5 gives some

where we have replaced r by x in the denominator and limits on the value of s in terms of the elastic constants
in the attenuation factor because we require that X be and argues that s must < 1/2. The values of s as given by
small. This integral is considerably more difficult to Papadakis and by Waterman range from +0.38 for KCI
solve than Eq. (2); the solution is given in the Appendix to -5.23 for Zn. Cohen8 observed that a crystal for
where we find that the singularity function has the which s = 1/2 is one in which the acoustic beam diver-
parabolic form gence is zero. Such a crystal would produce a self-col-

2 (a + /A) limating acoustic beam, and the diffrr :tion pattern
-A(112 - s) 19) would be identical to that produced by a 2-D rectan-

gular aperture having a uniform phase weighting.
Although Eq. (18) is the more complete diffraction Equation (21) also shows that the magnitude of

integral because it accounts for the pressure field via the Aa(o) can be large if s is highly negative, which is the
Poynting vector, the same singularity function can be case for TeO2 operated in the slow-shear mode. Fur-
obtained in a simpler fashion for the special case of a thermore, Aa(o) gives a direct measure of s from ex-
continuous wave signal. In this case we cannot physi- perimentally generated diffraction patterns as we shadl
cally distinguisk the direction of the Poynting vector show in the next section.
since we assume that the infinitesimal transducer ra-

* diates energy in all directions. We can then find the
singularity function more directly from the isotropic Ill. Experimental Results
solution by using the scaling property of the Fourier
transform. If a 2-D aperture function is extended by Figure 2 shows the experimental setup used to ge.I-

a scale factor in a particular direction, the diffraction erate the diffraction patterns. Light from a He-Ne
pattern contracts in the same direction, and the am- laser is collimated so that the Bragg cell is illuminated

plitude is adjusted by the same scale factor.16 FromEq. at the Bragg angle. Lens L_2 produces the 2-D Fouri.r

(14) it s easily seen that the acoustic wavelength is transform of the fully illuminated Bragg cell at plane

" scaled by a factor (1 - Sl02) so that the spatial frequency P2 . Figure 5 shows the resulting diffraction pattern for

or for the isotropic case is scaled by (1 - s0 2) - in the a PbMoO 4 cell driven by a single frequency at 400 MHz.

direction d. We then have that 00t) = (,\/A)(1 -s02)
-  The intensity (ad) follows the singularity function

so that whose coordinates are given by Eq. (20). The intensity

X coso A sio weighting in the d direction is sinc 2(Hd/X). and the in-
a , -co) a = 3 i 120) tensity weighting normal to the singularity function is

'l1 - .,2) A( I - S(b2 sinc"(L/). An additional weighting in the horizontal
The amplitude A(a) as given by Eq. (8) must also be direction is due to the Bragg angle mismatch conditions:
scaled by 1 - sp 2) to obtain the result for the aniso- it is not obvious unless the value of s is highly negative.
tropic case. Since the physical boundaries of the ap- At . = 0 the singularity function occurs at o = - \ A

erture do not change, the weighting functions are the relative to the focal point of the undiffracted light.
same as those for the isotropic case. where \/.A is twice the Bragg angle.
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-(ct a+ c 33)(2c4 + c 0 - CJ) (22)

2c33(C3 - C44 )

In Table I we give the values of the elastic coefficients
for PbMoO 4 and TeO2 from which we calculate that s
= -0.176 for PbMoO 4 and s = 0.274 for TeO 2. Our
measured data for s are in reasonable agreement with
those calculated from Eq. (22), given the degree of ac-

I k curacy in measuring the ci. 19
We also tfsted a Bragg cell fabricated from fused

quartz, which is isotropic, and found the singularity
Fig. 5. Diffraction pattern for a fully illuminated lead molybdate function to be a circle as predicted by Eq. (10) or (20).
Bragg cell driven at 400 MHz. Undiffracted light is attenuated by Since the rate at which the singularity function deviates

neutral density filter, from a straight line is proportional to (1/2 - s), we find
that the rate is lowest for TeO2 and highest for PbMoO 4;
the rate for fused quartz is nearly halfway between these
two values.

The diffraction patterns produced by acoustooptic
cells operated in the Bragg mode are similar to those
obtained by Shaeffer and Bergmann 2° for cells operated
in the Raman-Nath mode. In the examples they give.
as well as those illustrated in Refs. 21 and 22, the dif-
fraction patterns are symmetric about the focal point
of the undiffracted light because drive frequencies are
low. These patterns are also generally more compli-
cated because both shear and longitudinal waves
propagate within the cell.

Fig. 6. Diffraction patterns for a tellurium dioxide Bragg cell driven The significance of the fact that the diffraction pat-at 500 nd 300 MHz (double exposure), tern for Bragg cells lies along a curved singularityfunction instead of a straight line depends on the ap-
plication. The Fourier transform of signals introduced

Table L ElacC~rAufta (X loll W) by Bragg cells is used extensively in spectrum analysis
and in spatial filtering applications. In these applica-

PbMoO17  TeO 1s  tions the Bragg cell is often illuminated by a line source
'cl 1.092 0.532 generated by inserting a cylindrical lens between L 1 and"-c 0.683 0.486

C12 0.528 0.212 the Bragg cell (see Fig. 2) as well as between the Bragg
C33 0.917 1.085 cell and lens L2. In this fashion, a 1-D Fourier trans-
C4 0.267 0.244 form is generated with the line source being imaged in
c C 0.337 0.552 the orthogonal direction. In some configurations,

however, it may not be possible to use a line illumination
because two Bragg cells are used in series, 23 or they are

Figure 6 is a photograph obtained by a double expo- used in a Rayleigh interferometer wherein a single lens
S.sure of diffraction patterns for TeO2 excited at 500 and is used to ensure that the Fourier transforms overlap.

300 MHz. The features noted above are evident, as well For such configurations we want to know the effect of
as the fact that the location of I(a,1) is a function of A integrating (detecting) light in the vertical direction.
and that the singularity function becomes less highly In Fig. 7 we see the results of integrating (a,3) in the
curved as the acoustic drive frequency increases. In the 3 direction to the tenth zeros on either side of the hor-
limit of very high frequencies, or a large ratio of X/A, the izonal axis. Since Aa as given by Eq. (21) gives the

. diffraction pattern more nearly approximates an or- deviation of the singularity function from a straight line.
thogonal set of sinc2 functions. From this figure we can we define a parameter D = (1/2 - s)XVA; the integrated
also deduce that the TeO2 cell produces a singularity intensity is shown for D equal to 0, 1/16, 1/32, and 1/64.
function that opens more slowly than that for PbMoO 4. The result for D = 0 represents the integrated intensity
At 400 MHz, the acoustic wavelength is 9.1 im for of the diffraction pattern of a hypothetical self-colli-
PbMoO 4 and 10.5 gm for TeO2, which accounts for part mating Bragg cell (s = /2) and forms a basis for com-
of the decreased curvature. The remainder is due to paring the results for other values of D. We compare
different values for the relative changes in velocity. By the results for D = 1/64 with the ideal case, since it

. measuring the locus for each singularity and by using shows the greatest departure from the ideal. First, the
Eq. (19), we find that s = -0.168 for PbMoO 4 and s = sidelobes are asymmetric, being higher in the direction
0.24 for TeO2 . These values will now be compared with of the optical axis, and the nulls are less well formed.
those obtained from the elastic constants. From Eq. Second. the main lobe width is 3% wider and is shifted
12) we note thar toward the optical axis by 4% of the v,:)in iooe width as
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I- toward the optical axis, suggest that the Fourier trans-
form should be truncated at the first zeros by the de-
tector to avoid an increase in the sidelobe levels. The

* INpenalty for truncation is a loss of--t0% of the available
S,,optical power.

* ,IV. Bragg Cell Illumination
,. -' In some applications, the Bragg cell is illuminated by

a line source generated by the use of a cylindrical lenF
1-3 arrangement as described in Sec. II. We now compare
* the effects of 1-D illumination with that of 2-D illumi-

nation on the diffraction pattern. In this case, the
diffraction pattern is understood to exist in the hori-

C4.. zontal direction, whereas the light distribution in the
4 -4 .2 0 2 4 1 vertical direction is the image of the line source.

c.SP*AYTI FmaUaCT We use the same model for acoustic wave propagation
Fig. 7. Normalized intensity of diffraction pattern integrated in the as shown in Fig. 2. We now cannot account for the fi-
vertical direction. The result for D - 0 is a sinc2 (a) function centered nite height of the transducer through a multiplication

at -. /A. of the singularity function by sinc(H)3/X) in the Fourier
plane; instead we must calculate the effect of the finite

-1.-

1- - | 0 __',

0.7-

-IA -as a@ as 1. i --

a-SPAIAt FliWMIIC -6 -4 -1 0 2 4 6

Fig. 8. Details of the intensity of the central lobe of diffraction -SPATAL FREQUENCY
pattern. Fig. 9. Theoretical and experimental intensity of diffraction pattern

for TeO2 (290 MHz) integrated to the fifth ze ,)s.

can be s ien more clearly in Fig. 8. Third, the peak in-
tensity i3 reduced by 13% because the diffraction pat-
tern is hl ghly curved toward the source. Note that the
results for an isotropic material (D - 1/16) show a IL0-
similar trend; the best results are obtained for an an- o=
isotropic material having a value of s as close to 1/2 as - 0 = ,,,

U0 : ,'

possible. 0.0- 8,,
In Fig. 9 we show the results when I(ci,0) is integrated

to the fi'th zeros on either side of the horizontal axis. 04
The same general features as described above are evi- oo-
dent except that the degradation from the ideal is not
as great. Experimental data obtained from a TeO2 cell 02-

operating at 290 MHz (equivalent to D = I1/32) is also
plotted in Fig. 9. Although the overall level of the
sidelobes is higher for the experimental data due to o.oo 0 ...

scattered light. the general form of the data is in good 0
agreement with the theory. ,-SPATIAL FQUC

The best performance is obtained when we integrate Fix. . In n xiainterns when integrated in the

only to the first zeros in the vertical direction. The vertical direcion to on y the first zero. Normalized that the in-

results, shown in Fig. T0 for the sidelobes extending teniv is Loat _ , = _ _ r D ffi 0.
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It z rapidly at small values of x. The frequency ofoscilla-
tion decreases as the distance from the transducer in-
creases, and, for large values of x, the amplitude decays

I slowly. The maximum dip in the amplitude occurs at

x0; from Eq. (24) we find that this dip occurs when the
1.2 argument of the Fresnel integral is - 1.88. Therefore.

we find that

o.
2

Al -!s
PFor an isotropic medium, this value of x0 agrees rea-

sonably well with that predicted by Ingenito and Cook9
. who give a value of x,, = H2 /8AL.

