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Preface

Through the years much time and effort has gone into the study
of the laser, laser 1hteractions and damage reanalysis techniques.
I consider myself fortunate to have had the opportunity to merge
these technologies. The result of this report is a computer pro-
gram which analyzes the strength of a structure having encountered
a laser strike.
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Dr. Peter J. Torvik, for his sincere guidance and concern during
the entire course of this investigation. I am grateful to
Dr. Vipperla B. Venkayya and Dr. Donald B. Paul for the expertise
that they generously gave in their respective fields of structural
analysis and heat transfer. I wish to express my appreciation for
the assistance provided by Victoria A. Tischler. In addition, I
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Abstract

A reanalysis method to analyze the strength of a structure which
has encountered a laser strike is developed. The method accounts for
the following types of laser induced damage: 1) loss of structure due
to melting; 2) change of material properties due to temperature changes;
3) addition of load due to thermal stress. The program uses heat
balance calculations over successive finite time increments on an array
of finite elements bisecting the laser beam spot to determine the tem-
perature distribution. These results are then converted to structural
stiffness parameters and the structural analysis is performed using a
finite element based reanalysis method. The reanalysis method predicts
the damage effects from the initial undamaged solution. The program
was found to give good results consistent with results obtained from
a separate analysis for each damage condition, but with less computer

time and manhours.
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REANALYSIS METHODS FOR STRUCTURES
WITH LASER INDUCED DAMAGE

I Int sduction

With the cﬁrrent thrust towards laser technology in the development
of weapons, methods must be developed for analyzing the damage due to
lasers. The total problem is a merging of two separate technologies.
The first is the characterization of laser damage. The thermal problem
occurring in the area local to the beam must be related to such concepts
as stiffness which are required for a structural analysis. The second
is the area of structural analysis. A cost effective method for per-
forming the structural analyses necessary for analyzing each damage case
must be developed.

Laser damage studies have been conducted to calculate the tempera-
ture distributions and "melt-through time" for specific conditions
(Ref 1-4). The primary interest of these studies was to determine the
material degradation in the immediate vicinity of the beam spot. The
object of the present study is to relate these local damage mechanisms
to a set of global variables which can be used in a structural analysis.

Depending on which aircraft structural systems are affected and the
degree of the damage, the effect on the performance of a damaged air-
craft can vary from minor changes to the loss of the aircraft. Since
military aircraft are expected to encounter damage, it is important that
they retain some level of structural integrity. This must be provided
for during the design phase. A simplistic approach might be to increase
the sizes of all members and components which make up the structure.

However, the constant quest to reduce weight and cost while increasing
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performance through optimization is at odds with such an approach,
unless limited to a minimum increase of critical members. The problem
lies in determining the location of the critical members, for it is
jmpossible to predict'in advance the degree and location of the damage.
Thus an analysfs must be conducted, investigating a large number of
possible levels and locations of damage to identify the areas needing
modification. Repeating a complete structural analysis for each
hypothetical damage case would be extremely costly.

Recent studies have developed iterative methods to reduce the cost
of the large numbers of analyses (Ref 5-9). Such techniques have also
been used to analyze the effects of conventional weapons (Ref 9). The
object of the present study is to modify and extend the reanalysis itera-
tion technique developed by Venkayya (Ref 5) to allow for efficient
analysis of a structure subject to many different damage conditions, and
to apply this methodology to the analysis of laser damage.

Combining the objectives of the two merging technologies, the total
program objective is to develop a method by which a structural designer
can determine critical members of the structure needing strengthening or
redundancy to survive laser strikes at relatively low cost. This paper
follows the logical development of the program: Section II discusses
the structural analysis method to be used and develops the iterative re-
analysis technique to be applied to the damaged structure. Section III
presents the solution to the heat conduction problem resulting from the
laser engagement and provides a means of evaluating the local damage.
Section IV develops the relationships necessary to convert the local
damage arising from laser heating to damage parameters consistent with

the overall structural analysis. Finally, Section V discusses the

—_ R i e
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results obtained, and Section VI presents conclusions and recommenda-

tions for further study.
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IT Modeling the Structure

The structural analysis method used is based on the displacement
method of finite element analysis (Ref 10, 11, and 12). In such an
analysis, the continuum is replaced by a discrete model consisting of
a finite number of elements connected at nodes (See Figure 1). The
rationale in such an approximation is that the response between the
nodes, i.e., the response in the elements, can be expressed as a func-
tion of the response at the nodes. Various interpolation functions or
shape functions are used to determine the element response from the
nodal response. The type of function used depends on the complexity of
response allowed for each element. The discretization reduces the
original differential equations of the continuum to a set of algebraic
equations which can be readily solved on digital computers. The itera-
tive reanalysis technique employs the original analysis of the undamaged
structure. Therefore the development of the reanalysis technique will
also include the development of the basic steps of the displacement
method for finite element analysis.

The finite element method used in this study is based on the gener-
alized displacement method. The computer program used is a modification
of the program "ANALYZE" (Ref 12) which was originally developed for in-
house studies in structural analysis and optimization at the Flight

Dynamics Laboratory, Wright-Patterson AFB.

Finite Element Method

The following derivation parallels a standard development for the
finite element method (Ref 10, 11, 12). The finite element method was

derived through variational calculus using the principle of minimum
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Figure 1.

(a) Continuum

(®») Finite Element Model

Finite

Element Approximation
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potential energy as the starting point. The potential energy, np. of a

structure is defined as (Ref 11:153)

IID'U+A (1)

where U is the strain energy and A is the potential of the applied
loads. The principle of minimum potential energy can be stated as
follows: "“Among all displacements of an admissible form, those that
satisfy the equilibrium conditions make the potential energy assume a

stationary value. Thus
§n_=8U+ §A=0
p
(2)

For stable equilibrium np is a minimum. Hence

sznp = 820 + 620 > 0 (3)

Displacements of an admissible form are defined as those satisfying in-
ternal compatibility and kinematic boundary conditions (Ref 10:56).

For a discrete finite element model the total potential energy is a
sum of the functionals for each element (ni), i.e.,

n n
Ttk Mt W) (4)

where n is the number of elements. The equations for finite element
analysis can then be derived from the element equations. If the struc-
ture is modeled by n finite elements connecting m nodes, the strain
energy of the 1th element is

| T
U, = c.c,dV
i ? vi ~i<i (5)
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where gT

is the transpose of the stress vector, €5 is the strain vector
and V1 is the volume of the element. From Hooke's Law the stress-strain

relationship for a linearly elastic body can be written as

9 = Eig (6)

where Ei is the symmetric material-stiffness matrix. For the typical

homogeneous, isotropic plane stress element §1 is defined by

1 viO
E;
E, ;::g v 10 (7)
00 %‘(]'Vi)

where Ei is Young's modulus of elasticity and vy is Poisson's ratio.
The finite element approximation is based on the assumption that
the displacements within an element can be adequately described by
simple polynomials. The coefficients of the polynomials {in turn are
related to the discrete nodal displacements of the element. Therefore,

the internal displacement equation is a vector equation of the form

fi = uiui (8)
where fi is the vector of displacements in the element coordinate
system, N, is the interpolation or shape function and u, are the

nodal displacements.

The strain - displacement relations can be written as
g; = Bf; (9)

where B is a 1inear differential operator. For the general probiem B

is defined as
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™y -
0 0
)
0 5 O
9
o 0 =
B = 10
o PRI (10)
3y ox
9 9
032--37
] ']
3w 0 %
L -

Substituting Equations 6, 8 and 9 into Equation 5 gives the following
expression for the element strain energy,

b=z [ el e o)

i

At this point the basic finite element assumption, i.e., that the in-
ternal element displacements are a function of the nodal displacements,
makes its major impact on the analysis. Through this assumption the
nodal displacements have been made independent of the integration in
space because they represent displacements at specific locations.
Therefore, the u; can be taken out of the integral as follows

- l_ T ToT
Uy = 5 uy fv NTBIE,B N,V u, (12)
i
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The elemental stiffness matrix, 51. is defined as

- T,T
i K, fvi NIBIE BN, dv (13)
- Equation 12 can be written as

1T, .
Uj = 7 ¥k (14)

] The potential of the applied loads is given by

= [T T

; A = ofuiE e - o (15)
E where Ei is the vector of lumped body forces per unit volume and P; is

b the vector of nodal forces. The sign is negative because applied loads

lose potential when displacement takes place. This analysis assumes
that the body forces are zero allowing only nodal forces. Thus Equation
15 can be written as
T
Ay = - u:p.
i ] 191 (16)
Substituting Equations 14 and 16 into Equation 4 gives the following ex-

pression for the potential energy
T
i¥ - Ypy) (17)

At this point, there are n expressions which must be summed to calculate
the potential energy of the entire structure. However, each expression
is measured in the local coordinate system of the corresponding element.
In order to combine the element expressions into a single structural

equation, a transformation matrix, a5, is introduced such that
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Qi = QiD (18)

where D is the structural displacement vector in the g]dbaI coordinate

system. Substituting Equation 18 into 17 gives

=

= 1
Hp L (D 3;k;2;0 - D 2;p;) (19)

Since D is independent of i it can be pulled outside the summation.

