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OPTICAL SIGRAL PROCESSING

N L Ve s

y 1.0 INTRODUCTION

As the bandwidth of signals increase and as the electromagnetic
environment becomes increasingly dense, processing operations such as
< convolution, spectrum analysis, correlation, ambiguity function gemeratiom
H and filtering become computationally intemsive operations. Optical systems
have the capability to perform a large number of complex multiplications and

RPTIEAPILI)
o

additions per unit time, As the bandwidth increases, the number of
computations increase as the square of the bandwidth because the degrees of

R X G
Py

i freedom of the signal is linearly proportional to bandwidth and the

‘: allowable computational time interval is a inversely proportional to

'} “» bandwidth. Optical processing provides high-speed, parallel computations so

,; . that digital post-processing techniques can be used for lower-speed, serial

& - computation.

I L‘-"

§ The research effort described in this report has resulted in several

§', '-: innovative optical processing techniques for improved performance; it covers

P N the three-year period from 1 October 1980 to 30 September 1983. The major
q accomplishments can be divided into three aveas: (1) interferometric

] t’.‘ spectrum analyzers, (2) acoustic spreading in both single and multichannel

3 Bragg cells, and (3) adaptive optical processing based on transversal

& ;; filtering with feedback. In the following paragraphs, wve summarize the key

results in each area; further details can be found in the referenced jourmal

N, articles that have been published.
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2.0 INTERFEROMETRIC SPECTRUM ANALYZERS

A conventional Bragg cell power spectrum analyzer that measures the
instantaneous frequency content of &8 wideband signal generally has a dynamic
range of 25-30 dB. We developed an interferometric spectrum analyzer
technique that uses a unique reference wavefront which serves as a
distributed local oscillator. As a result, the photodetectors measure the
instantaneous amplitude of the frequency content rather than the
instantaneous power. The dynamic range is thereby doubled in dB so that,
for an equivalent set of system parameters, the dynamic range is 50-60 dB.

In addition to providing a significant increase in the dymamic range,
the distributed local oscillator provides a fixed offset temporal frequency
at each photodetector position. The post-detection circuitry for each
photodetector element is therefore idemntical; furthermore, both the
amplitude and phase of the instantaneous spectrum can be measured if
desired. Because the scattered light is not frequency shifted, the system
is much less sensitive to scattered light. Another advantage of this
technique is that short pulses, such as those from radar systems, can be
detected even though their duration is less than the Bragg cell tramsit

time,

Further details are provided in Reference 1 in which the results of the
analytical effort was published. Since that time, Harris has completed a
feasibility study and prototype development effort for AFAL. The

experimental results are in excellent agreement with the theory.
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3.0 ACOUSTIC SPREADING IN BRAGG CELLS

An acousto-optic device operated at high RF frequencies is often called
a Bragg cell. A piezoelectric transducer is bonded to a suitable
interaction medium to convert an electrical into a traveling acoustic
pressure wave, This pressure wave, in turn, causes an index of refraction
change that modulates the light in space and time. The acoustic wave, as it
propagates avay from the transducer, spreads in much the same way as does
light from a small source. We analyzed the effects that this acoustic

spreading has on some optical processing operations.

For a single transducer Bragg cell, the principal effort of acoustic
spreading is a curvature of the Fourier spectral components. The locus of
this curve is a parabola whose vertex is at the position corresponding to
the RF frequency and whose focus is at the optical axis. The degree of
curvature is dependent on the anisotropic nature of the interaction medium;
a special case is an isotropic medium for which the parabola degenerates

into a circular functiomn.

The effects of this curvature on spectrum analysis is a function of the
size of the photodetector in a direction orthogonal to that of the acoustic
propagation. For a photodetector having a very large size (one which would
be acceptable if the curvature were rot present) the effect is to cause the
peak value of the diffraction pattern to move toward the optical axis by 42

of its main lobe width, to increase the main lobe half power points by 3%,




ii _ and to increase the sidelobe levels by 5 dB on the side of the main lobe

i toward the optical axis. Analysis shows that these effects can be

‘ controlled by reducing the size of the photodetector with a penalty in the
| light collecting power of about 10Z. Further details of this analysis and

!.‘ experimental results are given in a paper which was published in Applied

i Optics (Reference 2).

The acoustic spreading manifests another problem in Bragg cells having

P

o multiple transducers. The phenomena is that the spreading acoustic wave from

,C}} a given transducer overlap with waves from adjacent tramsducers. An

Eﬁ analysis of this phenomena showed that the optical effects of acoustic

' spreading can be compensated by a holographic optical element placed in a

sf combinatior image/Fourier plane. At an image plane of the Bragg cell, we

. find that the corrected light distribution is constrained to lie within

ii channels whose height is nearly equal to that of the transducer. We
demonstrated that, for a 12-channel Bragg cell operating over an 80 MHz

ii bandwidth, the usable aperture (defined as that regiom for which the channel
information does not overlap) could be increased from 10X to 100%.

;f Furthermore, the channel packing density can be increased by a factor of

. four. Details of this analysis and the supporting experiments will be

published in the December 1983 issue of Applied Optics (Reference 3).
4.0 ADAPTIVE OPTICAL PROCESSING

The transversal filter is widely used in digital data processing. An

even wider range of applications are possible when feedback loops are used;

o ve have developed a method for implementing such operatioms optically. The
.4 basic concept is to consider a Bragg cell as being equivalent to a delay
;; line which can be tapped optically instead of electrically. 1In this

fashion, very wide bandwidth signals can be processed.
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Fundamental to the notion of transversal filtering is the need to
produce the appropriate tap weights. An innovative way to produce them
optically is to use two orthogonally oriented Bragg cells arranged so that
they are mutually imaged at a given plane. We show that if the light in
this plane is integrated along ome of the diagonals, the tap weights are
produced. A counvenient way to perform the integration is to create the two-
dimensional Fourier transform of the tap weight image plane and to evaluate
the transform along a line normal to the diagonal over which the integration

is to be made,

The processing is completed by interferometrically adding the Fourier
transform of the signal to be processed to the Fourier transform of the tap
weights. This total light distribution is then square~law detected by a
single element photodetector to produce an estimate of the received signal.
Depending on the application, the estimate is further processed
electronically and the difference between it and the received signal
provides the feedback signal. Thus, the system adapts to a changing signal

environment,

The chief advantage of this optical processing technique is that
transversal filtering concepts can now be applied to signals having
bandwidths in the 50 MHz to 500 MHz range. The system has an excellent
dynamic range because it is interferometric in nature and is linear in light
amplitudes. The tap weights contain both amplitude and phase information
vhich provides for increased computational accuracy. Scattered light from
the undiffracted beam does not affect the performance of the system. Details
of this concept are contained in a paper published in Applied Optics

(Reference 4).

The finite length of the Bragg cells impose a constraint on the number

of signal components that are integrated to produce the tap weights. We

U R A . .
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performed several computer simulations of the adaptive filtering system to

characterize and determine the performance due to this limitation (digital
systsms can integrate signal contributions for an indefinite period). The
application we chose to illustrate these effects is that of notch filtering
or frequency excision. We found that we can improve the performance of the
system significantly if the tap weight plane is tapered so that the
readaptation phenomena is minimized as signal components leave the tap
veight plane (the accumulator). In principle, the performance could be
improved if the taper were extended to also weight the signal components as
they enter the accumulator; this was not tested in the simulations. The
taper is equivalent to using a "leaky" integrator in conventional analog

systems,

The simulations show that the performance improves as the number of tap
veights increase; this argues for using Bragg cells having a large time-
bandwidth product. We also found that the system adapts rapidly so that
notches can be quickly formed to track agile jammers. Notch depths of the
order of 30-40 dB were obtained, depending on the time-bandwidth product and
the number of taps used. Since the time-bandwidth product of Bragg cells
are exceptionally high, a much larger number of tap weights are available
as compared to digital processing systems. The results show that the finite
length of the accumulators is not a serious drawback for many applicatiomns,
particularly those in which the system must operate in a rapidly chapging
signal environment. The performance of the system then approaches that of
one having an infinite accumulator and the feedback gain value needec to
give equivalent tracking performance., Details of these simulations are
given in a paper that has been accepted for publication by Optical
Engineering (Reference 5). A paper, summarizing these results was given at
the SPIE Conference on Advances in Optical Information Processing in January

1983 at Los Angeles. A short paper also appears in the conference

proceedings (Reference 6).
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INTERFEROMETRIC SPECTRUM ANALYZER

REPRINTED FROM APPLIED OPTICS
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Interferometric spectrum analyzer

A. Vander Lugt

Dynamic range is a key performance parameter for spectrum analyzers. The dynamic range of a Bragg cell
power spectrum analyzer is generally limited by the dynamic range of selt-scanned photodetector arrayvs.
Interferometric techniques can be used to increase the dvnamic range: but it 18 at the expense of increasing
the number of photodetectors required, when the interterence is introduced in the spatial domain. or a large
photodetector bandwidth. when the interference is introduced in the temporal domain. In this paper we
describe an interferometric approach wherein a second Bragg cell generates a spatiallv modulated reference
waveform to produce an interference term that has a constant temporal frequency for all spatial frequencies.
The advantages of this approach are lower photodetector bandwidth. improved dynamic range. improved
cross talk suppression. more efficient use of the Bragg cell time-bandwidth product. immunity to scattered
noise, and improved short pulse detectability. The chief disadvantage is the need for a discrete element
photodetector array; when such arravs become available in hybrid or integrated packages. an additional ad-

ToTe L vy

vantage will be that of parallel postdetection processing.

. introduction

Optical processing techniques can be used to produce
the instantaneous spectrum of wide bandwidth signals.
Lambert! described how acoustooptic Bragg cells can
be used to convert an electrical waveform f(¢) to an
optical waveform that is a function of both space and
time. If the cell is coherently illuminated, the optical
system displays the Fourier transform of that segment
of the waveform present within the cell. The complex
valued Fourier transform can be described as

¢e=T
Friwt) = f flu) expi—jwu) du. (1)
t

where T is the processing time of the cell and w is a
temporal radian frequency. Generally, Fr(w,t) is called
the instantaneous spectrum of the input waveform f(¢);
we note that it is a function of the present time ¢ as well
as a segment of its past history.

A photodetector array at the Fourier plane senses the
instantaneous energy spectrum | Fr(w.t)|% such a sys-
tem is generally called a power spectrum analvzer. A
kev performance parameter of any spectrum analyzer
is the achievable dynamic range which is a tunction of
the laser power. the dynamic ranges available from the
Bragg cell and the photodetector arrav. the time-

The author is with Harns Corporation. Advanced Technology
Department. tyuvernment Systems Group. P.0. Box .7, Meibourne.
Florida 2901,
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bandwidth product, and the overall efficiency of the
system. Power spectrum analyzers that use self-
scanned photodetector arrays are generally limited to
a 25-35-dB dynamic range due to the squaring opera-
tion on Fr(w.t) and the inherent dynamic range limi-
tation of the array. As the photodetector dynamic
range improves, the laser power is the next important
limitation to achieving a large dynamic range since
Bragg cells have heen developed having very large dy-
namic ranges.

One method for increasing the dynamic range is to use
an interferometric spectrum analvzer whose output is
proportional to the instantaneous magritude spectrum
|Friwt)|. King et al.” describe heterodyning tech-
niques for recovering both the amplitude and phase
information in a light distribution. In their system the
interference of an unmodulated reference beam with
Fr(w.t) produces a temporal frequency proportional to
the input signal frequency w. Since the fractional
bandwidth of the input signal is usually ~50%. centered
on a frequency of several hundred megahertz. the in-
terference term occurs at a rather high frequency that
varies as a function of the spatial frequency.

In this paper. I describe an interferometric spectrum
analvzer in which a spatially modulated reference beam
is used to reduce the temporal interference frequency
to a small and fixed value over the entire spectrum.
Discrete element photodetectors having a small band-
width and a low noise equivalent power can then he
used: an additional benerit of discrete detectors is that
the postprocessing operations are more flexible and can
he performed in parailel to reduce the output data
rate.
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Fig. 1. Interferometric spectrum analyzer.

Self-scanned arravs cannot be used with this tech-
nique because they integrate over a time period large
compared with 27/w. and the information contained in
the interferometric output is lost. Turpin3 and Bader*
describe interferometric spectrum analvzers which
produce a spatial fringe structure instead of a temporal
fringe structure; self-scanned arrays can be used in such
systems, but the number of elements must be increased
to resolve the spatial fringes. Although discrete pho-
todetectors are not the most elegant for use in systems
having a large time-bandwidth product, fairly large
arrays have been implemented,’ and advanced photo-
detector fabrication techniques® may produce inte-
grated devices having attractive operational features.

Some additional advantages of interferometric
spectrum analysis are improved cross talk rejection,
immunity to scatter noise, short pulse detectability, and
uninterrupted evaluation of the spectrum. In Sec. II
we describe the basic theory of the interferometric
spectrum analyzer and establish the required charac-
teristics of the reference beam. In Sec. I1I we determine
the photodetector geometry and postdetection band-
width required to achieve a given frequency resolution.
In Sec. IV we analyze and compare the performance of
candidate reference-beam waveforms. In Sec. V we
compare the laser power required and the dynamic
range obtained by this interferometric method with
those of a power spectrum analyzer.

II. Basic Theory

Consider the interferometric system shown in Fig. 1;
this system does not suggest how a practical spectrum
analyzer would be configured but is used to explain the
theory of operation. The two Hragg cells are illumi-
nated by a collimated source of i onochromatic light at
the Brazg angle. The signal waveform f(t) is applied
to the transducer of the Bragg ceil located in the lower
leg of the interferometer at plane P;. Lens L, produces
the Fourier transform of the complex light amplitude
ai{x,t) leaving the cell: for a low modulation index we
have a series expansion for the signal given by

ayx.l) = ALl + jmyfle = x/v) cos{w. it = x/v)] + HO.T.), 2)

where m is the modulation index. v is the velocity of the
acoustic wave within the cell. and w,. is the center fre-
quency of the applied rf signal. The higher order terms
can generally be neglected if the fractional handwidth
is <30%. Further, we are usually interested in only the
positive diffracted order so that the constant as well as

the negative diffracted order, which is highly suppressed
by the Bragg mode of operation, can be ignored. A
fraction « of the laser power P is directed into the signal
beam so that the amplitude factor A, is equal to (aP/
L)12, where L is the length of the cell. The effects of
weighted illumination and optical losses will be con-
sidered later.

The amplitude light distribution for the first dif-
fracted order, if we ignore a time delay T/2, is

L2 )

Ap.t) = jmA, f f(t = x/v) expljwc(t = x/v)] exp(—jpx)dx,
-2

)

where p is a radian spatial frequency variable related
to a physical distance £ in plane P> by p = 2x£/AF, N is
the wavelength of the source. and F is the focal length
of lens Lo. Through a change of variables, we can re-
write Eq. (3) as

-T2
Ap.t) = —jum A, expi—jpet) f ™ flu) expljuvip ~ p.)|du.
t+
4)

The integral portion of Eq. (4) is similar to Eq. (1) ex-
cept that it is centered at a position corresponding to p.
in plane P, and the limits of integration are slightly
different because we ignored a time delay equal to T'/2
in the representation given by Eq. (2). The exponential
phase factor shows that the light frequency is shifted
linearly as a function of p. Since pv = o, the light dif-
fracted by any continuous waveform has the same
temporal frequency as the signal component.

Suppose that the input signal waveform has a cw
component of frequency w and amplitude C,. The
light distribution in plane P> can then be calculated
from either Eq. (3) or (41:

Aup.t) = jmi A LCy exp(—jwat) sinc{(p ~ pa)L/27], (5)

which reveals that the spectrum of a sinusoidal input
is a (sinwx)/xx function, centered at pi, whose ampli-
tude is proportional to C;,. The entire function (in-
cluding the sidelobes) is multiplied by a phasor of fre-
quency wg. Equation (5) further shows that the fre-
quency resolution is 27u/L if we use the Ravleigh cri-
terion for resolution. We will use the function 4,(p.t)
as given by Eq. (5) extensively in subsequent analyses;
first, however, we consider the spectrum of short pulses
whose duration may be less than or equal to the pro-
cessing time of the cell.

Consider the case of a pulse having a duration T less
than or equal to T and having a carrier frequency ws.
Let the time of arrival be at ¢t = 0: at some later time ¢.
the leading edge of the pulse will have moved to a po-
sition ~1»L + vt. Consider the output for the time in-
terval 0 < ¢ < T so that the trailing edge of the pulse
has not yet entered the cell: we have that

s=L,2%0ve , )
Aup.t) = jmyd, J L exp|=twelt = x/ =T :)I

X expl—;pxidx. 6)

where we have now included the delay factor T2 in the
integral. After a change of variables. we tind that

15 August 1981  Vol. 20, No. 16 APPLIED OPTICS 27T
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Aup.t) = jmiAct expjpl/2) expl=jip + poivt/2

X sinc{(p = paivt/2x]. 17)
This result shows that the spectrum of the pulse is
centered at p, and that as ¢ increases, the amplitude of
the sinc function increases while its width decreases.
We are particularly interested in the temporal fre-
quency behavior of this function. Note that at p, the
centroid of the sinc function, the temporal frequency
is wx which is the frequency of the carrier. In contrast
to the case of a cw signal, however, the sidelobes of the
sinc function have a frequency (p + pi)v/27 which
varies continuously as p varies. [n particular, note that
at some spatial frequency px + Ap, the temporal fre-
quency is w, + Aw/2.

The last situation we consider is that of a pulse whose
leading and trailing edges are both within the aperture
of the Bragg cell. Let ¢ = 0 be the time at which the
trailing edge of the pulse has just entered the cell; then,
for0 <t < (T = Ty), we have

=L, 2%vt+uvTy

Ap.) = jmA, J.

-Li2+uvt
X exp{—jwa(t = x/v = T/2)|
X expt—jpx)dx
= jmiAwToexplipiL = ©Ty)/2}
X exptjpet To/2) exp(~jput)
X sinc[(p = pa )T/ 2x}]. 8)

We see that the sinc function has an amplitude and a
width that are determined by v T; both are independent
of time. As before, the temporal frequency at py is ws.
The frequency of the sidelobes at some spatial fre-
quency p = pi + Ap is equal to wy + Aw.

We can now summarize the three cases discussed so
far. In each case, the temporal frequency at the cen-
troid of the sinc function is w,. At some incremental
spatial frequency Ap away from the centroid. we find
that the temporal frequency of the sidelobes differs
from that at the centroid by zero for the case of a cw
signal (or a very long pulse), by Aw/2 for a pulse with
only its leading edge in the aperture, or by Aw for a pulse
with both leading and trailing edges within the aperture.
The explanation for this phenomenon is that in the first
case neither edge defining the pulse moves in time since
it is the aperture of the Bragg cell that determines the
signal length. In the second case one edge moves, but
the other is srationary: in the third case. both edges
move at the same velocity. The temporal frequencies
in the sidelobe structure, then, contain the information
about where the centroid of the pulse is located within
the Bragg cell. For example. if we collect the terms in
p from Eq. (8), we have a term

Jip.Li mexp{=/p(=L,2+ 0t + T2}, t9)

which shows that the centroid of the pulse is at —L/2 +
vt + ¢T.,/2: the centroid moves at the velocity of the
acoustic wave. The residual phase term in Eqg. 18) is
then exptjp.tT/2) which is a constant: the argument
2e¢ T % 1s equal to one half the number of carrier cveles
contained in the pulse. A similar calculation for the
case uf a pulse with onlv the leading edge in the aperture
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is obtained tfrom Eq. (T) which shows that the centroid
of the pulse, located at =L,2 + ¢t/2. is moving at one
half the acoustic velocity. The number of cvcles in the
pulse is piut/2 which increases as the effective pulse
width increases. For a very long pulse the centroid is
fixed at the optical axis and the number of cycles in the
pulse is fixed at petT/27 = p,L/27.