:-_ _We now compute the Fourier transform of a (x,y) to

to &2 94 as & 1.9 obtain the diffraction pattern in the horizontal direc-

*X-.o011AMa N I tion. For convenience, we normalize the angular spatial

Fig. II. Amplitude (left-hand scalej and phase Iright-hand scale frequency so that a1 = (a + A/A)L/X:

in radians) along the y = 0 axis due to the entire transducer. , = ax.y)exp(-2wr~ldx. 26)

The final step is to integrate the intensity of the Fourier
cotr- transform over y to obtain the diffraction pattern that

transducer at the plane of the Bragg cell. The contri- will be measured by a photodetector. Figure 12 shows
bution from an elemental area of the transducer for the the normalized magnitude squared of F(al) for
anisotropic case is obtained from Eq. (18): PbMoO4 as well as the diffraction pattern for the ideal

1 . "2 I case of a self-collimating material. We see that the
o~xy) -~ Aip~J--[ 2 2' s1 x(E) central lobe is slightly broader due to a combination of

*! We convolve this function with rect(y/H) to obtain the the amplitude and phase weighting of a(x,y). The
- total amplitude and phase function over the exit face entire diffraction pattern is shifted by a small amount;

of the Bragg cell. The convolution integral is then from Fig. 11 we see that the linear component of the
phase over the region 0.2 _5 x < 1 is -0.5 rad so that the

a(zvy Z= ai -7'(y rect(tsIH)du, (23) pattern should shift by nearly r/10 (i.e., -1007 of the
e AX(1 - 2.)l angular distance between adjacent nulls). In compar-

where we have neglected the attenuation factor e. ing the results in Fig. 12 with those in Fig. 7, we see that
As before, we assume that the width of the transducer the bidelobes toward the optical axis are lower, instead

along the optical axis is large so that end effects are of higher, than those due to a uniformly illuminated
negiigible. This assumption may seem to be less valid aperture. The use of line illumination, therefore, causes
than before because the light is now focused within the the sidelobe levels to be more nearly equal to those
cell. The transducer for the PbMoO 4 cell is 150 Am produced bcy a uniformly illuminated aperture.
high and 600 Am wide. If a Gaussian beam is focused From Eq. (24) and Fig. 11, we see that the amplitude

"' within the cell so that the beam waist height is - 40 Mm, transmittance fluctuates rapidly in the region x < xo.
the beam waist does not grow by more than 4% at the

.*. entrance and exit faces of the cell. 24 The line illumi-
'.'- nation is, therefore, more nearly equivalent to a colli-

mated beam than it is to a convergent or divergent
beam. PtTTIM

The rect(u/H) function in Eq. (23) can be removed
. by restricting the limits of integration to I u 1 < H/2 so

that 2  alxy(-'Ic[(l - Y)vqxJ + jS1a - V I%, ~7it
+ '(120 ~I 1 + +yi/x.(24) '/

where C(.) and SO* are the Fresnel sine and cosine in- I: ''

tegrals, and q -H 2/2A(1 - 2s)L. The variables in Eq.
(24) have been normalized so that IYl and0<x ft x
1: this result shows that the amplitude transmittance
along the Bragg cell at any value ofy is a combination
of Fresnel integrals. The amplitude and phase along -6 , 2 0

the horizontal axis (v - 0) are shown in Fig. 11 for a
PbMoO 4 Bragg cell driven at 400 MHz with H = 150 Am -SPATIAL FRlaUENCY

and L - 2.6 mm. Since the Fresnel integrals are func- Fig. 12. Intensity ,tdiftratin pattern when the Bragg cell is llu-
tions of % Tl/x. both the amplitude and phase oscillate rnnated by a line source.
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We might expect, therefore, that the Fourier transform G (x = , expI-j2r.y2 /2Ax(1 - 2.o expi-j2wdY/X)dx.
would be more nearly ideal if we were to truncate thef"
illumination so that this region does not contribute to which can be solved by using the relationship that 26

the Fourier integral. We calculated the Fourier
transform of a (x,O) only over the range x0 < x < l and f expq -ct I - 2dt)dt = x VeXpd/cl
noted some differences in the structure of the sidelobes f

extending toward the optical axis. The major change X erfl % et + d/N c 1; c U

is in the value of the second sidelobe and the depth of If we make the associations and definitions that
the second null in the Fourier transform. As we in-
creased the range of y over which we integrate at the c = jr/AxuI - 10,

Fourier plane, we found the differences to diminish so d - j d/, (A)

that truncation of the oscillating portion of a (xy) has
less effect. e = u/Al - 2),','.iwe have that
IV. Summary and Cownclusions tha

The diffraction pattern of a uniformly illuminated GIx4) l.,7x expidrel

Bragg cell lies along a singularity function that is de- x ieril(o,)v + d/\, ei. i1

termined by the phase velocity of the interaction ma- - erf1(-o + d/\ e)%'
7 1. (A2)

terial. For an isotropic material, this curve is a circle
whose origin is at the focal point of the undiffracted We now account for the finite transducer height H by
beam and whose radius is twice the Bragg angle. For multiplying G(x,) by sinc(Hd/X). The integration on
an anisotropic interaction medium we used Waterman's x now becomes
approximation to the phase velocity profile and found
that the singularity function is a parabola having its A ) i 12 sincHO/X) f erf o );' + d/v e)v')x

vertex at twice the Bragg angle. Experimental mea- I ( A'
surements of s are in close agreement with those ob- X exp[(d2

/e - )XI exp J - xldx (A3)
tamined from the elastic constants.

In signal processing applications where the Bragg cell minus a similar integral in which 0o is replaced by -0o.
must be uniformly illuminated, the curved singularitv We can extend the upper limit to infinity if we multiply
function causes the sidelobe levels in the direction of the the integrand by rect(r/L - 1/2) and account for the fi-
source to increase when the diffraction pattern is inte- nite limit through a convolution in a with sinc(La/X).
grated along a vertical line instead of along the locus of We now use the relationship that26

the curve. The severity of this problem can be reduced / 9
by restricting the region of integration in the vertical f exp(-ft) erfN,7tdt = I v -g; Reif + g) >0. (A4)

direction; the permissible region of integration is a The preence of the attenuation factor e ensures that
function of X, A, and s. Line illumination of the Bragg Te prg) nc0 o th uatio factor Wensusthat
cell can be used to further reduce the deterioration of Re(f + g) > 0so that Eq. (A4) is valid. We must exer-
the diffraction pattern. Some residual aberrations still cise some care in applying Eq. (A4) in evaluating Eq.

exist under these conditions, but their effects are small. (A2) because the signs of the arguments of the error
A final technique for improving the diffraction pattern function change as a function of (. Consider the in-
is to use an aperture stop to remove the contributions trfo h d from Eq. (Al) we find

to rmovethe ontrbutins that this corresponds to :5j o 0X/A( I - 2s). For this
.... of rapid acoustic wave front oscillations near the

S.. transducer, range on 3, the sign of the argument of the second error
function in Eq. (A2) is negative, and we can use the re-I thank A. M. Bardoe, M. L. Shah, and G. S. Moore lationship that erfl'-t) -erf(t). We now make the

for stimulating technical discussions and G. H. Thaker associations that
and M. A. Epstein for assistance with the computer
programs. Special thanks to S. J. Adhav for assistance w I )
in the experimental work. This activity was performed 2ei + -

under a grant from the U.S. Army Research Office. _ _e o",, ,, fi ,)x' + d' i' A5)

Appendix '- d/, e.

From Eq. 18) we have that the effective amplitude where we use g, in Eq. (A3) and g2 in the companion
,'. distribution at the Bragg cell is integral. We now have that

a X .Y 1 exp - J r_ -'/' (l - 2 s1_ exp ( 1 . A__) 1,sinc(H NI (A i)

and the region of integration is a wedge having its apex As explained in the text. we expect Ai a. 3 ) to be a
at x - 0 so that 0 _< x _< L and Iy _< ox, where o(, de- singularity function in a and . Such a function is
termines the upper and lower boundaries of the wedge. obtained in the limit as f tends toward zero. From Eqs.
We first performt the integration on Y: IA5 and IAl) we find that i - 0 yields
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ABS iACT

In some applications, the performance of multichannel Bragg cells is

"* compromised by the spreading of the acoustic waves as they propagate; the

spreading causes the signals in the channels to overlap. The overlapping

can be significantly reduced by a spatial filter in a Fourier/image plane

" the spatial filter is shown to be a cylindrical lens whose power is a

function of the distance from the transducer. The effects of changes in the

m ,drive frequency as well as those of displacements of the filter are

calculated. The reduction in the modulation transfer function as a function

:0 of propagation distance is calculated and some bcunds on the time-bandwidth

product and the number of channels are derived. In general, the overall

Pperformance can be improved by increasing the center frequency of the Bragg

cell while keeping the bandwidth fixed.

ON

AL



1. MMUT

p In son signal processing applications, multichannel Brass cells are

required to handle wideband parallel signals. One example is that of

processing signals from a phased array antenna wherein we associate each

channel of the Bragg cell with an antenna element. Multichannel Bragg cells

were developed In the early 1%60's by Lambert and his associates1'2  andm3
c cells with as many as 128 channels have been described3 . As the channels

become more densely packed, the transducer heights are reduced causing the

acoustic energy to spread over larger angles as it propagates through the

interaction material. The acoustic waves from adjacent channels therefore

overlap after a short propagation distance so that the utility of the device

may be less than that desired.

KzUperiments with a 128-channel Bragg cell constructed from SF-S dense

flint glass and with a 32-channel device constructed from TeOs clearly show

the acoustic spreading phenomena. In the high speed recording applications
3for which these devices were developed , only the region near the transducer

was used to modulate the light beam. We also noted, however, that even

after the acoustic beams had overlapped completely, the diffracted light

pattern could be separated into discrete channels to resemble the pattern

produced nsa the transducer. This was accomplished by forming a Schlieren

Uimage at a plane displaced axially from that of the Bragg cell itself. This

result, in turn, suggested that the acoustic spreading, in some sense.

introduces the equivalent of a variable focusing power which is a linear

function of the propagation distance. If this focusing action could be

compensated so that, at some plane in an optical system, the diffracted

* light from each channel is confined to that channel, a more widely useful

multichannel Bragg cell would result.

It is not sufficient, however, to confine the diffracted light to the

channel without giving consideration to the impact that the compensation has

4. on the modulation transfer function. As the acoustic energy propagates, the

information diverges so that compensation causes it to be spread in the

direction of propagation. The result is a loss in the modulation transfer

function that is a function of the propagation distance. The desire to

• . .• .,.. , *.. .** .* - -. .. .
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confine the acoustic spreading must then be balanced by an acceptable loss

in the nodulstion transfer function.

2. 1Mt

The model that we use for analyzing the acoustic spreading is the sane

as that used before4 and is shown in Figure 1. An electrical signal drives

a piezoelectric transducer having height H and an interaction width V. The

transducer launches an acoustic wave within the Bragg cell which changes the

index of refraotion; this, in turn, causes the phase of light from a

coherent source to be modulated in space and time. If the drive signal is

a& IF signal at frequency foe the acoustic wavelength is A - V/f0 ° where V

is the velocity of sound in the medium.

The acoustic wavefronts propagate in a fashion similar to optical

wavefronts derived from a line source (B -) 0). If V >> H, we can model the

wavefronts as cylindrical shoots which, for an isotropic medium, spread at

an angle +.# with respect to the z-auis. The degree to which acoustic

spreading occurs is a function of the anisotropy of the medium, the acoustic

wavolongth and the transducer height.

The first step is to calculate the Fourier transform of a single

ch"nael Bragg cell driven as shown in Figure 1. We wish to derive the

transform in the y-directly only, while we image the Bragg cell in the

x-direction. We begin by considering the transducer to be a infinitesimal

line source and account for its finite height by multiplying the Fourier

transform by a sinc-function. The fourier integral to be solved is4

Gx,0) " f p[-j2xys/2Az(l-2slexp(-j2fpy/.)dyo (1)

==-
*0X

where A is the angular spatial frequency, s is a parameter that

characterizes the degree of anisotropy as given by the elastic constants.

A is the wavelength of the acoustic wave within the medium, and X is the

wavelength of light. The region of integration is over a wedge whose apex is

q, . . ' . - . - ' , - - - ' , -. . ,. . . - -. .- " " , . , , • . . . , _ -.