Then letting

n
- T
K= L gk
and (20)
n
- T
£" 1’21 ik
where K is the total structural stiffness matrix and P is the total
structural load matrix, Equation 19 becomes
1
n, =7 0'KD - DB (21)

Taking the first variation with respect to the displacements gives

1, = 8(3 D'KD) - 8(2'P)
= o'k - ap'p 22)

80T (KD - P)
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The principle of minimum potential energy, Equation 2, requires that

KD-P=0 (23)

Equation 23 is a set bf algebraic equations, which may be solved numeri-
cally. Once the displacements are found from the solution of Equation
23, the internal displacements, strains and stresses can be determined

by Equations 18, 8, 9 and 6.

Finite Elements

The finite element program used for this analysis contains four
basic elements. They are the (1) rod, (2) membrane triangle, (3) mem-
brane quadrilateral and (4) shear panel. The rod elements have constant
cross-sectional areas, and the planar elements have constant thick-
nesses. The nodal displacement vectors are shown in Figure 2 for each
element. The rod is a constant strain line element allowing only axial
displacements. The membrane triangle is a constant strain planar ele-
ment, and the membrane quadrilateral is constructed out of four nonover-
lapping constant strain triangles using a fictitious interior node that
is removed using static condensation. The process of static condensa-
tion will be discussed in the Quadrilateral Membrane Subsection. Con-
struction of the shear panel element is similar to the membrane quadri-
lateral using four nonoverlapping triangles. However, 6n1y the shear
strains are included in the element stiffness matrix computation. In
general, these four elements are adequate for determining the primary
load paths in most aircraft structures such as wings and fuselages.
However, more complex elements may be needed for a detailed stress

analysis of local areas.

n
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(a) BDer Element (b) Triengular Membrane EKlement

(o) Quadrilateral or Shear Panel

Pigure 8. EKlements and local Ceordinats System

12
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Rod Element

The rod element is an axial force member commonly seen as a section
in an analysis of a two or three dimensional truss structure. However,
within an aircraft structure, it is used to model spar and rib caps.
Figure 2a shows the allowable nodal displacements as defined by the
local coordinate system. The positive x-axis is defined as being
directed along the line from the first node to the second. The rod is
a two degree of freedom element since its element displacement vector
has two components U and uy.

Since the rod is defined as a constant strain element, the internal
displacements are assumed to be linear and can be approximated by a

linear function

[

1
f=cy+cox =11 x][ ]= XC
1 2 2%
©2 (24)

where f it the internal displacement at the location x, and the ¢'s are
coefficients to be determined. For a linear elastic material, the

stress in the element will also be constant.

Applying the boundary conditions

-
1
1
o

= ujat x =
(25)

-
"
[l

—

uzatx-

one obtains




T e ————

AFIT/GAE/AA/83M-1

If one lets
|
E =
. 2
1 0
.A =
1 L
(27)
and
Y
C =
2
then Equation 26 can be written in matrix form as
u = A (28)
Solving for the coefficient vector
' (-: = B-]y (29)
and substituting into Equation 24 gives
f = §A'1g (30)
Then
= xA”! =[x x
¥ N ’.‘5 [ L '['] (31)

LA b e ol
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where N is the shape function describing the linear relationship between

the internal and nodal displacements (See Equation 8).

The strain - displacement relation for axial strain can be written

as
‘ - of
€x T
(32)
Therefore B, as defined in Equation 9, takes the form
3
X
g =
0 (33)
for the axial rod element.
For the rod element the stress~strain relationship is simply
o = Ee (34)

Substituting Equations 30, 33, and 34 into Equation 13 gives

L-x Il3 3 L-x Xx
R s R g e
' ks _j; ) X x L 1
i T 0
E.
I T T
= - dv
L2 [-1 1] -{ (38}
‘ i
| 15
|
‘ 4 '4" .
. -~ — *«-—**. Proma—e ™ ST e S e — e
e T T ——
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Since
A.L. = dv
B fv (36)

where A s the cross sectional area and L is the length of the rod,

Equation 13 takes the form
(37)

for the rod element.

Triangular Membrane

The basic planar element in this program is the membrane triangle.
It is also used in the construction of the quadrilateral membrane and
the shear panel. Since it is a plane stress element, it can be used
effectively where the primary loading is in-plane forces, i.e., the top
and bottom skin of aircraft wings, flanges of [ and box beams subjected
to constant normal stresses, and the skins of sandwich composite con-
struction. However, this element is not suitable when the stresses
through the thickness vary significantly (plate bending). Inappropriate
use of this element will overestimate the stiffness or generate a matrix
stngularity. Figure 2b shows the allowable nodal displacements as
defined by the local coordinate system. The internal displacements

are assumed to be 1inear in x and y and can be represented by
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where fx and f.y are the x and y displacements in the plane of the plate
measured in the local coordinate system at location (x,y) and the c¢'s

are the coefficients to be determined. Equation 38 can be written in

matrix form as

(39)

where

' 1xy000
X =
0001xy

17
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and

Since the locations of the nodes are within the domain of the element,

the boundary conditions are

Up = 6 T et ey
Vi T € T cgXy * ceYy
Uz = & T X * 3
Vg = G4 * CgXp + Cg¥p (40)
Uz = Cp + CpXx3 + C3¥3

V3 " Cq ¥ Cgx3 t+ Coys

18
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where the uy and vy are the x and y displacements of the 1th node at
location (xi, yi) (See Figure 2b). Regrouping Equations 40 and re-

writing in matrix notation gives the nodal displacement equations in

the form

[ uy] 1 X} ¥ 0 0 0] —cﬂ
u, 1 x, 9,00 0ffec,
uy 1 X3 ¥3'! 00 O Cq
g‘ - = - - - = = - - - - -
i 00 O : T x il ca
7] 00 0 1 X2 Y| | s
| V3] -2 0 0 "1 x5 yal L6/ (41)

Note that the nodal coordinate matrix on the right hand side partitions
into a diagonal matrix. Since the construction of the x and y coeffi-
cients is identical, the inversion of the partitioned diagonal matrix

is simply the inversion of the component matrix. In matrix form Equa-

tion 41 becomes

(] -3

"
o i
- 3+ =
‘>|°
—_

"
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with the solution in the form

For simplicity, only the derivation of x direction coefficients will be
shown and use of the ~ notation will represent the x direction compo-

nent of the partitioned matrix. Thus Equation 41 simplifies to

IR )
U=lu =1 % ypllcp|=4c
us L y3|le; (42)

which has the same form as Equation 28 for the rod element. Solving for

the coefficient vector

Xo¥3 = X3¥p  X3¥p = Xy¥3 XY < XoNq] 1Y

o>

1
etTATl Y2 = Y3 Y3 = N 1- Y up (43)

X]-X3 XZ'X]

X3 - X2
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and substituting into Equation 39 gives

£y (44)
Then
o Xp¥3 = Xg¥p + x{yp - y3) + y(x3 - x,),
N=xA" = GetTAT %1 - X1Ya * x(y3 - ») + y(xg - xg),

(45)
X1¥p = Xo¥p * x(yy - yp) + y{xy - x)

where N is the shape function describing the linear relationship between
the internal and nodal displacements. Expanding the solution to include

the x and y displacements gives

0 0 0 N N N (46)

where Ni is the ith

element of N as given in Equation 45 and u is the
nodal displacement vector as defined in Equation 41. Standard practice
groups the nodal displacements by node rather than direction, therefore

regrouping Equation 46 gives

N, 0 N, 0 N3 O
f- u (47)
0 N] 0 N, 0 Ny
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where