We now turn our attention to the question of gener-
ating a reference beam that will produce an intertero-
metric tringe structure having a fixed temporal variation
at all spatial frequencies. A spatially modulated ref-
erence beam will produce a fixed offset frequency be-
cause the light distribution at the Fourier plane will
have a temporal and spatial frequency relationship
similar to that of the signal spectrum. The reference
distribution must. however. be displaced in plane P:
relative to the signal spectrum so that the spatial dis-
placement does not atfect the temporal frequency dis-
tribution. The spatial displacement can be achieved
by rotating the combining beam splitter through a small
angle or by placing a prism immediately after the ref-
erence-beam Bragg cell. In either case. the reference-
beam waveform at plane P will be displaced to produce
a fixed frequency offset over the entire spectrum as we
shall now show.

We denote the bandwidth of the Bragg cell by W so
that the time-bandwidth product is TW. We begin by
choosing a reference-beam waveform that is a pulse of
unit amplitude and length L/TW. Such a signal is
equivalent to one resolution element at the plane of the
Bragg cell. The Fourier transform of this narrow pulse
can be obtained directly from Eq. (8) if we replace vT)
by L/TW and replace p bv p + py, where py represents
the small displacement between the reference and signal
beams at plane P.. The reference-beam distribution
in plane P, then becomes

imadal

Aap.t) =1

expljo} exp{=jtp + palutl

X sinc{(p + pa = pILi2xTW], (101

where o is a phase term that is not a function of time and
De is the same center frequency as that used in the signal
beam Bragg cell. The envelope of the reference beam
is not. of course, constant in p as we desire, but is a sinc
function that is a factor of TW broader than the signal
distribution. For the moment, we shall assume that the
reference beam is constant over the frequency band.
The intensity at plane P is given by the squared
magnitude ot the sum of the sighal and reference-beam
distributions:
[p.ty= |Aup.t) + Aup.0)|? )

= [Aup.ti + |Aap.)|? + 2Re(dprAdip.ay|, 1)

where = denotes complex conjugate. Each photode-
tector will integrate light over an interval p, — Ap to
Dy + Ap. where pi, denotes the center position and 21p
the width of the photodetector. Let 3 be one halt the
ratio of the width of the photodetector to the spacing
hetween the photodetectors so that 3p = 273 L. The
integrated intensitv tor the tfirst term ot Eq. ' 12) s
caiculated by using En. 130
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which is valid for 3 £ 0.4. The integrated intensity for
the second term of Eq. (12) is obtained from Eq. (10):

p.‘ud

1 T N )42 2
Qo= — g |A2p.t)|°dp = 23mEAILATW)E  (1d

2% Jou
The contribution to the output from the third term of
Eq. (12) is obtained by combining Egs. (5) and (10):

1 p.*"r.'2
Qam-;ﬁ m 2 RefAp.0)Asp.L)|dp
- L gl

- 48mmaA AaL
TW

We see that the third term is proportional to the
magnitude of the signal multiplied by a constant tem-
poral offset frequency psi = wq which can be set at a
convenient value. This term can, therefore. be sepa-
rated tfrom the signal and reference-beam bias terms,
as given by Eqs. (13) and (14), by postdetection filtering.
Since Q3(¢) is not a function of px, the same temporal
frequency offset is provided by the reference beam for
any input signal. The reference beam, in this sense, is
a distributed local oscillator whose temporal frequency
can be changed by a simple geometric adjustment.

The total optical power collected by a photodetector
is the sum of Eqgs. (13), (14), and (15). When the optical
power is multiplied by the photodetector sensitivity S,
expressed in A/W, and we account for the optical ef-
ficiencies of the signal and reference beams (¢, and ¢, ),
we find that the photodetector output current is

Cx coslpgtt = o). 15)

THe) ™y i+ {3(L)
= 23miAfe,LSCi + 23 m3Aie. LS/(TW)?
L Admimadids “eLS
TW

Each photodetector in the Fourier plane produces a
signal similar to i(¢) except that the value of C, will vary
depending on the strength of that frequency component
in the input signal. Because the output current is
proportional to C, instead of |C.| 2. as it would be for
a power spectrum analyzer, the improvement in dy-
namic range is significant. We now consider the factors
that determine the value of the parameter 3 associated
with the photodetector geometry and pos:detection
bandwidth.

iNl. Photodetector Geometry and Bandwidth

In Fig. 2 we show the lignt distribution in the Fourier
plane caused by two cw signals that are just resolved by
the Ravieigh criterion. For sake of clarity, only the
central lobe of the sinc functions as given by Eq. (3) are
shown: we can also represent the signals by sinc(fT)
which show that the signals are separated by 1T Haz.
The reference beam is shown as a uniform amplitude
light distribution whose temporal frequency is offset bv
a fixed amount from that of the central frequency of the
sinct/T) functions. That is. if f is the temporal fre-
quency of a cw signal. the reference-heam frequency at
rhe centroid is /. =/ + /,, where /; = p /27,

Ca coslwgt + o). (16)

MAEAR A '.'.'-"‘.‘."."v.‘."'*.".'.'1

If we have R photodetectors per resolvable frequency.
the center spacing is 1/RT. and, if the duty cycle is 0 <
d < 1, the width of each photodetector is d/RT. Sup-
pose that the postdetection bandwidth is a rectangular
function of width b/7T centered at f;. The effect of the
poustdetection bandwidth is to accept light if the dif-
ference frequency between the cw signal and the refer-
ence beam falls within the bandpass and to reject it
otherwise. As an example, suppose that the cw signal
has a frequency of 300 MHz and that the reference-
beam frequency is adjusted geometrically so that it is
310 MHz. The interference beat frequency will then
be f4 = 10 MHz, and the narrowband postdetection
filter will accept all the light near the centroid of the sinc
function associated with the signai. As noted in Sec.
I1. the entire sinc function oscillates at a temporal fre-
quency of 300 MHz so that. as we move the photode-
tector away from the 300- MHz position, we continue to
collect light until the difference between the reference
and signal frequency exceeds f4 £ b/2T. For example.
if the frequency resolution of the system is 1/T = 3 MHz
and if b is chosen to be 1, we tind that when the photo-
detector is placed at a position corresponding to 301.5
MHz (or 298.5 MHz), the output of the narrowband
filter rapidly falls to a low value.

The narrowband filter is therefore highly effective in
reducing cross talk in the spectrum analvzer. The
sidelobe levels decay rather slowly so that. in the ab-
sence of filtering, they contribute to an erroneous
measurement of the true signal levels at nearby
frequencies. Since the filter can suppress out-of-band
signals by 3040 dB in addition to the inherent roll-off
of the sidelobes, it is not necessary to control the side-
lobe levels by input aperture weighting.

The postdetection filtering does not, however, pre-
vent the detection of narrow pulses. In Sec. II we
showed that the spectrum of a pulse whose duration is
«T is a sinc function whose sidelobes oscillate at a
frequency proportional to their distance from the cen-
troid. The interference frequency is therefore fixed
over a large spatial range so that any photodetector
within the sinc function envelope will respond with the
proper output. This result can be seen by noting that
Eq. (8) contains a term exp(—jptt) that. when multi-
plied by the term exp(+/(p + ps)ut] from the reference
beam as given by Eq. (10), produces a fixed interference
frequency.

A second benefit of narrowband filtering is in re-
solving two signals closely spaced in frequencv. As
shown in Fig. 2, two received signals spaced bv 1/T Hz

-— SEHATNCE SN
WAL TUS

ASCRETE
swgto0ETLCICN —— —
RNt

Fig. 2. Reterence and signal heam aistnibution in the Fourier plane
for two cw signais.
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may occur at any position relative to a set of photode-
tector elements. We must ensure that the response
from a photodetector is sufficiently high when it is
sampling the light at the centroid of any sinc function
to provide accuracy and sufficiently low at the midpoint
between sinc functions to provide resolution. Since the
received signals may occur at any position relative to the
photodetectors, we must find a way to relate the number
of photodetectors per frequency, the spatial duty cycle,
and the postdetection bandwidth to the required dip
between resolvable frequencies.

The first step is to determine the response of a fixed
photodetector to a cw signal as a function of its fre-
quency. The output of the photodetector will be the
convolution of a sinc(/T) function with the rectangular
function of width d/RT (representing the photodetec-
tor), followed by a multiplication with the bandpass
fu-er function. The postdetection filter function is
appr. dimated by a uniform response for |f| < b/2T and
a lineariy decreasing response from |f| = b/2T to |f| =
q/2T as shown in Fig. 3. This function is, aside from
passband and stop-band ripple, similar to that produced
by an elliptic filter. Since the convolution is nearly
constant over the defined range of frequencies, the net
result can be represented by

C\) = d/RT: 0 s|f| <b/2T,

24
RT Rig-=b)
=0 [f2q/2T amn

The smallest dip between two frequencies occurs when
the midpoint between the frequencies falls between two
photodetectors. This condition is shown in Fig. 4 where
we show C(f) centered at the positions corresponding
to two resolvable frequencies. Since we have aiready
accounted for the convolutional effects introduced by
photodetectors having a finite size. we can now deter-
mine the response from a given photodetector by using
the value of C(f) at a point corresponding to the center
of the photocetector. The output of the photodetector
nearest the center of C(f) is equal to C(fp). The largest
possible value of |fo] is 1/2RT. and we require that the
output be constant for any frequency less than |fo|. By
referring to Fig. 3, we see that this condition is satisfied
if

(f=b/2T% b/2T S |f| Sq/2T.q » b.

R s 1/b. (18)

The outputs from the two photodetectors symmet-
rically positioned about the midpoint are equal and have
values given by C(f;). The second relationship can then
be obtained by requiring that

Cify) £ hClifq. 19)

where 0 < h < 1 is the desired dip between the two
frequencies. Sincef; = 1/2T — 1/2RT. we use Eqgs. (17)
and 119) to obtain the relationship that
1
R o s 20
The inequalities as given bv Eqs. 118) and ¢20) must
he satisried to achieve a given dip hetween frequencies
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Fig. 3. Convolution of a sinc(¢T") function and a photodetector of
width d/RT.

Fig. 4. Worst-case signal position relative to the photodetectors for
resolving two frequencies.

as well as to ensure that the magnitudes of the
frequencies are accurately measured. In the limit as the
slope of the filter becomes very high, we have that q =
b and Eq. (20) reducesto R 2 L/(1 = b). IfEq.(18)is
also satisfied, we find that R = 2 is the minimum num-
ber of photodetectors per resolvable frequency.

For h = 0.5. which corresponds to a 3-dB dip between
frequencies. Eq. (20) becomes

1
D tm——— o
Rz 1~q/2-b/2
Again., if we use the equality from Eq. (18),and let g =
2b. we have that b = 0.4 and R = 2.5.

One of the key advantages of using narrowband
postdetection filtering, then, is to provide the necessary
dip between cw signals with a number of photodetectors
per frequency that is close to the theoretical limit. The
natural dip between the two Rayleigh resolved
frequencies will varyv from zero to 1.3 depending on the
relative phases of the two spectral components.
Equation (20) shows that a fixed dip of value h can be
achieved independently of the phase relationship
without increasing the length of the Bragyg ceil to sepa-
rate physicaily the spectral components.

We now calculate the relationship between R and the
Bragg cell length for a power spectrum analyzer.
Gaussian illumination is generally used to control the
sidelobe levels to meet the cross talk requirements.
This. in turn. causes a loss in resolution which must be
restored by increasing the Bragg cell length. We denote
the increased cell length by L 30 that the input aperture
illumination function. in terms of amplitude. 1s given
by

(21)
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atx) = 4y expt=4T? /LY, £22)

where T, is a truncation ratio whose value is chosen to
control the sidelobe level.” The intensity response of
the svstem to a cw input frequency is then obtained by
squaring the Fourier transform of a(x):

Iip) = exp(=p3L¥/8TH. 23)

By following the same procedure as before, we find that
the convolution of I(p) with a small photodetector of
width d/RT vields a normalized result that is very close
to being Gaussian:

d 4x2L}

Ch=ar e"p( 80°T%

where we have replaced pv with 2 7f. The worst-case

condition for resolving two frequencies occurs when the

midpoint between those frequencies lies at the midpoint

between two photodetectors. Since the intensities add,
the relationship that must be satisfied is

£ (24)

1
( +—| < (fo). (25)
c,m+c(f1 RT) KC(fo)

where /1 = (R =1)/2RT and the maximum value of |fo|
is 1/2RT as before. For a dip of h = 0.5 between
frequencies, we find that Eq. (25) is satisfied when

Ly =0.76T,LR/(R - 1). (26)

Suppose we set R = 2.5 for comparison purposes and set
T, = 1.7 which ensures that the maximum sidelobe is
down by at least 40 dB.” We then find that L, = 2.15L
which shows that the length of a Bragg cell used in a
power spectrum analyzer must be more than twice as
long as that required for an interferometric spectrum
analyzer. The impact of the larger aperture required
in a power spectrum analyzer is significant since the
increased length transiates directly into the need for an
increased time-bandwidth product to achieve equiva-
lent performance.

Another advantage of the interferometric approach
is that any scattered noise caused by stationary ele-
ments in the system is rejected by the narrcwband filter
because it does not interfere to produce in-band com-
ponents. This feature also causes the light distribution
at the optical axis to be rejected.

We conclude this section by calculating the value of
the parameter 3 which is equal to one halr of the ratio
of the width of the photodetector d/RT to the spacing
1/T between resolvable frequencies. We choosed = 0.7,
which, for R = 2.5. gives a value for 3 equai to 0.14: this
value justifies several assumptions made in Sec. [I in
connection with deriving Eq. (16).

IV. Reference Waveforms

In Sec. II we used a narrow pulse as the reference-
beam waveform to develop the basic theory of a fixed
offset frequency interferometric spectrum analyvzer.
The narrow pulse approximates a delta function that
provides most of the desired properties of the reference
waveform in the Fourier plane which are that 1) the
amplitude should be uniform in spatial {requency: «2)
the spatiai and temporal frequencies should be coupied

r--;_vr\'__-_vi-:-_rﬁv'Av\v—_rjr_.i. R i oV i Pl oy AN Al A ehE v -

so that, with a geometric displacement of the reference
waveform, a fixed offset frequency is produced at each
photodetector location; (3) the amplitude should not be
a function of time; (4) the duty cycle should be high so
that short duration signals are not missed; and (5) the
light is efficiently used. The major drawback to the use
of a narrow pulse as the reference signal is that a fraction
of only 1/TW of the light at the Bragg cell is intercepted
by the puise.

An equivalent way to generate a traveling pulse is to
use a chirp waveform to activate a Bragg cell situated
so that the focused beam scans across plane P;. If we
project the rays produced by a traveling impulse from
plane P3 toward the source, we find that the Bragg cell
must have a length equal to 2L, given that the chirp rate
is equal to the bandwidth of the signal divided by the
processing time T. The focal length of the chirp is then
equal to L2/ATW, which is of the order of several meters
for typical values of these parameters. The advantages
of this approach are that sharply formed impulses are
produced at plane P; and that the resultant reference
beam in the Fourier plane is a plane wave. The disad-
vantages are that a Bragg cell of twice the time-band-
width product is required and the length of the optical
system is excessive.

Another way to generate the reference beam is to
drive the Bragg cell in plane P; with a chirp directly.?
Lens L, then focuses the chirp at plane P, so that. at the
Fourier plane, the expanding beam covers the signal
spectrum. The chirp waveform can be represented
by

(t) ( t+ chi)
r(t) = cos -
We T
for a chirp of increasing frequency on a carrier w.. The
Fourier transform of the chirp, valid over the spatial

frequency range corresponding to the bandwidth of the
signal, is

. L2 )
Az2(p.t) = jmadg f . exp{—/

xX(t-T-~- x/v;lexp[—jlp + pyixidx

+_:r ‘t /)]
w, -~T =/t
3 T( x/

jm-, 4-3[.

- expijo) exp{—/(p + vt
T oY p{=s(p + p. ut]
vl )
X exp{=j —==p + pg = Po)¥, 2N
‘I’[ }41rW P+ pd ¢ .

where 27 W is the bandwidth of the rf signal and the
chirp rate is 27 W/T. We see that Eq. (27) is similar to
Eqg. 110) but with two notable differences: (1) the am-
plitude is larger by v TW, which increases the efficiency
of the system: and (2) the sinc function envelope is re-
placed by a Fresnel amplitude diffraction pattern.
Figure 5(ai shows the focused spot at plane P, for the
instant in time when the Bragg cell is just tilled with nne
chirp function. At plane P, the spatial exter.t ot the
reference beam is equal to that of the signal spectrum:
the amplitude is uniform except near the edges of the
spectrum where the ripple etfects of the Fresnel dif-
fraction pattern are evident. At atime T 2 sec later.
the reference wavetorm consists of parts ot two chirp
functions that produce two focused spots in piane P, as
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Fig. 3. Chirp reference beam: (a) Bragg cell with one chirp segment,
and (b) Bragg cell with one haif of two chirp segments.

shown in Fig. 5(b). Each spot has increased in width
by a factor of 2 but each expands to cover only one half
of the spectral range. Thus, as the chirp waveforms
move through the Bragg cell, the reference waveform
in the Fourier plane will generally consist of two seg-
ments of Fresnel patterns which move at the same ve-
locity. If the chirp duty cycle is not 100%, there will be
a small gap between segments which should not ad-
versely affect the performance of the system.

When the chirp waveform is used, the integrated in-
tensity of the desired output term is similar to Eq. (15),
except that TW is replaced by TW, and the chirp
produces a residual spatial fluctuation that is a potential
source of time-amplitude modulation on the output
current of the photodetector. Since the Fresnel pattern
travels at a high velocity, the modulation is well outside
the postdetection bandwidth so that there is no tem-
poral modulation on the output due to spatial fluctua-
tions.

A second type of time-amplitude modulation of the
reference function at the Fourier plane arises from the
movement of the input chirp waveform under the
Gaussian input illumination. A frequency w; within
the bandwidth of the chirp will appear at a fixed posi-
tion p; in the Fourier plane; its amplitude as a function
of time, however, is determined by its position in the
input plane. Since a severe truncation of the Gaussian
illumination is not needed to control the sidelobe levels,
we can reduce the amplitude variation at the expense
of some loss of light. A reasonable compromise is to
truncate the Gaussian illumination at the exp(—1,)
points at the edges of the aperture which leads to a
+25% variation in the output current over the time in-
terval T. This time-amplitude modulation is not a
concern because it can be eliminated by the bandpass
filter if f4 > 1/T. The chirp reference waveform
therefore satisfies most of the requirements set forth at
the beginning of this section.

An alternative reference-heam waveform that is
continuous in time is a pseudonoise sequence iPNS)
whose Fourier transtform also satisfies many of the
stated requirements. These sequences and similar
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codes have been studied for applications such as gen-
erating random phase masks for holography, recovering
imagery from coded aperture systems, and spectral
shaping.?-'® Generally, only the spatial properties of
these codes have been considered; we are interested in
both the spatial and temporal properties of their Fourier
transforms to determine whether they are better than
those of a chirp waveform.

A shift register sequence is one whose period, or frame
length, is N < 27 — 1, where NV is the number of ele-
ments in the frame and r is an integer. If the period is
equal to 27!, the sequence is said to have maximal
length and has the properties (1) that in every period
the difference between the number of +1's and —1's is
equel aone; (2) that in every period the longest run of
+1's and ~1’s is equal to r, and for each run of length m
+ 1 there are two runs of length m; and (3) that the au-
tocorrelation function has only two values. Such se-
quences can be produced by an r-stage linear shift reg-
ister having the appropriate feedback.!”

Figure 6 shows the magnitude of the Fourier trans-
form of an N = 25 — 1 = 31 element sequence at time ¢
= 0 and ¢t = T/31; that is, in a time interval corre-
sponding to one shift position of the PNS in the input
plane, the magnitude changes by the amount shown.
At the integer frequencies the normalized magnitude
is exactly equal to one for any shift position.!” The
Fourier transform is symmetric about the spatial fre-
quency N/2; in an optical system the sequence modu-
lates a carrier so that the spectrum is centered at p.. In
practice the input waveform will consist of a sequence
of narrow pulses so that the spectrum must be shifted
and multiplied by a sinc function as given by Egq.
(10).

As shown in Sec. I1I. we need at least 2.5 photode-
tectors per resolvable frequency which means that some
photodetectors will be located where the spectrum is not
uniform in either space or time. Further, since photo-
detectors of finite size must be used to collect optical
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Fig. 5. Magnitude ot the Fourter ‘ranstorm ot 1 pseudonuise se-
quence tor two adjacent shitt positions.

