
AD Al35,875 C ONVERGENCE THEORIE F DI0STRIBUTED IERATIE PROCESS: /
A SLIRVEY(A MASSACHU]SETS NS 0F TECH CAMBRIDGE LAR

CLS; OR INFORMATIGRANDSD, DRERTSEKASET AL DEC 83

HEE

lii 1.0.0

H1 .25 IU 4 111 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

December, 1983
LIDS-P-1342

J CONVERGENCE THEORIES OF DISTRIBUTED ITERATIVE PROCESS: A SURVEY

m by

Dimitri P. Bertsekas* V 00-o
John N. Tsitsiklis**
Michael Athans* j EECT

ADEC 151W3

ABSTRACT S

-We consider a model of distributed iterative algorithms whereby

several processors participate in the computation while collecting,

possibly stochastic information from the environment or other proces-

sors via communication links. Several applications in distributed

optimization, parameter estimation, and communication networks are

described. Issues of asymptotic convergence and agreement are explored

under very weak assumptions on the ordering of computations and the

timing of information reception. Progress towards constructing a broadly

applicable theory is surveyed.
Ctl

The research of D.P. Bertsekas was supported by NSF-ECS-8217668 and under DARPA
Grant ONR-N00014-75-C-118 .- The research of J.N. Tsitsiklis and M. Athans was
supported by ONR-NO0014-77-C-0532(NR- 041-S19).

Dept. of Electrical Engineering and Computer Science, Laboratory for Information
and Decision Systems, M.I.T., Cambridge, Mass. 02139.

Dept. of Electrical Engineering, Stanford University, Stanford, California.

0 STATEMENT A 83 12 13 272
Approved for public ielease

I Distribution Unlimited

I .iiI I " ..

-1-

1. Introduction

Classical (centralized) theories of decision making and computation deal

with the situation in which a single decision maker (man or machine) possesses

(or collects) all available information related to a certain system and has to

perform some computations and/or make a decision so as to achieve a certain

objective. In mathematical terms, the decision problem is usually expressed as a

problem of choosing a decision function that transforms elements of the information

space into elements of the decision space so as to minimize a cost function. From

the point of view of the theory of computation, we are faced with the problem of

designing a serial algorithm which actually computes the desired decision.

Many real world systems however, such as power systems, communication networks,

large manufacturing systems, public or business organizations, are too large for

the classical model of decision making to be applicable. There may be a multitude

of decision makers (or processors), none of which possesses all relevant knowledge

because this is impractical, inconvenient, or expensive due to limitations of the

system's communication channels, memory, or computation and information processing

capabilities.

In other cases the designer may deliberately introduce multiple processors

into a system in view of the potential significant advantages offered by distributed

computation. For problems where processing speed is a major bottleneck distributed

computing systems may offer increases in throughput that are either unattainable or

prohibitively expensive using a single processor. For problems where reliability

or survivability is a major concern distributed systems can offer increased fault

tolerance or more graceful performance degradation in the face of various kinds of

4,

I,~ C copy

0 ¢10

C o ,,

-2-

equipment failures. Finally as the cost of computation has decreased dramatically

relative to the cost of communication it is now advantageous to trade off increased

computation for reduced communication. Thus in database or sensor systems involving

geographically separated data collection points it may be advantageous to process

data locally at the point of collection and send condensed summaries to other points

as needed rather than communicate the raw data to a single processing center.

For these reasons, we will be interested in schemes for distributed decision

making and computation in which a set of processors (or decision makers) eventually

compute a desired solution through a process of information exchange. It is possible

to formulate mathematically a distributed decision problem whereby one tries to

choose an "optimal" distributed scheme, subject to certain limitations. For example,

we may impose constraints on the amount of information that may be transferred and

look for a scheme which results in the best achievable decisions, given these cons-

traints. Such problems have been formulated and studiqd in the decentralized control

context [21,22], as well as in the computer science literature [23,24]. However,

in practice these turn out to be very difficult, usually intractable problems [25,26].

We, therefore, choose to focus on distributed algorithms with a prespecified structure

(rather than try to find an optimal structure): we assume that each processor chooses

an initial decision and iterstively improves this decision as more information is

obtained from the environment or other processors. By this we mean that the ith

processor updates from time to time his decision x1 using some formula

xi.-fiCxi,Ii) (1.1)

where I is the information available to the ith processor at the time of the

update. In general there are serious limitations to this approach the most obvious

i | |

-3-

of which is that the function fi in (1.1) has to be chosen a priori on the basis

of ad hoc considerations. However there are situations where the choice of

reasonable functions f is not too dificult, and iterations such as (1.1) can

provide a practical approach to an otherwise very difficult problem. After all,

centralized counterparts of processes such as (1.1) are of basic importance in the

study of stability of dynamic systems, and deterministic and stochastic optimization

algorithms.

In most of the cases we consider the information Ii of processor i contains some

past decisions of other processors. However, we allow the possibility that some

processors perform computations (using (1.1)) more often than they exchange information,

in which case the information I may be outdated. This allows us to model situations

frequently encountered in large systems where it is difficult to maintain synchroniza-

tion between various parts of the decision making and information gathering processes.

There are a number of characteristics and issues relating to the distributed

iterative process (1.1) that either do not arise in connection with its centralized

counterpart or else appear in milder form. First there is a graph structure charac-

terizing the interprocessor flow of information. Second there is an expanded notion

of the state of computation characterized by the current results of computation xi

and the latest information I available at the entire collection of processors i.

Finally when(as we assume in this paper)there is no strict sequence according to

which computation and communication takes place at the various processors the state of

computation tends to evolve according to a point-to-set majping and possibly in a

probabilistic manner since each state of computation may give rise to many other states

depending on which of the processors executes iteration (1.1) next and depending on

possibly random exogenous information made available at the processors during execution

of the algorithm.

.. I I |o b

-4-

From the point of view of applications, we can see several possible (broadly

defined) areas. We discuss below some of them, although this is not meant to

be an exhaustive list.

a) Parallel computing systems, possibly designed for a special purpose, e.g.

for solving large scale mathematical programming problems with a particular

structure. An important distinguishing feature of such systems is that the

machine architecture is usually under the control of the designer. As mentioned

above, we will assume a prespecified structure, thereby bypassing issues of

architectural choice. However, the work surveyed in this paper can be useful

for assessing the effects of communication delays and of the lack of synchronization

in some parallel computing systems. Some of the early work on the subject [10],[1l]

is motivated by such systems. For a discussion of related issues see [7].

b) Data Communication Networks. Real time data network operation lends itself

naturally to application of distributed algorithms. The structure needed for dis-

tributed computation (geographically distributed processors connected by communication

links) is an inherent part of the system. Information such as link message flows,

origin to destination data rates, and link and node failures is collected at

geographically distributed points in the network. It is generally difficult to

I -

-5-

implement centralized algorithms whereby a single node would collect all

information needed, make decisions, and transmit decisions back to the points of

interest. The amount of data processing required of the central node may be too

large. In addition the links over which information is transmitted to and

from the central node are subject to failure thereby compounding the difficulties.

For these reasons in many networks (e.g. the ARPANET) algorithms such as routing,

flow control, and failure recovery are carried out in distributed fashion [1]-[S].

