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Preface

Through the years much time and effort has gone into the study

of the laser, laser interactions and damage reanalysis techniques.

I consider myself fortunate to have had the opportunity to merge

these technologies. The result of this report is a computer pro-

gram which analyzes the strength of a structure having encountered

a laser strike.

I wish to acknowledge my appreciation of my thesis advisor,

Dr. Peter J. Torvik, for his sincere guidance and concern during

the entire course of this investigation. I am grateful to

Dr. Vipperla B. Venkayya and Dr. Donald B. Paul for the expertise

that they generously gave in their respective fields of structural

analysis and heat transfer. I wish to express my appreciation for

the assistance provided by Victoria A. Tlschler. In addition, I

would like to thank Damaris A. Frantz for her understanding,

patience and dedication in typing this report. And finally, I wish

to thank my husband Terry and my son Jeremy, for their support and

understanding throughout the time I worked on this report.

Sheryl K. Bryan

ACes 1on For

NTIS (,7:.kI

DTIC T,.P

OTJC Ju.,;t if' icrt on-

Popy
INSPECc(hBy- -

3Distribution/

Availability Codes
Avail and/or

Diatl Special



AFIT/GAE/AA/83M-l

Contents

Preface....... .... . ... . .... .. .. .. .. .. .. . ...

List of Figures. .... .. .. ..... ..... ..... ... iv

List of Tables ... .. .... .. ..... ..... ....... vi

List of Symbols. .. .. ..... ..... ..... ...... vii

Abstract. .. .... ..... ..... ..... ........ xi

I. Introduction. .. .. ..... ..... ..... .....

II. Modeling the Structure. .. .. ..... ..... .... 4

Finite Element Method .. .. ..... ..... .... 4
Finite Elements .. .. ..... ..... ....... 10

Rod Element .. .. ..... ..... ....... 13
Triangular Membrane .. .. ..... ..... ... 16
Quadrilateral Membrane .. .. .. .. .. .. . .24

Shear Panel .. ... ..... ..... ...... 28
Numerical Solution .. .. ... ..... ..... ... 30
Reanalysis Techniques. .. .... ..... ...... 35
Estimation of the Effects of Yielding. .. .... ... 38
Convergence Criterion. .. .... ..... ...... 45

III. Modeling the Thermal Effects. .. .. ..... ...... 48

Heat Conduction Problem .. .. ..... ..... ... 48
Numerical Solution .. .. .... ..... .... ... 50
Melt Calculations. .. .... ..... ..... ... 54
Laser Flux Profile .. .. ... ...... .... ... 55
Results of the Temperature Distribution. .. ...... 56

IV. Modeling the Damage. .. .... ..... ..... ... 61

Damage Due to Material Loss. .. .... ..... ... 61
Addition of Thermal Loads ................ 65
Temperature Dependence of Young's Modulus........68

V. Results .. .. ..... ..... ..... ....... 71

Flat Plate .. .. ... ..... ..... ....... 71
Intermediate Complexity Wing .. .. ... ..... ... 86