[ A i And sk fol aaad o w o
: N T e e LA Y




.
A
P

- " ".'

4
Ry

Pty o8,
s

t
¢
;
; {
!

4 i | :
:

— 3}

; i ; :
oo b
3 28 T -t
3 S 1A 15 WM JW WM XN

MRS B BRI AL LSS SLELLAS

SHIFT POSITION

Fig. 7. Magnitude as a function of shift position for four
frequencies.

power efficiently, we investigated the spatial and tem-
poral variations in amplitude for finite photodetectors.
Figure 7 shows the magnitude variation as a function
of shift position (equivalent to time) for a photodetector
whose width is d/RT = 0.28, centered at four different
spatial frequencies. The variation in magnitude as a
function of time is of the order of +15%, which is caused
by using a Gaussian input illumination beam truncated
at the exp(—1%) points in amplitude at the edges of the
sequence. We note that the functions are the sums of
sinusoidal functions whosee frequencies are 1/T" and
multiples thereof; these components can also be re-
moved by the narrowband filter. As noted before, the
instantaneous output of a spectrum analyzer is generally
integrated for at least T sec. Figure 8 shows the average
value of the amplitude as a function of spatial frequency
for a full frame of the PNS. Except at zero spatial
frequency, where the magnitude is low because the av-
erage value of the sequenc. is low, the average magni-
tude varies by £5%. These variations, along with others
such as Bragg cell frequency roll-off and the sinc func-
tion weighting, can be compensated when the system
is calibrated.

The question of whether the temporal frequencies of
these candidate waveforms are continuous functions of
the spatial {requency variable depends on the waveform
and the postdetection process. Equations (8) and (27)
suggest that the spectrum of a moving impulse or a chirp
waveform is indeed continuous so that the theory is
valid if the output is sampled, after narrowhand filtering
and envelope detection, once for each time period T.
The results are less clear for the PNS because the
Fourier transform cannos be calculated in the same way.
Some insights can be gained for the case of longer ob-
servation times such that the reference waveform is
repetitious with period T.

Let fix) represent the amplitude of the reference
beam over the time interval T and let Fip) be its Fourier
transtorm. Suppose that this distribution is repeated

AR R I LI s

at intervals of L and that the entire distribution moves
with velocity v. The Fourier transform of the extended
signal g(x) is then

1 -
G(p) = v exp(~;put) F(pv) ? T dpu/2x —n/T). (28)

We now account for the finite aperture in the input
plane by convolving G(p) with the aperture function
A(p) = L sinc{pL/27) to get

l‘)
Gip)= T F(:;‘E) exp(~j2xnt/T) sinc(pvT/2x ~ nr). (29)

Equation (29) shows that the Fourier transform consists
of a set of sinc functions spaced at intervals of 2x/L,
which is consistent with our notion of the spatial reso-
lution of the optical system. These sinc functions take
on the sample values F(2xn/T) and oscillate at a tem-
poral frequency of 2xn/T. The final step is to multiply
G{(p) by sinc(pL/2xTW) to account for the finite du-
ration of each pulse in the PNS or by a rectangular
function for the case of a chirp.

If we observe the output of a given photodetector for
a long time period T” > T, we will see the discrete na-
ture of the temporal spectrum of the reference beam.
Furthermore, if we increase the frame length of the PNS
so that it is greater than T but less than T”, we will note
that the discrete temporal frequency resolution will
increase whereas the spatial frequency resolution is
fixed. The exact nature of the output for the candidate
waveforms and an observation time of the order of T
will be deferred to a later paper where we will discuss
the experimental results.

V. Laser Power and Dynamic Range

The current produced by a photodetector is given by
Eq. (18); the values of A, and A, are given by

J2 - 1/2
A= ("—P) . Agm [(—l—'f—’f] . (30)
L L

where P is the power of the laser and « is the fraction
of the power directe-d into the signal beam. The output
current can then be arranged in the form
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Fig. 3. Magmtude averaged over a {rame period as a function o
spatial frequency.
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Fig. 9. Dvnamic range for interferometric and power spectrum
analyzers.

it) = il + ig + l‘:;(“
= aP(1 - a) + bPa + cPlatl = a)]V2 cos(wqt + ¢}, (31)

where the coefficients a, b, and ¢ contain the values of
parameters associated with various system components.
Equation (31) represents the general form of the output
of any interferometric system, and the SNR is given by
the ratio of the output signal power to the sum of the
shot noise and thermal noise powers:

{ igz‘ tHR
%Blig+ iy + iR + 4kTB '
where the brackets denote time average, R is the load
resistance of the photodetector, ¢ is the charge of an
electron, B is the bandwidth, iy is the photodetector
dark current, k is Boltzmann'’s constant, and T is the
equivalent system temperature in degrees kelvin. By
using Eq. (31) in (32), we obtain
- 0.5¢2P%atl ~ a)
D{aP(1 = a) + bPc| + F

where D = 2¢B and F = (2¢Biy + 4kTB/R).

We want to find the minimum laser power required
to achieve a given dynamic range. The procedure is to
solve Eq. (33) for the laser power required to produce
a detectable signal (a SNR of 1) when ¢ has its minimum
value as determined from the required dynamic range.
After some algebraic manipulations. we find that the
minimum laser power is obtained when
4 +1
2yl
where g = (Fc2/2D%a?)/2, The minimum laser power
is then

SNR =

32)

SNR

133)

as

(34)

Da2g =~ 1)
B ——————— o

1)
c?

Paun 1351

We are now in a position to make some numerical
calculations using Eq. (16} as our basis for determining
the values of the constants in Eq. (31). We will assume
that the etficiency of each optical pathis e, = ¢. = 1,2,
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that the sensitivity of the photodetector is S = 0.5 A/W,
and that 3 = 0.14. The modulation indices m; and m»
are chosen to keep the intermodulation products at an
acceptable level. If we require third-order two-tone
intermodulation products to be down by at least 50 dB
when 20% of the possible cw signals in the Bragg cell are
saturated, we must keep the diffraction efficiency per
frequency to <0.01. Since the modulation index is
equal to the square root of the diffraction efficiency, we
have that m, = 0.1. The diffraction efficiency of the
reference beam can be much higher because inter-
modulation products are not a factor; we choose m, =
0.7. We will also use a time-bandwidth product of TW
= 100, and, if we use the 5}_1_159 reference-beam wave-
form, we replace TW by /TW in Eq. (16) so that

ity = +ip+ i) (36)
= T(1079CiPa
+ 3.5(1079P(1 = a) 4+ 9.83(10"9C Platl ~ a}|V2 . 37

from which we note that a = 3.5(1074), b = 7(10~%)C3,
and ¢ = 9.8(10~YC,.

The value of g is a function of the parameters asso-
ciated with the photodetector elements and the required
dynamic range. A dynamic range of 60 dB in terms of
input signal power yields a minimum value of C = 103
from which we have that cqi, = 9.8(10~7). We chosea
photodetector having a dark current of iy = 1079 A, a
bandwidth of B = 1 MHz, and a load resistance value
of R = 30 k{). From these parameters we calculate that
g = 7.2 and, from (35), that the minimum laser power
isP=32mW.

We now calculate the dynamic range produced by a
power spectrum analyzer that has the same system
parameters. The SNR for a power spectrum analyzer
can be given in a form similar to Eq. (32):
. GDR

2%Blig + ()R + tkTB
where i} = 7(10~YC2P; we have set a = 1 because all the
laser power can be directed into the signal beam. The
dynamic range can be found by setting the SNR = 1: we
then have

SNR

138)

DRp = 10 log{7(10~9P/y F, 139)

which, for a laser power of 3.2 mW, gives a dynamic
range of 33 dB. We find that the interferometric
spectrum analyzer provides 27 dB more dynamic range
than a power spectrum analyzer for the set of parame-
ters given.

It is frequently cited in the literature that an inter-
ferometric spectrum analyzer provides twice the dy-
namic range in decibels as that produced by a power
spectrum analvzer. We now examine in more detail the
relationships between the interferometric and power
spectrum analvzer dynamic ranges. [n Fig. 9 we graph
the output signal power. as given by the numerators of
Eqs. (32) and (38), as a function of the rf input signal
power. The noise floor is established bv the noise
equivalent power of the photodetector. except at high
input signal levels where the system has a slightly higher
noise tloor caused by signal depenaent shot noise.
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As expected, the output vs input line for a power
spectrum has a slope of two, whereas the slope is one for
an interferometric spectrum analyzer. For a given laser
power, the vertical axis intercept point is lower for the
interferometric spectrum analyzer because (1) half of
the laser power is lost by the recombining beam splitter,
and (2) the reference-beam power is spread over a larger
range of spatial frequencies so that the reference-beam
amplitude at any particular photodetector is low.

The dynamic range is determined by the points at
which the two input/output lines intercept the noise
floor. A relationship between the interferometric dy-
namic range (DR;) and the power dynamic range (DRp)
can be obtained by substituting the laser power. as given
by Eq. (351, required to provide a given DR, into Eq.
{3%). We can simplify Eq. {35) for the case of g very
much greater than one to the form

P =\ BFc (40)

Since DR; = 20 log{Ci) and ¢ = 9.8(10~YC,, we can
rearrange Eqg. (39) in the form of

DR; = 2DRp — 10 logt TW/25). (41)

This result shows that. in the limit of small time-
bandwidth products, the interferometric system does
provide twice the dynamic range in decibels as expected.
A small time-bandwidth product has the effect of
closing the gap between the vertical axis intercept points
shown in Fig. 9 so that the superior performance of the
interferometric approach is evident at higher input
signal levels. We also note from Eq. (41) that the im-
provement factor asymptotically approaches two as the
absolute performance level increases for a fixed value
of TW.

VI. Summary and Conclusions

The dynamic range of a power spectrum analyzer is
generally limited by the dynamic range available from
self-scanned photodetector arrays. Furthermore, the
output current is prcportional to the input rf power so
that a signiricant amount of laser power is needed to
achieve a high dynamic range. Interferometric spec-
trum analvzers produce an output that is proportional
to the input rf magnitude and generally provide more
dynamic range for a ziven laser power.

In this paper a technique is described wherein the
reference beam is spa-ially modulated and geometrically
shifted so that the irterference temporal frequency is
constant over the eatire spectrum. This fixed fre-
quency otfset permits a narrowband postdetection filter
to separate the signal term from the bias terms at the
output. Furthermore, the filter rejects sidelobe con-
tributions from nearby cw signals so that reduced cross
talk levels can be achieved without the need to weight
the input {llumination. A more uniform input illumi-
nation. in turn. leads ‘o better short-pulse detectability
because rhe pulse amplitude is more constant cver the
processing rime of the ceil. A further advantage of the
interferometric technique is that scattered light does
not contribute o the output because it fails outside the
handwidtn of the fiiter.

P -y
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Two types of reference-beam modulation have heen
studied. A chirp waveform, having the same bandwidth
at the rf signal, provides a continuum of spatial and
temporal frequencies at the output plane and, for most
applications, has adequate amplitude stability as a
function of space and time. We also investigated the
properties of pseudonoise sequences; the same post-
detection filtering techniques apply, and, for very short-
pulse or cw signals, the results are similar to those ob-
tained from the chirp waveform except that the sidelobe
suppression effect may not be as strong as with the chirp
waveform. A potential advantage of the pseudonoise
sequence waveform is that it can be recirculated through
the Bragg cell and provides phase continuity at the
output of the system. The choice of which reference-
beam modulation to use is dependent on the applica-
tion.

We have also determined the minimum laser power
required to achieve a given dynamic range and com-
pared the performance of an interferometric and a
power spectrum analyzer having the same operating
parameters. The dynamic range f the interferometric
system is, in the limit of small time-bandwidth prod-
ucts, a factor of 2 larger in decibels than that of a con-
ventional system. The improvement in the dynamic
range is a function of the time—bandwidth product and
the absolute dynamic range obtained.

I thank E. H. Young, Jr., for discussions on the con-
cept of a fixed offset frequency based on his earlier
unpublished work, M. L. Shah for discussions and ex-
perimental work on the spectrum of pseudorandom
sequences, and G. H. Thaker for the computer simula-
tions of the spectrum of pseudorandom sequences.
Special thanks to A. M. Bardos for stimulating discus-
sions and viewpoints throughout this work which was
partially supported by the U.S. Army Research Office
and by the U.S. Air Force Avionics Laboratory.
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Bragg cell diffraction pattemns

A. Vanderiugt

The 2-D diffraction patterns produced by fully iluminated Bragg cells can be characterized by curved singu-
larity functions. The degree of curvature is related to the optical wavelength, the acoustic wavelength, and
the degree of anisotropy of the interaction material. Analytical expressions are derived for the singularity
functions, and the impact of the nonideal diffraction pattern in certain signal processing problems is calcu-
lated. The most notable effect is an increase in the sidelobe leveis and a slight loss in resolution when Bragg
cells are used in spectrum analyzers. Truncation of the diffraction pattern or the use of the line illumina-
tion, when possible, reduces the degradation of the diffraction pattern.

. Introduction

Bragg cells are widely used as modulators, beam de-
flectors, and analog or digital delay lines for signal
processing.! In each case light waves interact with
sound waves, produced by an electrical/acoustic
transducer, so that the light is modulated in space and
time. The quality of the optical wave front is particu-
larly important in applications such as spectrum anal-
ysis, wherein the resolution of the system is significantly
reduced if the wave front is distorted.

One method for testing the optical quality of a wave
front is to use Fourier analysis techniques which give
a direct measure of performance. We examined the
Fourier transforms of various Bragg cells operating in
the longitudinal wave mode. The diffraction pattern
was the expected 2-D sinc? function, except that in one
dimension the function was curved toward the optical
axis.

The purpose of this paper is to analyze this phe-
nomenon for both isotropic and anisotropic interaction
materials, to illustrate the phenomenon for certain types
of Bragg cells, and to calculate its effect on the perfor-
mance of some optical processing systems.

it. Theory

One way to visualize the optical wave front produced
by a Bragg cell is through use of a schlieren imaging
technique. Figure 1 shows a schlieren image of a lead

The author is with Harris Corporation. Advanced Technology
Department. P.O. Box 37. Melbourne. Florida 32901.
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molybdate (PbMoQ,) device operated in the longitu-
dinal mode at a 400-MHz frequency. In the near field
of the transducer, the acoustic waves interfere to pro-
duce an intricate pattern that has been studied by Cook
et al.? A null is formed at a distance ~H*/8A from the
transducer, where H is the height of the transducer and
A is the acoustic wavelength. As the distance from the
transducer increases, the acoustic waves diverge to
produce the far-field interference pattern. Several
studies have been made in which the sound pressure
fields have been calculated and measured by optical
probing techniques.3-? These analyses begin with the
observation that the transducer is equivalent to an op-
tical source so that the sound field can be calculated by
using the Huygens-Fresnel diffraction formula. The
excitation produced by a finite source is decomposed
into a family of plane waves. and the far-field pattern
is generally expressed in terms of an engular spec-
trum.

We take a related approach in which we start with the
sound field produced by a transducer of infinitesimal
height and account for its finite height after we find the
Fourier transform of the coupled optical waveform.
Our model for the acoustic wave front is described with
reference to Fig. 2. The Bragg cell is located in plane
P\, having coordinates x and y. which lies in the front
focal plane of a lens having focal length F. The Bragg
cell has length L in the x direction: the transducer has
a height H in the y direction and a width W in the di-
rection of the optical axis. The cell is illuminated by
a uniform collimated beam of monochromatic light.
The acoustic wave produced bv a wide transducer
having a very small height can be represented as cvlin-
drical sheets that diverge in the v direction as thev
propagate in the x direction. We shall assume that the
width of the transducer is nearlv equal to the width of
the Bragg cell and ignore effects due to reflections.
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Fig. 2. Fourier transform setup for displaying diffraction patterns.

The acoustic wave front propagation within the cell
is similar to the optical wave front propagation from a
line source. Given an ideal interaction between light
and sound, the optical wave front at the exit side of the
Bragg cell for the negative first-order diffracted light
is

1 .
a(x.y) WirT: exp(—j2xr/A) exp(—er), (1
where r2 = x2 + y2 and ¢ is a parameter that accounts
for the frequency dependent attenuation of the acoustic
wave as it propagates. We have suppressed the time
dependence of this propagating wave because we are
interested in only the spatial characteristics of the re-
sulting diffraction pattern. The optical wave front as
given by Eq. (1) does not account for the Bragg angle
matching conditions which change the amplitude as a
function of the acoustic frequency. These effects are
not of fundamental importance here; we are interested
in the form of the normalized diffraction pattern of a
single acoustic frequency.

We first consider the situation for a Bragg cell made
from an isotropic medium in which the acoustic veloc-
ities are equal in all directions. The Fourier transform
of a(x,y) is given by

Schlieren image of a lead molybdate Bragg cell (400 MHz).

1
Ala,d) = f f — exp(—j2nr/A) exp(—er)
Py VJAr P P

dxdy, (2)

27
X exp [-—1 T (ax + 3y)

where a = arctan(£/F) and 3 = arctan(n/F); the vari-
ables £ and 7 are the physical coordinates in the Fourier
transform plane. We now change to polar coordinates
by letting x = r cosf and y = r sinf so that Eq. (2) be-
comes

L ez ] )
A(.sff —— exp(—j2rr/A) exp(—er)
a,B) o S mexp j2x exp(~—er
.2
X exp [—] % {a cosf + 3 sinf)|rdré, (3)

where the region of integration extends over the semi-
circle in the right-hand plane of the Bragg cell. It is also
convenient to convert the coordinates in the Fourier
plane to the polar form; that is, let @ = ¢ cosy and 8 =
o siny. Considering the integration on § first, we
have

2 2xor
Hroy) = - = - 8| ds, 4
G(r,o,Y) J‘_mexp[ J N cos(y ) d9 )
which is independent of v and equal to!?

G(r,0) = 2xdo(27ro/N), (5)

where J¢(z) is the zeroth-order Bessel function of the
argument z. We now use G(r,o) in Eq. (3) to obtain

L 2
Alo) = f -',_‘" Jo(2rra/\)
0 A

VIAr
X exp(—;j2xr/A) exp(—er)dr, (6)

We can extend the upper limit to infinity if we raultiplv
the integrand by rect(r/L =Y,), and, after Eq. (6) has
been solved, we account for the finite length of the
Bragg cell through a convolution in ¢ with a fanction
W (o), which is the Fourier transform of the product
rect{r/L — ;) exp(—er). The solution to Ey. (6) is given
by the relationship!!

f expl—at)/ (bt)t*~1dt =
0

(i) Tiu + via? + b2«
2a

a*~ 2Ty + 1)

fv=-u+1 - H3

XF(EH—'l—-E+1:v+l:——,}- o
2 2 a-
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Fig. 3. Phase vector K(¢) and Poynting vector K(y) plotted for 5
= =1y Both vectors follow the dashed circle for isotropic materials
(s = 0).

where F(-) is the hypergeometric function. For our
application, we have v = 0 and u = 3/2 so that

2xT(3/2) Y
Alo) = === Fl-1a3/s1:-=|. 8
(o) viAaT(1)(a? + b2)112 = )
where a = j27/A and
= 2xa/\. )

Since A(o) is the Fourier transform of a (nearly) co-
phasal optical wave front over the infinite half-plane,
we expect A (o) to be a singularity function that behaves
as a 0 function.!? A singularity function in o results if
b2 = —a?, provided that a = 0 and that F(—1/4,3/4;1;1)
is finite. If b2 = —a2, we use Eq. (9) to obtain

o2 =a? + 32 = (MA)2, (10)

which is a valid solution because a = 0, and we have
that!®

L
LT (Ys) ~0.54,
F&/4T/a

so that the hypergeometric function is finite. The
equation of the singularity function as given by Eq. (10)
is that of a circle having a radius A/A centered on the
optical axis. As the acoustic wavelength changes for
different rf drive frequencies, the singularity function
is always a circle centered on the optical axis, but its
radius varies inversely with the wavelength.