Using the plane stress assumption, the differential operator B as

defined by the strain displacement relations in Equation 9 reduces to

d
% 0
= 3_
§- 0 3y
3 3 (48)
3y  ox

which when applied to N yields only constants. The differential volume
is dVi = tidA1 where tf is the constant thickness and A1 is the area

of the element. gi is constant as defined by Equation 7. Therefore,

22
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Equation 13 yields

=990 (49)

Substituting Equations 7, 45 and 48 inte Equation 49 gives

- 2 2 (1-v) Symmetric
Y32 * %32 "3
1- 2 . 2 (1-v
-(vy3ax3p + X35¥3, ngv ) X3ty Lz—)' ,

g]- ) (]-v!
E.t. ~(¥3o¥37 + Xgpxgy ) (VXgo¥gy *+ ygoXgy S,

Ky = . 2 !1 ) f]-v[
TR (1-v)) [(oygxgy + xgoygy D) ~(XgpXgy * ¥gevy Sz )

(1-v) - (1-v)
(Y3991 * X3p%py ~70) (vX3,¥01 * Y32%p1 ~7 1)

{1-v) {-v)
-(Wapxa1 * Xap¥py S ) (x3p%1 * Y321 *7 )

y§1 * xgl il%!l, (50)
“(ygxg * xS oG+ vg U
Y * Xk LD (xgyyg * vy {1y,
(vy3yxpy *+ X31¥p 'U_Eﬂ) ~(x3¥p * ¥31%p U‘E—VL)'

7

2 ,.2 (1-v)
YatXa 3

1-v 2 2 (1-v
“(Warigy * Xy 5D Ky ¢ v, LTL_

where k, is the element stiffness matrix for a triangular membrane

element and X3 = Xy = X and Yi5 = Y5 7 Y5
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Quadrilateral Membrane

The quadrilateral membrane is the element most often used to repre-
sent structural skins because large areas with minimal curvature can
easily be represented by four-sided planes. Figure 2c shows the allow-
able nodal displacements as defined by the local coordinate system. The
element is assumed to be a plane defined by the first three nodes. This
assumption ignores all warping and will result in an overestimation of
the stiffness if out of plane warping is significant. However, this
element can be used in regions of high warping if the sizes of the ele-
ments are reduced appropriately.

The stiffness of the quadrilateral membrane is constructed by
dividing it into four triangular membranes. As shown in Figure 3, a
fictitious fifth node is required and is located by averaging the

coordinates of the element's four actual nodes using the expressions

. _ XXt X3ty
5 'y

N TYaty3tyy
Y5 = 3

This subdivision improves the accuracy of the quadrilateral element by
using more nodal displacements without burdening the user with the task
of defining them. A stiffness matrix, Ei’ is computed for each of the
four triangular elements using Equation 50. Then the addition of the

four matrices is accomplished, similar to the summation of the element

~

matrices described in Equations 18 and 20. A transformation matrix, ;s

is introduced such that

24
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Figure 3. Quadrilateral or Shear Panel
Dividéd into Four Triangles
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u; = 334 (51)

where yQ is the nodal displacement vector for the five node quadri-

lateral element, and uy is the nodal displacement vector for the ith

triangular membrane. Each triangular stiffness matrix is then trans-

formed and their summation results in the following expression

-
=

9,

k..
~“11 (52)

o

T
i

ne~1 0

1

where gQ is the 10 x 10 stiffness matrix for the five node quadrilateral
which includes terms for the nodal displacements of the fictitious node.
The fictitious node's displacements are removed using the following
static condensation procedure - a manipulation of the stiffness matrix,
not an approximation.

The equilibrium equation for the five node quadrilateral can be

written as

509Q = B (53)

where Pq is the vector of applied nodal forces. Partitioning Equation

Y
*Q !—1“3

53 such that

(54)
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where u are the nodal displacements for the original four nodes to be

retained and u, are those for the fictitious node to be eliminated gives

i
L<rr | kre Yy Br
' i- K k u i ;-
- ~ee - -
er , ~e e e (55)
which can be expressed as two separate equations
frrir * Krele = Br (56)
and
'fer- + !.(eel.‘e = Ee
(57)

Since the p; are the given nodal forces and the fifth node is not
actually present in the original model, the forces on this node are
zero. Therefora, the partition of P containing the nodal forces
applied to the fifth node, Pe? must be zero. Using this condition and
solving Equation 57 for Yo gives

Ye © - Eglkerur (58)
Equation 56 can now be written as

| bt + Krel- Kogkerdi) = By
or (59)
(k. - )y, = P,

~rr re-ee-er -r
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Note that Equation 59 has the same form as Equation 23, {1.e., Equation
59 is the equilibrium equation for the original quadrilateral membrane.

Thus, the element stiffness matrix, k, can be written

ki = ey - Erefélker) (60)

Shear Panel

The shear panel is a constant shear stress element and cannot carry
normal stresses. It was a common practice, prior to the development of
the finite element method, to model wing, fuselage and empennage struct-
ures with constant shear panels surrounded by rod elements carrying the
normal stresses. With the development of finite element methods and the
quadrilateral membrane, the top and bottom skins were more easily
modeled using membrane elements, since they required the definition of
nodes and connectivity of a single element rather than the definition of
five elements needed for the shear panel and rod construction. However,
the use of membranes to model spars and webs results in a gross over-
estimation of the structural stiffness due to the constant strain
assumption. Most spars, ribs and box or I-beam webs carry primarily
shear with some normal stress, resulting in deformations due to shear
strecczs, not normal stresses. In addition, the normal stresses usually
have steep stress gradients which, as stated in the development of the
membrane triangle, cannot be modeled using a constant strain planar ele-
ment. Therefore, the shear panel was developed (Ref 13) to accurately
model these structural webs without complicating the constant strain
membranes. Since the shear panel is assumed to carry only shear
stresses, it must be surrounded by rod or membrane elements to carry the

normal stresses. Even though the actual structure does not contain
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normal load members, the user must provide fictitious ones, usually rod
elements, or the stiffness matrix will be singular. The use of this
idealized model construction has proven to produce accurate results when
used with the appropriate loading conditions. For example, when model-
ing the ribs and spars of a wing, the use of shear panels is appropriate
if the major loading condition is 1ift (Ref 12). However, when drag 1is
the major loading condition shear panels will produce totally erroneous
results.

The shear panel is constructed like the quadrilateral membrane by
division into four component triangles. However, the stiffness matrices
of the triangles are calculated using only the shear strain energy

terms. Thus the B matrix reduces to

0 0
B=10 0
3 (61)
dy X
which when used in equation 50 produces
Fxgz ]
Symmetric
2
X332 Y32
~Xq,X YanoX x2
E;t; 327N 32731 3 (62)
b = s w0y 2

VOV X30Y3) Y3a¥3r Xg¥3 Yo

2
X32%21 Y3221 *n*ar Yn*ar X

2
| %32%21 YY1 Xy YaYar avYar Yy
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where xij =Xy - xj and y“i =Y - yJ. The component stiffness matrices
are then combined and reduced in the same way as described for the quad-
rilateral element, Equations 51 through 60.

Note that since the shear stress of an element is dependent on the
orientation of the reference axis, the stiffness matrix can also be
affected. For rectangular quadrilaterals, the shear stress would be the
same regardless of the side selected to determine the reference axis
since all sides will produce identical orientations. But, for the
general gquadrilateral, large differences in the angles at the corners

can produce errors. However, by keeping the element shape fairly close

to a rectangle, errors will be reduced to an insignificant level.

Numerical Solution

The majority of the computational time for a finite element analy-
sis is spent solving Equation 23. Since the matrix K can be quite
large, calculating its inverse could be extremely time consuming.
Therefore, taking advantage of the fact that the structural stiffness
matrix is always symmetric, positive definite and in most cases sparsely
populated, the solution can be found economically using Gaussian elimi-
nation (Ref 14:87-88). The procedure consists of three basic steps.