VI. Conclusions and Recomumendations .. ... ...... . . 99

Conclusions. .. .... ..... ..... .. .. 99

Recommnendations .. .. ...... ..... ...... 99



AFIT/GAE/AA/83M- 1

List of Figures

Figure Page

1 Finite Elemnent Approximation. .. .. . ... . . ... . ... 5

2 Elements and Local Coordinate System .. .. I. . .. ... ... 12

3 Quadrilateral or Shear Panel Divided into Four Triangles . .. 25

4 Typical Stress-Strain Curve .. . I.. ... .. ... .. ... 40

5 Stress-Strain Curve by Straight Line Approximation .. .. ... 41

6 Division of Disk into Finite Cells. .. .. . ... .. .... 51

7 Heat Balance on Each Cell .. .. .. ... .. ... .. ... 52

8 Temperature Distribution for a Semi-Infinite Solid .. .. ... 58

9 Effect of Internal Structure on the Temperature
Distribution .. .. .. I.... .. ... .. ... .. ..... 60

10 Flat Plate .. .. .. . . ... . .. .. . . ... . . .... 62

11 Effect of Material Loss .. .. .. .. . .. .. . .. .... 64

12 Young's Modulus Dependence on Temperature. .. .. . . .... 69

*13 Flat Plate Modeled with Triangular Membranes. .. .. . .... 72

14 Flat Plate Modeled with Quadrilateral Membranes. .. ..... 73

15 Deformed Shape Undamaged Plate - Triangular Membranes . . .. 76

16 Deformed Shape undamaged Flat Plate - Quadrilateral Membranes. 77

17 Deformed Shape for Flat Plate Case I .. .. ... .. ..... 79

18 Deformed Shape for Flat Plate Case 2. .. ......... .. .. .. 80

19 Deformed Shape for Flat Plate Case 3. .. .. . .. . .. ... 81

*20 Deformed Shape forFlat Plate Case 4. .. .. . .. . .. ... 82

21 Deformed Shape forFlat Plate Case5 .... ..... . . . . . 83

22 Deformed Shape for Flat Plate Case 6. .. .. I. .. .. . ... 84

23 Aerodynamic Planform and Primary Structural Arrangement of
Intermediate Compexity Wing .. .. .. .. ... ... .... 87

iv



AFIT/GAE/AA/83M-1

Figure Page

24 Intermediate Complexity Wing Model ... .............. .88

25 Deformed Shape Undamaged Wing ...... ................ 92

26 Deformed Shape ior Wing Case I ..... ................ 93

27 Deformed Shape for Wing Case 2 .... ................ 94

28 Deformed Shape for Wing Case 3 .... ................ 95

29 Deformed Shape for Wing Case 4 .... ............... 96

30 Effect of Laser Energy ....... .................... 97

I

,-- 4 " *



AFIT/GAE/AA/83M-1

List of Tables

Table Page

1 Flat Plate Cases ....... ....................... 74

2 Flat Plate Results ....... ..... ................... 78

3 Intermediate Complexity Wing Cases ..... .............. 89

4 Intermidiate Complexity Wing Results .... ............. 91

vi



AFIT/GAE/AA/83M-1

List of Symbols

Symbol Definition Typical Units

a transformation matrix dimensionless

A element geometry matrix in

A area in2

B differential operator dimensionless

c undetermined coefficients dimensionless

Cp specific heat Btu/Ibm OF

D nodal displacement vector in the global
coordinate system in

E material property matrix lbf/in 2

E Young's modulus lbf/in 2

f element displacements in the local
coordinate system in

Fo  peak intensity Btu/in 2

F rate of absorbed energy Btu

F body forces lbf/in 2

g implicit parameter describing stiffness
change dimensionless

h thickness in

k thermal conductivity Btu/sec in °F

k element stiffness matrix in the local
coordinate system lbf/in

IC structural stiffness matrix in the global
coordinate system lbf/in

L length in

L unit lower triangular matrix

M diagonal matrix

M mass Ibm

vii

I.-_ _ _ _



AFIT/GAE/AA/83M-1

Symbol Definition Typical Units

NC number of thickness divisions dimensionless

NR number of radial divisions dimensionless

N shape function

p element nodal forces in the local
coordinate system 1bf

P structural nodal forces in the global
coordinate system 1bf

Q heat transfer rate Btu/in 2 sec

r radius in

t thickness in

T temperature OF

Tmelt melting temperature OR, OK

T initial temperature OR, OK

u nodal displacements in the local
coordinate system (x-direction) in

U strain energy BTU

v nodal displacements in the local
coordinate system (y-direction) in

V volume in3

x x-direction coordinate in

X stress limit in the x direction lbf/in 2

y y-direction coordinate in

Y stress limit in the y direction lbf/in2

Y intermediate matrix

z z-direction coordinate In

Z stress limit in the z direction lbf/1n2

diffusivity In2/sec

viii
v6'

S ' * .6



AF IT/GAE/AA/83M-1

Symbol Definition Typical Units

r heat of fusion Btu/lbm

y energy to melt Btu/lbm

A denotes a change dimensionless

£ strain in/in

0 thermal strain in/in

nI reduction factor for Young's modulus dimensionless

e Von Mises criterion dimensionless

X linear percent of load dimension'.

A potential energy of the applied loads BTU

U nonlinear percent of load dimension'

V Poison's ratio in/in

potential energy BTU

p density bof/in 3

a half beam radius in

F stress lbf/in 2

time sec

t convergence variable

nodal thermal loads in the local
coordinate system 1bf

nodal thermal loads in the global
coordinate system 1bf

Superscripts

q iteration cycle

s current value

T matrix transpose

A xwithin the linear range

ix

$ ' I

,, _.- -



AFIT/GAE/AA/83M-1

Symbol Definition Typical Units

V past the linear range

-l matrix inverse

partitioned component of a matrix

* denotes a damaged case

- denotes a vector or a matrix

Subscripts

e denotes fictious node

i element designator

i,j row i, column j

max maximum

p denotes a total for the entire structure

Q references five noded element

r denotes existing node

R denotes radial direction

Z denotes thickness direction

x

I.