Since maintaining synchronization in a large data network generally poses

implementation difficulties these algorithms are often operated asynchronously.

c) Distributed Sensor Networks and Signal Processing. Suppose that a set of

sensors obtain noisy measurements (or a sequence of measurements) of a stochastic

signal and then exchange messages with the purpose of computing a final estimate

or identifying some unknown parameters. We are then interested in a scheme by

which satisfactory estimates are produced without requiring that each sensor com-

municates his detailed information to a central processor. Some approaches that

have been tried in this context may be found in [27,28,29,30).

d) Large Decentralized Systems and Organizations. There has been much interest,

particularly in econ.mics, in situations in which a set of rational decision makers

make decisions and then update them on the basis of new information. Arrow and

Hurwicz (31] have suggested a parallelism between the operation of an economic market

and distributed computation. In this context the study of distributed algorithms may be

viewed as an effort to model collective behavior. Similar models have been proposed

for biological systems, (32]. Alternatively, finding good distributed algorithms
4

and studying their coanunication requirements may yield insights on good ways of

, iI-l-I--I. I-;-- --I'

-6-

designing large organizations. It should be pointed out that there is an open

debate concerning the degree of rationality that may be assumed for human decision

makers. Given the cognitive limitations of humans, it is fair to say that only

relatively simple algorithms can be meaningful in such contexts. The algorithms

considered in this paper tend to be simple particularly when compared with other

algorithms where decision makers attempt to process optimally the available information.

There are several broad methodological is!ues associated with iterative

distributed algorithms such as correctness, computation or communication efficiency,

and robustness. In this paper we will focus on two issues that

generally relate to the question of validity of an algorithm.

a) Under what conditions is it possible to guarantee asymptotic convergence

of the iterates xi for all processors i, and asymptotic agreement between different

processors i and j [(xi-xJ)4O]?

b) How much synchronization between processor computations is needed in

order to guarantee asymptotic convergence or agreement?

Significant progress has been made recently towards understanding these

issues and the main purpose of this p-per is to survey this work. On the other

hand little is known at present regarding issues such as speed of convergence, and

assessment of the value of communicated information in a distributed context. As

a result we will not touch upon these topics in the present paper. Moreover, there

are certain settings (e.g., decentralized control of dynamical systems, dynamic

routing in data networks) in which issues of asymptotic convergence and agreement

do not arise. Consequently, the work surveyed here is not of direct relevance to

such situations.

In the next two sections we formulate a model of distributed asynchronous

iterative computation, and illustrate its relevance by means of a variety of examples

-7-

from optimization, parameter estimation, and communication networks. The model

bears similarity to models of chaotic relaxation and distributed asynchronous

fixed point computation [10]-[13] but is more general in two respects. First we

allow two or more processors to update separately estimates of the same coordinate

of the decision vector and combine their individual estimates by taking convex

combinations, or otherwise. Second we allow processors to receive possibly stochas-

tic measurements from the environment which may depend in nonlinear fashion on

estimates of other processors. These generalizations broaden a great deal the

range of applicability of the model over earlier formulations.

In Sections 4 and S we discuss two distinct approaches for analyzing algo-

rithmic convergence. The first approach is essentially a generalization of the

Lyapounov function method for proving convergence of centralized iterative processes.

The second approach is based on the idea that if the processors communicate fast

relative to the speed of convergence of computation then their solution estimates

will be close to the path of a certain centralized process. By analyzing the

convergence of this latter process one can draw inferences about the convergence

of the distributed process. In Section S we present results related primarily to

deterministic and stochastic descent optimization algorithms. An analysis that

parallels Ljung's ODE approach [37],[38] to recursive stochastic algorithms may be

found in (35] and in a forthcoming publication. In Section 6 we discuss convergence

and agreement results for a special class of distributed processes in which the

update of each processor, at any given time, is the optimal estimate of a solution

given his information, in the sense that it minimizes the conditional expectation

of a common cost function.

2. A Distributed Iterative Computation Model

In our model we are given a set of feasible decisions X and we are interested

in finding an element of a special subset X* called the solution set. We do not

specify X* further for the time being. An element of X* will be referred to as a

solution. Without loss of generality we index all events of interest (message

transmissions and receptions, obtaining measurements, performing computations) by

an integer time variable t. There is a finite collection of processors i=l,...,n

each of which maintains an estimate x i(t)e X of a solution and updates it once

in a while according to a scheme to be described shortly. The ith processor

receives also from time to time m. different types of measurements and maintains
1

the latest values z, Z,..., z of these measurements. (That is, if no measure-
1 2

ment of type j is received at time t, then z (t+l) = z.(t)). The measurement

. i iz. is an element of a set Z. Each time a measurement z. of type j is received

by processor i the old value z. is replaced by the new value and the estimate x
i

3

is updated according to

ii i)z iM
x (t+l) = M. (x (t) ,z (t),...,z. Ct)) , (2.1)

where M.. is a given function. Each node i also updates from time to time the

estimate x according to

x (t~l) a C.(x (t), zl(t) .. iZm (t)) (2.2), I mi

where C. is a given function. Thus at each time t each processor i eitheri

receives a new mesurement of type j and updates x according to (2.1), or

I I i

updates xi according to (2.2), or remains idle in which case x i(t+l) xi Ct)

and z.(t+l) = z (t) for all j. The sequence according to which a processor3 3

executes (2.1) or (2.2) or remains idle is left unspecified and indeed much of

the analysis in this paper is oriented towards the case where there is considerable

a priori uncertainty regarding this sequence. One of the advantages of this

approach is that difficult analytical problems arising due to consideration of non-

classical information patterns [21] do not appear in our framework. Note that

neither mapping M or C. involves a dependence on the time argument t. This islj I

appropriate since it would be too restrictive to assume that all processors have

access to a global clock that records the current time index t. On the other hand

the mappings M.. and C. may include dependences on local clocks (or counters) thatiJ 1

record the number of times iterations (2.1) or (2.2) are executed at processor i. The

value of the local counter of processor i may be artificially lumped as an additional

component into the estimate xi and incremented each time (2.1) or (2.2) are executed.

Note that there is redundancy in introducing the update formula (2.2) in ad-

dition to (2.1). We could view (2.2) as a special case of (2.1) corresponding to

an update in response to a "self-generated" measurement at node i. Indeed such a

formulation may be appropriate in some problems. On the other hand there is often

some conceptual value in separating the types of updates at a processor in updates

that incorporate new exogenous information (cf. (2.1)), and updates that utilize

the existing information to improve the processor's estimate (cf. (2.2)).

The measurement z.(t), received by processor i at time t, is related to the

processor estimatesx ,x,x according to an equation of the form

i1 il 2 i2 n tinzt = M ijc(xlcT (t)),x (T i (t)) .. x (t)),.),

where wbelongs to the sample space S1 corresponding to a probability space

(1, F, P).

. _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ -w --

-10-

We allow the presence of delays in equation (2.3) in the sense that the
1 n

estimates x ,...,x may be the ones generated via (2.1) or (2.2) at the corres-

ponding processors at some times T k (t)< t, prior to the time t that z (t) wasJ

received at processor i. Furthermore the delays may be different for different

processors. We place the following restriction on these delays which essentially

says that successive measurements of the same type depend on successive processor

estimates.

Assumption 2.1: If t>t', then

ik ik Vi,j,k
3 - 3

For the time being, the only other assumption regarding the tim: -nd

sequencing of measurement reception and estimate generation is the fP wing:

Assumption 2.2 (Continuing Update Assumption): For any i and j and any time t

there exists a time t'>t at which a measurement z. of the form (2.3) will be

received at i and the estimate xi will be updated according to (2.1). Also for

any i and time t there exists a time t">t at which the estimate xi will be updated

according to (2.2).

The assumption essentially states that each processor will continue to

receive measurements in the future and update his estimate according to (2.1)

and (2.2). Given that we are interested in asymptotic results there isn't much we

4can hope to prove without an assumption of this type. In order to formulate

substantive convergence results we will also need further assumptions on the nature

of the mappings Mij, C ij and fij and possibly on the relative timing of measurement

iAM

f .

-11-

receptions, estimate updates and delays in (2.3) and these will be introduced

later. In the next section we illustrate the model and its potential uses by

means of examples.

