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PREFACE

These lecture notes are intended to provide a helpful overview

of progress in numerical fluid dynamics, since its conception in

the mind of von Neumann 40 years ago. Their main purpose, however,

is not to serve as a historical record; still less are they intended

*to present a "state of the art" survey in a rapidly changing field.
Instead, their purpose is to supply a thoughtful historical

perspective which may help readers to assess future possibilities.

Qualitatively, everyone is aware of the enormous ii.crease in
the computing power that has become available, and specialists

are familiar with the great variety of ingenious algorithms that

have been proposed for solving mathematical problems originating

in fluid mechanics. But reliable quantitative assessments of

what can and what cannot be accomplished in a cost-effective

manner are much harder to make. Indeed, experts agree that one

can at best hope to make reliable order-of-magnitude estimates.

Only for a few very specific problems are cost estimates

provided in these notes. Instead, a critical review is provided

7of the main achievement and limitations of various analytical
and numerical models that have been proposed for predicting and/or

simulating fluid motions. For historical reasons and because

they are more fundamental, analytical models are reviewed first,

in Chapters 1 and 2.

Chapter 3 attempts to bring to life von Neumann's original

brilliant insights, as seen in the light of later developments.

Chapters 4 and 5 are concerned with simple mathematical models of

fluid flow that have given useful quantitative insights into

reality: those of potential flow and sound waves. These models

are amenable to rigorous mathematical analysis, and they provide

'Readers trying to decide whether to read these notes might look
at my von Neumann lecture, published in SIAM Review 25 (1983),
1-34. This covers related material much more briefly, but in
the same spirit.

2See the chart on p. 3, which is the key to the viewpoint stressed

in this book.

.
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a good testing ground for the dream of Euler, Poincare, and

Hilbert: of making fluid mechanics into a mathematical science,

like geometry.

Von Neumann, who seems to have considered the Laplace and

wave equations dealt with in Chapters 4 and 5 as well understood,

was fascinated by one-dimensional nonlinear waves in a compressible

fluid. This may have been because they are not only relatively

accessible mathematically, but were also accessible computationally

even in his lifetime. Chapter 6 surveys some of the great

theoretical and computational progress that has been made in

treating them since that time, focussing on a few unsolved problems

that should be solvable with moderate resources.

Chapter 7 deals with (mathematical) flows of an (idealized)
incompressible viscous fluid. Experts are agreed that if we

could integrate the Navier-Stokes equations which govern these,

analytically or numerically, then a vast variety of important

practical problems (pipe flow, airplane resistance at speeds

U < 200 miles/hr) could be effectively treated without recourse

to experiment. However, the phenomena of flow separation and

turbulence have so far required extensive empirical data before

becoming amenable to reliable computer simulation. A complex

interplay of numerical and physical empiricism permeates the

technical literature as a result of this situation; to compare

. the 'cost effectiveness' of different computational procedures
-S

N in this area is therefore very difficult (and problem-dependent).

In their present form, these lecture notes were largely

prepared while I was ONR Research Professor at the Naval Post-

graduate School in Monterey, California. I wish to thank the

Office of Naval Research for its continuing support of the effort
required to understand an extraordinarily complex and many-sided

subject, and to give a reasonably coherent survey of significant

parts of it.

Garrett Birkhoff A
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CHAP. 1. DYNAMICS of IDEAL FLUIDS

1. Models of fluids. Fluids (i.e., gases and liquids)

differ from solids in their physical inability to withstand shear

stress without deforming. As a result, fluid motions or "flows"

are characterized by the large deformations which blobs of matter

can undergo. Many models have been proposed for deriving their

behavior from first principles, within the framework of Newtonian

mechanics. This chapter will be concerned with the simplest

model: that of a so-called ideal fluid. Such an "ideal" fluid
is defined physically by two properties: (i) it is incompressible

(volume is conserved), and (ii) it is subject to zero shear stress

even when moving.

These assumptions (within the general framework of Newtonian

continuum mechanics) will be formulated mathematically in §§2-3.

". But before discussing in detail the flows of such "ideal" fluids,

we will list for contrast some other important mathematical models

of fluids that have been studied in depth.

Eight of these are listed in tabular form in Table 1; we will

consider all of them in this book. In this chapter, we will des-

cribe some successful uses of the first two of these models, both

of which attempt to rationalize (i.e., predict quantitatively) the

behavior of nearly ideal fluids that are very slightly compressed,

and whose shear stresses are very much less than their pressure

stresses.

In practice, mathematical treatments of fluid motions,

whether analytical or numerical, ordinarily neglect most of the

following: viscosity, compressibility, external gravity, and the

effects of variations in temperature and entropy (e.g., natural

convection). They often also neglect the effects of lateral or

vertical velocity components, or their squares, as in the theories

of sound waves and shallow water waves and in boundary layer

theory. Indeed, many of the most successful mathematical models

K"* *.*:--* *-*... -. **>,.***-.". -o.-*. j --. -
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of fluid flows are only asymptotic, in the sense that they depend

on a parameter (e.g., the Reynolds number or its reciprocal), and

are only accurate when this parameter is very small or very large.

Eight standard models. Among the many different initial-

boundary value problems that have been proposed as realistic

mathematical models for fluid flows, eight are especially signi-
ficant. Each of these models is mathematically self-contained,

in the sense that its basic equations can be regarded as an axiom

system from which the behavior of various kinds of fluid motions

can be deduced mathematically, in somewhat the same way that

Euclid deduced geometrical theorems from his axioms, and that

Newton and his successors (especially Laplace in his Mecanigue

Celeste) derived the orbits of the planets and their moons from

three force laws and the law of universal gravitation.1

Table 1 also lists (in the second column) the chapters in

Lamb's classic treatise [A6] which summarize what was known about

each model mathematically as of 1932, and the names of some key

concepts which are associated with it. Table 1 can be viewed

as a guide through Chaps. 1-3 below, which explain in more detail

the significance and typical applications of these concepts.

Molecular effects. Diffusion, boiling, condensation, latent

heat, and many other physical phenomena can only be understood,

even qualitatively, in terms of the molecular structure of

matter. Therefore, we have included kinetic theory in our list

of analytical models, even though it is based on ordinary and

not on partial DE's, and is very different for liquids than for

gases. We will discuss this model in Chap. 3.

One may well ask: what is the purpose of studying mathe-
matical models that are known to neglect physical variables such

as compressibility and viscosity? There are three different

answers to this question.

i Actually, even celestial mechanics is not exact: it neglects
relativistic effects and the asphericity of the sun and planets!

,i

bI
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TABLE 1. EIGHT STANDARD ANALYTICAL MODELS FOR FLUID DYNAMICS

ORIGINATORS LAMB Chaps. KEY PHRASES

1. EULER-LAGRANCE III-VI SOLID BOUNDARIES vs.
POTENTIAL FLOW VIII-IX FREE BOUNDARIES

INTERFACES, SLIP-

STREAMS GRAVITY WAVES

2. HELMHOLTZ-KELVIN VII CYCLONES AND
VORTICITY ANT I CYCLONES

3. NAVIER-STOKES XI ASYMPTOTIC:
STREAM FUNCTION (pp. 563-663) BOUINDARY LAYfER,
INCOMPRESSIBLE LUBRICATION

4. HELMHOLTZ-RAYLEIGH X ACOUSTICS, WAVE FRONTSSOUND WAVES ANALOGY WITH GEOMET-

P WAVE EQUATION RICAL OPTICS AND RAYS

COMMENT: THE REMAINING MODELS ARE LESS WELL DEVELOPED:

5. RIEMANN X (cont.) SUPERSONIC FLOW
RANKINE-HUGONIOT SHOCK WAVES

6. REYNOLDS XI (cont.) EDDY VISCOSITY'7 PRANDTL-TAYLOR (pp. 663-96) TURBULENCE
(RANDOM FUNCTIONS u(x,t;w)

7. MAXWELL Secs. 325, CAVITATION
DIFFUSION in GASES 357 LATENT HEAT
(MOLECULAR MEAN KINETIC THEORY
FREE PATH)

8. TWO-PHASE FLOW CAVITATION, BOILING
FREE BOUNDARIES

In the first place, mathematical models (whether numerical

or analytical) can contribute to our understanding of Nature, by

showing at least qualitatively why various interesting phenomena

occur. This was what scientists like Newton and Kelvin meant by

the phrase Natural Philosophy. They were well aware that many

of their formulas were not exact, but they hoped that their

ingenious mathematical models would provide at least a first step

I ~.L toward eventual exact understanding. Models which do this well

" flway be called philosophical models.
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Second, models may predict very accurately what will happen

over a wide range of controlled laboratory conditions. A good

example is Poiseuille's formula,
.4

(1.1) axial pressure gradient = -8UQ/ira
4

This relates the pressure drop per unit length in a horizontal

tube to the flow rate Q and the radius a, and is accurate

as long as Re = pQ/ffla < 1000. We shall call such models

scientific models.

Finally, partly as a consequence of their qualitative cor-

rectness, mathematical models may suggest rational methods for

organizing, interpolating between, and extrapolating from experi-

mental data. Even if this interpolation and extrapolation is

accurate only to within ±20%, and involves empirical constants

or 'correlations', it can often greatly reduce the need for

further costly experiments (e.g., parameter studies). We shall
call models used for this purpose, engineering models.

This chapter will be concerned with the simplest model of an '-

"ideal fluid", assumed to be incompressible and non-viscous (or

'inviscid'). This model, although easy to criticize from a

physical standpoint, is so much more tractable mathematically

than more realistic physical models that it is still the one

*i most commonly used in engineering applications.

The next chapter will discuss compressibility and viscosity,

thus completing a reasonably balanced (if necessarily sketchy)

introduction to analytical fluid mechanics. With this background,

we hope that our book will provide a stimulating and readable

survey of numerical fluid dynamics, of interest to engineers as

well as to mathematicians and applied physicists. To this end,

we have included in Chapter 3 an account of von Neumann's ideas

and influence on the subject (which was very great!), together

with a discussion of some suggestive molecular models of fluids.

We then take up a series of case studies of numerical methods

in five different areas of fluid dynamics, to each of which a

chapter is devoted. Chapter 4 is devoted to potential flows;

- - " -; -, _ _ - - - ,. -, -- ..- .,- --. .' . < _ / .; " . . . -
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Chapter 5 to sound waves; Chapter 6 to nonlinear waves; Chapter 7

to the Navier-Stokes equations; and Chapter 8 to two-phase flows.

2. Euler's Equations. Fluid dynamics was first envisaged

as a systematic science in Johann Bernoulli's Hydraulics (1737), in

Daniel Bernoulli's Hydrodynamique (1738), and in d'Alembert's

Traite ... des fluides (1744) and Theorie generale des vents (1745).

Hunter Rouse2 has retold the amazing story of how Johann withheld

his son's manuscript from publication, while wri, ng his own

version of the subject, in the preface to the Er ish translations

of the two books, published by Dover in 1968.

The ideas expounded in these books were fox ted mathe-

matically as partial differential equations by D, zi Bernoulli's

friend Leonhard Euler (1707-83), in two path-breaking papers

(1752, 1755). In his second paper, Euler claimed optimistically

that "all the theory of the motion of fluids has just been reduced

to the solution of analytic formulas."

* .*i Euler was referring, first of all, to what are today called

the equations of motion of a nonviscous fluid:

(2.1) Dui/Dt = gi - Vp/paxi, i = 1,2,3

In (2.1), u = (u1 ,u21u 3) is the vector velocity, j = (g1,g2,g3)

the gravitational force (per unit mass), p the pressure, and

p the density; while D/Dt denotes the 'material' or 'substan-.3
tial' derivative /3 t + Zuk a/axk). To quote Euler again:

"If we add to these three equations [of motion - i.e., to (2.1)],

first [the equation of continuity

3
(2.2) ap/at = - = - ui)/ax ii=l1

2See also Hunter Rouse and Simon Ince, History of Hydraulics,
Iowa Inst. Hydraulic Research, 1957, Chaps. VII and VIII.
3See L. Euler, Opera Omnia (2), 12, p. LXXXV, translated and
edited by C. Truesdell. We can interpret Euler's r in gases
as temperature (in nearly isothermal flow) or as p/py (in
nearly adiabatic flow).
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then that [the equation of state

(2.3) p = p(p) [or p = (p)I

which gives the relation between the elasticity p, the density

p, and the other quality r which in addition to the density

influences the elasticity, we shall have five equations which

include all the theory of the motion of fluids."

Euler's conception of a purely rational fluid dynamics, based

on what we have called Euler's equations, was magnificent. It is

analogous to Newton's conception of a rational celestial mechanics,

deducible from his universal law of gravitation and his three

general "laws of force".

However, fluid mechanics is many orders of magnitude more

complicated than celestial mechanics. Whereas the latter is

primarily concerned with predicting the regular and periodic

advance of the moon and planets past a background of stationary

stars, with due attention to eclipses, the phenomena of fluid

mechanics are infinitely varied and involved (e.g., wind patterns lp

on a stormy day).

Moreover even in celestial mechanics, the elaboration and

verification of Newton's mathematical 'model' of the solar sys-

tem took nearly two centuries. Therefore, it is hardly surprising

that progress in correlating Euler's mathematical model of a

'fluid' with experimental observations was even slower. Indeed,

its early successes concerned tae one-dimensional motions of

homogeneous incompressible fluids of constant density p = p0 .

We will call such a fluid an ideal fluid.

Lagrange's Mecanique Analytique. A milestone in the progress

of fluid dynamics was the Mecanique Analytique of J. L. Lagrange

(1736-1813). Published in 1788, it remained the standard treatise

on mechanics for at least 50 years. Its last three chapters,

dealing with "hydrodynamique", included several fundamental

results based on Euler's equations. Euler's equations fit

beautifully into Lagrange's general concept of a (conservative)

dynamical system having infinitely many degrees of freedom, like
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a 'vibrating string'. Lagrange's general theory of 'small

oscillations', having a basis of 'normal modes of oscillation'
(eigenfunctions, in modern terminology), applies to wave motions

of fluids, whether gravity waves (see §6) or ocean waves (see

Chap. 2).

In the resulting Euler-Lagrange model, incompressible fluids

(often imagined as 'liquids') were soon seen to have a quite

different theory from (idealized) compressible fluids (or 'gases').

This chapter will be devoted to the former, and indeed to

(idealized) homogeneous incompressible fluids, of constant

density P = P0 .

3. Ideal fluids. We may call a fluid that satisfies Euler's

equations (2.1)-(2.3) with p= p0  an 'ideal fluid'. For a century
after Euler first proposed his equations, fluid dynamics was

concerned almost exclusively with ideal fluids.

Steady flows. Euler's first major triumph was his mathemati-

cal derivation of Daniel Bernoulli's formula, relating the pressure

to the velocity in a conservative gravitational field g(x) = -VG

with gravitational 'potential' G(x). This formula is

(3.1) p + P0( 2+ G) : const.

it is valid along any streamline in any 'steady flow' of a fluid
of constant density pO with time-independent velocity u(x)

A streamline is defined physically as the path of a particle

in steady flow. Mathematically, it is the orbit of a solution of

the autonomous system dxk/dt = Uk(X). Noting that in steady

flow, the material derivative D/Dt in (2.1) reduces to

lUka/aXk and introducing the convenient symbol q for the flow

speed [ju]I1/ 2 , it is very easy to derive Bernoulli's formula

today. Indeed, we have (in steady flow)

D 1 2 au. au. Duik k

by the commutativity of multiplication.

. .. . . ,. . .
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Substituting intc. che last expression from Euler's equation

of motion,

Dui/Dt = _ ap/3x. + gi

1 p i 1

we get (p = p0 being constant)

() aG + G)-- - = - D- + Gaxi  _ Dt p0

Substituting back into (3.1'), this gives

D 1q2 -- +G(3.2) 4q ) + -2 + G) =0

P0

whence (3.1) follows, as claimed.

Bernoulli's formula. We will discuss several generalizations

of Bernoulli's formula (3.1) below, and it is suggestive to derive

it also from the physical principles

of conservation of mass and energy.

To this end, consider a thin stream

tube composed of a bundle of

streamlines around a given stream-

line. Let s denote arc-length

along the central streamline, and let

dA(s) denote the cross-section of

the tube. Since the pressure is

everywhere normal to the boundary,

no work is done by the pressure on

a segment of the (moving) fluid in

the stream tube, except through the motion of its ends. There

the rate of work (per unit time) is W = p0u0dA0 - puldA1 ;

moreover by the conservation of mass and density (hence volume

dR), udA0 = uldA1 =Q, the rate at which volume enters and

leaves the segment (per unit time); the corresponding mass is

L The rates of convection of kinetic energy into and out of
1. 2 1. 2

the ends of the stream tube are mq 0 and mql, respectively.
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r This gives a simple physical meaning to p0  times (3.2), in

-. terms of conservation of energy. Rewritten as

(34) 1 2 1 2(3.4) (p 0 +Tpq 0 +G 0 ) = (pl+ 2pq1 + GI)

it states that the rate of work done on any fluid segment of a

stream tube by the difference in pressure at its ends, (p0-Pl),

is the sum of the rates of increase of its kinetic energy,
1 2 2 1_m (q- _q), and its potential energy, 2m(G 1 -G0

*'Long' waves. A second early triumph of the 'ideal fluid'

model, was its successful prediction (by Lagrange in 1781) of the

velocity of propagation of 'long' waves of length A and

'infinitesimal amplitude' in 'shallow water' of depth h << .

We emphasize that Lagrange's formula,4 c = /gE, is not

exact. It is asymtotic, and valid for gravity waves of 'infini-

tesimal amplitude', in a 'canal' of otherwise constant depth.

It assumes that such waves are, to a first approximation,

horizontal surges, in which the vertical velocity and momentum

are negligible in comparison with the horizontal velocity and

momentum. It then considers the horizontal component of Euler's

equations of motion (see the Figure).

°.ho

... madebySoer in -, F , ] ( h wa)/2

k.'4 4Note that our derivation avoids the assumption of potential flow
;... v'.-o2,made by Stoker in [lO, §2.2]. What we call 'long waves' are

called 'tidal waves' by Lamb [A6, Chap. VIII], because the
basic assumption of nearly horizontal motion applies to tides,
whose wave length is thousands of miles.
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More precisely, it assumes that the vertical acceleration is

negligible, so that the pressure satisfies

(3.3) p = Pa + gPo(n-Y)

where y = (x) is the elevation of the surface. Hence, at all

points of the wave px= gp0ox. This is independent of y, and

so all particles in the same plane x = x, perpendicular to x

have the same horizontal velocity and acceleration. It follows

that, for a fluid initially at rest, all particles in a given

vertical plane parallel to the direction of motion stay in that
plane x = C(t), in Lagrange's model.

For 'small oscillations', moreover, terms like uu that

are quadratic in u, like UUx, can be neglected. Hence the

equation of horizontal motion,

Po(ut +UUx) = =gPox

can be simplified to

(3.4) Pout = -gp0 x.

On the other hand, vy = -ux  by the equation of continuity,

which is a function of x alone, whence

(3.5) nt = -u h
t -

. Combining with (3.4) (divided through by p) , we get

(3.6) utt =-gxt -gntx = gh uxx

Similarly, ntt = -huxt = hu tt + ghnxx. In conclusion, the

one-dimensional wave equation

(3.7) u = gh u

characterizes 'long waves' of 'small amplitude' in a canal of OVA

constant depth h. Likewise, we can derive
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#'22

-tt= (-hux ) = -h(ut) = -c nxx

As d'Alembert had shown (and is easily verified), the general

solution of (3.7) is u F(x -ct) + G(x+ct), c2 =gh. Thus

such 'long waves' are superpositions of two waves, each travel-

ling with constant speed c without change of form, but in

opposite directions. Such waves are called progressive waves.

Tsunamis. Analogous to tides are 'tidal waves' or tsunamis,
2typically caused by earthquakes. In an ocean N miles deep,

these travel with a speed (c = /gE of about 412N f/s).

Simply harmonic waves. In the theory of waves, a central

role is played by 'simply harmonic' progressive waves, of the

special form

(3.8) u = Akcos(kx-ckt) + Bksin(kx-ckt)

= Ck cosk(x-ct-yk)

In (3.8), Ck = (A2+B2) 1 / 2  is the amplitude, while ¥k = arc-

tan(Bk/Ak) is the phase constant. The waves (3.8) are 'pro-

gressing' with wave velocity c in the direction of increasing

x without change of form; by changing the - signs to +

signs, we get waves moving in the opposite direction.

Standing waves. By superposing two simply harmonic waves of

equal amplitude moving in opposite directions, we get standing

waves. A typical example is the 'long wave'

(3.9) u = B sink(x-ct) + B sink(x+ct)

- 2B cos ckt sin kx

Since ux = v 0 and v =0 on the horizontal bottom y 0,

the vertical velocity is:

(3.10) v = 2kBy cos ckt cos kx

It is greatest at the crests and troughs of the wave, where

kx - nw and the horizontal velocity is zero. The horizontal

velocity is greatest at the nodes of the waves, where
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x = ± /2k, ±3v/2k, .... The variations in elevation are easily

computed from (3.10) to be

(3.10') = (2Bh/c) sin ckt cos kx

since y = h at the surface; they are 900 out-of-phase in space

and time with the horizontal velocity field.

Seiches. In a shallow tank of constant depth h and length

Z, such sinusoidal 'long' periodic standing waves of the special

form

(3.11) U = cos ckmt sin kmx km = mr/k,i- " sin "

form a basis for the 'long' horizontal surges or 'seiches'.

Mathematically, these can be expressed as superpositions

(3.12) u = . Bmsink x cos[ckm(t-tm)]

m=l m

of such sinusoidal waves.

The approximations made in deriving the preceding formulas

are valid when X = 2r/k = 21/m >> h, and the maximum surface

slope

(3.13) (Tx) = khB/c << 1

The dominant mode of oscillation is commonly that of 'sloshing',

with k = 1. In this case, the condition (3.13) is simply that

the vertical amplitude (hB/c) << 1, or B << Vg/h.

4. Potential flows. In a fluid of constant density p0,

conservation of mass is equivalent to incompressibility, i.e.,

to conservation of volume. Moreover, the net flux of mass out

of any bounded region S1 with boundary r = 30 is evidently

fJ Poun dS = pO f' udS

r r

By the Divergence Theorem, the last integral equals fff V-u dR.
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.-*. Hence mass conservation (zero net flux of mass) is equivalent to

(4.1) V-U = auk/axk = div u = 0

This is a special case of Euler's Eq. (2.2), and is obtainable

from it by setting P = p0" whence Pt = 0 and V-(pu) = p0V'u.

Definition. By a potential flow is meant a volume-conserving

flow whose velocity-field u(x;t) has at all times t a single-
valued velocity potential p(x;t) such that u = VO, i.e.,

whose velocity-field is a gradient field. Substituting from

u = VO into (4.1), we get Laplace's equation

(4.2) V = 0 in any potential flow.

In a simply connected region, the existence of a velocity

potential is equivalent to the condition that the vector vorticity

vanishes:

(4.3) W = ( = (wy-V ,Wx-U z,vx-uy) = 0.

Thus, in tensor notation, u = Vp implies

au x auj/ax i  
2  axa /a.a. =0" ax - u a /a j + a/x ax .

Stated loosely, a flow in a simply connected domain is a 'poten-

tial flow' if and only if its velocity-field is incompressible

and irrotational. However, in the multiply connected exterior

of the unit circle r = 1, the velocity-field

(-y/r2x/2 = grad e, e = arctan y/x

is not strictly a potential flow, because e is multiple-valued.

Example 1. In three dimensions, the velocity-field of a

simple source, with velocity potential c = -l/r, is a potential

field. So is that of an axial dipole, with = a(-I/r)/ax.

In the velocity-field of a simple source, u. = 3p/ax i -xi/r 3

whence

k-
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""2 3 '

V2*-=l[ 8ui/ax i = 3/r3 3x2/r5 0

For a dipole parallel to the x-axis, the potential is
a = (l/r)/ax -x/r 3  whence the velocity-field is

(4.4) U V(-x) 1 (-r 2+ 3x ,3xy,3xz)
r r

r" 5 2x2 y2  2
(2 - z ,3xy,3xz)

The outward radial velocity component of this field is clearly

1") ur = (xu + yv+zw)/r

r 6  2 3 _x 2 _ ~X 2  2 2 4r612x 3 xy  xz +3xy +3xz ] = 2x/r

Bernoulli equation. We now derive another form of the

Bernoulli equation.

THEOREM 1. In a fluid of constant density p. , Euler's

equation of motion (2.1) holds if and only if the pressure

satisfies

(4.5) p + °0+ p 0 ju2/2 + p0A(x;t) P(t)

where P(t) is a constant depending only on the time, and

A(x;t) is an acceleration potential, so that VA = ut(x;t).

Proof. Setting p = p0  in (2.1), we get

aui/at + l u /3X = g - ap/p0a x "

But since u. a/axi, aui/ax a /aX Hence if gi G/ax i ,

(2.1) is equivalent to

C -~-+ au au]C ~
" Ui 8 k = 3p

: + Uk u x--x Rx T. o axi

Multiplying through by dxi  and summing over i, we get

.. .-. .. . .. .> . . . . . ... ... . . . . x . . .. - .
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EdX1 + d u/2) d

Hence at any time t, I (aui/at)dx d [G-Iu2/2 is an
exact differential dA. It follows that ut = VA .is a
gradient field. If we call the A for which ut = VA the

acceleration potential, and multiply by p0m then we have

d[p 0 (A-G- J Uk/2) -p] = 0

whence the quantity in square brackets depends only on t, and

may be denoted P(t).

COROLLARY. In steady (time-independent potential flow,

we have A(t) = 0, and so

(4.5') p + p0G + p0q/2= P(t), q= u.

This form of the Bernoulli equation is one of the most

useful equations of hydraulics and aeronautics.

Flow around a sphere. As an example, we consider the axially

symmetric flow with harmonic velocity potential

(4.6) O(x) = [r + (a U/r 2U cos ,

and velocity field

(4.6') u(x) = Ux + --7(2x -y -z ,3xy,3xz)
2r

obtained by superposing a uniform flow with constant velocity

U parallel to the x-axis on an opposing dipole velocity-field.

(Note that since the Laplace equation V2= 0 is linear, any

linear combination of harmonic velocity potentials is itself
3harmonic.) On the x-axis y = z = 0, =Ux + Ua3/x and so

u = ox = U - a .U/x The velocity is thus zero at (±a,0,0):

these are stagnation points of the flow.
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More generally, everywhere on the sphere r = a (i.e.,

x2 +y2 +z2 = a2) the radial velocity is ur =Ux/r -(Ua 3/2) (2x/a4),

by (*), and this vanishes when r = a. The flow is thus

tangential to the sphere r a.

It is a good exercise to work out the pressure distribution

for the potential flow around a sphere obtained in this way.

5. Plane potential flows. In general, a planar (or "two-

dimensional") flow is one whose velocity-field can be written as

(5.1) u(x;t) = (u(X,y,t)v(x,y,t),t)

in a suitable rectangular coordinate system. It is then said to

be parallel to the (x,y)-plane z = 0. Hence a plane potential

flow is one having a velocity potential 0 =(x,y) that satis-

fies x + y =0.
xx yy

Complex potential. If = p(x,y) is any harmonic function

of two variables, with gradient (u(xy),v(xy)) = VO, then

d* = (udy - vdx) is an exact differential since ux + v = 0.

Moreover the complex potential W(x,y) = ,+i (i = V/-l) is an

analytic function of the complex position variable z = x +iy.

Indeed, this is immediate since the Cauchy-Riemann 
equations

are

(5.2) Ox =y =U(x,y), y = -x =v(x,y)

y y(,),

The complex derivative dW/dz = u - iv is moreover the complex

conjugate of the vector velocity u + iv. The verification of

these remarkable formulas will be left to the reader; in the next

section, we will see how useful they are.

Examples. For example In z = Zn r + i8 is the complex

potential of a simple source, with velocity potential = .n r.

In space, this corresponds to flow with radial velocity 1r = l/r

4-1 '

'For the notions of exact differential, Cauchy-Riemann equations,
etc., see Thomas or Finney-Thomas.

.°

= .. . .
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from a line source.

Differentiating, we get d(In z)/dz = l/z, whence

2u + iv = * l/z* = z/zz* = z/r

Alternatively, we can consider i/z = (x-iy)/r as the complex

potential of a dipole flow. Its velocity is the complex conju-

gate of

d(i/z)/dz = -l/z2 = -(x-iy)2/r4

= .-[x2 _ 2 ,_2xy]/r 4

2This complex conjugate is easily shown to be -[cos 2, sin 2e1/r

Hence the radial velocity is

ur = (xu x + yU)/r = (-x3 +xy - 2xy2 )/r5

2 5 3
-- xr2/r =-x/r

It is easy to show that the superposition

(5.3) W = z + 1/z
of the complex potential of a uniform flow parallel to the x-axis

with a dipole flow, gives a plane potential flow around the

cylinder r = 1. We could prove this by computing ur = 0 when

r = 1, but it is more instructive to prove it in a different way.

Stream function. Namely, let us call the complex conjugate

.(x,y) of the velocity potential O(x,y) the stream function

of that flow. Since 7s = (u,v) implies = (-v,u), we see

that the lines = const (whence di = txdx + ydy = -vdx +udy =0)

are everywhere tangent to the flow direction: they are

streamlines. In the special case of (5.3), clearly

(5.3') "p = y-y/r 2 = (r-l/r) sin 6,

whence t = 0 is the streamline r = 1 (the flow is around the

unit cylinder).
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2:. Similarly, the complex potentials W -- z + a zand •'

W iz + a 2/iz

(r+a/r) sine + i(r-a /r) cos 6

with stream functions (r-a 2/r) sin e and (r-a 2/r) cos 6 des-

cribe potential flows around the cylinder r = a, with 'free

stream' vector velocities

U = lim (0y,- x) = (1,0) and (0,1)

y x

respectively.

Elliptic cylinders. We now consider the effect of the' z-l)
transformation z r (z+z ) = t on the circles IzI = r = a > 1

in the z-plane. Note that since dt = (1-z- 2)dz, the transfor-

mation is conformal (i.e., angle-preserving) except where", Z- 2
1- = 0, i.e., except at z = ±1. Writing

Z = aei = a(cos 9 + i sine), we get

(5.4) t = (a+a - ) cosO + i(a-a - ) sine

-1
This is an ellipse with major semi-axis ct = a +a and minor

semi-axis 8 = a-a -1 . Moreover the flow speed q = IdW/dzl

goes into

q, = idW/dtl = qldz/dtl = q/1l-z- 2

Finally, l-z- 2 = Iz= Iz-z-lI/a, where

z- l = [(a -a- 2 cos2 e + (a+a- sin2] /

2 -21/
= [(a +a - ) - 2 cos 2 1 1 2

We conclude that

(5.5) q' = aq/[(a 2 +a 2) - 2cos 29]12

We will show in §7 how to extract useful numeric,. information

from these formulas.
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6. Gravity waves. We next take up the beautiful mathemati-

cal theory of periodic (sinusoidal) "surface waves" in an ocean

of infinite depth, and more generally of analogous waves in a

"lake" (or "canal") of constant finite depth h. This theory,

due to Green (1839) and Airy (1845),6 assumes the potential flow
model of §4, in an 'ideal' (incompressible, inviscid) fluid of

constant density. In other words, it assumes that a velocity

potential O(x;t) exists and satisfies the Laplace equation

(6.1) V2  0 inside the liquid

To determine the flow mathematically, one must also impose

suitable boundary conditions. One boundary condition is obvious.
* On the horizontal bottom, the condition of no penetration by

the water (or other liquid) implies that the fluid velocity un

normal to the boundary must be zero. Hence we have

(6.2) ag/an = 0 on the fixed bottom

To utilize the physically plausible 7 ,free surface' condi-

tion of constant atmospheric pressure,

(6.3) p = Patm = const. on the liquid surface,

is more difficult. Indeed, to make the resulting boundary value

problem mathematically tractable, this condition is usually

linearized to give the second boundary condition:

(6.4) = go on the 'mean water level' y = 0

tt y

We will next derive Eq. (6.4), assuming a vertical gravity field

with G = gy, y being the depth below the water level, to prove

See Lamb [A6, pp. 367, 368] footnotes.
7This is plausible because the ratio p'/2 of the density of

L -W air to that of water is so small (about .0013), so that its
inertia is negligible in a light breeze. Clearly (6.4) is most
accurate for waves of 'small amplitude'.

Ii
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THEOREM 5. Equations (6.1), (6.2), and (6.4) are valid for

waves of infinitesimal amplitude, in an incompressible, non-

viscous fluid in a uniform vertical gravity field.

Proof. By the Bernoulli equation for potential flow,

(6.5) P/P 0 + [q2 /2 - G + 3/3t] = F(t)

the free surface condition (6.3) is equivalent to

(6.6) G- 0 -/t . Vo= F(t)

If the free surface is nowhere vertical, so that it can be ex-

pressed by an "elevation function" n(x,z;t), with

(6.7) -y = n(x,z;t) on the free surface,

then equation (6.6) is exact on -y = n. Moreover, since any

+ F(t) is just as valid a velocity potential as (they have

the same gradient everywhere at all times), we can assume

F(t) 0 without losing generality.

Finally, we linearize. In the case of waves of small

amplitude: it is reasonable to neglect terms quadratic in the

velocity, like q = V -o. This reduces (6.6) to

(6.8) gy + 90/3t = 0 on y = -n

Moreover, to a higher order of infinitesimal, -9n/Dt = O/3y = v,

the vertical component of velocity. Hence, using (6.8), we get

(6.9) g 30/ay = -g an/Dt = a /@t on y=

For waves whose amplitude is small in comparison with the wave

length X, this implies the same equation on y = a, which is

(6.4) above. Q.E.D.

A "..Periodic standing waves. Since Airy's model for gravity

waves is linear, we can apply harmonic analysis to express a wide

class of solutions as superpositions (Fourier integrals) in time

AL
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" .of simply harmonic, periodic standing waves having velocity

potentials of the form

(6.10) 4(x,y,z;t) = s Wt (xyz)

The product (6.10) satisfies Eqs. (6.1) and (6.2) if and

only if

(6.11) V2 ( = 0, and 3#/3n = 0 on fixed boundaries.

Equation (6.4) holds if and only if

• . (6.12) g - w on y = 0

Hence Eqs. (6.1l)-(6.12) are characteristic for (simply) periodic

standing waves.

Ocean waves. A limiting case of especial interest concerns

waves in an 'ocean' of infinite depth. In this case, there is

no fixed boundary; hence we replace the equation O/an = 0 of

(6.11) by the condition that it must hold asymptotically at

great depths.

Actually, the velocity dies of exponentially with depth:

it is easy to verify that, for any k > 0, the 'reduced velocity

potential' 0 = Isin kx e- kY dies off exponentially with depth. 'Cos,
and satisfies V D = 0 (hence (6.11)). In the 'small amplitude'

approximation of the linearized free surface condition (6.12),

therefore,

(6.13) O(x,yz;t) = sin kx e s t* cost )Cos ~

is the velocity potential of a possible (standing) ocean wave if

and only if (6.12) holds. The condition for this is easily

verified to be w= gk.

* By superposing standing waves of the form (6.13), we can

construct progressive ocean waves with velocity potentials
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(6.13') cos(kx+wt) = cos kx cos wt ± sin kx sin wt

Moreover, since w = /g, the wave velocity c = w/k (or

'celerity') of such waves is /vg; since the wave length
A = 27T/k, we have

(6.14) c (gA/2.)1 / 2 for ocean waves

Waves in a canal. The case of waves in a canal of constant

depth h can be treated similarly. Here it is convenient to

make y = 0 the bottom of the canal, and to direct y vertically

upward. The reduced velocity potential

(6.15) O(x,y) - sin kcosh ky

satisfies (6.11), for any k > 0. Moreover (6.12) holds if and
2only if W cosh kh = gk sinh kh, whence the wave velocity is

(6.16) c = /k = [gk tanhkh]i1 /2/k

= tanh (2nh/X)

The predicted wave velocities (6.14) and (6.16) have been very

well confirmed experimentally.

Particle orbits. In standing waves, the motion of any

particle is sinusoidal and in one direction. It is vertical at

the crests and troughs, and horizontal at the 'nodes' midway

between these. In progressive waves, the orbits are circular

in deep water, and elliptical in shallow water.

7. Inertial similarity. The idea of similarity, which

underlies dimensional analysis and the use of scale models, is

one of the most important ideas of physics. Prandtl-Tietjens

devote Chapter II of [A81 to it; for a thorough discussion of

it, see [A2, Chapters IV and V1.

KB-
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To explain 'similarity', one should first define a group of

. .. transformations as a set of transformations of 'space' or 'space-

time' which contains with any two transformations their product

(the result of performing them in succession), and with any one

transformation its inverse.

Evidently, all the law;s of Newtonian physics are invariant

under translations x -~Y,+ a of space. They are also invariant

under all rotations x Ax, A an arbitrary orthogonal matrix

with AAT = I. In particular, they are invariant under reflections

like (xl,x 2,x3 ) - (-xlX 2,x3) and (Xl,X 2 ,x3 ) - (-xl,-x 2 ,-x3 ).

Some geometric facts. For convenient reference, we recall

a few important geometric facts. By definition, reflections are

orthogonal transformations T such that T2 = I; if Tx = Ax + b,

this implies that A = At (that A is a symmetric matrix).

Any rigid motion of the plane is a translation x -) x + c or a

rotation (x-c) A(x-c) about a fixed center c if IAI = 1,

and a reflection if AI = -1. In space, Euler proved that a

rigid motion x - Ax with determinant IAI = 1 is necessarily

a rotation through some angle about some 'axis of rotation' (its

unique real eigenvector). Any reflection has at least three

orthogonal eigenvectors (x - -x) obviously has many more).

Together, translations and rotations generate the Euclidean

group of all rigid motions of space. If we neglect the earth's

(vertical) gravitational field, the laws of fluid mechanics are

also invariant under this group. Consequently, we can locate

the origin and axes of any rectangular ('Cartesian') coordinate

system whereever we like, without altering the differential

equations used, provided gravity can be neglected.

Hydrostatic buoyancy. In an ideal fluid of constant density

P0 the net effect of gravity is to add a resultant buoyancy

force p0V acting through the center of gravity of any immersed

solid (generalized Law of Archimedes). To prove this, we note

" that the effect of a conservative gravitational field g = -VG,

with gravitational potential G(x;t), is simply to superimpose

a hydrostatic pressure field -p0 G(x;t) on the dynamic pressure

. I .
"

. " • •. 'q .% . • -
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L field needed to accelerate the fluid. This is, of course, only

true if space is filled with the ideal fluid; if it has a free

surface, waves are propagated by gravityas described in §§3, 6.

THEOREM. In a space-filling ideal fluid, the pressure

field is the algebraic sum of the hydrostatic pressure field

due to gravity, the dynamic pressure due to the fluid motion,

and an arbitrary constant (the 'pressure at infinity').

Hence in studying flows around submarines, and around air-

planes at speeds up to 200 mi/hr, we can eliminate gravity from

the equations of motion, and use the Euclidean group. We shall

discuss buoyancy forces further in Chaps. 2, 4, and 7 below.

The inertial group. Actually, the Euler-Lagrange DE's for

an ideal fluid of constant density p0 are invariant under a

much larger 'inertial group', which includes all changes of

scale of length (x - ax), time (t 6 st), and mass (p0 '- yP0)"

This is easily verified mathematically by direct substitution.

In this verification, it helps to remember that all velocities

are multiplied by a/3 under such a transformation, so that

(7.1) u(x;t) - v(ax;Bt) (a/S)u(x;t)

2/2
Likewise, dynamic pressures p are multiplied by a

since pressure = force/area (density xvolume xacceleration)/area.

Similarity. The preceding result, though easily verified

mathematically, is so important physically that we will discuss

it in some detail here, and elaborate on its significance later

in many places. First of all, note that changes of length scale

x - ax characterize geometric similarity (as contrasted with

congruence under the Euclidean group). The similarity group of

geometry consists of all products of translations, rotations,

and changes of scale. It is this 'similarity group' that is

exploited in map-making, and similarity plays a key role in

Euclidean geometry.

0m When a change of length scale is combined with a change of

time scale, t 6 t, we get what is called kinematic similarity.
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This is what is exploited in 'slow motion' pictures. These

transformations, together with transformations to 'moving axes',

moving with constant velocity, generate the so-called Galilei-

Newton group, described by Felix Klein as the group leaving

Newtonian mechanics invariant.8

Now consider ideal fluids specifically. Any such fluid is

characterized physically by its density p0 ; two kinematically

similar fluid motions (velocity-fields u(x;t)) which differ

only in the (constant) densities = involved are said
9to be dynamically similar. In two such dynamically similar

flows, corresponding masses obviously differ by the constant
3factor ya

Pressure coefficient. The addition of a constant pressure

to any ideal fluid motion, by the transformation p -* p + p0,
talso preserves the Euler-Lagrange equations. To compensate for

this in analytical fluid dynamics, one usually considers the

overpressure p- p, where p. is an assumed limiting "pressure

at infinity". Note that the addition of a constant pressure

does not affect the hydrostatic buoyancy discussed earlier in

this section, since its resultant p0ffdS = 0.

To avoid the ambiguity inherent in the ambient pressure level

(called the 'pressure at infinity' in aerodynamics), one usually

considers the overpressure coefficient defined by

1 2(7.2) C = (p - p.)/ p ,

where p. is the 'ambient pressure' (pressure at infinity),

and U is a 'characteristic velocity' (usually, the relative

velocity of a solid object moving through a fluid).

8After the advent of Einstein's special relativity, Klein con-
trasted the Galilei-Newton group with the Lorentz group of
Lorentz and Poincare, which governs Maxwell's electromagnetic
theory and relativistic mechanics.

9The descriptive name "dynamically similar" was coined by
Rayleigh; the group of transformations leaving the theory of
ideal fluids invariant includes the Galilei-Newton group and
Rayleigh's group (which was used earlier by Fourier implicitly).

.
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THEOREM. Any two similar flows of an ideal fluid of con-

stant density have the same pressure coefficient at corresponding

points.

One can easily verify the truth of this statement in the

special cases of the potential flows around a sphere and a

cylinder, derived in §§4-5 above; we omit the general proof.

Reversibility paradox. The preceding theorem has a sur-

prising and disconcerning corollary, whose devastating signifi-

cance seems to have been first appreciated by d'Alembert.

Namely, if one reverses any steady flow satisfying the Euler-

Lagrange equations by the transformation u - -u, and leaves

the pressure distribution and x unchanged, then the Euler-

Lagrange equations will still be satisfied for the same p = p(p).

Hence flow reversal should leave the net thrust on an obstacle

unchanged; moreover this theoretical prediction applies to com-

pressible as well as to incompressible non-viscous fluids. Since

in fact the net thrust is usually reversed, we may call the pre-

ceding theoretical result the reversibility paradox associated

with the Euler-Lagrange equations. OCj

As a corollary of this reversibility paradox, if an obstacle

having fore-and aft symmetry is moving steadily through a fluid,

the drag (if determinable theoretically from the Euler-Lagrange

equations) must be zero. For, the predicted pressure distribu-

tion (if well-determined by theory) will be invariant under

Again, one can easily verify the truth of this statement

(usually referred to as the d'Alembert paradox) in the special

cases of the potential 'lows around a sphere or cylinder.

q 8. Fluid resistance. In general, the problem of explaining

quantitatively the thrust exerted by a fluid on a solid moving

steadily through it must be regarded as unsolved. As Lamb

10 For more detailed discussions of the reversibility paradox,
see [A2, §§6, 18], and Am. J. Math. 68 (1946), 247-56.
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observed, "our knowledge of it is still largely empirical" [A6,
§370].

However, the ideal fluid model does predict correctly the

dimensional variation of the pressure and the pressure thrust,

over wide ranges. Indeed, in ranges of p, d, and U over

which the total drag D varies by a factor of 104, the dimen-

sionless drag coefficient CD = 8D/rd2U 2 normally varies by a

factor of less than five. Moreover, several useful ideal fluid

models have been constructed which simulate qualitatively (up to

a factor of two or so) the most important phenomena associated
with fluid resistance. The rest of this chapter will describe
several such models, all based on the theory of ideal ('friction-

less') fluids of constant density. The effects of compressibility

and viscosity will be discussed in Chapter 2.

In general, as might be expected from ideal fluid models,

"the agreement between theoretical and experimental results

" becomes better as the viscosity becomes smaller".1 1  This is

. especially true of streamlined bodies, to which a thin "boundary

V' layer" clings as the fluid flows by, without "separating" until
6- 

"  the extreme rear is reached. The art of "streamlining" airfoils

and struts, so as to minimize the resistance ("form drag")

associated with flow separation, will be discussed again (from a

mathematical standpoint) in Chapters 4 and 7 below.

Flows past properly streamlined bodies can have very small

drag indeed, less than 2% of that of a broadside flat plate of

the same cross-section. This is in some sense a vindication of

the d'Alembert paradox!

On the other hand, when "the boundary layer leaves the body",

it is not easy to obtain even qualitative agreement between theory

_ and experiment. For "bluff bodies" such as a broadsiding flat

plate, cylinder, or sphere, the best 'ideal fluid' model of

resistance is provided by the 'wake' theory to be introduced in

.6 l1We are quoting freely from the Introduction to [A8], here and
below.
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the next section, and discussed more carefully in Chapter 4. If

suitable allowance is made for 'wake underpressure', this pre-

dicts quite well not only the net resistance, but also the entire

pressure distribution around the body. We will give some specific

comparisons in Chapters 4 and 7.

By superposing a suitable plane vortex flow on potential

- •flow, a quite realistic model of airfoil lift can also be con-

*'' structed. We will discuss this model in §§11-13; its predictions

are naturally most reliable for highly streamlined airfoils at

small angles of attack, from which flow separation occurs (on

the upper side) for back, quite near the 'trailing edge'. The

'drag' under such circumstances (still zero for the model of §11)

is largely due to boundary layer 'skin friction', to be discussed

in Chapters 2 and 7, and an 'induced drag' due to a three-

dimensional 'vortex sheet' behind the airfoil.

Angle of stall. At higher angles of attack, the point of

flow separation can jump rapidly from (near) the trailing to the

leading edge; making the drag increase and the lift decrease

dramatically. The angle at which this occurs is called the

"angle of stall", and the occurrence of 'stall' is justly dreaded

by airplane pilots. Kirchhoff's wake model (§9) provides the

most realistic simple mathematical model for the pressure dis-

tribution above the angle of stall.

Added mass. Although potential flow theory gives in general

a totally unrealistic prediction of the real fluid resistance to

steady flow, it predicts very well the fluid resistance to

acceleration, especially from rest (with u(x;O) = 0). We will

derive next the fluid resistance encountered by a cylinder and

of a sphere, accelerated from rest in an ideal fluid.

*In this case formula (4.5) simplifies to

(8.1) p + p0 G + P0A(x;t) = p (t)

Hence the theoretical pressure differs from the hydrostatic

pressure p.(0) - p0G by -p0A(x;O), where A(x;0) is the
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acceleration potential. If a = K(t) is the acceleration of

the C.G. the additional acceleration potentials are, for a

circular cylinder of radius r moving with acceleration a

(8.2) ax/r= (a cos 6)/r

Hence, the additional 'acceleration pressure' on the surface

of the cylinder is (p0 acos 6)/r. Note that, conforming to

our hypothesis of 'acceleration from rest', we have assumed

the fluid velocity at infinity to be zero. Integrating the

axial pressure component over in e E [0,27], we get

2(8.2') F = p0 a cos d6 = qp0 a

for the net force. We thus have F = ma, where m = 7p 0  is

the mass of the water displaced by the cylinder. This is called

the added mass of- the cylinder.

Inertial similarity. Note also, by the principle of iner-

tial similarity (§7) for the motion of an ideal fluid, the pre-

ceding result must hold for a cylinder of arbitrary radius.

Similarly, for the axially symmetric potential flow around

a unit sphere in an ideal fluid, at rest at infinity, the

acceleration potential is

(8.3) A = x/2r 3 - (cos 8)/2r

Hence the net force is

2 f c2s2
'.-'" -o~ /cos 8 dS (8) , dS (6) =27ra sin 0 de

2r 0
2 3

Since f cos 0sin de = [-(cos 3 O)/3] 2/3, the net thrust
0

on the sphere is easily computed from this formula; it is ma,

where m = 2'rp0/3 is half of the mass of displaced fluid (e.g.,

water). We conclude

THEOREM. The added mass of a circular cylinder equals the

mass of the water that it displaces; that of a sphere is half
of the mass of the water displaced.

i"

U°L -

F:.:
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*9. Free streamlines; wakes. We next describe some steady

plane potential flows bounded by 'free' streamlines at constant

pressure. Most notable is an ingenious wake model proposed by

Kirchhoff in 1869. He treated in detail the flow past a flat

plate moving broadside. He assumed that it was a two-dimensional

potential flow that 'separated' at the plate edges and enclosed

a stagnant wake at constant pressure, as in Fig. 3a. By adroit

use of the conformal mapping technique introduced in §5, he was

able to deduce a theoretical drag coefficient CD = 0.88.

Jet from nozzle. The simplest model of a 'free streamline'

- "is provided by a horizontal straight jet, issuing at constant

speed from a nozzle, as in Fig. la, and surrounded by fluid at

* rest. In an ideal fluid, the bounding free 'streamlines of

discontinuity' would be in equilibrium with the surrounding fluid

on both sides.

- Irreversibility of real jets. Physically, jets from nozzles,

pipes and channels behave much as Fig. la suggests, though a

vortex may form around the mouth if the jet discharges into a

container, as we shall explain in §7. But if the direction of

flow is reversed, and fluid is sucked into a pipe or channel

.- i  instead, the streamline pattern looks entirely different. As is

indicated in Fig. lb, the streamlines come in radially toward the

- mouth (which acts as a 'sink') from all directions. This shows

- that real flows in and out of tubes are not reversible!

- We now derive the exact plane potential flow having the

streamlines indicated in Fig. lb. To derive it, we will examine

more carefully the complex variable interpretation introduced in

-. §5, with special reference to conformal mapping techniques.

THEOREM. Let (W) be a complex analytic function of the

(complex) variable W = 0 + iw, and let

(9.1) z f -dW

1 2This section can be skipped in a first reading of this chapter,

and returned to when potential flows are treated systematically
in Chapter 3.

Lo
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Then W = 0 + i4, where is the velocity potential of a

potential flow, 4 its stream function at the point z = x +iy

in the physical plane. The complex conjugate = u -iv, is

the vector velocity at the point z = x +iy.

Sketch of local proof. As in (5.2), the conditions of local

incompressibility and irrotationality on the velocity-field

(u(x,y),v(x,y)) for real x, y, u, v:

au av au 3v
!x y, y ax

are equivalent to the Cauchy-Riemann equations on the complex

variable = u -iv as a function of z = x +iy. Hence, except

where = 0 (i.e., except near stagnation points), they imply

that -i = (u+iv)/(u2 +v 2) is a complex analytic function of

z. By the elementary theory of functions of a complex variable,

it follows that (9.1), which in real form is
~~x fudo -vdiPd u$.

(9.2) x=Y fuf d +
U +v u +v

defines z f J-idW locally as a complex analytic function of

W--hence W as a complex analytic function of z.

We will now discuss complex potentials W(z) associated

with three different plane potential flows. In Chapter 4, we

will describe conformal mapping techniques that make it possible

to describe a wide variety of plane potential flows systematically.

Example 8.13 The function z = e-W--w is associated with

the potential flow into a channel. As was stated above, this

* gives a fair approximation to reality. It is the reverse of the

* "potential flow out of a channel, whose complex potential is

(9.3) z = e +W, <

in the physical plane. Each is real on the real axis, where

4' = 0. Hence, it defines a flow having the (real) x-axis y 0
La

1 3 See Lamb [A6, p. 743).
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-* as an axis of symmetry. Specifically, consider (9.3) as a

conformal transformation mapping the infinite strip - 7 <

in the W-plane onto the z-plane with channel walls y = ±1,

* . x = 0 covered on both sides. On the boundary of the strip,

dz/dW = eW + 1 = e (cos 4 + i sin 1) + 1 = 1 - e

since 4 = ±7. Hence the (real) velocity = u = dW/dz = 1/(l- eo)

increases inside the channel from 1 at the upstream point at

to infinity at the edges z = ± i r of the channel, reversing

sign and tending to zero as + .