AFIT/GAE/AA/83M-l

Abstract

A reanalysis method to analyze the strength of a structure which

has encountered a laser strike is developed. The method accounts for

the following types of laser induced damage: 1) loss of structure due

to melting; 2) change of material properties due to temperature changes;

3) addition of load due to thermal stress. The program uses heat

balance calculations over successive finite time increments on an array

of finite elements bisecting the laser beam spot to determine the tem-

perature distribution. These results are then converted to structural

stiffness parameters and the structural analysis is performed using a

finite element based reanalysis method. The reanalysis method predicts

the damage effects from the initial undamaged solution. The program

was found to give good results consistent with results obtained from

a separate analysis for each damage condition, but with less computer

time and manhours.

xi
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REANALYSIS METHODS FOR STRUCTURES
WITH LASER INDUCED DAMAGE

I Int Auction

With the current thrust towards laser technology in the development

of weapons, methods must be developed for analyzing the damage due to

lasers. The total problem is a merging of two separate technologies.

The first is the characterization of laser damage. The thermal problem

occurring in the area local to the beam must be related to such concepts

as stiffness which are required for a structural analysis. The second

is the area of structural analysis. A cost effective method for per-

forming the structural analyses necessary for analyzing each damage case

must be developed.

Laser damage studies have been conducted to calculate the tempera-

ture distributions and "melt-through time" for specific conditions

(Ref 1-4). The primary interest of these studies was to determine the

material degradation in the immiediate vicinity of the beam spot. The

object of the present study is to relate these local damage mechanisms

to a set of global variables which can be used in a structural analysis.

Depending on which aircraft structural systems are affected and the

degree of the damage, the effect on the performance of a damaged air-

craft can vary from minor changes to the loss of the aircraft. Since

military aircraft are expected to encounter damage, it is important that

they retain some level of structural Integrity. This must be provided

for during the design phase. A simplistic approach might be to increase

the sizes of all members and components which make up the structure.

However, the constant quest to reduce weight and cost while increasing
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performance through optimization is at odds with such an approach,

unless limited to a minimum increase of critical members. The problem

lies in determining the location of the critical members, for it is

impossible to predict in advance the degree and location of the damage.

Thus an analysis must be conducted, investigating a large number of

possible levels and locations of damage to identify the areas needing

modification. Repeating a complete structural analysis for each

hypothetical damage case would be extremely costly.

Recent studies have developed iterative methods to reduce the cost

of the large numbers of analyses (Ref 5-9). Such techniques have also

been used to analyze the effects of conventional weapons (Ref 9). The

object of the present study is to modify and extend the reanalysis itera-

tion technique developed by Venkayya (Ref 5) to allow for efficient

analysis of a structure subject to many different damage conditions, and

to apply this methodology to the analysis of laser damage.

Combining the objectives of the two merging technologies, the total

program objective is to develop a method by which a structural designer

can determine critical members of the structure needing strengthening or

redundancy to survive laser strikes at relatively low cost. This paper

follows the logical development of the program: Section II discusses

the structural analysis method to be used and develops the iterative re-

analysis technique to be applied to the damaged structure. Section III

presents the solution tothe heat conduction problem resulting from the

laser engagement and provides a means of evaluating the local damage.

Section IV develops the relationships necessary to convert the local

damage arising from laser heating to damage parameters consistent with

the overall structural analysis. Finally, Section V discusses the

2
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results obtained, and Section VI presents conclusions and reconmmenda-

tions for further study.
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II Modeling the Structure

The structural analysis method used is based on the displacement

method of finite element analysis (Ref 10, 11, and 12). In such an

analysis. the continuum is replaced by a discrete model consisting of

a finite number of elements connected at nodes (See Figure 1). The

rationale in such an approximation is that the response between the

nodes, i.e., the response in the elements, can be expressed as a func-

tion of the response at the nodes. Various interpolation functions or

shape functions are used to determine the element response from the

nodal response. The type of function used depends on the complexity of

response allowed for each element. The discretization reduces the

original differential equations of the continuum to a set of algebraic

equations which can be readily solved on digital computers. The itera-

tive reanalysis technique employs the original analysis of the undamaged

structure. Therefore the development of the reanalysis technique will

also include the development of the basic steps of the displacement

method for finite element analysis.