The first step is a symmetric decomposition of the origjna1 stiffness

matrix formulated in the following way

(63)

[N, ——— s - T e e B Mt il
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where L is a Tower unit triangular matrix of the form

1 0 o
Lyy 1 0
L3; L3 1

by Ln2
and M is a diagonal matrix
M, 0 0
0 M22 0

0 0 M35

|

nn

(64)

(65)
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—

The L and M matrices can be calculated using the following procedure.

Computing the multiplications in Equation 63 gives

F-M-H Symmetric
ML, M L2, + M
ntar Mtz * M2
Matsr Matatar * Maota |
2 2
LMLl = Mitay + Magtap * M33
: n
M
Lﬂlan1 121
It follows then from Equation 63 that
K L
1 In
My = Kooy Loq =0y o o 0, Loy =
n ke ta TR m M
Moo = Kooy - My L2 etc
b2 = Koo - Mpplyy - -

ii

n-iJ

The advantage of this particular decomposition is that the sparseness

characteristic of the stiffness matrix is also found in the L matrix.

This reduces the number of computations.

32
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Substituting Equation 63 into Equation 23 gives

Lui D= (66)
B8y simply regrouping '
Tny=
LML 0l=¢ (67)
and letting
T
Y=M
I=ML D (68)
Equation 66 can be written as
LY=p (69)

The second step is the calculation of the vector Y by forward substitu-

tion. Rewriting Equation 67 as

B 0 o . . . oY ’P;
Ly 10 Y, | 1P,
L3y L3 1 Y31 {P3
. . - . (70)
L - ) . ) lj" o
then
Y7 =P
LnYa t Y= Py + Yo =Py - lyf
(71)
LygYy + Lgp¥p + Y3 = P + Y32 P3 - Ly1¥y - LgpYp
J etc
. 33
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The last step is to solve for the nodal displacement vector D in Equa-
tion 68. The technique used is backward substitution which is similar
to the forward substitution described in Equations 70 and 71. Rewriting

Equation 68 as

0 0 . 0 0 1 D3 Y3
(72)
o M. 0 10, Y,
| then
4 Y
M D =Y » D =
nn-n
. n n Mnn
M D, +M L D =Y b . = \nl
n-1,n-1"n-1 n-1,n-1"n,n-1"n -1 7 Yna1 TR - Ln n-]Dn
n-1,n-1 ’
(73)

g etc
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Most of the computational time for this method is expended during
the decomposition (Equation 63), because the forward and backward sub-
stitutions require very little effort. Note that the decomposition is

independent of the loads or the number of separate loading conditions.

Therefore, an analysis using multiple loading conditions requires a
3 single decomposition with a forward and backward substitution repeated

for each loadfng case.

Reanalysis Techniques

Repeating the entire finite element analysis for each possible con-

dition is so expensive it severely restricts the amount of damage analy-

sis being conducted. Therefore, the following reanalysis method has
been developed to reduce the cost, allowing comprehensive vulnerability
analysis to be performed (Ref 5). Assume the original structure is
analyzed by the described finite element program, then the equilibrium
equation for the structure is Equation 23. When the structure is dam-
aged, the equilibrium equation changes to the following form

* ok

KD =P (74)

where K* is the actual stiffness matrix and D* is the actual response
for the damaged case. The main objective of a reanalysis technique is
to build an approximate solution of the modified structure, Q*, using
the i{nformation generated during anaiysis of the original structure,
Equation 23 and the known changes. Therefore, the response of the

damaged structure can be written in the form

D =D+dD (75)

i
;) 35
‘
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where the displacement vector D is the solution of the original undam-
aged structure, and vector dD is the true perturbed solution of the
damaged structure. The perturbed solution can be estimated by a trun-

cated Taylor series expansion as follows (Ref 5):

p+dp=p+ § 3
Praprhe L 5 % 121 321 39;99; ag1 19199, (76)

where 95 is an implicit parameter whose change will affect the stiffness

‘th

of the element. There are h ways in which the stiffness of the

structure can be affected. The differential change in response can be

written as
- 121 —gg; do; * g7 izl jzl S_S%dgidgj 77
Multiplying Equation 77 by the original stiffness matrix K gives
s - 1§1 231 0 * '3(7121 ng ﬁ%dgidgj e

Since the loads, P, are not dependent on the 9y differentiating the

original equilibrium equation (Equation 23) with respect to 9 gives

oK 3D
D= . K22
‘aag-i‘ - ~ 391- (79)

Then differentiating Equation 79 with respect to gj gives

K .._a.._az" =. 23K 3D _ __,__92" D (80)
e agiagj 39j 391 39139J -
36

T AL s e M et sl



o~

v

T — e

WY B T

b Lh i o

AFIT/GAE/AA/83M-1

82K

-

Consider the last term in Equation 80, i.e., 3 D, in relation to
9 gj

the construction of the stiffness matrix K, defined by Equation 20.

Examine an arbitrary term from Equation 20

T
éikiéi
Since the effects of gj are limited to the jth element, the ith element
is independent of 93 or
— = PTL 8
In addition, k; is assumed linear in g, giving
3%k,
— =1 =09
39,99; (82)
Therefore, the summation of Equation 20 gives
P’k .o
39;39; ~ (83)
Substituting Equations 79, 80 and 83 jinto Equation 78 gives
h h
K ok 9D
KdD = - % pdg, + 38 3B 4 4.
i 121 3g; ~ ] 121 321 ng °g; 9i7gj (84)
Then Equation 84 can be written as
KD = - dK(D + dD) (85)
37
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where
h
= ) .:._'5_
and

The iterative algorithm for the perturbed solution can now be written

from Equation 85 as
kg™ = - dk(p + ap?) (86)

where q is the cycle of iteration.

It is very important to note through a comparison of Equation 23
and Equation 86 that no new analysis is required in solving Equation 86.
Although the solution of Equation 23 gives the unknown displacement
vector D for a known load vector P while in Equation 86 the objective
is to solve for the perturbed displacement vector dgq+]. the stiffness
matrix K is the same in both equations. Since the stiffness matrix was
already decomposed using Equation 63 for the original undamaged struc-
ture it is available for the solution of Equation 86, and does not need
to be computed in each iteration. Therefore the solution of Equation 86

reduces to the forward and backward substitution steps which are the

least expensive of the total solution steps.

Estimation of the Effects of Yielding

In most everyday problems structural loads are designed to fall

within the linear range, i.e., the loadings under consideration

38
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generate stresses in each element such that Young's modulus is a con-
stant (See Figure 4). However, with the inclusion of thermal effects,
the proportional limit can be reduced or the addition of thermal
stresses can put the solution outside the linear regime. Therefore the
reanalysis program must be able to handle the effects of material non-
linearities. The most common method for introducing material nonlinear-
jties into the finite element analysis of structures is the piecewise
linear analysis procedure (Ref 15). This procedure uses the superposi-
tion of a series of linear steps. The applied load is divided into a
number of small load steps, and the stress-strain curve is approximated
by a series of straight lines (Figure 5) which are used to calculate the
variation of Young's modulus with stress level. Each load step is
applied sequentially with the Young's modulus in each step determined
from the stress level in each member calculated in the previous step.
The total solution is obtained by adding the solution of each step to
the previous solution, until the full load is reached. This procedure

requires many solutions of Equation 23 in the following form

K°aD° = ap®

where 55 is the current stiffness matrix using the appropriate Young's
modulus for the level of stress at step s, Aps are the displacements for
step s, and AES is the load increment for step s. Normally a minimum of
6 to 8 steps is required for realistic results. For the case of large
structures computing 6 to 8 solutions is very costly. This cost can be
reduced considerably by a modification of the iterative technique des-
cribed in the previous section. Since the nonlinear effects consist of

Young's modulus changes which were previously included in the definition
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of the stiffness change parameter 9; in Equation 82, the only adjustment
needed to the iterative technique is to determine the amount of load to
include with each change of Young's modulus.

As before, the first step in the procedure is to make a linear
analysis of the structure with the full load using the initial Young's
modulus. The effective stress ratios for each element are calculated

using the modified Von Mises criterion (Ref 16) defined by

. 2 2
o = (58), (7 - (20, + ()’
AR AN I VARG

J i

where ega) is the effective stress ratio for the ith element at the jth
break of the stress-strain curve, oy 9y and Sy are the actual stresses
in the element and Xj, Yj and Zj are the respective stresses correspond-

ing to the jth

break in the stress-strain diagram (Figure 5).