As Helmholtz noted, since ul = at the edges of the
* plates 1 ± i7, there would be by Bernoulli's Theorem (3.1)

infinite negative pressure at the edges of the plates, if the

potential flow model was taken literally, and this would cause

cavitation to occur.

Borda tube. Using his "free streamline" concept, Helmholtz

constructed in 1868 a third mathematical model for flow into a

channel. In this model, sketched in Fig. 2a, the flow "separates"

from the edges of the channel ("Borda tube") to form a jet which

fills only half of the tube. This avoids the paradox of infinite

necative pressure mentioned above; we will postpone its mathemati-

cal derivation to Chapter 4.

In the Helmholtz model, the pressure is assumed to be con-
stant in the (static) air on both sides of the jet. Hence by

Bernoulli's Theorem (neglecting gravity), the flow velocity

q = (u2 +v 2) 1/2 i ' a constart in the free streamlines bounding

the jet. The boundary of halj the flow (above its axis of sym-

metry) thus bounds a semicircle i the c-plane, whose center

corresponds to the 'stagnation poiit at infinity' outside the

channel, where = 0. The function- ( + -i) = T maps this
semicircular hodograph (which we can take to be the unit semi-

circle by proper scaling) onto the lower half of the T-plane.

In turn, Zn T maps this onto an infinite strip in the W-plane

L (see Chapter 4 for more details).

I.•
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Example 9. Helmholtz also constructed an analogous poten-

tial flow model for the jet from a slot. We have sketched this

flow defined by Helmholtz in Fig. 2b. In this case ([A3, p. 33

and Chapter 41), we have

%2

(9.4) W = Zn C - kn(C2+ 1)

whence dW = dC/C - 2 dC/( 2 +1) and

(9.5) z = f dW/> = 2n + arctan

The predicted coefficient of contraction is C = 0.611, which

*i is very near to that observed experimentally.

Kirchhoff's 'wake' model. In 1869, Kirchhoff applied

Helmholtz's "free streamline" concept to define a plausible

model for fluid resistance or drag D in a fluid of small vis-

cosity, thus resolving the d'Alembert paradox within the frame-

- . work of the Euler-Lagrange equations.

For a flat plate held broadside to an infinite stream, as

sketched in Fig. 3, Kirchhoff assumed that the fluid approaching

the plate underwent a plane potential flow that 'separated' at

the plate edges S,S', enclosing a stagnant wake at constant

pressure. For this mathematical model, the predi-ed drag

coefficient is CD = 0.88.

10. Plane vortex flows. The following two examples show

that not all steady plane flows of an ideal fluid are potential

flows.

Example 10. For any velocity 'profile' f(y), the flow

u(x) = (f(y,0,0) of a fluid of constant density o satisfies

the Euler-Lagrange equations.

More generally, this is true of the flow through a straight

pipe parallel to the x-axis, for any velocity profile

u = (f(y,z),0,0).

Example 11. in cylindrical coordinates, any cylindrical

swirl around the z-axis, with velocity components
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(10.1) U = u = 0 and ue = f(r), f arbitrary
r r 2

and p =P0 + p0/ u2 dr/r, satisfies the Euler-Lagrange0' 0

equations.

In cylindrical swirls, the pressure obviously has to counter-
act the 'centrifugal force', which is Pu2/r per unit volume.

A very important special cylindrical swirl is the locally irro-

tational swirl around a point-vortex. This has the multiple-

valued velocity-potential 8 = = arctan(y/x), and hence the

velocity u, = 1/r counter-clockwise, around the origin. Its

complex potential is given by

(10.2) W = + ip = 8 - i in r = i nz

Loosely speaking, we may say that the flow around a point-vortex

is a potential flow except at the origin, which is a singular

point.

Vortex lines. The three-dimensional flow corresponding to

a point-vortex at the origin (0,0,c) in each plane z = c is

said to be the flow around the vortex line x = y = 0 (the z-

axis). This is again a locally irrotational potential flow with

multiple-valued velocity potential = arctan y/x, and velocity

field

2 2 2 2
(10.3) u(x,y,z) = -y/(x +y 2 ) , v(x,y,z) = y/(x +y 2 ) , w = 0

A very differet vortex flow is provided by rigid rotation around

the z-axis with angular velocity w and velocity field u = -y,

v = x, w = 0.

Vortex pairs. The motion of two or more point-vortices in

the plane, each under the influence of the others, provides a

very intriguing and suggestive model for vortex motion. The

following simple examples are typical.

Example 12. Two point-vortices of equal strength a and

the same sign, initially at (:c,0), gyrate around the origin

in a circi; their coordinates at time t are
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(10.4) ±c(cos wt,sin wt), where w = a/c

Example 13. Two point-vortices of equal strength a and

opposite signs, at (±c,O) when t = 0, translate with con-

stant vertical velocity (0,c/c) perpendicular to the chord

joining them, so that their paths are (±c,at/c) for t > 0.

Wall effect. Note that the y-axis x = 0 is a streamline

" "in Example 13. Hence we can replace one of the two point-

vortices by a rigid wall, without affecting the flow. This

suggests that a vortex will move parallel to a nearby straight

rigid wall, with the same speed as would be induced by an equal

and opposite vortex at the 'image point' under reflection in that

wall. This is indeed the case. The analogous effect of a 'free

surface' is equal and opposite.
1 4

Trochoidal waves. An interesting family of unsteady plane

vortex flows is provided by Gerstner's (1809) progressive

"trochoidal" gravity waves in deep water. In Lagrangian coor-

dinates, these are defined by

(10.5) x(a,b;t) = a + e sink(a + ct)

y(a,b;t) = b + e-kb cos k(a + ct)

The pressure distribution associated by the Euler-Lagrange equa-

tions with the periodic plane vortex flow (10.5), in a uniform

vertical gravity field of strength g, has a very remarkable

property. Namely, when c2 = gX/27, each particle surface

b = const. can be taken as a free surface at constant pressure.

For details, see Lamb [A6, p. 421); Lamb's normalization differs

from (10.5) by a factor 1/k = X/27. Note that the wave velocity

c coincides with that predicted by Airy's linearized potential

flow model for 'ocean waves'.

1 4The fascinating book on "Hydrodynamische Fernkrafte (Leipzig,
1900), based on 19th century researches of C. A. Bjerknes,
treats analogous image effects for pulsating sources. The
models treated in it are fundamental in the theory of underwater
explosion bubbles. (See R. H. Cole, "Underwater Explosions",
Princeton Univ. Press, 1950.)
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Stream function. In an incompressible fluid, the line inte-

gral at any time t,

x

(10.6) J-[u(x,y)dy - v(x,y)dxl = (x,y;t)
a

is independent of the path, because ux +vy = 0 (area is con-

served). Hence it always defines a stream function (x,t) in

(possibly time-dependent) plane flows of an ideal fluid, even

though only locally irrotational flows have a velocity potential.

Evidently, the velocity components of a plane vortex flow are

the partial derivatives of its stream function: by the converse

of (10.6), we have at any time t,

(10.6') u(x,y) = 4y, v(x,y) = -x

Vorticity. The vorticity w(x) of a velocity-field

u(x) = (u(x),v(x),w(x)) is defined as its curl:

(10.7) = V = (wy-vz ,uz-wxvx-uy)

Substituting into (10.7) from (10.6'), we see that in plane vortex

flow, we have generally at any time t,

(10.7') i(x,y) = _V2

the vorticity is the Laplacian of the stream function.

Vorticity convection. We conclude this section by a classic

characterization of those plane vortex flows of an ideal fluid

which satisfy Euler's equations of motion.

THEOREM. In an ideal fluid, a flane flow satisfies Euler's

equations of motion if and only if its vorticity satisfies the

convection equation
p.

" (10.8) D /Dt =t + u x + vCy = 0

E- - Proof. To prove this result, we first define the circulation

r' = r(t) of an instantaneous velocity field u(x;t) around a
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closed curve y is defined as the contour integral
1 5

(10.8') (t) = ! u(x;t)-dx = k Ukdxk = uk(x;t)dxk
Y Y Y

Since the vorticity c is the limit of the ratio (circulation)/

(area enclosed) = n/A, as the area shrinks to zero, it suffices

to prove that r is a constant. And this result, proved in

its final form by Kelvin, is one of the most basic results of

theoretical fluid dynamics. It can be suggestively restated as

follows.

Principle of Invariance of Circulation. In an ideal fluid,

the total circulation around any closed curve y moving with the

fluid is constant in time: F depends only on y.
16

Sketch of proof. Since y is assumed to move with the

fluid, it suffices to prove that Dr/Dt = 0. But by definition

and the Euler's equations of motion, we have

(10.9) Dr/Dt = (Du/Dt)-dx + u-D(dx/dt)dt ,

where since Du/Dt = g- Vp/p0

(10.9') € (Du/Dt) .dx - .dx- ! Vp.dxy - ¥ PO-
Y Y

The two path integrals on the right side of (10.9') are dG = 0
and p0

1  dp = 0, respectively; hence it remains to evalYuate

the last term of (10.9). In Lagrangian coordinates a = (al,a2 ,a3)

this is

: uk ( OXUkD(aXk/aai)/Dt]dai = #uk[DUk/aaiIdai"

Y Y

Since this is d(-u 2 ) = 0, (10.9) simplifies to Dr/Dt = 0,

completing the proof.

15The analogies with the work integral f l Xkdx. and the

potential energy integral m f 1 gkdxk are obvious.

" Many readers may wish to omit studying this proof; to make it
rigorous requires much painstaking thought. Cf. Lamb [A6,

. Arts. 15-171.
I.
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Conversely, the condition that D /Dt = 0 is equivalent to

"" the equation of plane motion (for some single-valued pressure

function) in an inviscid, incompressible fluid. In Lagrangian

coordinates, therefore, = (a,b) must be independent of t,

so that in steady flow = F() must be constant on any stream-

line. Since = 2, there follows a classic characterization

of steady flows of an incompressible fluid whose motion is

governed by inertia alone:

COROLLARY. The steady plane flows of an ideal fluid are the

flows whose stream function satisfies the DE

(10.10) V2 = F(W)

17
11. Airfoil theory. When the powered flight of heavier-

than-air vehicles began to seem like a real possibility, it be-

came urgent to understand the lift L that would be experienced

by an airfoil moving through the air with speed U at an 'angle

of attack' a. According to the simplest and most natural

interpretation of the (reversible) Euler-Lagrange equations, as

we have seen, it would not experience any lift or drag at all!

When Rayleigh applied Kirchhoff's stagnant 'wake' model to

this problem, he found that the predicted lift coefficient per
18

unit area

( )C=2L n sin 2a
( CL = Z 4 + sincL

PU Z.

was probably too small to sustain flight, and (fortunately) less

than half of the real lift. It was not until around 1900 that

the German Kutta and the Russian scientist Joukowsky invented a

" 1 7 For a first-hand account of the 'heroic age of aeronautics',
see Th. von Karman, Aerodynamics, Cornell Univ. Press, 1954,
especially Chapters 2 and 3.

18Formula (11.1), in which Z is the chord length, assumes the

principle of inertial modeling. For low-speed aircraft
(U < 200 knots) this holds very well.
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fairly realistic, if ad hoc model that approximates quite well

the aerodynamic flow producing lift at small angles of attack

OL, for well-designed (i.e., "streamlined") wings.

Magnus effect. The Kutta-Joukowsky model assumes potential

flow with nonzero circulation. A similar model had been previ-

ously used by Rayleigh, to explain "the irregular flight of a

tennis ball", whose trajectory bends down under the influence

of topspin, but which goes above its gravity trajectory when

undercut. This so-called Magnus effect is also familiar in

baseball, golf, and other sports, where it is observed that a

spinning ball is acted on by an aerodynamic force that curves its

trajectory in the direction of revorse spin. The following
'potential flow' model is often said to explain this phenomenon.

Example 14. For any 'circulation' F, the superposition of

a dipole and a vortex of strength y on a uniform stream has

the potential

(ii.2) = U(x+a 2x/r2 ) - y•

It defines a flow having the cylinder r = a as a streamline,

with the stream function

2 2(11.2') = U(y-a y/r2 ) + y 2n r ;

clearly T = const. on the circle r = a.

It is interesting to compute the pressure distribution and

the dividing streamlines for this flow, whose complex potential

is, by (11.2) and (11.2')

• a~2/
(11.3) W = 0 + i= U(z +a /z) + iy Znz

2
Clearly, 0 = U(a+a /a) cose - yO on the surface jzJ = a

of the cylinder, whence
I.--:

q = 3q/a3O = -2U sin 9 - Y/a .

By Bernoulli's theorem, p = p -pq 2 /2, giving

L-
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p22  .2 2 2uiO/ ~2
(11.4) p = p 2 - sin yU sin)/a + y2/2a

The resultant lift, L = - pa sin e d6, is by (11.4) the sum

of integrals of constant multiples of sin38, sin 2 0, and sin e.
Since by symmetry, € sin3 e de = sin 0 dO = 0, and since

sin 2 0 d6 = n, we thus conclude

2(11.5) L = 2y Up sin 8 d6 = p ru, r = 27ry

This is a special case of the following result.

THEOREM. The lift L associated with a plane potential

flow of an ideal fluid with horizontal free stream velocity U

and clockwise circulation F is pUP.

Method of proof. A quite short general proof can be con-

structed, using the conservation laws for mass and momentum

[A7, Chapter XIV], and asymptotic formulas (valid for large z)

of complex variable theory.

Proof. The Euler-Lagrange equations are equivalent to the

" "law of conservation of momentum. Hence L must balance the net

rate of efflux of vertical momentum per unit time, plus the inte-

grated net downward external pressure, integrated over any

large circle. We now compute these two terms by an asymptotic

calculation, based on the (convergentl Laurent series expansion

for horizontal flow with circulation:

(11.6) W = Uz + L- Zn z + - +-2 -r z

Differentiating termwise, we see that the conjugate complex

velocity is

- .P+Ql/r2
)

(11.7) u-iv = U + r + (

1 2 ( 2

The underpressure p = p - pq is p(FU/2Trr)sin 8 + 0(/r ),
2~ . 2

and its vertical component is o(FU/2lrr)sin B. Integrating over

the circumference 2nr, we get a net vertical pressure thrust
of pFU/2 + o(l).

I -

|°.
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Likewise the rate of efflux of mass per unit time and 6,

ignoring O(r - 2 ) terms, is pU cos 6. The rate of loss in the

vertical upward component of momentum is, by (11.7), (F/27rr) cos 0

per unit mass-efflux. Taking the product, and integrating with

respect to e from 0 to 27, we get pUF/2, all plus o(l).

Since pur/2 + pUr/2 = pUF, the proof is complete.

Two-dimensional lift theory. We now define the mathemati-

cal model used by Kutta and Joukowsky to calculate the pressure

distribution around airfoil sections having a given profile.

Like themodel used to rationalize the Magnus effect, their model

assumes a multiple-valued, locally harmonic velocity potential

of the form

S(x,y) = F(x,y) + y6, e = arctan(y/x) = Im(Zn z)

where F is a globally harmonic function, whence = 0 since
72 0. This model predicts a lift of L pUF, where

1 = (u dx + v dy) = 27Y is the circulation around the airfoil.

The constant y is chosen to assure "finite velocity at the

trailing edge", where the flow is assumed to come together

smoothly from both sides.

By the Fundamental Theorem of Conformal Mapping (not proved

rigorously until around 1905), the exterior of the unit disk

Itl = 1 can be mapped conformally onto the exterior of any

closed curve by an analytic transformation of the form

z = kt + cktk, k > 0. For some unique y, the inverse
k=0

image of the 'trailing edge' can be made the rear stagnation point

of the potential flow (11.2). Hence the potential flow of two-

dimensional airfoil theory is mathematically well-defined in

all cases.

For airfoils whose profile is a flat plate, this gives a

complex potential W = % + ip which can be obtained by the
1 -

conformal transformation z = (t +t - ) from the flow (11.2)

with circulation around a disk in an auxiliary t-plane and

LO having just enough circulation to make the rear stagnation point

at t = 1. For this flow, U = 2 and r = 2l sina, since
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(11.6) W = e-i t + e /t + ( 2 i sina)Zn t

By the Kutta-Joukowsky Theorem, the lift (strictly, cross-force)
1 9

is therefore L = 4Tp sin a, and CL = 2T sin a, about four times

the amount predicted by (11.1). In the case of streamlined

airfoils at small angles of attack, real flows are approximated

i - fairly well by ideal Joukowsky flows like (11.6).

Joukowsky profiles. An expecially simple class of examples,

whose consequences were worked out by Joukowsky in his pioneer

paper, are provided by the images in the z-plane of the circles

It +EI = 1 + E (E > 0). However, these are not very practical

profile shapes, either structurally or aerodynamically. The

.. mathematical treatment of practical airfoil profiles is fairly

sophisticated, and will be taken up in Chapter 4.

Final remarks. The preceding ideal fluid model does not

avoid the d'Alembert paradox of zero predicted drag, as can be

shown by an easy calculation based on (11.2)-(11.2') in the case

of a broadside cylinder, or a harder asymptotic calculation in

the general case. Though the prediction of zero drag is obviously

overoptimistic, the real lift is 75%-90% of that predicted, and

. real lift/drag ratios can be as much as 50.

19 This discrepancy is the Cisotti paradox of [A2, p. 15].

20
- . 20At larger angles of attack a > 150 (say), the flow separates

("stall") and Kirchhoff's 'wake' theory gives a better
approximation!

.. ,-

,%I
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The preceding 'two-dimensional theory of airfoil lift' was

completely worked out by Richard von Mises during World War I,
21when airplanes had been flying for less than 15 years. One of

its elegant formulas, based on an asymptotic calculation similar

to that given above, and due to Lagally (ZaMM 2(1922), 409-22)

gives also the moment of the pressure distribution of any poten-

tial flow around an airfoil. A Moebius transformation allows

one to compute a potential flow with circulation around a circular

arc airfoil. But unfortunately, predictions based on such more

refined models are not very reliable.
2 2

*12. Vortex flows. We will next describe some basic proper-

ties of vortex flows in an ideal fluid (Model #2 of Table 1).

An understanding of these properties helps to bridge the gap

separating the theory of potential flows from that of incompres-

sible viscous flows, to be taken up in Chapter 2. The general

theory of vortex flows is also fascinating in its own right.

Vorticity. In general, the vorticity of a three-dimensional

velocity field u(x), with u = (u,v,w) and x = (x,y,z) both 'A
3-vectors, is defined as

(12.1) W(x) = (wy-vz ,u z w x ,vx - uy)

In another notation, the vorticity is the antisymmetric or

skewsy xmetric tensor with

(12.2) Wi = aui+ 2/ xi-1 - (ui-/3xi+l (i = 1,2,3) ;

one easily verifies that the divergence of the vorticity of any
". C2

velocity field u(x) C (Q) is zero.

In any velocity field with nonzero w(x) # 0, one can

define the notion of a vortex line. This stands in the same

V2 1 on Mises included it in pp. 832-42 of the German edition of
Lamb (2d ed., Teubner, 1931).

22Se
See [A2, §§8-9]; also R. von Mises, Am. Math. Monthly (1940),
673-85; and G. Birkhoff, Am. J. Math. 68 (1946), 247-56.
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relation to a vorticity field w(x) that lines of force do to

a force field and that streamlines do to a velocity field.

Namely, a vortex line is a curve which is tangent at every point

to the vorticity vector w = V x u at that point.

23
In a path-breaking paper written in 1858, Helmholtz

derived two remarkable theorems from the preceding definitions

and the Euler-Lagrange equations. These assert the following:

1. Vortex lines move with the fluid.

2. The product of the cross-section area and the angular velocity

of a 'vortex filament' are invariant in time.

Both of these are consequences of the principle of the invariance

of circulation derived in §10. The connection is provided by the

". following theorem of vector analysis.

Stokes' Theorem. Vorticity is related to circulation by

Stokes' Theorem:

(12.3) = u.dx = Uk dxk = f .ds

C C S

where S is any surface spanning the curve C. Hence, in a

simply connected domain Q, such as the exterior of a sphere,

a flow has a velocity potential if and only if its vorticity

is everywhere zero.

It follows from Stokes' Theorem that:

(A) the vorticity vector at a point is the intersection of

all planes through the point which have, locally, zero circulation

" per unit area. By the invariance of circulation, this property

is conserved in an inviscid fluid, proving #1. Moreover by (A),

we know that the sheath surrounding any vortex tube has the

property that the circulation is zero around any closed curve on

this sheath contractible to a point in the sheath. Hence the

'circulation' around any vortex tube is the same for every circuit

going around it once, from which #2 follows.

23
Crelle 55 (1858), 25-55; Wiss. Abh. i, 101- Under hypotheses
to be stated in Chapter 2, Kelvin extended Helmholtz's theorems
to compressible flows in Edin. Trans., 1869; Papers iv, 13-68.



1-46

L Vortex lines. As a (singular) limiting case, one can

imagine flows in which all the vorticity is concentrated in a

single vortex line, around which the circulation is constant.

The simplest example is the straight vortex line along the z-
2 2 2 2 2axis, with velocity field (y/r ,-x/r ,0), r = x - y As

Helmholtz knew, the associated multiple-valued velocity potential

. = arctan y/x = 6 is the magnetostatic potential of a stationary

current flowing along the z-axis, and it may have been this

physical analogy that originally suggested to Helmholtz his

theory of vortex lines.

Vortex rings. An analogous circular distribution of vor-

*[ ticity is provided by a vortex ring, whose vorticity is dis-
S2 2 2

tributed with constant density in a circle, say x +y = a ,

z = 0. Since there is no vorticity elsewhere, there is a multiple-

valued velocity potential, identical with the magnetic potential

induced by a current flowing around a circular wire.

Such vortex rings are commonly seen as smoke rings; they

can be produced by taking a drum having a circular hole in the

center, and filling it with smoke. When the side of the drum

opposite the hole is tapped, smoke is ejected through the hole.

A ring of concentrated, nearly uniform vorticity is formed near

the rim of the hole where the flow 'separates', and rises

majestically under its own self-action, much like the vortex-pair

of Example 13.

The magnetic analogy. Since V xw -= 0, one can associate

with any velocity field u(x) a 'current' w(x) flowing along

its vortex lines, the total current passing through any vortex

tube being equal to the circulation r = u-dx around any

circuit going (once) around that tube. It is a remarkable fact

p that a steady (vector) electric current of vector intensity
24

produces a magnetic field H satisfying V x H = 4zTj. This

law, discovered by Biot and Savart, was an early clue to

J24. D. Jackson, "Classical Electrodynamics", first ed. p. 153.

For simplicity, we are using here electromagnetic (relativistic) '
units, so that c = I.
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• " electromagnetic theory. They derived an integral formula which

expresses H in terms of J, the analogue of which is

1 r x w(x') 25
(12.5) u(x) f T 3 dR(')

r

Perhaps inspired by this analogy, Helmholtz derived (12.5) under

mild integrability assumptions; we will not derive it here.

Instead, we will consider some special cases.

The simplest examples are provided by the straight vortex

line (0,0,z), corresponding to an electric current in a long

straight wire, and a vortex ring, which corresponds to a uniform

"" current going around a circular wire.

In the case of two-dimensional velocity fields

u(x) = (u(x,y) ,v(x,y),O) , with vector vorticity

W(x) = (0,0,) , u = U-Vx, formula (12.5) specializes to

* (12.5') = - f r (x',y')%n r dx'dy'

2 2r 2 1/where r te[x-' x) + (y-y') i This expresses the stream

function in terms of the vorticity, as the solution of the two-

2dimensional Poisson equation -v27 in an infinite plane.

In this domain, (Zn r)/27T is the Green's function of -7

Vortex sheets. A limiting case of (12.5') is provided by

the free boundary (also called a 'slipstream') separating two

adjacent uniform parallel flows, such as

S(u,0,0) if y > 0 ,

(12.6) u(x) i
I (-U,0,0) if y < 0

This corresponds to a uniform vortex sheet (hence a current)

parallel to the z-axis in the (x,z)-plane.

K" Likewise, a limiting case of (12.5) is the 'vortex sheath'

around a circular jet in an otherwise stationary fluid, with

2 5Cf. Batchelor [Bl, p. 87]. Chapter 7 of [BI] gives an excellent

general discussion of vortex flows in an ideal fluid.
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(u,0,0) if y2 + z < a'
(12.7) u(x)

0 if y2 + z 2 > a2

26

Induced drag. A now classic application of the preceding

ideas is the theory of induced drag, developed by Prandtl and

others in the 1920's to help explain the drag of an airfoil of

finite span. It is a very approximate theory, somewhat analo-

gous to Lagrange's theory of long waves.

It assumes that the vorticity in the 'free stream' approach-

ing an airfoil is negligible, and that the airfoil is streamlined

so that its 'wake' consists of a thin sheet into which the

boundary layer (see Chapter 2) flows as it is shed behind the

airfoil, it follows from the invariance of circulation that

all the vorticity in the flow field must be concentrated in this

sheet, which is therefore properly called a vortex sheet.

If we accept the idea that the flow direction is nearly

that of the free stream, and the Kutta-Joukowsky formula L = pUr

in each vertical plane parallel to the free stream flow direction, *Q.

then it follows that the panwise variation in the lift L = L(y)

of the corresponding airfoil sections determines the vorticity

of this vortex sheet (assumed to be nearly horizontal):

w(y) = L'(y)/pU, approximately.

The simplest case is that of a rectangular wing, all of whose

sections are the same. For such wings it seems reasonable to

assume that L = L(y) = L0 is independent of y. In this case,

if the preceding reasoning is accepted, then the vorticity should

be concentrated in vortex lines behind the wing tips [8, §107];

these are called tip vortices [8, §109] . The energy shed in these

L and analogous vortex sheets gives rise to an 'induced drag', which

can be roughly estimated by making engineering approximations

(8, 5110]. Applied in the context of engineering experience and

judgement, predictions based on such models can be very useful,

but they are by no means part of exact science.

26See [8, Chapter VI, Part C). Glauert's monograph "Elements of
Airfoil and Airscrew Theory", 2d ed., Cambridge Univ. Press,
1947, gives an excellent survey of the ideas discussed briefly
in 5ji0-13 of this chapter.
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Ki 2. VISCOSITY and COMPRESSIBILITY.

1. Introduction. Euler's eauations for fluid motion illus-

trate the lofty concept of reducing all physics to a handful of

'governing' differential equations. This idea has had an impres-

sive history. It inspired Fourier, Kelvin, Kirchhoff, Maxwell,

Poincare, and many other 19th century mathematical physicists.

In Chapter 1, we reviewed some of the successes and failures of

Euler's equations, maing the additional approximation of a homo-

geneous incompressible fluid of constant density p = p0"

Ideal vs. real fluids. Although the model of an 'ideal' fluid

studied in Chapter 1 is very useful, and we will consider it

further in Chapter 4 below, it neglects two physical variables

of fundamental importance: compressibility and viscosity. The

present chapter will take up some mathematical models designed to

account for their effect.

We will begin (in §§2-3) with the theory of sound waves, to

which Chapter 5 will also be devoted. To a very good approxima-

tion, these can be considered as 'small oscillations' of Lagrangian

dynamical systems, and many aspects of their mathematical theory

can be best understood if so viewed. Those not familiar with the

elementary theory of such systems may find it helpful to read

Appendix A.

Indeed, the theory of sound waves arises if one linearizesK Euler's equations, still assuming that there is a velocity poten-

tial. The concept of an incompressible, inviscid fluid is simply

replaced by that of an elastic fluid, satisfying p = f(p) (Euler's

equation of 'state'). We will now try to explain its relation to

Lagrange's ideas.

Lagrangian dynamics. In his classic Mecanique Analytique,

Lagrange presented Euler's equations in a still more general

context: that of a conservative dynamical system, envisaged by

Lagrange. Denoting 'kinetic' and 'potential' energy by T and

* _ V, and assuming for simplicity a finite number of degrees of

freedom, the evolution of such a system is determined by the

i'l " " . . . ." " ' -" ' . . . .' '- . " .. . . . . ... . . .. .
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Euler'Lagrange variational equations

(1q =1)qi q = dqi/dt

Here L( ,a) = T-V is called the Lagrangian; the 'generalized

coordinates' ql,...q can be arbitrary.

Eq. (1.1) is the Euler-Lagrange variational equation for the

condition that the action integral fL(q,q)dt be stationary--

i.e., in Lagrange's notation, that JL(q,q)dt = 0 for all

infinitesimal variations 6q(t) in 'configuration space' having

the same endpoints a(t0) = a0 and a(tl) = ql. Because of this,
1

it is often called the Principle of Least Action. It was used

by Liouville, Hamilton, Jacobi, and others to 'geometrize' much

of mechanics, and their concepts helped to inspire the theories

of relativity and quantum mechanics in the early 20th century.

The reversibility in time of Euler's equations (Chap. 1, §7)

expresses his faith in the idea that moving fluids could be

treated as conservative (Lagrangian) dynamical systems having

infinitely many degrees of freedom. For example, the potential

flows of an ideal fluid satisfy a more complicated version of

(1.1), with T = (p0/2)fff(7 -V$)dR the Dirichlet integral and

V = mgy(t) where y is the height of the center of gravity.

Euler's formula p = o(p) (Chap. 1, §2), obviously intended

by him to express the elasticity of air and other fluids, clearly

neglects the effect of temperature, T. But as everyone knows,

gases expand when heated, and contract when they are cooled. The

same is ordinarily true of liquids, although water, curiously,
2

expands as it cools just above the temperature of freezing. In

reality, the (thermodynamic) state of any fluid depends on two

variables (p and T, say), and not just on one as Euler assumed;

he should have written

1See C. Lanczos, The Variational Principles of Mechanics, Univ.

of Toronto Press, 1949, esp. p. 115 ff.
21f water did not expand during freezing, ice would not float and

ponds would freeze solid!
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(1.2) p = p(p,T)

in place of p = p(p). Moreover the work of compression heats a

fluid, converting mechanical energy into thermal energy according

to the formula

p dV = C p V dT

where C = C(p,p) expresses che specific heat of the fluid in

units of mechanical energy.

Thermodynamics. This conversion of mechanical to thermal

energy is just one aspect of the 19th century subject of 'thermo-

dynamics', of which Euler and Lagrange were unaware. To understand

the influence of compressibility on fluid behavior, one must be

aware of this and other 'thermodynamic' concepts, including that

of 'absolute zero' (00K), adiabatic flow, ideal gas, etc.

We will devote §§4-6 to various aspects of compressible fluid

motion that depend on such thermodynamic concepts. We will begin

with some topics in atmospheric meteorology that are basic for an

understanding of the weather. We will then turn our attention to

viscosity effects on fluid flows, trying to indicate their very

different nature.

2. Sound Waves. In Chapter 1, we described a variety of

idealized flows of an homogeneous, incompressible, inviscid fluid.

These analytically defined flows are compatible with Euler's equa-

tions of motion for a fluid with p = p0' an assumption that

implies V'u = 0. The rest of this chapter will be devoted to

deriving analytical formulas for flows in which the effects of

compressibility and/or viscosity are taken into account.

After potential flows, the simplest mathematical model of

fluid motion is that used to treat sound waves of infinitesimal

amplitude (acoustic or "linear" waves) in a homogeneous compressible,

but still inviscid fluid. These are tractable because the velocity

potential 0 and the associated pressure perturbation 5p = P-P 0

satisfy the linear, constant-coefficient wave equation
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(2.1) = c2v2  2 + 2 dp/dp(2.) tt c =  (xx + yy zz' =

This is deftly derived in Lamb [6, §§285, 287] from the Euler-

Lagrange equations for irrotational flow, neglecting gravity.

In Lamb's derivation of (2.1), ".1inearization" is achieved

by neglecting terms quadratic in the velocity (as in Lagrange's

general theory of small oscillations). Thus it neglects the

convection terms lUk3Ui/aXk, thus replacing D/Dt by 3/3t.

In the equation of continuity, this gives

Pt = -div(pu) = - p'u- jUk3P/axk

Alternatively, one can replace Dp/Dt = -pV-u by 3P/3t =p-u,

getting

(2.2) 6t= t= -PoV 'u = -PoV 2  - P0 0

Linearizing Euler's equation of state, and setting 6p = p -P'

we have also 9-

(2.3) p = c2 p, c dp/dp

Combining (2.2) and (2.3):

2 2
(2.3') (P)t c() t -c 00V 'u

Finally, neglecting gravity and convection (linearizing the

equations of motion):

(2.4) ut Du/Dt = - (p)

Therefore, differentiating (2.3'):

,J"-2 Pt 2 2 2
•(2.5) (6P) t = -c =pt -C 007-ut c 76p,

which shows that 6p, the 'linearized' (or 'infinitesimal')

overpressure, also satisfies the wave equation (2.1).
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Historical remark. Eqs. (2.1) and (2.5) were first derived

by Euler in 1759, essentially by linearizing his equations of

motion. 3 Newton had previously deduced Eq. (2.5) from less

general considerations. Assuming Boyle's Law for isothermal

pressure variations at constant temperature, p = kP, he calcu-
lated c 900 f/s in air under standard atmospheric conditions.

This is about 20% too low, for reasons to be explained in §6.

Plane waves. In the one-dimensional case of so-called plane
sound waves, with 6p = 6p(x,t), = (x,t), u = (u(x,t),0,0),

,qs. (2.1) and (2.5) reduce to

(2.6) Ott c 2 0xx and 6pt t = c2 6p

respectively. If the speed of sound, c, is taken as an empirical

constant (it is about 1100 f/s in air under standard atmospheric

• conditions), a very good fit to a wide range of observations can be
2" obtained. The general solution of (2.6), as for the DE n = c

satisfied by the elevation in 'long' gravity waves of infinitesimal

amplitude (Chap. 1, §3), is

(2.6'1 0 = f(x+ct) + g(x-ct)

whence u = Ox = f' (x+ct) + g' (x-ct). This clearly expresses the
most general plane sound wave (of infinitesimal amplitude) as the

superposition of two components, travelling without change of form

. at speed c in opposite directions.

Standing and progressive waves. As special cases of the f
and g in (2.6'), Pe obtain the 'simply harmonic' progressive

waves,

6p = A sn k(x ± ct) = Cos (kx ± wt), =ck

3Morris Kline, "Mathematical Thought from Ancient to Modern Times",
p. 520. Actually, temperature variations in sound waves are

__ very small (often < 10 - 4 - C).
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By taking a linear combination ('superposition') of two such real

progressive waves of equal amplitude travelling in opposite direc-

tions, we obtain the simply harmonic standing waves,

cos(kx+wt) +cos(kx-wt) = 2 cos kxcoswt
(2.7) 6 -

sin (kx+wt) + sin (kx-wt) = 2 sin kx cos t ,

whose frequency f = w/27 = ck/2A. Algebraically, it is more

convenient to treat real, simply harmonic waves as the real (or

imaginary) parts of complex exponential functions

(2.8) Ae i (kx -wt) =Aeik(x- ct) = Aeikxei~t

In the complex domain, the distinction between standing and pro-

gressive waves disappears.

4
Fourier integrals. In infinite space, a large class of

plane wave solutions of (2.5) can be constructed as Fourier inte-

grals

(2.9) 6p = a Wik) ei (kx -wt) dk , = cjki

of simply harmonic solutions of (2.5); the corresponding real

Fourier integrals are described in the exercises.

Spherical waves. Other exact solutions of (2.5) include the

incoming and outgoing spherical waves

(2.10) 6p = A )cos} k(r ct)r sink

From these exact solutions, Kirchhoff constructed by superposition

an integral formula solving the general initial value problem.

Wave vectors. By rigid rotation, we obtain as special solutions

of (2.5) in three-dimensional space, for any wave vector k, the

'standing wave' solutions

4 Essentially, all these that are of finite energy are (square-
ntegrable), by Plancherd's Theorem.

Ll
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6 A cos cs w c~k.... p = A sin --- sin wt, =,

wher k 2  2 2/where k =(k2 + k2 + k
2)1 2. By superposition, we can

construct from these standing waves the 'progressive wave'

solutions

(2.11) 6p = A js [k(Kx- Ct)]

where K = k/k is a unit vector. This obviously "progresses" with

speed c in the direction of K, without change of form. Note

that c is independent of k: sound waves are non-dispersive.
Y%.' 5

Energy of sound waves. The kinetic energy of a system of

plane waves, with u =x f'(x+ct) + g'(x-ct) from (2.6'), is

(2.12) T =1 f dx

Letting = f u dt denote the displacement of a fluid particle

from its equilibrium position, we then have for a simply harmonic

train of progressive waves of amplitude a,

(2.13) = acosw (t-) , w ck

c

An elementary integration then gives

T = (p0/2)w 2a
2 f sin 2 w(t -) dx

the average value of whose integrand over any complete quarter-period

in space or time is 1/2. Hence the average kinetic energy density

(in space instantaneously or time at any point) is

(2.14) T p0  2 a /4

5See H. Lamb, "The Dynamical Theory of Sound", Art. 60. His n
.! is our w.
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Since in general, for small sinusoidal oscillations of

Lagrangian systems, the average kinetic energy is exactly equal

to the average potential energy, it follows that the total energy

* per unit volume is

(2.15) = w a2/2

3. Helmholtz equation. The phenomenon of resonance is

associated with 'standing waves' of sound, whose pressure varia-

tions are of the general form
6

(3.1) Lp(x,t) = P(x)e i~t

where P(x) is an eigenfunction of the Helmholtz equation

(3.2) V2p + (W 2 /c 2 )p 0 ,

for the boundary condition 3P/an = 0 on 7, the boundary of 2.

Open tubes. From the standpoint of Natural Philosophy, the

simplest illustration of the phenomenon of resonance is provided

by a vertical open tube, above which a tuning fork is held to

stimulate vibrations of given frequency. If the diameter d of

the tube is small in comparison with the wave length , then

plane waves with 6p = 6p(x,t) are excited. Letting k denote

w/c, so that w = kc, (3.2) therefore reduces to

(3.3)k /
(3.3)d~p/dx 2 +k 2 = 0 , k = /c.

If the water level is taken as x = 0, and the top of the tube is

x = Z, then the boundary condition (6p)/9n = 0 = aP/9n is

satisfied (approximately) at x = 0 (the closed end). The open

We adopt here the convenient complex representation, whereby both
6 _ ___ iwti~

RetP(x eiWt } = P(x) coswt and Im{P(x)e P W sin wt are

real solutions of the DE u = c2 V 2u.
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end is at atmospheric pressure, so that 6p 0 (nearly) when

x = Z. The resulting Sturm-Liouville system is therefore (3.3)

and P'(0) P(Z) = 0, with the eigenfunctions

=-(3.4) P = cos2l)rx/Z] , j = 0,1,2,...

and the natural frequencies

(3.4') f. = w/2Tr = (j c/Z , j 0,1,2,

These can be excited by a tuning fork having the same frequency;

the corresponding wave-lengths for resonance are X. = c/fl. Since

middle C has the frequency 256 hz, and c is about 1100 f/s,

giving A - 4.3 ft., we see that this experiment is easy to

realize physically.

Closed tubes. Similarly, for a long, narrow tube of length

Z closed at both ends, the appropriate boundary conditions are

P' (0) = P' (2) = 0, giving the eigenfunctions

(3.5) P (x) = cos(jrx/ ) , j = 0,,2,---

The case j = 0 corresponds physically to a permanent increase in

the mean pressure, and not to a 'standing wave' at all. The

natural frequencies of the pipe are therefore

(3.5') fj = wj/27 = jic/2Z = jc/2Z , j = 1,2,3,--.

They are integral multiples of the fundamental frequency f 1  c/2Z,

whereas those of an open tube are odd multiples (2j-l)f1  of

it.

Rectangular box. For a closed rectangular box with sides

, 2', 2", the boundary condition BP/;n = 0 give similarly (by

'separation of variables') the eigenfunctions

(3.6) p(X) = Cos(jnx/z)cos(j'7Ty/£')cos(j" nz/Z")
,L J
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where j, j', j" are arbitrary intervals. Each of these satisfies

the Helmholtz equation (3.2) with

2- 2 2 .2 j,2 j,,2
w/ 2 2 ,,.'"w /C 2  = (2- + - + )

and so

.2 .,2 .,,2 1/2
(3.6') f. W c./2Tr + c/22

where J' (8) - 0 have been tabulated, whence the eigenvalues

are the k= k2 (v,j,Z) with

(3.8) 2  (, /b)2 + v2 + (Z7/b) 2

Spherical jar. The natural frequencies of a spherical jar

* . (of radius a) can be expressed similarly in terms of the spheri-

-. .* cal Bessel functions j (r) (associated with Bessel functions of

half-integral order) and spherical harmonics S ( ,8). Them,n
eigenfunctions are again products j (kr)S ((,9), where then mn
k k(n,j) are chosen to make jn(ka) 0.

The resonance frequencies of a hemispherical jar can be found

similarly, by selecting those eigenfunctions of a spherical jar

which are symmetric in the equatorial plane so that, in terms of

latitude and longitude e, they satisfy P(re,-q) =

Unfortunately, 'separations of variables' such as those used

above to obtain the eigenfunctions of cylinders, spheres, and

hemispheres do not exist for most shapes. All coordinate systems

to which it can be applied were discovered already by 1850 or so,

although the fact that the Laplace operator was not separable in

any other coordinate systems was not proved until about 1930.

i

i • -
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4. Equations of state. Euler's formula p= p(p) (Chap. 1,

§2), obviously intended by him to express the elasticity of air and

other fluids, clearly neglects the effect of temperature, T. As

everyone knows, gases expand when heatea, and contract when they

are cooled. The same if ordinarily true of liquids, although

water, curiously, expands as it cools just above the temperature

of freezing.
6

As everyone knows, gases expand much more than liquids;

whereas the density of air is doubled by a pressure of 2 atm.

(psia), that of water is increased by less than .03%. Indeed,

fortunately for mathematicians, the behavior of real gases is

stimulated very well by the equation

(4.1) p = kpT

where T is the temperature above absolute zero (-273*C). Indeed,

when rewritten in the form pV = RT, Eq. (4.1) is one definition

of a perfect gas (see §5 below, and also Chap. 5).

More generally, the (thermodynamic) state of any fluid really

depends on two variables (p and T, say), and not just on one

as Euler assumed; he should have written

(4.2) Q = p(p,T)

in place of p = p(p). Moreover the work of compression heats a

fluid, converting mechanical energy into thermal energy according
. to the formula

p dV = p CV dT

where C = C(p,p) expresses the specific heat of the fluid in

units of mechanical energy.

Before discussing the implications of the oversimplification

p f(:-) for the partial differential equations of fluid motion

S.6If water did not expand during freezing, ice would not float and

ponds would freeze solid!

LeI
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(and their solution), we will devote a few pages to some much

simpler consequences of importance for understanding weather

conditions ("meteorology").

The atmosphere. Indeed, the most familiar example of a nearly

perfect gas is provided by air. This is a mixture of gases, con-

sisting of about 75% of nitrogen molecules N2, 25% of oxygen

molecules 02, and 1% of atomic argon. Most important for

meteorology, real air also contains variable amounts of water

. vapor (h20), a small amount of carbon dioxide (CO2 ), and traces

of other chemicals (including dust particles). For convenient

reference, we list in Table 2 some dimensional constants that are

useful for treating atmospheric phenomena.

Table 2. Some Useful Dimensional Constants

Absolute zero T = -273 ° C = 00 K

Standard atmosphere: T = 150 C = 2880 K

p = 1 Kg/cm 2 (approx.)

p = 1.2255 Kg/m 3

Mech. equivalent of heat for water is:

10 C = 427 meters

10 F = 770 feet

Specific heat of air: C = .2375, CV = .168.pV

From the data of Table 2, it follows that the internal energy

of air per unit mass at 2880 K, being CvT, converted from thermal

to mechanical energy, is enough to raise it over 20 Km. against

gravity.

Meteorological applications. The preceding considerations,

which stand in stark contrast to Euler's hypothesis p = :(p),

have some important (if elementary) meteorological implications

for the earth's atmosphere. The simplest of these concerr the

variations in pressure p and temperature T with altitude y,

-. over a given area at a given time. They assume approximate

hydrostatic equilibrium, which is very reasonable provided that
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vertical components of wind velocity are small. See [A7, Chap.

III for fuller discussions of these implications.

Since u(x;t/ = 0 in hydrostatic equilibrium, Euler's equa-

tion of motion (Chap. 1, (2.1)) reduces to 0 = - p/p, or

grad p = pg. It follows easily that, if I = -VG is a gradient

field (e.g., if g = (0,0,-g) = -V(gy)), then the pressure must

be a function p = F(G) of the gravitational potential G.

Therefore, near the earth's surface, we must have p = p(y) in

hydrostatic equilibrium.

Since grad p = pg = (0,-pg,O), evidently p = -p' (y)/g = p(y)

must also depend only on altitude in hydrostatic equilibrium. In

particular, in dry air, which is nearly an ideal gas, the condi-

tion that T depend only on y, i.e., that

(4.3) T = p(y)/Rp(y) = T(y)

is also necessary for hydrostatic equilibrium. The function T(y)

describing the variation of (mean) temperature with altitude (the

so-called temperature profile), at a given fixed time t, is

however somewhat unpredictable. Three types of profile are

especially noteworthy; in all cases, we have as above

(4.4) dp/dy -gp(y)

and so

(4.4') p(y) = g f p(p,T(y)) dy
y

Physically, this asserts that the pressure at any point is due

to the weirght of the air above it. The preceding formulas apply

in particular to the 'elastic fluids' defined by Euler's equations

(Chap. 1 (2.1)-(2.3)).

Constant density. For an incompressible fluid of constant

density P0  (e.g., in an 'ideal fluid'), the pressure profile

is therefore p = p5 + o0 g(y, -y) where ps is the surface

. pressure and Ys- y is the depth below the surface (Pascal's
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formula).7 In this model, the temperature profile is irrelevant;

it approximates lake pressure profiles very well, and ocean pres-

1sure profiles fairly well.

Isothermal model. For an ideal gas at constant temperature

T0 , p = kp. Hence, differentiating (4.4) by Leibniz' rules we

have:

dp/p = -gpdy/p = -gy/k

Integrating, we get pressure and density profiles that decay

exponentially with altitude:

" -gy/k

(4.5) p po e , g/k =gp/P

At 'standard' atmospheric temperature, 150 C = 288 *K,

gp0/p0 = .00122 -x 10- 3 cm2 (8 Km)- 1

mccm

Since .5 z , it follows that in an isothermal atmosphere

at 150 C, the density (and pressure) would be halved in about

5.6 Km, or 17,000 feet.

-" Polytropic atmosphere. Mathematically, a 'polytropic' gas

is by definition a fluid in which Euler's equation of state (2.3)

holds with p = kpy . In a perfect gas with T = o/Rc, this implies

T = (k/R)p - , whence by (4.4),

I"-ld /dl
(4.6) dp/ay = knp dp/dy = -gp(y)

and so -gdy - knp -2 dp. In turn, for any y, this implies a

linear variation of temperature with altitude: for some constant

of integration y a' the height of the atmosphere,

a(4.6') g(ya- y) = [k- /(y-l)]p Y- 1 = ['(/(, -i)]RT

Setting y = 0, this gives the atnosp' ,ric height as

7This is the "uniform atmosphere" of [A7, J1l], while (4.5) is
the "isothermal" atmosphere of [A7, §12]

[j~
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Ya= [y(y-1)]RT0 /g = [y(y-I)] (p/gP)0

Dry air is very nearly a perfect gas with

z" 1 K .00125 gm 8x15

(4.7) g ×= 8xi0 cm= 8 KmgO cm 2 cm

Moreover, air expands nearly adiabatically; hence it behaves like

a polytropic gas with = 1.408. If we substitute these numbers

into (4.6'), we obtain a predicted atmosphere height of roughly

(4.7') Ya [8y/(y-l)] Km - 28 Km

and a negative temperature gradient of about 100 C/Km.

Actually, in the so-called troposphere, the bottom 5-8

miles of the atmosphere, the best mean fit of the polytropic model

to data is given by I = 1.2. This is about half-way between

= 1.408, the exponent for adiabatic expansion of dry air, and
8

___ the isothermal model with = 1. This gives (1-l)/y = 1/6

and dT/dy = -6* C/Km, or about 30 F/1000 ft. The stratosphere

above this troposphere is nearly isothermal.

Atmospheric stability. Much of the deviation from the iso-

thermal model is due to daytime thermal 'convection cells', caused

by solar radiation. When the negative temperature gradient exceeds

100 C/Km substantially, buoyancy causes masses of air to rise

more or less adiabatically, often forming cumulus clouds.

Water vapor. Such clouds form when rising air, cooling adia-

batically, becomes supersaturated. Supersaturated air is far from

K. a perfect gas! Saturated air at atmospheric pressure contains

K about 2.5% of H20 at 300 C, and 0.15% at -10° C [A7,

p. 57]. Because the latent heat of evaporation (boiling) is

5500 C (550 gcal/gm), condensation releases large amounts of

heat, a fact which dominates the thermodynamics of saturated and

supersaturated air. See Chap. 8 for descriptions of some phenomena

* resulting from this fact.

8The main reason is daytime atmospheric instability due to solar
heating.
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5. Thermodynamic Effects. Compressible flows involves

thermodynamic considerations in an essential way. For example,

thermodynamics explains why the observed Eulerian equation of state

of gases is nearly polytropic, of the form p = kpy where

y = C p/C is the ratio of the specific heat at constant pressure

to that at constant volume. The explanation, due essentially to

Laplace (ca. 1820), depends on the 'adiabatic flow' concept.

(As was explained in §2, if p = kp0, then c = dp/do = kp/o.)

Adiabatic flows. A gas is called perfect when its thermo-

dynamic equation of state is pV = RT, and its internal energy

E = E(T) is a function of temperature alone. Air is a nearly
"perfect" gas at ordinary temperatures and pressures; moreover

considerations from the kinetic theory of gases suggests that all

gases should be nearly "perfect" at low densities (i.e., when the

molecular mean free path is many molecular diameters); see Appen-

dix E.

In a perfect gas, clearly p(V/3T) = R, where the sub-~p
script p signifies "at constant pressure". Moreover by the

first law of thermodynamics (conservation of energy); the specific

heat at constant pressure, C p, satisfies

C dT = dE + P =dV E'(T)dT + p0(-)pdT

On the other hand, the specific heat at constant volume, C,
satisfies by definition C vdT = dE = E'(T)dT. Combining the

preceding equations with p(V/ T) = R, we get

(5.1) C = C + R
• p v

Now define an adiabatic flow as one in which all the work of

* B compression goes into local heat (heat transfer is negligible), so

that

0 = dE + p dV C dT + p dV

and dT = -(P/C )dV. Since pV = RT, dp/p + dV/V = dT/T, and so
[.v
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d T dV dV
p T V V I  v

1 ldV C pd- [C + R]I~

The ratio C /Cv = y is called the adiabatic constant, and it

is nearly constant over large ranges of temperature and pressure

for most gases. When y is constant, clearly

(5.2) p = exp[fdp/p) = exp(-yf dV/V) = kV -  = kpy

where k is a constant of integration. This is the adiabatic

equation of state.
9

Note that the preceding derivation does not invoke the con-

cept of entropy or the second law of thermodynamics.

Bernoulli equation. The preceding discussion is of interest

primarily as relating the speed of sound in an ideal gas to static

measurements of y = Cp/CV. Namely, differentiating p = kp

we get c2 = dp/dp =kyp = YP/P = PCp/PCV.