U at x - 0 and is the angle at which the acoustic beam has its first nulls;
0

this region contains most of the optical energy. The far field value of 0 is

0 A (1-2s)/H. (2)0

In reference 4. we solved (1) in terms of error functions having complex

valued arguments. An equivalent result that is somewhat simpler to derive

and provides more physical insight can be obtained through the use of

Fresnel integrals. We let

c n/Ax(l-2s)

(3)
d -O

so that

0

-~xO " ix e p[-j(cy3 +2dy)]dy (4)

By completing the square of the exponential and by changing variables, we

q obtain

b

G(xP) - - exp(jdl/c)sinc(pH/.)fexp(-ju2)du, (5)

fa

where a - x4- + d/ C b - * xv/- + d/ / and sinc( H/A) is the

multiplicative factor needed to account for the finite height of the

transducer. The integral is a resnel integral that further modifies the

amplitude of Gfx,O). Depending on the values of the limits, this function

may be nearly rectangular (similar to the near field diffraction pattern of

a slit) or nearly a sinc-function (similar to the far field diffraction

pattern of a slit). In all cases, the mcst rapid change in the value of the

Fresnel integral occurs at those values of P where either the upper or the

lower limit is equal to zero. By using (3), we find that the Fresnel

#'window'' has a nearly uniform value for

1 0 1l p < X / .A 1( - 2 s ) . ( 6 )
-- 0

""'U _' •" '- "' ', : ' 't ":P "r% " " b. -. . .



To substitute (2) into (6) and find that the Fresnel integral has a nearly

uniform value for

IPI S )IH(7)

whih is the same as the region occupied by the central lobe of the

sinc(PI/.) weighting due to the finite transducer height. The Fresnel

integral, then. has the effect of suppressing the sidelobes of the

sinc(BA/X) function as well as producing some low modulation fringes in the

central lobe. At small values of z. the Fresnel integral transitions into a

broad Fraunhofer diffraction pattern of a narrow slit and has very little

impact on the amplitude of G(x,P).

If we denote the total amplitude weighting of G(xP) by f(x,A), we have

that

G(z) - f(z,)exptjmxA(1-2s)pA/)']. (8)

We now concentrate on t4 phase part of G(xP). The key point is that the

phase factor is quadratic in A and linear in z. At the transducer, where

z - 0, there is no optical power, whereas the optical power is greatest at

" - L.. If the optical power could be cancelod, the inverse Fourier

transeorm would confine the light to rectang'alar channe-' with no spreading

into adJacent channels. In principle, the otical pov can be compensated

by a section of a conical lens whose power varies linearly from zero, at

x - 0. to a value of LA(l-2s)/)F 1 at a - L. An alternative method is to

construct a holographic correcting elemelt from one channel of the Bragg

cell; such an element will then correct the acoustic spreading for all

channels simultaneously in the same fashion as would a matched filter.

The use of a holographic element for compensating the acoustic

spreading has been reported by Vodovatov, at S. The derivation given
there for the value of G(z,P) does not agree with (8), particularly with

*respect to the phase factor having quadratic dependence on A and linear

dependence on x. The result from (8), however, is consistent with the

observation that the channels can be separated by focusing at a different



U plane using auxiliary optics. As an aside, it is easy to show that the

axial distance from the Brass cell at which the channels become separated is

equal to x(l-2s)AA. Thus, the "focal line' has a slope of (1-2s)A/ with

respect to the horizontal axis; for typical Brass cell parameters, this

slope corresponds to an angle of 880 to 890 which is nearly parallel to the

optical axis.

Te now consider some details relating to the construction of a

holographic correcting element based on the result given by (8). This

analysis provides some useful insights into the performance relationships of

malti-channel Bragg cells. We construct the element by using a line

reference source, as shown in Figure 2, that lies horizontally in the plane

of the Brass cell and is displaced vertically by a distance D. The line

source is produced by a cylindrical lens that collects part of the sane

collimated bean that illuminates the Brass cell. A sphericaj-cylindrical

lenas combination then creates a Fourier transform in the vertical direction

and an image in the horizontal direction. The figure also shows a second

Fourier/imaging lenas combination that will be used later to create a

corrected image of the Bras cell at the output plane. The reference bean

is modulated by a device (not shown) so that it has the same temporal

Pfrequency as the light diffracted by the Brags cell. The total light

distribution in the Fourier plane is then

A(xP) Rej2xD/) + G(zx.). (9)

• 'where R is the amplitude of the reference bean. This light distribution is

square-law recorded on a photographic plate and the developed plate is

replaced in the system. If we select the appropriate diffracted order at

the output plane, the effective holographic transmitttanoe function is

S(x.) - KG (xP)exp[j2nPD/.]. (10)

ba The action of the holographic element is to correct, or conjugate, the

cylindrical phase factor contained in G(xp). We see from (8) that if the

holographic element is constructed at an acoustic wavelengthA 0 P there will

be some residual aberrations as the drive frequency changes to produce a



different acoustic wavelength A. We now examine the nature of this error as

well as the efoects of positioning errors of the hologram.

To simplify the notation, let a x(l-2s)A/X5 and we ignore any

amplitude weighting terms as well as the linear exponential phase factor

that merely causes an overall vertical displacement of the corrected image.

Suppose that the holographic filter was made at an acoustic wavelength Ao -

If the operational wavelength is at some other value, aberrations will arise

whose phase is proportional to exp[jaozx - J(a+a )02X], where a is due to

the value of A- A . We can also determine the effects of displacement of
0

. the filter in the 0 and x directions so that the residual phase error e (x,P)
becomes

*."- (x,P) = afSx - (a+a )(0+ )(x+xo 1 ,  111)
0 0 0

where o and x° are the positional errors. Note that the principal terms in

ap'x cancel so that, if we arrange the terms in descending powers of 0, we

have that

e (x.) = oSa + apax + a oPz
0 0 0 0

+ 2(aao )p Ax + a+ao) oxP (12)

+ (a+a)00x + (a+ao)px.

The first three terms of (12) are residual errors in correct:ing the

_0 cylindrical phase factor and lead to a defocusing of the output; the next

two terms are linear in 0. leading to a slight vertical displacement of the

output; the last two terms are not functions of A but one of them is linear

in x which can produce a horizontal shift in the output. These terms

provide a convenient diagnostic tool for properly aligning the filter.

* -Suppose that after the filter is placed in the system, we illuminate it with

. - the channel driven at the same constructional acoustic wavelength. In this

*case, a - 0 and the residual terms are
- . 0



5-

0

S + Ax+2aPX (13)

+ aSo x + apsoxo.

Since the *ffects of the first term (defocusing) my be difficult to detect,

we first observe the point in the output for which z - 0. The two key tors

remaining are 2aP opx and a 1 
0X . The first of these two terms will cause

the output to shift up or down depending on the signs of Po and xo . Set

x - 0 by noting when the output is symetriLcslly positioned about the imags

of the reference bean; the reaining terms are 2aUoPx and apS 0z. If we now

focus at x - L to get maximum sensitivity, we can set a Pc 0 by again

causing symmetry in the vertical direction about the reference beau.

Since the filter is now properly positioned, all the error terms from

(13) are equal to zero so that we can now examine the effects of a

* wavelength change (a0 # 0). The only reaining tern is then

OU0 (, - exp j aozS], a defocusing tern which shows the degree to which the

acoustic spreading has not been compensated. At z - 0, we see that this

term has no effect on the output, whereas at x - L the phase is bounded by

+aopsL. This suggests that we might be able to balance the aberration so

that it has equal but opposite values at z - 0 and x - L. This can be done

by focusing the reference beam at that plane, axially displaced from the

Bragg cell, where the self-focusing property of the diffracted light causes

" the channels to be fully separated. If we let x, be the corresponding

horiuontal distance at which the two beams are jointly focused, the residual

phase, for o Zo M 0. is given by

e(x.) = - SxZ + aoPSM. (14)

This procedure, in effect, provides a focusing bias term which offsets the

bias in x (i.e., z is bounded by the range 0 to L). To balance the

aberrations at the ends of the cell, we find that x1 = (a /&)L/2, so that

-- *



e(zp) - +oPS(z-L/2) (15)

and the aberrations are properly balanced.

We now consider the optimum value of the acoustic wavelength to be used

in constructing the holographic element. A Bragg cell is generally

specified by its center frequenoe f and a bandwidth Af. If f, - fa - Af/2

sad fs M fa + Af/2, the Bragg cell is operated so that f. j 2fr to prevent

intermodulation products. Since A is inversely proportional to f,

constructing the holographic filter at the center frequency does not equally

divide the wavelength range. Instead, we construct the hologram so that

Ao V(fs+f)/2faf 1  (16)

This wavelength choice shows that the hologram tends to favor correction of

the aberrations at the lower drive frequencies where the acoustic spreading

is greatest.

We now compare the corrected wavefront aberration with the uncorrected

wavefront. Without the holographic element, we have a mazimum phase error

equal to (a +ao )0L, whereas the maximum error with correction is +a 0eL.

The ratio of Isol/(a+a ) is equal to (1-f1/f,)/2; for the worst case of an

octave bandwidth, the ratio is 1/4. Therefore, the inxzmta phase error with

correction is at least four times less than the worst case, (at f!) without

correction. and at least two times better than the best ose (at fs) without

corrotion. If the holographic element is constructed to talaor- the

aberrations along the cell, the corrected wavefront is yet. another factor of

two better than the uncorrected case.

3. R PERDMNTS

T9 constructed a holographic element from one channel of a 32-channel

Bragg cell. This cell has a nominal bandwidth Af - 80 MHz at a center

frequency f. - 135 MHz. The cell is fabricated from telurium dioxide

material having a longitudinal velocity of 4.2 Km/seo. The active length of
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the crystal is L - 6 -m so that the time delay is -i. 5 soc and the time-

bandwidth product is -120. The transducers have heights equal to 100 p and
they are placed on 250 p center spacings. The acoustic wavelength at the

center frequency is 31 p. This Bragg cell was originally designed and

* successfully used as a high-speed, multi-chaane light modulator wherein

only the region near the transducer was used.$ Since this cell produces a

considerable amount of acoustic spreading, it represents a severe test of

the ability of a hol4graphic element to ohannlize the light over a

significant amount of the horizontal aperture.

The light source is a 10 mw He-No laser for which X - 632.8 an. The

holographic elementa were constructed on S0-120 glass plates with a

reference-to-signal beam ratio of unity near 0 - 0. After the plate was

*developed and replaced in the system, we positioned it by using the

procedure outlined above to set P and x0 equal to sero. This was achieved

by driving only the channel used to construct the hologram (see Figure 2),

while observing the corrected Image of the Bragg cell at the output plane.

Figure 3 shows the uncorrected and the corrected output when chan els
are driven at the frequency corresponding to A 0. Figure 3& shows the degree

of acoustic spreading for the uncorrected case. Of the twelve channels

available, we drove the top channel to illustrate how rapidly the acoustic

*energy spreads and the bottom four channels to illustrate how the beams

overlap and add coherently. Wo see that the beams are well separated only

M in the region near the transducer as noted earlier. If we wish to process a

significant amount of time history, we find that the beams begin to overlap

at a position that is only 10% of the available aperture. Figure 3b shows

the corrected output, we see that there is very little evidence of beam

spreading and that the light has been confined to within channel heights as

determined by the transducers. The amount of beam spreading is a function

of the drive frequency; it is greatest at the low frequency band edge (due

to a large A) and least at the high frequency band edge (where A is small).

bFurthermore, as shown by (12), the output is fully corrected only when

a M 0 MzoM 0. if = M 00, the residual aberration is

6(Z,) - +a 0Sz, so that if we drive the Bragg cell at its lowest and highest

frequencies, we can see the effects of the residual aberrations.