For simplicity the following derivation will assume a single break
in the stress-strain curve. The elements can then be divided into
elastic and inelastic groups, i.e., those whose stress levels fall with-
in the first and the second straight line segments of the stress-strain
curve, respectively. Elements with 8 < 1 belong to the elastic group,

while those with & > 1 k>long to the inelastic group. Using the effec-

tive stress ratio, 6, two load factors are defined as

and

(1 -2a)

=
n

where emax is the maximum effective stress-ratio of all the elements,
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A is the linear percent of the load or that portion of the stress
bounded by the break in the stress-strain curve and y is the remaining

percent. The total applied load is divided into two parts as follows

P =2aAP + yP

The total response can be divided into corresponding displacement vec-

tors by simple scaling as given by

o
>
n

aD

Du

D

where QA is the response up to the break and g” is the remaining re-
sponse. Since the initial solution was calculated using the Young's
modulus defined by the first segment of the stress-strain curve, pk is
the valid solution for that portion of the problem. However, Young's
modulus changes in the second portion. Therefore the solution for the

second segment can be determined by the iterative technique as follows
kdp¥*! = - ak(p* + dpf) (87)

Here K is the original linear elastic stiffness matrix and dK is the

change in the stiffness matrix defined by

T
dK = J nidiky

where the summation is over those elements exceeding the proportional
1imit, and n, = (E} - Ef)/E! where E} and Ef are the respective Young's
moduli for each segment. As described in the previous section this

solution requires only forward and backward substitutions repeated for

S T VAR VY
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each iteration cycle.

The total response of the structure is given by

D* = g* + D + dl_)q+1 =D+ dgq+1

g + dcg+] =g. + do

i i

where dpq+1 is the displacement vector obtained from Equation 87, and
dg?+] is the stress vector in the jth element due to the displacement
vector dpq*]. In all these computations it is assumed that Poisson's
ratio does not change during yielding.
An extension of this technique to the case of multiple breaks, b,
in the stress-strain curve is simply a repetition of the procedure as
new breaks are encountered. The load factors for each break are
computed by !

=6l

max

NEDI 1 I

Using the above definitions the solution for each section can be deter-

mined from Equation 87. The total response can be written as

2 2 3 3 b b
D* = D* + (DY +dD* )+ (D" +.dDY ) 4...+ (DY +dDY)
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Convergence Criterion

The solution converges if the perturbed solution can be written as

dp = 1im dp

Q=

(88)

where dpq is obtained from Equation 86 (Ref 5). To show the convergence

criteria for this solution technigue, "guation 86 can be written as

d[_)q+1 = - K'ldf(g + dgq) (89)

Substituting the iterative results into Equation 89 one obtains
qu+] =[I+¢+ QZ + §3 oot Qq]QQ (90)

where

d¥ (91)

The superscripts in Equation 90 are exponents denoting powers of the
matrix ¢. However, the exponent on the last term, q, is equal to the
number of iteration cycles performed. From Equation 90 the {teration

L 497 converges. Note that the

converges only if [} + 4+ ¢
convergence depends on the nature of the matrix ¢. However, if gq -0
as q + =, the solution converges. This condition exists for small

changes in the structural stiffness (Ref 9).

It is important to stress that assurance of convergence is not the
sole justification for using this iterative technique. To be useful
this technique must be considerably cheaper than direct analysis of the
modified model for the damaged structure. The computation time required

for this method depends on the number of iteration cycles needed for the
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solution, and the rate at which the solution converges depends on the
amount of change in the stiffness matrix as shown in Equation 89. A
measure of the effectiveness of this procedure could be done by an
analysis of the number of calculations performed. However, many vari-
ables such as the variable bandwidth of the stiffness matrix, the number
of elements damaged, the type of elements damaged and the number of
iterations to be performed are either very problem dependent or very
hard to predict. Therefore actual run times were used to esaluate the
effectiveness of this technique. This produced the estimate that the
run time for approximately 30 cycles of iteration is equivalent to the
time required for one direct analysis of the damaged structure. Minor
damages require 3-5 iteration cycles, medium damage requires 5-15
cycles, while major damage resulting in collapse of the structure
requires 15-30 cycles (Ref 5). These results show that for many damage
cases the iterative technique will be cost effective.

The criterion for convergence used in most simple iteration schemes
is the amount of change of the solution from one iteration to the next.
However, in this problem the solution must be in a state of equilibrium
requiring

q . 9
29 =
(92)

where A9 is the work of the external forces for iteration q given by

29 - qu (93)

1
2
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and U% is the internal strain energy of cycle q, defined as

t~13

T

q_1] q _q

U=z ./\; 2 €9V (94)
i

From Equation 93 the magnitude of Aq+] - A9 depends on the magnitude of
the loads as well as Dq+] - D%. Thus the rate of change of the dis-
placements is not a valid criterion for convergence. However, Equation
92 could be used as a criterion for convergence. Although the calcula-
tion ov A9 is inexpensive requiring only the scalar product of two
vectors, the calculation of U9 is very expensive requiring the calcula-
tion of the stresses and strains for all the elements. Therefore to
reduce the calculations necessary to check for convergence, the work of

the external forces is defined as
73 = p + dd

where A is the work of the external forces on the original undamaged
structure and dr9 = %-Edgq is the work of the external forces resulting
from the perturbed solution. Then the rate of change in dr9 can be used
as an intermediate criterion for convergence. When it falls within a
predefined limit, the strain energy U9 and the work A8 can be determined.
If the difference between these two quantities is over a prescribed
bound, the limit for the rate of change in da9 is reduced, and the iter-

ation is continued. Otherwise the solution is considered to have

converged.
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I11. Modeling the Thermal Effects

In order to evaluate the structural damage caused by a laser strik-
ing the structure, a method must be developed to model the thermal
effects of the beam. Although there are many configurations of a laser
beam striking an aircraft structure, which would involve the incidence
of the beam and the curvature of the structure, the scope of this study
will be limited to the basic situation of a continuous stationary laser
beam striking a flat plate at a normal incidence. The beam is consid-
ered axially symmetric so that heat flux occurs only in the axial and
radial directions. This study will examine the effect that the absorbed
flux has on the structure. The effects of the surrounding medium and
the absorptivity of the plate are taken into account by properly adjust-
ing the absorbed flux. The effects of heat loss from the heated plate
have also been ignored, since the additional complexity required to in-
clude realistic radiation or convection loss conditions cannot be justi-
fied by the small impact they would have on the problem (Ref 17).

The thermal effects to be included are the loss of structure due to
melting, the induced thermal stresses resulting from thermal expansion,
and the change in material properties due to temperature dependence.
Although other effects could be included, these represent the major

damage mechanisms from a structural point of view.

Heat Conduction Problem

The purpose of the heat conduction problem is to determine the tem-
perature distribution from which the amount of melting, the thermal

stress, and the change in material properties can be determined. Tem-

perature distributions are solutions to the differential equation for
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heat transfer.

where

Cp = specific heat (Btu/1bm °F)

p = density (lbm/in3)
é T = temperature (°F)

k = thermal conductivity (Btu/Sec in °F)
\ T = time (sec)

Q = rate of energy gain due to laser flux absorbed |

(Btu/in2 sec)
X,¥,Z = orthogonal directions

Consider the flat plate to be a cylindrical disk and the prescribed flux

to vary only in the radial direction. Then no heat transfer occurs in
the circumferential direction, and the problem reduces to two-dimensions
in a cylindrical coordinate system. Exact solutions have been found for
this problem for constant properties and temperatures below melting.
However, for problems with a sufficiently large flux to cause tempera-
tures to reach the melting point, available exact solutions are 1imited
to the case of one dimensional problems subjected to a uniform flux.
Therefore, a numerical solution must be used.

The solution could be found using a finite element analysis similar
to the technique described in Section 11. But, since the problem is
time dependent, the solution would require a complete analysis at each
time step. Similarly, the use of a traditional finite difference

approach also requires a matrix inversion at each time increment.
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Therefore, the numerical approach used in this study is a modification of
an explicit technique that was initially reported by Dusinbeere (Ref 18).
This technique is based on dividing the disk into finite cells and per-
forming a heat balance on each. The advantage to this approach is that
it requires less computer storage and run time than either of the

traditional approaches and yields comparable results (Ref 1).