The finite element method used in this study is based on the gener-

alized displacement method. The computer program used is a modification

of the program "ANALYZE" (Ref 12) which was originally developed for in-

house studies in structural analysis and optimization at the Flight

Dynamics Laboratory, Wright-Patterson AFB.

Finite Element Method

The following derivation parallels a standard development for the

finite element method (Ref 10, 11, 12). The finite element method was

j derived through variational calculus using the principle of minimum

4
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(a) ConUnuum
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(b) flafto 2emouta Model

jFigure 1. Finite Element Approximation
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potential energy as the starting point. The potential energy, of a

structure is defined as (Ref 11:153)

Hp a U+A ()

where U is the strain energy and A is the potential of the applied

loads. The principle of minimum potential energy can be stated as

follows: "Among all displacements of an admissible form, those that

satisfy the equilibrium conditions make the potential energy assume a

stationary value. Thus

611 _ 8U + 64 = 0
(2)

For stable equilibrium n p is a minimum. Hence

821p = 62U + 62A 0 0 (3)

Displacements of an admissible form are defined as those satisfying in-

ternal compatibility and kinematic boundary conditions (Ref 10:56).

For a discrete finite element model the total potential energy is a

sum of the functionals for each element (ni), i.e.,

n n
11n= I 1 = uAi (4)p i= (4)

where n is the number of elements. The equations for finite element

analysis can then be derived from the element equations. If the struc-

ture is modeled by n finite elements connecting m nodes, the strain

energy of the ith element is

U f t dVUi Vi  (5)

€7

6
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where aI is the transpose of the stress vector, ci is the strain vector

and V1 is the volume of the element. From Hooke's Law the stress-strain

relationship for a linearly elastic body can be written as

!1 Ei.i (6)

where E is the symmetric material-stiffness matrix. For the typical

homogeneous, isotropic plane stress element Ei is defined by

1 j (7)
' '1i 0 1 (l-Vi

where Ei is Young's modulus of elasticity and vi is Poisson's ratio.

The finite element approximation is based on the assumption that

the displacements within an element can be adequately described by

simple polynomials. The coefficients of the polynomials in turn are

related to the discrete nodal displacements of the element. Therefore,

the internal displacement equation is a vector equation of the form

fi = N~i (8)

where fi is the vector of displacements in the element coordinate

system, N i is the interpolation or shape function and u i are the

nodal displacements.

The strain - displacement relations can be written as

Ei- (9)

where B is a linear differential operator. For the general problem B

is defined as

7
i i~ " , '
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ax - 00

0 0

00 a
az

B (10)
a a 0"ay ax

0 a a
az ay

a 0 a-
'5z ax

Substituting Equations 6, 8 and 9 into Equation 5 gives the following

expression for the element strain energy,

At this point the basic finite element assumption, i.e., that the in-

ternal element displacements are a function of the nodal displacements,

makes its major impact on the analysis. Through this assumption the

nodal displacements have been made independent of the integration in

space because they represent displacements at specific locations.

Therefore, the u can be taken out of the integral as follows
MTB TE BidV u

-iM -i- i -u (12)
V I

8
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The elemental stiffness matrix, ki, is defined as

f NTBTE.B .dv (13)

V 1t

Equation 12 can be written as
U 1Tk

Ui 0 T Vi-ivi (14)

The potential of the applied loads is given by

Ai = .fuTFidV- T
- TFidi-(15)

where F1 is the vector of lumped body forces per unit volume and pi is

the vector of nodal forces. The sign is negative because applied loads

lose potential when displacement takes place. This analysis assumes

that the body forces are zero allowing only nodal forces. Thus Equation

15 can be written as

A1  T
(16)

Substituting Equations 14 and 16 into Equation 4 gives the following ex-

pression for the potential energy
n

n ik1  _ uTT.
p i j i2 "-U -i~i )  (17)

At this point, there are n expressions which must be summed to calculate

the potential energy of the entire structure. However, each expression

is measured in the local coordinate system of the corresponding element.

In order to combine the element expressions into a single structural

equation, a transformation matrix, aI, is introduced such that

9t'
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Yj = gig (18)

where D is the'structural displacement vector in the global coordinate

system. Substituting Equation 18 into 17 gives

= n= I ( T TT(9
= i~i~ " - ii (19)

Since D is independent of i it can be pulled outside the summation.