It should be pointed out here that the above model is very broad and may

capture a large variety of different situations, provided that the measurements

ii iz. are given appropriate interpretations. For example, the choice z (t) =x (T' (t))
J

corresponds to a situation where processor i receives a message with the estimate

computed by processor j at time T1i(t), and t-T/3(t) may be viewed as aJ 3
communication delay. In this case processors act also as sensors generating

measurements for other processors. In other situations however specialized sensors

may generate (possibly noisy and delayed) feedback to the processors regarding

estimates of other processors of (cf. (2.3)). Examples of both of these situations

will be given in the next section.

3. Examples

An important special case of the model of the previous section is when the

feasible set X is the Cartesian product of n sets

X = X1 x X2 x...x Xn

each processor i is assigned the responsibility ol updating the ith component

of the decision vector x = (xx 2, ..,xn) via (2.2) while receiving from each

processor j (j~i) the value of the jth component x . We refer to such distributed

processes as being specialized. The first five examples are of this type.

4- ;-

-12-

Example 1: (Shortest Path Computation)

Let (N,A) be a directed graph with set of nodes N-l,2,...,n)and set of links

A. Let N(j) denote the set of downstream neighbors of node i, i.e. the nodes j

such that (i,j) is a link. Assume that each link (i,j) is assigned a positive

scalar aij referred to as its length. Assume also that there is a directed
path to node 1 from every other node. Let x be the estimate of the shortest

i

distance from node i to node 1 available at node i. Consider a distributed

algorithm whereby each node i=l,...,n executes the iteration

i - min {ai +x,} (3.1)
jeN(i) 1J

after receiving one or more estimates xj from its neighbors, while node 1 sets3

1 =

I.

XlI= 0.

This algorithm--a distributed asynchronous implementation of Bellman's shortest

ipath algorithm--was implemented on the ARPANET in 1969 [14]. The estimate x.
1

can be shown to converge to the unique shortest distance from node i to node 1

iprovided the starting values x.• are nonnegative [12]. The algorithm clearly is

a special case of the model of the previous section. Here the measurement

equation [cf. (2.3)] is

ij
z X , V jEN(i) (3.2)3 3 '

the measurement update equation [cf. (2.1)] replaces x. ty z. and leaves all3 3

other coordinates M. m~j unchanged, while the corresponaing update formula of

(2.2) can be easily constructed using (3.1).

#0

-13-

Example 2: (Fixed point calculations)

The preceding example is a speci case of a distributed dynamic programming

algorithm (see (12]) which is itself a special case of a distributed fixed point

algorithm. Suppose we are interested in computing a fixed point of a mapping

F: X-X. We construct a distributed fixed point algorithm that is a special case

of the model of the previous section as follows:

Let X be a Cartesian product of the form X=X1 XX2 x... xXn and let us write

accordingly x=(x,x 2 ' .. n) and F(x) = (F1 (x),F 2 (x),...,F n(x)) where F.: X-X.

i i i

Let x =(xx) be the estimate of x generated at the ith processor. Processor
I n

i executes the iteration.

xj if i~j

xi Iif (3.3)S i (x) if i=j ,

(this corresponds to the mapping Ci of (2.2)),and transmits from time to time
i i
x. to the other processors. Thus the measurements z. are given by [cf. (2.3)]1 J

i jZ. = x. i~j (3.4)

and the (ij)th measurement update equation [cf. (2.1)]is given by

i if m~ji
x

(3.)
m z i if m-ji i

Conditions under which the estimate x converges to a fixed point of F are

given in [13] (see also Section 4).

bow

-14-

Example 3: (Distributed deterministic gradient algorithm)

This example is a special case of the preceding one whereby X= Rn,

Xi =R, and F is of the form

F(x) = x - 0 Vf(x) (3.6)

j where Vf is the gradient of a function f: Rn - R, and a is a positive scalar

stepsize. Iteration (3.3) can then be written as

iif ij

Xj4 i -i af(xi) if (3.7)
i x.

1

A variation of this example is obtained if we assume that, instead of

each processor i transmitting directly his current value of the coordinate x

to the other processors, there is a measurement device that transmits the

a f(x)
current value of the partial derivative - to the ith processor. In this

ax.
1

case there is only one type of measurement for each processor i [cf. (2.3)] and

it is given by

1 ni Df(xl1 ... Xn

z ~ ax.i

While the equation above assumes no noise in the measurement of each partial

derivative one could also consider the situation where this measurement is cor-

rupted by additive or multiplicative noise thereby obtaining a model of a dis-

4tributed stochastic gradient method. Many other descent algorithms admit a similar

distributed version.

!.I4 ...

,*ii "*

-is-

Example 4: (An Organizational Model)

This example is a variation of the previous one, but may be also viewed as a

model of collective decision making in a large organization. Let

X a XXX 2 x... X be the feasible set, where X is a EuclideaR space and let

f: X-[O,-) be a cost function of the form f(x) * fi(x). We interpret fi
i-i

as the cost facing the i-th division of an organization. This division is under

the authority of decision maker (processor) i, who updates the i-th component

x. e Xi of the decision vector x. We allow the cost fi to depend on the decisions

x. of the remaining decision makers, but we assume that this dependence is weak.

That is, let

Ki - sp 2fi Cx)

i i

and we are interested in the case K. i<K (unless jzfli). Decision maker i
ii

receives measurements z., j=l, ...,n of the form

i lili2 n in

Z.(t)- j (x1 (r.(t)),x 2 (i2(t)),...,x in t))) , (3.8)
J i ax IJ 2 jnj

ik
where t.k(t)< t [cf. (2.3)]. Once in a while, he also updates his decision

J -

4according to

n
xi(t+l) = x.Ct) - ai . z(t). (3.9)

If we assume that

im W , , (Vi

,

..- 3 . . . I] . . . " . i m

-16-

the above algorithm admits the following interpretation: each decision maker

m imm, at time T.m(t) sends a message x (T (t)), to inform decison maker j of his

decision. These messages are the last such messages received by decision maker j

no later than T.J(t). Then, decision maker j (who is assumed to be knowledgeable
J

about f) computes z. according to (3.8) and sends it to decision maker i; the

latter message is the last such message received by decision maker i no later than

t, and is being used, at time t, by decision maker i, to update his decision

according to (3.9). On an abstract level, each decision maker j is being informed

about the decision of the others and replies by saying how he is affected by

their decisions; however, this may be done in an asynchronous and very irregular

manner.

Example 5: (Distributed optimal routing in data networks)

A standard model of optimal routing in data networks (see e.g. the survey

(6]) involves the multicommodity flow problem

minimize I Da(Fa)
aMA

subject to Fa = P Vpa,

wCW pEPw

acp

xp =r, YwCW
PEP

w

x > 0, ywCW, pP .

Here A is the set of directed links in a data network, Fa is the

communication rate (say in bits/sec) on link aA, W is a set of origin-destination

- -t ' f ~I"
•

-17-

(OD) pairs, Pw is a given set of directed paths joining the origin and the

destination of OD pair w, xp , pCPw is the communication rate on path p of OD

pair w, rw is a given required communication rate of OD pair w, and Da is a

j monotonically increasing differentiable convex function for each scS. The

objective here is to distribute the required rates rw among the available paths

in w so as to minimize a measure of average delay per message as expressed by
SD a(Fa).

aeA

Since the origin node of each OD pair w has control over the rates xp,

pCPw it is convenient to use a distributed algorithm of the gradient projection

type (see [6],[8]) whereby each origin iterates on its own path rates asynchronously

and independently of other origins. This type of iteration requires knowledge of

the first partial derivatives D'(F) for each link evaluated at the current link
a a

rates F a . A practical scheme similar to the one currently adopted on the

ARPANET [9] is for each link aeA to broadcast to all the nodes the current value of

either F or D'(F). This information is then incorporated in the gradient projec-a a a)
tion iteration of the origin nodes. In this scheme each origin node can be viewed
as a processor and F or D;(Fa) plays the role of a measurement which depends on

aa a)

the solution estimates of all processors [cf. (2.3)].