To complete the analysis for isotropic crystals, we
now consider the effect of the Bragg angle matching
conditions which have not been explicitly included in
the analvsis. To maximize the amplitude of the dif-
fracted light, the input illumination raust be at the
Bragg angle (g = A\/2A). If we illuminate the cell at
the Bragg angle with respect to the v-z plane, the dif-
fracted light will be maximized in the direction of v =
w, and the singularity cccurs at @« = =A/A. Since the
position of the singularity is measured with respect to
the point at which the undiffracted light is focused
tdefined here as the optical axis), we get the classical
result that the angle between the diffracted and un-
diffracted light is twice the Bragg angle.

The singularity must also be convolved in the radial
direction with W (), which is the Fourier transform of
rectir/L —la1 exp(—er). If the attenuation is small over

F(-=1/4,3/4;1;1) =

1094 APPLIED OPTICS / Vol. 21. No. 6 15 March 1982

the aperture of the cell, W(a) can be approximated by
sinc(aL/\). Finally, we account for the finite height of
the transducer through a multiplication by sinct3H/
N).

In an anisotropic crystal, the phase velocity of the
acoustic wave varies as a function of the direction of
propagation and the orientation of the crystal relative
to the transducer. Waterman!? has developed rela-
tionships for the velocities and the relative changes in
velocity for waves propagating in directions close to the
principal axes of crystals. He shows, for example, that
velocity v in the {001] propagation direction for a te-
tragonal crystal is

v = (cq/p)t2, (n

and the relative change in velocity in a direction close
to the direction of propagation is

Ali _ @2 (c13+ c3al2c4q + c13 = cua)

(12)
v 2(‘7\3 (€33 = C4a)

where c;; are the elastic constants, p is the density of the

crystal, and ¢ is shown in Fig. 2. For small values of ¢

we can write Eq. (12) as Av = =s¢?v, so that the phase

velocity at an angle ¢ is

v(¢) = u(l = s0?). (13}

We use a negative sign in the relationship for Av to be
consistent with Papadakis® and Cohen.® Since the
acoustic wavelength is A = 27wv/w, where w is the
acoustic frequency, the wavelength dependence on ¢ has
the same form as Eq. (13).

We are now in a position to see how the solution to the
isotropic case can be modified to account for the an-
isotropy of certain materials. The coupling of the op-
tical and acoustic wave fronts requires that we first find
the acoustic pressure field within the cell. In Fig. 3 we
show the acoustic K vector associated with the phase
velocity of a propagating wave. The magnitude of this
vector at an angle ¢ is given by

K(g) = 2 = 2%

—_— (14
vie) Al -s¢?) )

The acoustic energy in an anisotropic material propa-
gates at an angle x = ¢ + . Auld!5 derives a relation-
ship between the magnitudes of the phase velocity and
the energy velocity in which v (x) = v(¢)/cosy, where
¥ is the angle between the phase vector and the energy
(Povnting) vector. Furthermore, Papadakis® shows
that Y = —2s¢ so that

2

sx?
velx) = v 1 - . 115)
X [ ll—'.lsrl

which is valid to terms of the order of x2. The magni-
tude of the acoustic K vector associated with the energy
flow is then

) 27

rat ) B AL = sy71(1 = 280] .

K.x)= (16
The scalar product of the Poynting vector and a dis-
tance vector defines the pressure at each point within
the cell. The scalar product is
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Fig. 4. Singularity curves in the Fourier plane for anisotropic Bragg
cells.

K,-r=2—:-[x + y2/2x(1 - 2s}, an

where we have used the relationship that x = arc-
tan(y/x) = y/x. The Fourier transform of the optical
wave front in the anisotropic case is then

1 2
A = m—— —_— — + 2 -9
(a.f) J;lf\/—j exp{ i3 [x + y?/2x(1 - 25|
X exp [-—j -—2; (ax + By)] exp{—ex)dxdy, (18)

where we have replaced r by x in the denominator and
in the attenuation factor because we require that x be
small. This integral is considerably more difficult to
solve than Eq. (2); the solution is given in the Appendix
where we find that the singularity function has the
parabolic form

- Ma + MA)

f A(Yp ~s)

(19)

Although Eq. (18) is the more complete diffraction
integral because it accounts for the pressure field via the
Poynting vector, the same singularity function can be
obtained in a simpler fashion for the special case of a
continuvous wave signal. In this case we cannot physi-
cally distinguisk the direction of the Poynting vector
since we assume that the infinitesimal transducer ra-
diates energy in all directions. We can then find the
singularity function more directly from the isotropic
solution by using the scaling property of the Fourier
transform. If a 2-D aperture function is extended by
a scale factor in a particular direction, the diffraction
pattern contracts in the same direction, and the am-
plitude is adjusted by the same scale factor.'® From Eq.
(14) it .s easily seen that the acoustic wavelength is
scaled by a factor (1 — s¢2) so that the spatial frequency
o for the isotropic case is scaled by (1 — s¢2)~! in the
direction . We then have that o{¢) = (VAN 1 —s¢2)~t
30 that

\ coso A sing
a W — = __. .
Al — 509 All = s¢?)

The amplitude A(o) as given by Eq. (8) must also be
scaled by (1 — s¢°) to obtain the result for the aniso-
tropic case. Since the physical boundaries of the ap-
erture do not change, the weighting functions are the
same as those for the isotropic case.

(20}
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The parabolic form of the singularity function can
also be obtained from Eqs. (20) if we note that 3 = A¢/A
and use this value for 3 in the expression for . For the
negative diffracted order, we have

-A -\
az T (1= (s = Yie?] = —\— [1= (s = %)}(AB/N?,

from which we get the result that

_Ma+MA)
D)
in agreement with Eq. (19).

In Fig. 4 we show the singularity function of aniso-
tropic materials for several values of the parameter s.
For s = 0, the singularity function is a sector of a circle.
For s <0 the singularity function curves more rapidly
toward the optical axis, whereas for s > 0, the singularity
function curves less rapidly toward the source. The
horizontal difference between the spatial frequency at
an angle ¢ and that at ¢ = 0 is obtained from Eq.
(20):

Aale) = ag = ay = (s — )o2N/A. (21)

From this relationship we see that s = !5 results in a
singularity function that is a straight vertical line
passing through « = —\/A. Papadakis® gives some
limits on the value of s in terms of the elastic constants
and argues that s must <Y%. The values of s as given by
Papadakis and by Waterman range from +0.38 for KCl
to =5.23 for Zn. Cohen® observed that a crystal for
which s = Y is one in which the acoustic beam diver-
gence is zero. Such a crystal would produce a self-col-
limating acoustic beam, and the diffrc ;tion pattem
would be identical to that produced by a 2-D rectan-
gular aperture having a uniform phase weighting.

Equation (21) also shows that the magnitude of
Aa(¢) can be large if s is highly negative, which is the
case for TeOs operated in the slow-shear mode. Fur-
thermore, Aa(¢) gives a direct measure of s from ex-
perimentally generated diffraction patterns as we shall
show in the next section.

. Experimental Results

Figure 2 shows the experimental setup used to ge.-
erate the diffraction patterns. Light from a He-}Ne
laser is collimated so that the Bragg cell is illuminated
at the Bragg angle. Lens L. produces the 2-D Fourier
transform of the fully illuminated Bragg cell at plane
P,. Figure 5 shows the resulting diffraction pattern for
a PbMoQj cell driven by a single frequency at 400 MHz.
The intensity /(«,3) follows the singularity functicn
whose coordinates are given by Eq. (20). The intensity
weighting in the 3 direction is sinc2(H3/)), and the in-
tensity weighting normal to the singularity function is
sinc*(Lao/N). An additional weighting in the horizontal
direction is due to the Bragg angle mismatch conditions:;
it is not obvious unless the value of s is highlv negative.
At 3 = 0 the singularity function occurs at « = =\, \
relative to the focal point of the undiffracted light.
where A/ .\ is twice the Bragg angle.
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Fig. 5. Diffraction pattern for a fully illuminated lead molybdate
Bragg cell driven at 400 MHz. Unudiffracted light is attenuated by
neutral density filter.

Fig.6. Diffraction patterns for a tellurium dioxide Bragg cell driven
at 500 and 300 MHz (double exposure}.

Table I Elastic Constants (X 10! N/m?)
PbMoQY? TeQ,!8
o1 1.092 0.532
€12 0.683 0.486
c13 0.528 0.212
Ca3 0.917 1.085
Cu 0.267 0.244
Cog 0.337 0.552

Figure 6 is a photograph obtained by a double expo-
sure of diffraction patterns for TeO. excited at 500 and
300 MHz. The features noted above are evident, as well
as the fact that the location of /(«,) is a function of A
and that the singularity function becomes less highly
curved as the acoustic drive frequency increases. In the
limit of very high frequencies, or a large ratio of A/A, the
diffraction pattern more nearly approximates an or-
thogonal set of sinc? functions. From rhis figure we can
also deduce that the TeQ- cell produces a singularity
function that opens more slowly than that for PbMoQj.
At 400 MHz, the acoustic wavelength is 9.1 um for
PbMoO4 and 10.5 um for TeO,, which accounts for part
of the decreased curvature. The remainder is due to
different values for the relative changes in velocity. By
measuring the locus for each singularity and by using
Eq. {19), we find that s = —0.168 for PbMoO, and s =
0.24 for TeOs. These vaiues will now be compared with
those obtained from the elastic constants. From Eq.
(12) we note thar
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- =(c1a+ c33) (244 + c13 = cag)

(22)
2c33(c33 = Caa)

In Table I we give the values of the elastic coefficients
for PbMoQ, and TeO; from which we calculate that s
= —0.176 for PbMoQO, and s = 0.274 for TeO.. Our
measured data for s are in reasonable agreement with
those calculated from Eq. (22), given the degree of ac-
curacy in measuring the c;;.1°

We also trsted a Bragg cell fabricated from fused
quartz, which is isotropic, and found the singularity
function to be a circle as predicted by Eq. (10) or (20).
Since the rate at which the singularity function deviates
from a straight line is proportional to (}» — s), we find
that the rate is lowest for TeO, and highest for PbMoO,;
the rate for fused quartz is nearly halfway between these
two values.

The diffraction patterns produced by acoustooptic
cells operated in the Bragg mode are similar to those
obtained by Shaeffer and Bergmann?? for cells operated
in the Raman-Nath mode. In the examples they give,
as well as those illustrated in Refs. 21 and 22, the dif-
fraction patterns are symmetric about the focal point
of the undiffracted light because drive frequencies are
low. These patterns are also generally more compli-
cated because both shear and longitudinal waves
propagate within the cell.

The significance of the fact that the diffraction pat-
tern for Bragg cells lies along a curved singularity
function instead of a straight line depends on the ap-
plication. The Fourier transform of signals introduced
by Bragg cells is used extensively in spectrum analysis
and in spatial filtering applications. In these applica-
tions the Bragg cell is often illuminated by a line source
generated by inserting a cylindrical lens between L, and
the Bragg cell (see Fig. 2) as well as between the Bragg
cell and lens Lo. In this fashion, a 1-D Fourier trans-
form is generated with the line source being imaged in
the orthogonal direction. In some configurations,
however, it may not be possible to use a line illumination
because two Bragg cells are used in series,?? or they are
used in a Rayleigh interferometer wherein a single lens
is used to ensure that the Fourier transforms overlap.
For such configurations we want to know the effect of
integrating (detecting) light in the vertical direction.

In Fig. 7 we see the results of integrating I{«,3) in the
8 direction to the tenth zeros on either side of the hor-
izontal axis. Since A« as given by Eq. (21) gives the
deviation of the singularity function from a straight line,
we define a parameter D = (1, = s)A/A; the integrated
intensity is shown for D equal to 0, 1/16, 1/32, and 1/64.
The result for D = 0 represents the integrated intensity
of the diffraction pattern of a hypothetical self-colli-
mating Bragg cell (s = '%) and forms a basis for com-
paring the results for other values of D. We compare
the results for D = 1/64 with the ideal case. since it
shows the greatest departure from the ideal. First, the
sidelobes are asymmetric. being higher in the direction
of the optical axis, and the nulls are less well formed.
Second. the main lobe width is 3% wider and is shitted
toward the optical axis by 4% of the m»in jove width as
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Fig. 7. Normalized intensity of diffraction pattern integrated in the
vertical direction. The result for D = 0 is a sinc®(a) function centered
at —=A/A.
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Fig. 8. Details of the intensity of the central lobe of diffraction
pattern.

can be se¢en more clearly in Fig. 8. Third, the peak in-
tensity i3 reduced by 13% because the diffraction pat-
tern is h ghly curved toward the source. Note that the
results for an isotropic material (D = 1/16) show a
similar trend; the best results are obtained for an an-

e e

S isotropic material having a value of s as close to % as
3 possible.

£ In Fig. 9 we show the results when /(,3) is integrated
3 to the fifth zeros on either side of the horizontal axis.

dent except that the degradation from the ideal is not

as great. Experimental data obtained from a TeO; cell

operating at 290 MHz (equivalent to D = 1/32) is also

plotted in Fig. 9. Although the overall level of the

sidelobes is higher for the experimental data due to

scattered light, the general form of the data is in good
y agreement with the theory.

The best performance is obtained when we integrate

only to the first zeros in the vertical direction. The

results, shown in Fig. 10 for the sidelobes extending

# The same general features as described above are evi-

YTy
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toward the optical axis, suggest that the Fourier trans-
form should be truncated at the first zeros by the de-
tector to avoid an increase in the sidelobe levels. The
penalty for truncation is a loss of ~10% of the available
optical power.

IV. Bragg Cell lilumination

In some applications, the Bragg cell is illuminated by
a line source generated by the use of a cylindrical lens
arrangement as described in Sec. III. We now compare
the effects of 1-D illumination with that of 2-D illumi-
nation on the diffraction pattern. In this case, the
diffraction pattern is understood to exist in the hori-
zontal direction, whereas the light distribution in the
vertical direction is the image of the line source.

We use the same model for acoustic wave propagation
as shown in Fig. 2. We now cannot account for the fi-
nite height of the transducer through a multiplication
of the singularity function by sinc(H3/\) in the Fourier
plane; instead we must calculate the effect of the finite

h EXPENIENTAL DATA
10! -
p
102 - ’
37
103 L T T
-6 -4 .4 [ ] 4 ]

a-SPATIAL FREQUENCY

Fig. 9. Theoretical and experimental intensity of diffraction pattern
for TeO, (290 MHz) integrated to the fifth zetus.

610

x-SPATIAL FREQUENCY

Fig. 10. Intensity of diffraction patterns when integrated in the
vertical direction to only the tirst zero. Normalized so that the in-
tensitvis Loat o =0for D =0,
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Fig. 11. Amplitude (left-hand scale) and phase (right-hand scale
in radians) along the v = 0 axis due to the entire transducer.

transducer at the plane of the Bragg cell. The contri-
bution from an elemental area of the transducer for the
anisotropic case is obtained from Eq. (18):

1
V7Ax
We convolve this function with rect(y/H) to obtain the
total amplitude and phase function over the exit face
of the Bragg cell. The convolution integral is then

alxy) = exp{—J ?‘-‘I [x + y*/2x(1 = Zc)l] exp(—ex).

f. Lo [—‘ iy —u)?)
- Viaz P -2
where we have neglected the attenuation factor e.

As before, we assume that the width of the transducer
along the optical axis is large so that end effects are
negiigible. This assumption may seem to be less valid
than before because the light is now focused within the
cell. The transducer for the PbMoQO, cell is 150 um
high and 600 um wide. If a Gaussian beam is focused
within the ceil so that the beam waist height is ~ 40 um,
the beam waist does not grow by more than 4% at the
entrance and exit faces of the cell.2* The line illumi-
nation is, therefore, more nearly equivalent to a colli-
mated beam than it is to a convergent or divergent
beam.

The rect(u/H) function in Eq. (23) can be removed
by reitricting the limits of integration to |u| < H/2 s0
that®

a(z,y) = rect(u/H)du, (23)

atx.y) = WC[(1 = yIvgrx] + jSHQ1 = viv g/xlt
+ BICHL + vy g/x] + jS[(L + yiv g/xl, (29

where C(-) and S(-) are the Fresnel sine and cosine in-
tegrals, and ¢ = H2/2.\(1 — 2s)L. The variables in Eq.
(24) have been normalized sothat |y| < 1and0 < x <
1; this result shows that the amplitude transmittance
along the Bragg cell at any value of v is a combination
of Fresnel integrals. The amplitude and phase along
the horizontal axis (v = 0) are shown in Fig. 11 for a
PbMoO, Bragg cell driven at 400 MHz with H = 150 um
and L = 2.6 mm. Since the Fresnel integrals are func-
tions of y 1/x. both the amplitude and phase oscillate
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rapidly at small values of x. The frequency of oscilla-
tion decreases as the distance from the transducer in-
creases, and, for large values of x, the amplitude decavs
slowly. The maximum dip in the amplitude occurs at
xy; from Eq. (24) we find that this dip occurs when the
argument of the Fresnel integral is <1.88. Therefore,
we find that
H‘l

TIALO -2
For an isotropic medium, this value of x, agrees rea-
sonably well with that predicted by Ingenito and Cook®
who give a value of x, = H2/8AL.

We now compute the Fourier transform of a(x,y) to
obtain the diffraction pattern in the horizontal direc-
tion. For convenience, we normalize the angular spatial
frequency so that «; = (a + A/A)L/X:

Lo 1251

1
Fta,v) = f aix.y) expl—;2xu x)dx. 126)
0

The final step is to integrate the intensity of the Fourier
transform over y to obtain the diffraction pattern that
will be measured by a photodetector. Figure 12 shows
the normalized magnitude squared of F(«,) for
PbMoOQ, as well as the diffraction pattern for the ideal
case of a self-collimating material. We see that the
central lobe is slightly broader due to a combination of
the amplitude and phase weighting of a{(x,y). The
entire diffraction pattern is shifted by a small amount;
from Fig. 11 we see that the linear component of the
phase over the region 0.2 < x < 1 is ~0.5 rad so that the
pattern should shift by nearly x/10 (i.e., ~10% of the
angular distance between adjacent nulls). Incompar-
ing the results in Fig. 12 with those in Fig. 7, we see that
the sidelobes toward the optical axis are lower, instead
of higher, than those due to a uniformly illuminated
aperture. The use of line illumination, therefore, causes
the sidelobe levels to be more nearly equal to those
produced ty a uniformly illuminated aperture.

From Eq. (24) and Fig. 11, we see that the amplitude
transmittance fluctuates rapidly in the region x < x,.
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Fig. 12.  Intensity of diffraction pattern when the Bragg ceil is illu-
mnated by a line source.

.

Ao Aabolokata aiaa A




We might expect, therefore, that the Fourier transform
would be more nearly ideal if we were to truncate the
illumination so that this region does not contribute to
the Fourier integral. We calculated the Fourier
transform of a(x,0) only over the range xo < x < | and
noted some differences in the structure of the sidelobes
extending toward the optical axis. The major change
is in the value of the second sidelobe and the depth of
the second null in the Fourier transform. As we in-
creased the range of y over which we integrate at the
Fourier plane, we found the differences to diminish so
that truncation of the uscillating portion of a(x,y) has
less effect.

V. Summary and Conciusions

The diffraction pattern of a uniformly illuminated
Bragg cell lies along a singularity function that is de-
termined by the phase velocity of the interaction ma-
terial. For an isotropic material, this curve is a circle
whose origin is at the focal point of the undiffracted
beam and whose radius is twice the Bragg angle. For
an anisotropic interaction medium we used Waterman'’s
approximation to the phase velocity profile and found
that the singularity function is a parabola having its
vertex at twice the Bragg angle. Experimental mea-
surements of s are in close agreement with those ob-
tained from the elastic constants.

In signal processing applications where the Bragg cell
must be uniformly illuminated, the curved singularity
function causes the sidelobe levels in the direction of the
source to increase when the diffraction pattern is inte-
grated along a vertical line instead of along the locus of
the curve. The severity of this problem can be reduced
by restricting the region of integration in the vertical
direction; the permissible region of integration is a
function of A, A, and s. Line illumination of the Bragg
cell can be used to further reduce the deterioration of
the diffraction pattern. Some residual aberrations still
exist under these conditions, but their effects are small.
A final technique for improving the diffraction pattern
is to use an aperture stop to remove the contributions
of rapid acoustic wavz front oscillations near the
transducer.