Numerical Solution

The first step in this procedure is to divide the disk into a num-
ber of finite cells. The thickness, h, of the disk is divided into a
number, NC’ of layers, and similarly the radius, r, is divided into NR’
sections. Since the structural model in this study was generated with
elements of a single material, each cell is taken to have the same prop-
erties. For simplicity, the following development assumes that all
divisions are equal through the thickness and that each of the radial
divisions are of equal length, however, only minor changes would be
required to allow for unequal divisions. Thus the disk is modeled as
NC X NR cells (Figure 6.a). Each cell is then referenced as a two
dimensional array, where the first index refers to the thickness layer
and the second refers to the radial division (Figure 6.b). By using
this indexing scheme all properties associated with cell i,j can be
referenced in the same manner.

Consider a typical cell shown in Figure 7. Cell i,j is surrounded
by four other finite cells, and heat conduction is the only form of heat

transfer. Using Fourier's law of heat conduction

= -l
Q kAax
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(a) Discretlizing the Area of Thermal Influenoce

f—-‘-
1.1 1.Ne

(b) Indexing Sohemne for the Thermal Cells

Figure 6. Division of Disk into Finite Cells
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where A is the area normal to the direction of the heat flow and x is

the variable length between the points of interest, the approximation

for the heat flow conducted out of cell i,j can be given as

Qi « = ko Ao, o ol gl
Ri,J Ri,J Ri,J Ag

and

G - = koo A . tiad T,
21, 21,3 Zi,] AZ

Here Q is the heat conducted, & the length the heat travels, and the
subscripts R and Z denote the radial and axial directions respectively.
To perform a heat balance on each element, it is necessary to con-
sider the location of the element with respect to the entire disk. If
an element is located on the surface of the disk, it is possible that
energy, Fi,j‘ could be added by the absorption of external flux due to
the laser, and there would not be convected energy incoming from the
thickness direction since there are no cells above it, i.e., from a cell
of lTower index i. For the center cells, incoming conduction in the
radial direction is zero, since they are solid disks. In addition, the
bottom cells and outer edge cells have no outgoing convected energy in
the thickness and radial directions, respectively, due to the imposed
insulated boundary conditions. These are accounted for by setting to
zero the appropriate Q. Considering each cell to have flux values and
convection terms on all four sides, and combining the external flux
term with the incoming convected energy terms and subtracting the out-

going energy terms, the general expression for the heat balance of
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cell 1,j is given by

8Q; 5= Fi5* Qis * Q55 - QpiLy - Q24

N

where AQi j is the amount of energy remaining to cause a change in the
1
temperature of cell 1,j.
Providing the melting temperature has not been reached, the tem-

;
R perature rise in cell i,j during a time increment At can be written as

Pi,J i,J

k4

] where Mi ; is the mass of cell i,j.

Melt Calculations

In some later time increment, A1, the temperature will reach the
melting temperature. When the melting point is reached, the cell has
not actually melted, and more energy must be added to bring about the L
compiete phase transformation of all the mass in the cell. Thus, the
total energy required to melt cell i,j after it has reached the melting

temperature is given by

' 0

Y, < Ty, M

1,
where Ty j is the heat of fusion. To model this phenomena an energy
]

bank is established for each cell with the appropriate y? j value.

Then, once the cell i,j reaches the melting temperature, AtAQ1j is
subtracted from y? i and the temperature of the cell is held at melt-

ing. At & time increments after cell i,j reaches melting temperature

)
=0, - (8) . (8)
Yi,5 T Yij le aQ;. 58t
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and the entire cell is presumed to have melted in the time increment
when Yi,j 0.

Since the melted material will add little or no stiffness to the
structure, the melt is considered to be instantaneously removed. There-
fore, the conductivities of that element are set to zero, and any
external flux received is transferred to the cell immediately below,

i.e., from cell i,j to cell i+l,j.

Laser Flux Profile

The incident laser flux is assumed to be circular with either a
Gaussian or uniform profile. Neither of these approximations represents
the exact spatial profile, because experience has shown that in reality
hot spots can occur (Ref 19:13). However, the Gaussian profile is con-
sidered, in general, to be a suitable approximation for this type of
parametric study, because of the random nature of the intensity, size,
and location of such hot spots.

If the Gaussian profile is used, the incident energy absorbed by a

cell i,j on the surface is determined by

2,.2)
: (-.5R%/q
Fi,i = FoPzi,s®

where Fo is the , ‘ak absorbed intensity, R is the distance from the cen-
ter of the beam to the center of cell i,j having an area AZi 3’ and 2c

is the radius of the laser beam. The assumed Gaussian beam is actually

of infinite radius, but by defining the beam radius in this manner 86.5%
of the total energy absorbed by the plate is within this radius. F1 j
is taken to be zero for R + 20, thus, the remaining 13.5% of the energy

_1s neglected.
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When the uniform profile i< selected, the incident energy absorbed
is given by

Fi.i = Folzing

for R < 20 and F, i 0 for R + 20.

Results of the Temperature Distribution

The output of the computer program is the response of a structure
incurring a laser strike. Although the temperature distribution plays
an important part in the final solution, it is not possible to observe
only the behavior of the temperature solution once it has been integra-
ted with the structures program. Therefore this section deaTs with the
accuracy of the temperature solutions and discusses the effects that
some structural configurations could have on the solution.

To measure the accuracy of the technique, comparisons between the
temperature fields predicted by the numerical technique and exact solu-

tions or other approximate solutions were made by Torvik (Ref 1). To

ensure the accuracy of the program developed for this study, a compari-
son was made for the one dimensional heating of an semi-infinite solid.

The exact solution, valid to the onset of melting, is given by (Ref 20)

1/2
T-7T olev) 'f! X l ‘88)
- 2 ———— jerfci———+ .
0 k 2(at 1/2

vhere a is the diffusivity, k/on. and jerfc denotes the first integral
of the complementary error function. The front surface temperature is

given by
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2F 1/2
T-T =9 at
o k « (89)

The comparison was made using the properties of A1203. This mater-
ial was chosen as it is a poorer conductor than metals, producing higher
thermal gradients and a more stringent test of the numerical process.

The properties are:

p = 3.8 gm/cm3

k = 0.104 joule/(cm sec °c)
Cp = 0.885 joule/(gm °c)
Tme]t = 2313°K

F = 4000 jou]es/(cm2 sec)

T, = 300°K

The temperature profiles, determined using Equations 88 and 89, are
plotted at 0.02, 0.04 and 0.06 seconds in Figure 8 as solid lines. The
temperature distribution at the mid-points of each cell, determined by
the numerical procedure described in the preceeding section using a
layer thickness of 0.015 cm and a time step of 0.001 sec, is shown by
the asterisks in Figure 8. As can be seen, the results of the exact
and numerical solutions are indistinguishable.

In addition to using the numerical solution to calculate known
solutions to verify the accuracy of the program, the heat transfer pro-
gram was used to observe the effects of an internal structure. Relating
the temperature distribution to an external surface that can be approxi-
mated by a flat plate is a fairly simple procedure involving the calcu-

lation of the radial distance a given point from the beam center and
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applying the temperature calculated at that distance. However, applica-
tion to a realistic wing structure involves calculating the effects of
ribs and spars and the temperature distributions within them. The
addition of structuré below the skin will act as a heat sink and could
; ' result in a much cooler temperature distribution on the skin. To esti-
. mate the effect of inner structure on the temperature distribution, a
"worst case" was examined. The "worst case" involved placing an in-
ternal structure directly under the beam spot. The resulting tempera-
} ture distribution was plotted against the temperature distribution
calculated for the flat plate. To observe possible effects on the
melting mechanism, laser application times of 0.1 and 1.0 sec were used,

giving one case with minor surface melting and one case with melt com-

pletely through the skin.

For both endurance times the inclusion of internal structure re-
sulted in only slightly Tower temperatures within the beam spot. The
influence away from the beam diminished with distance (See Figure 9).

In addition, the area of the plate removed by melting is not affected.
Therefore this study will consider the effects of any internal structure
to have no effect on the temperature distribution. This results in a
conservative approximation of the damage incurred, due to the slightly

hotter temperature solution.
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IV Modeling the Damage

Once the heat conduction problem has been solved, the damage
incurred by the structure must be modeled. The types of damage to be
considered are: - loss of structure due to melt, addition of thermal
stresses resulting from thermal expansion, and dependence of Young's

modulus on temperature.