Then letting

n T
K = i a ki i

and (20)

n
"= i~l 4i2 i

where K is the total structural stiffness matrix and P is the total

structural load matrix, Equation 19 becomes

np= TK _Tp (21)

Taking the first variation with respect to the displacements gives

811p =8(y DTKD) - 8(QTP)

= 6DTKD " 6DTp (22)

a 8PT(6p E

1114

- _ _ _ _ _ _ _O
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The principle of minimum potential energy, Equation 2, requires that

KD - P = (23

Equation 23 is a set of algebraic equations, which may be solved numeri-

cally. Once the displacements are found from the solution of Equation

23, the internal displacements, strains and stresses can be determined

by Equations 18,.8, 9 and 6.

Finite Elements

The finite element program used for this analysis contains four

basic elements. They are the (1) rod, (2) membrane triangle, (3) mem-

brane quadrilateral and (4) shear panel. The rod elements have constant

cross-sectional areas, and the planar elements have constant thick-

nesses. The nodal displacement vectors are shown in Figure 2 for each

element. The rod is a constant strain line element allowing only axial

displacements. The membrane triangle is a constant strain planar ele-

ment, and the membrane quadrilateral is constructed out of four nonover-

lapping constant strain triangles using a fictitious interior node that

is removed using static condensation. The process of static condensa-

tion will be discussed in the Quadrilateral Membrane Subsection. Con-

struction of the shear panel element is similar to the membrane quadri-

lateral using four nonoverlapping triangles. However, only the shear

strains are included in the element stiffness matrix computation. In

general, these four elements are adequate for determining the primary

load paths in most aircraft structures such as wings and fuselages.

However, more complex elements may be needed for a detailed stress

analysis of local areas.
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Rod Element

The rod element is an axial force member commonly seen as a section

in an analysis of a two or three dimensional truss structure. However,

within an aircraft structure, it is used to model spar and rib caps.

Figure 2a shows the allowable nodal displacements as defined by the

local coordinate system. The positive x-axis is defined as being

directed along the line from the first node to the second. The rod is

a two degree of freedom element since its element displacement vector

has two components uI and u2.

Since the rod is defined as a constant strain element, the internal

displacements are assumed to be linear and can be approximated by a

linear function

f = C + c2x [1 xc2= (24)

where f i the internal displacement at the location x, and the c's are

coefficients to be determined. For a linear elastic material, the

stress in the element will also be constant.

Applying the boundary conditions

f = u, at x =0 (25)

f = u2 at x = L

one obtains

uI = cI  (26)

U2 ' cI + c2L

I1 13

. . . . . . I.. . u n IN _ _ . .
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If one lets

{ J

(27)

and

then Equation 26 can be written in matrix form as

u = Ac (28)

Solving for the coefficient vector

c = A-1u (29)

and substituting into Equation 24 gives

f = xA-lu (30)

Then

N -xA- [L-L L] (31)

14

,I
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where N is the shape function describing the linear relationship between

the internal and nodal displacements (See Equation 8).

The strain - displacement relation for axial strain can be written

as

= a

(32)

Therefore B, as defined in Equation 9, takes the form

0 (33)

for the axial rod element.

For the rod element the stress-strain relationship is simply

a = Ee (34)

Substituting Equations 30, 33, and 34 into Equation 13 gives

LL= f [a xO0]E [k [3_ L-x 1]dV

- L r0 1

i7L- fi jdV (35)

15

" ' -- ". . . " " - - " .... . Il-... -II. im , ll -II I-lm
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Since

A 1L = fV dV (36)

where A is the cross sectional area and L is the length of the rod,

Equation 13 takes the form

ti E Li~ 1 i
(37)

for the rod element.

Triangular Membrane

The basic planar element in this program is the membrane triangle.

It is also used in the construction of the quadrilateral membrane and

the shear panel. Since it is a plane stress element, it can be used

effectively where the primary loading is in-plane forces, i.e., the top

and bottom skin of aircraft wings, flanges of I and box beams subjected

to constant normal stresses, and the skins of sandwich composite con-

struction. However, this element is not suitable when the stresses

through the thickness vary significantly (plate bending). Inappropriate

use of this element will overestimate the stiffness or generate a matrix

singularity. Figure 2b shows the allowable nodal displacements as

defined by the local coordinate system. The internal displacements

are assumed to be linear in x and y and can be represented by

'U 16
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f 9t c

fx = cl + c2x + c3Y

fY -C4 + c 5x + c6y (38)

where fx and fy are the x and y displacements in the plane of the plate

measured in the local coordinate system at location (x,y) and the c's

are the coefficients to be determined. Equation 38 can be written in

matrix form as

f xc

(39)

where

x O1

[00 0 1 X

17

-_ .4
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and 
cl

C2

C3
C 4

C4

c5

c6

Since the locations of the nodes are within the domain of the element,

the boundary conditions are

u 1 CI + cx I + C3Y

vI  C4 + c5x + c6 1

U2 = c1 + c2x2 + c3y2

v2 = C4 + c5x2 + c6y 2  (40)