I thank A. M. Bardos, M. L. Shah, and G. S. Moore
for stimulating technical discussions and G. H. Thaker
and M. A. Epstein for assistance with the computer
programs. Special thanks to S. J. Adhav for assistance
in the experimental work. This activity was performed
under a grant from the U.S. Army Research Office.

Appendix
From Eq. (18) we have that the effective ampiitude
distribution at the Bragg cell is

atx.y) = ————

—— exp '— Ll fe + vi/2xil = 23)]} expi—ex .
v rAx \ A

and the region of integration is a wedge having its apex
atx =(Qsothat0 < x < L and |v| £ oyx, where o, de-
termines the upper and iower boundaries of the wedge.
We first periorm the integration on v:

ot e e e e - .
CHIE iV WAl S Sl W Y G W U W S o e doad

oL
Gl = f exp|—s2xv¢/2.Ax(] — 25)] exp(~;2x3v/Mdy,
- ok
which can be solved by using the relationship that26
f expi—ct? = 2dt)dt = Yy V'(Eexmdz/(‘)
.
X erfiy ¢t +d/vchic = 0.

If we make the associations and definitions that

¢ = x/Ax(l = 23),

d = jxd/A. (Al
e = x/A(l — 2),
we have that
Gix,3) = %y JAx expidix/e)
X terf|tooy » + d/y e\ x|
- erfl(—poy ¢ + d/\ e\ Tl (A2)

We now account for the finite transducer height H by
multiplying G(x.3) by sinc(H3/A). The integration on
x now becomes

L - - -—
Aa,d) = Yy sinctHB/N) j; erfliony 7 + d/y DIV T)

2 A
X exp((d?/e = ¢)x] exp [—j Tt{a + I) x{dx (A3)

minus a similar integral in which ¢ is replaced by —o.
We can extend the upper limit to infinity if we multiply
the integrand by rect(r/L — %) and account for the fi-
nite limit through a convolution in « with sinc(La/A).
We now use the relationship that?6

= — Lk
. , W~y ] ——— > 0.
j; exp(—~ft) erf\ gtdt 7 \, vz Re(f +g)> 0. (Ad)

The presence of the attenuation factor ¢ ensures that
Re(f -+ g) > 0so that Eq. (A4) is valid. We must exer-
cise some care in applying Eq. (A4) in evaluating Eq.
(A2) because the signs of the arguments of the error
function change as a function of 3. Consider the in-
terval for which |d/v/e| < ¢,/e: from Eq. (A1) we find
that this corresponds to | 8] < ¢oA/A{l — 2s). For this
range on (3, the sign of the argument of the second error
function in Eq. (AZ) is negative, and we can use the re-
lationship that erfi~t) = —erf(t). We now make the
associations that

i 2r
Il)‘

A )
a+—i—dJile + e,
A

g ®mwonv e +d\ b, (A5)

v g2 = ooy e —d/\ e

where we use g; in Eq. (A3) and g, in the companion
integral. We now have that

]

£
‘ L. (A6)

. a1 ! K
Atosd)y = Vs sinetH3/N) 7\’ +fV T+ g
As explained in the text, we expect A{«a,3) to be a
singularity function in « and 3. Such a function is
obtained in the limit as f tends toward zero. From Eqs.
(A5 and (Al) we find that 7 = 0 vieids

[+
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in the limit as ¢ — 0. Letting ¢ — 0 is equivalent to the
requirement that the acoustic attenuation be very small;
in a practical sense, if ¢ is small over the aperture length
L, use of the singularity function is valid. Equation
{A6) now becomes

(AT)

(A8)

+A
Ala,3) = % sinc(HB/N)S [52 - "—“'—LA—’I :

Al —3)

which must be convolved with sinc(La/A) to account for
the finite length of the Bragg cell. The resulting in-
tensity of the Fourier diffraction pattern is then

l{a,3) = Y, sinc?

%/(a.ﬂ) sinc2(HB/\), (A9

where f(a,3) is the argument of the & function in Eq.
(A8).

Equation (7) is an important result since it embodies
many features of the diffraction pattern. First, it is the
standard form of a parabola whose vertex is located at
o = =A/A. The position of the vertex is inversely re-
lated to the acoustic wavelength and directly related
acoustic frequency. Second, the ratio of A/A is twice
the Bragg angle; that is, at any acoustic frequency w, the
angular displacement of I(a,3) at 3 = 0 is at 20 with
respect to the undiffracted light. If we had illuminated
the cell at the Bragg angle with respect to the optical
axis, which requires a factor exp(~j2780gx/\) in the
integrands of Eqs. (2) and (18) in the text, the undif-
fracted and diffracted light would propagate at angles
of £8g with respect to the normal to the Bragg cell.
Third, the latus rectum of the parabola is equal to
A/ A(Y% = 5); the value of s then determines the degree
of curvature of the diffraction pattern in the vicinity of
a = —=\/A. Fourth, if s = 0, the crystal is isotropic so
that the singularity equation becomes

W—%uﬁx/m. (A10)

which shows that the focus of the parabola is midway
between the vertex and the axis defined by the undif-
fracted light.
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ABSTRACT
-~
In some applications, the performance of multichannel Bragg cells is
' compromised by the spreading of the acoustic waves as they propagste; the
spreading causes the signals in the chanmels to overlap. The overlapping
- can be significantly reduced by a spatial filter in a Fourier/image plane
: the spatial filter is shown to be s cylindrical lens whose power is a
function of the distance from the transducer. The effects of changes in the
. drive frequency as well as those of displacements of the filter are
caloulated. The reduction in the modulation transfer function as a fuaction
:.:: of propagation distance is calculated and some bcunds on the time—bandwidth
) product and the aumber of channels are derived. In general, the overall
" performance can be improved by increasing the center frequency of the Bragg
g cell while keeping the bandwidth fixzed.
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1.  INIRODUCTION

In some signal proocessing applications, multichannel Bragg cells are
required to handle wideband parallel signals. Omne example is that of
processing signals from a phased array antenna wherein we associate esch
channel of the Bragg cell with an antennas element. Multichannel B;n'g cells
1, , snd

cells with as many as 128 channels have been dcscribods. As the channels

were developed in the early 1960’'s by Lambert and his associates

become more densely packed, the transducer heights are reduced causing the
scoustic emergy to spread over larger angles as it propagates through the
interaction material. The acoustic waves from adjscent channels therefore
overlap after a short propagation distance so that the utility of the device
may be less than that desired.

‘ Experiments with a 128-channel Bragg cell constructed from SF-8 dense
flint glass and with a 32-channel device constructed from TeO, clearly show
the acoustic uptoadiig phenomena. In the high speed recording applicatioas
for which these devices were dovolopods. only the region near the tramsducer
was used to modulate the light beam. Ve also noted, however, that even
after the scoustic beams had overlapped completely, the diffracted light
pattern could be separated into discrete channels to resemble the pattera
produced near the transducer. This was accomplished dy forming a Schlierer
image at a plane displaced axially from that of the Bragg cell itself. This
tesult, in turn, suggested that the acoustic spreading, in some sense,
iatroduces the equivalent of 3 variable focusing power which is a linear
function of the propsgation distance. If this focusing actiom could be
compensated so that, st some plane in am optical system, the diffracted
light from each channel is confined to that channel, a more widely useful

multickannel Bragg cell would result.

It is not sufficient, however, to confine the diffracted light to the
channel without giving coasideration to the impact that the compensation has
on the modulation transfer functiom. As the acoustic emergy propagates, the
information diverges so0 that compensation causes it to be spread in the

direction of propagation. The result is & loss in the modulation transfer

function that is a function of the propagation distance., The desire to




coafine the scoustic spreading must thea be balanced by am acceptable loss
in the modulation transfer functiom,

2. THEORX

The model that we use for smalyzing the acoustic spreading is the same
as that used bo!oro‘ and is shown in Figure 1, An electrical signal drives
a piezoelectric transducer having height H and an interaction width W. The
transducer launches an acoustic wave within the Bragg cell which changes the
index of refractiom: this, in turn, causes the phase of light from s
cokereat source to be modulated in space and time. If the drive signal is
an RF signal at frequency f°. the acoustic wavelength is Ac = V/fc. where V
is the velooity of sound in the medium.

The acoustic wavefroants propagate in s fashion similar to optical
vavefronts derived from a line source (K -> 0). If W >> H, we can model the
wavefronts as cylindrical sheets which, for sn isotropic medium, spread at
an sngle +¢ with respect to the x—axis, The degree to which sooustic

spreoading ocours is s function of the anisotropy of the medium, the acoustic
wavelength and the transéucer height,

The first step is to calculate the Fourier transform of a single
channel Bragg cell driven as shown in Figure 1. We wish to derive the
transform in the y-directly only, while we image the Bragg cell in the
z-direction. We begin by comsidering the transducer to be a infinitesimal
line source and account for its fimite height by multiplying the Fourier

transform by & simc—function., The fourier integral to be solved 1:4
1 ¢°x
G(x,p) = m[oxp[-ijy‘/ZAx(l-Zs)]oxp(-jZnﬂy/l)dy, (1)
, _¢°x

where § is the angular spatial frequemcy, s is a parameter that
characterizes the degree of anisotropy as given by the elastic constnnts."s
A is the wavelength of the scoustic wave within the medium, and A is the

vavelength of light. The region of integration is over a wedge whoseo apex is
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at x = 0 and ’o is the angle at which the acoustic beam has its first nulls;

. .5
this region contains most of the optical energy. The far field value of ¢O is

¢ o = A (1-2s5)/H. (2)

In reference 4, we solved (1) in terms of error functions having complex
valued arguments. An equivalent result that is somewhat simpler to derive
and provides more physical insight can be obtained through the use of

Fresnel integrals. Ve let

c = g/Ax(1-2s)

(3)
d = aB/A
s0 that
1 o
G(x,f) = /EK;. exp(-j(cy*+2dy)] dy (4)
Z4 %

By completing the square of the exponential and by changing variables, we
obtain
b

G(x,B) = 7§k; exp(jd'/c)sinc(BH/li/:xp(—jn’)dn, (5)
a

where a = -¢ox/c—+ d/ %, b = ¢ox/:+ d/ %, and sinc(BH/A) is the
multiplicative factor needed to account for the finite height of the
transducer. The integral is a Jresnmel integral that further modifies the
amplitude of G/x,8). Depending on the values of the limits, this function
may be nearly rectangular (similar to the near field diffraction pattern of
82 slit) or nearly a sinc~function (similar to the far field diffraction
pattern of a slit). In all cases, the mcst rapid change in the value of the
Fresnel integral occurs at those values of f where either the upper or the
lower limit is equal to zero. By using (3), we find that the Fresnel

‘*window’’ has a nearly uniform value for

I8l ¢ & A/(1-2s). (6)
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Ve substitute (2) into (6) and find that the Fresmel integral has s nearly
uniform value for

Isl < a/m, (7

which is the same as the regiom occupied by the central lobe of the
sinc(PH/A) weighting due to the finite transducer height. The Fresnel
integral, them, has the effect of suppressing the sidelobes of the
sinc(pH/A) function as well as producing some low modulation fringes in the
central lobe. At small values of x, the Fresnel integral transitions into a
broad Fraunhofer diffraction pattern of s narrow slit and has very little
impact on the amplitude of G(x,B). ‘

If we denote the total amplitude weighting of G(x,B) by f£(x,8)., we have
that

G(x,p) = £(x,p)expljnxA(1-25)B3/23]. (8)

We now concentrate on t. phase part of G(x,B). The key point is that the
phase factor is guadratic in f and linear in x. At the transducer, where

x = 0, thers is no optical power, whereas the optical power is greatesst at
x » L. If the optical power sould be cancelsd, the inverse Fourier
trans:lorm would confine the light to rectangular channe'~ with no spreading
into ndjscent channels. In principle, the optical pow - can be compensated
by a section of s conical lens whose power varies lineariy from zero, st

x = 0, to a value of LA(1-2s)/AF? at x = L. An slternative method is to
construct a holographic correctirg element from ome channel of the Bragg
cell; such an element will thea correct the acoustic spreading for all

channels simultaneously in the same fashion zs would a matched filter.

The use of s holographic element for compenssting the acoustic
spreading has been reported by Vodovatov, et sat?. The derivation given
there for the value of G(x,8) does not agree with (8), particularly with
respect to the phase factor having quadratic dependence onm § and linear
dependence on x. The result from (8), however, is comsistent with the

observation that the channels can be separated by focusing at & different
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plane using auxiliary optics. As an aside, it is easy to show that the
axial distance from the Bragg cell at which the channels become separated is
equal to x(1-2s)A/A. Thus, the °’'focal line’’ has a slope of (1-23)A/A with
respect to the horizontal axis; for typical Bragg cell parameters, this
slope corresponds to an angle of 88° to 89° which is nearly parallel to the
optical axis,

We now consider some details relating to the construction of a
holographic correcting elemoent based on the result given by (8). This
analysis provides some useful insights into the performance relationships of
sulti-channel Bragg cells. We construct the element by using a line
reference source, as shown in Figure 2, that lies horizontally in the plane
of the Bragg cell and is displaced vertically by a distence D. The line
source is produced by s cylindrical lens that collects part of the same
collimated besm that illuminates the Bragg cell. A sphericai-cylindrical
lens combination then creates a Fourier transform in the vertical directiom
and an image in the horizontal direction. The figure also shows & second
Pourier/imaging lens combinstion that will be used later to create s
corrected image of the Bragg cell at the output plane. The reference beam
is modulated by a device (not shown) so that it has the same temporal
frequency as the light diffracted by the Bragg cell. The total light
distridbution in the Fourier plane is then

A(x.B) = n.jZaDD/L

+ 6(x,p). (9)
where R is the amplitude of the reference beam. This light distribution is
square—law recorded on a photographic plate and the developed plate is
replaced in the system. If we select the sppropriate diffracted order at
the ocutput plane, the effective holographic transmitttance function is

.
H(x,.8) = BRG (x,B)expl(j2afD/A]. (10)
The action of the holographic element is to correct, or conjugate, the
cylindrical phase factor contained in G(x,B). We see from (8) that if the

holographic element is constructed at am acoustic vuvelength.\o. there will

be some residual aberrations as the drive frequency changes to produce a
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different acoustic wavelength A. Ve now examine the nature of this error as
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well as the eifects of positioning errors of the hologram.

DALY
.

: To simplify the notation, let a = n(1-22)A/A3 and we ignore any

F smplitude weighting terms as well as the linear exponential phase factor

- that merely causes an overall vertical displacement of the corrected image.
‘ Suppose that the holographic filter was made at an acoustic wavelength Ao'

E If the operational wavelength is at some other value, aberrations will arise
F whose phase is proportional to expl[jap3x - j(n+ao)ﬁ3x], where L is due to

the value of ‘A-'Ao° We can slso determine the effects of displacement of

i the filter in the B and x directions so that the residual phase error 8 (x,B)

becomes

8(x,8) = af3x - (a+u°)(ﬂ+ﬁ°)'(x+xo). (11)

where Bo and x, are the positional errors. Note that the principsl terms in
af3x cancel so tkat, if we arrange the terms ia descending powers of f, we
have that

0(x,p) = a B? + apix + 8 Bix,

+ 2(u+a°)boﬂx + 2(a+;o)aopx° (12)

+ (a+a°)ﬁ;x + (a+no)ﬁgx .

o o
Ef The first three terms of (12) sre residual errors im correcting the

F!j cylindrical phase factor and lead to a defocusing of the output; the next

: two terms are linear in P, leading to a slight vertical displacement of the
- output ; the last two terms are not functions of B but one of them is lineasr

in x which can produce & horizontal shift in the output. These terms

provide a convenient diagnostic tool for properly aligning the filter,
Suppose that after the filter is placed in the system, we illuminate it with
the channel driven at the same constructional acoustic wavelength. In this

case, ‘o = 0 and the residual terms are
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e(xap) I‘o-o = lﬂ’xo

+ Zaﬁobx + Zaﬁopxo (13)
+ aB’ox + uﬂ‘oxo.

Since the effects of the first term (defocusing) may be difficult to detect,
we first observe the point in the output for which x = 0. The two key terms
remaining are ZaBOon and aﬁ’oxo. The first of these two terms will cause
tho output to shift up or down depending on the sigas of po and x,. Set

x, = 0 by noting when the output is symetrically positioned about the image
of the reference beam; the remaining terms are Zaﬂopx and aﬁ’ox. If we now
focus at x = L to get maximum sensitivity, we can set a ﬂo = () by again

causing symmetry in the vertical direction about the refereace beam.

Since the filter is now properly positioned, all the error terms from
(13) are equal to zero so that we can now examine the effects of a
wavelength change ('o # 0). The only remaining term is then

o(x,p) = oxp[ja°p3x]. a defocusing term which shows the degree to which the
acoustic spreading has not been compensated. At x = 0, we see that this
term has no effect on the output, whereas at x = L the phase is bounded by
1:°§’L. This suggests that we might be able to balance the aberration so
that it has equal but opposite values at x = 0 and x = L. This can be done
by focusing the reference beam at that plane, axislly displaced from the
Bragg cell, where the self-focusing property of the diffracted light causes
the channels to be fully separated. If we let x, be the corresponding
horizontal distance at which the two beams are jointly focused, the residual
phase, for ﬂo =z = 0, is given by

8(x,p) = -sf3z, + a Bix, A (14)

This procedure, in effect, provides a focusing bias term which offsets the
bias in x (i.e., x is bounded by the range 0 to L). To balance the

sberrations at the ends of the cell, we find that , = (aoln)L/Z. so that
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8(x,p) = 1:03‘(x-L12) (15)
and the aberrations are properly balanced.

We now consider the optimum value of the acoustic wavelength to be used
in constructing the holographic element, A Bragg cell is generslly
specified by its center frequenmce f° and a bandwidth Af. If £, = fc - Af/2
and £, = fc + Af/2, the Bragg cell is operated so that f, < 2f, to preveant
intermodulation products. Since A is inversely proportiomal to f,
constructing the holographic filter at the center frequency does not equally

divide the wavelength range. Instesd, we cosstruct the hologram so that
A° - V(£ ,+2.)/22, ¢, (16)

This wavelength choice shows that the hologram tends to favor correction of
the aberrations at the lower drive frequencies where the acoustic spreading

is greatest.

We nowv compare the corrected wavefromt sberratiom with the uncorrected
wavefront. VWithout the holographic slement, we have & maximum phase error
equsal to (a #ao)B'L. whereas the maximum error with correction is 1a°piL.
The zatio of |a°|/(3+t°) is equal to (1-£,/2,)/2; for the worst case of an
octave bandwidth, the ratio is 1/4. Therefore, the maximum phase error with
sorrection is at least four times less than the worst case (at £3) without
correction, and at least two times better than the best cese (at f,) without
corrotion., If the holographic element is constructed to talance the
aberrations along the cell, the corrected wavefront is yet another factor of

two better than the uncorrected case.

3. EXPERIMENTS

Ve constructed a holographic element from one channel of a 32-chamnel
Bragg cell. This cell has a nominal bandwidth Af = 80 MHz at a center
frequency fc = 135 MHz, The cell is fabricated from telurium dioxide
material having s longitudinal velocity of 4.2 Km/sec. The active length of
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the crystal is L = 6 sm so that the time delay is ~1.5usec and the time-
bandwidth product is ~120., The transducers have heights equal to 100 # and
they are placed on 250 g center spacings. The acoustic wavelength at the
center frequency is 31 u. This Bragg cell was originally designed and
successfully used as a high—~speed, multi-channel light modulator wherein
only the region near the transducer was used.’? Since this cell produces a
considerable amount of scoustic spreading, it represents a severs test of
the ability of a hol.graphic element to channelize the light over a
significant amount of the horizomtal aperture.

The light source is a 10 mw He—Ne laser for which A = 632.8 am. The
holographic slements woere comstructed on S0-120 glass plates with a
zefezence—to—signal beam ratio of unity near B = 0. After the plate was
developed and replaced in the system, we positiomed it by using the
procedure outlined sbove to set Bo and z, equal to sero. This was achieved
by driving only the channel used to construct the hologram (see Figure 2),
while observing the corrected image of the Bragg cell at the output plane.