We next derive the Bernoulli equation for steady compressi-

ble flows of any elastic fluid satisfying Euler's equations:
1 0

12(5.3) 2 +fdp/P + G = K, K = const.,

valid along any streamline. To derive (5.3), consider the tangen-

tial derivatives

d 1 2 du 1 2E + 3G!. u ~) = u s

* the last equality simply expresses the tangential component of

acceleration du/dt = Du/Dt as the tangential component of force

9It is valid when the thermal diffusivity K = K/oCv - c 2/W = Ac'

(K the thermal conductivity); see E.U. Condon, Am. J. Phys. 1
(1933), 18-

1 0Thinking of flow in a stream tube as one-dimensional, we here
write u for q.
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per unit mass (Newton's Second Law). i Integrating along the

streamline, we get (5.3).

We will call the function h(P) = fdp/p in (5.3) the Bernoulli

function for the elastic fluid (adiabatically, expanding perfect

gas)

* (5.4) h(p) = fdp/p = fykpy- 2 dp = yk py-

whence h(P) = yp/(y-l)p. Note also that h = C T, while

C= dp/dp = yh. Finally, note that in (locally) irrotational flow,

the constant K in (5.3) is the same for all streamlines. This

* because in all directions, not just the streamline direction:

d( 1 ) = u du = d 4= 1 u2 udu

auk au.= [ uk dxi uk I x-- i ,

k,i i k1i

where the last equation holds by irrotationality. Since 3/at = 0

. in steady flow, however, we have by Euler's equations of motion

(Chap. 1, §2),

'u' dxi J{ 'P - - dG:
k~ii 

PXxi 3x-i P

Transposing, we get

(5.5) d( 1u) + d( f ) + dG = 0

which implies (5.3) in any connected domain.

Convergent-divergent nozzle. We now consider steady flows in

convergent-divergent nozzles, such as are used in supersonic wind-

*tunnels and in steam turbines (de Laval nozzles). This theory is

asymptotic, in the sense that it assumes nearly parallel flow (i.e.,

. Most authors today give much more sophisticated derivations, and

appeal to the concept of entropy and to the Second Law of
Thermodynamics.

tJ
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- lateral velocities and accelerations are neglected, together with

* "the boundary layer). We also neglect accelerations due to gravity,

as is usual in high-speed gas dynamics.

In such flows, we have

(5.6) p uA(x) C , C = const.

*Moreover, under these assumptions, (10.3) simplifies to

(5.7) u2/2 + kyp -/(y-l) = K

Combining (5.6) and (5.7) we get

(5.8) p (2K-Bo = C2 /A 2 (x)

where B = 2yk/(y-l) > 0 if y > 1 (an important assumption,

always fulfilled physically).

By graphing the function F(p) on the left side of (5.8),

one sees that it is convex and positive on the interval [0,(2K/B)

At its maximum, dA = 0 and hence, by (5.6),

dp/p + du/u = 0

On the other hand, u du + dp/p = u du + c2do/p = 0 by Bernoulli's

equation (neglecting variations in G). Hence

2d -2 2d
c d/p = -u du = -u (du/u) = u d/D,

S2 2and c = u2 . Therefore, velocity is sonic at the "throat"

(minimum A(x)). By the second law of thermodynamics, it is sub-

sonic on the upstream side, and supersonic on the downstream side,

as indicated in the attached sketch.

S . .. ..

-3S A s o .; , -. "1,C, , .. . ..< '. . , _" . .. . . .. : . j ,'- : . . . .
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6. Mach number; adiabatic flow. The Mach number M = U/c

of a fluid flow is the ratio of the 'velocity at infinity', U,

to the sound speed there. For M < 0.8 or so, Euler's concept

of an elastic fluid, with the adiabatic equation of state
1l.408

p = kp for air derived by Laplace, takes adequate care of

most compressibility effects.

Similarity. Much more can be said. For a wide variety of

mathematical models of compressible flow, linear and nonlinear

compressibility effects and even shock waves are independent of

size, so long as the medium, its 'state' (p, T, hence c and S),

and velocities u are the same at corresponding points. This

theoretical similarity principle applies to Euler's equations, for

any equation of state p = f(p). In particular, it applies to

flows past two geometrically similar wings or bullets.

From a theoretical standpoint, therefore, if viscosity is

neglected, predicted pressure distributions should agree with those

observed on small-scale airfoil models suspended in a wind-tunnel

as well as with those on full-scale airplanes. Likewise, if a

theoretical prediction agrees with observation on a 0.44" rifle

bullet, then it should agree with those on a 16" shell. In

short, any such model provides a theoretical basis for performing

model tests.

This idea was used already before 1750 by Benjamin Robins,

who observed (using the ballistic pendulum invented by him) that

L the drag coefficient CD(M) of bullets increased by a factor of

2-3 near the speed of sound. (The phrase 'sonic barrier' is

sometimes used to describe this phenomenon.) Euler edited a German

translation of Robins' book, adding many comments that almost

doubled its length. However, it was not until the 20th century

that realistic mathematical models of supersonic flows past bullets

and airfoils were constructed.

In a nearly perfect gas like dry air (not wet steam!), one

can say much more. All phenomena depend only on y and the Mach

number M = U/c, where U is a representative flow speed.

Mathematically speaking, for a given y, if u(x,t) is a solution

-I
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of the relevant DE's (essentially these of Euler), then so is

v(x,t) = u(Xx,ut), so long as the ratio U ,/c. (c = (dp/dp)0 )

is the same.

Plane waves of finite amplitude. Many scientists have tried

to treat the propagation of plane sound waves of finite amplitude

(e.g., in air) 'exactly' by integrating Euler's equations for

an adiabatic gas. One of the first questions asked was: what are

the conditions (on the equation of state p = p(p)) under which a

sound wave can propagate "without change of form" in a compressi-

ble fluid--i.e., be definable by

u = u(x-ct), p = p(x- ct)

This question is easily answered using Lagrangian coordinates.

In Lagrangian coordinates, writing x = x(a,t) (where a

is the cumulative mass), clearly xt = u, xtt is the accelera-

* tion, and xa = 1/p = V is the specific volume. Hence, the

equation of motion for a plane wave reduces to

(6.1) xt = -ap/3a =-p'(p)3/Da

" / 2_=la 2 dp
- a ) aa a d aa

In order that this reduce to x = c2x , it is necessary and".sufficient that 2dp/d= c2, x t  aa 2

i p, hence dp/d(l/o) = -c , whence

(6.2) p= a - c2/p

This is called the Chaplygin equation of state; unfortunately, it

does not hold in any real fluid.

Linearized supersonic flow.1 2 Another notable linear approxi-

mation to compressibility effects concerns supersonic flows around

1 2 See G.N. Ward, Linearized Theory of Compressible Flow", Cambridge
Univ. Press, 1955; J.W. Miles, "Potential Theory of Unsteady
Supersonic Flow", ibid., 1947. For practical interpretations,
see A.E. Puckett, J. Aero. Sci. 13 (1946), 475-84.



2-22

very slender airfoils. These are approximated quite well by a

linearized model developed by Prandtl and Glauert. According to

this model, the velocity potential of a 'slender body' moving

parallel to the z-axis satisfies

(6.3) (M2 _ l) zz = Oxx +  yy

In 1932, von Karm n and Moore used this model to estimate the

drag coefficient CD (M) of a slender conical projectile, as a

function of the Mach number. Their results explained qualitatively

the large increase in CD(M) near M = 1, already observed (for

bullets) by Robins around 1750.

7. Formation of shocks. We now turn our attention to

time-dependent flows of an 'elastic' (inviscid but compressible)

fluid of the kind postulated by Euler. We will first show that,

to transmit plane waves of finite intensity without change of

form, such a fluid must have a non-physical "Chaplygin" equation

of state of the form p = A + B/p (i.e., y = -1). We will then

take up so-called 'simple' waves, and explain why simple compression

waves develop shock discontinuities.

Earnshaw paradox. Imagine an elastic fluid with equation

of state p = p(p) in which sound waves can propagate "without

change of form"--i.e., satisfy

u = u(x -ct), = (x- ct)

By using Lagrangian coordinates, it is easy to determine the form

that the function p(p) must have.

In Lagrangian coordinates, writing x = x(a,t) (where a

is the cumulative mass), clearly xt = u, xtt is the acclera-

tion, and xa = 1/p = V is the specific volume. Hence, the

equation of motion for a plane wave reduces to

(7.1) xt = -ap/3a = -p' (p) /aa = - -(x)-
a

= xaa/x =X
aaa FOa
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In order that this reduces to X = c2x it is necessary and

sufficient that p dp/dp = c, hence dp/d(l/p) = -c , whence

2(7.2) p = a - c /p

This is called the Chaplygin equation of state. Unfortunately,

it does not hold in any real fluid; this is the 'Earnshaw paradox'.

It was discovered in 1860.

*Simple waves. A compressible fluid in which the pressure p

is an increasing function p - f(p) of the density p may be

called an 'elastic' fluid. In adiabatic flow, a perfect gas is

equivalent to an elastic fluid with f(p) = k1
Y  y = Cp/C

p v
Plane waves in an elastic fluid are called simple waves when iso-

AJ bars coincide with isovels (level lines of u(x,t)), i.e., when

u = g(p). In adiabatic flows of a perfect gas, isobars (level

lines of p) coincide with isotherms (level lines of T), in any

case.

S-"After expressing all variables as functions of p (at least

locally),13 it is easy to derive the properties of simple (plane)

waves. With this assumption, Euler's equations of continuity

and motion (Chapter 1, (2.1)-(2.2)), become

(7.3) ut + [u+p- (dp/dp)] u = 0

and

(7.4) Pt + [d(pu)/dp] = 0

On the other hand, since isovels and isobars coincide, we

must have ut = -Xu x and t= -Px for the same X. Substituting

into (7.3) and (7.4), we get

2(u-A) u x  -c p/p and (u-'k)o x  -pu x ,

,4R

" 13This is the approach of Landau and Lifschitz [B6, §94], whose
-: exposition is similar.

L7
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respectively. In turn, these imply that

2
U/P= -c /p(u-A) = (u-A)/p

2 2

whence (u-A) = c , u-A = ±c, and so, finally, A = u±c.

This proves the following result: in any simple wave, each iso-

bar (isovel or isotherm) has a constant slope A(p): it is

therefore a straight line in the (x,t)-plane.

Conversely, given a family of straight lines in the (x,t)-

plane with smoothly varying slope A, by choosing the density

p(A) so as to make u±c = A for the specified equation of state,

we obtain a simple wave. Moreover as long as $u(O,t)j < c(Q,t),

we can generate such a simple wave in a fluid initially at rest

by a 'moving piston' with velocity at one end (for which a = 0).

A more difficult argument, presented in Courant-Friedrichs

[B3, §291, shows that the boundary of any region of constant state

must also satisfy dx/dt = u±c. Moreover (B3, p. 951, forward-

moving simple plane waves in a perfect gas (isentropic flow) g

satisfy

(7.5) u + c = u0  + c o  +T

It follows that characteristic lines containing faster moving

particles gain on those with smaller u if y > -1, which is

always the case in real gases. This conclusion is commonly

rephrased in the statement that the density profiles of compression

waves steepen with time, whereas those of rarefaction waves flatten

[B6, p. 97]. Here by a 'compression wave' is meant one in which

u is a decreasing function of x, so that pt = -oug is in-

creasing in time, whency by (7.5) u+c is also a decreasing

function of x.

K- Riemann's equations. For any system of plane waves, the two
I'.

families of curves in the (x,t)-plane defined by

(7.6) dx/dt = u+c anc' dx/dt = u-c

- - -,- . - - - - - -,
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respectively, are called 'characteristic curves' or simply

characteristics. They have an elegant formulation due to

Riemann (1859).14 For p = kp 7  defined as in (5.5), let

f =f ky k1  ky-1-l

Then Euler's equations [(2.1)-(2.2) of Chapter 1] are equivalent

to

(7.7) ut +uu =cw x x u

Adding and subtracting, we obtain

(7.8) {- + (u+c) 2-1 (w+u) 0

and

(7.9) {2- + (U-C) (W-u) = 0

In a 'simple' wave, therefore, either w+u or w-u is constant.

Conclusion. We have constructed in 5§6-7 two important

families of inviscid compressible flows by analytical methods:

self-similar flows and simple flows. In both families, however,

the flows depend on functions of one variable only. In Chapter 6,

we will show why numerical methods are not subject to this

limitation.

8. Viscosity. In real fluids, the Helmholtz-Kelvin Principle

of Permanence of Circulation fails to hold because of tangential

stresses due to viscosity, or 'internal friction'. As we will show

in Chapter 7, the net effect of these in an incompressible fluid

is to add a term v72 u to the Euler-Lagrange equations of motion,

1 4See Lamb [A6, p. 482], whose exposition we summarize here.
Riemann's analysis was clarified by Rayleigh (Papers, vol. V,
p. 573).
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thus replacing Eq. (2.1) of Chapter 1 by

compensates for
incompressibility diffusion

(8.1) Dui/Dt = -3p/pxi + gi + vV

11

where v is a material constant depending on the fluid, 15 and

called its kinematic viscosity. Physically, vV 2  represents

diffusion of momentum by molecular wandering.

The vector partial DE (8.1), together with V'u = 0 and

P = P0  defines Model 3 of Table 1. In this section, we will try

to motivate it and describe its significance, by applying it to

the two families of time-independent vortex flows described in

Examples 10 and 11 of Chapter 1, §10.

Parallel flow. Consider first a steady parallel flow with

velocity field (0,0,w(x,y)). One naturally guesses (with Newton)

that an internal shear stress

will arise across any plane

parallel to the streamlines,

proportional to the velocity

gradient perpendicular to that

plane. Thus the tangential

stress acting on the sides of u a 0

a rectangular cylinder will

be as in the adjacent drawing.

The resultant force per unit distance in the z-direction will be

U. f [wx(x+Zx,Y) - wx (x,Y) Idy + w y(X,y+Ay) - w y(x,y)]dx

= i ff [(wx)x + (w y) y]dx dy

where the last equation follows by Stokes' Theorem.

To balance this resulting force and keep the flow in equi-

librium requires an opposite longitudinal pressure gradient of

Actually v = P/z and the viscosity u = p depend on the 7-9

;temperature and pressure, especially in liquids. In gases,
'.. U is nearly independent of the density (pressure).
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-9p/Dz acting on the ends of the cylinder. Moreover, since there

is no lateral acceleration, we must have ap/3x = ap/;y = 0,

w 1hence p = p(z) . We conclude the condition for equilibrium:

2
(8.2) p'(z) = 7 w(x,y)

where p decreases as z increases and so 2w < 0. Finally,

since the left side of (8.2) depends only on z, and the right

side only on x and y, both must be constant. That is, in

parallel flow we must have
1 6

(8.3) 7 2 w =C , p C z

No slip boundary condition. Now consider flow parallel to

the z-axis in a cylindrical pipe whose cross-section in the (x,y)-

plane is S. To determine the 'velocity profile' w(x,y) , the

DE (8.3) must be supplemented by a stronger boundary condition

than the boundary conaition u = 0 of non-viscous flow theory.. n
Since any finite sheaz stress implies a finite velocity gradient,

and a finite velocity gradient makes a discontinuity in w impossi-

ble, the natural boundary condition is the no slip condition

w = 0 on S.

Poiseuille flow. The most important case is that of a
-- 2 2 2
circular pipe of radius a, S: x + y = a . In that case,

(8.4) w C(r 2  2 2 2 2

the velocity profile is parabolic. The discharge rate (total

volume flowing per unit time), is

[ a
-2TYC a 2 2 4

Q = ff w(x,y)dx dy = - J (a -r )r dr = -fCa /8! 0

Substituting into (8.3) , we get

16The 'membrane equation' 72w = C of constant linearized mean

Srcurvature arises also in the torsion problems of elasticity.
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(8.4') - ~ = -4C = 81Q/.raINz
or Q = ra4 (-dp/dz)/8i.

1 7

.Couette flow. We next consider the equilibrium of pure plane

swirl, with ur = 0 and ue f(r), under the action of viscous

forces. Since the angular velocity at radius r is w(r) = f(r)/r

the rate-of-strain matrix has an angular shear component of

Lim [f(r+Ar) - (r+Ar)f(r)/r]/Ar

Ar-0

or f'(r) -f(r)/r. Hence the viscous shear stress is

."f'(r) -f(r)/r] per unit length; the total viscous force acting

on a circle is i[rf'(r)- f(r)], and the torque exerted is

i[r 2f'(r) -rf(r)]. This torque must be a constant in steady flow,

so that

2
(8.5)r f'(r) - rf(r) = K in equilibrium

Since (f/r) ' = f'/r - f/r2 clearly /r3  is an integrating

factor, and the general solution is

(8.6) w(r) = f(r)/r = K fdr/r 3 = C - K/2r2

where C is a constant of integration and iK is the torque.

This gives, finally,

(8.7) ue(r) = Cr - K/2r

Flows satisfying (8.7) are called Couette flows; given two concen-

tric rotating cylinders of radii a and b > a, rotating with

angular velocities w(a) and w(b), there is just one Couette

£low between them which satisfies the no slip boundary condition.

Measuring viscosity. Formula (8.5) makes it easy to measure

viscosity. Let the clearance between two (exactly) concentric

See [A5, J138]. Note that the distance from the inlet required
-D establish a parabolic velocity profile in a circular pipe

m cnsiderable; see [A5, S139].

U
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cylinders be 6, and let the inner cylinder of radius a be

held stationary by a measured torque N. Then, by (8.5),
2i

(8.8) N = 2TiK = af (a)- af(a)]

Now let the outer cylinder of radius a+6, be rotated with angu-

lar velocity w. By (8.6) and the 'no slip' condition on the
2inner cylinder, Ca = K/2a, whence K = 2a C. By (8.7) and the

'no slip' condition on the outer cylinder

. K (a+6) K
a2  2(a+) - (a+6)w

2a

A little algebraic manipulation gives from this

2 2

K a (a+6)

2 (2a6 + 3 
2 )

whence

(8.9) = N/2rK = (2a6 + 5 ) N
2 2'

Ta (a+5)

and p is about 26N/a3 w.

Plane viscous flows. The effect of viscosity on the vorticity

= v -u in plane viscous flows is very simple. Taking the

curl of the Navier-Stokes equation (8.1), the terms 7 x (7p) and

7 x (VG) drop out, in three dimensions also. Moreover, expanding

7 x (Du/Dt)

(u+u+u)- (v+v+v W)
(Ut + x y+ vUy (Vt + UV x '

and deleting u(Y V) - v (U +v ) because u +v = 0, we get
a d ty x x y y

(vx Uy) t + u(v- U) + v(v -u )
x yt X y x x y y

which is just D./Dt. In summary, we have the following result.

THEOREM. The vorticity in any plane time-dependent incom-

pressible viscous flow satisfies the DE
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2(8.10) DC/Dt = vV .

9. Reynolds number. Model #3 of Table 1 assumes the Navier-

Stokes Equations (8.1); we rewrite them in vector form as:

(9.1) Du/Dt = -Vp/p + + vV2  , V

It also assumes V-u = 0 and p = P0 ; and finally, it assumes

the 'no slip' boundary condition u = 0 on stationary solid
~18

surfaces--and continuity of velocity on moving solid surfaces.

We will refer to flows that satisfy these conditions as incom-

pressible viscous flows, or flows of an incompressible viscous fluid.

Remark 1. Even in a moving fluid of constant density o'
the effect of a conservative gravity field _ = VG is simply to

decrease the hydrostatic pressure by p0G, where G is the

. gravitational potential.

-. -Remark 2. As was noted before, any 'potential flow' satis-

fies (9.1)--though rarely the boundary condition of 'no slip'.

If we compensate for gravity effects by Remark 1, Eq. (9.1)

reduces to
19

au . u1 2au.i 1
(9.2) a-- Uk ui ' i = 1,2,3

We now consider the possibility of obtaining 'similar' incompressi-

ble viscous flows with scale models, in which distance, time,

density, and viscosity are transformed by specified 'scale factors'

as follows:

S- x. 'A x., t

(9.3)

1 8We postpone a discussion of what conditions to impose on free
(e.g., liquid-air) surfaces until Chapter 8, liquid-liquiT

, interfaces are even more complicated.

19Since we will discuss only fluids of constant density in the

rest of this chapter, we will omit the subscript on p= p

.4
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whence v 6v/y. Suppose also that the pressure is allowed to

change by p k -p + K , where K and X are unspecified constants,
not controlled experimentally. Then the four terms of (9.2) are

multiplied by factors

i
"  V1 a,2 K , K/Cy , /y

respectively. Clearly, (9.2) still holds if and only if these

factors are all the same. This is evidently the case if and only

if 2y/3 = 1; the pressure will then adjust so that K = 2V/2-
2i.e., it will be multiplied by the same factor as pU where U

is a representative velocity.

* These conclusions are most conveniently restated in terms of

*' the Reynolds numbers

(9.4) Re =Ud/i = Ud/v

of the flows. Since the Reynolds number is multiplied by a 2/a6

under the specified changes of scale, we have the following basic

result.

THEOREM. Two flows of incompressible viscous fluids deter-

mined by geometrically similar constraints are themselves similar

under the changes of scale (9.3),if and only if they are at the
same Reynolds number Re.

COROLLARY. Similar bodies held in uniform streams of two

incompressible viscous fluids with the same orientation must have

the same drag coefficient at any given Re. In symbols, CD(Re)

is a single-valued function for objects having given shape.

Discussion. As Prandtl-Tietjens explain vividly in [A8,

Chapter II], the Reynolds number of a flow past a solid is a rough

measure of the ratio

(inertial forces)/(viscous forces)

Hence, if it were not for the fact that the Navier-Stokes equations

. "are a singular perturbation of Euler's equations, one would expect

that above a sufficiently large Re, incompressible viscous flows
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past any obstacle would deviate arbitrarily little from the

potential flow past the same obstacle.

And indeed, this expectation is fulfilled except has passed

* .. very near the in a thin boundary layer that is dominated by the

no-slip boundary condition dominates. This boundary layer is

shed into a wake behind the obstacle, and the high concentration

of vorticity in the boundary layer is transported with it, creat-

ing vortices or "eddies" which are a conspicuous feature of most

wakes. Although these real wakes are quite different from the

*imaginary 'stagnant' wakes that we investigated i [A9, Chapter 11,

they do lead to drag coefficients CD(Re) having the same order

of magnitude.

Cylinders. The prediction of the preceding corollary has

been confirmed in countless experiments; we will now consider

in some detail the observed flows past a circular cylinder held

broadside. In this case, as the Reynolds number increases from

0.001 (say) to 107, a remarkable series of metamorphoses takes

place.20

When Re < 0.1, a large mass of fluid around and behind

the cylinder is retarded. As Re increases from 0.1 to 30 or

so, two stationary vortices form symmetrically behind the cylinder,

becoming more and more elongated as the Re increases.

When Re > 50 or so, steady flow (though presumably possi-
ble mathematically) becomes unstable. Indeed, in the range

50 < Re < 500, vortices of opposite sign are shed from opposite

sides in alternation. A very suggestive (if inaccurate!) approxi-

- mation to the flow is a vortex sheet consisting of two semi-infinite

i* rows of staggered point-vortices; their spacing ratio is deter-

mined by approximate stability. When Re exceeds 1000, the

wake becomes increasingly turbulent. Plots of CD(Re) are shown

in [A8, p. 96] and [A5, p. 419]; although not totally consistent,

they are the same for air as for water.

20 For much more detailed descriptions of flows past circular cylin- 4

ders, see [AS, pp. 417-39] and [A4, Chapters XI-XIIIJ. A vivid
and realistic general overview of viscous flows past "bluff
bodi'es" is in [A5, Chapter 5].

*1p
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Some idea of the range of Re of practical importance may

be had by noting that an airplane wing whose chord length is

5 meters, when moving through air (v z 0.1) at 720 Km/hr, has

a Re of the order of 108. When Re > 2 x l05, the boundary

layer becomes turbulent- and the observed pressure distribution

(plotted in dimensionless form as CD(e)) bears a fair resem-

blance to that fc.: potential flow (see the Figure, xeroxed from

[A5, p. 4221).

S Q-
a to- S

1 9

CD I;-

443

Spheres. The flow past a sphere held fixed in a uniform

stream exhibits analogous qualitative variations with the Re.

When Re < 50 or so, a time-dependent or "steady" flow is obtained,

as one might expect intuitively. However, when Re > 50, the

steady flow apparently becomes unstable; a "boundary layer" (see

§10) then separates from the sphere near its equator, and flows

into a "wake" consisting of possibly turbulent (when Re > 500)

vortices.

1• -
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Stokes flow past sphere. In more detail, if inertial forces

(the convection terms Ukaui/axk) are neglected, the Navier-

Stokes equations reduce to Stokes' DE for "creeping" flow in

cylindrical coordinates:

(9.5) r r 2  
= 0

77 r ar j

Stokes succeeded in integrating this DE by separating variables

in spherical coordinates. Namely, the substitutions z = R cos 6,

r = Rsine, ' = f(r)sin 2 reduce (9.5) as in [A6, §3381 to:

(9.6) 2 f(R) 0

This is a special case of Euler's homogeneous DE, and has a basis

of solutions of the form R'j (v = -1,1,2,4). The hypotheses of

no slipping at the surface R = a and asymptotically uniform

velocity U at give the solution

1 2  2
(9.7) M = (3UaR/4) (1 - --)sin e

R

Denoting the net (axial) force on the sphere by D, and defining

the dimensionless drag coefficient by

2 2
(9.8) CD = 2D/7ipU a

we have CD =24/Re.

Assuming an asymptotic approximatio of Oseen, S. Goldstein

obtained the asymptotic series
2 1

1 3 19 2  71 3
(9.9) CD 24Re-l+ f TRe - 2 80 Re ...

which exceeds the measured drag by less than 10% when Re < 10.

210-
[A5, §2151. The 1965 Dover edition corrects an error in
Goldstein's original formula.
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10. Boundary layer theory. It is usual to contrast "bluff"

bodies like a sphere, circular cylinder, or broadside plate or

disc, with "streamlined" shapes like a well-designed airfoil, whose

"dividing streamline" separates at the "trailing edge". Loosely

speaking, bluff bodies are followed by a broad wake, and their

drag is primarily due to wake underpressure ("form drag"). In

contrast, the drag of streamlined bodies is primarily due to skin
22

friction. We will devote this section to a more careful analy-

sis of skin friction, introducing Prandtl's boundary layer equations

in the process.

Prandtl's concept [A8, p. 59] was that the flow field around

a streamlined body "splits up into two regions:

1. Surrounding the surface of the solid body there
is a thin layer where the velocity gradient ;w/3n
generally becomes very large, so that even with very
small values of the velocity w the shear stresses

=11- assume values which cannot be neglected.

2. The region outside of this layer, where the
velocity gradient does not become so large, so that
the influence of viscosity is negligible. Here the
streamline picture is entirely determined by the action
of pressure, i.e., it is the picture of a potential flow."

In his celebrated paper of 1904, Prandtl gave intuitive

arguments to justify neglecting all terms of the Navier-Stokes

equations in the boundary layer of a flat plate (parallel to the

x-axis) except the following [A8, p. 62, (2)]:

2(10.1) -U + u l-_ + v L = 9p + R L u
3 u vx y ~ p x Re-77

9y

This contains, in addition to the terms of the DE for parallel flow,

y t = Uyy/Re, the convection term uu x + VUy and a term -px/C

representing the effect of pressure variations outside the

q boundary layer.

The transverse velocity component v(x,y) is determined by

u(x,y) from the incompressibility condition ux +v = 0, as

2 2See again Prandtl-Tietjens [A8, pp. 86-96]; also Goldstein
[5, Chapter II].

.............................%--- -'
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(10.1') v(x,y) fu (ny)dy-- --0 Ux~ny

Alternatively, we can take the stream function , as unknown.

This makes the equations of motion (13.1) reduce to

(10.2) + - = p + yyy

Blasius solution. In 1908, Blasius derived an exact self-

similar solution of the boundary layer equations, starting from

the observation that (by Rayleigh's analogy with the heat equation)

the boundary layer should grow like (vx)'1 2 . Assuming that the

flow velocity U outside the boundary layer is constant (the case

of a parallel plate in a uniform stream), we then have for
= 1/2
(vx/u) and n = y/2 , setting

(10.3) Ucf(h)
whece1 = U2f '' ()82 The function -

whence u U f' Uy =Uf "/4E, u yy Uf0)8E Tefnto

f is characterized by the DE

(10.4) f" + ff" = f, 2  _ 1

and the boundary conditions f(0) = f'(0) = 0, f"(o) = 2.

In 1930, Falkner and Skan generalized the preceding result

to the case that the flow velocity U(x) outside the boundary

layer was of the form U = cx m . In this case, (10.4) is replaced

by

(10.5) f'+ m + 1(m+l)ff" mf'2

[A5, p. 140].

Today, boundary layers and their mathematical analysis con-

LE stitute a major topic in fluid mechanics. For this reason, after

a descriptive chapter on boundary layers [A5, Chapter II],

Goldstein devotes another chapter [A5, Chapter IV] to their
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mathematical theory, while Schlichting devotes an entire book

[B9] to them.

Discussion. Obviously, the boundary layer approximation to

the Navier-Stokes equations assumes that the flow near any sur-

face is nearly parallel to that surface, because boundary layers

are so thin, by definition. For the same reason, it assumes that

the pressure inside the boundary layer near any point on the

surface differs negligibly from that just outside the boundary

layer. Outside the boundary layer, however, Bernoulli equation

holds by #2 above, and so

(10.6) p = p0  - 2 2 (x)

where U(x) denotes the flow speed just outside the boundary
23layer. In boundary layer theory proper, this is assumed to

be a known function.

The general mathematical problem of boundary layer theory

is therefore to solve the nonlinear partial DE

(10.7) uu + vu = UU'(x) + Vu
x y yy

where v is determined by (10.1'), and the boundary conditions

u(x,0) T 0, Limy u(x,y) = U(x).

.23

I23t is usually better to write U1 (x) rather than U(x), to

. avoid confusion with the "free stream velocity" of the main stream.
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11. Turbulence. We have already described the physical

breakdown at high Reynolds numbers, in pipes (99) and in boundary

layers (§10), of the mathematical model of "steady flow" definable

from the Navier-Stokes equations by setting 3/9t = 0. When the

diffusion of momentum by viscous stresses becomes small enough in

comparison with inertial convection, steady flow becomes unstable.

We tried to relate this breakdown to the fact that the Navier-Stokes

equations constitute a singular perturbation of the Euler-Lagrange

equation, as v + 0 In this section, we will replace the

deterministic model obtained by setting 9/3t = 0 in the Navier-

Stokes equation by a very different probabilistic model.

Flow in pipes. To clarify the meaning of this model, we

will reconsider first some empirical facts about flows through

straight cylindrical pipes. The "hydraulic radius" b of any

such pipe is defined by

(11.1) b = (area)/ (circumference)

2
so that b = (ra )/(27a) = a/2 for a cylindrical pipe of radius a.

Next, we defina the dimensionless friction coefficient y for a

"steady" flow through such a pipe as in [A5, 1137] by

Pl-P2 b
(11.2) Y = 1 2 T ' Z = length

PUm

This represents the fraction of the kinetic energy of the ean

flow that is converted to potential energy during flow through

one hydraulic diameter.

In laminar Poiseuille flow y = 16/Re, and this theoretical

prediction has been generally confirmed experimentally for

Re < 2,000. However, for Re > 2,000, the observed values of y

cease to decline, and may even increase in "smooth" pipes.

rAssociated with this phenomenon is the fact that visual and

L,
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4 photographic evidence shows that the flow ceases to be parallel

or "laminar", and becomes "turbulent", i.e., eddies instead.

Careful experiments by Nikuradse, reproduced in the attached

figures, xeroxed from (A5, p. 379], show asymptotic values of

y ranging from about .005 to about .015.

*a/es 5
* " = 30.6

-0 = 60

04

Z-6 ZBa 30 3-Z 5-4 5-6 59 4-0 41 44 4-6 4-8 5-0 3-Z 5-4 5-6 589 6-0
W9gto R

FiG. 121.
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Boundary layers. We will next consider the separation point

(or "zone") where the boundary layer "separates" from a cylindrical

or spherical obstacle. Prandtl originally (1904) proposed predicting

this by calculating (from P(x)) the point at which u/3y

changed sign in the calculated boundary layer. Blasius used this

criterion in 1908, to predict the separation point for slightly" 33
viscous flow past a circular cylinder, with reasonable success.

34
Although a more careful study by D. Meksyn reveals many small

discrepancies between "separation points" predicted by such methods

and their observed poisitions, this criterion gives fairly good

results at intermediate Re, 102 < Re < 105 (say).

5 6However, at a variable point in the range 10 < Re < 10

the boundary layer in the flow around a sphere becomes turbulent,

separation is delayed, contracts dramatically, and the drag

coefficient decreases by 50% or so. The attached figure, reproduced

from [5, p. 4951 indicates the complexity of the phenomena.

As a result, Prandtl's asymptotic boundary layer theory (which

predicts an as .otically constant C ) becomes totally inapplicable.
D

Random velocity-fields. In order to obtain an adequate

mathematical description of turbulent flows such as the preceding,

it is agreed by experts that one must consider a "sample space"

2 of random velocity fields u(x;t;w). Moreover Q = (Q,B,p)

must assign a 'countably additive' probability measure j(S) to

each 'Borel subsets' S c

In such a sample space, one can define the mean velocity field

(11.3) u (x) = J u(x;t;w)dA(w).

.H. Blasius, Zeits. Math. Phys. 56 (1908) , 1-

34 D. Meksyn, "New Methods in Laminar Boundary Layer Theory",
Pergamon, 1961.
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The ergodic hypothesis is that this "sample average" will agree

with the time average

T
(11.4) Lim 2- u(x;t;w) du(w)

ro
-T

Statistical models defined in this way are evidently entirely

unlike any of the continuum models discussed previously in this

book.

12. Analytical Fluid Dynamics in 1940. By 1940, the concept

--of Euler and Lagrange, of developing analytical fluid dynamics as

a deductive science from the Euler-Lagrange equations, had become

badly fragmented. As we have explained earlier, at least six very

different initial-boundary value problems had been developed as

analytical 'models' for fluid flows arising under different

circumstances. An overview of these was given in Table 1 of

p. 1-3. To this list should probably be added Prandtl's

asymptotic model of "potential theory with boundary layers and

vortex sheets". The model of "compressible inviscid flow with

shocks" will be described in Chapter 6.

The inviscid 'fluid' defined mathematically by the Euler-

Lagrange equations was renamed an 'L6ea.' fluid, and no longer

believed in. Although it was recognized that "ideal fluid theory

... has been developed into an instrument of great elegance and

power", and that "fairly close agreement with observation has

been realized ... for tides and waves", it was considered "perhaps

surprising, not that the results of theory and observation often

disagree violently, but that they sometimes agree fairly well ... "

[A5, p. 21].

Worse than that, by 1940 most experts thought of fluid

mechanics as a complex web of theory and experiment, in which

j mathematics by itself should not be taken too seriously. For
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example, partial differential equations do not appear at all in

Goldstein's influential "Modern Developments in Fluid Dynamics" [A51

until the third chapter, and the treatment becomes more and more
empirical as the treatise progresses, so much so that it seems

almost incredible that Lamb was originally to be the chief editor!

The same can be said of most other books and research articles

on fluid mechanics written since 1940. Instead of deducing facts

systematically from a consistent set of partial differential

equations and boundary conditions, the authors pick and choose

freely from a large collection of mathematical 'models', justifying

their choice in each case by the tolerable 'fit' it gives to

empirical data over some specified range of physical conditions.
35

* Thus, the noble vision of Euler and Lagrange, together with

its modification by Stokes, has been largely abandoned in contemporary

analytical fluid dynamics. The basic reason for this relapse has
been, of course, the inability of mathematicians to solve

analytically the initial-boundary wave problems posed by the

partial DE's of fluid mechanics.

In the 1940's, inspired by faith in the potentialities of
programmed computers, John von Neumann proposed a new vision.

Observing that approximate numerical methods were, in principle,

free from the limitations to special geometries and linear DE's

that generally characterize formal analytical solutions, he proposed
using high-speed computers to make the "arithmetization of analysis"

achieved theoretically in the 19th century into a practical reality.

The next chapter will try to give a clearer idea of von Neumann's

vision. Our later chapters will then give case studies of the

extent to which, in specified areas, this new vision is realizable

today, and will try to predict how much more is likely to be

achieved in the foreseeable future.

35Even this procedure is more justifiable philosophically than &
the use of empirical "constitutive equations" obtained by fitting
empirical data over very limited ranges.



2-43

REFERENCES FOR CHAPTER 2

[BI] George Batchelor, An Introduction to Fluid Dynamics,
Cambridge Univ. Press, 1967.

[B2] G. Birkhoff, "Numerical fluid dynamics", SIAM Review

25 (1983), 1-34.-o4

[B3] R. Courant and K. Friedrichs, Supersonic Flow and Shock
- Waves, Interscience, 1948.

. [B4] Collected Works of Th. von Karman, 1902-1951,

[B5] H.W. Liepmann and A.E. Puckett, Aerodynamics of a Com-
pressible Fluid, Wiley, 1947.

[B6] L.D. Landau and E.M. Lifschitz, Fluid Mechanics,
Addison-Wesley, 1959.

[B71 Ludwig Prandtl, Gesammelte Werke, 3 vols.

[B8] Rayleigh (J.W. Strutt, Baron), Theory of Sound, 2 vols.,
2d ed., Macmillan, 1926; Dover, 1945.

[B91 H. Schlichting, Boundary Layer Theory, McGraw-Hill, 1955.

[B10] G.G. Stokes, Mathematical and Physical Papers, Cambridge
Univ. Press, 1880-

[Bli] G.I. Taylor, Scientific Papers, 4 vols. Cambridge Univ.
Press, 1958-71.

[B12] G.B. Whitham, Linear and Nonlinear Waves, Wiley, 1974.

,'.



*Y 3. VON NEUMANN'S INFLUENCE

1. Background. In Chapters 1 and 2, we summarized some

basic facts about analytical fluid dynamics, from its initial

mathematical formulation by Euler to its status as of 1940, giving

historical perspective where feasible. Lamb's Hydrodynamics [A6],

and Pradtl-Tietjens' Hydro- and Aeromechanics (1A71,A8]) are
1

the most helpful references for amplifying this summary.

We now turn to the revolutionary concept of numerical fluid

dynamics, which developed in the first two decades after World

War II into a major scientific and engineering effort. Although

numerical fluid dynamics deals with the same physical phenomena

as analytical fluid dynamics, its mathematical tools are entirely

different. Whereas analytical fluid dynamics relies on separations

of variables, conformal mappings, superpositions of solutions,

and other special methods of classical analysis, numerical fluid

dynamics is based on general existence, uniqueness and convergence

* .. theorems. Its cornerstone is the principle that all constructive

mathematics can be reduced to the performance of arithmetic

operations and suitably defined 'passages to the limit': the

so-called Arithmetization of Analysis.

The successful 'arithmetization of Analysis', based on strict

adherence to "Weierstrassian rigor' was a major theoretical

achievement of 19th century mathematicians. Its importance was

clearly and prominently expressed by Henri Poincare, himself the

leading rigorizer of the partial DE's of classical mathematical

physics, in his keynote address to the 1900 International Mathe-

matical Congress.

Although Weierstrass, Poincare, and other 19th century

mathematicians may have succeeded in 'arithmetizing Analysis'

in principle, large-scale, high-speed supercomputers are needed

to 'arithmetize' Fluid Dynamics in any practical sense. John

von Neumann (1903-1955) was one of the first scientists to

See also [B2], which gives a less technical overview.
L ..
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appreciate the potentialities of such computers, and most of this

chapter will be concerned with his ideas and influence.

It is a relevant but easily overlooked fact that, when the

first edition of Lamb's classic book was published in 1879, the

theory of partial DE's was virtually non-existent. The first

edition of Rayleigh's Theory of Sound [B8] had just been pub-

lished (1877), and it is not surprising that Lamb and other

specialists in analytical fluid mechanics relied on the methods

of Lagrange, Laplace, Fourier, Stokes, Helmholtz, Kelvin, and

other earlier mathematicians, as interpreted by Rayleigh and in

Thomson and Tait's Principles of Natural Philosophy (1870).

However, between 1879 and 1932, the publication date of

Lamb's sixth edition, the theory of partial differential equa-

tions developed enormously. It also became widely disseminated

through texts and monographs written by such outstanding research

figures (or pairs of figures) as Poincare, Hadamard, Courant-

Hilbert, Frank-von Mises, Kellogg, Riemann-Weber, and Sommerfeld.

However, Lamb seems to have considered none of these books to

be helpful for solving problems in analytical fluid dynamics.

On the contrary, he explicitly remarks [All, p. 61]: "The

formal proof of 'existence-theorems' of this kind is not attempted
in the present treatise. For a review of the literature of this

part of the subject the reader may consult [Encyc. der math. Wiss.

ii (19001". Indeed, the emphasis on general theorems of exis-

tence, uniqueness, and convergence which characterized "Weier-

strassian rigor" seems to have had little influence on developments

in analytical fluid dynamics right up to the present time. Thus,

after a polite paragraph distinguishing hyperbolic from elliptic

and parabolic DE's, Whitham [1974, p. 1421 simply refers the

reader "to the many excellent texts on the general theory of

partial differential equations".

In sharp contrast, von Neumann's concept of mathematical

S physics was dominated by the ideas expounded in the books listed

above. Throughout his career, he was primarily concerned with

fundamental general principles and general formulas, similar to

I.
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those which had preoccupied Dirichlet, Riemann, Helmholtz, Kirch-

hoff, Poincare, Hadamard, and Hilbert. Like Hilbert, moreover,

he was strongly attracted to axiomatic foundations of mathematics

and mathematical physics, and had himself made notable contri-

butions to these foundations during the years 1925-41. In this

spirit, during the years 1927-40 he had been a pioneer in the

reformulating ideas about partial differential equations in

terms of function space concepts, thereby facilitating a much more

general 'arithmetization of analysis' than had been achieved by

his predecessors.

Most mathematicians having this background and taste (and I

am one of them), believe that a truly rigorous science of numeri-

cal continuum physics should (ideally) be developed along the

following lines:

1. Specification of a system of assumed partial DE's and
other auxiliary equations (e.7., initial and boundary
conditions) which take into account all the relevant
physical variables.

2. Convincing deductive proof that these assumptions define
well-posed initial and/or boundary value problems.

3. Convincing experimental proof that, this exact mathemati-
cal solution is, in general, physically real-stic.

4. In each case, specification of a directed set of systems
of approximate equation (Eh), called (full) discreti-
zations of the exact problem, each of which is also
well-set and can be solved to any desired accuracy E > 0
in a finite number of arithmetic operations.

5. Provision of algebraic and/or combinatorial algorithms
and a computer, which together make it possible to perform
these operations at a cost $ = $(h,e) less than the
benefit to be derived from knowing the solution.

From a practical engineering standpoint, it is not necessary that

these algorithms should converge for arbitrarily small h. But

ideally, Steps ##1-4 should be feasible; this is precisely what

Poincare and others meant in referring to the 'arithmetization

of analysis'. Only Step 5 depends on computing hardware.

. 2Hilbert was even more rigorous than Poincare!

,'.
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Accordingly, in Chapters 4-6, we will try to conform to the

ideal of Steps 1-5 outlined above. It will only be in Chapters

7 and 8 that we will compromise these lofty principles in des-

cribing how numerical fluid dynamics has been successfully

applied to scientific and engineering problems.

2. Progress before 1930. Von Neumann was by no means the

first person to solve fluid flow problems by direct calculation

('arithmetic'). Already in 1889, the Flemish engineer Massau

had used the method of characteristics to predict the progress

of flood waves (Stoker [A10, p. 482]).

Similarly, L.F. Richardson (1881-1953) had made determined

efforts to solve problems involve the Laplace and biharmonic

operators V2 and V4 by numerical methods before World War 1.

For this purpose, he used the now standard 5-point difference

approximation to x + y - 0 on a square mesh.
xx yy

(2.1) + 1~~.+~ .

i,j =  1-l, j +i+,j + i,j-i + i,j+l I i

on a square mesh. Twenty-five years later (see §4), Southwell

was to demonstrate the fruitfulness of Richardson's methods.

In the following decade, he tried his hand at numerical

weather forecasting, publishing a book on the subject in 1922.

This, too, had a lasting influence.

Likewise, Stan Ulam once told me (personal communication)

that Marcel Brillouin was provided with a computing assistant,

for some years around 1900, to help him calculate ocean tides

numerically from first principles. After two years, alas, he

3See Phil. Trans. A210 (1911), 307-57, and Proc. Phys. Soc.
London 23 (1911), 449-88. For historical perspectives, see the
article, "Solving Elliptic Problems: 1930-1980" by one of us
in [241. The difference approximation (2.1) was known to Runge
(1906).

4"Weather Prediction by Numerical Process", Cambridge University
Press, 1922; Dover Reprint (with an introduction by Sydney Chapman>.:
1965. For a thoughtful analysis of its contents, see George W.
Platzmann, Bull. Am. Meteor. Soc. 48 (1967), 514-50 and 49
(1968), 495-500.

,- , ., ] , .. , ] - . -.. -. .. . ,. .-- .. . .. - . .
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discovered that his assistant had made a mistake in the first

three months that vitiated all their subsequent calculations!

The 'arithmetization' of the solution of partial DE's con-

tinued to make progress during the years 1900-1930. Thus in

1917, R.G.D. Richardson proposed using properties of the 5-point

difference approximation (2.1) on square nets to deduce not only

"well-known results...for...elliptic partial equations", but also

as a research tool for investigating "the new boundary problem

for the hyperbolic equation". In 1922, Phillips and Wiener made

a more rigorous application of the same idea to the Dirichlet
5

problem. Historians of science will doubtless find many other
precursors of modern numerical methods written before 1925, such

as the 1924 paper of Hardy Cross on his 'moment distribution'

method, which foreshadowed the 'relaxation method' of Southwell

(see below).

But the most notable pre-1930 paper on the numerical solution

of partial DE's was written in 1927 by Courant, Friedrichs, and

Lewy [C3]. This path-breaking article begins by rederiving the

main conclusions of R.G.D. Richardson, Phillips, and Wiener about

the Dirichlet problem in the plane. It points out that analogous

methods can be applied to the 7-point difference approximation to

x + yy + 3 =0 on a cubic mesh,
xx yy zz

(2.2). (.2) i j k = 6[ @i-l,j,k+-Oi+l j k+-Oi j-l,k+Oi j+l,k

•+ Jli,j,k-i + J i ~jkl(2.2),kj~k ]

It then analyzes difference approximations to the diffusion

equation ut = aV 2u and the wave equations u = c2 V 2U, this

time on uniform rectangular meshes with mesh-length h in space

and k = At in time.

For the diffusion equation in one space dimension, it pro-

poses the forward difference scheme
6

5 R.G.D. Richardson, Trans. Am. Math. Soc. 18 (1917), 489-518; H.B.
Phillips and N. Wiener, J. Math. and Phys. 2 (1923), 105-24.

6This scheme had been proposed earlier by E. Schmidt, Foppl

Festschrift, Springer, 1924, p. 123.

, -,. . -. ... . . ', , - ." " . . - .,-+ + . i
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;:" ~= u i.+r[u .+-2u. +u I  ~/ 2

(2.3) U where At/h
J j+l j j1

For the wave equation, it proposes the 5-point approximation

(2.4) - 2u u-+r [ui  _2 + .
) j+l J

where r = aAt/h. This is exact at mesh-points when r = 1.

More generally, in m dimensions, it proposes using

(2.5) ui.+ 2u + i 22i

where V2ui  = 0 u - 2mu. is the discrete (2m+l)-point
h j,j j,jLaplacian.

These difference approximations have obvious applications

to fluid mechanics. Thus the diffusion equation applies to

parallel flows (Chap. 1, §11), while the wave equation applies

to sound waves, which will be our major concern in Chapter 4.

However the authors of this famous paper do not seem to have been

seriously interested in these or any other applications at the

time.

3. Stability conditions. Instead, they were interested

primarily in the convergence of the approximate solutions to a

(limiting) exact solutions, when r is fixed and h 0. To

this end, they made a notable analysis of the stability of the

preceding difference approximations. They showed there that,

in order to prevent the solutions from 'blowing up' in finite

time, one had to limit the time-step t in terms of the spatial

mesh-length Ax, by the formulas

(3.1) r =At/aAx T for ut au= or t = xx,

S-andL-.t

2
(3.2) r At/cAx 1 for u c2u

--. *= = .tt UXX *. . . .
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The dimensionless ratios r occurring in (3.1) and (3.2) are

called the Courant numbers of the uniform rectangular meshes on

which Courant and his collaborators proposed to solve initial-

boundary value problems. More precisely, they proved

THEOREM 1. For fixed r > 1/2 and a uniform rectangular

mesh in (x,t)-space, the AE (difference equation) (2.3) is

violently unstable, in the sense that, for almost all initial

data, solutions of (2.3) are unbounded as Dx + 0. Likewise,

the DE (2.4) is violently unstable if r > 1.

Proof. As regards (2.3), we will consider solutions of the

special form

rj ,

(3.3) U. = (-I)Jyi , y = i-4r
I

We omit the verification that such functions do indeed satisfy

(2.3).

Likewise, ui = yi(- 1)J satisfies (2.4) if and only if

(3.4) 72 = 2y(i-2r2) - 1)

The roots Y1,Y2 of (3.4) satisfy Y1Y2 = 1. Hence, if the

discriminant 4r2 (1- r ) of the equation is negative, one of

the l-ij must exceed 1, and again the rate of growth of

solutions of (2.4) must be unbounded as h 0 with fixed r.

*Conversely, we have

THEOREM 2. If r 1 1/2, then the solutions of (2.3) for

any continuous initial u(x,0) converge to a solution of

ut = Uxx, as h + 0. Likewise, if r - 1, then -he solutions

of (2.4) for any continuous u(xO) converge to a sw.ution o-
2Utt = c uxx.

If r satisfies the inequality (3.3), then ui  ieikj

satisfies (2.3) if and only if

y = 1 - 2r(l - cos kh)

" ' -
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Since any set of initial values can be expanded in Fourier series,

and 1-cos kh 2 2, this implies stability if y : 1/2. Like-

wise, if r S 1 in (3.4), then 1l1 = 1 for any solution

u9  yieik of (2.4), since

22
y = 2y - 2r2 (1-cos kh) -1

has a positive discriminant. Hence we have neutral stability.

Remark. The preceding proofs are only sketched. In par-

ticular, we do not distinguish sharply enough between the cases

of an infinite domain, ( a semi-infinite domain such as

(0,-), and a finite interval [0,b]. We will make these dis-

tinctions, and discuss which boundary conditions give rise to

well-set initial value problems, in Chapter 5 (for utt = C2Uxx)

. and in Chapter 7 (for ut =U

4. Southwell and 'relaxation' methods. The idea of solving

partial DE's by numerical methods continued to gain momentum in

the 1930's. Mention should be made of ingenious calculations by

Bickley and Thom in England, from the 1920's on, which deter-

mined various properties not only of potential flows, but also

of incompressible viscous flows past obstacles of various special

* .. shapes. We shall review these briefly in Chapters 4 and 7,

respectively.

.Next, one should cite the brilliant work of Gershgorin on

numerical conformal mapping, and on estimating the truncation

errors of approximate solutions of the Dirichlet problem obtained

by difference methods. These and many other theoretical results

concerned with the numerical solution of elliptic boundary value

problems are ably summarized in the scholarly book by Kantorovich
7and Krylov [C61. This lists many highly accurate approximations

for the Laplace operator, and gives a number of general recipes

for solving the Dirichlet and Neumann problems.

The first edition of this book was published in 1936, in Russian.

hj°
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S-*'. However, these pioneer publications devoted little attention

to numerical algebra: the practical question of actually solving

the large systems of linear algebraic equations to which differ-

ence approximations give rise. This question had deeply inter-

4 ested Gauss, Jacobi, Seidel, and other 19th century mathematL-

cians, but had become unfashionable in most academic circles

by 1930.

The first person to develop a practical procedure for solving

such systems, and apply it successfully to a wide variety of

elliptic problems involving hundreds of unknowns, was R.V.