Figures 4a and 4b show the corrected output at the low and high drive

frequencies. We see no appreciable change in the spreading due to the

residual aberration as a function of drive frequency except at the lowest

- frequency. This was confirmed visually b7 sweeping the drive oscillator

over the frequency band sad noting very little change in the channel heightN which is nost evident at x - L. The reason can be seen from the following

arguments. The value of * is given by (2) so that at x - L. the acoustic
0bean extends a distance h above and below the center line of the channel:

h - A (1-2s)L/2N (17)

For the parameters of the ToO s Bragg cell (a -0.2), we have that h - 558p

so that the main beau spreads through the adjacent channel and nearly to the

center of the third -channel away. This behavior is consistent with the

results shown in Figure 3a. At the lowest frequency, the spreading at the

end of the cell increases to 792p, whereas at the highest frequency the

spreading decreases to 432p. The holographic element corrects the spreading

completely at the midband frequency; at the high and low frequencies the

spreading is that produced by an equivalent acoustic wavelength

A V[(f2-f,)/2f1Lf5I' When this value of wavelength is used in (17) the

worst ease spreading is reduced to 182p. This degree of spreading extends

approximately to the center line between transducers and is apparent only at

the end of the Bragg cell remote from the transducer. If the correction

Swere made so that the spreading is balanced at both x - 0 and x - L, the

spreading would be further reduced by a factor of two.

4. TIM MODULATION TRANSFU FUNCTION

o see, then, that the holographic element confines the diffracted

light waves to channels as defined by the transducer height. The next issue

is to determine the effect that this correction has on the modulation

transfer function of the Bragg cell. To can estimate the degree of

modulation transfer loss as a function of the propagation distance by

considering the Poynting vector surface as a function of x. The acoustic

energy propagating at an angle w with respect to the x-axis (see Figure 5)

travels at a velocity

.. .- . . .
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Suppose that we were to drive the Bragg cell with an impulse function and

observe the surface defining the acoustic energy at some time t. The

acoustic energy will occupy a finite pulse width, centered on the curved

line shown in Figure 5, consistent with the reciprocal bandwidth of the

Bragg cell. The energy along the axis will have traveled a distance x,=Vt

whereas the energy at an angle 0 will have traveled a distance )The

horizontal projection of this distance is x - V t coso:

x x3  Vt[l - o/211-2s), (19)

pis
and the difference between x. and x. is

I = Vt02/2(1-2s). (20)

If we use (2) in (20), we have

d i Z xA(1-2s)/2H2. (21)

The effect of imaging the Bragg cell in the horizontal direction while

correcting for spreading in the vertical direction is to integrate the

energy function in the vertical direction. We now need to form a basis for

a reasonable estimate for the resulting pulse width.

The 3-dB bandwidth of the cell is Af so that, if there were no acoustic

spreading, the equivalent rectangular pulse widt would be T - 1/Af - d/V.

This result is obtained by representing the MTF by sinc(d (f-f )/V] where f
is the center frequency. The effect of integration in the vertical

direction due to compensating the acoustic spreading is approximately d,/30,

obtained by numerical integration. The equivalent rectangular pulse width

d after correction is then d0 + d1/30

Li d2 v + xA2 (1-2s) (22)
{i~~ AF" - 6'OHz 2



The argument of the sinc-function representing the corrected MWF is then

Z a d,(f-f0 )/ V or

(f-fc) + x/A2(I-2s)N
f -60H

Z  (23)

where N - AfT - T/T is the time bandwidth product of the Bragg cell and
0

z' - x/L is a normalized distance. For z' - 0. there is no loss in 4Th; at

x' 1, there may be some loss in the MTF. For the parameters of the Bragg

cell used in these experiments, the MrF is reduced by 0.8 dB at x'n1 and by

0.4 dB at x'=1/2.

We now calculate the number of channels that can be used, subject to

the restriction that the main lobes of the far-field acoustic waves do not

overlap. If the Bragg cell crystal is square, we have that L - (N -l)kH + H-

N kli, where N is the number of channels and kH is the separation between

transducers. The condition for avoiding overlap is to require that h, as

given by (17), be less than or equal to kl/2 as shown in Figure 5. By

combining these relationships, we have that

N c H/All-2s), (24)

where A, - V/f, is the worst case wavelength. For the corrected case, we

substitute th- equivalent value of the acoustic wavelength which is

A = VAf/2f1 f,, (25)
e

so that

2f1fzH

N c . VAf(1-2s) (26)

The increase in the number of usable channels is then A/ A = 2f"/Af,

provided that Nc is not greater than L/H. Since the minimum value of the

transducer height may be set by other considerations, the value of N as

given by (26) may not be achievable. For the parameters of the Bragg cell we

used, the maximum value of N without correction is about 4; with
C

. . 2'
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correction, N is about 17. To achieve the full utility of the device, it
c

is necessary to correct the spreading so that (15) is satisfied; in that

caseN is equal to 34. Equation (26) then indicates how closely packed the

channels can be without the residual aberrations causing the light to

interact, while (23) indicates the loss in modulation transfer

fuoation.Ezperimental results confirm the analysis that the acoustic

spreading can be successfully corrected without introducing an excessive

loss in the KrF. Te modulated the carrier with a 12.5 MHz square wave and

measured the increase in the equivalent pulse width at the midpoint and at

the two ends of the cell. The results were consistent with those predicted

by the M as given by (23).

S. Summary and Conclusions

We have shown that the effects of acoustic spreading within the Bragg

cell can be compensated in the sense that the diffracted light can be more

nearly contained within channels as defined by the transducers. The results

show that the best performance, both in terms of correcting for the acoustic

spreading and limiting the loss in 1F7. is obtained when we use a Bragg cell

interaction medium that has a large value of a. A value of a approaching

1/2 implies that the acoustic spreading is intrinsically small" such

materials may not, however, have the characteristics required to achieve

large bandwidths, high diffraction efficiencies or low attenuation per unit

g length. For a given interaction medium, the results show that the

performance improves as the fractional bandwidth decreases. The correction

for acoustic spreading can also be improved by a factor off two if the

"* correction is optimized at the midpoint off the cell this optimization does

not, in general, affect the F7.

*i The degree of correction required is application dependent. If each

channel is driven by an independent wideband signal plus noise and we wish

to correlate these signals with a reference signal in a time-integrating

-architecture, a high degree of correction is required. The reason is that

we do not want the information in any one channel to spread into adjacent

channels; there are other applications where the Bragg cell is used as a

two-dimensional light modulator that also require a high degree of

correction. In applications such as processing bistatic or monostatic radar
.4A
'i °1
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returns using a phased array antenna, the data in adjacent channels due to

adjacent antenna elements generally does not change rapidly. Nevertheless,

in high performance radars, where the return pulse must be processed through

correlation, the performance may be improved by optically correcting for the

acoustic spreading.

In both of the general applications cited above, a correlation

operation is performed on the received time signal in a space-plane

implementation. An alternative way to perform correlation is through

frequency plane multiplication techniques wherein we create the two-

dimensional Fourier transform of the multichannel Bragg cell and multiply it

by the Fourier transform of the reference signal. If. for example, the

reference function is time-invariant, the constructed matched filter will

automatically incorporate the holographic correcting element that we have

implemented. In many cases, however, the reference function must be

programmable (i.e., it is time-variant) so that the multiplication technique

is less attractive when applied to multichannel Bragg cells.

The notion of frequency plane processing also suggests applications

such as emitter sorting. In this case, the two dimensional Fourier

transform of the multichannel Bragg cell produces an optical mapping of the

microwave field. The frequency of a particular emitter is displayed along a

frequency axis while the azimuth (or direction of arrival) is displayed

along an azimuth axis. Results obtained without the use of the holographic

correcting element show that the diffraction pattern is not an exactly

orthogonal sine-function; in the vertical direction the sinc-functiom-

follows the locus of a parabola having its foci at the optical axis." If

the holographic correction element is used, the parabola becomes a :itraight

line. Since the azimuth information does not map directly into the

rectangular coordinates of the Fourier plane (i.e., the vertical

displacement is proportional to sin *). some post processing of a

photodetector array output is needed to properly remap the azimuth

information. This remapping could also include any geometric scaling needed

to compensate for the effects of acoustic spreading.

,4



The ase of a holographic corrector plate for the acoustic spreading, as

well as a broader understanding of the basic difffraotion patterns, opens

the way for new application of ultichannel Bragg cells. As the bandwidths

+, of comnication and collection systems increase, the need for such devices

will expand because they help utilize the full parallel processing

- capabilities of optical systems.

a This work was supported by the U.S. Army Research Office.
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FIGURE CAPTION LISTU
FIGURE 1. Model for Acoustic Spreading in a Bragg Cell.

FIGURE 2. Optical System for Constructing the Holographic Element and

Correcting the Acoustic Spreading.

FIGURE 3. Multichannel Bragg Cell Diffraction Beams: (a) Uncorrected

Case Shoving Beam Overlap ; (b) Corrected Beams at Optimum

Acoustic Wavelength (123 Mz).

FIGURE 4. Corrected Beams Showing Energy Confinement: (a) Result for

175 Mz; (b) Result for 95 MHz.

FIGURE 5. Diagram Shoving:. the Surface of Acoustic Energy and the

Transducer Geometry.
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Adaptive optical processor

A. Vander Lugt

The transversal filter is widely used in digital data processing. In this paper, we describe a method for using
optically tapped, Bragg cell delay lines to implement a general adaptive linear prediction algorithm. Flexi-
bility is achieved through changing the electronic signals. The implementation is in the Fourier domain so
that the wide bandwidth of the Bragg cells can be fully used. A high dynamic range can be achieved because
the system is interferometric and linear in light amplitude.

I. Introduction The wide range of applications of adaptive filtering
In this paper we describe an adaptive optical pro- is due partly to the flexibility of the transversal filter

cessing technique wherein the processing operation is that is a basic element of all these schemes. A trans-
performed in the frequency domain. Adaptive filtering versal filter consists of a tapped delay line that contains
as implemented by linear prediction has been applied the discrete time-sampled values of a received signal.
in several areas. A tutorial review of linear prediction The outputs of each tap are weighted as determined by

0 has been given by Makhoul' and a survey of its appli- the processing operation and summed to provide an
cation to communications, including adaptive tech- estimate of the signal. If the weights are selected to
niques, was given by Lucky. 2 The early work by Lucky provide the best estimate of the received signal, the
was on adaptive redundancy removal in data3 and system is called a linear predictor or estimator. If the
adaptive equalization of digital communications sys- estimated signal is subtracted from the received signal
tems 4' 5 to increase the rate of data transmission. and if the residual signal is used to control the tap
Variations of these adaptive schemes, in which the weights, the system is an adaptive linear predictor. We
system is equalized either by transmitting a training set would like to extend these processing algorithms to
or by operating on the data itself (decision directed), handle wide bandwidth signals.
have been reported.6-s Adaptive equalization signifi- An acoustooptic cell has wide bandwidth and behaves
cantly increases the allowable data rate over a filtered as a delay line which can be tapped optically; we de-
channel for a given bit error rate required at the output scribe here an optical processing architecture that can
of a receiver, be used to implement operations similar to those cited.