The direct opposite of a specialized process, in terms of division of labor

between processors, is a totally overlapping process.

Example 6: (Total Overlap)

Let the feasible set X be a Euclidean space. Each processor i receives

imeasurements z. (joi) which are the values of the estimates xj of other processors;

that is, i = xj ,

J - r r T

-18-

Whenever such a measurement is received, processor i updates his estimate by

taking a convex combination:

x IM Cix ,z.) = x + (1- i j) z. (3.10)

ii 1

where 0<0iJ <1. Also processor i receives his own information zi, generated

according to

i U iM
and ~ ~ z upae x .(,)crdngt

iand updates xi according to

Ix xit+l) - Mi (x (t), z1Ct)) - x (t) - izYCt) (3.11)

ii i i i

where ai is a positive scalar stepsize.t Such an algorithm is of interest if the

objective is to mirimize a cost function f: X* 5 ,and z Ct) is in some sense a

descent direction with respect to f. In a deterministic setting, such a scheme

could be redundant, as some processors would be close to replicating the computation

of others. In a stochastic setting, however (e.g. if

af iii
z i~ M - r (xi M) + wi(t),

where w iCt) is zero-mean white noise) the combining process is effectively

averaging out the effects of the noise and may improve convergence

Example 7: (System Identification)

Consider two moving average processes y (t),y 2(t) generated according to

i iy (t) A(q)u(t) + w t),

tThe stepsize csi could be constant as in deterministic gradient methods. However, in

other cases (such as stochastic gradient methods with additive noise) it is essentiali
that a is time varying and tends to zero. This, strictly speaking, violates the as-
sumption that the mapping Mij does not depend on the time t. However it is possible

iji
to circumvent this by introducing (as an additional component of x') a local counter
at each processor i that keeps track of the number of times iteration (3.10) or (3.11)
is executed at processor i. The stepsize a could be made dependent on the value of
this local counter (see the discussion following (2.1) and (2.2) in Section 2).

TJ

-19-

where A(.) is a polynomial, to be identified, q is the unit delay operator and

i
w (t), i-l,2, are white, zero-mean processes, possibly correlated with each other.

jLet there be two processors (n-2); processor i measures y (t) and both measure

u(t) at each time t. Each processor i updates his estimate x of the coefficients

of A according to any of the standard system identification algorithms (e.g. the

LMS or RLS algorithm). Under the usual identifiability conditions [33] each

processor would be able to identify A(.) by himself. However, convergence should

be faster if once in a while one processor gets (possibly delayed) measurements

of the estimates of the other processor and combines them by taking a convex

combination. Clearly, this is a special case of Example 6.

1 2A more complex situation arises if we have two ARMAX processes y , y , driven

by a common colored noise:

A i(q)y i(t) = B i(q)u i(t) + w(t), i=1,2

w(t) = C(q)v(t),

io
where v(t) is white and A ,B ,C are polynomials in the delay operator q.

i iAssuming that each processor i observes y and u , he may under certain conditions

[34] identify A ,Bi . In doing this he must, however, identify the common noise

source C as well. So we may envisage a scheme whereby processors use a standard

algorithm to identify A', B1,C and once in a while exchange messages with their

estimates of the coefficients of C; these estimates are then combined by taking

a convex combination.

This latter example falls in between the extreme cases of specialization and

i i
total oierlap: %.here is specialization concer,ing the coefficients of A ,B and

overlap concerning the coefficients of C.

-Il m . -: ,,

, & . .

-20-

4. Convergence of Contracting Processes

In our effort to develop a general convergence result for the distributed

algorithmic model of Section 2 we draw motivation from existing convergence theories

for (centralized) iterative algorithms. There are several theories of this type

(Zangwill [15], Luenberger [16], Ortega and Rheinboldt [17J--the most general are

due to Poljak [18] and Polak [19]). Most of these theories have their origin in

Lyapunov's stability theory for differential and difference equations. The main

idea is to consider a generalized distance function (or Lyapunov function) of the

typical iterate to the solution set. In optimization methods the objective function

is often suitable for this purpose while in equation solving methods a norm of the

difference between the current iterate and the solution is usually employed. The

idea is typically to show that at each iteration the value of the distance function

is reduced and reaches its minimum value in the limit.

The result of this section is based on a similar idea. However instead of

working with a generalized distance function we prefer to work (essentially) with

the level sets of such a function; and instead of working with a single processor

iterate (as in centralized processes) we work with what may be viewed as a state of

computation of the distributed process which includes all current processor iterates

and all latest information available at the processors.

The subsequent result is reminiscent of convergence results for successive

approximation methods associated with contraction mappings. For this reason we

refer to processes satisfying the following assumption as contracting processes.

In what follows in this section we assume that the feasible set X in the model of

Section 2 is a topological space so we can talk about convergence of sequences in X.

-21-

Assumption 3.1: There exists a sequence of sets X(k) with the following properties:

a) X*C X(k+)C X(k) C... CX

b) If {xk } is a sequence in X such that xkeX(k) for all k, then {xk}converges

to a solution.

(Note: If the notion of sequence convergence to a subset is defined on X, one may

replace convergence of {xk to a solution with convergence to the solution set X*).

c) For all i, j and k denote:

innZi(k) = {ij (x ,xw)lx X(k)...,x EX(k), wcQ} (4.1)

Xi (k) = {C (x z1 . z)jx LX(k), zleZ1 (k),...,z CZ (k)} (4.2)

Z (k) = j(x 1 , . ,xn, W) lx'E7)((k) ,.. , nEXn (k) , wcQ} (4.3)ij

The sets X(k) and the mappings ij' Mij, and Ci are such that for all ij and k

Xi (k)C X(k) (4.4)

i iz i i i "i z ' i

i i i"ii " i i i i
M (x , z. ,z)cX (k), Vx X (k), z Z(k), z a EZm (k) (4.6)ij 1 M. I m. m
j 1 M.M.M

(x l..,)cX~k+l), Vx1CXi~) Z (k) ,..... Z(k 47
,Zl,.. .I im . , 4 7

Assumption 3.1 is a generalized version of a similar assumption in reference

[13]. Broad classes of deterministic specialized processes satisfying the assumption

are given in that reference. The main idea is that membership in the set X(k) is

-22-

representative in some sense of the proximity of a processor estimate to a solution.

By part b), if we can show that a processor estimate succecisively moves from X(O)

to X(l), then to X(2) and so on, then convergence to a solution is guaranteed. Part

c) assures us that once all processor estimates enter the set X(k) then they remain in

the set X k)&f. (4.4),(4.5)] and (assuming all processors keep on computing and

receiving measurements) eventually enter the set X(k~llcf. (4.6),(4.7)]. In view

of these remarks the proof of the following result is rather easy. Note that the

assumption does not differentiate the effects of two different members of the

probability space [cf. part c)] so it applies to situations where the process is

either deterministic (Q consists of a single element), or else stochastic variations

are not sufficiently pronounced to affect the membership relations in part c).

Proposition 3.1: Let Assumptions 2.1, 2.2, 3.1, hold and assume that all initial

processor estimates x , i=l,...,n belong to X(O), while all initial measurements

available at the processors belong to the corresponding sets Z (0). Then each ofJ

of the sequence {x } converges almost surely to a solution as t-.

The proof will not be given since it is very similar to the one given in [13].

Note that the proposition does not guarantee asymptotic agreement of the processor

estimates but in situations where Assumption 3.1 is satisfied one can typically

also show agreement.