* Southwell.9  Southwell was the spiritual heir of L.F. Richardson,

whose ideas formed the starting point of Southwell's book [C10].

Motivated by mechanical analogy, he developed relaxation methods,

similar to the Gauss-Seidel method, for approaching equilibrium

and determining normal modes of vibration in systems governed by

. variational principles. In the years 1935-40 these relaxation

methods were applied mainly to problems from structural mechanics.

By 1946, however, Southwell and his collaborators had also

solved many fluid flow problems which were intractable by analyti-

cal methods, typically using difference 'nets' containing 300-

1000 mesh points, and concentrating the latter near singulari-

ties. Most of these problems involved second-order linear or

quasilinear DE's of the form

(4.1) V-(pVT) + f(x,y) = 0

preferably on a square mesh.

The first fluid flow problem solved in [CI0] (by D.G. Chris-

topherson) was that of determining the pressure distribution in

a slider bearing, as predicted by Reynolds' hydrodynamical theory

8See the bibliography of Forsythe-Wasow [C41, the historical notes
in R.S. Varga's "Matrix Iterative Analysis", Prentice-Hall, 1962,
or H.H. Goldstine's "Numerical Analysis from the 15th through
the 19th Century". For a 50 year overview, see [C9, pp. 17-38].

9 For the mathematical theory of relaxation methods, see G. Temple,
Proc. Roy. Soc. A169 (1939), 476-500, and Leslie G. Fox, Quar.
J. Mech. Appl. Math. 1 (1948), 253-80.

* . m
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of lubrication, whose basic DE is

(4.2) 3y) 1E) + - 6{(hu) + hv)}ax P ax ay ax

(Chapter 2, §10). Notable features of Christopherson's solution

of this problem include his approximate determination of the free

boundary (at 'zero' pressure), and of temperature effects on

viscosity. For details, see [Clo, pp. 172-80] or Christopherson's

original paper cited there.

Another problem treated was the flow of gas through a

convergent-divergent nozzle. The domain of interest was first

mapped conformally onto a rectangle by relaxation methods des-

cribed (and successfully applied to many problems) in [CIO,

Chapter IV]. 10 The governing DE's

(4.3) 2 + =y 0

and

(4.3') a 2±) + L = 0

with the constraint

(4.4) +1 2

(4.4) q =const.

were then solved successfully for subsonic flow, but not for

subsonic-supersonic flow. See [C1O, pp. 180-911, or J.R. Green

and R.V. Southwell, Phil. Trans. A239 (1944), 367-86 for more

details.

Still other applications to percolation through porous media

were treated in [C1O, Chapter VI], while solutions of free

streamline problems conclude the book.

10Any DE of the form (4.2) in a simply connected domain can be

transformed into one of the same form on a rectangle by a
suitable conformal transformation; cf. Chapter 1, 957,9.

* dk&A A
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However, the solution of even one such problem by hand (or

using a desk calculator) was a tedious job in 1945, requiring

weeks or months of work by a skilled specialist, concentrating

full time on it. Convergence was accelerated by intuition and

experience, rather than on underlying mathematical principles.

Numerical fluid dynamics was still in a very primitive state,

and only a few scientists foresaw the revolutionary changes that

electronic computers would make possible in the next two decades.

5. Von Neumann's vision. The man who most clearly envisioned

numerical fluid dynamics as we know it today was John von Neumann.

It was an electrifying experience to hear him propose in 1945,

in a lecture given at the First Canadian Mathematical Congress,

that computers might be used instead of wind-tunnels to simulate

the flow of air around airplanes. In one sense, this was a bold

reaffirmation of the thesis of Euler and Lagrange, that fluid

dynamics could be treated as a mathematical science. However, it

_also radically revised this thesis, which had gradually disin-

tegrated in the two centuries 1740-1940. It proposed complement-

ing analytical fluid dynamics by numerical fluid dynamics.

Specifically, von Neumann's lecture emphasized the limita-

tions of the classical methods of Analysis, such as separation

of variables and expansions in series to special geometries and

linear problems.

He observed that numerical methods are relatively free from

these limitations. As we explained in §1, this follows in

principle from the theoretical arithmetization of Analysis

achieved in the 19th century, when it was demonstrated that all

of Analysis can be reduced to arithmetic and skillful passage

to the limit (i.e., to Algebra and Topology). In principle.,

one can approximate many linear and nonlinear differential equa-

tions by stable suitable difference schemes on a sufficiently

fine mesh, and then solve these in a finite number of steps with

arbitrarily high accuracy.
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Von Neumann's idea was that by carrying out these arithmetic

operations at electronic speeds with 10-15 di.,..t accuracy (an

accuracy unattainable by analog computers), large-scale digital

computers could solve the resulting difference equations with

negligible roundoff error, thus converting the theoretical

arithmetization of analysis into a practical reality.

It is a pity that no written version of von Neumann's talk

" seems to exist. However, I can vouch for the correctness of

the preceding statements, because I was there and it was my

unenviable task to be the next speaker. My chosen topic of

"Universal Algebra" had seemed imaginative enough beforehand,

-. but it paled into insignificance when presented just after von

Neumann had finished! (See Proc. First Canadian Math. Congress,

Univ. of Toronto Press, 1946, pp. 310-26 and p. xxii.) The next

talk (pp. 327-37) was by Douglas Hartree, on the solution of

partial differential equations by the differential analyzer. The

leading computer at that time, it was an analog machine!

His previous work. Though he had published nothing about his .

ideas in the unclassified literature, von Neumann had already

performed some interesting numerical experiments. Because of

.. World War II, he had been vitally concerned with shock and blast

waves from 1941 on. To these, he had applied the standard mathe-

matical model developed by Rankine, Hugoniot, Hadamard, and

others. This model, which is Model #5 of the list on p. 3 of

Chapter 1, and which we will discuss in greater depth in Chapter

6, makes essential use of thermodynamics. It assumes that Newtonian

space-time is cut up into a finite number of regions by one or
~12

more moving two-dimensional 'shock waves' (alias shock fronts')l

In each region, the flow is assumed to be isentropic, while the

equation of continuity D(Zn Q)/Dt = div u and the Euler-Lagrange

equations of motion are assumed to hold globally. However, the

1 .The most relevant quotations come near the beginning of his
paper with H.H. Goldstine, published posthumously in his
Collected Works [C8, esp. pp. 2-41. See also [C5, pp. 179-80]. Aw

12 Somewhat as Kirchhoff, cut space up into a main stream and a
* "stagnant 'wake', separated from it by a vortex sheath.
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entropy or 'adiabat' of each particle, hence its equation of

state in Lagrangian coordinates, p = k(a,t)py depends on the

'strengths' of the shocks that it has passed through.

During the late war years of 1944-45, poring intermittently

with von Neumann over spark shadowgraph pictures of projectiles
in flight, I got a vivid sense of his interest in mathematical

formulations and results, and of his realistic skepticism as to

their validity. Some idea of the scope and content of his work

in this area can be gleaned from his reports and papers, collected

in [C8'] as items ##19-29.

His initial sudies ($$19-26), made in 1941-43, used analytical

methods to predict: (a) "the laws of decay of a blast wave due

to a point explosion of energy E0  using "the so-called similarity
13

property of the solution", (b) "the origin of explosions and

the propagation of their effects" in plane shock waves including

"when the so-called Chapman-Jouguet hypothesis is true, and

what formulas are to be used when it is not" (##19,20). (Cf.

[B3, §§86-961 for a contemporary assessment of this work.)

Brilliant, essentially algebraic studies of interactions

between two or more plane shock waves were a by-product of the

studies of (b); ##22-23 describe this work, which is unrelated

to the purpose of the present book, and led him to the famous

Triple Shock Paradox [B2, §17].

Particle model. It was not until 1944, in #27, that von

Neumann initiated his first direct numerical attack on the non-

linear wave equation xtt = H'(xa)Xaa of Chapter 2, (6.1).

For this purpose, he proposed using a 'molecular' model of equally

spaced beads on a line, connected by springs, similar to Lagrange's

model of a laterally vibrating string constructed 175 years

earlier. Specifically, he proposed dividing the a-axis into

13#21, taken from Chapter II of Los Alamos Report LA-200 (1947);

see [CS', p. 2001 for background dates. The basic ideas stem
from G.I. Taylor, Report RC-10 and J. von Neumann Report AM-9,
both dated June, 1941. For comparable Russian work, see L.I.

S..Sedov. Similarity and Dimensional Methods in Mechanics,
.*. . Academic Press, 1959, Ch. IV, i.

1. .* *"-. -
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intervals of equal mass by a uniform mesh, and "lumping" the

mass in each interval into a bead. One can then make each spring

just stiff enough to accelerate the j-th bead, of mass m = Aaj,

according to the postulated 'equation of state'. The result is

%tto replace x -H'(xa) Xaa by the system

(5.1)x~'t) =P(x~ -l) -P(x~~ _x)

where P(Ax) = H(Z-a) simulates H(V). More precisely (see
Chapter 6), given any smooth solution x(a,t) of xtt = -H'(x )xaa,

one can show that as m + 0, the solutions of the semi-discretized

* - model defined by (5.1) will tend to x(a,t).

Since one can 'arithmetize' the solution of the system

(5.1) by any of several methods (e.g., fourth-order Runge-Kutta),

we can say that von Neumann's molecular model constituted a true
'arithmetization' of his physical model, at least in the absence

of shock waves.

As von Neumann remarked [C81, p. 3671: "this system...is

clearly a reasonable physical approximation of the substance

which the hydrodynamical equation (15) describes. It corresponds

to a quasi-molecular...substance, where the mass ascribed to one

'bead'...is the mass of a 'molecule' .... Clearly this is not the

'true' molecular description of the substance....Thus the true

member of molecules in [a gram-mol of a real substance] is

Loschmidt's number N z 6 x 1023, while for a practical computing

scheme some number of 'molecules' N between 10 and 100 will

be appropriate. However, the actual value of Loschmidt's number

N never figures in hydrodynamics; all that is required is that

N should be a great number."

In summary, von Neumann's first idea was to semi-discretize
the non-linear, second order, hyperbolic DE x = -H'(x )x

tt a aa
* i.e., to replace it by a large system of ordinary DE's. He then

proposed integrating these DE's by a nonlinear generalization

(5.2) - 2xn +n- = (At) 2[p(xn n P - n

"J j j -l) (j+l j

-,- "~2
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of the CFL (Courant-Friedrichs-Lewy) 5-point difference approxi-

mation (2.4). Finally, he optimistically proposed "completely

ignoring the possibility of shocks,"1 4 because mass, momentum,

and total (particle) energy are conserved in the limit -a + 0

of this model. He recognized the oscillations which arise behind

shocks as analogous to the thermal agitation of molecules in a

heated gas, and he proposed using this analogy to simulate shock

behavior, since the Rankine-Hugoniot conditions (cf. Chapter 6)

conform to the same conservation laws.

It was evident to von Neumann and to later workers that

discontinuities, and even steep fronts, would be hard to locate

precisely if one used difference equations like (5.2), or even

by a semi-discretization, and that this makes it difficult to

solve the underlying partial differential equation xtt = -H'(xa)xaa

accurately by any numerical method on a discrete mesh. Indeed,

artificial oscillations do propagate from shock discontinuities

if the most natural difference approximations are used. To damp
these out, von Neumann and Richtmyer later introduced an "arti-

ficial viscosity" (see §6). Although this does not simulate

the real thickness of the shock, which is a small fraction of

the mesh-length, it does reduce the thickness to a few mesh

lengths, and largely eliminates the oscillations.

6. Von Neumann's influence. von Neumann's unpublished

Montreal talk heralded a new era for fluid dynamics. The revo-

lution which it initiated is still in full course, and this

monograph is intended in part to clarify and chronicle some of

its progress in the 40 years since it began.

Von Neumann's personal influence in precipitating this revo-

lution was enormous, for at least three quite different reasons.

First, he was one of the most brilliant mathematicians of this

century and was deeply interested in fluid mechanics as such.

.14

14He also suggested that "142 - 200 aad 143 - 3000 [particles)
may be needed in truly two- or three-dimensional problems."

I-•
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Second, his activity came just when modern large-scale, high-

speed computers were about to become available.

And finally, he participated personally in several major

projects, at a time when the scale of scientific activity in
the United States was growing by an order of magnitude, and his

ideas contributed substantially to their success. He was not

only a key figure at the Los Alamos Scientific Laboratory (LASL),

and later an A.E.C. Commissioner, but he was also a potent ad-

viser to the Army (through the Ballistic Research Center at

Aberdeen), the Navy (through the Office of Naval Research), and

the Air Force (through the Rand Corporation). In addition, he

was in close contact with top scientists at IBM, the Standard

Oil companies, RCA, and other leading industrial firms whose

success depended on continuing technological innovation.

Von Neumann's fame, his scientific optimism, his ideas,

and his influence quickly ushered in a new era in scientific

computing. Within five years, his prophetic vision had become

so widely accepted that C.B. Thompkins could write:
15

Many of the problems presented were problems involving
partial differential equations. The solution.. .was to be
brought about...by: (1) buying a machine; (2) replacing
the differential equation by a similar equation with a
fine but otherwise arbitrary grid; (3) closing the eyes,
mumbling something about truncation error and roundoff
error, and (4) pressing the button to start the machine.

Computing costs. Von Neumann's optimism was based, of

course, on his belief that computing would become several orders

of magnitude faster and cheaper. He was concerned with this

question from the start; see [C8, pp. 10-151. Later, in his

1948 reports to the Standard Oil Development Co., von Neumann

began by comparing an estimated cost of 12.5€ per multiplication

for a trained operator using a desk computer, with a cost of

1.4C on the IBM SSEC calculator [C8, p. 665]. His reports

concluded by describing a "small" problem as having 10 space
-4

15From Tompkins' preface to Dorothy Bernstein, Existence
Theorems in Partial Differential Equations, Annals of Math.
Study No. 23, Princeton University Press, 1950.
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intervals Ax and 20 time intervals At, and a "large" problem

as having 25 space intervals and 120 time intervals [C8, p. 750].

Around 1956, I made estimates similar to those of von

Neumann [A3, pp. 205-6]. My corresponding cost estimates were

2.54 and .002¢, using efficient Harvard graduate students and
"second generation" computers.

It is amusing to compare these estimates of computing costs

with those of L.F. Richardson (op. cit., in §2, p. 325), written

around 1910. Richardson "paid piece rates for the operation

Ax2 +Ay2 of about n/18 pence per coordinate point, n being

the number of digits...one of the quickest boys averaged 2,000
2 2

operations Ax +Ay per week" for n = 3. For n = 6, this

comes to about 0.51¢ per point.

Von Neumann's own contributions. In the decade 1945-55,

fascinated by their potential for advancing engineering science,

von Neumann devoted a substantial fraction of his prodigious

mental energy to advancing computer architecture and component

design, and to software development. His fundamental contributions

to these subjects have been described by H.H. Goldstine [C5,

Part Three], his co-worker in this area from 1944 on and later

Vice-President of IBM. We can sum them up by saying that he

played a prominent role in fulfilling his own prophecy: that

the cost of scientific computing would decrease by many orders

of magnitude within a few decades.

The next four sections of this chapter (§§7-10) will contain

rather sketchy and superficial accounts of one central part of

these von Neumann post-war attempts to solve basic problems of

fluid dynamics by numerical methods. These summaries, and the

later material in this lecture, will attempt to relate his ideas

and methods to contemporary and later work. Although he had

access to the best computing machines existing in his lifetime,

such as the Univac and the IBM-704, these were quite puny by

modern standards. Hence it is his ideas about numerical fluid

dynamics, rather than any specific computing achievements, that

S . -are of the greatest significance today.

-j
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These summaries of von Neumann's contributions will be

followed (in §11) by an analysis of molecular models of matter.

I have included this analysis partly because von Neumann himself

thought of the Maxwell-Boltzmann kinetic theory of gases as a

logical alternative to the basic continuum models invented by

Euler and Stokes. Moreover he realized clearly that, in princi-

ple, discrete models were, in some fundamental sense, better

suited than continuum models to digital computers (in abstract

terms, to 'automata' having only a finite number of 'states').

Thus he often speculated as to how many 'molecules' would be

needed to simulate macroscopic gas motions ar4-quately. This

speculation seems especially timely today, when one can imagine

a parallel computer containing a million identical 'chips', each

dedicated to computing the trajectory of one molecule, and another

million chips dedicated to monitoring different regions of space,

each of which contain up to 10 molecules at any one time!

Finally, in §12, I will discuss briefly some of the most

notable computing schemes developed at Los Alamos in the years

1960-75. I will do this because, in my opinion, they constitute

significant extensions of von Neumann's ideas about numerical

fluid dynamics.

7. Von Neumann's Legacy, I. Von Neumann had only 10 years

after his Montreal talk in which to develop his ideas. The bold-

ness of his imagination becomes especially impressive when we

consider the limited capabilities of the leading digital computer

of 1945: the ENIAC with its negligible "memory" and Howard

Aiken's slow electromechanical Selective Sequence Calculator.

Today, 40 years after his Montreal talk and 30 years after

his premature death, it seems timely to review von Neumann's

K papers and reports on numerical hydrodynamics, and to reevaluate

ri- his vast legacy of ideas with the wisdom of hindsight. In making

K this review, we should remember that his ideas were engendered

during World War II (against Hitlerism) and the Cold War that

fclowed it almost immediately. In those years, the design of
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atomic (U-235 or plutonium) and hydrogen bombs were given top

priority by the American and Russian governments. 
16

Shock and blast waves. Largely for this reason, the problem

of simulating (and predicting) the evolution of shock and blast
waves continued to interest von Neumann after World War II. Soon

after 1945, he abandoned the kinetic theory analogy, and replaced

. it by an 'artificial viscosity', whose purpose was to 'smooth

out' the calculations, and not to simulate Nature. This arti-

* ficial viscosity did not simulate the real thickness of the

shock, which is a small fraction of the mesh length h, but did

reduce it to about 5h.

Von Neumann used artificial viscosity to simulate plane shocks
in a joint paper (#28) with R.D. Richtmyer, published in 1950,

and to simulate spherical shocks in a second paper (#29) with

H.H. Goldstine, published in 1955. In these papers, he continued
to use Lagrangian coordinates, whereas most later writers have

used 'Eulerian' coordinates (as did Riemann); cf. Chapter 2, §6.

Therefore, for convenient reference, we will reproduce his equa-

tions here, even though the paper has been analyzed by Richtmyer

and Morton in [Cli, §12.8-12.13], and we will discuss it again

in Chapter 6, §3.

In Lagrangian coordinates, letting x(a,t) denote the posi-

tion at time t of the particle with cumulative mass-coordinate

a, we will have as in Chapter 2, §6, u = x and V = 1/, = xa .t
° 

a

The equation of continuity (conservation of mass) reduces to the

identity xat = Xta, true automatically if x(a,t) 2 . There

remain the (one-dimensional) equation of motion (conservation of

momentum), and the equation of energy conservation. For these,
*- . von Neumann and Richtmyer proposed using

16See my cormments in Historia Mathematica 10 (1983), pp. 243-8.
Much of von Neumann's work during these years was classified,
for reasons of national security.

17The preceding papers were originally published in J. Appl. Phys.
21 (1950), 232-7, and Comm. Pure Appl. Math. 8 (1955), 327-53.
For spherical shocks, see also Sedov, op. cit., supra, and
G.I. Taylor, Proc. Roy. Soc. A201 (1950).

-.. .: - ,. .
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(7.1) ut = -(p +q)

x

and

(7.2) Et = -(p+q)Vt , V = i/p

Here E = T is the internal energy; it is pV/(y-1) in a

perfect gas; von Neumann and Richtmyer use U, X, and x where

we use u, x, and a; moreover they let a = fo0 (E)d , where

is any mass-coordinate.

It is stated that "The dissipation [term] q is introduced

for purely mathematical reasons. Therefore, q may be taken as

any convenient function of p, V, etc., and their derivatives,"

provided that the mechanical energy dissipated by it is converted

into heat, so that the Rankine-Hugoniot conditions are satisfied

across it.

Taylor instability. Von Neumann was also interested in

nonlinear Helmholtz-Taylor instability. Before taking this up,

we summarize the basic formulas that govern linear Helmholtz-

Taylor instability, treated as a perturbed Lagrangian dynamical

system. The mathematical model assumes a nearly plane interface

(vortex sheet or 'shear layer') separating two incompressible

fluids, of densities p and p', and moving with speeds U and

-U' in opposite directions.

In the linearized approximation, a small initial perturba-

tion can be resolved by Fourier theory into sinusoidal components.

Moreover, relative to 'moving axes' making pU+p'U' = 0, these

will be normal modes. They govern equations of such a normalCos k
mode, having spatial variation { Ikt and of amplitude Ak(t)sink
is Ak(t) = S(k)Ak(t). Letting g signify the downward gravi-

tational force per unit mass, a d downward acceleration and

y the interfacial surface tension, the equation of motion

reduces to:
18

S 1 8 See G. Birkhoff, Proc. Symp. Appl. Math. 13 (1960), 55-76.

-°

* ..- p
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Helmholtz Taylor-.. 2 3

(7.3) S(k) -p p' (U-U')2  - -,,(g-a)k yk3

(p + p') p + p p

U'- Liquid

Gas

I r'L ITh~ IN S~PAI LJTY

When S(k) < 0, we have neutral stability, and

Ak(t) = akCosWt + Bksinwt, where = S(k). However, whenk k k Wt -Wt k
S(k) > 0, Ak(t) = ke k + kke k and we have instability.

It follows from (7.3) and these formulas, that the condition for

stability is [B8, p. 3781:

(7.4) 4g(p- p') > p2 p'2 (U-U')4/(p +p')2

Three other important and qualitatively correct conclusions also

follow [A4, p. 252]:

I. The relative tangential velocity jU-U'I is always a

de.tabiZizing influence (Helmholtz instability).

II. Acceleration from a light towards a dense fluid is

also destabitizing (Taylor instability); it may be

counteracted by gravity.

III. Surface tension is always a stabiZiz.Cng influence; it

always makes extremely short ripples stable, thus keeping

the surface from getting too irregular.

When p = p', as in a shear layer ('vortex sheet') in an

otherwise homogeneous fluid, we have Helmholtz instability and

exponential breakdown of the plane interface separating otherwise

parallel flows. When p >> P' (wind over water) and g > a,

we have neutral stability, even though wind does generate waves.

When k is very large, we have capillary waves. G.I. Taylor

and D.J. Lewis made a famous experimental study of the unstable

case a > g. They reported observing:

" '"" " l.- " .• . ..
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(1) an exponential increase in amplitude as given by the
first-order theory until the amplitude is about O.4A;

(2) a transition stage during which the amplitude increases
from 0.4OX to 0.75X, and the surface disturbance
changes to the form of round-ended columns of air

'. penetrating into the liquid, which forms narrow up-
standing columns in the interstices;

(3) a final stage of penetration through the liquid of the
air columns at a uniform velocity proportional to aj-g.

- Many schemes were proposed in the 1950's for rationalizing

* these observations.

Von Neumann's interest in Taylor instability gave rise to

two Los Alamos Reports: 19 AECU-2979, written in 1953 and repro-

duced as [C8', #31], and LA-2165, written in collaboration with
A. Blair, N. Metropolis, A.H. Taub, and M. Tsingou. Whereas

the former, written with Fermi, was very short and analytical in

character, his second (joint) paper constituted a substantial

computational achievement at the time. A shortened version of

it was published (posthumously) in MTAC 13 (1959), 145-84, and

later reprinted as [C8, pp. 611-51].

His second paper takes the stream function T and the pres-
sure p as primary dependent variables, from which fluctuations

- .in the density can be computed through the DE

(7.1) t = Upx + Vpy yPx xPy

The simplest stable difference approximation to (7.1) causes some

(spurious) numerical pseudo-diffusion of mass, reminiscent of the

diffusion of momentum caused by 'artifical viscosity'. In 60

time steps, on a 15 x 38 grid, the initially sharp density dis-

continuity broadened into a band about 2h in width. This is

very acceptable from a practical standpoing. Taylor and Helmholtz

instability will be discussed further in Chapter 4, §§9-10.

19See also H.H. Goldstine's remarks in [C8', pp. 435-6].
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8. Von Neumann's stability test. We next turn to von

Neumann's ideas about the stability of difference approximations

to initial value problems. These generalize the analysis of

Courant-Friedrichs-Lewy [C31, already discussed in 52 above. As

A. Taub explains in [C8, p. 6641, von Neumann never wrote a

systematic exposition of his ideas about stability. He applied

them to the numerical solution of the nonlinear *.iffusion equation

(8.1) ut = (pu ) + g(x,t)x x

in a Los Alamos Report with Richtmyer [C8, 652-63]. He also

authorized their inclusion in a well-known paper by G.C. O'Brien,

M. Hyman and S. Kaplan [1950], based on a lecture that he had

given at the Naval Ordnance Laboratory in August, 1947.20 This

extends to general linear, constant-coefficient DE's the results

of Courant, Friedrichs and Lewy mentioned in §2 above.

What is often called the "von Neumann stability test" for a

difference approximation to an initial-boundary value problem,

consists in applying Fourier analysis to the linear, constant-

coefficient AE on a uniform mesh most closely approximating the

DE actually used, and verifying that the rates of exponential

growth of the solution of this AE remains uniformly bounded, as

the mesh length h + 0, for all wave vectors k.

The first substantial rigorization of this idea, in the

limited context of linear, constant-coefficient DE'S and AE's

on a torus (with uniform meshes), was given by Lax and Richtmyer

in 1956. They summarized their main conclusion as follows.

.* Lax Equivalence Theorem. Given a well-posed initial-boundary

value problem and a finite-difference approximation to it that

satisfies the consistency condition, stability is necessary and

sufficient for convergence.

20j. Math. Phys. 29 (1951), 223-51. A resume of von Neumann's
lecture had been written up by Human in 1947, as a technical
note.

2 1Comm. Pure. Appl. Math. 9 (1956), 267-93.
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This result was rederived by Richtmyer a year later, with

many important applications, in his classic book whose second

edition [C9] is still widely used today. There the "von Neumann

condition" for stability is carefully explained in [C9, §4.7].

In 1965, Varga and I obtained more precise and somewhat more

general results.2 2 Thus we showed that one can construct a stable

difference approximation having an arbitrarily high order of

accuracy, to any linear, constant-coefficient DE which defines

an initial value problem satisfying the Hadamard stability

criterion.

" The von Neumann test for the stability of difference approxi-

-. mations is well illustrated by the following example.

" "" Example 1. The DE of a vibrating beam is

- 2(8.2) utt =-EU

*First, we use the Plancherel Theorem to show that (8.2) satisfies

the Hadamard stability criterion, and so defines a well-set IV

* problem. In particular, we show that for the 'small oscilla-

'i tions' to which (8.2) refers, energy is conserved.

*Sketch of proof. Formally, from
o

- (8.3) u(x,t) = f g(k,t)e ikxdk
-00

we get by Leibniz' Rule that

(8.4) U = f k 4g(k,t)e ikXdx

.- Hence, the Fourier transform g(k,t) of u(x,t) satisfies

2 4(8.5) gtt E k g

J. Math. and Phys. 44 (1965), 1-23. See also H.O. Kreiss,

Numer. Math. 1 (1959), 186- , and other papers cited in
" C91.
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Therefore, the general solution of (8.2) is

ikEk2 t)i(kx-Ek 2t)
(8.6) u = 0f (a(k)ei (kx+Ekt) +b(k)e }dk

We now consider the energy integral

1 2 + Ex)2
(8.7) (t) f t[ut +(Eu) ]dx.

Again formally, we have

E'(t) = f [ututt +Eu xx uxxtdx = E f [-UtUxxxx +U xxUxxt dx

But -f utuxxxxdx = -[UtUxx xI + f utxUxxxdx, integrating by

parts. Assuming that Lim u = 0, this givesI xl U~xo

SxxF' (t)= E -0 fU txU xxx + Uxu xxt Idx

"" XxMELim u u = 0
U*xx tx]

Hence the energy E is constant.

9. The wave equation. Especially relevant to fluid mechanics

is the application of the ideas discussed in §8 to the wave equa-

tion utt = c2 7 2u. To fix ideas, we will treat specifically the

three-dimensional case relevant to sound waves in space:

2 UZ

(9.1) utt =c (uxx +Uyy +u )

Again, we consider a uniform space mesh with x = jh, y = j'h,

z = j"h (j,j',j"# integers), and set

(9.2) um = meikx = amei(kj+k'j'+k"j")h

For (9.1), the simplest central difference approximation leads

to a 9-point formula. Letting j (j,j',j"), and with r = cVt/h

- . * . •
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the Courant number, an elementary computation gives the 9-point

formula

2(9.3) u 2 h

. eik.x eict
as in [C3]. Setting u = e - -e , after verifying that

Vh 2 = 6coskh- 6 = -12 sin 2 (kh/2)

we get the 'consistency' condition

* (9.4) a-2+a 12r 2 sin 2(kh/2)

We now derive r2 < 1/3 as the von Neumann condition

-(generalized Courant condition) for the stability of the differ-

*. ence approximation (9.3). Since the amplification factor tends

to as h + 0 if (9.4) has even one root a with ji < 1,

and since ai 2 = 1 (the coefficient of -1 in (9.4)), (9.3)

is stable (neutrally) if and only if a= ei  -i e for" • 1 1 _ 1 2 ,

some 6. In the stable case, d= ila = c11 cc the left

side of (9.4) ranges from 4 to 0 and the right side from
-12r 2  to 0. Hence the von Neumann condition for stability is

r - 1/3.

A similar discussion applies to the n-dimensional wave

equation (n space variables, to give a (2n+3)-point central

difference approximation that is stable (for fixed r) if and

only if r 2 1/n.

Energy conservation. The total energy at time t of a

* ..- solution of (9.1) is

(95 2() 2 2 2 2
(9.5) [lu +c (u +U +U zdR

Then, by Leibniz' Rule

2
(9.6) E'(t) = [ututt +c (uxuxt+ UyUyt + uuztIdR

.xz
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r i . Since utt = c2 V2u, it follows that

(9.7) E'(t) = c 2 f [(utu +uU t) + (u u +u u
t xx ct t yy yjt

+ utu + uzu )]dR

c2  div(u Vu)dR c 2 Jut H dR

For r = 32 is a large sphere or cube expanding to , the last

integral tends to zero if u dies out rapidly. This proves that

Model #4 for sound waves (the standard 'acoustic approximation')

is energy-conserving in free space.

Plancherel Theorem. The Divergence Theorem is the essence

of the preceding proof. A very different proof can be based on

the Plancherel Theorem, a general duality theorem relating square-

integrable functions defined throughout free space to the square-

integrals of their Fourier transforms. Its essence consists in

the assertion that if for Q = Rn, the (multiple) integral

(9.8) fjI~x ( 2 dx'dx < +C

then p has a Fourier transform F(x), defined in the 'dual

space' K = Rn by

(9.8') F(k) = nf e-ik- dx n'

for 'almost all' k. Moreover

(9.9) (P(x) = f e' x F(k)dk1 . dk n
K

for almost all x, and (finally):

(9.10) flF(k) 2dk-dk n = 'k)_ dx dx
K d

" The exercises listed on the attached sheet give a few applica-
tions of the preceding formulas; others may be found in Chapter 5.
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10. Von Neumann's Legacy, II. Von Neumann was also keenly

interested in industrial applications of scientific computing,

and we shall conclude our brief resume of von Neumann's legacy

to "numerical hydrodynamics as a mathematical science" by

calling attention to three of his other papers.

Petroleum reservoir exploitation. The first two of these

[C8, ##19-20], written for the Standard Oil Development Company

in 1947-48, were concerned with petroleum reservoir exploitation.

They deal with parabolic systems, and suggest in Part III generali-

zations, already discussed in §6, of the classic Courant-Friedrichs-

Lewy analysis of the stability of difference approximations. To

circumvent the At < Ax 2/2a stability bound on the explicit

(forward time-step) solution of ut = auxx that had been pro-

posed by Courant, Friedrichs, and Lewy, von Neumann proposed

using implicit different approximations.

23
At about the same time, J. Crank and P. Nicolson proposed

approximating ut = aUxx by

(10.1) um+l = um + r 2 m+l + 62um ]

"01J J J /2

2 2

r = aAt/Ax2 . This has 0(h2 ) accuracy and is unconditionally

stable. Although the system (10.1) of linear algebraic equations

is implicit, its coefficient-matrix is tridiagonal (with the

natural ordering of unknowns and equations). Hence it can be

solved very rapidly and accurately by Gaussian elimination.

Unfortunately, this ceases to be true in two space dimensions.

However, within 10 years, by the time that large-scale, high-

speed computers were becoming available for determining how to

enhance petroleum reservoir exploitation, improved algebraic

algorithms for solving the parabolic difference equation

m+l m 2 m+l 2(10.2) u. = u. + r[V ) + 7h (u

2 3proc. Camb. Phil. Soc. 43 (1947), 50-67. For details, see
Forsythe-Wasow, [C41, pp. 141-3, and Varga, "Matrix Iterative
Analysis", Chapter 8.
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had been invented, which made possible the efficient solution of

systems like (10.2). Most notable were the (now classic) para-

bolic ADI methods invented for this purpose by Peaceman, Rachford,

Douglas, and others. These new methods, and the IBM-704 computers

which had by then become available, revolutionized the science

of petroleum reservoir exploitation.

Numerical weather prediction. Von Neumann was also fascinated

by the possibility of basing weather forecasting on differential

equations describing the motion of the atmosphere, with the help

of a computer. In more exuberant moments, he even suggested that

enormous "payoffs" might come from weather control, and his ideas

* have stimulated a major activity whose current status is hard to

assess scientifically.2 4

The clearest record of von Neumann's fascination with the

possibilities of numerical weather prediction consists of his

paper [C8', pp. 413-30] with Charney and Fjortoft on "Numerical

integration of the barotropic vorticity equations". Vivid accounts

of von Neumann's attempts at achieving substantial progress in

the years 1946-50, with very meager computing facilities, have

been written by Goldstine [CS, pp. 300-5] and Platzmann (Bull.

Am. Met. Soc. 60 (1979) 302-12). Charney (Proc. Nat. Acad. Sci.

41 (1955) 798-802) has reviewed progress to 1955.

Von Neumann regarded the calculations discussed in this paper

as only "an essential first step in the general program"; he was

greatly limited by the small size and speed of the computers then

available. His solution on the ENIAC in 1950 of the crude model

and approximation used in these calculations must, indeed, be

regarded as a brilliant achievement in both theoretical hydro-

dynamics and computer science!

9 We will limit our discussion of this work to a few super-

ficial remarks, made primarily for purposes of orientation. First,

24Cf. [B2, §14]. Good reviews of the subject of numerical weather

prediction are: N.A. Phillips, Rev. Geophys. 1 (1963), 123-76,
and Ann. Rev. Fluid Mech. 2 (1970), 251-89; also G.J. Haltiner
and R.T. Williams, "Numerical Prediction and Dynamic Meteorology",
Wiley, 1980.

* . -
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the model used the one-level "quasi-geostrophic, non-divergent

vorticity equation, in which the sole dependent variable is the

height z of a fixed isobaric surface"; specifically, the 500

mb level. Thus it is a 'one-level' model.

The simplest such model is provided by the so-called baro-

tropic equation

(10.1) d /dt = -u.V(c + f)

where f is the Coriolis effect. This can be derived by adapting

to spherical atmospheres the laws of two-dimensional vortex

motion first formulated by Helmholtz (to a rotating atmosphere).

Von Neumann and his collaborators used a sophisticated vari-

ant of this model, designed to take account of pressure varia-

tions. Their objective was to see how well their numerical

experiments predicted the evolution in time of observed isobars.

These isobars and their correlation with cyclonic and anticyclonic

wind patterns constitute one of the most conspicuous features of

weather maps. 4

Turbulence. Finally, von Neumann gave much thought to turbu-

lence. In 1949, he wrote down his tentative conclusions in a

long manuscript [C8', pp. 437-72], which he never had time to

polish for publication. However, posthumous reviewers judged it

(in 1963) to be "one of the most illuminating discussions of

turbulence extant". In it, he identified turbulence as a problem

stemming from the nonlinear instability of the Navier-Stokes equa-

tions for an incompressible fluid, equations whose validity he

took for granted.

After briefly reviewing the previous mathematical ideas about

turbulence, von Neumann's manuscript concentrates on "statistical"

models of turbulence. Actually, von Neumann's review does not

mention explicitly the most conspicuous feature of modern statis-

tical formulations: the notion of a random velocity-held u(x,t,w),

where w designates an element of a probabilistic sample space

Q= [V,b, V being a function space (perhaps a Sobolev space) -*'

of velocity fields, [ a Borel algebra of 'measurable' subsets
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of V (perhaps its Borel sets), and i is a probability measure.

Averages then refer to integrals Jf(x,W)dP(W) = f(x,u,t) over

this sampel space, 2 5 weighted by p.

From the standpoint of numerical fluid dynamics, most rele-

* vant are von Neumann's comments concerning "Computational Possi-

bilities" (his Part XI). Here he reached the somewhat pessimistic

conclusion [C8', p. 4691 that: 2 6

...there might be some hope to 'break the deadlock' by exten-
sive, but well-planned computational efforts. It must be
admitted that the problems in question are too vast to be
solved by a direct computational attack, that is, by an
outright calculation of a representative family of special
cases.. .however, one could name certain strategic points...
where relevant information must be obtainable by direct
calculations. If this is properly done, and the operation
is then repeated..., etc., here is a reasonable chance of

* effecting real penetration into this complex of problem
and gradually developing a useful, intuitive relationship
to it. This should, in the end, make an attack with
analytical methods, so that it is truly more mathematical,
possible.

. "We will defer further discussion of von Neumann's ideas about

turbulence until Chapter 7.

Conclusion. We have here italicized the word "analytical"

for emphasis; von Neumann was always mindful of there being three

different tools of scientific investigation: physical experiment,

mathematical analysis, and numerical computation.2 7 He also

.. realized that, although any one of these can lead to a new scien-
"- tific or engineering insight, all three should give consistent

* quantitative results before a scientific theory can be accepted

as valid. Cf. the distinction made in §1 of Chapter 1 between

2 5This definition avoids (in principle) von Neumann's criticism

[C8', p. 447] that: "there is considerable uncertainty
regarding the nature of the averages that are involved".

26 This contrasts with his optimistic prediction, made 3 years

earlier [C8, p. 13], that to solve the Navier-Stokes equations
by a "direct numerical attack" "may in the less involved cases
be satisfactorily handled with about 2,500 mesh points", and
'turbulent' solutions.. .would probably require about 100

. 4Z. successive values of t...about 10 multiplications are involved'.
..As we have seen, to perform 109 multiplications costs only a

modest amount today.

27See'See the discussion in [C8', pp. 348-56].
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philosophical (i.e., qualitative), approximate engineering, and

exact scientific models. The following diagram is intended to

stress the importance of this realization.

W EXPERIMENT

"i-'-MAT HEMAT ICAL NUMERICAL
i " 'ANALYS IS COMPUTATION

*Finally, he was supremely aware of the fact that analytical

" and numerical methods should both be rigorously justifiable

" from the same basic assumptions, in the same way that Analysis

can be 'arithmetized'. Knd his ultimate aim was clearly to make

fluid dynamics into a mathematical science.

; 11. Molecular models of fluids. Von Neumann was a frequent

visitor to Los Alamos, and his initial approach to computational

fluid dynamics through molecular models was developed there into

an effective tool for solving many different kinds of problems.

We will conclude this chapter by a brief survey of some of the

methods developed by other Los Alamos scientists in this spirit.

Newton's model of ballistics. Of course, von Neumann was

by no means the first to use molecular models to treat fluid flow

- .problems. Newton constructed a mathematical theory of projectile

OIL drag, based on a very naive such model, 60 years before Euler

tried to reduce fluid mechanics to a mathematical science by

postulating the partial DE's of Chapter 1, §2. Newton's model

led him to theoreize that the drag D of a bullet should be

2 2(11.1) D = pU ffsin 2 dS

integrated over its head--e being the angle of inclination of

an element dS of surface to its trajectory. Though grossly

incorrect in several respects, this model did predict correctly

L .
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, -'~ the approximate proportionality of the drag to the cross-section

area A, the air density p, and the square of the speed U,

for bullets of given shape. In other words, its conformity to

the principle of inertial similarity (Chapter 1, j7) was valuable.

Moreover, Newton's model approximates fairly well the air

resistance to the motion of a satellite moving through a rare-

fied gas, in which the Knudsen number (the ratio A/L of the

molecular mean free path to the obstacle diameter) exceeds one.28

The biggest deviation from this model comes from the fact that

the reflection of molecules bounding off solid surfaces is not

ordinarily 'specular' but 'diffuse': the angle of reflection

does not equal the angle of incidence, but is nearly independent

of it.

Molecular models have played several important roles in the

historical evolution of fluid mechanics, some of which are re-

viewed briefly in [B2, §12]. From a physical standpoint, Newton's

crude model has long since been superseded by Maxwell's kinetic

theory of gases. This provides a satisfactory explanation for

many properties of perfect gases (and anomalies!), which would

otherwise be inexplicable. Moreover it enables one to correlate

such material constants as density, specific heats, molecular

and thermal diffusivities, etc., in a very enlightening way.

Naturally, von Neumann had Maxwell's kinetic theory very

much in mind in his pioneer work on numerical fluid dynamics.

However, since the explanations alluded to in the preceding para-

graph are peripheral to the main theme of this book, they have

been deferred to Appendix E.

Instead, this chapter will be concluded by a review of some
numerical experiments made at Los Alamos, motivated by ideas

similar to those which inspired von Neumann's original report

on the numerical simulation of shock waves.

2 8See W.D. Hayes and R.F. Probstein, "Hypersonic Flow Theory",
.|b. Academic Press, 1959, Chapter X. Newton assumed that the gas
2 .particles bounced elastically when hit by the missile.

- -



3-34

12. Particle-in-cell Codes. The talented group at the Los

Alamos Scientific Laboratory (LASL) has been making a sustained

effort for nearly 30 years to realize von Neumann's idea of
'arithmetizing' fluid dynamics. Three notable landmarks in

their progress were the development of families of PIC codes,

of MAC codes, and of ALE codes (all acronyms) for treating large

classes of flows. Each of these families of codes was applied

to a variety of fluid flow problems, and the results evaluated

from an empirical standpoint. We will discuss them here from a

scientific standpoint.
29

A thoughtful 1959 article by Pasta and Ulam sheds considerable
30

light on the evolution of LASL thinking. It describes a compu-

tational approach initiated in 1952, and its application to

simulate the Taylor instability of two fluids, with density

ratio p'/p = 2. It comments that very many particles would be

needed to define an accurate density function by the usual (mass)/

(volume) definition. Instead, it used an assembly of 128 + 128

particles of masses m and 2m, free to move in a gravity field

while repelling each other with force 1/r up to a specified

cutoff distance, beyond which the repulsion is neglible.

The PIC or particle-in cell method for solving problems in

fluid dynamics was developed at LASL by F.H. Harlow and M.E.

Evans in the late 1950's 31 (a cheaper variant exists, called

FLIC). It is basically a quasi-molecular model, which was de-

signed to simulate (rather crudely, to be sure) flows involving

substantial compression ratios (say 2:1 or 4:1). In concept,

*" it relies on von Neumann's idea ([C8', p. 368]) that "the

classical derivations of hydrodynamics from molecular-kinetic

models have established that.. .details of the intramolecular

forces are immaterial for this part...of hydrodynamics".

2 9See also R.W. MacCormack and H. Lomax, Annual Rev. Fluid Mech.

11, (1979), p. 289-316, whose conclusions we will review in
L Chapter 7.

30Math. Comp. 13 (1959) , 1-13. A7
3 1 ME. Evans and F.H. Harlow, LASL Report LA-2139 (1957). For a

more polished exposition, see F.H. Harlow, Proc. Symp. Appl.
Math. XV (1963), p. 269-88, and Methods Comp. Phys. 3 (1964),
p. 319-45.

- . - * - - ~ -, - - - - -
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Space is divided into rectangular cells in the PIC method,

each of which contains a variable number of particles, typically

ranging from 4 to 16. These are accelerated by the 'pressure'

gradient, the 'pressure field' being estimated from the number

of particles (local 'density') in each cell. Because the number

of particles is an integer, the pressure and density change by

relatively large jumps, as do particle accelerations (but not

velocities) .

Harlow and his LASL collaborators developed empirically many

special techniques for 'smoothing out' flows simulated by the

PIC method. By utilizing them, they were able to simulate con-

vincingly many flows (e.g., the hyper-velocity impact of a

cylinder on a laminated plate) that had not previously been

simulated as successfully by any other method. The PIC method

treats large distortions and the opening and closing of 'voids'

without special modifications. On the other hand, it is time-

consuming, and cannot treat nearly incompressible flows.

"A continuum method which evolved out of the PIC code is

the Fluid in Cell or FLIC code of Gentry, Martin and Daly (1966),

based on earlier work by Rich (1963). They departed from the

finite particle approach of PIC but retained most of the other

aspects". 32

Marker-and-cell codes. In the early 1960's, the marker-

and-cell (or MAC) method was developed at LASL for treating

nearly incompressible ('low Mach number') flows, with special~33
emphasis on 'free surface' motions. For this purpose, it in-

cluded 'markers' to keep track of the locations of free surfaces

and other interfaces. It had capabilities somewhat similar to

those of the famous Fromm-Harlow code for simulating vortex

3 2Roache [C9', p. 241]. The references cited are M. Rich, Rep.
LAMS-2826, and R.A. Gentry, R.E. Martin, and R.J. Daly,
J. Comp. Phys. 1 (1966), 87-118.

33 F.H. Harlow and J.E. Welch, Physics of Fluids 8 (1965), 2182-9;
and 9 (1966), 842-51; J.E. Welch, F.H. Harlow, J.P. Shannon,and B.F. Daly, "The MAC Method", LASL Report LA-3425, 1966.

L.
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streets, which we will discuss in Chapter 7. But unlike the

latter, it did not utilize the Helmholtz equations for plane

vortex flows. Hence it could not be regarded in principle as

a general purpose code for solving (approximately) the Navier-

Stokes equations.

Because it was actually applied mostly to potential flows

with free boundaries, we shall postpone detailed discussion of

the MAC method until Chapter 4, where we will analyze in depth

typical problems for which.published solutions were obtained

with its help.

-01
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4. POTENTIAL FLOWS

1. Introduction. Chapters 4-6 will deal with three relatively

simple classical models of fluid motion: potential flows, sound

waves, and nonlinear 'one-dimensional' waves (including "plane

waves of finite amplitude"). We have selected these because of

their (comparative) mathematical simplicity: the first two are

the best understood partial DE's of mathematical physics. Never-

theless, it is far from easy to treat even these accurately and

reliably by rigorously justified methods, especially in three-

dimensional space and time! And until at least relatively simple

flow problems can be so handled, one surely cannot regard numeri-

cal fluid dynamics as a mathematical science!

This chapter will be concerned with potential flows. In §4

of Chapter 1, we defined an n-dimensional potential flow (n = 2,3)

as a flow whose velocity field u(x;t) has a scalar 'velocity

potential' (x;t) such that, at all points of the flow domain

i [(1.1) u = ? = (B,/ Xl,... / n

We also assumed the fluid to be incompressible, and of constant

density p =p0 from which it follows that c must be a harmonic

function:

(1.2) V = 2/2 0

(loc. cit., formula (4.2)). The Euler-Lagrange equations of motion

then hold if and only if variations in the pressure p satisfy

the Bernoulli equation (ibid., (3.1)):

(1.3) 70,Vq+Dp/9t + - P(t) G

Here G(x) is the gravitational potential (G is gy where y

is the elevation in most applications), and P(t) is some ambient

stagnation pressure level depending only on time.
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In this chapter, we will analyze the numerical techniques that

have proved most successful (to date) in solving various boundary

value and initial-boundary value problems associated with poten-

tial flows. The precision of our analysis will be aided by the

fact that classical analysis has provided many exact analytical

solutions of potential flow problems. Moreover the ideas of

classical analysis usually enable one to greatly reduce the cost

of computing potential flows. Indeed, some classes of potential

flows can be treated more effectively by classical analytic

methods than by modern numerical techniques.

Our discussion deals with three cases. First come potential

flows bounded by impermeable solid walls, possibly with 'circula-

•tion'. Then come time-independent potential flows with free

boundaries at constant pressure. Finally, we take up time-

dependent flows with free boundaries, including gravity waves.

In an ideal incompressible, nonviscous fluid initially at

rest and bounded by solid walls (no "free boundaries"), the

velocity field at any instant depends only on the instantaneous

normal velocity components along the walls. Its determination

reduces to solving a Neumann problem for the velocity potential

c0 and it is therefore independent of the previous motion of the

walls (i.e., of the past history). Thus the velocity field is

the same for an impulsive acceleration from rest, when the fluid

inertia is felt as "added mass", as it is in steady flow caused

by moving the same obstacle at the same constant velocity through

the (ideal) fluid.

S./ Added mass. As Kirchhoff pointed out, theory actually says

much more about the dynamics of a rigid body in an infinite ideal

fluid, initially at rest. Such a body has six degrees of freedom

in space: three of translation, and three of rotation. It is

usually mathematically convenient to take these as parallel to

I •and around three coordinate axes through the centroid of the

body, taken as the origin of coordinates.

-. Now let D .(x), where i = 1,...,6, denote the velocity
potentials of the potential flrws induced by translation with unit

*..* -
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linear velocity, resp. rotation with unit angular velocity, along

and around the axes mentioned above. Define the added mass

coefficients of the body as the Dirichlet inner products

(1.4) mij = D<ij> = Jf [VJiVDj]dR

There are 15 of them in space, and 6 in the plane; note that the

mii are kinetic energy integrals.

Relative to suitable 'principal axes', we can reduce the

number of nonzero added mass coefficients to 6 in space (3 of

translation and 3 of rotation), and to 3 in the plane (two of

translation and one of rotation). Moreover, by applying

Lagrange's equations to the (purely inertial) Lagrangian function

L = T = I I m(a)qiqj , one can deduce a complete theory of the

motion of a solid of arbitrary shape and density through an

ideal (incompressible, inviscid) fluid. 1 Here we only give two

illustrations of the power of Kirchhoff's theory.

THEOREM. The added mass coefficient mi.. in (1.4) is the

j-th component Qj of force resisting unit acceleration in the

i-th direction. For a cylinder moving broadside, Q1 is the

horizontal component of thrust, Q2 the vertical component of

thrust, and Q3 the torque resisting acceleration.

Because of the mathematical elegance and many practical

applications of this theory, we will devote §§2-5 below to ex-

piaining various numerical techniques for computing the added

mass coefficients m defined by (1.4), and their effectiveness13]
in various cases. Throughout this discussion, we will assume the

fluid to be (asymptotically) stationary at infinity (in symbols,

lim u(x) = 0). This choice of stationary axes is needed to

make the m. finite.1]

iSee Lamb [6, Chapter VI] or, for a more modern exposition,
G. Birkhoff [2, Chapter VI].
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2. Inverse methods. For a few shapes, such as the sphere

and circular cylinder treated in Chapter 1, §§4-5, the velocity

potentials Di(x) have simple analytical expressions and the

'Dirichlet inner products' D<(Di,.D> in (1.4) can be calculated

in closed form. Thus for the unit sphere with center at the

origin, with the fluid at rest at -, the velocity potentials

for translation are as in Chapter 1, (4.6):

3(2.1) (x) = /r , i = 1,2,3
.

The i are 27/3, and the m. with i y j all vanish.
ii 1j

Moreover the D (x) for rotation (i = 4,5,6) all vanish, so

the computation of added mass coefficients involving rotation
is trivial.

Cylinder. Similar formulas hold for a (circular) cylinder.

Treating this as plane flow in the (-x,y)-plane, we have:
-xi= =

(2.2) D ' 2 22' 3 0

x +y x +y

Hence the added mass -7a2 0 0

matrix has the simple 0 'Ta
2  0

form indicated to the 0 0 0

* .  right.