Damage Due to Material Loss

The damage due to material loss is defined as the loss of stiffness
that a finite element incurs when some of its material is remﬁved
through melt. In order to model this phenomenon, a parametric study
was conducted by modeling a flat plate in a state of tension with holes
of varying diameters and depths. The plate and the hole were considered
to be symmetric about both the x and y axis. Symmetric boundary condi-
tions reduced the problem to a quarter section of the plate (Figure 10).
The symmetric boundary conditions used restricted those points lying on
the y-axis from motion in the x direction and those points on the x-axis
from motion in the y direction. The symmetry reduction was also consid-
ered when the loads were calculated. To simulate a uniform load across
the entire edge, the magnitude of the loads at each corner must be
halved, because the mirror image symmetric section would also have a
node at that point with a equal load.

When the laser beam spot is considered to be round, the material
loss will appear as a circular hole partially or entirely through the
thickness. Although most of the cases studied consisted of circular
holes, non-circular holes were also considered. In an actual structure,

non-normal incidence or beam jitter along a preferred axis could produce
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Figure 10.

62




AFIT/GAE/AA/83M-1

a non-circular beam. The resulting damage would then be somewha: ovil.
Therefore, oval holes through the entire thickness with the major axis
transverse to the load were also considered so that the stiffness loss

could be compared with that for circular holes.

The stiffness for the damaged plate was calculated as a percent of
the stiffness for the undamaged plate by dividing the average edge dis-
placement of the complete plate by the average edge displacement of the
damaged plate. The results are shown in Figure 11, where the cases
modeling circular holes are represented by solid lines. The cases cal-
culated for oval holes through the entire thickness are shown as aster-
isks. This data reflects the effect of an elliptical versus a circular
shaped hole on the plate and shows the stiffness of plates with oval
holes to be greater than those with circular ones. Thus using the cir-
cular hole values gives a conservative estimate.

The shape of the sides of the hole must also be considered, because
the hole is not in reality a cylinder perpendicular to the plane of the
plate. Such an assumption neglects a wedge of material at the lower
edge of the hole. However, because of the high temperature, the mater-
ial in the wedge will not add significantly to the stiffness of the
plate and can be neglected. Since the program uses the total energy,
Yi, 5 required to melt cell i,j to determine the time at which cell i,j
melts, the percentage of melting for the cell can also be determined
from i, The program searches the Yi,; looking for non-zero values
to determine the amount of material melted and the dimensions of the
hole created. The radial dimension of the melted area is taken to be
determined solely by the top layer and the depth of the hole by the

center division. Each N, is tested, starting from the center 1.0
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until a value greater than zero is found in Y]’NM. The radius of the
hole is then determined by RM = NMRAR’ where NMR is the index of the
first non-zero term radially and Ap is the length of the radial divi-
sion. Similarly each i is searched through the thickness giving

™ = NMZAZ’ where NMZ is the index of the first non-zero term through
the thickness and 4, is the thickness of each layer. The stiffness loss
is then determined from the hole's radial and thickness dimensions by

interpolating from the data for circular holes presented in Figure 11.

Addition of Thermal Loads

With the heating of elements due to the laser strike, thermal
expansion occurs and generates thermal stresses. With the addition of

the thermal load, Equation 5 becomes

- 17 T o)
Ui = [ (Zoles - ejel)an (90)
V.
i
where g? is the thermal strain produced by heating the ith element. g?
is given by
o _
€ = ;8T

where o, is the vector of coefficients of thermal expansion and AT, is
the change in temperature.

The first term in Equation 90 will follow the development presented
in Section IlI. Substituting Equations 6, 8 and 9 into the second term

of Equation 90 gives

- TyTeTe O
S vi¥eie e (a)
Vs
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Because all elements included in this program are isentropic plane

stress elements, the thermal strain vector is given by

1
o =
g = o8T; |1 (91)
0
Multiplying (a) by the material property matrix E; gives
o Egopat, [
Eigi = () 1 (92)
0

Since Equation 92 is independent of volume and since all elements in

this program were constructed using a linear relationship between the

¥~T is also independent of volume.

internal and nodal displacements, N.B.

Therefore (a) can be written as

T TBT E].a].AT,i

- 4N o vij de
V.,
i

O -t

or
T,T,T E52i8T; ]
SENE TS Y (b)
0
If
1.7 E4248T4 ] (93)
Vi NBi o7
0
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then (b) can be written as
¥ (c)

With this term Equation 17 gives the following form for the total

potential energy when thermal loads are included

n
np = .Z

1.7 T T 94
; ](2 uiki¥s - UiRs - Uik (88)

Substituting the transformation matrix defined in Equation 18 and

letting

Taking the first variation with respect to the displacement gives

o1, = 6D'(KD - P - ¥)

and when the stationary requirement is met the equilibrium equation

becomes
59 - E - v = 0 (95)
67
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Combining the nodal forces and the thermal loads as

P =Pty (96)
and substituting into Equation 95 gives

KD - p* =0 (97)

which is exactly the same form as Equation 23. Therefore, by using
Equation 94 to calculate the thermal loads and then combining the two
load sets, all the equations for the reanalysis technique remain the
same and can be used with no modification. It is important to note
that the original solution upon which the iterative technique is based

must include the affects of the thermal loads.

Temperature Dependence of Young's Modulus

Although the major loss of stiffness to an element would be due to
a loss of material caused by melting, the effect on the entire structure
would not be significant unless the melt occurred on a major load carry-
ing member. However, due to the high conductivity of metals, a tempera-
ture rise can occur over a large section of the structure. This can
reduce the magnitude of Young's modulus in a number of elements and
result in a major stiffness change for the entire structure. Therefore,
changes in Young's modulus can be the major damage mechanism for the
structure as a whole.

To apply the temperature dependence affect to this damage program,
a table of Young's modulus vs temperature was developed. For the sample
problems in this study the Young's wmodulus vs temperature curve for
T2014 aluminium from Mi1 Handbook 5, Figure 12, was approximated in

tabular form. The temperature for each node was calculated from the
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temperature solution, and the elemental temrerature was determined as

f an average of the nodal temperatures. Using that calculated tempera-
ture, an interpolation of the table resulted in the new Young's modulus,
E%. for the element.

The reduction factor to be used in the iterat.ve technique is given

as
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V Results

The laser damage program developed in the present study was applied
to two different structures. These structures are of two different
levels of complexity, one being a simple two-dimensional plate and the
other a much more refined three-dimensional wing structure. These prob-
lems demonstrate the ability of the program to be used for a smaller
localized analysis as well as for a large aircraft structure. A com-
plete description of the two structures and the reanalysis results are

described in this Section.

Flat Plate

The first structure was a flat plate clamped on one edge, subjected
to a uniform tensile loading, and modeled with both triangular membranes
(See Figure 13) and quadrilateral membranes (See Figure 14). The mater-
ial of the structure was assumed to be aluminum with a Young's modulus

of £ = 10.0x10°

psi and a density of p = 0.1 1bf/in3. Six subcases were
defined by varying the number and location of elements exposed to the
laser strike. Table 1 lists the various cases considered for this
structure. The Taser size and strength were varied to produce different
damage levels for each case.

The overall size of the plate was 12.0 in x 8.0 in x .1 in, and the
elements were uniform in size with an area of 2.0 1'n2 and 4.0 in2 for
the triangular membranes and the quadrilateral membranes, respectively.
This structure was selected because of its simplicity and its size.
Since it is a two-dimensional model, the damage effects are easier to
understand. Because the plate is small and the conductivity of aluminum

is high, the laser strike affected the temperature of all the elements.

n
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These attributes define a model that {is easy to verify and will show an
entire structure changing rather than the effects of modifying a local-
ized area. As a result, the model is a "worst case" example.

In order to provide a baseline to compare the damage cases, the
solution to the original undamaged case was used. The maximum displace-
ment was 0.60 in for both models, and the computer time required was 309
and 331 10-millisecond tics for the triangular membrane model and the
quadrilateral membrane model, respectively. The resulting deformed
shapes are shown in Figures 15 and 16.