Example 2 (continued): As an illustration consider the specialized process for

computing a fixed point of a mapping F in example 2. There X is a Cartesian

4 product XI x X2 x... x Xn, and each processor i is responsible for updating the

-23-

ith "coordinate" xi of x a (xlX 2 R n) while relying on essentially direct

communications from other processors to obtain estimates of the other coordinates.

Suppose that each set Xi is a Banach space with norm IJ'JI. and X is endowed with

the sup norm

lIlxll - max{lllxll,..Ilx il , VxEX (4.8)

Assume further that F is a contraction mapping with respect to this norm,

i.e., for some atc(0,1).

JIF~x)-F~y)II < o1 Ix-yll, VXYEx (4.9)

Then the solution set consists of the unique fixed point x* of F. For some

positive constant B let us consider the sequence of sets

X(k) (xcXI tIx-x*ll < Ba k , k-0,,...,

The sets defined by (4.1)-(4.3) are then given by

Z iW(k) = {xixJ I:xS-xH Bk

-i kiZ.(k) = (xX(k)l ixi-x!ll < Ba k+l}

/ ' (k) = {x ex I llxj-x~llj 5_ k+l,

It is straightforward to show that the sequence {X(k)I satisfies Assumption 3.1.

Further illustrations related to this example are given in [13]. Note however that

the use of the sup norm (4.8) is essential for the verification of Assumption 3.

Similarly Assumption 3 can be verified in the preceding example if the contraction

assumption (4.9) is substituted by a monotonicity assumption (see [13]). This mono-

tonicity assumption is satisfied by most of the dynamic programming problems of interest

including the shortest path problem of example I (see also [12)). An important exception

is the infinite horizon average cost Markovian decision problem (see [12], p. 616).

__ _ _ _ _ _ _ _ _ _ _

-24-

An important special case for which the contraction mapping assumption

(4.9) is satisfied arises when X=R and xl,x 2, xn are the coordinates of x.

Suppose that F satisfies

IF(x)-F(y) 1< Pjx-yI, Vx,yR n (4.10)

where P is an nxn matrix with nonnegative elements and spectral radius strictly

less than unity, and for any z=(z 1 ,z2,.... Zn) we denote by izI the column vector

with coordinates iZlIIlz2IIznl. Then F is called a P-contraction mapping.

Fixed point problems involving such mappings arise in dynamic programming ([20],

p.374), and solution of systems of nonlinear equations ([17], Section 13.1). It

can been shown ([11], p.231) that if F is a P-contraction then it is a contraction

mapping with respect to some norm of the form (4.8). Therefore Proposition 3.1

applies.

We finally note that it is possible to use Proposition 3.1 to show convergence

of similar fixed point distributed processes involving partial or total overlaps

between the processors (compare with example 6).

Example 3 (continued): Consider the special case of the deterministic gradient

algorithm of example 3 corresponding to the mapping

F(x) = x - ctVf(x) (4.11)

Assume that f:Rn- R is a twice continuously differentiable convex function with

Hessian matrix V 2f(x) which is positive definite for all x. Assume also that there

exists a unique minimizing point x* of f over Rn . Consider the matrix

a2 fa2 fa2f(xl)2 "xg a"2.~ - Xl X
(21 ln.Txaxa

H* a 1 " (4.12)

af n 2
ax7X ax-TX 'ann 1 n 2Cx)

-25-

2obtained from the Hessian matrix V f(x*) by replacing the off-diagonal terms

by their negative absolute values. It is shown in [131 that if the matrix H*

is positive definite then the mapping F of (4.11) is a P-contraction within some

open sphere centered at x* provided the stepsize a in (4.11) is sufficiently small.

Under these circumstances the distributed asynchronous gradient method of this

example is convergent to x* provided all initial processor estimates are sufficiently

close to x* and the stepsize a is sufficiently small. The neighborhood of local

convergence will be larger if the matrix (4.12) is positive definite within an accord-

ingly larger neighborhood of x*. For example if f is positive definite quadratic with

the corresponding matrix (4.12) positive definite a global convergence result can be

shown.

One condition that guarantees that H* is positive definite is strict diagonal

dominance ([17], p.48-51).

2 > a . Vi=l, ..., n,: (ax) 1~

where the derivatives above are evaluated at x*. This type of condition is

typically associated with situations where the coordinates of x are weakly coupled

in the sense that changes in one coordinate have small effects on the first partial

derivatives of f with respect to the other coordinates. This result can be general-

ized to the case of weakly coupled systems (as opposed to weakly coupled coordinates).
m.

Assume that x is partitioned as x=(xix 2 ,...,xn) where now x.ER (mi may be

greater than one but all other assumptions made earlier regarding f are in effect).

Assume that there are n processors and the ith processor asynchronously updates the

subvector xi according to an approximate form of Newton's method where the second

• , I ' I--1

-26-

order submatrices of the Hessian V2 f, i~j are neglected, i.e.x.x.
1)

-x (V 2 f) £ (4.13)xi i . . .

In calculating the partial derivatives above processor i uses the values x.
J

latest communicated from the other processors j~i similarly as in the distributed

gradient method. It can be shown that if the cross-Hessians V2 f, i~j have
x.X.

sufficiently small norm relative to V 2 f, then the totally asynchronous version

of the approximate Newton method (4.13) converges to x* if all initial processor

estimates are sufficiently close to x*. The same type of result may also be shown

if (4.13) is replaced by

x arg min .f(x1,x ..,x (4.14)

x.ER
1

Unfortunately it is not true always that the matrix (4.12) is positive

definite, and there are problems where the totally asynchronous version of the

distributed gradient method is not guaranteed to converge regardless of how small

the stepsize a is chosen. As an example consider the function f: R3-R

f(yxlx,x)=(xl+X2+X) 2 + (xl+X 2+X3 3)2 + 2 2 22P 3 1 3 1Xl3 1+X 2+X 3)

1 1-1

where O<<<l. The optimal solution is close to (, -,) for c: small. The scalar

c plays no essential role in this example. It is introduced merely for the purpose

of making the Hessian of f positive definite. Assume that all initial processor

estimates are equal to some common value T, and that processors execute many gradient

-27-

iterations with a small stepsize before communicating the current values of

their respective coordinates to other processors. Then (neglecting the terms

that depend on e) the ith processor tries in effect to solve the problem

mm{(..i 2 - 2min x i +2T)2 + (xi+2x-3)

x.

thereby obtaining a value close to -2i. After the processor estimates of the

respective coordinates are exchanged each processor coordinate will have been

updated approximately according to

.- 2x
(4.15)

and the process will be repeated. Since (4.15) is a divergent iterative process

we see that, regardless of the stepsize chosen and the proximity of the initial

processor estimates to the optimal solution, by choosing the communication delays

sufficiently larve the distributed gralient method can be made to diverge when the

matrix H* of (4.12) is not positive definite.

5. Convergence of Descent Processes

We saw in the last section that the distributed gradient algorithm converges

appropriately when the matrix (4.12) is positive definite. This assumption is not

always satisfied, but convergence can be still shown (for a far wider class of

algorithms) if a few additional conditions are imposed on the frequency of obtaining

measurements and on the magnitude of the delays in equation (2.3). The main idea

behind the results described in this section is that if delays are not too large, if

certain processors do not obtain measurepents and do not update much more frequently than

others, then the effects of asynchronism are relatively small and the algorithm behaves

approximately as a centralized algorithm, similar to the class of centralized pseudo-

gradient algorithms considered in [40).

-28-

Let X = XIxX2 x... x XL be the feasible set, where X (9=Il...,L) is a Danach

space. If xu(xl,...,xL), X16X, we refer to xZ as the L-th component of x. We endow

X with the sup norm, as in (4.8). Let f:x-[O,-) be a cost function to be minimized.