Although analytical methods are only applicable to special

S.shapes, as von Neumann emphasized (it was not a new discovery!)

they can be used to compute added mass coefficients of elliptic

F cylinders, ellipsoids, and various other shapes. In particular,

by superposing suitable linear combinations of sources and sinks,

of the same total strength, on a uniform flow, one can construct

the velocity potentials and stream functions of flows pa6 a

variety of axially symmetric solids and cylinders. The method

is due to the British

engineer Rankine, and

bodies constructed in this

way are called Rankine bodies.

A typical Rankine body is

sketched to the right.
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Computational procedure. For example, one might superpose

on a uniform flow (with Y = r 2), sources of strength e and
1 1e at (1,0,0) and ( ,0,0), equal and opposite sinks at

(-1,0,0) and (-2,0,0), and a dipole of moment i at the,. 2
.*i origin. This will give

22

i(2.3) = r2 + e(cos ct-cos 8) + e'(cos a'-cs B')

+ L sin 2
• • r

By adjusting the three free parameters e, e', and P, one can

construct potential flows around dirigible-like bodies with

fore-and-aft symmetry having variable slenderness, nose taper,

and mid-section roundness.

As von Karman pointed out in a well-known 1928 paper [B41,

the method can be applied to any axially symmetric body, the

analytic continuation of whose velocity potential c to the

axis of symmetry has no singularities.

3. A potential flow problem. We next present a simple plane

potential flow problem, one that could be solved numerically by

hand (in a month?) using Southwell's 'relaxation methods' (Chapter

3, 54). As usual with plane flows, we can think of them as

arising when cylinders parallel to the z-axis having the specified

profiles are moved broadside in the (x,y)-plane.

Example 2. Consider the resistance to broadside acceleration

of a square cylinder in a stationary concentric square container

parallel to it. Without loss of generality, we can assume that
-. 2
the inner cylinder is the square [-1,11; and that the outer

2cylinder bounds the square [-M,M] , where M is an integer.

Those wishing to compute added masses might well begin with

this example (M = 5 is a good choice), which is relatively easy

to program. Because of the flow symmetry, it suffices to compute

2Since the stream function for a simple source is - cos 9 (or
1- cos 6), where 9 is colatitude.
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one quadrant of the flow, which greatly reduces the cost (for

given h). It has only one major source of error: the singulari-

* . ties at the corners of the square. There the flow velocity would

" "be infinite if we really had potential flow.

The error can be estimated empirically by comparing computer

outputs for different values of h; it will be analyzed theoreti-

cally in §4. Theoretically, it would be 0(h ) except at the
2

corners, if one solved exactly the difference equations Vh =0,

* - i.e.,

(3.1)
-(3.1)ij = Ti+l j + ilj+l + i-l,j + i,j-l 1

at all interior mesh points.

In the first quadrant, the boundary conditions are i = 0

on the outer square and the x-axis, i = y (for unit accelera-

tion) on the inner square, and 3/h = 0 on the y-axis. Ex-

pressing this as the symmetry condition = and-i,j i,j'

substituting into (3.1), we get

(3.2) 4,j = i4[ 0 ,j-i + 0,j+l ] if x = 0

For h = 1/5, this problem gives about 600 equations in

as many unknowns. The matrix has band half-width 25, and so to

. solve these equations by direct band Cholesky elimination requires
35

. performing about 24 x 25 = 4 x 105 multiplications! To perform

these in 1940, even with the desk machines for doing arithmetic

that were then available, would take a skilled computer on the

order of a year.

Using quasi-iterative relaxation methods and human ingenuity,

this time was reduced by Southwell's students to about a month.

Today, using a high-speed computer and a well-designed package

of 'debugged' subprograms such as ELLPACK, it has been reduced

* Qto seconds!

ELLPACK. Basically, ELLPACK is a very simple program state-

ment language which enables users to call a large variety of

[, "* -..
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carefully checked Fortran subprograms for solving second-order

elliptic boundary value problems on a rectangular grid such as

the one proposed above. A brief summary of its methods and

capabilities is given in Chapter 9 of Birkhoff-Lynch [A31.

Difference approximations. Although the 5-point difference

approximation (3.1) is widely used in practice, and has 0(h2)

accuracy at all interior points, it is by no means the only or

generally the best 'discretization' (alias 'arithmetization')

of the Laplace equation.

Actually, i is analytic except at the corners, and there

is an ingenious 9-point approximation

(3.3) 20 =i~ 41 + +l 1i+l,j i,j+l +i-l,j +i,j-1

+ i+l,j+l + i-l,j+l + i-l,j-i + Ii+l, j-

4
which has O(h4 ) accuracy, also except near corners. But unfor-

tunately, as we will show, the actual error is more nearly
0(h4/ 3) for the flow around a square, because of the singulari-

ties at the corners. Moreover it is not obvious how to compute

the Dirichlet integral from values at mesh points.

Bilinear finite elements. For these reasons, it is prefer-

able to approximate p by piecewise bilinear finite elements.
3

For this finite element approximation, the nodal values which

minimize the Dirichlet integral D<p,p> in the associated 'finite

element' space satisfy P6lya's 9-point difference equation

, (3.4) 8 i ,j = j i+l,j + i,j+l +' i - l , j  i,j-i

+ 'Pi+l,j+l + i-l,j+l +  i-l,j-I + l i + l,j-l

For corner (nodal) values 0, 'i '2' 3 on any mesh square S,

the contribution DS<qk> from S to the Dirichlet integral is

3Methods of solving elliptic problems based on finite element
approximations are usually called finite element methods (FEM).
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(35) 2 2 2
)j=O j - +('O + 1) i 3 ) - +V 1 V 3

)

The algebraic equation (3.4) is equivalent to the statement that

minimizes the sum of the partial Dirichlet integrals

D S < , > taken over the squares ('cells') in the 2 x2 square

. S* with vertices at (xi±l,Yj±l ). Essentially, it applies the

Rayleigh-Ritz method to the 'approximating subspace' of continuous,

piecewise bilinear functions on the subdivided domain

the domain Q subdivided into squares of side h.

" 'Conforming' elements. Note that if discontinuous approxi-

mating functions were allowed, we could easily reduce D<z,p>

to zero by defining i to be piecewise constant. equal at each

point to the value ij computed (by any method!) at the nearest

mesh point--or to the average of all such values when there is

more than one 'nearest' mesh point. This is possible because

Kelvin's minimum energy principle only applies to continuous,

piecewise differentiable functions. In this context, globally

continuous piecewise polynomial functions are said to be 'con-

forming', because they conform to the underlying variational

principle.

For second-order elliptic DE's all continuous, iecewise

analytic functions are 'conforming': within this class,

ID<U,U> - D<u,u>I < 5 implies that JU(x,y) - u(x,y)l < E(6)

where Lim e(6) = 0. For fourth order DE's, such as are asso-

ciated wvL 'creeping' flow, 'conforming' elements must be

continuously differentiable (and piecewise smooth).

4. Corner singularity. The difference equations and finite

elements described in §3 approximate potential flows very well

in the interior of the flow very well, because the stream function

(being harmonic) is analytic. However, the fit near the corners

of a square obstacle is very poor. Thus the velocity of the

° (idealized) potential flow considered is infinite at the corner;

as Helmholtz observed, this would imply infinite negative pressure

0-
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by the Bernoulli equation, and so lead to cavitation. Likewise,

a real (slightly) viscous flow would tend to separate at the

corner, if it did not cavitate there.

More relevant to our immediate concerns is the fact that,
although the methods described in §3 have a local relative error

which is O(h ) or smaller at interior points there is an error

(with uniform mesh) that is 0(h 3 ) associated with each corner

* -.singularity. We will now derive this result.

The local singularity of the flow around a 900 corner is

easily found by elementary conformal mapping. The transformation

=z 2/ 3 maps the flow in the three-quadrant domain depicted

in Figure 2a onto uniform flow with stream function n and

velocity potential (complex potential W = + in) in the
pperhalf f the comlex -plane. Since W = = 2/ 3

upperhafth olx pae Sic Wz

dW/dz = 2/3/F, but this is the complex conjugate of the velocity

(see for example Chapter 1). Hence the magnitude of the velocity

near the corner is proportional to 1//r, and tends to infinity

as r 0.

The preceding flow is typical in the sense that, up to con-

stant factor, all flows past a 900 corner not having a stagnation

point there have the same asymptotic velocity distribution--the

complex potential being given by

(4.1) W = clz 2 / 3 +c 2 z
4 / 3 + c3 z + ... , c1 3 0

It is evident that the ingenious finite element described in §3

does not have anything like this asymptotic behavior. Specifically,

the true contribution to the Dirichlet (kinetic energy) integral

from a circular sector of radius h centered at the corner will

be of the order of

h 3Tr/2 2h 1/3 4/3
(4.2) f f dW/dzj rdrde = (3M/2) / r dr M ft

0 0 0

Hence, assuming that the 'pollution' is asymptotically confined

to a fixed number of mesh cells, the error made in estimating the

- - ..y.j<~~- -- - - - -
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Fig. 2a. Flow around Fig. 2b. Local mesh
corner, refinement.

energy (or equivalently, the added mass) can be expected to be

of the order of h4 /3 . This expectation is confirmed in numeri-

cal experiments. More generally, for flows around convex obsta-

cles having a corner where the tangent direction changes abruptly .

by k7 radians, the transformation z -z = tl+k maps the z-

domain locally onto a half-plane. Since the -domain is also a

half-plane, we have JVip = 0(r-k/(l+k)), r = Iz -z0 1. Since

the singularity is not matched, the error Ve.Ve = 0(r- 2k/(l+k)).

Integrated over a disc of radius h, therefore

"<" h
f l-v 2-\)

D(e,e) = 0( f r - dr) where v = 2k(l+k), D<e,e> = 0(h
0 = 0(h 2 /(l+k) Y.

(At a reentrant corner, k is negative; at a reentrant square
2

corner, k = - 1/2 and t = (z- z0 ); hence there is no

singularity there.

Singular elements. One way to obtain higher-order accuracy
near protruding corners is to introduce additional "singular

elements" into the approximating subspace, capable of reproducing

the first two terms of the series (4.1). Since the third term
is filled automatically (being analytic), the asymptotic error I-

in the velocity can be presumed to be of the order of
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8/3d(z )/dz = 0(z 5 / 3 ) The error in the kinetic energy in a

circular sector of radius h should correspondingly be of the

order of

h.. h 5/3 h11/3
Jf'" ' r dr - h

0

giving nearly 0(h4 ) accuracy.

Blending edge values. As Southwell realized [Cll, already

in the 1940's, a good way to reduce the total error in solving

elliptic problems is to refine the mesh locally near singulari-

ties, and also in regions where gradients are steep. A technique

" proposed in LB*I for improving accuracy in solving elliptic prob-

lems, is to combine local mesh refinement with bilinear blending

of the edge values4 in each 2-cell. This has been successfully

applied by J.C. Cavendish, using only piecewise linear edge func-

tions. Presumably higher-order accuracy could be achieved by

using piecewise quadratic edge values.

WSmooth obstacles. It is hard to avoid corners if one restricts

attention to quadrilateral and triangular elements, which can des-

cribe only the exterior of a polygon. However, many important

obstacles are smooth--i.e., without corners. For flows past

smooth obstacles, i is also smooth. By using higher-order FEM

or difference methods, the latter available in ELLPACK, one can

*" therefore also hope to achieve high-order accuracy in the nodal

values We next consider the problem of computing D<ip,>

accurately from the i We know of three local schemes for

doing this which, when filled in by bilinear blending, are exact

for quadratic harmonic functions; see [C*, p. 294]. The first

of these proceeds as follows.

Scheme A. At the center of each mesh square, interpolate

the average of the four corner values. Next, at the midpoint of

4 See [Cl, Chapter 7]. Ref. [B*] is to Birkhoff-Gordon-Cavendish.

Ref. [C*] is to G. Birkhoff and R.E. Lynch, Math. and Computers
' in Simulation 22 (1980), pp. 291-7; see also their note with

John Brophy in [D4].

1- "
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each interior edge, interpolate the average of the four adjacent

values on the rotated (through 450) mesh which results. Thus

i:[ 4 3)* ,j+ 1  4 [[ i,j + *i , j + l  + * - l , j + I+g l j l

Equivalently, using subscripts as in Fig. 3a below, we define

(4.4) i(P) = [60 + l + 2 + 6 3 + 4 + w5 ] /16 .

Having bisected each interior mesh segment in this way, we have

a unique quadratic interpolant to the three specified values

(e.g., to 4 'ij l, P. .) This gives the desired

'conforming' interpolant on interior mesh lines; for Dirichlet

problems, the values on boundary mesh segments are known.

',"V"

*6 *7

U
3' *3 ' *

x P x

51 U *10 1 DO., E
Uo *0 *

Fig. 3o

Fig. 3b

.+.
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5. Added mass. 5 The true added mass problem differs from

the simplified problem discussed in S3-4, in that the object

accelerated is assumed to be in an infinite fluid (no wall effects).

* We next consider the added mass coefficients for an infinite

cylinder of general cross-section, moving broadside in pure

translation (angular velocity w = 0). In every (x,y)-plane

perpendicular to the axis of the cylinder, this flow has the same

harmonic velocity potential p(x,y) satisfying the DE 72 0

and the Neumann boundary condition

(5.1) U L + V -Y on F,3n 3n 3n

where (U,V) is the vector (broadside) velocity of the cylinder.

Moreover

(5.1') Lim !7p = 0
IxLI0

The complex potential of the flow can therefore be written

in the form

(5.2) W = c1 /Z + c2/z + c3/z +

where the ck = ak + ibk are appropriate complex constants.

Moreover the Neumann boundary condition (5.1) is equivalent to

the Dirichlet boundary condition on the stream function:

(5.3) = Uv - Vx on F

The case of a square obstacle (Example 2) is typical.

Inversion. Clearly, the numerical procedures of §3-4 do

not suffice to treat exterior Dirichlet or Neumann problems in

an infinite fluid, because they would require the solution of an

infinite system of linear equations inaccessible by computer.

One can circumvent this difficulty by using a 'singular element'

- For the concept of added mass, see Chapter 1, 58. For a survey
of what was known about added mass in 1960, see [A2, Chapter 6].
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at infinity, perhaps of the form (5.2). To make this 'conforming',

one can interpolate a buffer element constructed using 'blending

functions' [Cl, Chapter 71.

Conformal mapping. One can also use the technique of con-

formal mapping. This is especially easy to apply to cylinders

with square or rectangular cross-sections, because Schwarz-

Christoffel transformations reduce to elliptic integrals. Using

this approach, W.G. Bickley [Dl computed the added mass of a

square very accurately in 1934. For general cylinders, one can

apply the methods of [A3, Chapter 8, §7].

In general, however, it is preferable to make a different

appeal to complex analysis. The substitution z - 1/2 carries

solutions (5.2) of exterior Dirichlet or Neumann problems into

solutions of interior Neumann problems. For example, it carries

the solution of the exterior Dirichlet problem for the square

S: -1 _ x,y = 1, with boundary condition = y on F = 3S,

into the solution of an interior boundary value problem on a

domain shaped somewhat like a four-leaved clover.

This method of computing added masses of cylinders has been

discussed recently in the references cited in footnote 4; these

discussions will not be reviewed here. Instead, we will turn

our attention to a much more difficult topic: the computation

of added mass coefficients of solids.

Added mass of solids. We determined the added mass of a

sphere analytically in Chapter 1, A8. That of a sphere in a

concentric spherical container can be obtained similarly, by

considering the velocity-fields associated with potentials of

the form

b bx
(5.4) = [ar +-]cos 9 = ax + bx

r r

By applying Kelvin transformations, one can obtain from these

the resistance to the acceleration of a sphere in an arbitrary

concentric spherical container [D9, pp. 123-331. AV-

L"
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However, to compute the added mass of (or velocity field)

associated with general solids numerically, with reasonable

accuracy, is a formidable task. For axially symmetric solids,

one can take Stokes' stream function as the unknown. This satis-

fies the DE

(5.5) - + 0zz
rr rr zz

in cylindrical (r,z)-coordinates, r = x +y Recently, R.E.

Lynch has constructed an unpublished difference approximation

to (5.5) having O(h ) accuracy.

Boundary element methods. Instead of putting sources and

sinks on the axis, one can locate them in 'source panels' on the
6surface of the body. As in the two-dimensional case, it may be

convenient to assume the solid to be at rest, and immersed in a

moving fluid. This method leads to a Fredholm integral equation

called the integral equation of potential theory [D9, Chapter X].

For a comprehensive discussion of the "calculation of potential

flows about arbitrary bodies", see also J.M. Hess and A.M.O.

Smith, Progress Aero. Sci. 8 (1966), 1-138. A very readable

introduction to this method is also given in Chow [D51.

Inversion. Perhaps the most promising approach to the prob-

lem of computing the added mass of general solids is again pro-

vided by inversion, but using the transform of the velocity

potential p as the unknown function. This is

(5.6) F(x,y,z) = rp [ , , ], r = x +y +z

r r r

This is harmonic; moreover since inversion is a conformal trans-

formation, it carries normals to the boundary into normals to the

boundary. But since distances ds are multiplied by r-

2normal derivatives are multiplied by a factor r , the dot

6We will discuss this method thoroughly after we have experimented
with it.



4-16

4
product V-V is multiplied by r , and volumes correspondingly

by r6 . Therefore

(5.61) 7 -7p dR = r2 7F.7F dxdydz

where F(x,y,z) is the solution of the Neumann problem for the
-2,

Laplace equation and the boundary condition ;F/ n = r - /av.

Although the transformed stream function, which only exists

in the axially symmetric case, has the advantage of having its

boundary values known, and not just its normal derivatives, it

is the solution of a much more complicated differential equation
72than 72F = 0. Therefore, to use it seems impractical.

However, the preceding remarks are purely conjectural. Still

another approach consists in using a formula due to G.I. Taylor,

and extended by the author, Schiffer-Szego, and John Brophy. 7

This states that the added mass for translation is 4 -pl - vol (7),

where uj is the "polarization". Using this approach, John

Brophy has actually calculated the added mass of a cube, to three .

significant figures.

6. Container effect. The estimation of 'wall effects' and

'container effects' is very important, not only for many problems

of numerical fluid dynamics, but also in experimental fluid

*-. dynamics. Much as computers can only handle a finite number of

unknowns (most commonly from 300 to 20,000 of them in solv-

O- ing partial DE's today), so wind-tunnels, water tunnels and the
like are necessarily of finite extent. For potential flow prob-

lems, both fixed and free boundary corrections are of interest,

the latter being typically much smaller.

The substantial magnitude of the fixed wall container effect

on added masses is evident from the following simple calculation.

Let the container be a concentric square F1 : max(lxjjy ) = R
i7

7G.I. Taylor, Proc. Roy. Soc. A120 (1929), 13-22 and 260-83;
M. Schiffer and G. Szeg6, Trans. AMS 67 (1949), 130-205; [A2,
p. 154] (and p. 16) of the first ed.); and John Brophy, Ph.D.
Thesis, Purdue University, 1983.
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having R2  times the area enclosed by F. Since 7'-.?Q decays
-4 4 12like Q(r ) in an infinite fluid, and f r r dr = it

is plausible that the 'container effect' is asymptotically pro-

portional to /R2 . One can presumably correct for this (to

within 0.2% or so) by asymptotic (Richardson) extrapolation,

a method to be described later in this section. The following

simple example gives further evidence for the preceding conclusion.

Example 3. We will next determine the fluid resistance to

acceleration of a cylinder of radius a surrounded by an ideal

fluid in a concentric cylindrical container of radius Ra. By

choice of units, we can assume that a = 1.8 To determine this

resistance, it suffices to consider complex potentials W = + i4

of the special form

kR~2/
(6.1) W kz + kR /z

Since with (5.4), p = k(r-R 2/r) sine, evidently the 'stream

function' (x,y) E 0 on the circle r = R. Therefore thE fluid

in the annulus 1 r R can be regarded as constrained

externally by a circular container (cylindrical in R3), IzI = R,

and impelled internally by the disk IzI S 1 (a solid cylinder

in R3

Also, = k(r+R 2/r) cos e, and so

• -r ¢- - k k(1 - - ) cos~
(6.2) -3r r3 l - C

r

is identically - cos 9 on the unit circle r = 1 if and only

if k(R - 1) = 1. With these formulas in hand, it is a straight-

forward (if tedious) exercise to compute the kinetic energy
1 1 2 1integral -m =m U= a D,,7,>. This computation we now

summarize.

The squared velocity at any z is

2 12 2 2 2 2 2 2
(6.3) q = dW/dz u +v = k k (1 - R )

8This argument is an application of the principle of inertial
similarity (Chapter 1, .7).
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22 2 2Hence u = k[l-(R 2 cos28)/r 2, v = k(R sin26)/r Therefore

2 2 4 4 2 2
q =k [ + (R/r) - 2(R cos 2e)/r 2 ]

This formula, combined with dx dy = r dr de, makes it easy to

evaluate the double integral D<p, > = <Vc,VP> in polar coor-

dinates. Integrating q2 from e = 0 to e = 27, we get

k 27 times 1 + (R 4/r . The (iterated) integral of this from

r = 1 to R gives, finally
2 R R4/4

m D<4,4> 7tk2  f [l + (R /r )] rdr
1

2 2 4 2 R
1T pt k [r /2 - R /2r11

-T= ( pk 2/2)[(R 2-1) + (R 4-R2 ,rpk 2[R 4-1]

Since k= /(R2 -I)2 , this gives finally

(6.4) m = Tp(R 2+1)/(R - 1) Tr +

R R

Alternative derivation. An alternative derivation of the
'container correction' (6.4) goes as follows. The velocity

potential ¢ = x +x/r 2 = (r + r- 1 ) cos 6 not only describes the

plane potential flow with U = 1 around the unit disk, r S 1,

but its 'analytic continuation' inside the disk represents the

potential flow induced by the translation of any smaller concen-

tric disk r <= a (a < 1) in a cylindrical container. This is

easily verified since, on r = a,

I. u = u = 3¢/3r = (-a ) cos 9
r n

This matches the normal velocity component on the boundary of a
-2disk of radius a < 1, translating with speed U = (1-a - ) in

. the container r = 1.

10! By Bernoulli's formula, therefore, if this disk undergoes

horizontal acceleration i = U, the horizontal component of

force is
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X = -p (cos 8)0(a) de

= - (a + a - 1) cos 2 e dO = TQ(a + a -

Setting X = ma, therefore, we get

m = a (+ a2)/(l -a2) H

Extrapolation. Knowing that the container efect (or 'wall
2effect') is asymptotically proportional to 1/R2 , where R is

the radius of the container, we can estimate and partially correct

for the error. Let m1 be the added mass computed in a container

of radius R; then it is usually much easier to compute m in

a computer Df radius eR, where e < 1 is some fraction, say

6 1

If the asymptotic formulation were exact, we would then

have both

2. w mI = m 0 +k and m0 = m0+k/6

Hence we would have

"2 2
(6.5) m1 + a (ml-m2)/(l-O ) = 0

Similarly, suppose that the error of a difference or finite

element approximation is known to be asymptotically proportional

to h2 . Then by calculating a quantity with mesh lengths h and

O eh (6 < 1), with resulting values m and ml, the value

(6.5') m0 = m + e 2(m 0 -m)/(l- 2 )

should be an improved approximation to m0 , better than either

m0 or m e alone. By definition, Richardson extrapolation

consists in using a formula like (6.5') to obtain a (hopefully

improved) approximation to m0 .
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7. Two-dimensional airfoil computations. A thoughtful

4 reconsideration of the methods and results of §§1-6 brings out

two basic but often ignored facts. First, although the deter-

mination of the well-defined potential flows discussed there had

been arithmetized in principle by 1900, thanks to the genius of

Poincare and others, their computation in practice is still far

from having been automated. Second, classical analysis often

suggests several competing methods for arithmetizing (digitizing)

the accurate determination of such potential flows. The choice

of the 'optimal' method may depend on what is being computed:

a single number or vector (the net force), the pressure distri-

bution, on i profile or solid, or the velocity field as a whole.

These facts seem to be much less widely appreciated than the

shortcomings of the potential flow model, some of which have been

commented on in Chapter 2.

The rest of this chapter will be devoted to various more

general classes of potential flows whose definition is much less

straightforward, whose computation (especially in three dimen-

sions) is correspondingly more difficult, but whose study is

justified because their determination is still so much simpler

than that of the compressible and viscous flows to be treated in

later chapters.

A classic family of two-dimensional potential flows has played

an important role in the design of wing sections (or 'profiles')

for airplanes. This family of flows has already been described

in Chapter 1, §11, and their underlying analytical theory is

summarized in Appendix C, for convenient reference. We will refer

freely to this summary in explaining the relevant computational

issues in the present section.

The basic model assumes that, for any (reasonably small)

angle of attack a, the flow around an airfoil section adjusts

itself so as to produce 'finite velocity at the trailing edge'

(S' in the figure). For given a = arctan (V/U), there is

exactly one conformal mapping of the exterior of an airfoil with

a sharp trailing edge S' onto the exterior of a given circle,
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which maps S' onto T = (1,0). Perhaps the most powerful

technique of two-dimensional airfoil theory consists in computing

this map, say w = f(z) with inverse z = f (w).

The prototype of such mappings is provided by Jouhowsky

airfoils, with

(7.1) W :[Z+vz -41 and z=w+w

The relevant numerical procedures for this case are described at

length by Chow in [D5, Section 2.7],9 and we will just summarize

a few relevant facts here.. Under (7.1), the circle Iwi = 1

corresponds to the slit of all (x,0) with x E [-2,2]. Less

obviously, circles through w = ±1 correspond to circular

arcs through z = t2. Slightly larger circles through w = 1

correspond to Joukowsky airfoils whose mid-section is nearly a

circular arc, a cusp at the trailing edge, and whose leading

'edge' is nearly semicircular.

Analytically, any Joukowsky airfoil can be specified (up to

similarity) by prescribing the center (-6,E) of the circle

in the w-plane which is mapped onto it. The camber (mean curva-

ture of the section midline) is nearly proportional to E, and

the mean thickness to 6. It is easy to write a computer program

9Chow treats the more general case of mappings z = w +b 2/w,
2w = [z + z2 -4b 2], but this obviously reduces to z/b = w/b +b/w,
hence by (7.1), to a simple change of scale.
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which will plot the profile of the Joukowsky airfoil correspond-

ing to given e and 6, and to verify visually (at an inter-

active terminal with graphics capability) the statements at the

end of the last paragraph.

Quantities of interest. Many quantities and functions are

of aerodynamic interest, such as the lift L, the moment M

(or center of pressure, C.P.), the pressure (coefficient) dis-

tribution C (x), and the streamlines and equipotentials. We
p

next consider the computation of these in the special case of

Joukowsky airfoils.

For given a, (, 6, E, we will have

(7.2) W = e iw + e w + iy Zn w - y n a

Hence, given any subroutine for plotting streamlines p const

(with constant L') and equipotentials = const (with constant

7 ) in the w-plane for given a and y, with w = 1 as a

stagnation point, z = w + w- maps the w 3k = w(q., k  into

the mesh points of a network of streamlines and equipotentials
2

in the z-plane. (This is because, inIR and in its extension

to the complex sphere, conformal maps preserve streamlines and

equipotentials.)

In the limiting case 6 = 0 of a circular arc Joukowsky

profile, for any camber c > 0, the circulation F which will

produce finite velocity at the leading as well as the trailing

edge is uniquely determined. Curiously (and unrealistically),

the resulting lift is produced at a mean angle of attack a = 0,

while (undesirably) the center of pressure is at the midpoint.

L_ Pressure distribution. The main use of two-dimensional air-

foil theory is for predicting the pressure coefficient distribu-

tion C (x) on the upper ('suction') and lower ('pressure') side
p

of the airfoil. This is easily computed from the Bernoulli equa-

tion, and the relation

(7.3) q= dW/dz 2 = (dW/dw) (dw/dz) 2 dW/dw2 2dw/dz 2

. .. . -. . . . .... . --.. ,- . -- . - .
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The distribution of IdW/dwl2 as a function of w (and hence

of z = w + w - ) was already determined in Chapter 1, §11.

8. Free surfaces. In hydrodynamics, a 'free surface' usually

means simply a surface at constant pressure. These arise most

notably in the mathematical theory of gravity waves; as Lamb

wisely observes [A6, p. 231]: "One of the most interesting

and successful applications of hydrodyn.unical theory is to the

small oscillations, under gravity, of a liquid having a free

surface". Lamb then expands on this theme for two chapters, each

110 pages long.

The first of Lamb's chapters is concerned with 'tidal waves',

which Lamb defines [A6, §169] as waves in which "the vertical

acceleration of the fluid particles may be neglected or, more

" precisely,...the pressure at any point (x,y) is sensibly equal

to the static pressure [p = p0 
+ pg(y 0 

+ n -y) ] due to the depth

[y 0 -y] below the free surface [y = n(xz)]".

VIM Lamb's second chapter on gravity waves is concerned with

'surface waves' of which "the most important case...is that of

waves in relatively deep water". By applying the method of

separation of variables to solutions 4(x,y;t) of the Laplace

equation 0 + 4yy = 0 in a vertical plane, that are sinusoidal

in time (normal modes), he is led to look for solutions of the

form

D(8.1) = Acoshk(y+h) coskxe i (wt+a )

He shows that, under the hypothesis of small oscillations, Kelvin's

"free surface" condition (our Chapter 1, (6.9))

(8.2) + g 0, (Chapter 1, (6.12))
(8.2) tt +  Dy ''

which reduces when 4(x;t) = 4(x)e to

(8.2') 2 * = g , A6, p. 364, (8)]
aty
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is satisfied if and only if

(8.3) W2 = gk tanh kh

In the limit, as h t , (8.1) reduces to P = Ae- ky cos kx2
cos(wt +a), and (8.3) to w = gh. In the opposite limit as

h + 0, of 'long' or 'shallow water' waves, the elevation q(x,z)

of the free surface of any time-dependent potential flow satis-

fies the linear, constant-coefficient wave equation
i10

(8.4) =tt = gh(nxx + zz)1

The numerical integration of this DE will be the central concern

of Chapter 5; in this chapter, we will look at other aspects of

the free surface condition.

From the periodic 'small oscillations' satisfying (8.1),

(8.3') derived by Lamb in [A6, Chapters VIII and IX], the general

solution of many wave problems in 'oceans' of constant (or

infinite) depth can be obtained by superposition as Fourier

integrals of these 'normal modes'. That this is possible for

'small' oscillations (in space and time) is guaranteed by general

"completeness" theorems of modern harmonic analysis.

Harmonic analysis in time is always applicable to 'small

oscillations' (i.e., to waves of 'infinitesimal' amplitude), of

'free surfaces' satisfying (8.2) of time-dependent potential

flows with stationary solid boundaries. Moreover, the -formulas

become especially simple in 'oceans' of infinite or constant

finite depth, as we have seen. Since the approximation of infinite

depth is valid whenever all relevant wave lengths are small in

comparison with the depth (in symbols, whenever X << h), these

analytical methods are widely applicable.

However, since potential theory is only indirectly involved,

and since analytical considerations usually dominate numerical

1 0See Chapter 1, §4. Note that the instantaneous normal velocity A-
ri (y,z,t) depends on the entire history of the motion, and
n~t just on the instantaneous normal velocities of the walls.

h -
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considerations in these applications, we will simply refer the

reader to Chiang C. Mei's excellent "Applied Dynamics of Ocean

Surfaces", Wiley, 1983, for a comprehensive survey of what can

be derived by these "wave packet" methods.

The situation is very different as regards waves of finite

amplitude and waves in oceans (or lakes) of variable depth. Such

waves have been treated successfully for a large variety of con-

ditions by the MAC and related methods developed at Los Alamos.

A number of such solutions obtained there, are described in

*[D6] and in the references listed in its bibliography. In com-

puting these time-dependent flows with free boundaries, a

* Dirichlet (and/or Poisson) type boundary value problem for the

velocity potential (and/or vorticity) must be solved at each time

• -step. This makes the "computational complexity" of solving such

problems an order of magnitude greater than that of computing

added mass. Three-dimensional calculations (see [D8],[DIO])

are therefore especially impressive. Necessarily, in making them,

the emphasis must be on expediency rather than on mathematical

I W rigor.

We again refer the reader to the original publications for

*' descriptions and analyses of the algorithms that were found most

effective in solving these problems. Moreover, we will do the

same for the ingenious calculations by Michael Longueth-Higgins

of the evolution of two-dimensional 'breaking waves' 11

9. Ship wave resistance. Being less transient, flows having

stationary free boundaries tend to have greater intrinsic inter-

est. This is especially true of the 'free surface' around a ship

moving at constant speed through calm water of constant depth.

The prediction and reduction of the 'wave resistance' encountered

by a ship under these circumstances is a classical problem of

naval architecture.

" * As with most other wave phenomena, the 'small amplitude' theory

of ship waves is the part most amenable to analytical methods,

1 lProc. Roy. Soc.
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and it is the only one that will be discussed here. From a

scientific standpoint, even the quantitative computation of the

wave resistance of 'thin' ships producing 'linear' waves has not

yet been developed to the point of routine rigorous application,

and we shall take this problem up next.

Linear theory. 1 2 As was first shown by J.H. Michell (Phil.

Mag. 45 (1898), 106-23), the assumptions of potential flow under

gravity and a 'free surface' at constant pressure lead, in the

linearized 'small amplitude' approximation, to a formula expres-

sing the dimensionless wave resistance coefficient C as aw
quintuple integral, as follows.

If R is the (theoretical) wave resistance of a (thin) ship
w

having length L = 2. and beam 2B, moving dead ahead into smooth

water with constant speed v, we define F = gL/v 2 as the

squared reciprocal F = f of the nautical Froude number

f = v/Vg .

We let y = n(x,z) be the equation of the submerged portion

of the hull, which is supposed symmetric about a longitudinal

centerline plane. The longitudinal section is not generally

rectangular, but we enclose it in a convenient rectangle S', as

in Figure 7: the origin is on the water surface amidship, z

goes vertically down, and x lengthwise, positive forward. In

order to obtain a dimensionless representation, we introduce

= x/L, ; = z/L. Then, if y = n(x,z) is the (dimensional)

hull offset at the point (x,z) of the longitudinal section, we

define the dimensionless offset G( ,C) by

(9.1) =

SG( ,c) is defined on the scaled longitudinal sect which is

contained in the scaled rectangle

S: -(1/2) < < (1/2), 0 < ; < D/L

1 2We base this discussion largely on G. Birkhoff, B.V. Korvin-
Kroukowsky, and J. Kotik, Trans. Soc. Naval Arch. Marine Eng.
(1954) , 339-96.
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The dimensionless horizontal slope of the 1 surface is given by

(9.2) h(:,4) =

Then Michell's integral is

(9.3) Rw = p v 2 B2 Cw

where

C 8F2 f f dE d f f dE'd 'h( {)h(r' 1')
S S

(9.4)

0e-A2 2 d
f-e- F(;+ ') 005 XF( - ') d

The salient feature of Equation (9.4) is that the wave

resistance is due to pairs of hull elements, an element at
"., and another element at ',i' contribute

V 7 00 _ 2F ( + CI )
h( )h( , ') d~d~d 'd I f e

1

cos F(-') dA

The integral depends on the horizontal spacing - ' and the sum

of the depths + ' The wave resistance coefficient Cw  is ob-

tained from Eq. (10.4) by integrating (summing) over all pairs.

The integral in (10.4) is "absolutely convergent"; hence the

integrations with respect to may be taken in any

order, yielding a variety of expressions.

Sink and trim. In general, forward motion tends to raise

the bow of a ship, causing it to tilt upward at some 'angle of

trim', and to lift its C.G. These changes affect the wave

resistance, and so an exact prediction of wave resistance requires

• --, calculating the hydrodynamic thrust for enough values of sinkage
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and trim (for given speed) to determine which are in dynamic

equilibrium.

" -To be meaningful, the wave resistance of a ship must also

i- -"be combined with its 'wake' or 'eddy-making' resistance (and

'skin friction'), to determine its total power requirements

(in calm water) at each speed.

10. Interfacial instability. Helmholtz, Kelvin, and

Rayleigh all recognized the natural tendency of waves to form on

stationary 'free boundaries' of fluids in motion. Moreover

" they all realized that in an 'ideal' inviscid fluid, such surface

waves have no tendency to get 'damped out'. For example, on the

two-dimensional flow under a sluice gate depicted in Figure

one can superimpose a periodic wave train downstream. Again, the

'hydraulic jump' that forms downstream of the flow over a spill-

way is another familiar wave-like phenomenon. Likewise, by ex-

ploring the effects of surface tension, Rayleigh uncovered a

fascinating range of phenomena associated with interfacial waves

on capillary jets.

This tendency of waves to form or instability is especially

easy to predict mathematically in the case of (nearly) parallel

* flows with straight streamlines of discontinuity, such as the

jet from a straight tube (Figure 7a), already mentioned in Chapter

1, j , or of a uniform wind over a horizontal plane surface (Figure

7b). Other examples of potential flows enveloping an idealized
'cavity' or stagnant 'wake' at constant pressure will be discussed

in Chapter 8.

13Helmholtz instability. Helmholtz showed that although

such 'discontinuous' potential flows might be in equilibrium,

this equilibrium was in general strictly unstable. His demon-

stration, like its subsequent generalizations by Kelvin and

Rayleigh, considered the stability of sinusoidally perturbed

interfaces. Specifically, he solved the Euler-Lagrange equations

H. Helmholtz, op. cit.
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for the 'slip flow' associated with two ideal fluids having the

configuration of Figure 8, with

y U if y < 0 ,p if y < 0
(10.1) u(y) p(y)

Uif y > 0 ; P' if y > 0

in the unperturbed state.

To this he applied the theory of small oscillations for the

interface y = n(x,t), which has eigenfunctions n(x,t) A(t)sin kx.

For each wave number k, relative to axes moving with velocity

(10.2) U = (oU + p'U')/(p +p'),

the amplitude A(k) of each sinusoidal component in the Fourier

expansion of n(x;t) satisfies a second-order ordinary DE of the

form

2 2
(10.3) d A/dt2  S(k)A

This remains true (because the relevant DE is invariant under

horizontal translation) when surface tension and gravity are
14

taken into account. As Kelvin showed, the coefficient S(k)

in the DE (10..,) is given in general by

2 2
k,) 2(gh y(10.4) S(k) P P  2 U' h)

where y is the interfacial tension. It follows that perturba-

tions are neutrally stable for all wavelengths X = 27/k if and

only if g(p-Q') > 0 (heavier liquid below), and

(10.5) 2/g(o-p )y > oc '(U-U') 2/(p +p')

otherwise, the interface is strictly unstable.

14
Math. and Phys. Papers, vol. 4, pp. 76-100; Rayleigh, Theory of
Sound, 2d. ed. j365. This section is based on the article by
one of us in Proc. Symp. Appl. Math. XIII, pp. 55-76.

doi'



Taylor instability. As G.I. Taylor pointed out n a series

of classic papers,15 acceleration a of the fluids (assumed to

be incompressible) normal to the interface can be combined with

gravity, thus replacing g by the 'net gravity' or 'effective

gravity' g-a in (10.4) and (10.5). When (a-g)(2-j') - 0

(the acceleration dominates and is from the lighter toward the

heavier fluid), we have the pure 'Taylor instability' of a heavy

liquid separated by a horizontal plane from a pressurized gas

which holds it up.

* Three important qualitative conclusions follow from the pre-

ceding formulas [B6, p. 252]:

A) Relative tangential velocity U-U' is always destabilizing.

(Helmholtz instability)

B) Acceleration from a light towards a denser fluid also

destabilizing; (Taylor instability)

C) Surface tension is always stabilizing, and always makes

*sufficiently short ripples stable--hence making the initial

value problem well-set.

Nonlinear effects. Philosophically, Helmholtz instability

has been invoked to explain the 'generation of waves by wind'

qualitatively, within the framework of discontinuous potential

flow models. It has also been proposed to explain qualitatively

• "the flapping of flags, and the formation of 'mackerel' clouds in

the sky. Unfortunately, these attractive philosophical explana-

tions have not, ever after a century of ingenious speculation,

led to a precise quantitative explanation of the observed sizes

of gravity waves as functions of the wind speed and duration.

Nonlinear effects. Although viscosity and turbulence are

obvious factors which have been neglected, and which may have an

important influence on the generation of the neutrally stable

waves mentioned in j9, it is primarily nonlinear effects that

limit the applicability of formulas (10.1)-(10.5) to the strictly

unstable interfaces of primary corcern to us here. As Hel.;noltz

15Proc. Roy Soc. London A201 (1950), 192-6; D.J. Lewis, ibid.
A202 (1950) , 81-36. See also R. Bellman and R.H. Pennington,
Quar. Appi. Math. 12 (1954), 151-62.
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realized, vortex flows have a curious nonlinear evolution; we

shall take this up in Chapter 7.

11. Free streamlines. Time-independent flows bounded by

free streamlines at constant pressure provide potential flow models

for a variety of fluid motions. Classic examples include the

steady two-dimensional potential flows with free streamlines,

of the kind discussed in Chapter 1, §9. These were proposed by

He-mholtz, Kirchhoff, and others as models for jets and wakes,

in homogeneous, incompressible fluids of constant density. In

such fluids, one can eliminate the effect of gravity by considering

the difference P = p- pG between the total pressure and the

hydrostatic pressure, as in Chapter 1, §7. By Bernoulli's equa-

tion, if stagnant fluid with P = const. is on one side of the

free streamline, such a 'free' streamline will be in equilibrium

if and only if the flow speed q is constant on the free streamline.

This observation makes it possible to apply conformal mapping

techniques to relate the complex potential W = + i, to the

conjugate velocity c = u- iv for a variety of plane flows past

plates and wedges, so as to predict the shape of a wake or jet;

see Chapter 1, §9, for some examples.

In a notable 1906 paper, Levi-Civita reduced the determina-

tion of plane flows with free streamlines past curved obstacles

to the solution of an integral equation. However, to det-.:,ine
• 16

the separation point mathematically is difficult. One must

consider a one-parameter family of integral equations, and see

which of these satisfies the Brillouin-Villat condition of 'finite'

curvature of the separation point. How to do this will be explained

in Chapter 8.

* . The literautre on the subject prior to 1920 is summarized

by Lamb in [A6, §§73-8]; for a more thorough tratement, see [A4,

Chapters I-VI]. A brief but lively account of the state of the

subject in 1940 was given by von Karman in Bull. AMS 46 (1940),

16As Lamb remarks dryly [A6, p. footnote: "The working out

of particular cases presents great difficulties".
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613-82. Deep existence and uniqueness theorems for such flows

with free streamlines of constant flow speed have been proved

by Levay, Weinstein, Lavrentsen, Paul Garabedian and others;

several of them are in [A4, Chapter VIIIi.

Since 1940, it has become customary to apply the preceding

-"mathematical model to describe air- and vapor-filled cavities

which fona behind cylinders and solids moving at high speeds

" through water. At high speeds (if U2 >> gd), gravity can again

be neglected. Moreover, the free streamline separating the liquid

from the gas phase is much less unstable than in the case of wakes.

Finally, it should be observed that Villat was able to apply

. conformal mapping techniques to reduce the determination of a

117

-free streamline under gravity to a nonlinear integral equation. 1

See G. Birkhoff, Proc. Am. Soc. Civ. Eng. (1961), [A4, Chapter
VIII, il], 17-22; G. Birkhoff and David Carter, J. Rat. Mech.
Anal. 6 (1957), 769-80.

9~t
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5. SOUND WAVES

1. Introduction. The wave equation in m space dimensions,

(.) tt = c272 u = c2  a2 u/ax2

j=l

is one of the best understood differential equations (DE's) of

mathematical physics. As we have seen, it arises in the theory

of 'long' gravity waves (Chapter 1, §M3-4), and it plays a central

role in the theory of sound (Chapter 2, §2). For more detailed

derivations, see the treatises of Lamb [A6, Chapter 101, Morse

and Ingard [E12, Chapter 61 and Whitham [B12, Chapter 7].

In the theory of sound, as was explained in Chapter 2, §2,

it is satisfied (approximately) by u = 6p, 6p, and all components

of 7(Wp) such as Su. This chapter will be mainly devoted to

schemes for its (approximate) numerical integration, including

* -(in §4) the difference approximation (of Courant-Friedrichs-Lewy)

* already mentioned in Chapter 3, §2.

Our analysis of these schemes will be based on mathematical

properties of the plane wave solutions of (1.1), of the form

m
(1.2) u = exp[i(k-x+wt)] = exp[i( I k.x. ±wt)]

j=l ] 3

where k = (kl,...,km) is a real wave vector and w = ck, where

m 2 1/2
(1.2') k = Ik = ( k )

j=l j

The progressive waves defined by (1.2)-(1.2') are simply harmonic

in time and space; for algebraic convenience, we have presented

them in complex form.

Standing waves. For any given wave vector k = (kl,..., km),

there are four related linearly independent real standing wave

solutions of (1.1), namely

iChapters 5 and 6 have been co-authored by Prof. V.A. Dougalis of
the University of Tennessee. Chapter 5 is a slightly modified
copy of the first half of [E51

II
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{COS k x {cos}

(1.3) u = - {s}t, = ck

The wave equation is reversible in time and space, and the sub-

space spanned by these is unchanged if k is replaced by -k

and/or w is replaced by -w.

For any fixed wave vector k, the DE (1.1) and the initial

conditions

(1.4) u(x;Q) = a cos k-x + b sink'x

and

(1.4') ut (x;O) = a' cosk-x + b' sink-x

are satisfied in Rm by the linear combination

(1.5) u(x;t) = (acosk-x + b sink-xj cosckt

+ a' bI
+ [cs k'x + b- sink-xl sin ckt

of the four real solutions listed in (1.3). This suggests that

the general free space (or 'pure') initial value problem speci-

fied by the DE (1.1) and initial conditions of the form

(1.6) u(x;0) = Ia(k) cosk-x + b(k) sink.x]dK

and

(1.6') u t(x;O) = J[a'(k) cosk'x + b'(k) sink-x]dK

where dK = dk1 dk 2 *.. dk has the solutioni. m

(1.7) u(x;t) = f{[a(k) cosk-x + b(k) sink.x] coswt

a'(k) b'(k)
+ [ - cosk-x + --- Rsink-x] sinwt}dK

where dK = dk 1 dk 2... dk m.

Plancherel's Theorem. Many existence theorems for the initial-g

value problem in free space can be based on the preceding formulas.

[-
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Underlying them is Plancherel's Theorem, which establishes an

isometric isomorphism between the space of square integrable

functions u(x) and the space of square integrable Fourier trans-

forms c(k). For algebraic simplicity, we will only write down

the formulas for the univariate case, and we will write them in

complex notation. These formulas
00

(1.8) u(x) = f e ikxf (k)dk

and

2. f ikxu()x
(1.8') f(k) = f e u(x)dx

define isometric isomorphisms between the complex Hilbert space
2L2(- ,) of all Lebesque square-integrable functions u(x) and

that of all (Lebesque) square-integrable Fourier transforms f(k).

The initial value (or 'Cauchy') problem for (1.1) (with

* m = 1) has a simple solution in terms of the resolution (1.8)-

(1.8'). Namely, given

(1.9) u(x,0) eikxf(k)dk
-wo

and

(1.9') ut(x,0) = f eikg(k)dk
--O

this solution is

0i kx(1.10) u(x,t) f e A(k,t)dk
-00

where

(1.10') A(k,t) = fk) cosckt + [g(k)/ck] sin ckt

As is explained in Appendix C, these formulas and their

generalizations permit one to analyze the accuracy of many dif-

ference and finite element schemes for integrating the wave equa-

tion (1.1) numerically, in terms of their accuracy for simply

LI
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harmonic waves of the form exp[i(k-x ±ckt)], k = k . This

analysis is based on a simple general principle: errors having

different wave vectors (and hence in components coming from non-

overlapping regions of the 'spectrum', propagate independently.2

See also Vichnevetsky-Bowles [E14], which presents a similar

analysis with many carefully chosen illustrations.

WAVPACK. For m = 1 and 2, most of the algorithms des-

cribed in this chapter, together with some others on nonlinear

one-dimensional waves (see Chapter 6), are being incorporated

into a collection of FORTRAN programs called WAVPACK. This in-

cludes subprograms for treating initial and boundary conditions

(mostly of Dirichlet or Neumann type). This effort supplemented

with starting procedures and treatment of boundary conditions

(usually for Dirichlet or Neumann data), have been incorporated,

together with some others on nonlinear waves, into a collection

of FORTRAN programs called WAVPACK. This effort began in 1975

.. at Harvard University and is now continuing at the University of

Tennessee, Knoxville, with the added participation of Professors

M.D. Gunzburger, Ohannes Karakashian, and S.M. Serbin. Having

started with rectangles and constant coefficients we are now in

the process of including programs with more general domains and

variable coefficients. When documented, this collection might

.-. '-serve as a pilot model for a package for solving hyperbolic

- -~ problems at modest cost. We realize that such programs cannot

compete with the far more sophisticated programs developed at

major laboratories for solving practical problems. However we

-•hope that the simplicity and economy of WAVPACK will make it

generally useful as a tool for an introduction to the subject.

2. Boundary conditions. Clearly, the simple and elegant

solution of the initial value problem for the wave equation pre-

sented in §1 can only be used in an infinite fluid occupying all

of space. We will next describe some simple boundary conditions,

present in most applications.

2 provided that the difference and finite element approximations

are made on a uniform mesh.

L.
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. . Fixed boundaries. On solid or liquid boundaries enclosing

a room or other domain Q full of a gas such as air, the fluid

acceleration normal to the boundary aS2 = r is negligible be-

cause of the low density of gases. Hence sound waves in gases

satisfy the fixed boundary condition

(2.1) 6p 6t 0 on 2
n n

of purely tangential acceleration on the boundary.

Simplest is the one-dimensional case, m = 1, in which

can be assumed to be an interval [O,£] and (2.1) to reduce to

(2.2) x 0 () = 0

By proper choice of units of length, we can make = , and

hence assume that
p.0

(2.3) P (x,0) = a cos kx
k=l k

and

(2.3') Pt(x,O) = a' cos kx F
k=l

from the theory of Fourier series. The initial-boundary value

problem can be solved for the DE (1.1), the boundary conditions

(2.2), and the initial conditions (2.3)-(2.3'), by setting

(2.4) (x,t) = z A(k,t) coskx
where

(2.5) A(k,t) = ak cos ckt + (bk/ck) sin ckt

The preceding separation of variables is analogous to the

classical theory of "small oscillations" about stable equilibrium

of a Lagrangian dynamical system having a finite number of degrees

of freedom (see Appendix A). In "generalized coordinates" i,
the energy of such a system is the sum
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l .. T * T~a
(2.6) 1[jajkqjqk + lb = T A+q B

of two quadratic forms. The "mass" or "inertial" matrix B =jIbjkl

is symmetric and positive definite, while the symmetric "stiff-

ness" matrix A = I ajkl I may only be positive semidefinite.

This system's equations of motion are

(2.7) Ba + Aq = 0

while its normal modes are the eigenvectors Q of the generalized

eigenvalue problem

(2.8) AQ w 2BQ,

whose eigenvalues w are all nonnegative. The simply harmonic

oscillations are the real and imaginary parts, Qcoswt and

Q sinw t, of

iw t(2.9) q(t) =Q e

Hence the "standing waves" defined by Eqs. (2.4)-(2.5) can be

viewed as generalized "normal modes" of oscillation.

3. Dispersion analysis: plane waves. We now illustrate the

preceding general remarks about numerical dispersion by consider-
3

ing the simple case m = 1 of plane waves. To this end, we

recall from Chapter 2, j§2-3 and j5, Lagrange's semi-discretization

(by "beads on a string") of the one-dimensional wave equation

2
(3.1) u = c utt xx

for the initial conditions

,"ikx ikx
(3.2) u(x,0) = e i, t(x,0) -iee 0 < x < 1

3For a general discussion of this phenomenon, see [E16].
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To avoid the complications introduced by most boundary conditions,

we will choose as our domain Q either ( or the periodic

case.