Adaptive filtering has also been applied to antenna In Sec. II, we briefly review the basic theory of adaptive
sidelobe weighting by Widrow et al.9 and others.' 0 "' linear prediction and derive the equivalent frequency
Widrow et a112 have also described adaptive noise- plane operator. We then describe the adaptive optical
cancellation techniques such as notch filtering for in- processing technique and relate its operation to those
terference rejection, adaptive self-tuning for spectral that have been implemented digitally. An important
line enhancement, and spectral analysis. Griffiths, in observation is that the optical system can operate with

, particular, has addressed the problem of estimating the either analog (continuous-time) or sampled (discrete-
instantaneous frequency contained in digital signals.' 3  time) signals with no change in the basic components
The same basic algorithms are finding widespread ap- in the system.
plication in speech processingt 4- 16 and in combating
intersymbol interference.4-8 .17  II. daptive Linear Prediction

We now describe the basic function of an adaptive
linear predictor. A general version of the predictor for
discrete-time signals is shown in Fig. 1. Let s(t) be the

__"_-_received signal that has been smnpled at the proper rate.

The author is with Harris Corporation. Government Systems The delayed samples are multiplied by the weights c,,
Group. Advanced Technology Department. P.O. Box 37. Melbourne, j = I to N, to produce an estimate 9(t):
Florida 32901. N

Received 22 June 1982. 1 (t) =- E sit -jD), Il)
' )0-.3935, 82/224005-i)75O0. I /f =

C 1982 Optical Society (if America. where D is the time delay of each element of the tapped

iA
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Fig. 1. Block diagram of adaptive linear predictor
, , using discrete tapped delay lines.

delay line, and N is the number of delays. The opti- implementation was in the time domain using a com-
mum weights must be determined based on our criterion bination of an electrooptic light modulator and an ac-

.-. for how well the Pstimat-Ad signal S(t) represents s(t). oustooptic Bragg cell in a time-integrating architecture
A commonly used criteriw,. is to minimize the squared to form the product given in Eq. (5). The integration
error of the residual signal at) i= s (t) - . (t). and the storage of the tap weights was performed by a

Let E be the total energy of the residual signal: liquid crystal spatial modulator; the spatial positions

N 2 in the light modulator correspond to the time delays. A
E - F_(t) - E cjs(t - D), (2) second Bragg cell was then used to perform the opera-M j- tion given by Eq. (1) and a photodetector provided the

where the energy is summed over M samples. We signal 9(t). This implementation has some disadvan-
minimize E with respect to a specific tap weight ci tages in that the full bandwidth of the Bragg cells is not

Sthrough the derivative used and the spatial modulator has limited dynamic

E [ N range. The implementation can also be performed in
-2 Es(t) - E cjs(t -jD) s(t - iD). (3) the frequency domain to more fully utilize the available= bandwidth. The main purpose of this paper is to de-

If we set the derivative equal to zero, we find that the velop such a technique; its advantages will become ap-
optimum fixed tap weights are given by the solutions parent later.to the N equations To cast the problem into frequency domain notation,

N we must first describe the adaptive linear predictor in
cRf(i -j)DJ = R(iD), i-1 =to N, (4) terms of continuous-time variables. In the optical

implementation, the delay line taps are not discrete,
in which R(.) can be thought of as the covariance matrix although the number of independent tap weights is
if the sum is over a set of sample values, or as the cor- determined by the time-bandwidth product of the
relation function if the sum is over time. Bragg cells. We begin by calculating the value of the

In some applications, the characteristics of s (t) are tap weights. Let the jth weight at time t be the sum of
such that we can improve the performance of the system its value at the previous update time t - r, and the
by adapting the weights in time. If the rate of change value of the error derivative:
is slow (i.e., the process is quasi-stationary), we can use
the method of steepest descent 3 9 to determine the di- cj(t) - cjit - ri) - G ft zfu)s(u - jD)du. (6)
rection in which we need to adjust the weights. From -T

Eq. (3) we see that the value of the derivative can also where T1 is the integration time of the accumulator
be computed as whose output provides the updated weight value.

BE When thwsystem reaches steady state, we find that c, (t)
=-2T(t0s(t-jD), j ltoN. (5) =cj(t - r1),sothatthe value of the integral in Eq. (6)

-", must be zero. Since the integral is the cross-correlation
We can calculate these derivatives if we multiply the of the received signal and the residual signal, we have
residual signal by the delayed values of rhe received the physical insight that the system adapts its weights
signal and use this signal to update the tap weights. until the residual contains no components that are
This process is shown in Fig. 1, wherein the predicted correlated with the input; this is sometimes called the
signal .(t) is subtracted from s(t), the residual z (t) is correlation cancellation loop method for implementing
multiplied by a loop gain G, and the residual signal is adaptive filtering.t4 This method for calculating the
then multiplied by the delayed received signal at the adaptive weights can be done in real time and saves the
output of each tap to provide the derivative for adjust- computational complexity of inverting the matrix for-
ing the tap weight as given by Eq. (51. mulation given by Eq. 4).

Rhodes' 8 described an optical implementation of the The passage to a continuous-time representation is
adaptive linear prediction filter shown in Fig. 1. The fairly straightforward. We represent the delaved signal

4006 APPLED OPTICS / Vol. 21, No. 22 / 15 November 1982
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as s (t - T); it is multiplied by c (T) and integrated over by virtue of Eq. (11). If the statistics of s(t) are slowly
j .the total time delay T of the delay line to give varying relative to the total delay time represented by

r the taps, we have Sr(-,t + q) a S7 (-t,t). Further-
At) = c(r)s(t - r)dr. more, we note from Eq. (11) that ST(-,t) = S ( ,t) if

the received signal is real. We can now combine Eq.
The value of the continuous-weight function c(r) can (15) with Eq. (14) to get
be found by repeated application of Eq (6) or directly
by noting thatW)-Gff'Z,-t1rw 2epjt

) G f-Ti zu)s(u - r)du. (8) X If e -w)ldq ddw. (16)
If the accumulator time window T, is sufficiently long

relative to the variations in the statistics of the input The integral on q is bounded by the range 0 _5 q < TI;
signal, the weights are not a function of the present time we see that this integral has the form sinc[(Q - w)T 1/2].
t. During the adaptation period, or during periods We note, however, that the definition of FT(w,t) is such

* when the signal statistics change significantly, the that it already contains the effects of convolution with
weights are functions of both t and T. We retain the a sinc function due to a time truncation. If T, 2- T, the
implicit relationship of c(T) to time t as in Eq. (8) to aid additional convolution in Eq. (16) will not affect the
in deriving the Fourier domain solution. We now results and we can complete the integrations to get the
substitute Eq. (8) into Eq. (7) to get final result:

;M t G - u - r)s(t - )dudr. (9) W) - G E. ZTj(W,01ST(Wst)12 
ep(jwtdw. (17)

After some changes of variables, we can express Eq. If the received signal is bandlimited to a bandwidth W,
(9) as the limits in Eq. (17) are finite and restricted to the

. .- 0 frequency range of the signal.
S(t) -G y_ f-T(t +q),(t +q+ r)s(t + r)aqdr. (10) Equation (17) is the frequencydomain representation

To asst in sof the estimated signal 9(t). We carried out the deri-To assist in solving Eq. (10), we need a definition for the vation in some detail, because treating the limits of in-
instantaneous Fourier transform of a truncated con- tegration required considerable care throughout.
tinuous-time signal. We define Furthermore, the derivation gives some insight into how

the result given by Eq. (17) can be implemented by the
FT(wt) . f.u) exp(-ju)du, ( use of Bragg cells.

or, in an equivalent and sometimes useful form, we III Adapive Optical Procesor
have

ju + T/2If a Bragg cell is positioned so that its transducer ist' u + T/2\

exp(jw0rFT(w,t) = rect f(t + u) exp(-jwu)du. located on the optical axis, we can represent a signal
traveling in the negative direction as f(t + x/v), where

We(12) v is the acoustic velocity, and x is the spatial coordinate.
Equation (10) suggests that we need to convolve threeWe use the rectangular function and the inversion of Eq. su tion wose vae are o in thesuch functions whose values are shown in Fig. 2. The

(12) in Eq. (10) to get that function z(t + q) can be produced by a Bragg cell whose

i(t) G CCdqdr [CZr,(w,t) expjw(t + q)ld] transducer is located at the q = 0 axis, with the wave
f _- f~ propagating in the negative q direction. The function

[ L 1 s(t + r) can be produced by a Bragg cell whose trans-
X s(t + q + r) "STJ,tJ expUIj(t + r)ldk1  (13) ducer is located at the r = 0 axis, with the wave propa-

or that• gating in the negative T direction. The function s(t +
. q + T) must be multiplied by the other two functions.

i(t)- G f f Zrw.t)SrQ(,t) exp(,(w + )tl We see that if a third Bragg cell has its transducer to-
cated on the q = -r axis, with the wave propagating in

s(t + q + r) explj(wq + tr)ldqdrdtdw. (14) the negative q + r direction, we have formed the ap-
, f-- propriate products. The limits of integration are also

We now perform the integration on r, using a change of shown in Fig. 2.
variables in which t + q + r = u. Further, although the We now show how to implement these functions op-
range of integration on r appears to be infinite, the tically by first generating the product equivalent to z(t
rectangular functions must be used again to limit the + q)s (t + T). Consider the optical configuration shown
range on u to the interval t + q - T to t + q. The in- in Fig. 3. This subsystem contains two orthogonally
tegral on u now becomes oriented Bragg cells in which the information contained

in the first Bragg cell is multiplied by the informationS'.". " expij~u)du exp(-jv(t + q)1 contained in the second. These two Bragg cells are then•.q- r imaged onto a common plane P1 , although in practice
=Sr-,t + q) exp[-]j(t + q)j (15) it is sufficient that the optical system perform the ap-
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IN a 2(Y,t) - jMIM2 x/ aPa, L z(t + y/v) expbw,(t + y101,j (19)
4 Iwhere M 2 , the modulation index of the second Bragg

1, + ,cell, is generally different from n 1, and 0i is the average

Fig. 2. Convolution of three signals necessary to produce estimate signal power in the time interval T.
of received signal. We now arrange to take the 2-D Fourier transform of

a (x,t)a2(y,t) as shown in Fig. 4:

u IELL. 0 0
A(pqt) = J J-f L a1(xt)a2 (y,t) expl-j(px + qy)]dxdv. (20)

LWe want to show that A(p,q,t) is equivalent to the
1111 Cu Fourier transform of the cross-correlation of z(t) and

s(t). As shown by Eq. (20), the integral is separable in
2 -'x and y. We need to couple the time-delay arguments

of al(x,t) and a2(y,t) so that the cross-correlation is
displayed as a function of space instead of time. One
way to do this is to rotate the coordinate axes in plane
P 3 followed by a 1-D Fourier transform.,9 An alter-
native method is to perform the 2-D Fourier transform
and to evaluate it along the line p = q. This is equiva-
lent to a rotation of the axes in the Fourier plane and

Fig. 3. Optical implementation to produce a spatial cros-orrelation using a narrow slit oriented along the q' = 0 axis, where
function. p' and q' are the new coordinates. We then have p =

q = p'/VI, which we use in Eq. (20) along with the as-
propriate Fourier transform of the product ofthesignals sociations that r., = x/v, r, = y/v, and w = vp'/v2.
contained in the Bragg cells. Each Bragg cell has a time Equation (20) can now be written as
delay T and a length L = uT. The bandwidth of the
Bragg cells is W, so that the number of independent A(w.t) = v2 At f I _C sit + tr)z(t + 7-Y) expjUit + r,.]
time delays is N = 2TW. Both Bragg cells are posi-
tioned so that their transducers are located on the op- X expLuteit - r,)) exp[-jw(7, + r)o rdTr_ (21)

tical axis; this is done partly because it simplifies the
mathematics and partly because it leads to some in- where A fi -mrnt 2 a/ L. We solve the interal
teresting physical interpretations of the results. on r: first. We have

The first Bragg cell in plane P1 is driven by the re- AI(w.t) - 0s(t + r,) exoUIt + T, exp(-jW,)dT.
ceived signal s(t), which has been translated to a suit- J
able center frequency w,. The undiffracted light is Let t + r = u, so that
removed, and the Bragg cell is imaged onto plane P3 so
that the light distribution is uniform in the y direction. Ai(w,t) = s(u) expiJu) exp[-jw(u - t)ldu. (22)
In the x direction we have Jt-r

Given the definition of the instantaneous Fourier
ai(x,t) - jmiv/a7s(t + z/v) expU(A(t + x/v)j, (18) transform of a time function as in Eq. (11), we recognize

where m, is the modulation index of the first Bragg cell, that Eq. (22) can be expressed as
P is the laser power, and a is that fraction of the laser
power that reaches plane P 1. This function is now A 1(w.t) - ST(w - wt) expor)t). 123)

, multiplied by the transmittance of the second Bragg In a similar fashion, we evaluate the integral on r,
cell, which is and combine all factors to get
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Fig. 5. Second leg of interferometric system.