U3  = c1 + c2x3 + c3y3

V3 c4 + c5 x 3 + c6y 3

18j __ ____

• i i 

4 '1
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where the ui and v1 are the x and y displacements of the ith node at

location (xi, y1 ) (See Figure 2b). Regrouping Equations 40 and re-

writing in matrix notation gives the nodal displacement equations in

the form

u x1 Yl 00 0 C1

u1  1 x2 y2 0 0 0 c2

U3 1 X3 y3 , 0 0 0 C3
Urn-- -- - -

Vi  0 0 0 1 1 xI yl c4

v2  0 0 0 1 x 2 Y2  c5

v3  0 0 0 1 x3 y .c_. (41)

Note that the nodal coordinate matrix on the right hand side partitions

into a diagonal matrix. Since the construction of the x and y coeffi-

cients Is identical, the inversion of the partitioned diagonal matrix

is simply the inversion of the component matrix. In matrix form Equa-

tion 41 becomes

rAi

19

- - - w
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with the solution in the form

C- rC [KK§]

For simplicity, only the derivation of x direction coefficients will be

shown and use of the - notation will represent the x direction compo-

nent of the partitioned matrix. Thus Equation 41 simplifies to

u 1xl yl c1
U 2 x2  Y2 c2 c

x3  y (42)

which has the same form as Equation 28 for the rod element. Solving for

!r the coefficient vector

SL x3y2  x3yl xY 3  xIy 2  x2yJ ul

II

20
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and substituting into Equation 39 gives

f ;A-I* (44)

Then

S2Y3 - x3Y2 + x(Y2 - Y3) + Y(X3 - x2)

= -  t y1 - xy 3 + x(Y3 - Yl) + Y(xl - x3)'7l IY2 - x2y1 + x(y1 - Y2) + y(x2 - xI)

where N is the shape function describing the linear relationship between

the internal and nodal displacements. Expanding the solution to include

the x and y displacements gives

[ 1 N2  N3 0 0 0

0 0 NI N2  N " (46)

where N1 is the ith element of N as given in Equation 45 and u is the

nodal displacement vector as defined in Equation 41. Standard practice

groups the nodal displacements by node rather than direction, therefore

regrouping Equation 46 gives

No] 0 N2  0 N3  03(47

N1  0 N2 0 N (
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where

"uI

VlU1 l

U= 2

- V2

U
3

v
3

Using the plane stress assumption, the differential operator B as

defined by the strain displacement relations in Equation 9 reduces to

B 0

- ay

a a (48)
ay ax

which when applied to N yields only constants. The differential volume

is dVi a tidAi where ti is the constant thickness and Ai is the area

j of the element. .E is constant as defined by Equation 7. Therefore,

22
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Equation 13 yields

* I 1iN-Ai 1(49)

Substituting Equations 7, 45 and 48 into Equation 49 gives

2 +X2 (1-V) Symmnetric
-Y32 32 2

-(v32x2+ x32Y32 .-2-l 32 32 2 -

E t 1  y2~ + x32x31 2 Y) (v 32Y31 + Y32x3l 2 It)

4A.(1-v1) (vy32x3l + '32y3l 2t 4 - 32x31 + Y32y31

Y3yl+ x32 x2 1  2 J - (vx32Y21 + Y32x2 l 0 2 V))

-(vy 3 2x2 l + x32y2l 0 2 V) (X 32x2l + Y32Y2 1, 02 V)),

y2 1 X (1-v)
3l 31 2 '(50)

3131OV) + 23~/* +C~1 y3  2 (1-v)
-(vylx~l+xl~ 2- 3 3 2

-(y~y~l+ x3lx2 l (12v)) (vx3 ly 21 + y~3lx2l 12)'

(vy3lx2l + x31y21 (12v)) -(x31y21 + YW1 2 1 (120),

2 + X (1-v)
Y~21 21 2

-("~l~l+ x21y21 2y-1) 21 21 j

where kis the element stiffness matrix for a triangular membrane

element and xj ii xi - Xji and Yij = -i Yj.
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Quadrilateral Membrane

The quadrilateral membrane is the element most often used to repre-

sent structural skins because large areas with minimal curvature can

easily be represented by four-sided planes. Figure 2c shows the allow-

able nodal displacements as defined by the local coordinate system. The

element is assumed to be a plane defined by the first three nodes. This

assumption ignores all warping and will result in an overestimation of

the stiffness if out of plane warping is significant. However, this

element can be used in regions of high warping if the sizes of the ele-

ments are reduced appropriately.