As previously, the initial value problem defined by (3.1)-

(3.2) has the obvious exact solutions

(3.3) U(x,t) ei (kx "wt)

provided w = kc. Here k = 27/, where A is the wave length.

In the spatially periodic case most tractable by computer, the

spatial period must be integral multiples JA of the wave length.

For mathematical simplicity, we will use A as the unit of

length, thus making A = 1.

The case of initial-boundary value problems on a finite

interval [O,a], with the boundary conditions ux (0) = ux (a) = 0

appropriate to sound waves, can easily be reduced to the periodic

case by setting (multiple reflections)

() u(x,t) = u(-x,t) u(2a-x,t) = u(x+4a,t)

For the boundary conditions u(O) = u(a) 0 appropriate to a

vibrating string, one sets instead

' (**) u(x,t) = -u(-x,t) = -u(2a-x,t) = u(x+4a,t)

Consider now Lagrange's finite difference semi-discretization

of (3.1) by a three-point central space difference on a uniform

mesh. I.e., let x= jh, 0 < j < J, Jh = 1 be a uniform

partition of (0,11 and v.(t) be an approximation to u(x.,t)

" satisfying the second-order system of ordinary differential

equations

g .. 2

2(3.4) vj (t) =c-(vj+l 

with the periodic boundary conditions v0 (t) =vl(t), v (t) =v,(t).0 1 J+l
i 4

4This corresponds to the 'equatorial canal' mentioned in Chapter
1, 33. Vertical walls at the ends of [a,b], which make
./n = 0 there give periodic waves with period 2(b-a).

Le.
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Now suppose that the initial conditions v (0), vj(0) are

exact at the nodes, i.e., let

(3.5) vj(0) = e , v(0) = -iekjh

By inspection, (3.4) has solutions of the form
i (kjh-wht)

vhh et, where by substitution in (3.4), we have
2

(3.6) 2 - 4c si 2 khhh2 sin -

Defining now ch W h/k, the discrete wave speed, and
hCh hh

(3.7) h c

it is seen by (3.6) that 5h is given by

sin a - 2 4(3.8) h- = I + 0(a

where a = kh/2 = 7h/X.

Now, the initial value problem (3.4)-(3.5) may be solved

explicitly by assuming solutions of the form q(t)eik jh and

determining ,(t) from the initial data (3.5). It is straight-

fo w-ard to verify that its solution is

(3.9) v (t) = (cos yhWt - ikjh

with Yh given by (3.7).

Consider next the relative error at the node x. at time
J

t of the semi-discretization (3.4)-(3.5), defined by

t: = j i(t) = (u(x.,t) - vj (t))/u(xj,t), where u(x,t), the solu-

tion of (3.1)-(3.2), is given by (3.3). The relative error is

independent of j and is given by

(3.10) e - e (cos ¥hwt - .- sin-(hWt) _
h
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Letting now Q = wt, (where Q/2T is the number of time
periods computed up to time t), it is seen by (3.10) that, for

(- (y -1)Q small,

'-(3.11) jI] y-iI I1 -sin Q~ eiQJQ "

Note that the second factor in the right-hand side of the above

is bounded for all t 0 and tends to 1 as t - . Hence,

the significance of keeping the dispersion Iyh -lI small is

evident from (3.11), since it is reasonable to require that an

accurate approximation to (3.1) have for each t > 0 a small

relative error per node per time step, computed up to time t.

As remarked above, the periodic initial value problem

treated above can be treated by computer. In this case, A and

B are cyclic (circulant) symmetric matrices with B positive

definite and A positive semidefinite. Setting v0 (t) = vj(t)

and vj+l(t) = V1 (t), the problem is easily handled using WAVPACK.

Full discretization. Much as was done by Courant-Friedrichs-

Lewy, one can further discretize (3.4) in time as well as s, ce,

setting At = rAx/c. Substituting the trial solution ei(kjhwhnAt)

into the fully discrete schemes gives formulas for _h and y

(as functions of At too) analogous to (3.6), (3.7). By solving

an initial value problem for a system of difference equations

(analog of (3.4)-(3.5)), the relative error may be computed

again at time t = nAt, and its dependence on 7h -11 exhibited.

For example, in the case of the standard 5 point-approximation

to (3.1) discussed in Chapter 3, 72-3,

n+l n n-l 2 n n n
(3.12) v - 2v +V = r (V - 2vn +v )

with exact initial conditions and with r = cAt/h 1 I, it can

be shown that (3.11) is replaced (at t = nAt, n 0) by

! 1 o 0(3. 13) (h 1  1 -

In the next section, we will consider in detail (3.12) and other

- full discretizations of (3.1).
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4. Second-order accuracy: plane waves. We consider next

simple finite difference approximations of the (pure) initial-

value problem for u = c 2U on a uniform rectangular mesh in

space and time with mesh lengths Ax = h and At, respectively.

Denoting first by u.(t) the semi-discrete approximation to

u(jh,t), already discussed in the previous section, we have as

before the Lagrange semi-discretization, equivalent to the

molecular model discussed in Chapter 2,

2Ux t)(t(4.1) h2u (t) 

. where 6 u. u 2u. +u.~~~x ] J+ I  jl

Approximating d2/dt in (4.1) by a 3-point central dif-

ference quotient, we again obtain the 5-point explicit scheme

(. n+1 2 n n 2 n n

(4.2) u. = r (u +u ) + (2-2r2)u.-u Ij j-1 Uj+l j 3

where r = cAt/h. This scheme, whose stability we analyzed in
2 2

Lecture 1', §2, has a local discretization error of O(At +h 2 )
0 1

If r : 1, and the initial approximations uj, uI are taken

to be f(jh,0) and5

12 220
(4.2') u. = f(jh) + At g(jh) + r 5 2 u 0

respectively, and if f,g C then the global discre-

tization error is also O(At 2 +h 2)

In the case of an initial-boundary value problem with given

Dirichlet-type endpoint conditions u(Q,t) = a(t), u(l,t) = 3(t),• C2
the same is also true for f,g C [0,1], provided that the

6 compatibility conditions c(0) = f(0), cV'(0) = g(0), 3(0) = f(l),

and 3(0) = g(l) are satisfied.

5Formula (4.2') can be derived by expanding u(x,t) in a Taylor
series and using the identity = c2u

tt xx

.
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For r = 1 (4.2) reduces to

n+l n n n-i(4.3) u uj+ + uj -uj

0 1It is easy to see that if u., u. are exact, then (4.3)

will provide, for n 1 the exact values of the solution of the

initial-value problem for utt = c2 uxx at the nodes (xj,tn).

This follows from the fact that for r = 1 both the solution and

the fully discrete approximation admit the d'Alembert decomposi-

tion--the latter at mesh points--u(x,t n ) = ,(x. +ct n ) +x(x. -ct n ) .
3 3 3

However, this "exact" simulation property of (4.3) does not

generalize in the presence of approximate initial and boundary

conditions, variable coefficients or, more importantly, to higher

dimensions. Hence, one is justified in investigating other schemes.

For example, Richtmyer and Morton [26, Chapter 101 in addition

to (4.2) study a 9-point implicit full discretization of (4.1),

[26, (10.7), p. 2633. Both sche ies are special cases of a

general implicit method suggested by von Neumann [64, p. 231,

(10)3:

2 n 2 2 n+l 2 n 2 n-l > 0.

(4.4) 0t5u = r [ 6x .uj + (1-2a) .x u + x 3 1, . --

The scheme has again a discretization error of O(At 2 +h2). For

= 0 it reduces to (4.2) and the case a = 1/4 is considered

by Richtmyer and Morton. For a = 1/12 we obtain the St~rmer-

Numerov method of O(At 4 +h 2) accuracy. It is straightforward

to verify that for -1 1/4 the scheme is unconditionally stable,

but for a < 1/4 the stability condition on r is r = ._/l- 4a.

The solution of (4.4) for the values of the vector u (given

u(0,t) and u(l,t)) requires the decomposition of a tridiagonal

matrix (once) and for each n, the formation of the right-hand

side and two backsolves. The operation count is 7 multiplica-

tions and 8 additions per mesh point (x.,t n+l). Of course,

larger time steps are permitted by the less stringent (or non-

q , existent) stability restrictions on r.

We determine the numerical dispersion of the schemes (4.1),

(4.2), (4.4). As in j3, substi.tuting the trial solution

._
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i (kjh-wht)
u. = e into (4.1) gives, with ch = wh/k, =h/

Y = ch/c, much as in §3,

2 4
(4.5) ¥h sin a/a = 1 - 2+ 0(6).

For the explicit fully discrete scheme (4.2), substituting

the solution u. = e i (k jh - 'h n t ) in (4.2) gives the numerical

dispersion relation

(4.6) sin(rayh) = r sin a

In series form, (4.6) gives

2  
2 4(4.6') 7h = 1 -2-(l - r2 ) + O(4

The analogous equation for the implicit scheme (4.4) is

(4.7) sin(r (h) = r sina(l+ 4ar 2 sin 2 ()-1/2

giving the series

2
(4.7') (h = 1 - G--[1 + r2 (12a-1)] + O(a 4

From (4.6'), (4.7') we conclude that the explicit scheme (4.2),

even when r 3 1, has always the least numerical dispersion

I'-Yh! among the one-parameter family of schemes given by (4.4).

Table 3.1 shows the variation of fh with h/X as computed from

formula (4.7) for c = 0, 1/4 and for r = 0.5, 0.7. We see

that the explicit scheme (a = 0) gives better results. Figure

3.1 also makes this point quite clear.I
Finally. Table 3.2 shows the numerical results for a test

problem given u(0,t) and u(l,t) with exact solution

u(x,t) = cos r(x+t) + sin 1T(x+t), 0 x 1, 0 < t < 10. The

solution is approximated by three schemes (a = 0, 1/12, 1/4)

with exact starting conditions.
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Table 3. 1

Scheme rI 0.5r 0.

0.5 .6667 .5903 .______ .5554__

0.2_____ .9495 .9099 .9641 .8875

0.1_____ .9876 .9759 .9915 .9687_

0.05 .9969 .9939 .9979 .9919

0.02 .9995 .9990 .9997 .9987

0.01 .9999 .9997 .9999 .9997

CIO

i00 5 10 15 2 0 25 30 35 40 45

The column e denotes the maximum error at t =10 and the

column T the computing time (in seconds, double precision,

FORTRAN H compiler of the Harvard-MIT IBM 370/168).

Ilk
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Table 3.2

S0 a =1/12 2=1/4

h At e T e T e T

.1 .2 unstable - unstable - 3.95-1 .04

.1 .1 exact .04 1.20-1 .07 3.06-1 .06

.1 .05 9.25-2 .07 1.20-1 .12 1.74-1 .12

.05 .1 unstable - unstable - 2.45-1 .09

.05 .05 exact .09 3.17-2 .15 9.20-2 .16

.05 .025 2.40-2 .16 3.17-2 .31 4.72-21 .29

5. Second-order accuracy: cylindrical waves. We now take

up the two-dimensional analogs for equation (1.1) of the differ-

ence schemes discussed in the previous section. On a uniform
square space mesh with mesh length h, denoting by u z(t)

the (semi-discrete) approximation to u(jh,kh,t) we obtain the

following semi-discretization, analogous to (4.1)

(5.1) jz(t)= U. t)

where

S(5.1') -';uj -=Uj~, +uj,+ + Uj~ +uj,_ - 4uj
jz uj+l,z uj,z+l j-l,z j,2-1 4uj,

This system of ordinary DE's expresses the equations of motion

of a square array of molecules of mass m, supported by a network

of strings under uniform tension T. Here c2 = T/p, as for am/h2

vibrating string, where p = /h is the mean density per unit

area. Thus c2 = h2T/m.

Likewise, the analog of (4.2) is the 7-point fully discrete

explicit scheme

2 n 2 n• <[(5.2) ut j r "uj

t j j
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This scheme is stable if r tVh. It has a discretization error
2 2of O(h +At provided that the stability condition is satis-

fied, and the initial data u0 , u are sufficiently accurate.

Initial data. The accurate determination of u(x,lt) from

given u(x,O) = f(x) and ut(x,O) = g(x) is nontrivial in

general. In this special case g(x) E 0 of release from rest,

one can use symmetry: u(x,-t) = u(x,t). Therefore, in one

dimension, if we use the exact 4-point formula, (4.2) with r = 1,

1 -1 1 0 0Uj j 3 +1 + uj I-

The opposite case f(x) 1 0 is more difficult; only (ut)j can

be computed exactly from (u and the DE.

To treat the general case (in 1D), with arbitrary accuracy,

one can use d'Alembert's decomposition to derive an exact

analytical formula for computing u(x,At), 6 with arbitrary

accuracy. In two-dimensional sound wave propagation theory,

if u(x,y,0) = f(,xy), ut(x,y,0) = g(x,y) we may take, if

f, I are sufficiently smooth, u1 = fj uj, = fj + \tgjz

+ f For Dirichlet boundary conditions on a rectangle,
2 -' j z

say, (5.2) is straightforward to use and requires 2 multiplica-

tions per meshpoint.

The analog of the one-dimensional von Neumann scheme (4.4)

is the 15-point implicit scheme

2un 2 ,, n+l n, n-I(5.3) 5 = r [l 2 u., + (1-2a) u., + I ujzI, a L 0

2 2

This also has formal accuracy 0(_it +h (and reduces to (5.2)

for a = 0). It is straightforward to verify that for a > 1/4

(5.3) is unconditionally stable, the restriction on r for

a. < 1/4 being r * [2 (l-40)]-1/2 For a > 0, instead of solving

the banded linear system (5.3) for the uj , one can implement

this scheme in a predictor-corrector form, as follows:

S6H. Weinberger, "Partial Differential Equations", Chapter 1.

!-
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(5.4) Predictor: j 2 - en-i + r 2  u n
j2. j z j j

(.4') Corrector: 6 2n+l 
2  -n+l n  n-1

Correct: tuj r [a-,\u + (l-2a) un +a u

This predicts by the explicit scheme (5.2) anr corrects using the

implicit scheme (5.3). Moreover, (5.4)-(5.4') can be combined

into the single equation

(5.5) 2tuj n= r [ uj + ar2 3 ) ]

This predictor-corrector scheme is still accurate of 0(At2 +h 2);

however, the unconditional stability of (5.3) is lost. It can

be shown that, for a - 1/16, (5.4)-(5.4') is stable if

r < 1/"8_. The operation count for (5.4)-(5.4') is 8 multipli-

cations per meshpoint per time step.

To find the numerical dispersion for the semidiscretization

(5.1) we substitute the trial function u.£ = ei( p jh+q kh -wht) -:

into (5.1) and, recalling from §2 the notation k = p2 +q 2 = 2rr/X,

p = k cos e, q = k sin e, a = rh/ , Yh = ch/c = wh/w' we obtain

(5.6) "fh = [sin2 (a cos ) + sin2 ( sin )]i /2/ /a /A(ae)/o;

or, in series form,

(5.6') h = 1 -1 2 4 44
(1 -2 (cos4a +sin 4) + 0(a 4

Note that the two-dimensional case reduces to the one-dimensional

(4.5) for 0 = 0. Also the phenomenon of numerical anisotropy,

already discussed in §2, (i.e., different numerical dispersion

along different directions 8) is evident from (5.6).

The corresponding relations for the explicit scheme (5.2),

obtained by substituting u = ei(p jh+qkh -whnAt) in (5.2),
jZ

become (with A = A(a,e) defined by (5.6))

(5.7) sin(royh) = r/A,

|'-•J
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-* - ,254-214

"= 1 -- (cos4 + sin 4 - r ) + (j4

For the implicit model (5.3) we obtain

(5.8) sin(raYh) = r[A/(l + 4cA) 1/2

2
1 2[.44 2 4(5.8') Yh 6 -I cos 4  + sin e + r (12c-1)] + 0(a

Finally, the predictor-corrector scheme (5.4)-(5.4') has numeri-

cal dispersion given by the formula

(5.9) sin(rayh) = r[A(l-4cA)]1/ 2

where Yh is given in series form by an expression agreeing

with (5.8').

Table 3.3 (cf. also Fig. 3.2) shows the variation of

as a function of h/X and 8 for r = .5 and r = .7 for the

explicit scheme (5.2) and the implicit scheme corresponding to

a = 1/4 in (5.3). Clearly the explicit scheme is more accurate.

The results are confirmed by numerous test problems. For

example, considering Dirichlet boundary conditions on the unit

square for an exact solution given by u(x,y,t) = sin 7(x +y +V'ft),

0 < x, y < 1, 0 < t < 5 and computing with the explicit scheme

(a = 0) and the predictor-corrector scheme (5.4)-(5.4') with

a 1/16 we obtain the results of Table 3.4 (e is the maximum

error at t = 5, T is the computing time in seconds).

We see that the doubling the time step that the use of the

predictor-corrector scheme permits does not result in any cost

4 .savings. Moreover the errors, as expected, are a bit larger.

We finally briefly discuss the application of alternating

direction methods for the solution of (1.1) in two space dimen-

sions. Lees, [61], noticed that the von Neumann scheme (5.3)

can be perturbed (preserving second-order accuracy) to

r[ - -. .- '- - --.
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r 0.7

h/x 0.5 0.2 0.1 0.05 0.02 0.01

scheme

16 \ .de. i Imol x Exol Imol Exl Imol Expl Im o Exo -Iol Exol -mp1

0 .7052 . 5 5 5 4 1. 9 64 1 .8875 .9915 .9697 .9979 .9919 .99971 .9986 .9999 .9997
" 5 .7135 .5594 .9652 .8883 .9917 .9689 .9980 .9920 .99971.9987 .9997

10 .7373 .57041 90683 .8907 .9924 .9695 .9981 .9922 .99971.9987 .9997
15 .7377 .5863 .9730 .89441.9936 .9707 .9984 .9924 .9997'.99881 .9997
20 .8188 .6045 .9788 .8989 .9949 .9719 .9987 .99281.9998 .9988 9997
25 .8677 .6223 .9849 .9036 .9964 .97331.9991 .9931! 9998K.99891
30 j.9150 .6379, .9906 .90801.9977 .9746 .9994 .99351.9999.9989
35 .9551 .64991.9952 .9115 .9989 .9756 .9997 .9937 .99991 .999 I
40 .9824 .6574' .9982 .9139 .9996 .9753 .9999 .99391.99991.9990 , 1.9998
45 .9921 .59901 .9993 .9147 .99981 .9765 .9999 9940f .9999f .9990j j.9998

r = 0.5

h/A 0.5 0.2 0.1 0.05 0.02 0.01
I

d E I E 

'0 1.00'57 .5903 .9495 .9099 .9876 97591.99691.99391.99951.990 .9999.99781
5 .6735 .59501.9505 .91081.9878 .9721. .949.99951.9990
10 .6928 .6082 .9535 .9134 98861 .976C3 .9972' .9941 .9995: .3991
15 .7218 .62731 .9580 .91731.98971 9779 .9974 .99441 .0396 .99
i 20 .7563 .6477 .9635 .9221 .9910'.97921 .9978 .9947;.999! .999i

25 .7920 .57181 .9693 .92721.992 8,061 .9981 .995]t .9997i

130 .247 .6913 .9747 .9320 .99401 .98191 .9985 .99541.99931 .99931
35 .8=091 .70631.9791 .93581.9949 .9830 .9987 .995371.99981.99931
40 I.8578'.7158 .9820 .9383 .9956 .9836 .9989 .9958 .99981.99931

45 <.8371791_.9830 .9392 .99581.9839 9990 .9959 99981.999 [

Table 3.3

* .. - -.- -- I
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BILINEAR FliairE ILEMENT SEMIOISCPECTIZArioN
-- EXPLICIT 5CM4EME r -0.7

7h ...... FIN OIFFERENCE SEMlI ClE TIZ ATION

-IMPLICIT SCmEmE e-0.7, a-1/4
v.0. 5, a -

1
/

4

BICUSIC SPLINES OR HEFIMITE SEMIOISCRETIZATION

.0 5 10 15 20 25 30 35 40 45
1.0-

--- - - - - - - -

.................................. 

.

Fir?"2VARIAION OF 7WIT.H 9FOR hl) -0.2

Scheme h r e T

C 01 .7 1.78-3 .30

.05 .7 4.42-4 1.30

P.C. =1/16 .1 1 .4 3.64-3 .33

.05 1.4 5.58-4 1 .56

Table 3.4
'AL
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(5.10) 2uj£ = r 2.Lauj. + (1-2a)u. +auj ] -r 2 x 2 (6 2 un
t j jZ jZ x y t jk

The advantage of (5.10) is that it is equivalent to a two-

step scheme, each step of which requires the solution of one

,- ".tridiagonal system of difference equations in the x-, resp. y-,

direction; following the implementation of Fairweather and Mitchell

[57] we may rewrite (5.10) as

-n+l n un-1 2 2 n+l an  n-l r22 n'(5.11) uj - 2uj + ju r 6x[aUj + (1-2a) u Z + Luj + yr j I,

(5.11') n+l + 2 2 n+l n n- l

YjZ Uy(ujz 2uj 3+u

Lees, [61] shows that the perturbed von Neumann scheme (5.10)

is also unconditionally stable if a > 1/4. It can be easily
•2)

checked that the dispersion of (5.10), up to 0( ) terms, is

given by the series (5.8') . In addition to (5.10) Lees also

analyzes another perturbation of (5.3) that factors in ADI form.

Somewhat more generally we remark, following [57] that any scheme ,

of the form

2 n n+l 3 n-i 2 2 n+l n n-l(5.12) tu + (au +bu cu ) + x y (duj +eu +fu ) = 0

may be factored in the equivalent two-tridiagonal system form

-n+l n n-i 2 ~n+l n n-1(5.13) uj Z 2 jZ +U j + 6x(aujz +bu +c +

2 e (ben + (c f un- l ] =0+ 6 (b-). uy a jZ a j.Z

(5.13') un+l -n+l 32[aun+l eun + f u]n- ,

jZ =j a j, a B

2
provided d = a

7ADI is an abbreviation for "alternating direction implicit"--
a procedure which solves for the (tridiagonal) horizontal and
vertical components of 72 on successive 'half-iterations'

h on successive.......... ",i o.
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6. NONLINEAR ONE-DIMENSIONAL WAVES

1. Introduction. Wave propagation has fascinated mathe-

maticians for a very long time. An outstanding and comprehensive

general reference is the recent book by Whitham [D23]. Here one

will find well-motivated and authoritative explanations of the

phenomena of shock formation, diffusion and dispersion. To give

more structure to an exceedingly broad subject, Whitham distin-

guishes two main classes of waves: hyperbolic waves, whose theory

is "formulated mathematically in terms of partial differential

equations", and dispersive waves, which "cannot be characterized

as easily", but are usually thought of as waves whose velocity

(or "celerity") c depends on the wave length A.

In this chapter, we will consider only waves i.n one space

dimension; even for these the nonlinearity of the convection term

uu leads to formidable difficulties, which we will try to eluci-
x

date. We will first take up "plane waves of finite amplitude" in

a gas, a subject whose analytical theory was well developed by

1910. A scholarly review of what was known then may be found in

Lamb [A6, Arts. 281-4]. For later developments, see Courant-

Friedrichs [B3].

Our main concern will be with ie computer simulation of non-

linear waves, a subject that has been treated previously in the

well-known book by Richtmyer and Morton [C9, Chapter 121, and in

the valuable compendium by Roache [C13]. We will extract from

these and other references the results which are most relevant

to the computer simulation of one-dimensional nonlinear wave

propagation, describe and analyze theoretically some effective

algorithms for achieving this simulation, and summarize our experi-

ence with these algorithms. Our discussion will differ from the

expositions in [C9] and [C13] in its emphasis on analytical and

philosophical considerations. It will also attempt to provide an

up-to-date and reasonably complete survey of recent progress on

the topics treated.

1Chapter 6 is a revision of the first half of a report by
V.A. Dougalis and the author, issued by the University of
Tennessee in January, 1980.
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The mathematical theory of plane waves of finite amplitude

is based on three first-order partial differential equations-

The first two:

(.)Pt + (Pu) x= 0 (continuity)

and

2
(1.2) (Qu)t + (Pu +p)x = 0 , (motion)

are due to Euler; they can be interpreted as expressing conser-

vation laws for mass and momentum. The third, which replaces the

Newton-Euler-Laplace 'equation of state' p = kci for a gas, is

(1.3) Et + [(E +p)u] x = 0

t 2

Here E/c = e(p,T) +12 is the specific energy per unit mass of

the fluid, e being its thermal 'internal' energy (see 52) and

u /2 its (mechanical) kinetic energy. Hence (1.3) expresses

the conservation of energy, in a way which would not have been

meaningful before Joule determined the 'mechanical equivalent

of heat' around 1850.

In 52, we will review some mathematical properties of the

system (1.1)-(1.3), including the notions of characteristic,

simple wave, shock wave, and the RankS ne-Hugoniot equations; see

Chapter 2, 555-6, for an informal and intuitive introduction to

O the same concepts. Next, in _53, turning to the Lagrangian formu-

lation of these equations (Chapter 3, s7), we will discus.% the

von Neumann-Richtmyer scheme for solving them numerically.

We will then study the mathematical significance of the fact

* that the quasilinear hyperbolic system of first-order partial DE's

can be written in conservation law form, as

;v.
(1.4) + [f (v)] = 0, i = 1,2 3,

i-

T
for some vector v = (VlV2,v 3 )
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As a simple model of such conservation laws we will also
consider the single equation

(1.5) ut + [f(u)]x 0

which illustrates many features and mathematical problems asso-

ciated with the system (1.4). Our discussion of 'plane waves

of finite amplitude' will be concluded, in §§5-8, with a review

of some recent numerical methods for the solution of these sys-

tems and an analysis of some relevant numerical experiments.

The rest of this chapter is concerned with solving the

Burgers-Korteweg-de Vries equation

(1.6) ut + uu = Vu + au , v,a constants, v > 0

This illustrates the interaction of convection (uu ) with
* diffusion (u xx) and dispersion (auxxx). We shall consider

- .the two interactions separately. For a unified point of view

cf. [F17, Chapter 41.

In §§9-10, we consider the Burgers equation,

(1.7) ut + UUux = xx

which simulates some properties of viscous compressible flow.

We briefly review its existence and uniqueness theory, and sum-

marize our experience with some schemes for its numerical solution.

In §11-12 we consider the Korteweg-de Bries equation.

Originally proposed [F121 as an approximation to long unidirec-
tional gravity waves, (cf. [F27]), the DE is

(1.8) ut + UUx xxx =0

it has since arisen in many other contexts. We shall consider

some of its variants, as well as their theory and methods for

their numerical solution.

. ... ...
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2. Isentropic flows. We have already touched on some of

the most important aspects of the theory of 'plane waves of finite

amplitude' in Chapter 2,§§6-7 (where we discussed physical and

analytical aspects), and in Chapter 3, §7 (where we discussed

numerical methods). We will now consider such waves more syste-
matically. 2

The basic equations for such waves, in a compressible,

inviscid fluid are (1.1)-(1.3). These express the conservation

of mass, linear momentum and energy, respectively; p is the

density, u the velocity and p the pressure of the fluid. E

denotes the total energy per unit volume, given by E = pe + pu2/2;

where e is the internal energy per unit mass:

(2.1) e e(p,T)

"' - This supplements the equation of state of a perfect gas

(2.1a) pV = RT , V = 1/p

In a perfect gas, Eq. (2.1) also simplifies to

(2.1b) e = CvT

From (1.3) and (2.1a)-(2.1b), one can derive the internal energy

formula for a polytropic gas (perfect gas with constant specific

heats):

(2.2) e = p/p(y-l)

where c = cp/c is a constant greater than 1. Air under normalp v
conditions is approximately polytropic with y = 1.4.

3
Isentropic flows. In classical thermodynamics, the entropy

S is defined by the equation dS = (de + pdV)/T, where T is

V, 2 For a more detailed discussion, from which we have drawn freely,
see a 1980 University of Tennessee Report on "One-dimensional
nonlinear waves", by V.A. Dougalis and the author.

3The kinetic theory of gases (see Appendix E) can be viewed as
an attempt to derive thermodynamic laws from a mechanistic model.

SA . . ,.. .,,- -
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the absolute temperature. Then, eliminating e, we can replace

(1.1)-(1.3), (2.1) by the equivalent system

(3Pt + (PU)x = 0, (Pu)t + ( pu 2 +p) x = 0:- il(2.3)

St + uS =0, p =p(p,S)x

For polytropic gases, the last equation becomes S = Cv log (p/pY).

Also, the third equation of (2.3) implies that S is constant on

each particle path in the x,t-plane, i.e., that

(2.4) dS - 0 when dx =

(4d)t dt u.

If the fluid is initially at rest with a constant entropy So,

Eq. (2.4) implies that S = S0 throughout the flow; such flows

are called isentropic.

Physically, flows are isentropic when there is no 'dissipa-

tion' of mechanical energy into heat. For this reason, to

'derive' the preceding equations from the general Navier-Stokes

equations, one must not only assume that there are no external

body forces, but one must also neglect viscosity and heat con-

duction. For this derivation, we refer the reader to [A9, §6.31.

Characteristics. In 1858, Riemann made a classic study of

the isentropic case that p = f(p). Physically, this is the

case in which the purely mechanistic model of Euler-Lagrange is

valid. Mathematically, the model assumes a quasilinear hyper-

bolic system of two first-order equations (1.1)-(1.2), supple-

mented by p = f(p). Each solution therefore has two families

of characteristics, r = const. and s = const., relative to

which the system can be rewritten as a single hyperbolic DE in

normal form:

2a u/3ras = F(r,s,u,u •U

4%

Historically, it was Riemann's analysis that led to the theory

of characteristics.

J...................
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In Riemann's problem, the characteristics are the two

families of curves in space-time

C+: dx/dt = u+c, C dx/dt = u-c

corresponding to 'wave fronts' moving relative to the fluid

with the 'signal' (sound) velocity ±c = (dp/dp)I/2. On each of

these, we have an invariant integral, called a Riemann invariant.

Specifically,

c(p) dp + u =const. on C+: d=u+c

and

C(p) dp - u = const. on C-: dx
p dt

2In the case of a polytropic gas, where c = yp/p, these

• '. equations become

2c + dx.~± u= const. on C =u±c

Simple waves. Evidently, the independent variables x -ct = r

and x+ct = s of the d'Alembert decomposition u = f(x+ct) +g(x-ct)
4 2of the linear wave equation u = c U are characteristics,

since dx/dt = -c if s = const. Waves of the form u = f(x+ct)

or u = g(x-ct) are evidently especially 'simple'; in them, the

level lines u = const. and p = const., (hence p = f(p) = const.)

are all characteristics; hence u = g(p).

Analogously, in a general isentropic flow, a simple wave is

one in which all physical variables are constant along the charac-

teristics of one family. Such solutions of (1.1)-(1.3) are

produced by a moving piston in a semi-infinite tube of initially

quiescent fluid; they represent a distrubance moving in one

9'_ 4In Lagrangian coordinates (see §3), this is the case y = -1
of p = A - B/p, and also of the linearized approximation
treated in Chapter 5.

'.
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direction. They were discovered by Poisson (1807) and Earnshaw

(1858), before Riemann wrote his paper, by assuming that u = V(p),

where V(p) is now an arbitrary function. Substituting into

(1. 1), this gives

(2.5) (Pt + VP x )V' + c 2x/P = 0

and

(2.5') Pt + (V + PV')P~ = 0

Multiplying (2.5') by pV' and subtracting the result from (2.1),

we get

[ 2 /P-P,2 0.p[c2/o - pV'2 = I

As this shows, V' = ±c/p. For the equation of state p = kpY ,

this gives

(2.6) u = V(P) = ±f[c(P)/pldp = ±2 {c(p) -co}, 1 .

For p = kp, we have u = kZnp instead.

3. Shocks; von Neumann-Richtmyer scheme. The theory of

isentropic flows can be based on Euler's equations for an 'elastic

fluid' (Chapter 1, §2); Riemann's brilliant investigations made no

use of thermodynamic considerations, and indeed did not need them.

This is because in differentiable flows of a perfect gas, initially

at rest as in the Lagrange problem, these equations are satisfied

with p = ko¥ , and determine the evolution of such flows.

However, when two of Riemann's 'characteristics' meet and

coalesce, as they must in any 'simple' compression wave, discon-

tinuities arise as mathematical 'singularities'. As a result,

the initial value problem as stated literally has no solution

valid for t > T, some finite length of time.

Rankine-Hugoniot equations. We have already pointed this out

in Chapter 2, §§6-7; the resulting difficulty was resolved by the
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British engineer Rankine (1870) and the French ballistician

Hugoniot (1903), by making a second appeal to thermodynamics.

By combining the conservation laws of mass, momentum and energy

with the thermodynamic equation of state p = RpT, they were

able to predict the observed jumps in p, p, T across the near-

discontinuity or shock wave that results. In a perfect gas, these

jumps are given by

(3.1) P2 1 +Y*(p 2 /Pl) u1  Y = Y+l 6 in air(3.1 1, Y* + (P2/Pl) u2 7,_ Zl~

To satisfy the Second Law of Thermodynamics, the shock must be a

compression shock.

Spark shadowgraphs of bullets in flight and measurements of

supersonic flows in wind tunnels amply confirm these predictions.

Rayleigh's calculations (1910) predict a shock wave thickness,
-5

of the order of 10 cm. in air; cf. Lamb [A6, Art. 360a].

6.To derive these equations, it is simplest to transform to

axes moving with the velocity of the shock front, and then to

use conservation of mass and momentum to derive

2 2
OlUl = P2u2 = m and pl + Plu = P2 + P 2u 2

One can eliminate the first of these by rewriting the second as

P2 
+ mu 2 = Pl + mu 1 = const.

The adiabatic law becomes P2U = plu = m-k. Solutions of

these two simultaneous equations can be found graphically.

Von Neumann-Richtmyer scheme. The first serious attempt to

calculate the evolution of non-isentropic one-dimensional com-

pressible time-dependent flows was made by von Neumann and

5See again Lighthill in [Al, pp. 250-352], for an authoritative

reassessment.

6See H.W. Liepmann and A.E. Puckett, "Aerodynamics of a Compressibl-
Fluid," Wiley, 1947, p. 39. The ratio p2/Pl M satisfies

2_
(p2-Pl)/pl 2"y(M 1)/(y + 1)

see ibid., p. 40.
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" .. Richtmyer, in a 1949 paper already discussed in Chapter 3, j7.

"- They used Lagrangian coordinates, and we will now describe their

procedure in a different notation.
7

Let a denote the cumulative mass (the Lagrangian space

variable), and let = (a,t) be the position of the plane

(fluid element) of cumulative mass a at time t. Then the
specific volume of the flow is a = 1/p = V(a,t), the velocity

is u = Et, whence the conservation of mass ("continuity equation")

follows automatically since ua _ = at = Vt

Conservation of momentum (the "equation of motion") can now
be expressed by

(3.2) Ut + P = 0

while conservation of energy takes the form

(3.3) e+ pV 0.

Von Neumann and Richtmyer [C8, vol. vi, pp. 380-5] based

their numerical treatment on the preceding equations, supplemented

by a term q = -uu acting as a dissipative "viscous stress".

They proposed letting the "artificial viscosity" (or "pseudo-

viscosity") be a function of the flow variables, and depend on
the meshlength h = Ax of the space discretization. They modi-

fied (3.2), (3.3) to

(3.4) U + (P a = 0,

(3.5) et + (p+q)Vt = 0

Quoting from their paper, q is required to have the properties:

1. The equations [our (3.2)-(3.5)] must possess solutions
without discontinuities.

7For simplicity, we have also assumed that p0 (a) 1 1, which we
can do without loss of generality in a homogeneous medium.

$ .' .°.* i .. - . -- - : - . .. . --.. .. * . * . * * . ..- - " , ,. .' .- . .- -. , j. -. .' . -. .-" - i
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2. The thickness of the shock layers must be everywhere of
the same order as the interval length Ax used in the
numerical computation, independently of the strength of
the shock and of the condition of the material into
which it is running.

3. The effect of theterms containing q in [(3.4) and (3.5)]
must be negligible outside of the shock layers.

4. The Hugoniot equations must hold when all other dimensions
characterizing the flow are large compared to the shock
thickness.

Von Neumann and Richtmyer assumed the artificial or pseudo-

viscosity to be given by

(3.6) p = Kh2 IUal/V

where K is a dimensionless constant of order 1, and verified

that it satisfied the above requirements (their #4 refers to

steady plane shocks). Setting r = At/Ax, they proposed com-

puting the four vectors un+1/ 2 , vn+l, n+1/2, and pn+l in

turn on a staggered mesh. Writing n-1/2 as n', n+1/2 as

n", j-1/2 as j' and j+1/2 as j", their equations become

(3.7) un - un' = r[p,, p. + q - q. ,

(3.8) n+l - V, = r[un - uni

ij+ ni
(unit - nn 2 1(uj+ 1  ui~

(3.9) qj,, 2c ni + n+l
1V

and

,y(p,+, + p.,,) + 2(y-l)qnlI(V,, - V.n,)

(3.10)
n+l n+l n

The accuracy is O(h ) except for (3.7), which has only O(h)

accuracy. However (3.7) is small except across shocks.
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4. Lax-Wendroff scheme; shock 'capturing' Many authors have

suggested alternative "artificial viscosity" formulas, with the

aim of approximating Rankine-Hugoniot transitions across shock

fronts in the fewest possible mesh lengths. Most of them have

adopted 'Eulerian' coordinates instead of the 'Lagrangian' coor-

dinates adhered to by von Neumann. This change necessitates the

integration of three instead of two first-order DE's, since the

conservation of mass (implied by the identity ta = in

Lagrangian coordinates) is no longer 'built in' automatically.

An important, relatively early proposal along these lines

was made by Lax and Wendroff [F16] in 1960. This scheme has

second-order accuracy in space and time; moreover, it has the

attractive feature of bringing out applicability to general sys-

tems of first-order (hyperbolic) DE's expressing conservation

laws.

Conservation laws. We will discuss 'conservation laws'

systematically in some depth in §7; for the present, we note only

V r that they refer mathematically to systems of first-order DE's

of the following general form:

ui  3fi.- (4.1) --- +  - = 0, i = 1, .. r

where u = u. (x,t) and f. = f. (Ulf ,u r  We let1 1 T 1 iu ...,). W e

u = [U1 ...,u r ]  and A = A(u) be the Jacobian r xr matrix

given by Aij = 3fi/;u j . Then we can rewrite (4.1) in vector

form as

(4.2) + A(u) - = 0

The quasilinear system (4.2) is said to be (strictly) hyperbolic,

[F15, p. 241 if for each u the matrix A has r real, distinct

eigenvalues Al, .... . Then the solution u of (4.2) has r:. r-
distinct real characteristics defined by dxi/dt = \.(u).

For example, let us consider the equations of isentropic

flow in Lagrangian coordinates considered in j3. Denoting the

Lagrangian position variable a by x, and assuming that

[A
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P0  1 we can write equations (3.2) and (3.3) in the form

(4.3) - [i 0 j = [0]

x

where p = p(V) is the equation of state, which for a polytropic

gas is of the form p = kV -Y, for some positive constant k.

The eigenvalues of the 2 x 2 matrix A are

(4.4) X = /-p(), x2 = -A

and therefore the system is hyperbolic if p'(V) < 0, which is

true for polytropic gases.

For any system of the form (4.2), writing v in place of u

(since V will no longer appear), the Lax-Wendroff scheme con-

sists in setting

(45) n+l n fn fn"- (.5)v. = v.
(45) .- - (-j+l _j_l )/ 2

+ r2  n(fn - f Ai(f 1 
- )]/2

where r = At/Ax and

n n n n n

(4.5') fn = f(v j) A. A( Vjl + vj))
3e

Often, the Lax-Wendroff scheme is implemented as a two-step

procedure, equivalent to (4.5) in the linear case f(v) = Av, for

a constant matrix A. One such two-step variant, due to Richtmyer,

[C9, p. 3031, is given by

n n n rf

(4.6a) v" = +1  - - f)-. - -3+l -j

n+l n n. fo i-. (4.6b) v . = V. - r( ,, i- ) .

To apply this two-step method to the equations of gas -

dynamics for a polytropic gas, we first rewrite (1.1)-(1.3) and
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(2.2) in the following form:

(4.7a) Pt +m = 0 , (4.7b) mt + _(+p) = 0m

r.. 2
""(4.7c) Et+ (M(E+p) = 0 , (4.7d) p = (y-1) (E - i mt2 -)

Here m = pu is the momentum density; for comput ion, it is

also convenient to introduce the intermediate va bles

P = p+m /p and F = m(E+p)/p. The system (4.1 (4.7c) is

now in the 'conservation law' form of (4.2), witl = 3,
2

. v = (p,m,E), and f(v) = (m,P,F) = (m,p+m /p,m(l D).

In this notation, the two-step Lax-Wendroff-Richtmyer scheme

has as its first step:

n" o n n r(n n
(4.8a) j= + ) -+ m -i.
JJ

°" o'" .(4 b) n" l(m3+ m3") 2P+
(4.8c) jn.,, = + - - p.]

j 2j~ j i 2j+J. j
(4.8C) En  1 ._E, r n

3" (1) + +l 2

(4.8d) P3H = yl[E.,, - Cm2/2p)j*,,],

the first step, followed by

n+l n ni n in
(4.9a) P = pj - r(mj,, il)

n+l n nn"

(4.9b) m. -in. = [P.,, - P.,]

*n+l n n ni'
(4.9c) E. = E n - r[Fj,, - F.]

n+l [E n+l 2 n+l(4.9d) p. (y-1)[. - Cm

A (linearized) von Neumann stability analysis for the Lax-

Wendroff scheme applied to the system (5.3) gives [C9, p. 304] the

.



6-14

following restriction on the Courant number r = At/Ax:

*,' (4.10) r < (lul +c)- I  = [ImI/p + (Yp/p)l/2]-

.- We used the scheme (4.8)-(4.9) to simulate the evolution in

time of an initial step function of p and p, such as arises

in a "shock tube". Given the initial values P0' P0' on one

side of a membrane, and pI, p1 on the other, with u = 0 on

both sides, a sudden rupture of the membrane causes a shock to

travel down the tube, and a centered rarefaction wave to travel

upstream, as indicated in Figure 2; see [B3, p. 182], and [F23,

p. 184].

:mpressed Air

v:I- 1 IS.

high pressure Uncompressed Air

Von Neumann and many others have compared calculated with

experimental values of the vari-bles listed, and we did so, too.

We used the schem (4.8)-(4.9) to simulate the evolution in

time of a discontinuous step initial profile of p, p and u.

. This "shock tube problem", cf. [B3, p. 182], [F23, p. 184), has

been extensively studied in gas dynamics experiments. Specifically,

-" for y = 1.4 we considered the following initial values

o-. -(4.11a) For x < 1: P4  1, 4 = 1, u 4 =0

(4.11b) For x l: p, 0.25, :l 0.25, u1  0• !
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- . Exact solutions for P, p, u, E for t > 0 can be easily

obtained, cf. [F23, pp. 184-1861. In this case we obtain the

following solution: For t > 0 there are four regions, denoted

by 1 through 4 in Figure 5.1, in each of which the flow

quantities are constant. Regions 3 and 4 are connected by

a centered rarefaction wave (fan) through which the flow quanti-

ties are continuous. In Regions 1 and 4 the gas is at rest

and the values of p and p are identical to their initial

values for x > 1 and x < 1, respectively. Regions 1 and 2

are separated by a shock travelling to the right with speed

1.586 and across which all flow quantities are discontinuous.

In region 2 we have P2 = .482, p2 = .396, u2 = .586. Regions

2 and 3 are separated by a contact discontinuity t.avelling

to the right with speed .586 and across which p and u are

continuous but p is discontinuous; we have that p3 = .594.

Finally, the front and the end of the rarefaction wave travel

with speeds -1.183 and -.481, repsectively. The exact solu-

tion in the rarefaction wave region is found by an iterative method

due to Godunov (cf. §7) implemented in a program that Dr. Gary Sod

kindly sent us.

To compute the numerical solution of this problem by (4.8)-

(4.9) we used 200 space intervals on [0,2] so that Ax = 0.01

and a constant At = 0.001, a value well within the stability

limit prescribed by (5.5). We show in Figures 5.2 and 5.3 the

exact and the obtained numerical values of p and p, respec-

tively, at 350 time steps, i.e., at t = .35. (All computations

were done in single precision using the FORTRAN G compiler of

the IBM 360-65 at the Universit-y of Tennessee, Knoxville.) We

observe the well-known oscillations, especially in the vicinity

of the shock and the contact discontinuity (for p) but also in

the interior of the regions 2 and 3. The shock transition takes

place over approximately 5 Ax-intervals. The contact discon-

tinuity (Figure 5.3) extends over approximately 10 Lx-intervals.

The overshoot before the shock is approximately 20% for both

p and a. The transition from region 4 into the rarefaction

wave is smoothed.
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5. Artificial viscosity; recent developments. As we have

pointed out before (cf. P), various formulas for 'artificial

viscosity' have been useu since the pioneering work of von

Neumann and Richtmyer; cf. [F16]. We made numerical experiments

using the Lax-Wendroff method of §4 and an artificial viscosity

originally introduced by Lapidus [F14] for a two-dimensional
8

problem. According to Lapidus' recipe, artificial viscosity

terms of the form

n+l .n+l

n rn n Twhere Au. un -ui_ v=. ~,
1 1 i-lp v = [pmE] are added as a final

(fractional) step to the values of n+l mn+l In+l obtained

by (4.9). Here v is a constant whose value can be chosen to

match a particular problem and the amount of artificial dissipa-

tion desired.

Formula (4.8) and (4.9) are therefore supplemented by a

third set of equations:

bn+l = n+l n+l .n+l
(5.1a) 1i Pi + vrA(IAu i+l i+l) '

- n+l +un+l Amn+l
(5.1b) m. = M. + vrA('i+1  i+ I )

11 1

,,(5.1c) in+l =E n+ l + yrA(" An+ll An+l),." "i = 1a i+lJ a i+l)

~n+l n+l.'I(5.1id) Pi = i '

' ad te nl -n+l -n+l -n+ladtevalues pi+  MI E Pi represent then the flow

quantities at t = (n+l)At. We used formulas (5.1) with the

value v = 1, recommended by G. Sod [F22]. The results for p

and p are shown in Figures 5.4 and 5.5, respectively, again

at t = .35, i.e., at 350 time steps. Note that most oscilla-

tions have been damped out. The shock transition occupies 6 to

8Pointed out to us by A. Harten in 1975; cf. also [F22].
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7 Ax-intervals. The contact discontinuity is again spread over

10 Ax-intervals. The overshoot to the left of the shock has

been reduced to approximately 8%. The rounded transition zone

from region 4 to the rarefaction wave has slightly increased.

We conclude this section with a brief review of some develop-

ments in the literature on "shock capturing" methods subsequent

to Lax-Wendroff. There are other two-step variants of the Lax-

Wendroff method which reduce to it in the linear case; we cite

for example schemes due to MacCormack and to Rubin and Burstein.

We also mention the higher order methods of Rusanov and of
10

Burstein and Mirin. . Most of these methods typically approxi-

mate shocks by a transition 3-5 Ax-intervals wide (there is

more spread in the case of contact discontinuities). Moreover,

nongrowing oscillations appear in the vicinity of discontinui-

ties. Lerat and Peyret discuss systematically the (numerical)

shock width and the amplitude and location of the oscillations

of such methods.11

Recent developments have concentrated in producing sharp

resolutions of discontinuities without oscillations. Among these

we note the "antidiffusion" method of Boris and Book and the
"artificial compression" method due to Harten [F10]. The latter

can be applied to standard difference schemes and gives signifi-

cantly improved resolution of both shocks and contact discontinui-

ties, cf. [F101, [F22]. A "random choice" method, due to Chorin

and based on Glimm's existence proof will be reviewed in §8.

Several comparisons of numerical methods for the solution

of the initial-value problem of the one-dimensional gas dynamics

equations have appeared in the literature. A recent survey by

Sod [F22] is especially valuable. Sod considers many modern

9For Rubin and Burstein, see J. Comp. Phys. 2 (1967), 178-96;
for McCormack, see [A17, pp. 151-63] and [A25, p. 253].

1 0 J. Comp. Phys. 5 (1970), 507-16 and 547-71; ibid. 11 (1973),

38-68.

. ".S e [A24, pp. 251-61.
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schemes and compares them based on their performance on a typical
"shock tube" problem. He points out that two schemes, due to

Godunov and Hyman *(for references see Sod, op. cit.) behaved

better than the others without corrective procedures.

6. Shock fitting; Moretti's program. The purpose of the

preceding numerical experiments was to develop and justify

theoretically a computer program to be included in WAVPACK which

would solve Riemann's initial value problem accurately and effi-

ciently, even when shock waves were present initially or were

formed during the time interval of calculation. Essentially,

our aim was thus to realize von Neumann's original ambition by

a procedure available (for example) to energetic college seniors.

We are still trying to realize this objective, and §§6-8 will

explain some of the difficulties that we have encountered!

Following Richtmyer [C9, §12.91, we will term "shock fitting"

or "shock locating" techniques those schemes which, in contrast

with "shock capturing" techniques, divide the computational region q

into subregions by lines of discontinuity in the (x,t)-plane.

These lines can be shocks or contact discontinuities, for example.

Unlike the "shock capturing" methods discussed in §§4-5, "shock

fitting" methods produce piecewise smooth solutions in the regions

bounded by lines of discontinuity. Thus they use Model #5 of

Chapter 1, §3, at a very basic level.

Here we consider the application of shock-fitting methods

to the Riemann initial value problem for the equations of gas

dyhamics for a polytropic gas and also the easier piston problem

of §2, namely to compute the 'simple flow' created in a tube of

length L containing gas initially at rest by a moving piston

at end.

Professor G. Moretti of the Polytechnic Institute of New

York has worked extensively on shock fitting for one- and multi-

dimensional problems of gas dynamics. For the one-dimensional

case that we will consider here, see his reports [F18] and
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[F19].12 He has kindly sent us a FORTRAN program (5CI) imple-

menting his shock fitting technique in one-dimensional problems

in tubes of variable cross section; in our tests we used only the

constant cross section option.

In this program an approximate solution at the interior mesh

points of the smooth flow regions is computed by a Lax-Wendroff

type scheme [F18, p. 34] with variable time step that satisfies

the usual stability condition (5.5). As soon as a shock is "de-

tected" (by an appropriate test on the slope of the profile of

the solution, [F18, p. 56]), it is treated as a computational

boundary (interface) between adjacent regions of smooth flow.

The shock trajectory is computed by the Rankine-Hugoniot across

it and the information reaching the discontinuity along the char-

acteristics from the two adjacent subregions. So, nonlinear sys-

tems of algebraic equations have to be solved at every time step.

Within each region (a maximum of 10 regions can be handled with

a maximum of 50 grid points per region) the mesh site is constant

but Ax may differ from region to region as points are created

'or deleted, automatically, to describe in more or less detail,

respectively, the nonsmooth or smooth portions of the flow. A

part of the program eliminates shocks if they are too weak. More

complications arise in the case of contact discontinuities, shock

reflections at boundaries, shock coalescence and interactions, etc.

Using single precision on the Fortran G compiled, and the

IBM 360-65 of the University of Tennessee at Knoxville, we first

calculated (in 1978) flows induced in a gas at rest by the motion

of a piston at the left end. The flow can be divided in two

Fregions as in the figure below (x,t are dimensionless as in
CF18, p. 22]). In region 1, bounded by the piston path and

the characteristics through the origin, the solution is a simple

wave [B3, p. 921. Exact solutions can be found in this region

[FI8, p. 24]. In region 2, the gas is at rest. We ran

a few test problems with different paths b0 (t). The first two

1 2 See also his reports "The choice of a time-dependent technique
in gas dynamics," PIBAL Rept. 69-26, PIB 1969, "Thoughts and
afterthoughts about shock computations," PIBAL Rept. 72-37,
PIB 1972 in which he further expands on his philosophy on
numerical methods for gas dynamics.