A(w.t) = v 2AiSr(w - wLt)Zr(w - w,,t) exptj2wt). (24) Suppose that we now place a single photodetector at
plane P4 along the line p = q, located so that its center

This result shows that the complex valued light am-
plitude along the line p = q in plane P4 is the product is at w, and its physical extent corresponds to the range

of the Fourier transforms of s(t) and z(t). By the use Iw - w, - W/2. The photodetector current will be

of the convolution theorem, A (w,t) is also the Fourier proportional to the intensity at plane P4:
transform of the cross-correlation of s(t) and u(t) as (+ W, I, 2/2desired. i(t) =f C ,W/ (,O, dw, (28)

, We now want to multiply A (w,t) by a third function where C is a constant that includes the photodetector
associated with s (t + q + r) and integrate the product sensitivity S, expressed in amps/watt as well as the
over the frequency plane. This can be achieved inter- conversion factors necessary to cause Eq. (28) to be di-
ferometrically by using a third Bragg cell in a separate mensionally correct. We have
path of the interferometer. Consider the optical system
shown in Fig. 5, which shows the second part of the in- !(w,t) = I.A(W,t) + B(W.t(12

terferometer. Since the important part of A(p,q,t) lies - IA(Wt)12 + IB(w.t)12 + 2RelA kt)B*iwt). (29)
along the line p = q and is centered at p' = 1/2w/v, we
orient the third Bragg cell at a 450 angle to the x - y The photodetector current can, therefore, be separated
coordinate system of plane P5. To preserve the fre- into three terms as given by Eqs. (28) and (29). From
quency scaling, the Fourier transform lens L 4 must have Eqs. (24) and (27), we note that the first two terms are
a focal length a factor of -/2 longer than that of L3. In not functions of time; they therefore contribute only to
this path, we use a cylindrical lens to image the line il- a bias current. This statement is not strictly true, be-
lumination of the Bragg cell at plane P4 to conserve the cause ST(W,t) and Zr(w,t) are functions of time through
optical power. the definition of the instantaneous Fourier transform.

The transducer of the Bragg cell is located at the These functions are slowly varying, however, relative
optical axis and is driven by s(t). If (1 - a)P is the to the variations in the third term and can be removed
fraction of the laser power available at plane P5 , the by a bandpass filter after detection.
effective amplitude of the signal at plane P5 is The main term of interest is the third term of Eq. (29)

_______ which, when substituted into Eq. (28) with the results
b(x'.tIjm3 v (1 - P/L s~t +x/v) explc(t + x'/v)], (25) of Eqs. (24) and (27), leads to

where x' is the zoordinate axis in plane P5 that contains i3(t) .,2
3

WBC |+w/2
the Bragg cell. The 1-D Fourier transform is now ,,1-w/1

J +X exp(jwt)dw. (30):: [ ' B(w,t) - vBj j~(t + r ) expUwc¢(t + r,)l exp(-jwr,)dT,.

B'- r By a change of variables, we can write Eq. (30) as
(26) W 2

__.____• _6(t ) - 2V2AiBtC expow~t) ZT,(.,.t)iSr(w.t )1
where B, = jm 3  /(l - a)P/L, Tx = x'/v and w f W/
vp'/v/2. By following the same procedure as before, we x exp(jwt )dw. 31)
find that

We see that the integral in Eq. 131) is exactly the one we
B =w.t) B S-(w - wtIexpijwtP. (27 wanted to evaluate [compare Eq. 17)1]. The output

15 November 1982 Vol. 21. No. 22 APPLIED OPTICS 4009
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Fig. 6. Arrangement of Bragg cell to generate delayed estimate.

occupies bandwidth W and is centered at w. By general, then, one Bragg cell may be more nearly cen-
comparison, the first two terms of Eq. (28) have a tered on the optical axis; the mathematical analysis is
bandwidth of <IT centered at w = 0. The third term thereby basically unaltered except for a residual time-
can, therefore, be easily separated from the low-fre- delay factor in the output.
quency terms. It turns out that BIw,t) is in phase The frequency plane notation also provides a more
quadrature with A(wj,t) as can be seen by considering direct insight to certain filtering operations. Let us
the values of A1 and Bj. The correct phase relationship consider, as an example, a filtering application in which
can be obtained by introducing a r/2 phase shift in the we want to remove the effects of a strong narrowband
carrier used to drive the third Bragg cell or by optically signal that interferes with the information signal. From
phase shifting the two beams in the interferometer. Fig. 1 we see that

The optical architecture described so far is charac- (34)
teristic of one in which we form an estimate § (t) at the zt) sit) -

present time t from some past history of s(t). We may so that, in the sense of the definition of the instanta-
also wish to introduce an additional time delay a to neous Fourier transform, we also have
arrive at an estimate 9 (t - a) or to predict the received Zt(w - . T(W) 135)
signal at some time t + a.20 Suppose that we geomet-
rically move the third Bragg cell by an amount x = va From Eq. (17) we use the result that S T(w) f GZr w)-
as shown in Fig. 6. The signal within the cell is now s (t I ST(W)1 2 , so that
- a + rx) exp[jw(t - a + r)], and if we perform the
Fourier transform as before, we arrive at the result ZT(W) + GISr(W)1 2  (36)

B(=,t) - vBiS(w - w,,t) expliw(t - a)], (32) It is tempting to define the transfer function for the

which, in turn, leads to system as H(w) = ZT(W)/ST(w). In general, this is not
W/2 a valid procedure because the system behaves in a

i3 (t) - 2V3AiBtCexpc(t - al f W/2ZTI(t)ST(Wt)12 nonlinear fashion during adaptation. Suppose, how-
ever, that the system has reached its steady-state con-

X expljw(t - a)ldw. (33) dition and that the input signal statistics are not

The output of the photodetector then becomes the es- changing. Then we can say that
timate (t - a). If the Bragg cell is moved in the op- I
posite direction, the sign of a is revered and we have H(w) (37)
the prediction i(t + a). The interesting interpretation Sr( ) 1 + GlSr(,wO12

of this result is that the system processes the received We see that the overall transfer function is unity where
signal in such a way that the estimate (or prediction) the value of GIST(w)1 2 is small. The presence of strong
occurs at the time value corre~ponding to the physical signal components around, say, w0 produces an inverse
position x - 0. Thus, if the Bragg cell is moved so that filter H(w) /G IST(o)1 2, which supprebses the en-
the signal s(t - a) occurs at x = 0 (or -ri, - 0), the solu- ergy near wo. In a general sense, we see that the
tion is one of estimation. If the Bragg cell is moved so equivalent filter adapts to whiten the input signal
that the entire cell is located in the negative x plane, spectrum.
there is no received signal at x = 0, and the system The adaptation time is dependent on the specific
predicts a signal .(t + a) located at x := 0. application, although it appears that most systems cited

In many apnlications it is implicitly aisurned that the in the literature adapt within a time interval corre-
estimate is at .tome fairly large value of a relative to T. sponding to 500-2000 data samples. The adaptation
For example, in the transversal filtering literature, the time is determined, in part, by the required values of T
center tap is often set at the time delay T/2. Some and TI; these values also influence noise in the tap
physical phenomena such as channel distortion or in- weights and, therefore, the accuracy at convergence.
tersymbol interference have an asymmetrical response, The gain factor G also affects both the rate of adapta-
so that better results can be achieved by selecting the tion and the accuracy. Finally, the dynamic range of
tap position to weight the tails of the response. In the photodetector determines the minimum increment

4010 APPLIED OPTICS Vol. 21, No. 22 / 15 November 1S '?
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In my paper on adaptive optical processing.' I was not
consistent in drawing the axes for the figures to accurately
represent the mathematical functions. If we replace the
variable r by -r and change the limits of integration in Eq.
.10). the net effect is to reverse the orientation of the hori-
zontal Bragg cell in Fig. :3. The final results are not affected
by this change.

Also, in evaluating Eq. (14), it is better to integrate s(t + q
- r) over q and r simultaneously instead of sequentially.
This procedure produces the same results without the some-
times restrictive assumption that ST -,t + q) ST(-%r,t ).

Reference
1. A. VanderLugt. Appl. Opt. 21, 4005 1982),
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ABSTRACT

A frequency domain implementation of an optical transversal processor

has been described previously. Since this system uses Bragg cells both as

the delay line and as the accumulators which provide the tap weights, a key

question is what effect the finite integration times have on the performance

of the system. Computer programs were written to simulate an adaptive notch

filtering application; the measure of performance is the correlation

coefficient for the residual signal and the desired received signal. The

correlation coefficient was increased significantly by tapering the

accumulators so that the readaptation phenomena caused by large values

pleaving the accumulator are minimized. Several examples of the performance

are given as a function off the number of taps, the length and degree of

taper of the accumulator, the feedback gain and the number of iterations.

The results show that a finite accumulator is not a serious drawback,

particularly for those applications where the system must operate in a
rapidly changing environment. The performance of the system then approaches

that of one having an infinite accumulator with the gain adjusted to give

equivalent tracking performance.
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OPTICAL TRANSVERSAL PROCESSOR

FOR NOTCH FILTERING

1. INTRODUCTION

Adaptive filtering, using transversal tapped delay lines with

* feedback, has been applied to problems such as redundancy removal in data,

* -" reducing intersymbol interference through equalization, noise cancellation,

% self-tuning and speech processing. 1- 8 The data rate or the signal bandwidth

is limited by the processing speeds of digital circuits; we wish to

investigate the use of optical processing to extend the bandwidths of

signals that can be processed.

An acousto-optic cell has a wide bandwidth and behaves as a delay line

that can be tapped optically. Rhodes 9- 10 described an optical

implementation of an adaptive linear prediction filter in the time-domain,

using a combination of an electro-optic light modulator and an acousto-optic

cell in a time-integrating architecture. VanderLugt 11 - 12 described an

- implementation in the frequency-domain, using three Bragg cells in a space-

. integrating, interferometric architecture. The main purpose of this paper

is to give the results of some computer simulations designed to study the

effects of using an accumulator whose integration time is finite.

2. BACKGROUND

A general form of an adaptive linear predictor is shown in Figare 1.