We assume that f is Frechet differentiable and its derivative is Lipschitz continuous.
i i

Each processor i keeps in his memory an estimate x t) = (xIt x (t))
and receives measurements z opo t L

SXv, i~j, with the value of the L-th component of x
1

evaluated by processor j at some earlier time T. (t)< t; that is,

z' t) = x(, i (t)). He also receives from the environment exogenous, possibly
i

stochastic measurements z. EX, which are in a direction of descent with respect1

to the cost function f, in a sense to be made precise later. We denote by zt,£ the
i

Z-th component of z.
i

Whenever processor i receives measurements zi he updates his estimate
i

vector x componentwise, according to:

x (t+l) M i "x C)i t) a ,¢l: t) + 1 0. (OZ M O (tOz.,iCt) (s.1)
Z Z ~j~ i I'

The coefficients 1,(t) are nonnegative scalars satisfying

n •

j=l '

i

and such that: if no measurement z was received by processor i (i#j) at time t,

4then B (t)=O. That is, processor i combines his estimate of the i-th component

of the solution with the estimates (possibly outdated) of other processors that he

i
has just received, by forming a convex combination. Also, if no new measurenent z.1

wsobtained at time t, we should set z (t)=O in equation (5.1). The coefficient

wa.s

-29-

a iCt) is a nonnegative stepsize. It can be either independent of t or it may

depend on the number of times up to t that a new measurement (of any type) was

received at processor i.

Equation (5.1) which essentially defines the algorithm, is a linear system

driven by the exogenous measurements z.(t). Therefore, there exist linear operators

4itis),Ct>s), such that

n t-l

x 1(t) = I ij(t1O)xJ(l) + I I aj (s)0iJCtjs)z(S)
j=l s=l j=l

We now impose an assumption which states that if the processors cease obtaining

iexogenous measurements from some time on (that is, if they set zi=0), they will

asymptotically agree on a common limit:

Assumption 5.1: For any i,j,s, lim 0' (t1s) exists (with respect to the induced

operator norm) and is the same for all i. The common limit is denoted by OJ(s).

Assumption 5.1 is very weak. Roughly speaking it requires that for every

component £6{l,....L} there exists a directed graph G=(N,A), where the set N of nodes

is the set {1,...,n) of processors, and such that there exists a path from every processor

to every other processor. Also the coefficients W t) must be such that "sufficient

combining" takes place and the processors tend to agree.

We can now define a vector y(t)6X by

n t-l n
y~t) = I J(O)x j (l) + I Ia (s) O (s)z (s)

j=l sol j-l

-30-

and observe that y(t) is recursively generated by

n

y(tl) (t) * I ai(t)(t)z.(t) . (5.2)

We can now explain the main idea behind the results to be described:

if *i(t s) converges to j(s) fast enough, if ai (t) is small enough, and if

z'(t) is not too large, then x"(t), for each i, will evolve approximately as y(t).

We may then study the behavior of the recursion (5.2) and make inferences about

the behavior of x (t).

The above framework covers both specialized processes, in which case we have

L=n, as well as the case of total overlap where we have L-l and we do not distinguish

between components of the estimates. For specialized processes (e.g. example 3) it

is easy to see that y(t) = (x It),x (t),...,xn(t)).

We now proceed to present some general convergence results. We allow the

exogenous measurements z. of each processor, as well as the initialization x'(1)

of the algorithm to be random (with finite variance). We assume that they are all

defined on a probability space (S,F,P) and we denote by Ft the a-algebra generated

ii
by {x (,zi(s); i=l,...,n; s4,...,t-l}. We assume, however, that the sequence of

times at which measurements are obtained, computations are performed, the times

i I
(t), as well as the combining coefficients (t) are deterministic. (In fact,

this assumption may be often relaxed). In order to quantify the speed of convergence

of *iJ (tis) we introduce

c(tjs) = max 1 iJ(tls) - OJ(s).
i~j

By Assumption 5.1 lim c(tjs)=0 and it may be shown that c(tls)< 1, Vt,s. Consider
t-0

the following assumptions:

--

-31-

Assumption S.2:

Lx (x 1 (t)), 0 (t)z.(t)> IF <-0, Vt,i, a.s.

Assumption 5.3:

a) For some K > 0

E I~z itW11 2] KoE[L (x'(t)), (t)z (t)>] , i,t.

b) For some B>O, de[0,1), .(tls)< Bdt - , Vt>s, Vs.

Assumption 5.2 states that * (t)z.(t) (which is the "effective update direction"

iiof processor i, see (5.2)) is a descept direction with respect to f. Assumption

5.3a requires that z. (t) is not too large. In particular any noise present in1

z(t) can only be "multiplicative-like": its variance must decrease to zero as a

stationary point of f is approached. For example, we may have

z -(tW (- C t) (+w i (t)),

where wi(t) is scalar white noise. Finally, Assumption 5.3b requires that the

processors tend to agree exponentially fast. Effectively, this requires that the
i

time between consecutive measurements of the type 2.,9, i#j, as well as the delays
i L

t-T ,(t) are bounded together with some minor restriction of the coefficients M , (t)

4 for those times that a measurement of type z is obtained.

'I

-32-

Letting

a sup ci t)
ti

we may use Assumptions 5.3a and 5.3b to show that lix (t)-y(t) j is of the orderUsn heL f af (i C)

of o" Using the Lipschitz continuity of y it follows that 11'f (y(t))- (x'(t))Il

is also of the order of a ; then, using Assumption 5.2, it follows that (5.2)

corresponds to a descent algorithm, up to first order in a . Choosing a small enough,
o 0

convergence may be shown by invoking the supermartingale convergence theorem. The

above argument can be made rigorous and yields the following proposition (tae proof

may be found in [35] and in a forthcoming publication):

Proposition 5.1: If Assumptions 5.1, 5.2, 5.3, hold and if a is small enough,

then:

a) f(x i(t)), i=l,...,n, as well as f(y(t)) converge, almost surely, and to the

same limit.

ib) lim (x (t)-y(t))=O, Vi, almost surely and in the mean square.
t-"

c) a if (xi W)) z (t)> IF >-- (5.3)

t=l i=l ax

almost surely. The expectation of the above expression is also finite.

A related class of algorithms arises if the noise in z.(t) is allowed to be

additive, e.g.

i af (xi (0) * iSz.(t) = - (xC) t),

- - 1

-33-

iwhere w Ct) is zero-mean white. In such a case, an algorithm may be convergent

only if tim i (t)uO. In fact, cx (t).l/ti, where t. is the number of times up to

time t that a new measurement was received at i, is the most convenient choice, and

this is what we assume here. However, this choice of stepsize implies that the

algorithm becomes progressively slower, as t-. We may therefore: allow the agreement

process to become progressively slcwer as well, and still retain convergence. In

1
physical terms, the time between consecutive measurements z (ij) may increase

to infinity, as t-. In mathematical terms:

Assumption 5.4: a) For some K0, K1, K2 > 0,

+ K 1 E[f(Xi(t))] + 2

b) 'For some B>O, 6e(O,1], d6[O,1)

6 6
c(tls)< M - s , Vt>s, Vs.

We then have [35]:

!i

Proposition 5.2 : Let %(t)=l/ti, where t i is the number of times up to time t that a new

measurement was received at i, and assume that for some e>O, t.>c.t for all i,t. Asume

also that Assumptions 5.1, 5.2, 5.4 hold. Then the conclusions (a),(b),(c) of

Proposition 5.1 remain valid.