*



6-20

t Axb (t)
0

X Zj t

2K

were rarefaction waves produced by the following piston paths

(6.1) x - 3

and

(6.2) x t 2

previously used by Moretti as test problems in [F18]. The solution
corresponding to (6.1) has continuous velocity gradients; whereas
if (6.2) is used, there is an initial discontinuity in u which
dissipates with increasing time. In both problems a right-hand
side computational boundary x = 1 for 0 < t =5 1// was used
and 25 x-intervals so that, initially, Ax = 0.04. (Subsequently
the mesh is "stretched" automatically between the piston path

and the right-hand boundary.) For y = 1.4, Table 6.1 shows the
behavior of the error in the velocity (appropriately dimensionless
as in [F18, p. 22]). In the table t denotes time, x the
x-mesh length and E the maximum absolute error in the velocity.

The numerical profiles were smooth and the maximum error
usually occurred at the first characteristic x = ryt. The
numerical "noise" of nonzero values extended one mesh length
into region 2 for problem (6.1) and three mesh lengths for (6.2).

Of course the piston path (6.2) gives larger errors in the A

vicinity of the first characteristic.
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(6.1) (6.2)

t Ax E t Ax

.222 .040 .002 .190 .041 .010

.394 .042 .003 .332 .044 .013

.527 .046 .004 .457 .048 .014

.639 .050 .006 .574 .053 .021

.688 .059 .019

TABLE 6.1 Rarefaction waves.

Subsequently, we considered compression waves with different

piston paths. For example let b0 (t) be given by

3(6.3) x = b0 (t) = t

a problem also considered in [F18]. This piston path (with zero
initial acceleration) will produce a shock which originates (for

y = 1.4) at x = .842, t = .844 where the characteristics C

will first merge. A right-hand side computational boundary

x = 1.5 for 0 - t = .95 was used and 45 x-intervals so that

initially Ax = 1/30. The shock was predicted accurately and

after its occurrence (t 24 .844) the program concentrated on the

region of non-zero flow to the left of the shock where it reduced

the number of mesh points to 12. When the flow became nearly

uniform, for t a .928, the number of mesh points was reduced

to 6. Table 6.2 shows the behavior of the error of the velocity.

,V

- .,
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t AX E t Ax t x E

.186 .033 .001 .724 .025 .018 .892 .010 .012

.329 .032 .003 .759 .024 .036 .902 .003 013

.435 .032 .003 .791 .022 .060 .911 .007 .005

.516 .030 .004 .819 .021 .099 .918 .006 .006

.582 .029 .005 .844 .019 .296 .928 .009 .009

.637 .028 .006 .864 .015 .043 .936 .006 .007

.684 .026 .011 .880 .012 .033 .942 .005 .004

TABLE 6.2 Compression wave.

7. Conservation law form. In his well-known monograph

[C131, Peter Lax has explained lucidly how to obtain 'generalized

solutions' of initial value problems for first-order hyperbolic

systems of the form ut + [f(u)] x = 0. The class of such systems

includes the Euler-Rankine-Hugoniot equations for 'plane waves of

finite amplitude' that we have been studying in this chapter.

• .For purposes of orientation, we now consider the case that the

vector u(x,t) is a scalar--i.e., the case of

(7.1) ut + [f(u)] x = 0

c1
with f C ( for differentiable initial data

(7.1') u(x,0) = g(x) , g CI (-0,M)

The prescription consists in looking at the 'characteristics'

" defined parametrically in the upper half-plane by

(7.2) x(,t) = 5 + tf'(g(r))

These will cover an open neighborhood of the x-axis t 0;

in this neighborhood, u is constant along each characteristic,

so that

(17.2') ulx(t) ,t) = g( )L "
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where nearby characteristics merge into a discontinuity of u,

the slope s of the resulting 'shock' is required to satisfy

(7.3) s = [f lu]

in conformity with the basic 'conservation principle' that the

integral relation

d b
(7d f(a) - f(b)

at f u dx]
a

is equivalent to (7.1) for continuously differentiable functions.

Agove, f may be thought of as the local rate of flux of the

substance whose 'density' is u, from left to right.

Thus, for the familiar self-convection equation

(7.4) ut + uu = 0

with f(u) = u2 /2, for the jump from uI to u2 , the prescrip-

tion (3) consists in setting us = (u1 +u 2 )/2. For example

(C13, (3.11)], if we set

o•I1 for x <i 0

(7.4') u(x,O) = g(x) = -x for 0 x _ 1

0 for x

the solution has the characteristics shown in Figure 1.

Shock

0 1

-at-

[X
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Unfortunately, there is a subtle but very basic flaw in
the derivation of the shock velocity formula (7.3) as has been

* - pointed out by Whitham, in [B12, p. 401.

Namely, let v = i(u) be any continuously differentiable

function with continuously differentiable inverse, u = c(v),

so that 4' (u) r 0 and p'(v) = i/i(u) 0. Then the DE

(7.1) is equivalent to

0p(v){v + x } f'((v))v = 0

t I

as one discovers by setting u = 4(v) (7.1) and hence to

(7.5) vt + [F(v) x = 0

where

(7.5') F(v) = f f'((v))dv

For example, setting u = v +v, we obtain as equivalent

to (7.4) the DE

(7.6) vt + [v4/4 + v2/2]x =0.

This has exactly the same characteristics, for any (continuously

differentiable) g(x) in (7.1') and corresponding v with

(7.7) v 3(x) + v(x) = g(x)

or, equivalently,

(7.7') v - sinh [I sinh-i (3Vig(x)/2)]

This is because level lines of u are level lines of v, and

vice-versa.

However, the shock velocity prescribed by (7.3) is not the
same for (7.6) as it is for (7.4). An easy calculation gives I-.

for F(v) = v4/4 + v2/2,

-. ..................
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v v2 - l v 1(7.8) so= + -+ - -W]/(v2 - vl)

(v +( 2  + v 2 + 2 v 2

which is not equivalent to

(7.9) s= (u + u ) / 2 =(v3 + V + 3v 3 + v )/2u1  u92 1v v2

Self-convection DE. We next consider in detail the problem

of integrating numerically the self-convection equation (7.4).

This can be thought of as a limiting case of Euler's equation of

motion for an elastic fluid, in which the pressure is nearly

independent of the density.

For a given initial velocity distribution u(x,0) = (x),

the DE (7.4) can be integrated by the method of characteristics,

as follows. Consider the level lines u(x,t) = X of any solution

of (7.4). By definition, on each such level line we have

0 = du = uxdx + utdt = u x(dx - udt)

" whence dx/dt = u = X is a constant (unless u = 0) and so ux

is constant. This shows that each level line u = X of any

solution of (7.4) must have constant slope in the (x,t)-plane,

in a region of non-constant u.

Conversely, we can use this fact to solve (7.4) locally, for

given u(x,0) = t(x) = CI , as follows. Define the characteristic

through ( ,0) parametrically by

(7.10) x = + ()t .

By what was shown above, any solution u(x,t) of (7.4) satisfying

u(x,0) = (x), must satisfy

(7.11) u(: + i()tt) = ( )

and have the lines = const. must be level lines.



6-26

c1
Moreover since f e , the derivative (ax/) t = I +tf'(j)

is positive provided that

Itl < l/l0'(W~max

where L = If'( )Imax is the (local) Lipschitz constant of
O(x) = u(x,t). Hence the mappings x are diffeomorphisms

for Itl < l/L, and the equation u(E+tf( ),t) = (E) defines

u(x,t) as a differentiable, single-valued function in this

neighborhood. In it,

(7.12) ut + uu = u + (Ux)U = 0. x tx

since the second expression is just the total derivative

du/dt = au/3t + (au/ax)(dx/dt)

along this characteristic. We conclude

THEOREM. For any initial velocity distribution

u(x,O) = (x) E CI , the DE (7.4) has a continuously differentiable

solution, given by (2), valid for Itl < l/L.

Piecewise linear solutions. The following lemma is easily

verified; accents (primes) denote derivatives.

*.'. LEMMA. The affine function c(t) + X(t)x satisfies (7.4)

if and only if X'(t) = - and c'(t) = -c(t)X.

" .: This is immediate, since ut = c' + A'x and uux  (c+AX)

X= cA+ x. Since -dX/X 2  d(l/X), it follows that

X = Xo/(l+ ot) and

d d) d(7.13) Tt-(kn c) = -X 0 /(l + X0t) = - [Zn(l + \0t)]

Since the steps are reversible, this has the

COROLLARY. The affine functions

(7.14) u = (co + Xox)/(l + \ot)

are solutions of (7.4), for any c0 , .0"
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Note that for X0 > 0 (a so-called rarefaction wave),

(7.14) is well-defined for all t > 0, whereas a compression

wave with X0 < 0 blows up in time (-l)/X 0 , forming a shock.

13Numerical integration. By combining the preceding

results, we are led to a very efficient scheme for integrating

(7.4) numerically, along characteristics. Namely, approximate

the initial velocity distribution u(x,O) = (x) by a piecewise

* linear function

(" (i+ I ) -o4(x i )
(7.15) U(x) + x(ii) + (x- x i )xi+ 1 - x

on (xi,xi+l). For t > 0, consider the characteristics

(7.15') xi(t) = xi + p(ci ) t = i + Uit

This can be done until t = 1/(Ui)min

1m

1 3The scheme proposed here evolved in the course of discussions
with Prof. Sun Jingyou of Jinan University, People's Republic
of China.

r'.
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. -7. INCOMPRESSIBLE VISCOUS FLOWS

1. Introduction. In this chapter, we will study the (approxi-

mate) numerical solution of problems involving (idealized, incom-

. pressible) viscous fluids of constant density p = p0 . We recall

from Chap. 2, §8, that the motion of such fluids is governed by

V-u = 0 and the Navier-Stokes equations

(1.1) pDu/Dt + VP = 7 ,

where P = p-pG is the 'potential pressure'. This equation is

approximately valid in air and water when M < 0.1.1 If W = V xu

denotes the vorticity, then after taking the curl of Eq. (1.1) to

eliminate P, we get:

(1.2) P{Dw/Dt + w*Vu} = iV2 ,

as in Lamb [A6, p. 578, (8)]. Landau and Lifschitz [B6, p. 50,

(15.10)] give the alternative, equivalent formula

(1.2') w/9t = 7 x (u xw) + v72

In plane flows, w = (0,0, (x,y)) is orthogonal to Vu = (Cu,Tv,0),

and so w-Vu E 0. This simplifies (1.2) to

(1.3) pD /Dt = i72; (plane flows)

as in [A6, p. 578, (2)]. This is called by Roache [C141 the

vorticity equation.

Steady plane flows. For simplicity, we will first consider

the case of 'steady' plane flows, having a time-independent velocity

field (u(x,y),v(x,y)). In terms of the stream function p(x,y),

we have as in Chap. 1 u = ,- ) and 3/;t = 0. Hence we can
y x

rewrite (1.3) as

|. IVvrain n ihtmea

* , ' lIn problems involving lubrication, variations in i with tempera-

ture can cause major deviations from theory.
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(1.4) V2 - 2y = V74

y x yx

* Eq. (1.4) encapsulates into a single fourth-order, nonlinear ellip-

tic DE, the Navier-Stokes equations of motion and the incom-

pressibility condition V.u = 0 governing the motion of fluids
• - 2

of constant density.

" Another interesting area problem concerns the decay of the

S" three-dimensional velocity field u(x) of a "liquid filling a

* -. closed vessel" whose boundary F consists of stationary walls on

which u = 0 (no-slip boundary condition). A little skillful

formula manipulation shows that the rate of kinetic energy dissipa-

tion, F, defined by F =-T where

(1.5) 2T = p Jq dR, q = u2 +v 2 +w 2

satisfies

2 2 2 2-.-(1.5') 2F = f J (2 +rn + )dR = 1 f i dR

Since the integrand is identically nonnegative, we see that F > 0

unless w = 0. Hence the kinetic energy decreases continuously.

Actually, it decreases exponentially:
3

< -Ott
(1.6) T(t) = e T(O)

where a = min{lIij2 dR/ lul 2dR} > 0. The number a is like

the minimum of a Rayleigh quotient; it is a monotonically decreas-

ing function of the domain.

Kinds of problems. A far greater variety of problems will

I be taken up in this chapter than were touched on in the preceding

*i three chapters. Broadly speaking, they fall into three main

classes: (1) initial value problems (with or without boundaries),

2Because of conservation of mass, constant density implies the

incompressibility condition V-u = 0.

3See Batchelor [Bl, p. 2121, where (2.1) is derived.
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(2) equilibrium problems, and (3) problems with stationary driving
forces and boundary conditions whose solutions, nevertheless,

fluctuate in time. Vortex streets behind cylinders and turbulent

flows in pipes are two classic examples of such flows.

In general, problems of class (3) arise at higher Reynolds
numbers (e.g., Re > 100), and are presumed to occur because, as

Re t - (v + 0), the governing Navier-Stokes equations constitute

a singular perturbation of the lower-order 'ideal fluid' equations.

Practically speaking, the solution of such problems at the present

time requires a much greater degree of empiricism than was adopted

in Chapters 4-6; this is especially true in the theory of turbulent

flows.

As a small partial compensation, the distinction between liquids

and gases is much less important than it was for 'plane waves of

finite amplitude' (Chap. 6), for example. Although viscous heating

can produce important variations in the viscosity of lubricants,

the mathematical theory (which assumes p and p to be constant)

is applicable to air and water under most circumstances. In

particular, as Stanton and Pannell showed in a classic series of

experiments, 4 the 'critical Reynolds number' Recrit for the
onset of turbulence seems to be about the same in the two fluids,

different as they are in most physical respects (including

molecular structure).

we_

'Phil. Trans. A214 (1914) , 119-24.

C-'
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2. Parallel flows. In general, solutions of the Navier-Stokes

equations represent a balance between viscous diffusion and inertial

convection, with the latter dominating at higher Reynolds numbers.

We begin by discussing the numerical simulation of diffusion effects

in a class of time-dependent 'parallel flows' in which convection

effects are absent (i.e., in which D/Dt = 3/3t). These include

as limiting cases the steady Poiseuille flow already treated

analytically in Chap. 2, §8; time-dependent Couette flows gener-

alizing the steady Couette flow treated in Chap. 2, §8, can be

handled by similar methods.

By definition, a parallel flow is one in which all velocity

vectors point in the same direction, which we choose to be that

of the x -axis. This makes uI E u2 E 0, and reduces the incom-
31 2

pressibility condition V-u = 0 to 3u3/ax3 = 0, which implies

u3 = u(xlx 2 ;t). In turn this implies that Zu 3ui/axk = 0
(i = 1,2,3), thus eliminating the convection terms from the

Navier-Stokes equations (i.e., making Du/Dt = 3u/at). In summary,

the Navier-Stokes equations

u.= 2 1 aP
(2.1) Dui/Dt = u1 Q + '

1 1 k 1C 1

with P = p + PG and = VG, are greatly simplified. Changing

notation (writing u3  u, x 1 x, x2 = y) , we obtain the follow-

ing example. (Note that the Poiseuille flow of Chap. 2, §8, is

obtained as a special case.)

Example 1. For flow parallel to the z-axis with velocity

u(x,y;t), we have

(2.2) ut = v(U + uy) + f(t)
xx yy

where f(t) = g3 - p p/3z. (To maintain the flow parallel to
K the z-axis, the pressure field must satisfy

p = P0(t) + pl(t) z + pG, pl =

In a rigid vertical pipe whose boundary 7 has the cross-section

Y in the (x,y)-plane, the flow must also satisfy the boundary
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condition

(2.3) u(x,y;t) = U(t) on y

where U(t) is the vertical velocity of the pipe (typically

U(t) 0), with f(t) = 0.
5

Heat conduction analogy. Formulas (2.2) and (2.3), also

govern the cooling of a rod, and it has been intensively studied

in that connection. Readers familiar with the treatment of this

problem should be able to supply most of the methods reviewed below.

The 'channel' to be treated first corresponds to a 'slab'.

For simplicity, we consider first the special case of a 'channel'

or purely two-dimensional flow with u = u(y,t) and f(t) = 0 in

(2.2). This reduces (2.2) to the one-dimensional diffusion equation

ut = u yy. Assuming a uniform rectangular mesh, and letting r
2denote the usual stability ratio r = vAt/Ay 2 , we are led to the

Courant-Friedrichs-Lewy difference approximation of Chap. 3, .3

- 12• 4) n+l n n u
(2.4) u.~ = u. + r[ujn - 2 un + u n_i ] ] +i 3 i

on a 4-point stencil. Eq. (2.4) reduces for r = 0.5 to the

Liebmann method

(2.5) un+l n n
•u. =(uj I + u.)/2

S= J+ .

invented in 1918. This optimal mesh-ratio uses a 3-point stencil,

and makes the domain of dependence a staggered mesh. We next re-

call a few well-known facts about the difference schemes (2.4) and

(2.5). 6

Like the analytical theory of the diffusion equation ut = Uyy,

the theory of (2.5) is simplest on an infinite line. When

5The article by G.I. Taylor in [Hl] shows how to use the soap
film analogy to obtain the steady flow through a pipe.

For a fuller account, see Richtmyer and Morton [C9, Ch. 81.
Chap. VI of Richtmyer's original book contains a very readable
account; Varga is also excellent.
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iterated, it gives rise for the 'delta-function' initial data

0 0
u0 =1 and u= 0 for j 0

to the binomial probability distribution. Hence, for general

initial data, the approximate solution is given by the convolution

of the initial data with this distribution. Using Stirling's

asymptotic formula for factorials, we can deduce the result that,

for r = 1/2, the approximate solution indeed converges as %y-'O

to the exact solution of ut = VUyy, which is the convolution

of the Laplace kernal with the initial data, the kernal being

t -  exp (-y2/4vt) up to a constant factor.

Unfortunately, the Courant stability restriction t A /2,v

imposed on the time step of the Liebmann method is very severe
0 n n nwith a fine mesh. If we set u. = (-i)j, then u. = (l-4r) u.,

which grows exponentially in magnitude with oscillating sign if

r > 1/2. In fact, the solution "explodes", in the sense that the

rate of exponential growth in time tends to infinity as Ay+O.

--On a finite interval, the solution of (2.5) for the initial

data u. = (-l) j sin (j7/n) behaves similarly, but the growth
J

factor no longer has a simple mathematical expression.

Neglecting possible turbulence effects (i.e., at low Reynolds

numbers), the 'coast-down' of parallel flow in a pipe of general

cross-section can be treated similarly. Instead of (2.5), the

N optimal choice of r for the explicit (CFL) difference approxi-

mation to (2.2) is:

Sn-il _1 n n n n
(2.6) uk - [u n un +un_ +n(26 j,k  4 [j+l,k+Uj k+l +Ujl,k+Uj, k-l ]

This approximates (2.2) with f = 0 for \t = h2 /4v, with

-x = Ay = h. On the boundary profile y, one sets u E 0.

Crank-Nicolson method. One can circumvent the time-step

limitation, and at the same time achieve a higher (trapezoidal)

order of accuracy in At, by replacing (2.4) by the implicit

Crank-Nicolson approximation
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"" "-n+l n 62 n .2un+1 )(2.7) u = + r(S u + . )/2
.. J J J J

This AE is stable for all positive r; moreover because the

coefficient-matrix of the unknown vector n+l is tridiagonal,

the system of equations (2.7) can be solved with only a moderate

amount of extra work (a factor three).

The one-dimensional equation ut = Vuxx provides excellent

illustrations of the principles of error analysis and stability

analysis summarized in Appendices F and G. Richtmyer-Morton

[C9, pp. 189-911 lists 14 different approximations to this DE,

and discusses a few of their properties. Some of these are

stated in the Exercises at the end of this section. However, the

two-dimensional case is far more typical (and challenging!).

Square pipes. Parallel flows in pipes having a square (or

rectangular) cross-section can be approximated similarly, and have

an almost identical error analysis. (This is because the matrix

A for the semi-discretization, ut = AhU, is the tensor product
hh

of two tridiagonal matrices, with eigenfunctions sin(krx/a)sin(ky/b).)

Again, their error analysis provides an excellent source of exer-

cises, and the 'explicit' CFL method of Chap. 3, 53, applies with

trivial modifications.

However, implicit schemes like the Crank-Nicolson method can

no longer be simply and efficiently combined with band elimination

in two or more space dimensions; the operation count with h = 1/n
4

becomes O(n 4 ). For a rectangular pipe, one can use Fast Fourier

Transforms or direct ("tensor product") factorization.

Iterative methods can also be used. One can make a good

initial guess by extrapolation in time (secant or parabolic);

moreover the relevant matrix is strictly diagonally dominant; and

one can store its LU-decomposition.

Another practical alternative is to use parabolic ADI; still

another alternative (but more complicated in practice), is to

achieve higher-order accuracy in time by using Pade

. * .
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approximations. For these procedures, we refer the reader to the

literature.
7

Circular pipe. The case of a pipe with circular cross-section

brings out another class of difficulties, associated with opti-

mizing difference (or finite element) approximations to (self-

adjoint) elliptic operators on plane domains with curved boundaries.

This optimization problem is discussed at length in a forthcoming

paper with R.E. Lynch, and only one simple procedure will be des-

cribed here.

This consists in overlaying the first quadrant with a square
2mesh with mesh length h = a/n, and selecting a suitable r = vAt/h

The difficulty with the 'irregular stars' on the boundary can be

handled by using the analogy with a D.C. electrical resistance

network.

Electrical analogy. In this analogy, each mesh segment PQ

is represented by a wire of suitable conductance K and the value

of u at each mesh-point ("node") is interpreted as the voltage

tere. Kirchoff's node law then states the algebraic sum

K <Z(u 0 -u Z ) of the currents into and out of each node must be

4 zo. At strictly interior mesh-points, where four mesh secments

of lengths h meet, as in Fig. la, this reduces to

4u0 = u I + u2 + u3 + u4

For the 'irregular stars' of Figs. lb and 1c, respectively, the

R

2
Rh" Q

h I h ih
h h h h

h.h' J'

!h 0 h'

. h \S

Fig. la Fig. lb Fig. 1c

7See Forsythe-Wasow, Chaps. 11-17; Richtmyer-Morton [C9, Chap. 8];
Varga, Chap. 8; Jim Douglas, Jr., and Todd Dupont, SYNSPADE 1970,
pp. 130-214.
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conductances should be (taking the conductance of a strictly

interior mesh point as unit): <(5) = h/h' and <(OR) = (2h+h'+h")

in Fig. lb, for example.

-.
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3. Nearly parallel flows. Nearly parallel flows arise in a

variety of circumstances: as boundary layers, as flows in straight

pipes at Reynolds numbers in the range 500 < Re < 2000, and in

lubricating films. We will discuss lubricating films first.

Hydrodynamics of lubrication. Although it is natural to

think of lubrication primarily as the art of reducing friction

(i.e., shear stress), a little reflection makes it obvious that

in order to support heavy rotating machinery, the pressure in

lubricating oils must in fact be much greater than the shear stress.

If h(x,a) denotes the clearance separating the two surfaces

whose sliding past each other is to be lubricated, then one can

derive the relevant differential equation

(3.1) [h 3 2;h
ax1 6 U 1 + U2) x

using a quite simple intuitive argument due to Osborne Reynolds.

It assumes that o and U are constant, that the solid surfaces

move parallel to the (vertical) (x,y)-plane, and that U1  and *z
.2 are the speeds at which the surfaces are moving in the x-direction.

When the solid surfaces bounding the lubricating film have

radii of curvature Ri(x,z) much larger than h(x,z), it seems

reasonable to assume that the flow near any point is essentially

a parallel flow between the walls y = 0 and y = h. This pressure

gradient must be essentially parallel to the (x,z)-plane, since

there is negligible room for 2

transverse acceleration. If l

it were zero, the flow would

be the pure 'shear' flow with j("

linear velocity profile

(U2 + [U1 -U2] y/h,0,0) and U1

constant shear stress p(U 1-U2 )/h. The local pressure gradient will

cause a parabolic deviation from this of [y(h-y)/22] ( p/ x,3p/;z),

inducing a flux of volume equal to
J h

F = 11h =(Dpix,p/ z)f f {y(h-y)dy}(0p/3x,3p/3z) (-h/12u)
0



On the other hand, the linear velocity profile will cause a net

flx of (h[UI+U2 )/2,O). Because of incompressibility, the

divercence of the total flux must be zero, giving (3.1).

In an unusually rigorous derivation of Eq. (3.1) from the

Navier-Stokes equations, Pinkus and Sternlicht fG8, p. 6] point
"' 8

* out that they make use of the following assumptions:

1. The height of the fluid film y is very small compared to

the span and length x, z. This permits us to ignore the

curvature of the fluid film, such as in the case of journal

bearings, and to replace rotational by translational velocities.

2. Negligible variation of pressure across the fluid film. Thus

0

3. The flow is laminar; no turbulence occurs anywhere in the film.

4. Gravity forces on the film are negligible.

5. Fluid inertia is small compared to the viscous shear.

6. Only velocity gradients (nearly) perpendicular to the solid

surfaces need be considered. They also remind their readers

of the general assumotions underlying Model #3.

7. No slip at the solid surfaces.

8. Viscosity is isotropic and independent of the rate of shear.

From these approximations, (3.1) can be derived b-y the following

argument.

The flow in the gap between two sliding surfaces is the vector

* sum of the flows (both nearly parallel to these surfaces' due to:

(i) the pressure gradient, and (ii) the tangential motion of the

surfaces, respectively. The flow due to the pressure gradient has

a locally parabolic profile: u = Uy(h-y), v Vy(h-y). From

this it follows that

. . So as to be able to treat gas lubrication, they allow to be
, . variable. They derive our (3.1) as the special case = const.



7-12

p= -2 (U,V) (Navier-Stokes)

h 3
. Moreover since f y(h-y)dy = h /6, the rate of volume flux is

0

* Q' = [h3/6](U,V). Combining, we get Q' = -(h3/12u)Tp, as in (3.2).

In almost all cases, the two surfaces bounding a lubricating

film are moving parallel to each other, with velocities (Ul,0) and

(U2 ,0). Their motion induces an average velocity of (U1+U21 0)

S"and a linear velocity profile. Hence the additional volume flux is

Q"= (h/2) (U,+U0)

Setting Q = Q' + Q", (3.1) follows since, because of volume con-

servation, div Q = 0. Q.E.D.

Our concern here is primarily with solving Eq. (3.1), not with

deriving it. In the one-dimensional case of no side leakage of

the lubricant, classic analytical solutions refer to a plane 'slider'

bearing sliding over a plane, and a cylindrical 'journal' of

radius R resting on a cylindrical bearing of radius R+6.

Slider bearing. In this case, by suitably locating the ori-

gin, we can assume that h = cx. We can then substitute into {3.1)

and integrate, getting [Gl, p. 125]

1'hi 6jU I 1  Xl
(3.3) p'(x) = -6UI(

h h C X x

where h h(x I ) is the clearance h where 'Ix) =0--i.e.,

where the pressure is a maximum.

If the slider extends from x = a t x = b, we must have

p(a) = p(b) = p. Solving (3.3) and choosinq h, so as to makeatm*
these boundary conditions compatible, we 7et as in 'Gl, pp. 126-7

(3.4) _- t 6_ U a- - -

atm c a-ib) X

where we have set U2 = 0 and U1 = L, tne natural assumptions.

The mean pressure is
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• "- - 6I Ubl b 2
----1

P Patm 2 b-a a b+ac

and the friction is (PU/c) Zn (b/a).

The case of a cylindrical journal of radius r, resting

on a semi-cylindrical bearing of radius r+6, is much more com-

plicated algebraically. The journal will find equilibrium with

its center 0 at a distance e from the center 0' of the

bearing, where 00' makes an angle p with the vertical. The

equilibrium position will make the vector thrust (0,Y), where

Y is the total load.

In this particular case, the solution can be expressed in
9

closed form by elementary functions. However in most cases, one

must integrate (3.1) numerically. Since (3.1) is the DE of a

linear source problem, this is easy using ELLPACK.

-7

9Sommerfeld gave the classic formulas in Zeits. Math. Phys. 50
(1904) , 97-
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4. Two time-dependent examples. In this section, we will

study two time-dependent plane flows that illustrate in a simple

way some basic difficulties. We first consider time-dependent

Couette flows between rotating cylinders, assuming (because of

translational symmetry along the axis and rotational symmetry

around it) that the velocity v = ue is purely circumferential,

and that v = v(r,t).

A first surprising fact is the result that the flow is not

determined by the convection-diffusion equation DC/Dt = vV

This is easily seen by considering the uniformly accelerated,

locally irrotational Couette flow defined mathematically by

(3.1) v(r,t) = t/r, a _ r I b

as an initial value pronlem. The fluid is initially motionless;

the walls are then accelerated uniformly with accelerations

vt.(a,t) 1 1/a and vt (b,t) E 1/b. Since the flow is locally

irrotational, with velocity potential = t9, it has zero vor-

ticity: 2 0 thus trivially satisfies the vorticity equation

7/Dt = 7 . Yet it is obvious that whirling the walls as indi-

cated does not instantaneously (at least for small v) carry the

fluid with it!

The explanation is obvious: since 9 is multiple-valued,

it requires internal torque to drive the motion! (A pressure jump

'1p = 27/o across a radial 'cut' would give at least the initial

acceleration.) For us, the main corollary is the fact that we

cannot simply 'integrate' the DE (l.3)--and that this difficulty

applies to doubly (or multiply) connected domains generally. It

is necessary to consider the shear stress as well as the pressure.

Actually, the same is true of time-dependent flow in a channel,

if we allow a nonzero pressure gradient to act; see Exs. 2-3 at

the end of this section. However, time-dependent 'Couette' flow

differs from time-dependent 'Poiseuille' flow in that whereas the

velocity held u(y,z;t) is governed by the diffusion equation

ut. = ,[uyy + U zz in the latter, this is not true of v = u in

Couette flow. Instead, letting v u be the angular component

of velocity, the governing DE is
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(4.2) vt  1 rr + vr

The last term, which is absent in the case of heat conduction (and

pure diffusion), is associated with the principle of conservation

of moment of momentum, as we shall see.

We first compute the angular component of shear stress, rr.

Since rotation with constant angular velocity w = v(r)/r has

zero rate-of-strain, the angular component of the rate-of-strain

is clearly

r(w/ r) = v'(r) - v(r)/r

Hence the circumferential shear stress is ar9 = [v'(r) -v(r)/r,

the resultant force 2ffr times this, and the moment (or 'torque')

(4.3) N(r) = 2Trrii[rv'(r) - v(r)]

The net moment on the ring (of mass 27pr dr) of fluid between r

and r+dr is therefore

N'(r)dt = 27ri[r 2v"(r) + rv'(r) - v(r)] dr.

The rate of increase of the moment of momentum being 27pr 2 vt(r)dr,

we therefore have

44)= 1/2
(4.4) pvt  u[v"(r) +r v'(t) - v(r)/r

as claimed in (4.2). This can be integrated numerically by the

methods of §2.

Rectangular cavity. A favorite example with which to illus-

trate the basic idea underlying computations of time-dependent

4 .incompressible viscous flows is the flow in the rectangular cavity

[0,a] x [0,b], induced by sliding one wall against a fluid initially

at rest. The mathematical problem is to solve the DE ut =v(u +u
txx yy

10Cf. Batchelor [Bl, §4.5].
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in the rectangle specified, for given initial conditions

u(x;O) = (u(x,y;0),v(x,y;0), and the boundary conditions

(4.5) u(O,y;t) = (0,1)

and u(x;0) on the other three walls. Knowing the vorticity

C(x,y;t n ) at time tnl one can determine the stream function

(x,y;t n ) by solving the Poisson DE

* (4.6) _72 =, u = ai/qy, v = -4i/3x,
m=

and then use the vorticity equation

(4.7) Wa/t = v72  = -u 3/3x - v 3 /Dy

to determine (approximately) (xy;tn+l). The rest of this section

will be concerned with the efficient implementation of (4.6)-(4.7).

Staggered mesh. The adoption of a 'staggered mesh' in incom-

pressible plane flow problems greatly facilitates the consistent

use of first central differences. For convenient reference, the

. appropriate mesh is displayed in Figure 2; it will help to explain
m m m m

the notation '%,j, Ui±l/ 21 vi,j±1 / 2  ' i±1/2,j±i/2 used in

the difference formulas below. For simplicity, we will assume a

square mesh of side h, but analogous formulas hold for a uniform

rectangular mesh of sides Ax = h and Ay = k. Typical difference

* "formulas in this mesh are:

ui+i/ 2 ,j = ij = i+i/2,j+l/2-i+i/2 j-i/2

"i+i/2,j+i/2 = (Vi+lj+1 /2 -vi j+1 /2  h+ -i+/2,j+, -u,+ 1/2

= (i+3/2,j+i/2 + i+i/ 2 ,j+3/2 
+ i-i/2,j+i/2

+ i+i/2,j-i/2 -i1/2,j+i/2

"1This is used in the MAC codes mentioned in Chap. 3, 12; cf.

Roache [C141, p. 197. Roache does not treat viscosity.

[ ..
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P U U

P P P

Figure 2

LOCATION of 'AVERAGE' PHYSICAL QUANTITIES in a TYPICAL MESH SQUARE:

0 ,P, uh , v y are at the mesh-points (xiyi) (the "nodes

of the mesh")

u, ut are at the midpoints (Xizl/ 2 ,yj) of horizontal mesh

segments.

V, vt are at the midpoints (x iYjtl/2 ) of vertical mesh

segments.

p" ¢, u, v and their time derivatives are at the centers

of mesh squares.

Solution of (4.6). To solve the Poisson DE (4.6) in a

square (or rectangle) for the boundary condition p = 0 of the

q flow penetration (the boundary a streamline) is a "model problem"

for whose solution many methods are available. The Fast Fourier
': 1 2

Transform (FFT), implemented in a package called FISHPAK, is to

be recommended as exceptionally efficient. Denoting i+1/2 and

1.By Swartztrauber and Sweet at the National Center for Atmospheric
Research in Boulder, Colorado.
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j+1/2 by i' ana j', the problem is to solve

*1 2 P '
(4.8) 4)i,j' = [ +,1  ij ,pj '- ,j' +'4i ,j i /4

In a unit square, the mesh-lengths h = 1/16, 1/32, 1/48, 1/64 are

to be recommended.

Solution of (4.7). To solve the vorticity equation (4.7) is

less standard; unless Lagrangian coordinates are used, it is very

. hard to avoid numerical diffusion of vorticity, which isof course,

spurious. In the example chosen, this is not too serious, but in

calculating the evolution of a vortex sheet, it would be. For

* smooth flows at moderate Re,

since there is no flow across

the boundary, one can take a

time-step At long enough so

- that, away from the boundary,

1-3 mesh squares are traversed

per step. Using a predictor-corrector (modified Euler) method,

perhaps iterating more than once so as to approximate trapezoidal

integration (Crank-Nicolson), and then correcting for physical

diffusion, fairly good results can be hoped for.

-.-
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5. Vorticity transport. The preceding problems illustrate

the basic mechanism underlying two-dimensional incompressible

viscous flows: that they are governed by the convection and

diffusion of vorticity (and boundary conditions; see below). We

will now examine this mechanism more closely, with special refer-

ence to its accurate and efficient numerical simulation.

To this end, we will first rewrite the difference equations

at the end of §3, in a changed notation. We will index and

. by integers, and set i' = i-1/2, i" = i+1/2, j' = j-1/2, and

js = j+1/2 to simplify the notation. We recall the vorticity

equation

2
(5.1) DC/Dt = 3/;t + u3 /3x + vD'/9y = )V ,

and the fact that the stream function q can be determined from

the DE -= 2 and the values of , on the boundary, and

then new values of u and v computed using the equations

" _ 2
(5.2) = , u = 3p/3y, V =-3/ x

For example, as a variant on the problem of §2, knowing the total

amount of fluid 41 (t) being forced through a two-dimensional

channel of arbitrary cross-section as a function of time, one

can set !P(t) E 0 on the lower wall and (t) = 1 (t) on the

upper wall of the channel, and compute from these time-dependent

plane Poiseuille flow. The next step consists in discretizing

(5.1)-(5.2)

In the above notation, evidently

(5.3, hu.. = - 1Jl hu. = pi j+l-p. j' lj' i~ ,-l lj i,j i,j

2
* with O(h 2 ) accuracy, while

2(5.4) h2 i = h[u i  - u. - V, + Vi,, ]
,jj' ij "y ,j

4D: = 4 i j - ' j = -[xx + yy ' j '
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also with O(h 2 ) accuracy, as can be verified as assuming that

4
E C as is always the case in the interior of the flow.

Convection and diffusion. Equation (5.1) exhibits the Navier-

Stokes equations for plane flows as representing a balance between

convection and diffusion (of vorticity). A similar balance is

achieved by the concentration a(x;t) of any chemical quantity

being transported by a known velocity-field u(x;t). It is governed

by the linear DE a + u.VG = a, where a is the diffusivity.

Thus, in a time-independent plane velocity field (u(x,y),v(x,y)),

one can use the following crude two-step method. At each time-

step, one can first approximate the effect of pure convection by

* (5.5) a(x,y,t+At) = G(x-uAt,y-vAt,t)

where the right side is approximated by bilinear interpolation:

(5.6) a(xi+h,yj+h) = P'8'a i  + 88'a,jj i+l,j

+ eecij+l + eeci+i+l

The mesh square in which (5.6) is to be applied depends on the

quadrant in which _uv) i , j  lies (as in the Box Method), and

6= -, 9' = 1-e. For stability, one must make At I h/max[u,v].

Reynolds number effects. For a given representative length

scale d and velocity scale U, clearly the right side of (5.1)

is dominant when Re = Ud/v << 1, while the left side is dominant

when Re >> 1. This becomes especially obvious it we multiply

(5.1) by c, to get

P + u T + v = V2

As p 0, we get the limiting case of 'Stokes' or 'creeping' plane

flow. This is evidently governed by the biharmonic equation

(5.7) 74 = 72(72 ) = = 0

whose numerical solution will be discussed in 56.
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* - .. Conservation law form. At the opposite extreme, setting

.' = 0 (i.e., in the case of an ideal fluid), we get the 'conser-

vation law form' of the vorticity equation:

(5.8) 3C/3t + div(u) = 0

This expresses Kelvin's conservation law for circulation

r = ff y dxdy, and holds in the 'plane vortex flows' discussed

briefly in Chap. 1, §10. Unfortunately, there seems to be no
13analogous 'conservation law form' in the viscous case.

In between these two extremes, one finds a dazzling variety

of real flows (cf. Chap. 2, §9), and a corresponding variety of

'optimal' numerical methods. This is especially surprising for

incompressible viscous flows satisfying time-independent boundary

conditions. Thus ordinary wakes become periodic when Re > 60

or so; flow in pipes often becomes turbulent when Re > 2000;

boundary layers are typically turbulent when Re > 2 x 105.

It is suggestive and sometimes convenient to express this

dependence by rewriting the governing DE in terms of dimension-

less variables. These can be defined by setting x' = x/d,

t' = tU/d, u' = u/U, and o' = (p-p0 )/pU
2
. In physical Ianguge,

this 'rescales' the problem (by choice of unit) so as to make

p = d = U = 1, and to express the pressure in multiples of twice

the stagnation pressure. Of course, it does not model cavitation

phenomena (e.g., boiling) or gravity effects (e.g., free convection).

In terms of the new variables, the incompressibility condition

still holds (we have 7-u' = 0), while the Navier-Stokes equations

assume the dimensionless form

""3u! u!

(5.9) - 4 ,- P'+ 1 7 2 u '
t- - -  + 3x Re i

The rest of this chapter will be devoted to describing numerical

techniques that have successfully predicted observed velocity

fields in some especially simple limiting cases, at moderate cost.

13
Formula (2.10) in Roache [C14, p. 11] is incorrect, because it
omits the shear stress boundary term.
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* After considering experience with the simpler models discussed in

Chapters 4-6, it seems not surprising that, when Re > 103 (as

"-* is commonly the case), to make accurate and reliable predictions

is still extremely difficult and expensive.

9.

* '
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* 6. Stokes flows. We have already stated, in Chap. 2, ll,

some of the basic analytical properties of time-independent 'Stokes

flows', in the limit as Re + 0. In this section. we will consider

their numerical determination.

After eliminating gravity as usual (in homogeneous fluids of

constant density) by considering P = p + pG instead of the

ordinary pressure p, the assumption that the convective accelera-

tion u ux is negligible in comparison with the true acceleration

"ui/3t leads to the time-dependent Stokes (or 'creeping flow')u ar-
approximation

(6.1) 0 DU PV u - 3P/Dx
1 .

Taking the curl of the preceding DE, we see that in plane flows,

the vorticity ; = v U satisfies
x y

(6.2) = 3 2k '"" 3t '

a pure diffusion equation. This can be semi-discretized at

interior points with O(h ) accuracy by the difference approxima-

tion of 4, on the staggered mesh described there. 14 However,

the approximation of the boundary condition of no slip is more

difficult to interpret in terms of .

Roache [C14, pp. 139-41] comments at length on this difficulty,

and recommends using (at least along straight walls) the following

formula due to Thom:

(6.3) ;w 2 (w l w ) / n

4 -He derives this formula by a Taylor series expansion, and cites numeri-
15cal experiments of C.E. Pearson to support its practical validity.

K14 4
Using a 9-point difference approximation, O(h accuracy can
be achieved.

j15T Fluid Mech. 21 i196, 611-33. For Thom's work, see Proc. Ro.Soc. A141 1933), 631-b6, 3knd 'his comments in Chap. 11 of A. Thorn
and C.J. Apelt, "Fe1ei Comuutations in Enuineer.ng and Physics
van Nostrand, 19--1.
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Boundary conditions. Along a flat wall parallel to the x-axis,

either stationary or moving with constant velocity U parallel to

itself, we clearly have u - consto, and so

(6.4) u = u = v = v = v = 0

Since u x +vy = 0 in plane flow, we also have vy = 0 there.

Consequently, u is the only nonzero entry in the 'rate ofy
strain' matrix

u Uy

':I

v Vx y

giving rise to a pure shear stress

0 uY1

0 0'

For the same reason, vx  u y -u y, and the shear stress is

also

0

01,0 0

This is not true in the case of a circular wall of radius a

rotating with angular velocity about (0,a), for example.

Near (0,0), we have (u,v) = .(a-y,x) and so ; = u = v =y x

instead of = .

Square cavity. The preceding remark illustrates the practical

complexity of solving numerically even the linear, parabolic DE

(6.2) for time-dependent plane Stokes flows inside cavities and

around obstacles of general shape. Therefore, we will consider

only the simplest case of steady flow in a square cavity, already

mentioned in >4, and treated in detail by Chow (with a computer

program) in [G2, pp. 276-89]. We will, however, contrast the

boundary conditions of 4 with those of constant shear stress S,

! ... .... . . .



7-25

* .9 = S/P on the fourth wall. Thus, we will contrast the problem

of solving 74 = 0 for the boundary conditions of given p and

31/3n, with that of solving the same DE for given y and
= 2 2S /3n2. Both problems have analogues in the theory of the

bending of flat elastic plates, about which more is known than about

plane Stokes flows.

Plate bending analogy. In this theory, 'plates' with given

boundary p and Di/Dn are called clamped plates, while the

latter are said to be simply supported. Both cases have been
16

extensively treated, and the numerical treatment of Stokes flows

can be largely based on that for elastic plates--in which the

inhomogeneous DE V = f(x,y) of a loaded plate is most inter-

esting.

Variational principle. Much as the solution of the Laplace

equation V = 0 for given boundary values ('Dirichlet-type'

boundary conditions), minimizes the Dirichlet integral

ff (0 + 2 )dxdy ,

so solutions of the biharmonic DE 74 = 0 for given boundary

values ' and normal derivatives 9p/3n minimize the integral

2"2 2
(6.3) ff(V p)dxdy = ff(Pxx + P yy) dxdy

This minimum principle for biharmonic functions, discovered in

1868 by Helmholtz in the context of Stokes flows, asserts that any

Stokes flow minimizes the rate of conversion of mechanical energy

into heat.

16See T. Szilard, "Theory and Analysis of Plates", Prentice-Hall,
197 His Chap. 3 (pp. 158-324) deals with numerical methods.

N
%
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7. Finite element methods. The variational principles just

stated have many analogues, e.g., for inhomogeneous elliptic prob-

lems and for elliptic DE's with variable coefficients. It is

not surprising that such problems arise in statics, since equili-
brium states typically minimize the potential energy. It is their

occurrence in fluid dynamics that is truly remarkable. Thus, not

only do plane Stokes flows minimize ff;2 dxdy, as Helmholtz

showed in 1868, but three-dimensional Stokes flows minimize

fff1w(x) 12dR under a variety of conditions [A6, Arts. 329, 344].

In both solids and fluids, variational principles characterize

the solutions of elliptic boundary value problems of order 2p
as those functions u which minimize an integral of a quadratic

function of u and its partial derivatives of order p or less.

The exact solution is then approximated by constructing a finite-

dimensional approximating subspace of a suitably chosen function

space, and then minimizing the integral of interest in this sub-
17

space. Since solutions of elliptic boundary value problems are

typically smooth, it is much easier to construct satisfactory

approximating subspaces of moderate dimension (300 or so) for

elliptic than for hyperbolic problems.

The following construction describes the most commonly used

procedure for constructing such 'approximating subspaces'. First,

the domain 2 is subdivided into triangles ("triangulated") or

rectangles (or other quadrangles), in each of which the function

4 (x,y) is approximated by some elementary (usually polynomial

or rational) function.

For the potential flows discussed in Chap. 4, continuous and

piecewise linear (in triangles) or bilinear (in rectangles) func-

tions ordinarily suffice. The minimization of the Dirichlet

integral gives a 9-point approximation. These approximating func-

tions are uniquely determined (through interpolation) by 'nodal

*. values' assumed at the mesh-points, and define globally continuous

piecewise linear (or bilinear) functions where Dirichlet integrals

9. are computable by simple algebraic formulas.

17This is called the Rayleigh-Ritz method; Rayleigh and Ritz
however used small subspaces of globally defined functions.
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However, for fourth-order DE's, the relevant variational

principle only applies to continuously differentiable functions.

4Procedures for constructing such functions are said to provide
'conforming' finite elements. In the case of a rectangular cavity,

in whose interior a fluid is impelled by sliding one side, very

good approximating subspaces are provided by piecewise bicubic

Hermite and spline approximants.

Piecewise bicubic Hermite subspace. For a given rectangular

subdivision 7, the subspace h3 (r) of piecewise bicubic Hermite

polynomials corresponds one-one to the specification of numerical

values of u, ux, uy, uxy at all mesh-points. Given these values,

a unique 'conforming' (i.e., C1 ) piecewise bicubic interpolant

to them can be constructed, with four components.
2 2 22

Even-even: , x 2, y , x y

Even-odd: y, x 2y, y3 , x 2y3

Odd-even: x xy 2, 3y, x 3y 2

oi Od-dd x3 3 3 33
odd-odd: xy , x y, xy , x y 3

By utilizing the indicated symmetries (with respect to an origin

at the centr i of each rectangle) the coefficients of the relevant

polynomial a ijxlyJ can be computed by solving 4 sets of

four simultaneous linear equations, each in as many unknowns.

Bicubic spline subspace. In any rectangle Q with sides

parallel to the coordinate axes, subdivided by vertical lines

x = x. (i = 0,1,...,I) and horizontal lines y = yj (j 0,,... J)

*. the twice differentiable functions constitute a 'spline' subspace

of the space h3('() of the preceding space, having only (i+3) (J+3)

as contrasted with 4(I+1) (J+l) unknowns. However, its use gives

rise to many technical algebraic difficulties including that of

using a well-conditioned basis of 'B-spline' functions whose
'support' consists of only 16 mesh points. Moreover the proper

|- way to handle cubic splines in non-rectangular domains is still a

mystery. See Carl de Boor's "A Practical Guide to Splines" for
* more information.
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For these and other reasons, the most successful numerical

9 treatments of Stokes flows have used more traditional finite
18

elements.

18 See [G31; [G91; R. Glowinski and 0. Pironneau, Numer. Math. 33
(1979) , 397-424; J.C. Nedelec, ibid. 39 (1982) , 97-112.

0w
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8. Boundary layers. We next take up the computation of

velocity profiles in time-independent (laminar) boundary layers.

Our account will be based on a 1978 survey article [G51 by H.B.

Keller, himself a leading contributor to the subject.

The (parabolic) DE's to be integrated are, as in Chapt. 2,

§10:

(8.1) uu + vu = -P'(x) + (vu) X y yy

the equations of motion ('momentum conservation'). Here

P(x) = p/p, and P(x) + 1PU 2 = P0  is a constant, where

U = U(x) = lim u(x,y). We also have the incompressibility

condition u + v = 0, and u(x,0) E 0.x y '

To integrate the system (8.2)-(8.4) of first-order DE's

in the (x,y)-plane, Keller's ingenious Box Scheme 19 is recommended,

as having been successfully applied to a wide variety of problems.

Like the Crank-Nicolson scheme discussed earlier, it is an implicit

*scheme designed to treat parabolic problems in two independent

variables with O(h 2 ) accuracy and O(h) time steps. (In boundary

layer theory, distance in the direction of flow plays the role of

time."

Specifically, as presented in [G6], Keller's Box Scheme is

designed to integrate the following three partial DE's:2

(8.2) u/ x + av/3y = 0, ("continuity")

(8.3) T = 3 au/9y, ("shear stress")

(8.4) u x - P'(x) - v - ("motion")
x 3y ay

19This is not to be confused with the Box Scheme developed by
H.A. Thomas in 1938, to compute the downstream progress of
flood waves (a hyperbolic problem).

20 It is assumed that units have been chosen making p = 1;
-P'(x) = UU'(x), where U = lim u(x,y) is the local velocity
outside the boundary layer. y+

I
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It assigns one equation

* to each box-shaped mesh y.

cell, with the conventions

indicated in the attached h.

sketch. To achieve O(h 2)I(

accuracy without using Yj1kn

a staggered mesh, the- _ _______

following notations are X n-lX
consistently adopted:

iw wn +Wn w i 1n n
[i _..1/2  2- j j-l 1 y'j-1/2 h-(j wj-i)

awnj-l/2 E 1/2I' - w].i/2).

kn

(8.5)

3w n-1/2 i Iwn wn-i

ay j-/21/ 13y j-1/2~

j1/2$ f( i _1 /2 + [ -1/2)

In this notation, Keller's Box Scheme utilizes the foiiowing

difference approximations:

3u n-1/2 + av~n-1/2 0
ax j-1/2 ay j-1/ 2 0

(8.6) T nVn_/ I a3u~n

rn1/2 [3u~n-1/2 + / Du~n-1/2 - [2-P-11-/2
Lj-1./2 ax j-1/2 ~~j-1/ 2  3y j-1/2 x

Note Keller's treatment of the equation of continuity (8.2).

Substitution into it from the notational conventions of (8.5)
AAO

gives
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- (.)1 n n n-i n-i 1in n-i l - n- is--
Sj-1 - A j -

Thus algebraically, there are 3(J+l) variabies and only 3J

equations, one for each interval between mesh points. The relevant

DE's may be thought of as averaged over each box.
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APPENDIX A

LAGRANGIAN DYNAMICAL SYSTEMS

Introduction. Lagrange's classic Mecanique Analytique

envisaged Euler's partial differential equations for fluid dynamics

in a much more general context: that of a conservative dynamical

system. Denoting 'kinetic' and 'potential' energy by T and V,

and assuming for simplicity a finite number of degrees of freedom,

he noted that the evolution of any such system is determined by

th-2 variational equations

(Al) d = dq./dt
"'"" qi

Here L(a,j) = T-V is called the Lagrangian; the 'generalized

coordinates' ql,...,qr can be arbitrary.