Let s(t) be a sampled signal that drives a delay line. The delayed samples

are multiplied :, the weights c. to form an estimate s(t) of the rect :ed

signal. The optimum weights are determir:cd by minimizing the mean square

error in the residual signal z(t) which leads to the relationship that



t

c(t) = G z(u)s(u-T)du, (1)

t-T 1

where G is the gain in the feedback loop, T. is the integration time of the

accumulator and r represents the continuous-time equivalent of the discrete

delay. If we let T be the minimum discernible time delay in a Bragg cell,
0

then NT is the total delay time T of the cell. The estimate of the
0

received signal is

T

S(t) = c(T)s(t-T)dT.(-" (2)

" so that, by substituting (2) into (1), we have

t T

=(t. =G (u)s(u-T)s(t-T)dudT. (3)

t-T1 o

By a change of variables we can rewrite (3) as

"(t) = f j z(t+q))s(t+q-7) s(t-T)dqd (4)

o T

'- 11
which, in turn, can be used to get the frequency domain representation

30

G ' ZT( ,t) S (,t) e dw, (5)

where ST(wt) and ZT(wt) are the instantaneous Fourier transforms of the

most recent T seconds of the received signal and the residual signal.



There are several ways to configure an optical system, using three

Bragg cells, to implement (4) or (5); one of these is given in Figure 2.

The functions z(t) and s(t) drive two Bragg cells in the directions shown.

These two Bragg cells are mutually imaged onto plane P,' with the diffracted

light from the first Bragg cell passing through the second Bragg cell.

At plane P3 we have the light distribution necessary to provide the tap

. ,weights. This can be more clearly seen from Figure 3a in which the tap

weight plane has been rotated by 45 degrees for convenience. The numbers in

each delay cell represent the successive time indices for the two functions.

If we integrate the light in the vertical direction, as shown by the dotted

lines, we obtain the function c(T). This function is then convolved with

the received signal s(t) which drives a third Bragg cell as we shall show

shortly.

The number of tap weights available is equal to twice the time-

bandwidth product of the Bragg cell (Figure 3a shows only a small number of

taps). From the figure we see that the central tap weight is the sum of N

products whereas the end tap weights contain only one product. The end tap

weights are therefore likely to be noisy and reduce the performance of the

system. The number of taps required depends on the application. To reduce

intersymbol interference, the number of taps required is determined by the

extent of the channel impulse response which may be of the order oO 10-20

symbol periods. For adaptive notch filtering, the number of taps required

is determined by the number of frequencies that need to be removed

simultaneously; we require at least two taps per frequency. For the notch

filtering simulations reported here, approximately 50 taps were used for

most of the tests.

-.. - C --.---



If the time-bandwidth product of the Bragg cells is of the order of

1000-2000, the use of only 50 taps means that the triangular weighting of

c(-) is less significant, and we can truncate the region of integration to

the rectangular window as shown in Figure 3b. Each of the 50 taps will then

contain approximately 2000-4000 samples which represent the finite length of

the accumulators in each of the correlation cancellation loops.

Figure 4 shows that part of the optical system which simultaneously

integrates the light in the vertical direction and creates the Fourier

transform of the tap weights in the horizontal direction. Along the

horizontal axis the light distribution is proportional to ZT(wt)ST(wt).

The third Bragg cell (not shown here), is arranged so that ST(wt) is added

to A(w,t) in an interferometer. The sum is then square law detected to

provide the integrand of (5), and the output of a single element

photodetector provides the estimate s(t).

The advantage of implementing the adaptive transversal processor in

the Fourier domain are that the system is linear in amplitude so that no

bias terms are needed. As a result, both positive and negative tap weights

are generated, and the dynamic range i.s high. The full bandwidth of the

Bragg cells can also be used. A potential disadvantage is the finite

accumulators that may reduce the performance of the system. Our major

*- interest is, therefore, tc simulate the operation of the system under the

constraint of using finite accumulators.

3. THE SIMULATIONS

We wrote a computer program to calculate the performance of the

adaptive system. The application we chose to study is that of notch

*, filtering in which the received signal consists of a wideband signal g(t)

* and one or more cosine jammers.



Oki

NM

s(t) (t) t) A .A.cosw t. (6)

The wideband signal is either a very long pseudo noise sequence or a

Gaussian random signal; each signal has zero mean and unity variance a .
M 

1

* The variance of the cosine jammer is a = A/2. The input signal-to-mC

j=1 
J

jammer ratio is then SNR. = 10 log(a 2/ 1) =-10 log(O ).
1g c C

Figure 5 shows the spectrum IS() of the input signal when

SNR. = -18.5 dB for a system having 50 taps and a fairly short 500 sample

* accumulator. The spectrum was obtained by letting the system iterate for

. i2000 input data samples and then calculating a 1024 point discrete Fourier

transform of the most recent data samples. The magnitude squared of the

system transfer function IH(w)I is also shown; it is a notch that has

formed adaptively to cancel the cosine jammer at a frequency wo . If we let

I T0 be the time delay between taps, the frequency of the jammer shown is

WO M "' = 0 . The spectrum IZ(w)I2 of the residual signal is also shown,

multiplied by a factor of 0.05 for clarity. We see that the input and

output spectra are similar except in the region w ° where we see some

evidence of the cosine jammer in the residual signal.

The presence of some jammer energy in the residual points out a

fundamental difference between the frequency plane implementation of

adaptive processing and a digital system where the accumulator can be made

• .. arbitrarily long. In a digital system, the tap weights converge, after some

number of iterations, to stable values so that extremely deep nulls can be

- "formed. In the initial stages of adaptation, the tap weights change toward

LtJ
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their final values at a rate determined primarily by the feeduack gain and

the jammer amplitude. In the latter stages of adaptation, the new

contributions to the tap weights are small in magnitude and tend to alternte

in sign. After convergence, we find that s(t) is a good estimate of the

amplitude and phase of the cosine jammer so that the null is very deep; the

* null remains deep until there is some change in the statistics of the

received signal.

In the optical implementation, the tap weights rapidly assume values

close to their final values and an increasingly deeper notch is formed at

"- the jammer frequency. After the number of iterations corresponding to the

accumulator length, however, the earliest values in the accumulator (which

are large because they contribute most to initial adaptation) begin to leave

the accumulator. The cosine component in the residual then increases

momentarily because i(t) is not as good an estimate of the jammer signal.

The system then goes into a "readaptation" phase where the new contributions

to the tap weights must offset the older cont.'ibutions that are leaving the

accumulator. This process repeats every MT seconds, where M is the number

of samples in the accumulator, but with successively less impact on the

%residual signal. After enough iterations, the sy:;tem converges to a steady

state where the jammer signal level in the residual is just enough to

maintain the tap weights at a (nearly) fixed value over time.

The adaptation and readptation can be seen from Figure 6, in which the

*upper trace is that of z(t) for the first 2000 data samples. We note that

adaptation is relatively rapid; after about 50 data samples the residual

signal is primarily composed of the wideband signal g(t). At the end of the

500 th data sample, the earliest tap weights are leaving the accumulator and

* the system "readapts" to the new conditions. Similar readaptations occur at



multiples of 500 data samples and the system performance is not optimum. In

an effort to reduce the effects of readaptation, we used a taper on the

accumulator so that the values in the accumulator are attenuated

exponentially as they flow through. When we used an exponential taper for

which the oldest accumulator values are reduced by a factor of one-half

relative to their initial values, the residual signal took on the values

shown in the lower trace. There is now little evidence of readaptation

except for a very slight perturbation after 500 data samples. Note that in

both cases z(t) has a zero mean; we have added and subtracted a value of 20

to separate the two traces.

The basic cause of the readaptation is shown in Figure 7, in which the

upper trace represents the values within the accumulator associated with the

first tap during the first 500 iterations, using no taper. As described

before, the eazliest contribution to the tap weights are large (those values

from 450 to 500) which drive the first tap weight to nearly its final value.

Subsequent contributions are small and oscillate about zero (a value of

g0.025 was added to the value to separate the two traces). The lower trace

shows the results when an exponential taper whose final value is 0.5 is

used. The initial contributions to the accumulator are large when they

enter the accumulator, leading to rapid adaptation. After they have

propagated to the end of the accumulator, their values have been reduced by

0.5 so that when they leave, their impact on s(t) is not so severe. There

is, therefore, less evidence of readaptation when the taper is used.

An exponential taper can be implemented optically by placing a mask at

the plane where z(t) and s(t) are mutually imaged. The transmittance of the

Li mask would be unity for small signal delays and decay exponentially to a

final vaue of 50% transmittance at the end of the accumulators. In the

, . .



* discussion to follow, D represents the final value for the exponential

taper. Other tapering functions such as a Gaussian weighting may be equally

* effective, or it may be possible to implement the taper through variable

* illumination of the Bragg cells so that a separate mask may be necessary.

One question relates to whether D = 0.5 is optimum. Other questions

* relate to the optimum gain as a function of D, the impact that the number of

* taps or the length of the accumulator have on the performance of the system.

the depth of the notch and the output signal-to-noise ratio. To perform

,. these tradeoffs we need a measure of performance. One measure is the degree

. of distortion between z(t) and g(t). Since the applications of adaptive

notch filtering often require a subsequent correlation between z(t) and g(t)

*over some long time interval, a second measure is the correlation

coefficient for the signals z(t) and g(t). As we now show, these two

measures are related.

Consider the function

y(t) = z(t) - g(t) (7)

having mean squared error

= E((z - g)11 (8)

This function can be expanded to give

ay2 = 2 - 2Pzg+ agA



where Xg is the covariance of z(t) and g(t). We can normalize the

covariance to get the correlation coefficient:

2 2 2
.= z + g - y (0)zg 2a a

If the residual signal is identical to g(t), the distortion is zero and the

correlation coefficient is one. We shall use the correlation coefficient p

as our measure of system performance.

The next result shows the sensitivity of the performance to the

exponential taper parameter D. Figure 8 shows the correlation coefficient

plotted as a function of D for several values of the accumulator length M

(expressed as the number of samples stored in the accumulator). The number

of taps in this example is 50, and we calculated p from (10) over the last

1024 points, having let the system operate for 2000 iterations. We note

that the performance improves, as expected, as M increases and that the

performance is not a sensitive function of D except for D > 0.8 or D ( 0.1.

* If D > 0.8, we have the readaptation phenomena described before. For

D ( 0.1, the exponential taper reduces the effective length of the

accumulator so that a longer accumulator with a htgh degree of taper may

yield a performance inferior to that of a shorter accumulator with less

taper. In all cases shown, the optimum value of D is about 0.5 and this

value has been used in most of the subsequent tests. It should be noted

that, for these preliminary tests, both the accumultor length and the number

of iterations are fairly small to conserve computer run time. The

performance of the system improves as these two parameters increase as we

shall show later; these truncated tests are designed to show the trends in

performance.

.



Figure 9 shows the value of the correlation coefficient as a function

of gain with the number of taps as a parameter. In this example, the

accumulator length was set at M = 500, D = 0.5 and the number of iterations

was 2000. We would expect that the gain should be inversely proportional to

the number of taps because the tap weights, for an ideal system, should be

c(r) = (2/T) cos w 0 . The data from Figure 9 supports this result. The

performance improves as the number of taps increases, but it sho"ld be noted

that my simulations do not account for the triangular area of integration

naturally imposed by the Bragg cells as shown in Figure 3a. In any event,

the correlation loss for the case of N - 50 versus that of N = 200 is

-0.59 dB versus -0.5 dB which is not a significant change. If the number of

taps is at least 50, then, the system performance is quite good for notch

filtering.