Propositions 5.1,5.2 do not prove yet convergence to the optimum (suppose, for

example, that zC(t)=O, Vi,t). However, (5.3) may be exploited to yield optimality

under a few additional assumptions:

__ _ _ _ __-t ~

-34-

Corollary: Let the assumptions of either Proposition S.1 or 5.2 hold. Let Ti be

jthe set of times that processor i obtains a measurement of type z.i Suppose that

there exists some B>O and, for each i, a sequence {tk } of distinct elements of T
i

such that

max Itk-tk< B (5.4)i,j

k-l i

Finally, assume that there exist uniformly continuous functions: £i:x*[O,-)

satisfying
n

a) lim inf g gi (x)> 0IxI- i=l

b) (x (t)), 0* (t)Z It)> JF - (xi(t)), VteTi, Vi, almost surely.

n
c) g (x*)-o => x*ex* 4 {xcx[f(x*) - inf f(x)}

i=l x

Then, lir f(x (t)) = inf f(x), Vi, almost surely.
x

Example 3: (continued): It follows from the above results that the distribat :d

deterministic gradient algorithm applied to a convex function converges provided that

a) The stepsize a is small enough, b) Assumption 5.3(b) holds and c) The processors

update, using (3.7), regularly enough, i.e. condition (5.4) is satisfied. Similarly,

convergence for the distributed stochastic gradient algorithm follows if we choose

a stepsize i (t)=I/ti, if Assumption 5.4 and condition (5.4) hold.

0 ."-

-35-

Example 4: (continued) Similarly with the previous example, convergence to

stationary points of f may be shown, provided that ai is not too large, that the

delays t-T.m(t) are not too large and that the processors do not update tooJ

irregularly. It should be pointed out that a more refined set of sufficient con-

ditions for convergence may be obtained, which links the "coupling constants"

im
K. with bounds on the delays t-T. (t) [3S]. These conditions effectively

quantify the notion that the time between consecutive communications and com-

munication delays between decision makers should be inversely proportional to the

strength of coupling between their respective divisions.

Example 7: (continued) Several common algorithms for identification of a moving

average process satisfy the conditional descent Assumption 5.2. (e.g. the Least

Mean Squares algorithm, or its normalized version-NLMS). Consequently, Proposition 5.2

may be invoked. Using part (c) of the Proposition, assuming that the input is

sufficiently rich and that enough messages are exchanged, it follcws that the dis-

tributed algorithm will correctly identify the system. A detailed analysis is given

in [35].

A similar approach may be taken to analyze distributed stochastic algorithms

in which the noises are correlated and Assumption 5.2 fails to hold. Very few global

convergence results are available even for centralized such algorithms [34,36] and it

is an open question whether some distributed versions of them also converge. However, as

in the centralized case one may associate an ordinary differential equation with

such an algorithm as in [37,38], and prove local convergence subject to an

assumption that the algorithm returns infinitely often to a bounded region (see [35]).

Such results may be used, for example, to demonstrate local convergence of a distri-

buted extended least squares (ELS) algorithm, applied to the ARMAX identification

problem in Example 7.

-36-

6. Convergence of Distributed Processes with Bayesian Updates

In Section 4 and 5 we considered distributed processes in which a solution is

being successively approximated, while the structure of the updates is restricted

to be of a special type. In this section we take a different approach and we assume

that the estimate computed by any processor at any given time is such that it

minimizes the conditional expectation of a cost function, given the information

available to him at that time. Moreover, all processors "know" the structure of the

cost function and the underlying statistics, and their performance is only limited

by the availability of posterior information. Whenever a processor receives a

measurement z. (possibly containing an earlier estimate of another processor) his3

information changes and a new estimate m~y be computed.

Formally, let X= Rm be the feasible set, (S,F,P) a probability space and

f: XxD+[O,m) a random cost function which is strongly convex in x for each WeQ. Let

I i(t) denote the information of processor i at time t, which generates a o-algebra

F1 C F. At any time that the information of processor i changes, he updates his
t

estimate according to

x i(t+l) = arg min E[f(x,w)IF'] (6.1)

xeX

Assuming that f is jointly measurable, this defines an almost surely unique, F -
t

measurable random variable [39].

The information I i(t) of processor i may change in one of the following ways:

a) New exogenous measurements z.(t) are obtained, so that I (t) - (I (t-l),z.(t)).

i ' i-

-37-

Pi

b) Measurements z.(t) with the value of an earlier estimate of processor i are

obtained; that is,

z3(t) = xJ((t)); .(t)3<t

(6.2)
I~t W (zI(t-1), z*(tl)

c) Some information in I (t-1) may be "forgotten"; that is, I i(t)CI i(t-1)

ic i(or Ft CF I).

t t-1

The times at which measurements are obtained as well as the delays are either

deterministic or random; if they are random, their statistics are described by (Q,F,P)

and these statistics are known by all processors.

Case 1: Increasing Information. We start by assuming that information is never

i 1 2 inforgotten, i.e. F Fi Vi,t. Let f(x,w) = I x-x*(w)ll , where x*:T R ist+l t' =,weex: m i

an unknown random vector to be estimated. Then,

x (t+l) = E[x*]W))IF I

and by the martingale convergence theorem, x i(t) converges almost surely to a random

ivariable y . Moreover it has been shown that if "enough" measurements of type (6.2) are

obtained by each processor, then y 1=y , Vij, almost surely [30,41]. If f is not quadratic

but strongly convex, the same results are obtained except that convergence holds

in the sense of probability and in the L2 (Q,F,p) sense, where P is a measure equivalent

to P, determined by the function f [39]. However, this scheme is not, strictly

speaking, iterative, since I (t) increases, and unbounded memory is required.

Case 2: Iterative schemes

The above scheme can be made iterative if we allow processors to forget their

past information. For example, let

.t) =x(t), z (t)), if a measurement z (t) is obtained at time t

{xit0}, otherwise

go~ai",

-38-

Lezt) = CT-Ct)), i~j, -'r(t)< t. Assuming that "enough" measurementsLeti -urmet of this

type are obtained by each processor, asymptotic agreement may be still obtained,

as for Case 1 [39]. It has been also shown that x i(t+l) - x i(t) converges to zero,

for each i, but it is not known whether x i(t) is guaranteed to converge or not.

Even though this case corresponds to an iterative algorithm, it may be very

hard to implement: The computation of the minimum in (6.1) may be intractable. Also,

even if the processors asymptotically converge and agree, there are no guarantees

in general about the quality of the final estimate. There is one notable exception

where these drawbacks disappear, which we discuss below:

Case 3: Distributed Linear Estimation

2
Let f(x,w) = IIx-x*(w)II , where x* is a zero-mean Gaussian scalar random

variable to be estimated. Suppose that at time zero each processor obtains measurements

zi,k = x + Wk, k=l,...,m i (6.3)
i

where wk are zero-mean Gaussian noises. We allow the noises of different processors
ki

to be correlated to each other. Let 1 (0) = {fz k=l....}. No further measurements

of the form (6.3) are obtaiied after time zero. Subsequently each processor i receives

from time to time measurements 1 t, of the other processors'

estimates and updates according to

x (t+l) = Ex* (0). Z (t)]

The timing and delay of these latter measurements is assumed to be deterministic. If

we make the assumption that an infinite number of measurements of each type z. is obtained

by each processor i, together with an additional assumption that essentially requires

that there exists an indirect communicatio- .ath between every pair of processors

then it can be shown that x i(t) converges .the mean square to the centralized estimate

x* - E[x*II(o),.... In(o)],

which is the optimal estimate of x* given the total information of all processors [35],[3

-39-

What is interesting about the above algorithm is that it corresponds to a

distributed iterative decomposition algorithm for solving the centralized linear

estimation problem. The minimization of the cost criterion over a space of

n
dimension m i, in general, is substituted by a sequence of minimizations

i=I

along (mi+l)-dimensional subspaces.

1I 1 1
If the noises wk, w9, i#j, are independent the algorithm converges after

finitely many iterations. In general, the algorithm converges linearly but the

rate of convergence depends strongly on the number of processors and the angles

between certain subspaces of random variables (essentially on the correl~tions

i and ibetween wk adw , i~j, see [351,[39]).