Figure 3 shows the uncorrected and the corrected output when channels
are driven at the frequency corresponding to Ab' Figure 3a shows the degree
of scoustic spreading for the uncorrected case. Of the twelve channels
available, we drove the top channel to illustrate how rapidly the acoustic
energy spreads and the bottom four channels to illustrate how the beams
overlap and add coherently. We see that the beams are well separated oanly
in the regiom near the transducer as noted earlier. If we wish to process s
significant amount of time history, we find that the beams begin to overlap
at s position that is only 10% of the available aperture. Figurs 3b shows
the corrected output; we see that there is very little evidence of beam
spreading and that the light has been confined to within chanmnel heights as
determined by the transducers. The smount of beam spreading is a function
of the drive frequency; it is greatest at the low frequency band edge (due
to a large A) and least at the high frequency band edge (where A is small),
Furthermore, as shown by (12), the output is fully corrected only when

s, = ’o =z = 0. It 50 -z, = 0, the residual aberration is

ox,B) = :top’x, so that if we drive the Bragg cell at its lowest and highest

frequencies, we can see the effects of the residual aberratioms.

sl
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Figures 4a and 4b show the corrected output at the low and high drive
frequencies, Ve see no appreciable change in the spreading due to the
residual aberration as s function of drive frequency except at the lowest
frequency. This was confirmed visuslly by sweeping the drive oscillator
over the frequency band snd moting very little change in the chaanel height
which is most evideat at x = L. The reason can be seen from the following
arguments. The value of <% is given by (2) so that at x = L, the acoustic
besm extends 3 distance h sbove and below the center line of the channel:

b = A(1-2s)L/2H (17)

For the parameters of the Te0, Bragg cell (s =0.2), we have that h = 558
80 that the msin beam spreads through the adjacent channel and nearly to the
center of the third ‘chanmel away. This behavior is comsistent with the
results shown in Figure 3a. At the lowvest frequency, the spreading at the
end of the cell increases to 792u, vhereas at the highest frequency the
spreading decreases to 432p. The holographic element corrects the spreading
completely at the midband frequency; at the high and low frequencies the
spreading is that produced by an equivalent acoustic wavelength

A, = VI(£,-£,)/22,£,1 Vhen this value of wavelength is used in (17) the
worst case spreading is reduced to 182, This degree of spreading extends
approximately to the center line between transducers and is apparent only at
the end of the Bragg cell remote from the transducer. If the correction
were made so that the spreading is balanced at both x = Q and x = L, the
spreading would be further reduced by a factor of two.

4. THE MODULATION TRANSFER FUNCTION

Ve see, then, that the holographic element confines the diffracted
light waves to channels ss defined by the transducer height. The next issue
is to determine the e¢ffect that this correction has on the modulation
transfer function of the Bragg cell., Ve can estimate the degree of
modulation transfer loss as a function of the propagation distance by

comssidering the Poynting vector surface as s function of x. The acoustic

energy propagsting at an angle ¢ with respect to the x—axis (see Figure §)
travels at a velocity
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l V, = Vilmse/(1-20]. (18)

o Suppose that we were to drive the Bragg cell with an impulse function and
observe the surface defining the acoustic energy at some time t. The

[ ] acoustic energy will occupy s finite pulse width, centered on the curved
: line shown in Figure 5, consistent with the reciprocal bandwidth of the

Bragg cell. The emergy along the axis will have traveled a distance x,=Vt

o whereas the energy at an angle ¢ will have traveled a distance V¢t. The
. horizontal projection of this distance is x, = V¢t cos¢:

b x5 = vel1 - ¢3/2{1-2s), (19)
:; and the difference between x, and x, is

Eg d, = Vt¢3/2(1-2s). (20)
i If we uvse (2) in (20), we have

d, = xA3(1-2s)/283, (21)
- The effect of imaging the Bragg cell in the horizontal directiom while

correcting for spreading in the vertical direction is to integrate the
energy function in the vertical direction. We now need to form a basis for

a reasonable estimate for the resulting pulse width,

. - The 3-dB bandwidth of the cell is Af so that, if there were no acoustic
E-'-" spreading, the equivalent rectangular pulse width® would be To = 1/Af = dOIV.
’jtj: l::;, This result is obtained by representing the MIF by sinc[do(f-fc)/V] where fc
ﬁ :! is the center frequency. The effect of integration in the vertical

- direction due to compensating the scoustic spreading is approximately d,/30,
" obtained by numerical integration. The equivalent rectangular pulse width
B d, after correction is thenm d + d,/30

2
v xA°(1-25)
d) = o7 ¥ 7 eon? (22)
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The argument of the sinc—function representing the corrected MIF is then
= d,(f-fc)/ vV or

(£-£f ) 7,2
[o] x A°(1-2s)N
- — —_—_— ,

where N = AfT = T/To is the time bandwidth product of the Bragg cell and
x' = x/L is a normalized distance. For x’ = O, there is no loss in MIF; at
x' = 1, there may be some loss in the MIF. For the parameters of the Bragg

cell used in these oxpsriments, the MIF is reduced by 0.8 dB at x'=1 and by
0.4 dB at x'=1/2.

We now calculate the number of channels that can be used, subject to
the restriction that the main lobes of the far—field acoustic waves do not
overlap. If the Bragg cell crystal is square, we have that L = (Nc~1)kﬂ + H=
chn, where Nc is the number of channels and kH is the separation between
transducers. The condition for avoiding overlap is to require that h, as
given by (17), be less than or equsl to kXH/2 as shown in Figure 5. By

combining these relationships, we have that

N, < B/A(1-25), (24)

where A, = V/f, is the worst case wavelenyth. For the corrected case, we

substitute th- equivalent value of the acoustic wavelength which is

A e = VAf/2f,f,, (25)
so that
2f,£2H .
N. & Vag(1-29) (26)

The increase in the number of usable channels is then ﬁj‘x = 2f,/Af,

provided that Nc is not greater than L/H. Since the minimum value of the

&S

transducer height may be set by other comnsiderations, the value of Nc as

given by 26) may not be achievable, For the parameters of the Bragg cell we

XA

used, the maximum value of Nc without correction is about 4: with
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?; correction, N° is about 17. To achieve the full utility of the device, it
\ is necessary to correct the spreading so that (15) is satisfied: in that

y II case Nc is equal to 34. Equation (26) then indicates how closely packed the
channels can be without the residual aberrations causing the light to
interact, while (23) indicates the loss in modulation transfer
function.Experimental results confirm the analysis that the acoustic
spreading can be successfully corrected without introducing an excessive
loss in the NIF. Ve modulated the carrier with a 12.5 MHz square wave and
X measured the increase in the equivalent pulse width at the midpoint and at
' ;i the two ends of the cell. The results were consistent with those predicted
N by the MIF as given by (23).

5. Summsxy and Copclusions
Ve have shown that the effects of acoustic spreading within the Bragg

' ;ﬂ ' cell can be compensated in the sense that the diffracted light can be more
nearly contained within channels as defined by the transducers. The results
show that the best p;rfornance. both in terms of correcting for the acoustic
spreading and limiting the loss in MIF, is obtained when we use a Bragg cell

li interaction medium that has s large value of s. A value of s approaching
1/2 implies that the acoustic spreading is int:insically small; such

o materials may not, however, have the characteristics required to achieve

o large bandwidths, high diffraction efficiencies or low attenustion per unit

. length. For a given interaction medium, the results show that the

W pesformance improves as the fractional bandwidth decreases. The correction
for acoustic spreading cam also dbe improved by a factor off two if the
correction is optimized at the midpoint off the cell this optimization does
not, in general, affect the MIF.

The degree of correctiom required is application dependent. If each
channel is driven by an independent wideband signal plus noise and we wish
to correlate these signals with a reference signasl in a time—~integrating

4 - srchitecture, s high degree of correction is requized. The reason is tﬁat
E we do not want the information in any ome channel to spread into adjacent
? channels; there are other applications where the Bragg cell is used as a

tvo-dimensional light modulator that also require a high degree of

correction. Ia applications such as processing bistatic or monmostatic radsr
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- returns using a phased array antenna, the data in adjacent channels due to

adjscent antenna elements generally does not change rapidly. Nevertheless,

in high performance radars, where the return pulse must be processed through
correlation, the performance.may be improved by optically correcting for the

acoustic spreading.

In dboth of the general applications cited above, s correlation
operation is performed on the received time signal in a space-plane
implementation. An alternative way to perform correlation is through
frequency plane multiplication techniques wherein we create the two-
dimensional Fourier transform of the multichannel Bragg cell and multiply it
by the Fourier transform of the reference signal. If, for example, the
reference function is time—invariant, the constructed matched filter will
sutomatically incorporate the holographic correcting element that we have
i-plo-entod. In many cases, however, the reference function must be
programmable (i.e., it is time-variant) so that the multiplication technique
is less attractive whes applied to multichannel Bragg cells.

The notion of frequency plane processing also suggests applications
such as emitter sorting. In this case, the two dimensional Fourier
transform of the multichannel Bragg cell produces an optical mapping of the
microvave field. The frequency of a particular emitter is displayed along a
frequency axis while the azimuth (or direction of arrival) is displayed
along an azimuth axis. Results obtained without the use of the holographic
correcting element show that the diffraction pattern is not an exactly
orthogonsl sinc—functioa; in the vertical direction the simc—function
follows the locus of a parabola having its foci at the optical axis.* If
the holographic correction element is used, the parabola becomes a istraight
line. Since the azimuth information does not map directly into the
rectangular coordinates of the Fourier plane (i.e.. the vertical
displacement is proportiomal to sinm y), some post processing of a

photodetector array output is needed to properly remap the azimuth

information. This remapping could also include any geometric scaling needed

to compensate for the effects of acoustic spreading.




Bl

The use of & holographic corrector plate for the acoustic spreading, as
well as a broader understanding of the basic difffraction patterms, opens
. the way for new application of multichannel Bragg cells. As the bandwidths
- of communication and collection systems increase, the need for such devices
. will expand because thoy help utilize the full parallel processing
}\- capabilities of optical systems.
' Thkis work was supported by the U.S. Army Research Office.
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FIGURE CAPTION LIST
FIGURE 1. Model for Acoustic Spreading in a Bragg Cell.

FIGURE 2. Optical System for Constructing the Holographic Element and
Correcting the Acoustic Spreading.

FIGURE 3. Multichannel Bragg Cell Diffraction Beams: (a) Uncorrected
Case Showing Beam Overlap ; (b) Corrected Beams at Optimum
Acoustic Wavelength (123 MHz).

FIGURE 4. Corrected Beams Showing Energy Confinement: (a) Result for
175 MHz ; (b) Result for 95 MHz.

FIGURE §. Diagram Showing . the Surface of Acoustic Energy and the

Transducer Geometry.
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Adaptive optical processor

A. Vander Lugt

The transversal filter is widely used in digital data processing. In this paper, we describe a method for using
optically tapped, Bragg cell delay lines to implement a general adaptive linear prediction algorithm. Flexi-
bility is achieved through changing the electronic signals. The implementation is in the Fourier domain so
that the wide bandwidth of the Bragg cells can be fully used. A high dynamic range can be achieved because
the system is interferometric and linear in light amplitude.

Il. Introduction

In this paper we describe an adaptive optical pro-
cessing technique wherein the processing operation is
performed in the frequency domain. Adaptive filtering
as implemented by linear prediction has been applied
in several areas. A tutorial review of linear prediction
has been given by Makhoul! and a survey of its appli-
cation to communications, including adaptive tech-
niques, was given by Lucky.? The early work by Lucky
was on adaptive redundancy removal in data® and
adaptive equalization of digital communications sys-
tems*® to increase the rate of data transmission.
Variations of these adaptive schemes, in which the
system is equalized either by transmitting a training set
or by operating on the data itself (decision directed),
have been reported.6-8 Adaptive equalization signifi-
cantly increases the allowable data rate over a filtered
channel for a given bit error rate required at the output
of a receiver.

Adaptive filtering has also been applied to antenna
sidelobe weighting by Widrow et al.® and others.10.11
Widrow et al'? have also described adaptive noise-
cancellation techniques such as notch filtering for in-
terference rejection, adaptive self-tuning for spectral
line enhancement, and spectral analysis. Griffiths, in
particular, has addressed the problem of estimating the
instantaneous frequency contained in digital signals.!3
The same basic algorithms are finding widespread ap-
plication in speech processing!4-1¢ and in combating
intersymbol interference.4+3.17

The author is with Harris Corporation. Government Systems
Group. Advanced Technology Department, P.O. Box 37, Melbourne,
Florida 32901.

Received 22 June 1982,

0003-6935/82/224005-07301.00/0.

¢ 1982 Optical Society of America.

The wide range of applications of adaptive filtering
is due partly to the flexibility of the transversal filter
that is a basic element of all these schemes. A trans-
versal filter consists of a tapped delay line that contains
the discrete time-sampled values of a received signal.
The outputs of each tap are weighted as determined by
the processing operation and summed to provide an
estimate of the signal. If the weights are selected to
provide the best estimate of the received signal, the
system is called a linear predictor or estimator. If the
estimated signal is subtracted from the received signal
and if the residual signal is used to control the tap
weights, the system is an adaptive linear predictor. We
would like to extend these processing algorithms to
handle wide bandwidth signals.

An acoustooptic cell has wide bandwidth and behaves
as a delay line which can be tapped optically; we de-
scribe here an optical processing architecture that can
be used to implement operations similar to those cited.
In Sec. II, we briefly review the basic theory of adaptive
linear prediction and derive the equivalent frequency
plane operator. We then describe the adaptive optical
processing technique and relate its operation to those
that have been implemented digitally. An important
observation is that the optical system can operate with
either analog (continuous-time) or sampled (discrete-
time) signals with no change in the basic components
in the system.

Il. Adaptive Linear Prediction

We now describe the basic function of an adaptive
linear predictor. A general version of the predictor for
discrete-time signals is shown in Fig. 1. Let s(¢) be the
received signal that has been sampled at the proper rate.
The delayed samples are multiplied by the weights ¢;,
J = 1to N, to produce an estimate $(t):

N
i)y = T 50t = jD), 8]
/=

where D is the time delay of each element of the tapped

Reprinted from Applied Optics, Vol. 21, page 1005, November 15, 1982
Copynight © 1982 by the Optical Society of America and reprinted by permission of the copyright owner.
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Fig. 1. Block diagram of adaptive linear predictor

delay line, and N is the number of delays. The opti-
mum weights must be determined based on our criterion
for how well the estimatd signal $(¢) represents s(¢).
A commonly used criteric: is to minimize the squared
error of the residual signal z (¢) = s(¢) — 3(¢).

Let E be the total energy of the residual signal:

N 2

E=7 Jat) - T cjs(¢ —jD)] s (2)
M J=1

where the energy is summed over M samples. We

minimize E with respect to a specific tap weight c;

through the derivative

IE N . .
— = =273 |s(t) = ¥ c;s(t — jD)|s(t —iD). 3)
ac; M j=1
If we set the derivative equal to zero, we find that the
optimum fixed tap weights are given by the solutions
to the N equations

N
Y ¢;R{(i—j))D] =RGD), i=1toN, (4)
=1

in which R(-) can be thought of as the covariance matrix
if the sum is over a set of sample values, or as the cor-
relation function if the sum is over time.

In some applications, the characteristics of s(t) are
such that we can improve the performance of the system
by adapting the weights in time. If the rate of change
is slow (i.e., the process is quasi-stationary), we can use
the method of steepest descent®? to determine the di-
rection in which we need to adjust the weights. From
Eq. (3) we see that the value of the derivative can also
be computed as

E=—22:(t)a(l!—jD), J]=1taN. (5)

oc; M
We can calculate these derivatives if we multiply the
residual signal by the delayed values of the received
signal and use this signal to update the tap weights.
This process is shown in Fig. 1, wherein the predicted
signal §(¢t) is subtracted from s(t), the residual z(¢) is
multiplied by a loop gain G, and the residual signal is
then multiplied by the delayed received signal at the
output of each tap to provide the derivative for adjust-
ing the tap weight as given by Eq. (5).

Rhodes!® described an optical implementation of the
adaptive linear prediction filter shown in Fig. 1. The

4006 APPLIED OPTICS / Vol. 21, No. 22 / 15 November 1982

using discrete tapped delay lines.

implementation was in the time domain using a com-
bination of an electrooptic light modulator and an ac-
oustooptic Bragg cell in a time-integrating architecture
to form the product given in Eq. (5). The integration
and the storage of the tap weights was performed by a
liquid crystal spatial modulator; the spatial positions
in the light modulator correspond to the time delays. A
second Bragg cell was then used to perform the opera-
tion given by Eq. (1) and a photodetector provided the
signal §(¢). This implementation has some disadvan-
tages in that the full bandwidth of the Bragg cells is not
used and the spatial modulator has limited dynamic
range. The implementation can also be performed in
the frequency domain to more fully utilize the available
bandwidth. The main purpose of this paper is to de-
velop such a technique; its advantages will become ap-
parent later.

To cast the problem into frequency domain notation,
we must first describe the adaptive linear predictor in
terms of continuous-time variables. In the optical
implementation, the delay line taps are not discrete,
although the number of independent tap weights is
determined by the time-bandwidth product of the
Bragg cells. We begin by calculating the value of the
tap weights. Let the jth weight at time ¢ be the sum of
its value at the previous update time ¢t — 7; and the
value of the error derivative:

t
Git) =it =) =G f . twstu = iDidu, (6)
t-T)

where T, is the integration time of the accumulator
whose output provides the updated weight value.
When the-system reaches steady state, we find that c,(¢)
= ¢;j(t — 7}1), so that the value of the integral in Eq. (6)
must be zero. Since the integral is the cross-correlation
of the received signal and the residual signal, we have
the physical insight that the system adapts its weights
until the residual contains no components that are
correlated with the input; this is sometimes called the
correlation cancellation loop method for implementing
adaptive filtering.1* This method for calculating the
adaptive weights can be done in real time and saves the
computational complexity of inverting the matrix for-
mulation given by Eq. (4).

The passage to a continuous-time representation is
fairly straightforward. We represent the delaved signal




as s(t — 7); it is multiplied by ¢(7) and integrated over
the total time delay T of the delay line to give

T
i) = J; c(r)sit = v)dr N

The value of the continuous-weight function c(7) can
be found by repeated application of Eq (6) or directly
by noting that

t
c(r)=G f r z(u)s(u = 7)du. (8)
=T

If the accumulator time window T, is sufficiently long
relative to the variations in the statistics of the input
signal, the weights are not a function of the present time
t. During the adaptation period, or during periods
when the signal statistics change significantly, the
weights are functions of both t and T. We retain the
implicit relationshin of ¢(7) to time ¢ as in Eq. (8) to aid
in deriving the Fourier domain solution. We now
substitute Eq. (8) into Eq. (7) to get

t T
$(¢) = - - . 9
t)=G j:-‘n J; z{u)s(u — r)s(t — 7)dudr 9)

After some changes of variables, we can express Eq.
(9) as

1) [}
s'mscfr frz(t+q)s(t+q+r)s(t+-r)dqdr. (10)
-

To assist in solving Eq. (10), we need a definition for the
instantaneous Fourier transform of a truncated con-
tinuous-time signal. We define

t
Friwt) = f fw) expi=juu)du, i)
-

or, in an equivalent and sometimes useful form, we
have

- +T/2
expwt)Fr(wt) = f rect (u TT/ )f(t + u) exp(—jwu)du.
(12)

We use the rectangular function and the inversion of Eq.
(12) in Eqg. (10) to get that

HEX f- qudr [f- Zr(wt) expjw(t + q)]dw]

Xs(t+q+7) U" St(£,t)explisit + r)]dE] - (13)
or that
=G f f_ " Zrw)Sr(Et) explitw + £t

X fj:_s(t+q+ ) expli(wg + £7)|dgdrdtdw. (14)

We now perform the integration on 7, using a change of
variables in which ¢t + ¢ + 7 = u. Further, although the
range of integration on T appears to be infinite, the
rectangular functions must be used again to limit the
range on u to the intervalt + ¢ — T tot + q. The in-
tegral on u now becomes

t+
f ¢ ) expijEuldus exp(=jE(t + q)]
t

+q-

= Sri=Lt + qlexpl~/E(t + ¢)) (15)

LR Bt Bl 3

by virtue of Eq. (11). If the statistics of s(t) are slowly
varying relative to the total delay time represented by
the taps, we have Sp(—£t + q) = Sr(—£,t). Further-
more, we note from Eq. (11) that Sp(=£,t) = ST(£,¢) if
the received signal is real. We can now combine Eq.
(15) with Eq. (14) to get

i =G ff' Zr )| Sr(w,)|? expliwt)

x { J‘_ : exp|—jg(t — w)|dq} dtdw. (16)

The integral on q is bounded by therange0 < ¢ < T;
we see that this integral has the form sinc[(§ — «)T1/2].
We note, however, that the definition of Fr(w,t) is such
that it already contains the effects of convolution with
a sinc function due to a time truncation. If Ty > T, the
additional convolution in Eq. (16) will not affect the
results and we can complete the integrations to get the
final result:

=G f " Zriwt)|Sr(w,t)|? explwt)dw. an

If the received signal is bandlimited to a bandwidth W,
the limits in Eq. (17) are finite and restricted to the
frequency range of the signal.