The stiffness of the quadrilateral membrane is constructed by

dividing it into four triangular membranes. As shown in Figure 3, a

fictitious fifth node is required and is located by averaging the

coordinates of the element's four actual nodes using the expressions

xi+ +X3 +X4
5 4

=y1 + y2 + y3 + Y

Y5 4

This subdivision improves the accuracy of the quadrilateral element by

using more nodal displacements without burdening the user with the task

of defining them. A stiffness matrix, iIs computed for each of the

four triangular elements using Equation 50. Then the addition of the

four matrices is accomplished, similar to the summnation of the element

matrices described in Equations 18 and 20. A transformation matrix, a.,

is introduced such that
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uas

Figure 3. Quadrilateral or Shear Panel
Divided into Four Triengses
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Y. ON (51)

where UQ is the nodal displacement vector for the five node quadri-

lateral element, and ui is the nodal displacement vector for the ith

triangular membrane. Each triangular stiffness matrix is then trans-

formed and their summation results in the following expression

4il Q (52)

where kQ is the 10 x 10 stiffness matrix for the five node quadrilateral

which includes terms for the nodal displacements of the fictitious node.

The fictitious node's displacements are removed using the following

static condensation procedure - a manipulation of the stiffness matrix,

not an approximation.

The equilibrium equation for the five node quadrilateral can be

written as

.Q-Q :Q (53)

where PQ is the vector of applied nodal forces. Partitioning Equation

53 such that

YQ [ -u]

(54)
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where u are the nodal displacements for the original four nodes to beur

retained and ue are those for the fictitious node to be eliminated gives

r trr t"r -e- "Yr  Pr-

1k e k ue e P
LUer *kee] -e(55)

which can be expressed as two separate equations

krrUr +kreUe = 2r (56)

and
kerUr + keee R Be

(57)

Since the pi are the given nodal forces and the fifth node is not

actually present in the original model, the forces on this node are

zero. Therefore, the partition of p containiny the nodal forces

applied to the fifth node, Pe' must be zero. Using this condition and

solving Equation 57 for ue gives

u _ k-I (58)
Ue -ee-er-r

Equation 56 can now be written as

k u + k ( - 1 k u
krr-r kre(- keeker-r " Er

or (59)
(krr kek-lk )u = r
-r " re-ee-edr Pr

27
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Note that Equation 59 has the same form as Equation 23, i.e., Equation

59 is the equilibrium equation for the original quadrilateral membrane.

Thus, the element stiffness matrix, k, can be written

k(k -k k-1 k )(60)
* rr -re-ee..er

Shear Panel

The shear panel is a constant shear stress element and cannot carry

normal stresses. It was a commnon practice, prior to the development of

the finite element method, to model wing, fuselage and empennage struct-

ures with constant shear panels surrounded by rod elements carrying the

normal stresses. With the development of finite element methods and the

quadrilateral membrane, the top and bottom skins were more easily

modeled using membrane elements, since they required the definition of

nodes and connectivity of a single element rather than the definition of

five elements needed for the shear panel and rod construction. However,

the use of membranes to model spars and webs results in a gross over-

estimation of the structural stiffness due to the constant strain

assumption. Most spars, ribs and box or I-beam webs carry primarily

shear with some normal stress, resulting in deformations due to shear

strpcsc:, inot normal stresses. In addition, the normal stresses usually

have steep stress gradients which, as stated in the development of the

membrane triangle, cannot be modeled using a constant strain planar ele-

ment. Therefore, the shear panel was developed (Ref 13) to accurately

model these structural webs without complicating the constant strain

membranes. Since the shear panel is assumed to carry only shear

stresses, it must be surrounded by rod or membrane elements to carry the

j normal stresses. Even though the actual structure does not contain
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normal load members, the user must provide fictitious ones, usually rod

elements, or the stiffness matrix will be singular. The use of this

idealized model construction has proven to produce accurate results when

used with the appropriate loading conditions. For example, when model-

ing the ribs and spars of a wing, the use of shear panels is appropriate

if the major loading condition is lift (Ref 12). However, when drag is

the major loading condition shear panels will produce totally erroneous

results.