__-

-40-

REFERENCES

[1] Tannenbaum, A.S., Computer Networks, Prentice Hall, Englewood Cliffs, N.J., 1981.

[2] Schwartz, M., Computer Communication Network Design and Analysis, Prentice Hall,
Englewood Cliffs, N.J., 1977.

[31 Kleinrock, L., queuing Systems, Vol. I & II, J. Wiley, N.Y., 1975.

[4] Schwartz, M., and Stern, T.E., "Routing Techniques Used in Computer Communication
Networks," IEEE Trans. on Communications, Vol. COM-28, 1980, pp. 539-552.

[5] Gallager, R.G., "A Minimum Delay Routing Algorithm Using Distributed Computation,"
IEEE Trans. on Communication, Vol. COM-25, 1977, pp. 73-85.

[6] Bertsekas, D.P., "Optimal Routing and Flow Control Methods for Communication
Networks," in Analysis and Optimization of Systems (A. Bensoussan and J.L. Lions,
eds.), Springer-Verlag, Berlin and N.Y., 1982, pp. 615-643.

[71 Kung, H.T., "Synchronized and Asynchronous Parallel Algorithms for Multiprocessors,"
in Algorithms and Complexity, Academic Press, 1976, pp. 153-200.

[8] Bertsekas, D.P., and Gafni, E.M., "Projected Newton Methods and Optimization
of Multicommodity Flows," M.I.T., LIDS Report P-1140, M.I.T., Aug. 1981, IEEE
Trans. on Aut. Control, Dec. 1983 (to appear).

[9] McQuillan, J.M., Richer, I., and Rosen, E.C., "The New Routing Algorithm for
the ARPANET," IEEE Trans. on Communications, Vol. COM-28, 1980, pp. 711-719.

[10] Chazan, D., and Miranker, W., "Chaotic Relaxation," Linear Algebra and
Applications, Vol. 2, 1969, pp. 199-222.

[11] Baudet, G.M., "Asynchronous Iterative Methods for Multiprocessors," Journal
of the ACM, Vol. 2, 1978, pp. 226-244.

[12] Bertsnkas, D.P., "Distributed Dynamic Programming," IEEE Trans. on Aut. Control,
Vol. AC-27, 1982, pp. 610-616.

[13] Bertsekas, D.P., "Distributed Asynchronous Computation of Fixed Points,"
Math. Programming, Vol. 27, 1983, pp. 107-120.

[14] McQuillan, J., Falk, G., and Richer, I., "A Review of the Development and
Performance of the ARPANET Routing Algorithm," IEEE Trans. on Communications,
Vol. COM-26, 1968, pp. 1802-1811.

[15] Zangwill, W.I., Nonlinear Programming, Prentice Hall, Englewood Cliffs,
N.Y., 1969.

f OA

-41-

[16] Luenberger, D.G., Introduction to Linear and Nonlinear Programming, Addison-
Wesley, Reading, MA, 1973.

[17] Ortega, J.M. and Rheinboldt, W.C., Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press, N.Y., 1970.

[18] Polak, E., Computational Methods in Optimization: A UniFied Approach, Academic
Press, N.Y., 1971.

[19] Poljak, B.T., "Convergence and Convergence Rate of Iterative Stochastic
Algorithms," Automation and Remote Control, Vol. 12, 1982, pp. 83-94.

[20] Bertsekas, D.P., Dynamic Programming and Stochastic Control, Academic Press,
N.Y., 1976.

[21] Sandell, N.R., Jr., P. Varaiya, M. Athans and M. Safonov, "Survey of Decentral-
ized Control Methods for Large Scale Systems," IEEE Trans. on Aut. Control,
Vol. AC-23, No. 2, 1978, pp. 108-128.

[22] Ho, Y.C., "Team Decision Theory and Information Structure," IEEE Proceedings,
Vol. 68, No. 6, 1980, pp. 644-654.

[23] Yao, A.C., "Some Complexity Questions Related to Distributed Computing,"
Proc. of the lth STOC, 1979, pp. 209-213.

[24) Papadimitriou, C.H. and M. Sipser, "Communication Complexity," Proc. of the
14th STOC, 1982, pp. 196-200.

[25] Witsenhausen, H.S., "A Counterexample in Stochastic Optimum Control," SIAM J.
Control, Vol. 6, No. 1, 1968, pp. 138-147.

[26] Papadimitriou, C.H. and J.N.Tsitsiklis, "On the Complexity of Designing Distributed
Protocols," to appear in Information and Control, 1983.

[27] Tenney, R.R. and N.R. Sandell, Jr., "Detection with Distributed Sensors," IEEE
Trans. on Aerospace and Electronic Systems, Vol. AES-17, No. 4, 1981, pp. 501-509.

[28] Willsky, A.S., M. Bello, D.A. Castanon, B.C. Levy and G. Verghese, "Combining
and Updating of Local Estimates and Regional Maps along Sets of One-Dimensional
Tracks," IEEE Trans. on Aut. Control, Vol. AC-27, No. 4, 1982, pp. 799-813.

[29] Sanders, C.W., E.C. Tacker, T.D. Linton, R.Y.-S. Ling, "Specific Structures for
Large Scale State Estimation Algorithms Having Information Exchange," IEEE Trans.
on Aut. Control, Vol. AC-23, No. 2, 1978, pp. 255-261.

[30] Borkar, V. and P. Varaiya, "Asymptotic Agreement in Distributed Estimation,"
IEEE Trans. on Aut. Control, Vol. AC-27, No. 3, 1982, pp. 650-655.

& _ _ _ _ __n__nn- - - -- .-,

-42-

[31] Arrow, K.J. and L. Hurwicz, "Decentralization and Computation in Resource
Allocation," in Essays in Economics and Econometrics, R.W. Pfouts, Ed., Univ. of
North Carolina Press, Chapel Hill, NC, 1960, pp. 34-104.

[32] Meerkov, S.M., "Mathematical Theory of Behavior-Individual and Collective
Behavior of Retardable Elements," Mathematical Biosciences, Vol. 43, 1979,
pp. 41-106.

[33] Astrom, K.J. and P. Eykhoff, "System Identification-A Survey," Automatica,
Vol. 7, 1971, pp. 123-162.

[34] Solo, V., "The Convergence of AML," IEEE Trans. on Aut. Control, Vol. AC-24,
1979, pp. 958-963.

(3S] Tsitsiklis, J.N., "Problems in Decentralized Decision Making and Computation,"
Ph.D. Thesis, Dept. of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, in preparation.

[361 Nemirovsky, A.S., "On a Procedure for Stochastic Approximation in the Case of
Dependent Noise," Engineering Cybernetics, 1981, pp. 1-13.

[37] Ljung, L., "Analysis of Recursive Stochastic Algorithms," IEEE Trans. on Auto.
Control, Vol. AC-22, No. 4, 1977, pp. 551-575.

[38] Ljung, L., "On Positive Real Transfer Functions and the Convergence of Some
Recursive Schemes," IEEE Trans. on Auto. Control, Vol. AC-22, No. 4, 1977,
pp. 539-551.

[39] Tsitsiklis, J.N. and M. Athans, "Convergence and Asymptotic Agreement in
Distributed Decision Problems," to appear in the IEEE Trans. on Aut. Control,
1984.

[401 Poljak, B.T. and Y.Z. Tsypkin, "Pseudogradient Adaptation and Training
Algorithms," Automation and Remote Contrd, No. 3, 1973, pp. 45-68.

[41] Geanakoplos, J.D. and H.M. Polemarchakis, "We Can't Disagree Forever," Institute
for Mathematical Studies in the Social Sciences, Technical Report No. 277,
Stanford University, Stanford, CA, 1978.

qI

?~