Equation (17) is the frequency domain representation
of the estimated signal §(t). We carried out the deri-
vation in some detail, because treating the limits of in-
tegration required considerable care throughout.
Furthermore, the derivation gives some insight into how
the result given by Eq. (17) can be implemented by the
use of Bragg cells.

ill. Adaptive Optical Processor

If a Bragg cell is positioned so that its transducer is
located on the cptical axis, we can represent a signal
traveling in the negative direction as f(t + x/v), where
v is the acoustic velocity, and x is the spatial coordinate.
Equation (10) suggests that we need to convolve three
such functions whose values are shown in Fig. 2. The
function z(¢t + q) can be produced by a Bragg cell whose
transducer is located at the g = 0 axis, with the wave
propagating in the negative q direction. The function
s(t + 7) can be produced by a Bragg cell whose trans-
ducer is located at the r = 0 axis, with the wave propa-
gating in the negative r direction. The functions(t +
g + 7) must be multiplied by the other two functions.
We see that if a third Bragg cell has its transducer lo-
cated on the ¢ = —r axis, with the wave propagating in
the negative ¢ + 7 direction, we have formed the ap-
propriate products. The limits of integration are also
shown in Fig. 2.

We now show how to implement these functions op-
tically by first generating the product equivalent to 2(¢
+ g)s(t + 7). Consider the optical configuration shown
in Fig. 3. This subsystem contains two orthogonally
oriented Bragg cells in which the information contained
in the first Bragg cell is multiplied by the information
contained in the second. These two Bragg cells are then
imaged onto a common plane P;, although in practice
it is sufficient that the optical system perform the ap-
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Fig. 2. Convolution of three signals necessary to produce estimate
of received signal.

Fig. 3. Optical implementation to produce a spatial croes-correlation
function.

propriate Fourier transform of the product of the signals
contained in the Bragg cells. Each Bragg cell has a time
delay T and a length L = vT. The bandwidth of the
Bragg cells is W, so that the number of independent
time delays is N = 2TW. Both Bragg cells are posi-
tioned so that their transducers are located on the op-
tical axis; this is done partly because it simplifies the
mathematics and partly because it leads to some in-
teresting physical interpretations of the results.

The first Bragg cell in plane P, is driven by the re-
ceived signal s(t), which has been translated to a suit-
able center frequency w.. The undiffracted light is
removed, and the Bragg cell is imaged onto plane P;s0
that the light distribution is uniform in the y direction.
In the x direction we have

a1(x,t) = jmyv/aP/L s(t + x/v) expljw.(t + x/v)}, (18)

where m, is the modulation index of the first Bragg cell,
P is the laser power, and « is that fraction of the laser
power that reaches plane P,. This function is now
multiplied by the transmittance of the second Bragg
cell, which is

4008 APPLIED OPTICS / Vol. 21, No. 22 / 15 November 1982
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Fig. 4. Optical system to produce cross-spectrum of truncated time
signals.

az(y.t) = jmymy N aPa/L z(t + y/v) expljwc(t + y/v)], (19)

where mo, the modulation index of the second Bragg
cell, is generally different from m,, and o? is the average
signal power in the time interval T.

We now arrange to take the 2-D Fourier transform of
a(x,t)as(y,t) as shown in Fig. 4:

0 0
Alpgt) = fL fLal(x.t)agt_v,t)exp[*j(px +qy)|dzdy. (20)

We want to show that A(p,q,t) is equivalent to the
Fourier transform of the cross-correlation of z(¢) and
s{t). Asshown by Eq. (20), the integral is separable in
x and y. We need to couple the time-delay arguments
of ai(x,t) and as(y,t) so that the cross-correlation is
displayed as a function of space instead of time. One
way to do this is to rotate the coordinate axes in plane
P; followed by a 1-D Fourier transform.:® An alter-
native method is to perform the 2-D Fourier transform
and to evaluate it along the line p = g. This is equiva-
lent to a rotation of the axes in the Fourier plane and
using a narrow slit oriented along the ¢’ = 0 axis, where
p’ and ¢’ are the new coordinates. We then have p =
q = p’/\/2, which we use in Eq. (20) along with the as-
sociations that 7, = x/v, 7, = y/v, and w = vp’/\/2.
Equation (20) can now be written as

0 o
Alwt) = v2A, fr f Ts(t + 12t + 1y) expliwe(t + 7, ]
X expljwcit = ry)l expl=jwir, + ry)lar.dr,, (21)

where A; = —m;mov/aP32/L. We solve the integral
on 7, first. We have

0
Afw,t) = f Ts(t + rodexoljwit + 7)) exp(~jwr,)dT,.
Lett + r, = u,sothat
t
Arlwt) = f Ts(u) expljweu) exp(—jwlu ~ t)|du. (22)
=

Given the definition of the instantaneous Fourier
transform of a time function as in Eq. (11), we recognize
that Eq. (22) can be expressed as

Aywt) = STiw — w..t) expljwt). (23)

In a similar fashion, we evaluate the integral on 7,
and combine all factors to get
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Alw,t) = VA S7(w = we, 21w = we,t) expy2wt ). (24)

This result shows that the complex valued light am-
plitude along the line p = g in plane P, is the product
of the Fourier transforms of s(¢) and z(¢t). By the use
of the convolution theorem, A(w,t) is also the Fourier
transform of the cross-correlation of s(t) and u(t) as
desired.

We now want to multiply 4 (w,t) by a third function
associated with s(¢ + ¢ + 7) and integrate the product
over the frequency plane. This can be achieved inter-
ferometrically by using a third Bragg cell in a separate
path of the interferometer. Consider the optical system
shown in Fig. 3, which shows the second part of the in-
terferometer. Since the important part of A(p,q,t) lies
along the line p = ¢ and is centered at p’ = /2w/v, we
orient the third Bragg cell at a 45° angle tothe x — y
coordinate system of plane P;. To preserve the fre-
quency scaling, the Fourier transform lens L ; must have
a focal length a factor of /2 longer than that of L3. In
this path, we use a cylindrical lens to image the line il-
lumination of the Bragg cell at plane P, to conserve the
optical power.

The transducer of the Bragg cell is located at the
optical axis and is driven by s(¢). If (1 — a)P is the
fraction of the laser power available at plane Ps, the

effective amplitude of the signal at plane P; is
bix’.t) = jma+ (1 = a)P/L s(t + x'/v) expljwc(t + x'/v)], (25)

where x’ is the coordinate axis in plane P that contains
the Bragg cell. The 1-D Fourier transform is now
-0 .
Blw,t) = ¢B, J Ts(t + 7o) expljwc(t + 7.)| expl=jwr )dT,,

(26)

where By = jm3 /(1 — a)P/L, 7, = x’/uv and w =
vp’/7/2. By following the same procedure as before, we
find that

Biw.t) = vBiSTiw = w. t)expjwt). 2N

.-

e 2 2

Second leg of interferometric system.

Suppose that we now place a single photodetector at
plane P, along the line p = ¢, located so that its center
is at w, and its physical extent corresponds to the range
|w ~ we| < W/2. The photodetector current will be
proporticnal to the intensity at plane Py:

wet W/2
ier=C Hwt)dw,

we=W/2

where C is a constant that includes the photodetector
sensitivity S, expressed in amps/watt as well as the
conversion factors necessary to cause Eq. (28) to be di-
mensionally correct. We have

(28)

Hw,t) = {Aiwt) + Blw.t)|2

= | 4w+ | Blw.)]? + 2Re|Alw t)B*w.1)). (29)

The photodetector current can, therefore, be separated
into three terms as given by Eqs. (28) and (29). From
Eqgs. (24) and (27), we note that the first two terms are
not functions of time; they therefore contribute only to
a bias current. This statement is not strictly true, be-
cause St(«,t) and Zr(w,t) are functions of time through
the definition of the instantaneous Fourier transform.
These functions are slowly varying, however, relative
to the variations in the third term and can be removed
by a bandpass filter after detection.

The main term of interest is the third term of Eq. (29)
which, when substituted into Eq. (28) with the results
of Eqs. (24) and (27), leads to

. - wet W/2
ig(t) = 2034,8,C J Zr(w = we )| Sriw = we.t))?
we—W/2

X expwt)dw. (30)
By a change of variables, we can write Eq. (30) as
w2
i5(t) = 2024,8,C exp(jwet) f o e ST |?
X expljwtidw. 131)

We see that the integral in Eq. (31) is exactly the one we
wanted to evaluate [compare Eq. (17)]. The output

15 November 1982 / Vol. 21, No. 22 APPLIED OPTICS 4008
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Fig. 6. Arrangement of Bragg cell to generate delayed estimate.

occupies bandwidth W and is centered at w.. By
comparison, the first two terms of Eq. (28) have a
bandwidth of <1/T centered at w = 0. The third term
can, therefore, be easily separated from the low-fre-
quency terms. It turns out that Blw,t) is in phase
quadrature with A(w,t) as can be seen by considering
the values of A, and B,. The correct phase relationship
can be obtained by introducing a 7/2 phase shift in the
carrier used to drive the third Bragg cell or by optically
phase shifting the two beams in the interferometer.
The optical architecture described so far is charac-
teristic of one in which we form an estimate §(¢) at the
present time t from some past history of s(t). We may
also wish to introduce an additional time delay a to
arrive at an estimate 5(t — a) or to predict the received
signal at some time ¢ + a.20 Suppose that we geomet-
rically move the third Bragg cell by an amount x = va
as shown in Fig. 6. The signal within the cell is now s(t
— a+ 7.)expljw.(t = a + 7.)], and if we perform the
Fourier transform as before, we arrive at the result

B(w.t) = uB,Sttw — w,t) expljw(t = a}], (32)
which, in turn, leads to

wi2
i3(¢) = 2034,B,C expljw.(t - a)] f»vwz Zr(w)|ST(w,t)|?

X expljw(t — a)]dw. (33)

The output of the photodetector then becomes the es-
timate $(t — «). If the Bragg cell is moved in the op-
posite direction, the sign of « is reversed and we have
the prediction §(¢ + «). The interesting interpretation
of this result is that the system processes the received
signal in such a way that the estimate (or prediction)
occurs at the time value corresponding to the physical
position x = 0. Thus, if the Bragg cell ;8 moved so that
the signal s(t — «) occurs at x =0 (or 7, = 0), the solu-
tion is one of estimation. If the Bragg cell is moved so
that the entire cell is located in the negative x plane,
there is no received signal at x = 0, and the system
predicts a signal §(¢t + «) located at x := 0.

In many apolications it is implicitly aisumed that the
estimate is at some fairly large value of « relative to T'.
For example, in the transversal filtering literature, the
center tap is often set at the time delay 7/2. Some
physical phenomena such as channel distortion or in-
tersymbol interference have an asymmetrical response,
so that better results can be achieved by selecting the
tap position to weight the tails of the response. In
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general, then, one Bragg cell may be more nearly cen-
tered on the optical axis; the mathematical analysis is
thereby basically unaltered except for a residual time-
delay factor in the output.

The frequency plane notation also provides a more
direct insight to certain filtering operations. Let us
consider, as an example, a filtering application in which
we want to remove the effects of a strong narrowband
signal that interferes with the information signal. From
Fig. 1 we see that

z{(t) = s(t) — 5(t), (34)

so that, in the sense of the definition of the instanta-
neous Fourier transform, we also have

Zr(w) = Srlwi = Stiw). 135)

From Eq. (17) we use the result that Srtw) = GZrw)-
|ST(w)|?, 30 that

Sriw)

. (36)
1+ G|Sriw)?

Zriw) =
It is tempting to define the transfer function for the
system as H(w) = Z7(w)/St(w). In general, this is not
a valid procedure because the system behaves in a
nonlinear fashion during adaptation. Suppose, how-
ever, that the system has reached its steady-state con-
dition and that the input signal statistics are not
changing. Then we can say that

- Zriw) - 1 .
Sriw) 1+ G|Srw)|?

H(w) 37
We see that the overall transfer function is unity where
the value of G|Sr(w)|2is small. The presence of strong
signal components around, say, w, produces an inverse
filter H(w) = 1/G|St{(w,)|?, which suppresses the en-
ergy near w, In a general sense, we see that the
equivalent filter adapts to whiten the input signal
spectrum.

The adaptation time is dependent on the specific
application, although it appears that most svstems cited
in the literature adapt within a time interval corre-
sponding to 500-2000 data samples. The adaptation
time is determined, in part, by the required values of T
and T;; these values also influence noise in the tap
weights and, therefore, the accuracy at convergence.
The gain factor G also affects both the rate of adapta-
tion and the accuracy. Finally, the dvnamic range of
the photodetector determines the minimum increment




by which the tap weights can be set. Generally, at least
108 distinct levels provide adequate performance. How
these various factors interrelate is highly dependen: on
the specific application.

IV. Summary and Conclusions

The adaptive optical processing technique described
here has several important features. First, since it is
the optical equivalent of an adaptive digital transversal
filter, it affords a high degree of flexibility and is ap-
plicable to solving a wide range of problems. Second,
implementing the process in the Fourier domain allows
the use of the full wide bandwidth of Bragg cells. We
can envision, for example, the processing of data in the
100-1000-MHz range. Third, the processing is done on
the amplitude and not the intensity of the light, so that
we do not need to introduce bias terms to generate both
positive and negative weights. Because the system is
interferometric in the temporal sense, the dynamic
range is high and the system is insensitive to scattered
light. By virtue of having a single photodetector and
no requirement for an intermediate storage medium,
both phase and amplitude errors are reduced.

This work was supported by U.S. Army Research
Office.
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- In my paper on adaptive optical processing.! [ was not

. consistent in drawing the axes for the figures to accurately

represent the mathematical functions. If we replace the

variable r by —r and change the limits of integration in Eq.

. {10), the net effect is to reverse the orientation of the hori-

- zontal Bragg cell in Fig. 3. The final results are not atfected
by this change.

Also, in evaluating Eq. (14), it is better to integrate s(t + ¢

— 1) over ¢ and r simultaneously instead of sequentiaily.

. This procedure produces the same results without the some-

: times restrictive assumption that Sp(=S,t + q) = Sp(=£.t).

Reference
. 1. A. VanderLugt. Appl. Cpt. 21, 4005 11982),
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OPTICAL TRANSVERSAL PROCESSOR
FOR NOTCE FILTERING
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A. Vanderlugt
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Melbourne, Florida 32901

ABSTRACT

- A frequency domain implementation of an optical transversal processor
- has been described previously. Since this system uses Bragg cells both as
the delay line and as the accumulators which provide the tap weights, a key
question is what effect the finite integration times have on the performance

of the system. Computer programs were written to simulate an adaptive notch

I' filtering application; the measure of performance is the correlation
coefficient for the residual signal and the desired received signal. The
correlation coefficient was increased significantly by tapering the
accumulators so that the readaptation phenomena caused by large values
" leaving the accumulator are minimized. Several examples of the performance
AN are given as a function off the number of taps, the length and degree of
. taper of the accumulator, the feedback gain and the number of iteratioms.
:;E The results show that a finite accumulator is aot a serious drawback,
particularly for those applications where the system must operate in a
!! rapidly changing environment. The performance of the system then approaches
' that of one having an infinite accumulator with the gain adjusted to give
) equivalent tracking performance.
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OPTICAL TRANSVERSAL PROCESSOR

FOR NOTCH FILTERING

1. INTRODUCTION

Adaptive filtering, using transversal tapped delay lines with
feedback, has been applied to problems such as redundancy removal in data,
reducing intersymbol interference through equalization, noise cancellation,
self-tuning and speech px:oc:essi.ng.l-8 The data rate or the signal bandwidth
is limited by the processing speeds of digital circuits; we wish to
investigate the use of optical processing to extend the bandwidths of
signals that can be processed.

An acousto-optic cell has a wide bandwidth and behaves as a delay line
that can be tapped optically. Rhodess’—10 described an optical
implementation of an adaptive linear prediction filter in the time—domain,
using a combination of an electro—optic light modulator and an acousto-optic
cell in a time-integrating architecture. VanderLugtll-lz described an
implementation in the frequency—domain, using three Bragg cells in a space-
integrating, interferometric architecture. The main purpose of this paper
is to give the results of some computer simulations designed to study the

effects of using an accumulatcor whose integration time is finite,

2. BACKGROUND

A general form of an adaptive linear predictor is shown in Figare 1,
Let s(t) be a sampled signal that drives a delay line. The delayed samples
are multiplied - the weights c.j to form an estimate s(t) of the rec. ved

signal. The optimum weights are determined by minimizing the mean square

error in the residual signal z2(t) which leads to the relationship that




t
c(1) =G [ z({u)s (u-7)du,

t-T

where G is the gain in the feedback loop, T, is the integrati

accumulator and t represents the continuous—time equivalent of the discrete

delay. If we let To be the minimum discernible time delay in a Bragg cell,

then NTo is the total delay time T of the cell. The estimate

received signal is

s(t) = c(T)s(t-T)4T.

so that, by substituting (2) into (1), we have

t

s(t) =G j z(u)s (u-T) s (t-T)dudT.

o m——]

t-T,
By a change of variables we can rewrite (3) as
T )

;
§(t) =G J J z (t+q) s (t+g-7) s {t-T)dqd1
s T

which, in turn, can be used to get the frequency domain repre

1 i Jwt
g (o, e) 18 (w,t) e dw,
| T T

where ST(w,t) and ZT(w,t) are the instantaneous Fourier transforms of the

most recent T seconds of the received signal and the residual signal.
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:; ; There are several ways to configure an optical system, using three
. . Bragg cells, to implement (4) or (5); one of these is given in Figure 2.

Eg ,“ The functioms z{(t) and s(t) drive two Bragg cells in the directions shown,.

g 'i: These two Bragg cells are mutually imaged onto plane P,, with the diffracted
= . light from the first Bragg cell passing through the second Bragg cell.

i : At plane P, we have the light distribution necessary to provide the tap
i; - ) weights, This can be more cléarly seen from Figure 3a in which the tap
;J : weight plane has been rotated by 45 degrees for convenience. The numbers in
ES é: each delay cell represent the successive time indices for the two functionms,
~E . If we integrate the light in the vertical direction, as shown by the dotted
%: i; lines, we obtain the function c(tr). This function is then convolved with
;; ff the received signal s(t) which drives a third Bragg cell as we shall show
:: B shortly.
,. II The number of tap weights available is equal to twice the time-

i; - bandwidth product of the Bragg cell (Figure 3a shows only a small number of
Lib ;ﬂ taps). From the figure we see that the central tap weight is the sum of N

‘ l' products whereas the end tap weights contain only one product. The end tap
%: B weights are therefore likely to be noisy and reduce the performance of the
'35 _? system. The number of taps required depends on the application. To reduce
‘ - intersymbol interference, the number of taps required is determined by the

i T extent of the channel impulse response which may be of the order of 10-20
Ef . symbol periods. For adaptive notch filtering, the number of taps required
:T ] is determined by the number of frequencies that need to be removed
~: simultaneously’/ we require at least two taps per frequency. For the notch
.E filtering simulations reported here, approximately 50 taps were used for

: ;; most of the tests.
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If the time-bandwidth product of the Bragg cells is of the order of
1000-2000, the use of only 50 taps means that the triangular weighting of
c(t) is less significant, and we can truncate the region of integration to
the rectangular window as shown in Figure 3b. Each of the 50 taps will then
contain approximately 2000-4000 samples which represent the finite length of

the accumulators in each of the correlation cancellation loops.