Since the temperature of all the elements changed, thermal loads t
were generated for all the nodes. Some of these loads were quite large.
For example, the maximum magnitude of the nodal loads generated from the
thermal effects in Case 1 was 13,880.33 1bf. With such large loads the
panels can buckle. However, buckling considerations are not included in

this study.

The results for the flat plate cases are summarized in Table 2. In
order to visualize the damage effects, the deformed shapes for these
cases are shown in Figures 17 through 22. The plots shown in these fig-
ures represent both reanalysis and NASTRAN results. The deformed shapes
show the expected responses. The figures show the deformed shape skewed
to one side representing some in-plane bending. Since the beam does not
strike on the center line of the plate, the side of the plate receiving
the strike is hotter and incurs more damage. Thus, deformation on the
side of the laser strike is greater, resulting in the skewed appearance
of the damaged plate (Figures 17-22).

In the cases where the damage appeared minor, i.e., the change in
the maximum displacement from the undamaged case was small, the

reanalysis technique does not seem to be as efficient as in the case
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of damage due to conventional weapons (Ref 5). However, since a temper-
ature change in every element caused the appearance of one or more
damage mechanisms in every element, the iteration extended over all the
elements. Thus the actual change in the stiffness matrix was a major
reduction, requiring an adjustment of every element. As a result, the
stiffness change in each of the reported cases is considered a major
damage condition, and the reanalysis technique proved to be as effective
or better than expected. In a larger structure the damage mechanisms
would be more localized, and the efficiency will become more obvious.
This is shown with the intermediate complexity wing model described
later.

In addition to evaluating the computer run times, the manhours to
set up the models must also be considered. The size of the model also
affects the manhours. Altering the finite element model to reflect a
material loss for the flat plate structure is a simple task requiring
less than 10 minutes clock time. However, to include the Young's modu-
lus changes and the thermal loads is much more time consuming. Since
NASTRAN is a well known finite element code, time comparisons will be
based on the generation of data required for it. Some method must be
used to generate a temperature distribution for each different laser

strike condition. The Young's modulus effects can be_incorporated by

specifying that the material is temperature dependent and including an
E versus T table. However, in order for the program to use this data or |
to generate the thermal loads, temperatures must either be {nput for i
each node or each element. Without the program developed during this
study, the task of converting the temperature distribution results to

node point temperatures would have to be done by hand. The time
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required to generate the data in the correct form is about 8 manhours
for each strike. Note that even if the laser strike conditions remain
the same, a variation of the location of the strike will require this
conversion to be made. Therefore, taking a simple model, such as a flat
plate with laser strikes in three locations, the program developed in

this study shows a manhour savings of three days.

Intermediate Complexity Wing

The second structure was a cantilevered wing shown in Figure 23.
This "Intermediate-Complexity Wing" was chosen for study'as an illus-
tration of the application of the program in the preliminary design of
a lifting surface. It is a typical wing box structure clamped at the
root and modeled using rods, triangular membranes, quadrilateral mem-
branes, and shear panels. The top and bottom skins are modeled using
triangular and quadrilateral membranes and the spars and ribs by shear
panels with rods providing the axial support. The finite element model
has 88 nodes and 158 elements (See Figure 24). The applied loading con-
dition was generated by using simplified pressure distributions repre-
sentative of a subsonic, forward-center-of-pressure ioading (Ref 5).

The material is assumed to be aluminum with the following properties:
E = 10.5x10% psi, v = 0.3, p = 0.1 1bf/in’.

The damage cases for this structure were constructed as the analy-
sis proceeded by varying the locations and the duration times of the
Taser strikes using a beam radius of 4.0 in and a peak intensity of
Fo = 25 Btu/inz. The overall objective was to observe the response of
the structure as the damage increased to the level where the structure
would collapse. The various cases are listed in Table 3. Although each

of these four cases results in the loss of skin from the upper surface,
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PANEL
SUBDIVISION

. 90

!

{ \ H ) SECT.A-A

4172 1 41/2
6
NOTE ALL DIMENSIONS IN INCHES

| EXCEPT V\HERE GTHERWISE
| NOTED

- Figure 23. Aerodynamic Planform and Primary Structural
Arrangement of Intermediate-Complexity Wing
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Notes:

Even numbered nodes are on
bottom surface

' —1
Elements: 3 S 9
1-64 top and bottom skins - ;
(membrane elements)
65-96 shear panels (ribs)
97-119 shear panels (spars)

120-158 posts (bars)

31

37
39

CoCS

R,

Figure 24. Intermediate Complexity Wing Model
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the program can be used to analyze laser strikes on any part of the
structure,

Results for the wing cases are shown in Table 4 and the deformed
shapes are shown in Figures 25 through 29. This structure is different
from the flat plate, because it is three-dimensional and the lower skin,
spars, and webs create a pseudo redundancy within the structure. In
addition, the overall size of the structure is large enough, 90 in.,
that the temperature changes are more localized. Therefore a major
damage to an element, such as complete removal through melt, and the
resulting temperature distribution will generate a localized damage con-
dition and the change in the total structure will be minor. This
phenomena can be seen in Case 1 where element 27 has been entirely
removed by damage, and yet the maximum displacement for the structure
has changed by only 2.3% from the undamaged response.

Case 4 represents a collapse condition. The laser damage induced
represents that of a beam moving across the wing at approximately center
span. The result is a hole cut through 93.75 percent of the chord at
that spanwise location.

Figure 30 reflects the results of all four cases. In this figure
the total laser energy added is plotted against the maximum displacement
for each case. The plot indicates that an energy threshold exists,
above which the damage level increases significantly. The energy added
in Cases 1 and 2 are below this threshold while Cases 3 and 4 are above.

An undamaged analysis was performed to give a run time value to use
in the operating cost evaluation. The undamaged solution was computed
in 3325 10-mil1isecond tics. For Case 1, with minor damage, the itera-

tive reanalysis program required only 15% of the undamaged solution time

90
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ce--Doformed Shape

Figure 25. Deformed Shape Undamaged Wing
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Figure 26. Deformed Shape for Wing Case 1
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Deformed Shape for Wing Case 3

Figure 28.
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to predict the solution. But for Case 4, the collapse condition, the
jteration time was 360%. It must be noted that because the overall size
of the structure is large, the number of elements damaged is small com-
pared to the total number of elements. In such a case the iterative
procedure has shown to be as effective as that reported for damage
incurred through conventional weapons (Ref 5).

When evaluating the manhour savings, once again the size of the
structure is an important consideration. The addition of a third dimen-
sion further complicates the model and increases the time estimation.

As with the flat plate, the change in stiffness of the element due to
melt can be incorporated into NASTRAN data at a relatively Tow cost
(1ike 10 minutes). But the temperature calculation, by hand, would take
approximately 3 days. For investigating a large number of damage cases

this program could save a considerable amount of time. For example, the

savings for the four damage cases reported here represent 12 days.
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VI Conclusions and Recommendations

Based on the results the reanalysis program with laser damage cal-
culations is capable of predicting the response of a structure under
loads subjected.to a laser strike. Due to the numerous assumptions,
the numerical values computed should be treated as tentative, but suited
to the conceptual design phase. From this premise, the following con-

clusions and recommendations are submitted.

Conclusions

1. The reanalysis program developed has met the objective of this
thesis study. That is, it provided a sufficient method for the pre-
diction of structural integrity for a structure encountering a laser
strike.

2. The findings indicate that for most minor and medium ranges of
damage, the reanalysis technique is an efficient method for analyzing a
large number of damage possibilities.

3. When the manhours are compared for the preparation of multiple
damage models, the reanalysis technique provides substantial savings

over the generation of a model for each case.

Recommendations for Further Development

There are several directions that may be taken at this point. The
intent of this study was to predict the response of an isotropic air-
craft structure. With the current trend to use composites in.aircraft
structures, the addition of the capability to analyze these structures

would be a major improvement.

99
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The {nvestigation of laser damage is not limited to aircraft struc-
tures, but also includes a significant amount of work with missile
structures. Including isoparametric elements to allow for the analysis
of this type of curved surface is another area of current interest.

Other improvements that are considered to be possible modifica-
tions, but would not have a major impact, are including additional
structural considerations such as buckling and extending the heat

conduction solution to three dimensions.
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