The depth of the notch cannot be accurately read from the graphs such

as that given in Figure 5, partly because the period of the jammer is not a

divisor of 1024 which is the sample index for the discrete Fourier transform

used to calculate the steady state transfer function. The notch depth can

be obtained by freezing the tap weights after adaptation and letting only

the jammer signal continue. The notch depth is the ratio of the variance a2
z

of the residual, which is an attenuated replica of the jammer, to the

variance a 2 of the input jammer. For the example given in Figure 5, the€

notch depth by this method of calculation is -31.5 dB. In a similar

fashion, the output signal-to-noise rati can be estimated by the ratio of

as to a2 after the weights are frozen. Table 1 gives the notch depth
g z

and output signal-to-noise ratio for a single jammer, with N = 48.

I 1 . . . . . .. .



TABLE 1. Performance Parameters

SNR. @F 2 SNR
1 9 0 Notch Depth

-19.9 dB 0.025 1 16.0 dB -35.9 dB

-13.9 dB 0.003 1 25.6 dB -39.5 dB

-7.9 dB 0.007 1 21.3 dB -29.2 dB

-1.9 dB 0.008 1 20.8 dB -22.7 dB



N 4000, and D - 0.5. The gain was adjusted to produce the maximum

correlation coefficient at the point where the tap weights were frozen for

the strongest jammer. Since the tap weights were frozen after only 8000

iterations, the system has not yet reached its optimum steady state

performance and the values given in Table 1 are understated somewhat. Since

% the residual must always contain a portion of the jammer energy, we see that

the notch depth is a function of the input jammer power. As the input

jammer level decreases, the notch depth decreases to allow the feedback loop

to maintain the proper set of tap weights.

The results of the simulations can be compared with those obtained by

digital systems having infinite accumulators. The most obvious difference

is in the depth of the notch. Since the residual must contain some

component of the jammer signal, the notch depth cannot exceed a given value.

In passing, it is worth noting that if a separate noise signal were

available, as in some of the appliations noted by Widrow, et al', this

*. restriction is removed and deeper notches could be obtained. Let us assume,

then, that the component of the jammer in the residual is of the form

B cos[w t + t] when the jammer is of the form A cos wet. If the jammer and
00

wideband signal g(t) are uncorrelated, the steady state transfer function

for w near w can be approximated by H(w), where

= 1-2R cos ( (w-W ) NT 1 + 4/N)/21 sinc ( -. )NT /2)H 0 0a4

+ R'Sinc ((w-w,)NT /21,

where

A, A (12)

"-. . . . * < .; .d .



and where G is the feedback gain, N is the number of taps of delay TO M is

3 3 the number of samples stored in the accumulator and k is a factor which

accunts for the taper along the accumulator. If the taper along the

accumulator is severe, the output of the accumulator will be samller (k < 1)

than that for an untapered accumulator (k = 1). To achieve the same notch

depth, the feedback gain needs to be increased somewhat to offset the

effects of the taper.

If we use the value of B in (11) and calculate the notch depth at

= W o we have that

9H() 
2  kGA2NM 2

H: 0  l +k GA NMj (13)

, We note that the notch depth increases as the jammer amplitude A increases

to the point where the value of the jammer component B in the residual have

the value given by (12). From our simulations, however, we find that the

length of the accumulator is the most important parameter for obtaining a

very deep null. As the factor kGA2 NM becomes very large relative to the

factor 4, the notch depth increases and we have that B 4/kGANM. For an

exponential taper in which D 0.5. we find that k - 0.49; this value, along

with the values of G, A, N and M from the simulation gives a calculated

notch depth of -35.4 dB vs a depth of -35., dB as given by the data.

The half-power bandwidth can also be obtained from (11). If the value

of Af is small compared to f we can expand each term of (11) and arrive at
0

the result that

LI%



2 F2 -R -1/.R (14NT 0 T 4/3 - R/3 +4/N (14)

Although the bandwidth is a function of the notch depth through the

parameter R, we can simplify (14' for values of R > 0.9 (i.e. for notch

depths more than 20 dB down) so that

1
Af Z (15)NT v/1+4/N

0

This result shows that the half-power bandwidth is primarily determined by

the number of taps used. If N is large compared to 4, the bandwidth is

given by Af : 1/2NT . The bandwidths as determined by the simulations agreeo

closely with the values calculated from (15). Figure 10 shows the transfer

function for both a finite (4000 samples) and infinite accumulator for a

N = 48 tap situation. The half-power bandwidth is very nearly the same for

the two cases, but the notch depth is about 6 dB greater for the infinite

accumulator. The data was taken after 10,000 iterations; the notch depth

for the infinite accumulator should continue to grow as the nuraber of

iterations increase, if we assume that the jammer and the signLil are

uncorrelated.

The adaptation time constant for low values of the gain, an infinite

accumulator and uncorrelated input signal and noise, is given by 6 ' 7

= -l/ln(l - GX ) (16)
P p

or



l/GX (17)
p p

th
where z is the adaptation time constant for the p mode whose eigenvalue

p

is X. If the eigenvalues are not equal, the adaptation time constant does

not have a unique value. A reasonable estimate can be made, however, by

averaging the eigenvalues so that X is replaced by X
p ave

Widrow, et al! 4 introduced the concept of the degree of misadjustment

of an adaptive systsem and related it to the adaptive time constant. This

misadjustment is a measure, expressed as a percentage, of the actual mean

! square error between the output signal and the desired response to the mean

square error based on the optimum WeiLer solution. The misadjustment can be

related to the adaptation constant r and the number of taps through
ave

r
A = N/4 v . (18), • ave

Im
The misadjustment given by (18) originates from random noise in the tap

weights due to the use of a noisy gradient instead of the true gradient in

Lthe adaptation process. The relationships in (16-18) are valid only when

the adaptation process is slow; this generally implies that the gain is

small. When the gain is small, a second type of misadjustment may arise due

to nonstationary input statistics; this has been called the misadjustment

due to lag. As noted by Widrow , the best pettoimance is achieved by

setting the gain so that the misadjustments due to graident noise and lag

are equal,



In terms of the notation used here, the total misadjustment can be

represented by AT = (a 2 - a 1 )/a 2 since the jammer power should be

*completely removed in the optimum Weiner solution. As we have noted before,

the finite length of the accumulator in the optical implementation requires

that some jammer signal be present in the residual. The total misadjustment

is, therefore, the sum of that due to gradient noise, lag, and jammer power.

Further, as we see from Figure 9, the performance does not improve

monotonically as the gain decreases, since the accumulators have finite

length. As a result, the optimum gain is generally higher than that used if

the accumulator were infinite so that the misadjustment is principally due

to gradient noise and jammer power.

Since the gain is a function of the accumulator length, the value of

the adaptation time constant as calculated from (16) or (17) tends to lead

to erroneous results. A better procedure is to calculate the jammer power

in the residual from (12) and to then calculate the misadjustment due to

gradient noise from

C 2 B2/2 - J 2
A z 9

G (19)
"'_a'

The adaptation time constant can then be calculated from (18). As an

example of this procedure, we use the results from the simulations given in

Table 1. We found, at the end of 8000 iterations, that a 1 1.12 and

c y = 1. The gain was G 1.25(10 ) so that, from (12), we find that

" -"B = 0234. From (19), we find that the misadjustment due to gradient noise

is then 0.0926 and, from (18), that the average time constant is c = 130.ave

". "" -* - . .' a V - -- "
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We now give an illustration of the adaptation time constant and

U determine how rapidly the system will readapt to a sudden change in jammer

frequency. Figure 11 shows the values of s(t) and i(t) in the region of an

abrupt change in frequency from w = 2n/8T to w = 2n/12T . The plot of
0 0 0 0

*i(t) is delayed by one sample value for clarity. The system was allowed to

adapt to the first jammer for 8000 iterations so that s(t) is a good

Stestimate of the jammer. At the 8001s / iteration, we switched to the lower

frequency, and we see that ;(t) initially decays as the transient passes

through the system. After 25 iterations it reaches its smallest amplitude;

*. it then begins to increase in amplitude as well as adjusting its phase to

the new jammer. Readaptation is nearly complete after about 130 iterations

which is consistent with the calculation for the time constant.

Figure 12 shows how the notch changes its shape during the

Ireadaptation phase. Just before the frequency shift, we have a well formed

notch at the initial frequency. Within five iterations of the change in

frequency, we find that the notch depth is about -10 dB. The notch at the

* lower frequency has not yet begun to form because 5 iterations is less than

one-half of a cycle of the new frequency. After 50 iterations, a notch is

beginning to form at the new frequency; its depth is about the same as that

at the initial frequency. After 125 iterations, a notch is reasonably well

formed at the .ew frequency and, as the adaptation process continues, the

notch depth will increase while the remnant notch at the initial frequency

will continue to diminish.

* . The final example is that of suppressing two unequal jammers at

".fferent frequencies. In this case one jammer is at +20 dB relative to the

signal and the second is at +10 dB. Figure 13 shows the two notches formed

by a 48 tap, 4000 sample accumulator setup. The notch at the lower
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frequency corresponds to the +10 dB jammer; we see that the notch is not as

deep (- -20 dB) as is predicted by (13) and there is more evidence of jammer

power in IZ(w)l at this frequency. Examination of z(t) shows that the

adapttion constant (t 175) is primarily due to the strong jammer, withadapatin costat (ave

a secondary adaptation constant due to the weak jammer. The correlation

coefficient is p 0.93.

4. SUMMARY AND CONCLUSIONS

The purpose of the simulations was to determine the effects of using

finite accumulators as dictated by the finite time-bandwidth product of the

Bragg cells. The measure of performance used throughout has been the

correlation coefficient between the output signal and the transmitted

signal. The effect of using a finite length accumulator is to reduce the

correlation coefficient by z 0.5 to 1.0 dB depending on the system

parameters. Some degree of taper is needed on the accumulator to reduce the

effects of readaptation. The amount of taper required increases as the

frequency of the jammer increases. The natural attenuation, the frequency

response and the method of illumination of the Bragg cells are possible ways

to implement the taper. These methods have the advantage of increasirg the

apparent time-bandwidth product of the Bragg cell which help to improve the

overall performance of the system.

The number of taps available is probably greater than that needed in

many applications. We found that increasing the number of taps improves the

pi.rformance but also increases the time necessary for the system to adapt to

changes in the jammer frequency or amplitude. In contrast to a conventional

liE system where the feedback gain can be set at a low value (at the expense of

slower adaptation), the gain in the optical system must not be set too high

because then the system will not be stable, or set too low because then the

'o.7-



tap weights will not be large enough to remove the jammer energy. The notch

depth is not as great as when using infinite accumulators because some of

the jammer energy is needed in the residual signal to maintain the tap

weights. The null is sufficient, however, to improve the signal-to-jammer

*ratio at the output so that a high value of the correlation coefficient is

obtained.

I thank M.A. Epstein for writing the computer programs used for these

simulation studies, and E.F. Smith and R.W. Boyd for their insights and

suggestions. This work was supported by the U.S. Army Research office.
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FIGURE CAPTION LIST

. Figure 1: Discrete Transversal Filtering System with Feedback.

Figure 2: Bragg Cell System for Producing Tap Weights.

* Figure 3: Space-Plane Representation of Tap Weights.

Figure 4: Optical System to Produce Fourier Transform of Tap

Weights.

Figure 5: Input/Output Spectra and Filter Response.

* Figure 6: Effect of Accumulator Taper on Readaptation.

, Figure 7: Contents of Accumulator during Adaptation.

Figure 8: Performance as a Function of Taper.

Figure 9: Performance as a Function of Gain.

Figure 10: Filter Response for Finite and Infinite Accumulator.

U Figure 11: Signals During Frequenc7 Shift.

-.. Figure 12: System Response During Frequency Shift.

Figure 13: Output Sprectra and Filter Response for lO-dB and

3 I20-dB Jammers.
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