Eq. (Al) is the Euler-Lagrange variational equation for the

condition that the action integral fL(j,j)dt be stationary--

% i.e., in Lagrange's notation, that SJL(_, )dt = 0 for all

infinitesimal variations 6a(t) in 'configuration space' having

the same endpoints (t0) =g and j(tl) = a,. Because of this,
-0 1

*. it is often called the Principle of Least Action. It was used

by Liouville, Hamilton, Jacobi, and others to 'geometrize' much

of mechanics, and their concepts helped to inspire the theories

* of relativity and quantum mechanics in the early 20th century.

The reversibility in time of Euler's equations (Chap. 1, §7)

suggests that moving fluids can be treated as conservative

(Lagrangian) dynamical systems having infinitely many degrees of

freedom. For example, the potential flows of an ideal fluid satisfy

a more complicated version of (Al), with T = (pO/2)fff(Vp.V )dR

the Dirichlet integral and V = mgy(t) where y is the height

of the center of gravity. Likewise, the theory of sound exempli-

fies many aspects of Lagrange's general theory of 'small

1 See C. Lanczos, "The Variational Principles of Mechanics", Univ. of
Toronto Press, 1949, esp. p. 115 ff. For connections with quantum
mechanics, see G.W. Mackey, "Foundations of Quantum Mechanics",
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oscillations' of conservative dynamical systems (see Chapter 2,

§§3-4, and Chapter 5).

Analogies between the continuum mechanics and the 'dynamics

of particles and rigid bodies' having a finite number of degrees

of freedom are of more than philosophical interest for numerical

fluid dynamics. They also have a technical interest, because

'finite element' and other semidiscrete approximations (so-called

because variations in space are discretized, but not those in

time) can often be interpreted as conservative (Lagrangian)

dynamical systems.

Small oscillations. In the case of dynamical systems having

a finite number of degrees of freedom, the theory of small oscilla-

tions can be briefly summarized as follows. The potential energy

is near its minimum value V0 , the 'state' of stable static

equilibrium. Therefore we have

(A2) V = V0 + Jaijqiqj

to a first approximation, the 'stiffness matrix' A = Ilaijl

being symmetric and positive definite.

Likewise, the kinetic energy is quadratic to a first approxi-

mation in small oscillations (since T = 0 when V = V0 , T+V

being constant in any case). Therefore, we can write

(A3) T = mijq.j,

where the 'inertial matrix' M = J mij is also symmetric and
2

positive definite.

Evidently, aL/:qi = l ai.q. for all i (summation is with

respect to repeated indices). Likewise, 3L/3qi= mijqj, and

so d(3L/ qi)/dt = Imijq j , in Newton's notation (whereby dots

signify derivatives with respect to time). Hence the equations

i2

2 The most familiar case is that of the moments and products of
inertia of a rigid body; the 'added mass' coefficients of an
ideal fluid are analogous.
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of motion for a conservative dynamical system undergoing 'small

oscillations' are, in vector form,

(A4) M= A

Normal modes. By a 'normal mode' of (small) oscillation is

meant one of the form a(t) = q.k cos t. In complex form
sin,

*- (i.e., setting j(t) = Re Q(t)), normal modes refer to solutions

Q(t) = 2ke k Substituting into (A4), we see that the normal

modes correspond to the generalized eigenfunctions of the system

(A5) MQk + AkAQAk 0,

where M and A are positive definite and symmetric. These are

the stationary points of the Rayleigh quotient

T T
(a6) R(a) = Mq/_ A,

where R =0 with

Example 1. The semi-discretization of a vibrating string,

first studied by John Bernoulli (in 1728), provides a classical

example of a Lagrangian dynamical system. Bernoulli approximated

a taut string of length Z, linear density p, and under tension

T, by n-l equally spaced beads of mass m = ph, where h = Z/n.

m m m

0
m

In equilibrium, the j-th particle is assumed to be at x. = jh,

and it is supposed free to vibrate laterally, with v. = yj-(t)
1____ 2 1) 3

and yo = Yn = 0. The kinetic energy T = Im yj", obviously,

while the potential energy of lateral displacement to distance

y. is the tension times the stretching of the string:

n
V= hT i {l + [(y. - yj_)/h]2 l/2

j=l

" In the 'small oscillation' approximation obtained by neglecting
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infinitesimals of degree four, this is

n
(A7) V = (Tr/2h) (y. -_ 12

n-i n

j=1 j=2

In this example, M = ml is a scalar matrix, and (A4) simplifies

to

(A8) pyj = (yj. - 2yj + j,/2

This is the semidiscretization of the vibrating string equation

(A9) 2  c 2 =Tip
Yxx '' c =

since the R.H.S. of (A8) is Tr times the second central differ-

ence quotient.

The normal modes of vibration are given explicitly by the

solutions

(AlO) yj = j n kT{sos } kt

of the eigenproblem defined by

(AlO') 2 y. + K 2y. 0 , j = ,.n-

and the boundary ('endpoint') conditions yo = = 0. Note that

the k-th eigenvalue is

(All) K 2 =4n 
2sin 2  7T k -T +2n 6n 4



Example 2. Sound waves can be approximatedsmx3

supposing a uniform tube of length Z =nh dckvided

segments of length h, and two end sigments each of length h/_",

by partitions of mass ph. These half-segments are included in

order to impose the boundary conditions u~ CO() = u~ (X 0 by

the symmetry relations u 0(t) = u(-h/2,t) =-u I(t) and

u + t) = u(Z+h/2,t) = 22-u nCt).

Let x.(t) (jC -.I)h + .(t) denote the position of the j-th
J 2J

partition for j 1 ,...,n, and let the pressure in the j-th

segment be

(A.12) pPO 0 -A(%

Since -l )~/h is the specific volume 1/p, this corresponds

to setting p = p 0 -hA/p, a Chaplygin equation of state. Hence

it implies that c2 = dp/dp hA/p. Newtons Law F ma clearly

gives

J J1 i j-l Ij+1 X 1 (i)

Since A = pc 2/h, this in turn is equivalent after simplication

to

2 2
(A13) E .(t) =c C j - 2F,. + j. 9 /h

much as in (A9).



APPENDIX B

CONFORMAL MAPS AND POTENTIAL FLOWS*

Riemann's Mapping Theorem (originally based on physical

intuition), states that all simply connected domains (omitting

two points) are conformally equivalent. By considering the

as an ordinary point of the "Riemann Sphere", we can also map

the exterior of any connected set conformally onto the exterior

of a circle.

For many regions, such mappings can be accomplished by ele-

mentary functions, sometimes through the intermediary of the upper

and/or lower half-planes, y > 0 and y < 0. (Note that half

of the W-domain of many plane potential flows having an axis of

symmetry can be taken as the upper or lower half-plane, by taking

the axis of symmetry as the real axis. For others, the complex

potential domain is an infinite strip.

Since the similarity group consists of the cz + y

(c = a + ib 1 0, y = a + i6 ), and the orientation-inverting

cz + y (c # 0), any half-plane will do. Likewise, W-domains

bounded by two streamlines, p = 0 and = c, are mapped onto

a half-plane by e'W/c This is a result from eW

e (cos ip + i sin i), which fills out a circular sector.

Moebius group. Each 'linear fractional' transformation

(BI) z (az + )/yz + 5) a 6 By ,

defines a one-one orientation-preserving conformal transformation

of the Riemann sphere onto itself. The set of all such trans-

formations is called the Moebius group. In (Bl), a, $, -y,

are complex numbers, and the Riemann sphere consists of the com-

U plex z-plane and a 'point of infinity', 0. This 'Riemann

sphere' can be mapped conformally onto its equatorial plane by

'Ptolemaic projection'. This projection, along straight lines

I wish to thank Lt. Cdr. D. W.Cornell at the Naval Postgraduate
School for his help in editing this appendix.
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emanating from the North pole, has the remarkable property of

carrying circles into circles--as do all transformations of the

form (BI).

In particular, every transformation

(B2) z -) (az + b)/(cz + d), with a, b, c, d real

and ad > bc maps the {upper} half-plane onto itself. Note thatlower
the real linear fractional group of all such transformations is

exactly triply transitive on cyclically ordered triples of points.

Also, the function t = (1 + iz)/(l - iz) maps the {lower, half-
exteiorupper

plane onto the exterior} of the unit circle. Moreover the rigidplae oto he interior

rotations t - e are the only conformal transformations that

carry interior, of the unit circle Iti = 1 that leave
exterior

{0} invariant. As another example, note that the conformal

transformations

z + b
(B3) z bz + 1 b real, Ibi < 1b z + 1 ''" "

map the unit disk and the real axis onto themselves, and leave

z = ±1 invariant.

Triple transitivity. It is easy to verify algebraically

that, over the real or complex field (or any other field), there

is one and only one Moebius transformation (Bl) that carries 0,

1, = into a specified triple of distinct points z0, zl, z2 on

the complex sphere. Those mapping onto itself are the

similarity transformations

(B4) z *+ az + a, =a+ ia' #0, 3 = b + ib'

they constitute a four-parameter group depending on the four

real parameters a, a', b, b'.

Joukowsky transformation. Very useful (and possessing

beautiful properties) is the conformal transformation defined by

.This is the name given in aerodynamics to the transformation (B5),

whose properties were known much earlier. We will assume the
reader to be familiar with the real hyperbolic and the complex
exponential functions; cf. G.B. Thomas, "Calculus and Analytic
Geometry", Alternate Ed. Chapt. 7 of the Schaum Outlint by
Murray Spiegel also contains many useful formulas.
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(B5) z 1(z + 1 = f(z)

This is a 2-valent function mapping the complex sphere onto itself

so that all points except z = +1 are covered twice. Indeed,

w = f(z) if and only if z2+1 = 2zw, or

(B5') z = w _ w

-2
Moreover z = f(z) and dw/dz = (l-z )/2 = 0 at these points,

near which for small complex E, [[(eFl) + I/(EFl)] = Fl FE2 +O(E 2),

so that angles are doubled.

In the log-polar coordinates defined by z = re =e e

(X = Zn r), clearly

(B6) w = cosh A cos a + i sinh A sin 9

Hence circles A = const. (X > 0) and radii 9 = const. are

mapped onto ellipses and hyperbolas having the common foci

(±1,0) (i.e., w = ±1) in the complex w-plane. The circles with

A < 0 and r < 1 interior to the unit disk are mapped onto the

same ellipses with an opposite orientation (i.e., turned 'inside

out').

It is also suggestive to visualize the effect of (B5) on

the complex sphere, conformally equivalent to the z-plane with

under Ptolemaic projection. It doubles both colatitude

and longitude p, if z = -l are taken as the poles, and the

great circle through these is mapped onto a semicircle traced

twice. By combining with Moebius transformations, we see that

circles through ±1 go into circular arcs, a fact that is useful

in two-dimensional airfoil theory.

Complex projective line. Partly for its own interest, we

next recall a few basic facts about the "geometry" of the Riemann

sphere. Considered from the algebraic standpoint of analytic

geometry, the complex sphere can be thought of as a projective

'line', whose 'points' are the sets {Az} with A 0 variable,
Tand z = (zz 2 ) T 0. That is, they are the ratios
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where 0/0 is excluded as meaningless but z1 /0 = 2. The action
a b

I Az of A = (c d on z corresponds to the linear frac-
tional transformation (B2).

The cross-ratio of four complex numbers (zl,z 21z31z4) is

~(Z 1 - z2 ) (Z3 - Z4 )

(B7) X(Zl 1,Z 2 ;z 3 ,Z 4 ) = (z - z 3) (z 2  z4 )

Under (B2), for w. = (az. + b)/(cz. + d) clearly3. 1 1

az 1 + b az2 + b
W1  w 2  cz +d ca + b

1 2

(ad - bc) (z I - z 2 )

(cz1 + d)(cz 2 + d)

From this it is obvious that

(ad - 2(z z z z
(w - w 2 ) (w 3 - w4 ) = 1  2  3  4

R (cz. + d)

i=l 1

and from this and (B7), that

(B8) X(Wl 1w2 ;w 31 w4 ) = X(zl 1 z 2 ;z 3 ,z 4)

In words: the cross-ratio is invariant under the Mobius group.

THEOREM A. Four points zlz 21 z3,z 4  in the complex plane

are concyclic (i.e., they lie on a common circle) if and only

if X(Zl 1 Z2 ,Z3,Z 4) is real.

We cnit the proof.

COROLLARY. Any Moebius transformation carries straight lines

and circles into straight lines or circles.

THEOREM B. There is one and only one Moebius transformation

(BI) which carries a given triple of distinct points (Zl,Z 21z 3)

into a given triple (wlw 2 w3 ): the Moebius group is exactly

triple transitive on the Riemann sphere.
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Plotting streamlines and equipotentials. The creators of

the mathematical theory of two-dimensional airfoil lift (Joukowsky,

Kutta, Karman-Trefftz, Mises) were well aware of the preceding

facts, and used them to construct Joukowsky flows past special

profiles. 2 With modern computers and graphics capabilities, any

intelligent graduate student can do the same for general profiles.

However, to computerize the plotting of streamlines and equi-

potentials for the potential flow with circulation F around a

unit circle requires a careful use of elementary complex analysis.

The complex potential W = p+ i is

(B9) W = z + z - 1 + iy Znz , j /2

Hence ¢ = (r +r - ) cos& - ye, while r = (r- 1 ) sin S + y Zn r.

Because 8 = Im{Zn z} is a multiple-valued function when y 0,

several complications arise.

Before discussing these complications, we note some useful

I, formulas. First,

-2
(310) -=dW/dz = 1 - z + iY/z

2Multiplying through by z ,and solving the resulting quadratic

equation z I iyz = 1, we find that the stagnation points zI ,

z 2 are at

(BlI) z = -(i-,/2) - $i - (2/4
~2

Here 1-(Y2 /4) -A/4 is (-1/4) times the discriminant of (BlO).

Correspondingly, there are three cases, of which 7< 2 (two

stagnation points), is of the greatest aerodynamic interest. In

this case, in polar coordinates, the z. in (BI1) are at
* 3

312) z = i sin 3 - cos S3 s s '

where s = arcsin(-(/2) , sin s = y/2.
5 S

2For a collection of explicit conformal mappings, see H. Kober,
"Dictionary of Conformal Representations", Dover, 1952.

6;
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The dividing streamline = 0 sketched below is easily

plotted, as a function of r. We have

y = r sin = (-yZ nr)/(l-r2

- - (B13)

y7r/2

II Vi+

'[ f > II = 0

Segmentation. However, for later plotting purposes, it is

important to segment the dividing streamline into five pieces as

shown: I) r > 1, x < 0, II) r = 1, 9s : 8 1 7-6 as shown

(where s < 0, y < 0), III) 7e-s < 7 < 2H+ s, IV) a mirror

copy of the segment I, with the sign of x reversed.

The mesh points (:iOp). Values of z. = (x(pi'0)'y(9i '0))

must be stored separately for each of tV streamline segments I,

II, III, IV+  IV, as starting points for the equipotentials

(level lines of c) to be computed later; the spacing h of the

is to be determined later. This is because 9 jumps by 27

in going from IV+ to IV, while p jumps by the circulation
. g = 2 -y.

Symmetry. Since there is symmetry about the y-axis of stream-

lines and equipotentials, we might as well let = 0 at (0,1),

which thus is mapped onto the origin of the (D,p)-plane. This

amounts to adding F/4 = 7-(/2 to p and W, as defined by
L. Eq. (B9).
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The graphing problem. As is standard, one should impose a

square mesh with side h = A = A in the (4,i)-plane, including

the y-axis of symmetry as one of the equipotentials to be graphed.

This brings out the vertical symmetry of horizontal potential

flows with circulation around a circular cylinder, conventionally

invoked to explain the Magnus effect.

Plotting streamlines. The choice of procedure best for

plotting streamlines z(,ipj) depends on the graphics package

(DISSPLA?) and (Tektronix?) computer available; because the appro-

priate principal values of e and may differ, streamlines

passing above the cylinder may want a different subroutine from

those passing below the cylinder. (When l'I > 2, one must

also consider vortex lines.)

Above the cylinder, when q > 0, I recommend starting from

the y-axis, where -= r-1 +F £nr, and (cf. (BI0)) integrating

the DE

(B14) dz/dW = /[l + (iy/z) - z- 2 ]

at intervals of (say) h/3 in . One can use Newton's method

with (B9) as a 'corrector' to eliminate cumulative error. By

symmetry, it suffices to compute and store half of each streamline

abqve the cylinder.

Below the cylinder, one can initiate the computation of each

streamline similarly. However, unless r/4 is an integral multi-

ple of h, the negative y-axis will no longer be an equipotential

to be plotted. (If F/2 is an odd integral multiple of h, the

displayed equipotentials will still be symmetric about the y-axis,

although the y-axis itself will not be one of the equipotentials

displayed.

Plotting equipotentials. Whatever the constant value of

L (O,y) = -/2 for y < 0, it should be easy to compute accurately

z(i.,.) for i. = jh (j < 0) and D1 = ih, by solving B14)

3Cf. Chow, Kuethe and Chow; also Streeter.
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as before from the initial value (O,y) = F/2 instead of 0.

Since for , < 0,

(B15) y(F/2+t,p) = y(r/2-t,p)

and

(B15') x(F/2+t,) =-y(P/2-t,)

one should be able to compute a complete raster of zij = i

by this process, using fourth-order real or complex Runge-Kutta

(which does not depend for its accuracy on uniform mesh spacing).

Checking. I would then store two arrays of the 800 or

fewer grid points zij computed in this way, one for the domain

on and above the dividing streamline, and one for the domain on

and below the dividing streamline. For equipotentials not going
i e

near the stagnation points z = e S, the DE (B15) will be

non-singular, and one can integrate it with respect to the

real variable p from = 0 upward to recompute the zi..

After having verified that the new z.. match the old z.

after debugging if necessary, one can then tackle the part of

the flow below the dividing streamline in the same way.

n Storage. Depending on the plotting method used by DISSPLA
or other graphics package,

storage of at most 5 points

per z.. (dividing each

mesh segment into three

equal parts in the ( ,p)-

plane) should give ample

accuracy if combined with

parametric cubic spline or

other interpolation. Finally, storage of x ij Yij' and their

partial derivative, with respect to ' and i could be combined

with cubic Hermite interpolation to generate the requisite grid

with at most 4800 stored real numbers.

Representing airfoils. Actually, using complex algebra,

• " for each y, 3200 real numbers (the real and imaginary components
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of the z.. and z!. = (dz/dW) .) would su.fice. Given a
13 -,j

Joukcwsky or other profile analytically defined by w = w(z),

one could then use this table of real numbers to compute the real

and imaginary components of w = w(zij) and (by the Chain
13 . j

Rule) the products

(dw/dW)i = w' (z. )zi
1J 1]

would suffice.

* ti
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FOURIER ANALYSIS

Fourier analysis provides a unique tool for solving (pure)

initial value problems involving linear partial DE's with con-

stant coefficients. At the same time it is the best tool for

analyzing the errors and stability of difference and finite

element approximations to such DE's in intervals and box-shaped

domains.

There are three main underlying ideas, each of which is

extraordinarily simple. The first of these concerns the formal

properties of complex exponential functions. For any real wave

vector k = (kI ...,k) the function

(Cl) ei k ' - cos(k-x) + i sin (k-x)

is defined and has absolute value one everywhere in Rm. Moreover

for each j,

ik-x ik-x
(Cl') -(e--) = ik.e -

3x.

Therefore, if p is any polynomial and D. signifies 3/axj,

then the DE

(C2) ut =P(D1...,D

* is solved for the initial data

(C3) u(x;0) e ik 'x

by the function

(C3') u(x;t) e et i '

*• 1Cf. Appendix G, on "Courant stability conditions and amplifi-
cation matrices".
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*where w =p(iDlIT...,iD~) Since Iewti exp{Re~wt}, the rate

of growth of the solution is easily computed.

Example 1. For the diffusion equation ut = CL m = 1

and the soluti n of the initial value problem for u(x,O) =e ix

is u(x,t)e e

only slightly more complicated is (for example), the wave

equation with m = 2:

(C4) u -t=c 2(u x+ u y

Example 2. The solution of the DE (C4) for the initial

conditions

(C4) ~xy;) ~i(kx+k'y) , ~~~) ai(x+k'y)

a, a' arbitrary complex numbers, is

(C5) u(be it+ be- )e kxky

where b and b' satisfy

(C5') a =b + b, a' =iw(b-b'),

2 2with w =c V'k +k' so that

(C511) b = ![a+(a'/'iw)], b' = ![a-(a'/iw)]

In the real domain the two linearly independent complex solutions

(k, k', and w all real) generate four linea'dy independent

real solutions:

~Cos, (k+ky){ Cos}Wt
sinj sin
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The second key idea of Fourier analysis is the representa-

bility of a wide class of functions, especially square-integrable

functions, as superpositions of solutions of the form just indi-

cated. This is possible in many cases, and especially for sound

waves (Chap. 2, §§2-3; Chap. 3, §9; Chap. 5), bEcause of the

Plancherel Theorem stated below.

Plancherel's Theorem. Let u(x) be any (Lebesque) square-

integrable function in Rm. For each wave vector k E R, let

(C6) f(k) e 1 - i k x u(x)dx dx
m

Then we have almost everywhere (i.e., except zero)

(C6') u(x) = f f(k)ei ' dk I ..- dkm
Rm

Finally,

% (C6") flu(x) 1dX dx = m/ 2  f(k) 12dkI  dk

In the case of sound waves, since all w(k1 , .. .,k) are

real, leiw(k)I = 1 for all k. Hence lf(k;t)I 2 = lf(k.;t)[ 2

and so the L -norm of u(x;t),

2 12
Slu(x;t) I2dXl . m = ut)

is independent of t (it is an invariant).

4."



APPENDIX D

NAVIER-STOKES EQUATIONS

The following discussion summarizes, with a few critical re-

marks, the classical derivation by Stokes of the Navier-Stokes

equations of Chap. 2 (8.1).

Relative to Cartesian axes, we define the stress tensor as

the matrix P = .PijiJ, where pi is the i-th force-component,

per unit surface area perpendicular to the j-th coordinate axis,

right-handed orientation of axes being understood. Specifically,

we consider the force directed from the side of positive x.

to the negative side, across the (xj+lXj+2 )-plane, all sub-

scripts mod 3.

We define the rate-of-strain tensor as the matrix lui/axj .

The symmetric and skew components of this are then given by

e.. = (au /x + ;uj/;x)

(Dl)

-"- 1r ij = j  -/ u x i )

Clearly, the matrix R = I Irij has

the form of Fig. 1, which represents

rigid rotation with angular velocity /0 "

("spin")-vector (a,8,y) Thus, the -y 0

physical rate of deformation is due -0 -c

entirely to E = le.j I. For this

reason, E (or 2E in Goldstein) Fig. 1

is often called the rate-of-strain

tensor.

The matrices P and 113ui/3x 1I have direct interpretations

as linear transformations. Clearly, relative to moving axes making

-Trans. Comb. Phi. Soc. 8 (1845), 287- ; Papers, i, 75-

[, . .-
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the local velocity at the origin zero, we have

(D2) du i = j(oui/ Xk)dxk

Similarly, if dS = (dSldS2 ,dS3 ) is any infinitesimal element

of surface area perpendicular to the vector dS, the i-th com-

ponent of force on dS is

(D3) dXi = dPikdSk

This is less obvious, but can be proved, following Cauchy, by con-

sidering the additivity of stress on long, thin triangular prisms

undergoing finite acceleration (total stress/volume bounded),

whose dimensions are allowed to shrink to zero. In summary, P

represents a linear transformation from vector surface area to

the force across that area, while ui/axklj is one from rela-

tive position to relative velocity.

DEFINITION. A Newtonian fluid is one in which P depends

linearly on E, in a way which is invariant under orthogonal -
transformation.

Explanation. By linear dependence, we mean that P = cekl

for some coefficient tensor. The interpretation of orthogonal

invariance requires a more lengthy explanation.

Rules of transformation. Obviously, if A = Ilaij I is

any orthogonal matrix, then

(D4) Yi= aik xk (in matrix notation, Y = AX)

is an orthogonal transformation of coordinates corresponding to

new Cartesian xes. If JAI = 1, then orientation (right-handedness)

is preserved, and A defines a rigid rotation (through a finite

angle). Hence A transforms force-components Xi, distance-

components, and components of vector area dS. according to the

same rules of transformation:

2 The R of Fig. 1 represents a rate of rotation (spin) in radians
per second; A is dimensionless.
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(D5) Yi= ik Xk dTi = aik dSk

Hence, if I jqij I is the stress tensor in the new (right-handed,

Cartesian) coordinate system defined by any orthogonal A, we

will have

(D5') Yi= qik dTk' whence AX = QA dS

Since A-  = AT  for any orthogonal matrix, this yields the

general rules of transformation

T T
(D6) A QA = P, Q = APA

for the stress tensor, under all A with Al = 1.

A similar argument, with U = (duldu2,du 3) taking the place

of X, shows that if v. aik uk denotes velocity relative

to the new axes, then

'(D7) 113Vi /y jI = Ai 3uk/xki AT

. Moreover, the transformation C - ACAT  leaves invariant the

decomposition of C into symmetric and skew components, since

T T T T T T T T
- A(C+C )A = ACA + ACTA = ACA + (ACA

- Hence, E and R in (Dl) transform according to

T T
* (D8) E -AEA and R ARA

3
under any orientation-preserving orthogonal transformation.

Principal axes. Formula (D8) shows that the symmetric rate-

of-strain tensor E transforms like a quadratic form. Hence we

can always choose A so as to make E diagonal; the associated

|' * 3For a detailed derivation of (D6)-(D8), see H. Jeffreys,
"Cartesian tensors", Cambridge Univ. zess, 1931, Chs. VII
and IX (cf. Goldstein, p. 95. footnote).
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axes are called principal axes for E. We shall now consider the

dependence of P on E relative to such principal axes. We

can assume R = 0 (by hypothesis, R does not affect P),

without losing generality.

In this case, the matrix lDui/ x1l1 is diagonal, with

diagonal entries a, b, c. The flow is kinematically invariant

(up to infinitesimals of higher order) under all reflections

Yi = ±x.. Consider reflection in (say) the (x1 1x3 )-plane, with

Y= x' y2 = -x2 ' y3 = x3 " The stress across the (x2 ,x3 )-plane,

from the side xI > 0 will be unchanged, since the flow is

unchanged. Hence we conclude that X =X if dS = (dSI,0,0);

P21 = 0 under principal axes. But a similar argument applies

to P1 2 ' P2 3 ' P32 ' P1 3 and P31 ' proving

LEMMA 1. If E is diagonal, then P = D is diagonal.

COROLLARY. The stress tensor P = lipijI is symmetric,

under any Cartesian axes.

For, P = ADA T , where D is the diagonal stress matrix for "@

some set of principal axes. Hence PT = (ADAT)T = ADAT = P.

Viscosity coefficients. We now consider the incompressible

case, that ui/x. (or, equivalent, E) has trace zero. This

condition is physically independent of the choice of axes. In

this case, relative to

principal axes, D is /a 0 0\ /0 0 0

a superposition of two 0-a 0 0 b 0

matrices of the type of 0 0 0 0 0 -b

Figs. 2a-2b, which are

moreover the same except Fig. 2a Fig. 2b

for the labelling of

axes.

But these matrices arise from the simple shear flow having

the constant rate-of-strain tensor of Fig. 3a, which is usually

used to define viscosity. The associated quadratic form is

kx1x2 ; relative to principal axes Yl =, (x l+x 2 ) / '

(x2 xl)/,2, this becomes y - /2, with diagonal
Y2 = as i Fig 3c.

b," matrix D as in Fig. 3c.



D5(0 k 0\ (0 k/2 (k2\
0 0 0) E= k/2 0 0)D 0 -k/20
0 0 0 0 0 00

Fig. 3a Fig. 3b Fig. 3c

In Lemma 1, considering the symmetry between D and -D

under permutation of axes, we see that the stress matrix Q(D)

must have diagonal entries p'k/2, -p'k/2, 0. In short,

Q = p'D, for some constant p', which is positive since out-

ward flow away from the (x2 1x3)-plane exerts tension (cf. basic

definition of P)

Arguing similarly for the case of Fig. 2b, and noting that

p' must be the same since the axes are merely renamed, we see

that Q = ii'D in general, But this equation is preserved under

(D6)-(D8). We conclude that P = u'E in general.

But finally, in the simple shear flow of Fig. 3b, P1 2 = pk

(by definition of units of viscosity). Hence

THEOREM 1. In any incompressible Newtonian fluid, the

viscous stresses must satisfy

3u. u.
(D9) P = 2'E, or p ij u + 3x 3 (Normal Stresses

ij x •not discussed)

for a suitable "coefficient of (shear) viscosity" i

Physically, we must have u > 0 to prevent the creation of

mechanical energy; this car be viewed as a special case of the

Second Law of Thermodynamics.

In a compressibie fluid, D is at any point the sum of a

volume-conserving rate-of-strain matrix (trace zero) and a pure

dilatation with rate-of-strain matrix cI, where I is the

identity matrix. A reconsideration of invariance under reflec-

tions shows that this must be opposed by a stress matrix cI

in any Newtonian fluid. The constant -x > 0 is called the

bulk viscosity.
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Stokes gave a classic, metaphysical "proof" that 3. + 2,. 0,

reproduced in Lamb [A6, p. 574]. We will comment on this result

(true only in monatomic gases) in Appendix B.

I0

6

6



APPENDIX E

MOLECULAR MODELS OF MATTER

These notes are based on [C2] and thn following references:

[J] J.H. Jeans, "Dynamical Theory of Gases", 4th ed.,
Cambridge Univ. Press, 1925.

[J'] J.H. Jeans, "Kinetic Theory of Gases", Cambridge
Univ. Press, 1940.

4 Kinetic theory of gases. Without question, the kinetic theory

of gases has been the most successful 'molecular model' of a fluid;

'Model #7' of the Table on p. 3 should therefore be thought of as

referring above all to this theory. In its simplest form, the

main assumptions of this model are as follows.

Small molecules, of mass m and diameter u, move in straight

lines of average length X (the 'mean free path') between suc-

cessive binary col.lisions, which are elastic. It can be shown

that an isotropic Gaussian statistical distribution of velocities,

with probability density

(El) bin 3/2 -hm(u 2+v 2+w
2

is time-invariant ('stable') for a wide variety of laws of binary

repulsion. In (El) h is a parameter inversely proportional to

temperature. For a non-dense gas, ternary collisions can be

neglected; the 'state' of any molecule is moreover assumed to be

independent of its velocity.
1

From these assumptions, one can deriv'e the equation [J, p. 1161:

(E2) pV = NRT ,

for the (kinetic) pressure p in a volume V of gas containing

N molecules. More generally, in a mixture of aases of masses

° is such high-temperature phenomena as excitation, radiation,
-- 2:zat-on, and dissociation are ignored in classical kinetic
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mi. writing u2 +v2 +w2 = c2, one can show that the mean kinetic
1 2

energy per molecule of a given species, 2mici, is the same for

all species. From this it follows that the number N of mole-0

cules per cc. at a given pressure and temperature is the same

for all gases (Avogadro's Law). 2

At T = OC = 273 0 K and p z 1 Kg/cm 2  (standard atmospheric

pressure), N a 2.7 x 10 1 9  [J, p. 8]. Likewise, one can show

that

3 1 2 2 222
(E3) -RT =mc c = u2+v2+W

so that c 500 meters/sec in air at 00 C. (Here and above

the numerical value of R depends on the units of temperature,

as does the mechanical equivalent of heat,

(E4) J = 4.184 x107 dyne cm/gm. cal.)

Central force laws. 'Central force' laws F = f(r) depend-

ing only on the distance r between nearby molecules imply some

remarkably simple formulas. Thus they imply that the viscosity1 -
= 1 tJ, p. 277]. The remarkable fact that gas viscosity

depends only on the temperature, regardless of the pressure, is a

corollary. Less successful is the prediction that the material

(self)-diffusivity D has the same value as v = p/z, the kine-

matic viscosity [J, p. 3201. They also imply that the thermal

conductivity K = lCV -

Empirically, the ratio K/,CV is called the Prandtl number

of a gas. In [J', p. 189], one finds the values Pr = 2.4-2.5

for He and A, 1.9 for 02, N2  and air, and 1.58 for CO2 .

Landau and Lifschitz [B6, p. 203] give the value 0.733 for air,

as well as Pr = 0.044 for mercury, 16.6 for "alcohol" (C6H5OH?)

and 7250 for glycerine. They also claim that Pr is "just a

constant of the material" (sic!).

Monatomic gases. The preceding assumptions are clearly most .g

plausible for monatomic gases such as He, A, Kr, etc. The same

2 Inferred from chemical (combustion?) experiments. For historical
remarks about the kinetic theory of gases, see [J, 59 and 5601.
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is true of the consequence of an 'elastic sphere' model (bouncing

billiard balls), which would imply wivfT. Actually, the formula

= o(T/273)n is fitted to empirical data on gas viscosity;
the n giving the best fit ranges from about 0.68 to 1.

Stokes' prediction that the shear viscosity P and the bulk

viscosity p' are related by the equation 3ji' + 211 = 0, also

in agreement with the central force model, does seem to hold for

monatomic gases.

Specific heats. Specific heats tend to be less variable.

Theory predicts that

(E5) C - CV = R/mJ

and that (in monatomic gases) Cv  just measures the total kinetic

energy of translation (the total kinetic energy for monatomic

gases)

The adiabatic constant C = /C = 1 + 2 where n is

the number of 'internal' degrees of freedom of motion (rotation

and vibration), is also successfully predicted by kinetic theory.

In monatomic gases, n = 0 and so y z 5/3 for He, A, Kr, and

Hg (mercury vapor). In diatomic gases, n = 2 and so y 1.4

in H2, N2, 02' and air [J, p. 190]. (In CZ2 , y 1.33

however, while in polyatomic gases, y is even less.)

Molecular slip. There is in fact some 'molecular slip' in

rarefied gases, associated with a tendency to nearly specular

reflection. See [J', p. 192], 3 where 'accommodation coefficient'

is discussed. When A >> d,

"i 2 - 3

7aQ = rau = 2a (p -P 2 )/cL

3The summary in Goldstein [A5, pp. 676-80] sounds more negative.
Some of the $50 billion spent in the 1960's by NASA went to
rarefied gas dynamics. See the volumes on Rarefied Gas Dynamics
(Academic Press, 1961 and 1969), edited by L. Talbot and by L.
Trilling and H.Y. Wachman, respectively. The lead article by
J.P. Hartnett in the first emphasizes the need for maintaining
scrupulously clean surfaces" in measuring thermal accommodation
coefficients, while that by M.N. Kogan in the second gives a
comprehensive and up-to-date historical review of the subject.
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is proportional to the pressure gradient times the cube of the

pipe radius, not a4 as in Poiseuille flow. To derive the

accommodation coefficient, quantum theory is needed, and quantum

theory is beyond the scope of this book.

Mass-spring models. Von Neumann's initial 'mass-spring'

model for plane shock waves in air had much more in common with

molecular models of crystalline solids than it did with Maxwell's

kinetic theory of gases. However, the same is true of many other

difference approximations used in numerical fluid dynamics. There-

fore, we will conclude this Appendix with a few remarks (mostly

bibliographical) about the mass-spring models for crystals, noting

that Leon Brillouin's booklet [C21 contains a wealth of supple-

mentary ideas.4

Elastic 'solids'. One notable class of molecular models was
5proposed by Poisson and Cauchy, to provide a basis for the

'rational mechanics' of elastic solids. According to this model,

solids are composed of periodic arrays of atoms connected by

springs Lperfect crystals). Using analytical arguments, Cauchy

was led by this model to develop a 'uniconstant' theory of elas-

ticity, in which the Poisson ratio (lateral contraction)/(axial

elongation) was a predictable 0.25, much as u/u' must be

0.67 in a perfect monatomic gas.

4 See also L. Brillouin and M. Parodi, "Propagation des Ondes dans
les Milieux P~riodiques", Masson-Dunod, 1956.

5 Curiously, after proposing a continuum model in 1822-23, Cauchy
later abandoned it in favor of the 1829 molecular model of
Poisson, and extended it to crystals. See the Historical Intro-
duction to A.E.H. Love's "Theory of Elasticity".

-" 6We use this phrase in the sense of Poisson. Poisson conceived of
'm~canique rationelle' as an inclusive, self-contained subject.
Thus he writes in the Preface of his Traite de Mecanique, Paris,
1811; "My choice of proofs is neither exclusively synthetic nor
(exclusively) analytic. I have sought clarity and simplicity
above all, always preferring demonstrations that shed the most
light on the truths that one wishes (sic!) to prove, ... often
combining geometric considerations and algebraic formulas in
treating the same question".
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S .Periodic mass-spring models helped Kelvin to understand and

* predict piezoelectric effects. They also led Max Born to a

realistic model for the specific heat of halide crystals; the

Preface of his "Dynamik der Kristallgitter" (Teubner, 1914)

begins with an admirable summary of the capabilities and limita-

tions of mass-spring models of solid crystals.

Much more recently, Leon Brillouin [C2] used analogous models

(and the 'electromechanical analogy') to provide qualitative

explanations for various features of the spectra of crystals, and

for designing 'pass-band' filters in transmission lines (for both

telephonic communication and electrical power). In his books,

Brillouin takes as his first example the Newton-Lagrange-von

Neumann model for sound waves, which we will discuss again as a

computational scheme in Chapter 5. Brillouin considers the

effect of vibrating the end bead of a semi-infinite periodic

array sinusoidally (harmonically), so that x0 (t) = A sin wt.

This excites sinusoidal oscillations in the other beads, having

* the same frequency and amplitude, but different phrases up to a

certain cutoff frequency wmax* Below this frequency, we will

have

"'(E6) x. (t) =A sin Li(cht - jh a )

In this range, the molecular spacing h produces some dispersion:

c h(w) depends on h, as well as a phase-lag a = c(w). Such a

dispersion is perceptible experimentally for highly ultrasonic

frequencies. Above the cutoff frequency (i.e., for w > wmax ) ,

- the transmitted oscillations die out exponentially: the 'solid'

is 'opaque' to them.

In spite of their many notable successes from the standpoint

$ - of Natural Philosophy (see Chapter 1, §2), mass-spring models of

solids as periodic structures have serious limitations from the

standpoint of exact science. Thus Cauchy's 'uniconstant' theory

of elasticity was finally rejected in favor of a 'rariconstant'

theory of elasticity. Poisson ratios actually range from 0.25
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to 0.5 or more. And the (1954) edition of Born and Huang's

"Crystal Physics" contains not a trace of the molecular models

that were the central theme of Born's 1912 "Theorie der

. Kristallgitter".

0*
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APPENDIX F

'COURANT' STABILITY CONDITIONS AND AMPLIFICATION MATRICES1

For some special 'model problems', associated with linear,

constant-coefficient DE's in box-shaped domains, errors and

orders of accuracy of approximate semi-discretizations and "full"

discretizations of initial value problems can be estimated

reliably by expanding in obvious eigenfunctions.

A basis of eigenfunctions for the linear difference operator
6 xxu is provided by the functions sin jrx (j = 1,...,n-l)

A little manipulation of trigonometric identities gives:

sin j(x+h) - 2 sin jrx + sin jr(x-h) =

(Fl)

(2 cos jirh - 2) sin jrx = X. sin j7x

2
where X. = 4 sin (jlh/2). Hence, in two dimensions, with a

square mesh:

(F2) 2 -h 2 2 2 + O(h 4

(F2 hJ Yr h

where cj.j,(x,y) = sin j~h sin j'y.

iJ,

From these formulas, we can easily estimate the errors and accuracy

of the semi-discretized heat and wave equations.

Semi-discretizations. The 'method of lines' (MOL) replaces

DE's such as ut =U and ut = c2 72 u by their semi-discre-

tions:

(F3a) Ut = Uxx,

(F3b) ut =c(u +U ),- xx yy

2
(F3c) utt =c Uxx, and

Cf. Chapter 3, i3.
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(F 3d) = c 2 ( U x x + Uyy

For the stated boundary conditions, and the DE (F3a), the

-. - semi-discretization

(F4) ut = xx u/h2

and the boundary conditions u(O) = u(l) = 0, give a quite good

semi-discretization. If

n-i
u(x,0) = c. sin jrx

j=l 3

formulas (Fl) show that the (exact) solution of the semi-

* discretized DE

-X .t
(F5) u(x,t) = c.e sin jrx

where X. = 4 sin 2 (jTrh/2)/h 2 . This is because the coefficientJ -j.c. (t) = c.e- is the solution of c'(t) = c whereas the
[. 3 1 j j

exact solution of the DE is

[. .(F6) cje .
.2

Error Analysis: ut = Cuxx The basic principles underlying

the error analysis of the DE's (F3b)-(F3d) are illustrated quite

well by the 'heat equation' (F3a). To fix ideas, we will there-

fore analyze this case first in some detail.

We first observe that, by the Riesz-Fischer theorem, any

K continuous initial temperature distribution u(x,0) = f(x) can

be approximated arbitrarily closely in the 'mean square' or

£2 -norm for sufficiently large n, by a truncated sine series

n 1
* (F7) b. sin jlx, b. = 2 f f(x) sin jzx dx

j=l 0

Ok
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%' 2

if f IE C 0[0,1]--i.e., if f has two continuous derivatives and
2

f(O) = f(l) = 0,--the error is 0(1/n and the approximation

is close in the uniform norm max If(x) - S (X)I

We next recall that the evolution in time of a temperature

distribution under the action of the heat equation is a 'contrac-

tion semigroup' under both the Z 2 -norm and the uniform norm.

This means that if u(x,t) and v(x,t) are any two (even 'weak'!)

solutions of ut = au xx, then we have the inequality

(F8) jLu(x,t') - v(x,t') l < I Iu(x,t) - v(x,t)!i

if t' > t, regardless of whether 1 is the Z2-norm or the

uniform norm. (Exceptionally, if u E v, equality can hold in

(F8).)

References. Rigorous proofs of the preceding results are

fairly straightforward, but rather lengthy. Good expositions of

(F7) are in Courant-John "Calculus" and Widder's "Advanced

Calculus". More precise results referring to trigonometric

interpolation (as contrasted with 'approximation' by least squares)

were proved by Dunham Jackson, whose book can also be recommended

to analysts. As regards (F8), this is obvious from (F5) in the

Z 2 -norm. The uniform norm result is treated in Protter and Wein-

berger. Contraction in the Z 1-norm is also provable, from a

consideration of the Green's function.

Because the "evolution equation" for heat conduction is a

contraction semigroup in the Hilbert space we can use the triangle

inequality to prove that L2 [0,1] & 2- (N the semi-discretization

error in this space is bounded by the sum of the initial interpo-

lation error I 1u0 (x) - uh(x) I and the error in the rate of

* dissipation stemming from the spatial difference approximation

Vhu = (6 u)/h 2 to 7 2u. This is easily verified to be
h xx

(F9) 2 /2

.2 2 2 2
where p j = 3 and by (Fl), since 7 hu = (5 xxu/h

[-J
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(F9') A. = [2-2 cos j7h]/h
2

Expanding in Taylor series:

4 42 66 4i = 4i Tr h /12) - (j 76 h /360) + ...

more importantly, X. > Pj. Therefore

-jt -X.t t tle -e 3 I = e [i -e 3

is positive; moreover it is small for small jt because the

second factor is small, and small for large jt because the

first factor is small.

Full discretizations. All semi-discretizations of ut = Yu

-' are dissipative. More precisely, they correspond to a (large)

strictly stable2 system of (linear, constant-coefficient) system

of ordinary DE's in the uj(t). However, full discretizations

with too large a Courant number r = aAt/Lx can be explosively

unstable. More precisely, if r > 1/2 is held fixed as h = 1/n

tends to zero, then the 'approximate' solutions computed (even in

'exact arithmetic') by the explicit method of CFL do not tend

to any limit for fixed t > 0, but oscillate increasing. Stated

another way, the CFL algorithm does not successfully 'arithme-

tize Analysis' for r > 1/2.

To explain this, we note that the explicit method proposed

in [17] amounts to integrating the semi-discretization

2 2S(F10) ut = h u =L7
(Fl) (t/hflxx h

by the Euler-Cauchy polygon method. Rewriting (F10) in vector

notation as

2
(Fll) u'(t) A[u], A = ct /h

See Birkhoff-Rota, "Ordinary Differential Equations", 3rd
edition, Chaps. 3 and 6.

.J

..........................
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or in component notation as u! = akU this amounts to

iterating

(F12) u(t+At) =u(t) + AtA[u] (I+AtA)u

The expression (I+AtA) is called the amplification matrix of the

CFL scheme.

If we try to approximate u(x,t) by the CFL scheme with

fixed r, we get (I+AtA)I/At For r > 1/2, the norm of this

matrix, which is the 1/At = a/rAx 2 = a/n 2r power of (I+AtA),

tends to infinity as At 0. To show this we note that for

h = 1/n, the most unstable eigenfunction sin j7x of (Fll)

and (F12) is u0 (x) = pnl(x) = sin (n-l)7Tx; at the mesh points

x = X. = j/n, we have sin (n-l)nj/n = (-i)j sin 7j/n. We omit

proving that (FlI) becomes unstable when r slightly exceeds 1/2.

Crank-Nicolson. In contrast to (F12), the trapezoidal method

for integrating (FlO) gives the Crank-Nicolson recursion formula

u(t+At) = u(t) + Lt[Au(t) + Au(t+At)I/2

Simplifying algebraically, we get

(F13) u2(t+t) = 1-A

The matrix

(21-A)/(2I+A) = I - A 2 - A3/4 +

in (F13) is thus the amplification matrix of the Crank-Nicolson

method. Since the eigenvalues of A are all positive, the

III eigenvalues of the amplification matrix are all in the interval

(0,1), and hence the Crank-Nicolson algorithm is stable for
3all choices of r.

3For further details and extensions, see R.S. Varga, "Matrix
Iterative Analysis", Chap. 8.

LO



APPENDIX G

TWO-DIMENSIONAL AIRFOIL THEORY

In §11 of Chapter 1, we explained the basic idea of two-

dimensional airfoil theory: that lift is due to the circulation

r = Ju.dx around an airfoil. We also derived the basic formula

L = pFU for the predicted lift (the predicted drag is zero).

In this Appendix we will derive this formula more rigorously,

using Cauchy's theory of complex integration. We will also

derive a formula for the moment M. Our starting point will be

the following basic existence theorem, whose truth we will assume

without proof.

THEOREM 1. There exists a unique potential flow with given

circulation F around an airfoil moving (through an ideal fluid)

with given speed U at a given 'angle of attack' a. Moreover,

if the airfoil (wing) has a sharp 'trailing edge', precisely one

of these has everywhere finite velocity.

The relevant formulas are by far the simplest in the case

of the flow around a circle with center at the origin, which we

can imagine al a plane section of a circular cylinder. The most

general such flow is a superposition of a uniform flow field, a

dipole velocity field in the opposite direction, and a pure

vortex at the origin. The resulting complex potential W = + i

is then of the form of Chap. 1, (11.6):

(Gl) W = U[e- iz + e i/z + iy Zn z];

since Zn z = ZnlzI + ie, its circulation F = 2-rv,. Hence the

complex velocity vector (the conjugate of W'(z)) is given at

z = e by:

(G2) W (t) = iei 3 ['  - 2 sin (-S) ]

If JIy < 2, there are two 'stagnation points' W'(z) = 0, and

.- !they occur where 3 = ±arcsin(y/2) . Again normalizina to the
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G2

case U = 1, we find by integrating the Bernoulli equation that

the net pressure thrust is perpendicular to the flow direction

.e (a 'lift' L), and is equal to

2
(G3) p 2y sin (a- )d = 27py =pU

(since U = i)

We now show that the same formula holds generally. In order

to prove this, we first use contour integration to prove:
1

THEOREM 2 (Blasius). let a fixed airfoil profile C be in

a locally irrotational flow of an incompressible, non-viscous

fluid, with complex potential W. Then the drag D, lift L,

and moment M about the origin acting on C are expressed (in

complex notation) by the formulas

1 dW2

(G4) D - iL = ip (-) dzC dz

(G5) M I - a2 Re{ z(4-j) dz},C

provided gravity is neglected.
1 _ ,2

Proof. The pressure on C is, at any point, fp(po 0 2)

by Bernculli's Theorem. Since the resultant of a constant

pressure is zero, we can suppose po = 0. The thrust on an infini-

tesimal element dz of C can thus be taken as

. i 2 id i.~ d

2- u idz = 1- c (dW/'dz) (dW/dz)*dz

1-"(dW/dz)*dW

6

But along C, dV 0 and dW = dU = dW*. Hence the complex

conjugate D - iL of the thrust satisfies
1. 1

D - iL = -i - (dW/dz)dW = [ Wdz) <

"H. Blasius, Zeits. f. Math. Phys. 58 (1910) ,
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The counterclockwise moment about 0 of the vector idz = -dy + idx

acting on the point z = x + iy, is ydy + xdx = Reiz dz*-.

Hence the moment of the pressure on C is

-12 d 1 y' - Re u z dz 7 o Re{i(dW/dz) z dW*

Since dW* = dW on C, this implies (G5)

The formulas of Blasius involve single-valued, analytic

complex integrands. Therefore, by Cauchy's Integral Theorem,

their value is the same for all contours going once around C.

This fact is very convenient.

Thus, if we expand W at infinity, as

(G6) W= z + -Zn z + c + cl/Z + c /z2 +

we obtain by a simple calculation

(G6') (dW/dz) 2 = 1 + if/7z - ( 2 /42 + 2c )/z2 +
1

Hence, integrating term-by-term the Laurent expansion obtained

by substituting from k6 .6 ') into (6.4), we obtain

1

(G7) D = iL = L (i 7/-r) dz/: = - ipF

as usual in the calculus of residues. This gives the celebrated

Kutta-Joukowsky Theorem. 2

THEOREM 2. Under the hypothese Df Theorem 1 the drag D is

zero, and the lift L is pFU.

(In (G6) we have assumed v = 1; since the formula L 0'v

_ "is dimensionally homogeneous, it suffices to discuss this case,

using inertial similitude.)

CORROLLARY. (Two-dimensional d'Alembert Paradox). An Euler

A flow exerts no lift or drag on an object.

2 Kutta, Ill. aeronaut. Mitt. (1902); Sitzb. bayr. Akad. Wiss.

(1910); N. Joukowsky, Zeit. Flugtech. Motorluftschiffahrt, cl.
1 (1910), p. 281 and vol. 3 (1912) , p. 81.

r J . .. M . ..
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Substituting from (G6') into (G4), we obtain a simple

expression due to von Mises,
3

(G8) M - Re{-( /47r + 2c.)27ii} = - 2p Im{c}

Again, putting this in dimensionally homogeneous form, we get

THEOREM 4. Under the hypotheses of Theorem 1, the moment

M is 27rp times the velocity times the normal component

Im{c} = of the "bicirculation vector" bI.

The "bicirculation vector" of a flow without circulation is

independent of the choice of origin, and is simply the dipole

moment of the flow at infinity. Thus, in the case of the ellipse

x = (l+a2) cos a , y = (1-a2) sin a

we have for horizontal flow

2W = t + 1/t z + (1-a2)/z +..,

2 2
since t= z - a2/t = z - a2/z - .... This has horizontal
dipole moment 1 - a2 Similarly, for vertical flow

W = -i(t-t - ) = iz - ia 2/z - i/z = i[z - (l+z 2)/z + . .

This has vertical dipole moment -(l + a2).

It follows that the force moment is zero for flow parallel

to the horizontal and vertical "principal axes". For oblique

flow, with cos a - i sin a, the dipole moment is obtained

by superposition, as

2 2
S((-a)cos a, -(l + a2)sin a).

o3

3R. von Mises, Zeit. Flugtech. Motorluftschiffahrt, 1917, pp. 157-
163, and 1920, pp. 67-73 and 87-89. See also his Theory of
Flight, p. 183.
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The component of this perpendicular to the velocity vector

(cos a, sin a) is 2a2 cosa sin a = a2 sin 2a. Hence the counter-
2,. clockwise "broadsiding moment" M is -27rpa sin 2a, by (G8).

*: A similar result holds for potential flows in general, with

respect to suitable "principal axes" for translation.

A.5"
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