Figure 4 shows that part of the optical system which simultaneously
integrates the light in the vertical direction and creates the Fourier
transform of the tap weights in the horizontal direction. Along the
horizontal axis the light distribution is proportional to ZT(m.t)ST(w,t).
The third Bragg cell (not shown here), is arranged so that ST(w.t) is added
to A(w,t) in an interferometer. The sum is then square law detected to
provide the integrand of (5), and the output of a single element

photodetector provides the estimate s(t),

The advantage of implementing the adaptive transversal processor in
the Fourier domain are that the system is linear in amplitude so that no
bias terms are needed. As a result, both positive and negative tap weights
are generated, and the dynamic range is high. The full bandwidth of the
Bragg cells can also be used. A potential disadvantage is the finite
accumulators that may reduce the performance of the system. Our major
interest is, therefore, tc simulate the operation of the system under the
constraint of using finite accumulators,

3. THE SIMULATIONS

We wrote a computer program to calculate the performance of the
adaptive system. The application we chose to study is that of notch

filtering in which the received signal consists of a wideband signal z(t)

and one or more cosine jammers:
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s(t) = g(t) + E Ajcoswjt. (6)

i=1

The wideband signal is either a very long pseudo noise sequence or a

Gaussian random signal; each signal has zero mean and unity variance ag’.
M

The variance of the cosine jammer is a‘c = 2: A}/Z. The input signal-to-
j=1

jammer ratjo is then SNRi = 10 log(os’/ac’) = ~-10 log(ac’).

Figure 5 shows the spectrum |S(m)|: of the input signal when

SNRi = -18.5 dB for a system having 50 taps and a fairly short 500 sample
accumulator. The spectrum was obtained by letting the system iterate for
2000 input dats samples and then calculating a 1024 point discrete Fourier
transform of the most recent data samples. The magnitude squared of the
system transfer function |H(w)|: is also shown; it is a notch that has
formed adaptively to cancel the cosine jammer at a frequency W If we let
To be the time delay between taps, the fregquency of the jammer shown is

w = 2n/9T°. The spectrum IZ(m)lj of the residual signal is also shown,
multiplied by a factor of 0.05 for clarity. We see that the input and
output spectra are similar except in the region w, where we see some

evidence of the cosine jammer in the residual signal,

The presence of some jammer energy in the residual points out a
fundamantal difference between the frequency plane implementation of
adaptive processing and a digital system where the accumulator can be made
arbitrarily long. In a digital system, the tap weights converge, after some
number of iterations, to stable valunes so that extremely deep nulls can be

formed. In the initial stages of adaptation, the tap weights change toward
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their final values at a rate determined primarily by the feedvack gain and

the jammer amplitude. In the latter stages of adaptation, the new
contributions to the tap weights are small in magnitude and tend to alternte
in sign. After convergence, we find that s(t) is a good estimate of the
amplitude and phase of the cosine jammer so that the null is very deep: the
null remains deep until there is some change in the statistics of the

received signal.

In the optical implementation, the tap weights rapidly assume values
close to their final values and an inctensingl} deeper notch is formed at
the jammer frequency. After the pumber of iterations corresponding to the
accumulator length, however, the earliest values in the accumulator (which
are large because they contribute most to initial adaptation) begin to leave
then increases

the accumulator. The cosine component in the residual

momentarily becsuse s(t) is not as good an estimate of
The system then goes into a "readaptation” phase where

to the tap weights must offset the older cont.ibutions

the jammer signal.
the new contributions

that are leaving the

am e

accumulator, This process repeats every MTO seconds, where M is the number
of samples in the accumulator, but with successively less impact on the
residual signal. After enough iterations, the system converges to a st:ady
state where the jammer signal level in the residual is just enough to

maintain the tap weights at a (nearly) fixed value over time,

The adaptation and readptation can be seen from Figure 6, in which the

upper trace is that of z(t) for the first 2000 data samples. We note that

adaptation is relatively rapid; after about 50 data samples the residual

signal At the end of the

th datas sample,

is primarily composed of the wideband signal g(t).

500 the earliest tap weights are leaving the accumulator and

the system 'readapts' to the new conditions. Similar readaptations occur at
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N multiples of 500 data samples and the system performance is not optimum, In
I l. an effort to reduce the effects of readaptation, we used a taper on the

E accumulator so that the values in the accumulator are attenuated

v

Y Y
B
]

exponentially as they flow through. When we used an exponential taper for

which the oldest accumulator values are reduced by a factor of one-half
relative to their initial values, the residual signal took om the values
shown in the lower trace. There is now little evidence of readaptation
except for & very slight perturbation after 500 data samples. Note that in
e, both cases z(t) has a zero mean; we have added and subtracted a value of 20

to separate the two traces.

.-

»
LI

The basic cause of the readaptation is shown in Figure 7, in which the

" upper trace represents the values within the accumulator associated with the
first tap during the first 500 iterations, using no taper. As described

l‘ before, the car-liest contribution to the tap weights are large (those values

from 450 to 500) which drive the first tap weight to nearly its final value.

e Subsequent contributions are small and oscillate about zero (a value of

" 0.025 was added to the value to separate the two ctraces). The lower trace
- shows the results when an exponential taper whose final value is 0.5 is
}i used. The initial contributions to the accumulator are large when they
enter the accumulator, leading to rapid adaptation. After they have
-
- propagated to the end of the accumulator, their values have been reduced by
. 0.5 so that when they leave, their impact om s(t) is not so severe. There
a is, therefore, less evidence of readaptation when the taper is used.
An exponential taper can be implemented optically by placing a mask at
the plane where z(t) and s(t) are mutually imaged. The transmittance of the
EJ mask would be unity for small signal delays and decay expomentially to a
- final vaue of 50% transmittance at the end of the accumulators. In the
he
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discussion to follow, D represents the final value for the exponential
taper. Other tapering functions such as a Gaussian weighting may be equally
effective, or it may be possible to implement the taper through variable

illumination of the Bragg cells so that a separate mask may be necessary.

One question relates to whether D = 0.5 is optimum. Other questions
relate to the optimum gain as a function of D, the impact that the number of
taps or the length of the accumulator have on the performance of the system,
the depth of the notch and the output signal-to—noise ratio. To perform
these tradeoffs we need a measure of performance, One measure is the degree
of distortion between z(t) and g(t). Since the applications of adaptive
notch filtering often require a subsequent correlation between z(t) and g(t)
over some long time interval, a second measure is the correlation
coefficient for the signals 2(t) and g(t). As we now show, these two

measures are related.
Consider the function
y(t) = z(t) - g(t) (7

having mean squared error

oy‘ = E{(z - g)3) (8)

This function can be expanded to give

6.3 =0 - 2u_ + 0% ,
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where Keg is the covariance of z(t) and g(t). We can normalize the

covariance to get the correlation coefficient:

g g
p = 2*r9-y (10)

If the residual signal is identical to g(t), the distortion is zero and the
correlation coefficient is one. We shall use the correlation coefficient p

as our measure of system performance.

The next result shows the sensitivity of the performance to the
exponential taper parameter D. Figure 8 shows the correlation coefficient
plotted as a function of D for several values of the accumulator length M
(expressed as the number of samples stored in the accumulator). The number
of taps in this example is 50, and we calculated p from (10) over the last
1024 points, having let the system operate for 2000 iterations. We note
that the performance improves, as expected, as M increases and that the
performance is not a sensitive function of D except for D > 0.8 or D ¢ 0.1,
If D> 0.8, wve have the readaptation phenomena described before. For
D ¢ 0.1, the exponential taper reduces the effective length of the
accumulator so that a longer accumulator with a h.gh degree of taper may
yield a performance inferior to that of a shorter accumulator with less
taper., In all cases shown, the optimum value of D is about 0.5 and this
valuoe has been used in most of the subsequent tests, It should be noted
that, for these preliminary tests, both the accumultor length and the number
of iterations are fairly small to conserve computer run time, The
performance of the system improves as these two parameters increase as we
shall show later; these truncated tests are designed to show the tremnds in

performance.
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Figure 9 shows the value of the correlation coefficient as a function
of gain with the number of taps as a parameter. In this example, the
accumulator length was set at M = 500, D = 0.5 and the number of iterations
was 2000, We would expect that the gain should be inversely proportional to
the number of taps because the tap weights, for an ideal system, should be
c(r) = (2/T) cos w,T. The data from Figure 9 supports this result. The
performance improves as the number of taps increases, but it should be noted
that my simulstions do not account for the triangular area of integration
naturally imposed by the Bragg cells as shown in Figure 3a. In any event,
the correlation loss for the case of N = 50 versus that of N = 200 is
-0.59 dB versus -0.5 dB which is not a significant change. If the number of
taps is at least 50, then, the system performance is quite good for notch

filtering.

The depth of the notch cannot be accurately read from the graphs such
as that given in Figure §, partly because the period of the jammer is not a
divisor of 1024 which is the sample index for the discrete Fourier transform
used to calculate the steady state transfer function. The notch depth can
be obtained by freezing the tap weights after adaptation and letting only
the jammer signal continue. The notch depth is the ratio of the variance a;
of the residual, which is an attenuated replica of the jammer, to the
var:.ance oc’ of the input jammer. For the example given in Figure 5, the
notch depth by this method of calculation is -31.5 dB., In a similar
fashion, the output signal-to-noise rati can be estimated by the ratio of

o; to a; after the weights are frozen., Table 1 gives the notch depth

and output signal-to-noise ratio for a single jammer, with N = 48,
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TABLE 1. Performance Parameters

2 3
SNRi 2 ? g SNRo Notch Depth

-19.9 dB 0.025 1 16.0 dB -35.9 dB

-13.9 dB 0.003 1 25.6 dB -39.5 dB

-7.9 dB 0.007 1 21.3 dB -29.2 dB

-1.9 dB 0.008 1 20.8 dB -22.7 dB
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M = 4000, and D = 0.5. The gain was adjusted to produce the maximum
correlation coefficient at the point where the tap weights were frozen for

the strongest jammer. Since the tap weights were frozem after only 48000

iterations, the system has not yet reached its optimum steady state

PR N
P P

performance and the values given in Table 1 are understated somewhat., Since
~ the residual must always contain a portion of the jammer energy, we see that
the notch depth is a function of the input jammer power. As the input

jammer level decreases, the notch depth decreases to allow the feedback loop

to maintain the proper set of tap weights,

e
LRI Y

The results of the simulations can be compared with those obtaimed by
digital systems having infinite accumulators. The most obvious difference
is in the depth of the motch. Since the residual must contain some

:' component of the jammer signal, the notch depth cannot exceed a given value.
In passing, it is worth noting that if a separate noise signal were
available, as in some of the appliations noted by Widrow, et al®, this
restriction is removed and deeper notches could be obtained, Let us assume,
then, that the component of the jammer in the residual is of the form

B cos[uot + ¢] when the jammer is of the form A cos w t. If the jammer and
L wideband signal g(t) are uncorrelated, the steady state transfer function

for w near w can be approximated by H(w), where

H(w) i © = 1-2R cos[(w—mo) NTO(l + 4/N) /2] sinc((.~m‘)NTQ/2]

(11)

+ stincz[(m-w\)NTJ/2],
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and where G is the feedback gain, N is the number of taps of delay To. M is
the number of samples stored in the accumulator and k is a factor which
accunts for the taper along the accumulator. If the taper along the
accumulator is severe, the output of the accumulator will be samller (k < 1)
than that for an untapered accumulator (k = 1), To achieve the same notch
depth, the feedback gain needs to be increased somewhat to offset the

effects of the taper.

If we use the value of B in (11) and calculate the notch depth at

® = ©,, we have that

kca’mm }?
| 2 .7 -
Hwy) | [1 4+kGAzNM}

(13)

We note that the notch depth increases as the jammer amplitude A increases
to the point where the value of the jammer component B in the residual have
the value given by (12). From our simulations, however, we find that the
length of the accumulator is the most important parameter for obtaining a
very deep null. As the factor kGA3NM becomes very large relative to the
factor 4, the notch depth increases and we have that B * 4/kGANM. For an
exponent ial taper in which D = 0.5, we find that k = 0.49; this value, along
with the values of G, A, N and M from the simulation gives a calculated

notch depth of -35.4 dB vs a depth of ~35.. dB as given by the data.

The half-power bandwidth can also be obtained from (11). If the value

of Af is small compared to fo' we can expand each term of (11) and arrive at

the result that

N - ndta - A [P PN Sy Asl o b =

iaialaeta




_ 2-RrR -1/ 11 1
b TNt [4/3 TR/3 *A/N| (14)

Although the bandwidth is a function of the notch depth through the
parameter R, we can simplify (14 for values of R > 0.9 (i.e. for notch

depths more than 20 dB down) so that

N S
Af = (15)

NT_ VIFE/N
This result shows that the half-power bandwidth is primarily determined by
the number of taps used, If N is large compared to 4, the bandwidth is
given by Af = 1/2NT°. The bandwidths as determined by the simulations agree
closely with the values calculated from (15). Fignre 10 shows the tramsfer
function for both a finite (4000 samples) and infinite accumulator for a
N = 48 tap situation, The half-power bandwidth is very nearly the same for #
the two cases, but the notch depth is about 6 dB greater for the infinite
accumulator, The data was taken after 10,000 iterations; the notch depth
for the infinite accumulator should continue to grow as the number of
iterations increcse, if we assume that the jammer and the signul are
uncorrelated.

The adaptation time constant for low values of the gain, an infinite

.1
accumulator and uncorrelated input signal and noise, is ziven by6

= -1/1 - 16
tp 1/1n(1 Glp) (16)
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T ~ 1/GA (17)
P P

where tp is the adaptation time constant for the pt:h mode whose eigenvalue
is kp. If the eigenvalues are not equal, the adaptation time constsnt does
not have a unique value. A reasonable estimate can be made, however, by
averaging the eigenvalues so that kp is replaced by ka .

ve

Widrow, et 1%4

in.roduced the concept of the degree of misadjustment
of an adaptive systsem and related it to the adaptive time comnstant. This
misadjustment is a measure, expressed as a percentage, of the actual mean
square error between the output signal and the desired response to the mean
square erzor based on the optimum Weixer soluntion. The misadjustment csn be

related to the adaptation constant Tave and the number of taps through

A =N/4+< . (18)
ave

The misadjustment given by (18) originates from random noise in the tap
weights due to the use of a noisy gradient instead of the true gradieat in
the adaptation process. The relationships in (16-18) are valid only when
the adaptation process is slow; this generally implies that the gain is
small, When the gain is small, a second type uf misadjustment may arise due
to nonstationary input statistics; this has been called the misadjustment

14

due to lag. As noted by Widrow , the bes! pertoimance is achieved by

setting the gaimn so that the misadjustments due to graident noise and lag

are equal.
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In terms of the notation used here, the total misadjustment can be
represented by A.r = (az‘ - as’)/ag’ since the jammer power should be
completely removed in the optimum Weiner solution., As we have noted before,
the finite length of the accumulator in the optical implementation requires
that some jammer signal be present in the residual. The total misadjustment
is, therefore, the sum of that due to gradient noise, lag, and jammer power.
Further, as we see from Figure 9, the performance does not improve
monotonically as the gain decreases, since the accumulators have finite
length. As a result, the optimum gain is generally higher than that used if
the accumulator were infinite so that the misadjustment is principally due

to gradient noise and jammer power,

Since the gain is a function of the accumulator length, the value of
the adaptation time constant as calculated from (16) or (17) tends to lead
to erroneous results, A better procedure is to calculate the jammer power
in the residual from (12) and to then calculate the misadjustment due to

gradient noise from

c ¢ (19)

The adaptation time constant can then be calculated from (18). As an
example of this procedure, we use the results from the simulations givem in
Table 1. We found, at the end of 8000 iterations, that cz‘ = 1.12 and

ag’ = 1. The zain was G = 1.25(10-,) so that, from (12), we find that

B =0.234. From (19), we find that the misadjustment due to gradient noise

is then 0.0926 aad, from (18), that the average time comstant is Tave 130.

-
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We now give an illustration of the adaptation time constant and

determine how rapidly the system will readapt to a sudden change in jammer
frequency. Figure 11 shows the values of s(t) and s(t) in the region of an
abrupt change in frequency from w, = 2n/8'1'o to w, = 2n/12T0. The plot of
s(t) is delayed by one sample value for clarity. The system was allowed to
adapt to the first jammer for 8000 iterations so that s(t) is a good
estimate of the jammer. At the 80015t/ iteration, we switched to the lower
frequency, and we see that s(t) initially decays as the transient passes
through the system. After 25 iterations it reaches its smallest amplitude;
it then begins to incresase in amplitude as well as adjusting its phase to
the new jammer. Readaptation is nearly complete sfter about 130 iterations

which is consistent with the calculation for the time constant.

Figure 12 shows how the notch changes its shape during the
readaptation phase. Just before the frequency shift, we have a well formed
notch at the initial frequency. Within five iterations of the change in
frequency, we find that the notch depth is about -10 dB. The notch at the
lower frequency has not yet begun to form because 5 iteratiomns is less than
one-half of a cycle of the new frequency. After 50 iterations, 8 notch is
beginning to form at the new frequency; its depth is about the same as that
at the initial frequency. After 125 iterations, a notch is reasonably well
formed at the _.ew frequency and, as the adaptation process continues, the
notch depth will increase while the remnant notch a: the initial frequency

will continne to diminish.

The final example is that of suppressing two unequal jammers at
<.fferent frequencies. In this case one jammer is at +20 dB relative to the
signal and the second is at +10 dB. Figure 13 shows the two notches formed

by a 48 tap, 4000 sample accumulator setup. The notch at the lower
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frequency corresponds to the +10 dB jammer; we see that the notch is not as
deep (=~ -20 dB) as is predicted by (13) and there is more evidence of jammer
power in lZ(m)lz at this frequency. Examination of z(t) shows that the
adaptation constant (t.ve = 175) is primarily due to the strong jammer, with
a secondary adaptation constant due to the weak jammer. The correlation
coefficient is p = 0.93.

4. SUMMARY AND CONCLUSIONS

The purpose of the simulations was to determipe the effects of using
finite accumulators as dictated by the finite time—-bandwidth product of the
Bragg cells. The measure of performance used throughout has been the
correlation coefficient between the output signal and the transmitted
signal. The effect of using a finite length accumulator is to reduce the
correlation coefficient by = 0.5 to 1.0 d3 depending on the system
parameters., Some degree of taper is needed on the accumulator to reduce the
effects of readaptation. The amount of taper required increases as the
frequency of the jammer increases. The natural attenuation, the frequency
response and the method of illumination of the Bragg cells are possible ways
to implement the taper. These methods have the advantage of increasirg the
apparent time~bandwidth product of the Bragg cell wkich help to improve the

overall performance of the system.

The number of taps available is probably greater than that needed in
many applications. We found that increasing the number of taps improves the
performance but also increases the time necessary for the system to adapt to
changes in the jammer frequency or amplitude. In contrast to a comnventional
system where the feedback gain can be set at a low value (at the expense of
slower adaptation), the gain in the optical system must not be set too high

because then the system will not be stable, or set too low because then the

. o ek e




tap weights will not be large enough to remove the jammer energy. The notch

depth is not as great as when using infinite accumulators because some of
the jammer enexgy is needed in the residual signal to maintain the tap

weights, The null is sufficient, however, to improve the signal-to—jammer
ratio at the output so that a high value of the correlation coefficient is

obtained.

I thank M.A. Epstein for writing the computer programs used for these
simulation studies, and E.F. Smith and R.W. Boyd for their insights and

suggestions. This work was supported by the U.S. Army Research office.
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FIGURE CAPTION LIST
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Input/Output Spectra and Filter Response,
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Performance as a Function of Gain.

Filter Response for Finite and Infinite Accumulator,
Signals During Frequency Shift.

System Response During Frequency Shift.

Output Sprectra and Filter Response for 10-dB and

20~dB Jammers,
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