The shear panel is constructed like the quadrilateral membrane by

division into four component triangles. However, the stiffness matrices

of the triangles are calculated using only the shear strain energy

terms. Thus the B matrix reduces to

a a (61)

which wh-n used in equation 50 produces

2
32 Symmetric

2-x32y32  Y32

Ei t i  -x32x31  Y32x31  x31  (62)

8 1 x32Y3 1  _Y32Y31  -x31y 31  y31

322-x3x, 31x21  x2l2, 21

x 2x32Y21  Y32Y2 1  x31y21  "y31y21  -x21y21  Y21

Ii
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where x ij = x1 - xj and Yij = Yi - YJ The component stiffness matrices

are then combined and reduced in the same way as described for the quad-

rilateral element, Equations 51 through 60.

Note that since the shear stress of an element is dependent on the

orientation of the reference axis, the stiffness matrix can also be

affected. For rectangular quadrilaterals, the shear stress would be the

same regardless of the side selected to determine the reference axis

since all sides will produce identical orientations. But, for the

general quadrilateral, large differences in the angles at the corners

can produce errors. However, by keeping the element shape fairly close

to a rectangle, errors will be reduced to an insignificant level.

Numerical Solution

The majority of the computational time for a finite element analy-

sis is spent solving Equation 23. Since the matrix K can be quite

large, calculating its inverse could be extremely time consuming.

Therefore, taking advantage of the fact that the structural stiffness

matrix is always symmetric, positive definite and in most cases sparsely

populated, the solution can be found economically using Gaussian elimi-

nation (Ref 14:87-88). The procedure consists of three basic steps.

The first step is a symmetric decomposition of the original stiffness

matrix formulated in the following way

K = L M LT

(63)
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where L is a lower unit triangular matrix of the form

1 0 0 .

L21 1 0 0

L31  L32  1

L= L41  L42  L43  1

(64)

Lnl Ln2 1

and M is a diagonal matrix

Mil 0 0 0

0 M 0 0
o 422 0.

0 0 M33

* . . .(65)

0 0 • Mnn

Ii
31

i '



AFIT/GAE/AA/83M-I

The L and M matrices can be calculated using the following procedure.

Computing the multiplications in Equation 63 gives

M 1  Symmetric

M11L21 M11L 1 + 2

MlIL 31 MIlL 31L21 + M22L32

T M "lL 2 + M 2L 2 + M3
L 1 LT= 11L31  M22L32 +133

n 2
LblILnl il MiiLni

It follows then from Equation 63 that

= K K12  LlnMii ll, L2 I M l  Ln1 ~

M22= K22 - 11I21 . . . etc

The advantage of this particular decomposition is that the sparseness

characteristic of the stiffness matrix is also found in the L matrix.

This reduces the number of computations.

32
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Substituting Equation 63 into Equation 23 gives

M LT D = P (66)

By simply regrouping

LM L T D] E (67)

and letting

Y M LT
(68)

Equation 66 can be written as

L Y = P (69)

The second step is the calculation of the vector Y by forward substitu-

tion. Rewriting Equation 67 as

1 0 0 0 Y1  P1
L21 1 0 Y2 P2

L31  L32  I Y3  P3
. .(70)

Lnl I Yn Pn

then

YI P1

L21YI + Y2s P 2  Y = P2 - L21Y

L Y L(71)
31Y+ + Y3  P3 4 Y3  P3 - L31YI L32Y2

) etc

33j
tI

4 (
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The last step is to solve for the nodal displacement vector 0D in Equa-

tion 68. The technique used is backward substitution which is similar

to the forward substitution described in Equations 70 and 71. Rewriting

Equation 68 as

10 0 1 L21  L.31 .Lni DI 1

o M 22  . 0 1 L 32 D2 2

0 0 0 0 1 03 3

* (72)

o Mnn 0 1 Dn Y

then

M D n Dn n
nn n n nn

M 1-l -In- + M~-Ln~D n Y D Y n-l -L D
n-~njn- -ln-nn-n n-l n-l M n l n,n-l f

etc (73)

iet
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Most of the computational time for this method is expended during

the decomposition (Equation 63), because the forward and backward sub-

stitutions require very little effort. Note that the decomposition is

independent of the loads or the number of separate loading conditions.

Therefore, an analysis using multiple loading conditions requires a

single decomposition with a forward and backward substitution repeated

for each loading case.

Reanalysis Techniques

Repeating the entire finite element analysis for each possible con-

dition is so expensive it severely restricts the amount of damage analy-

sis being conducted. Therefore, the following reanalysis method has

been developed to reduce the cost, allowing comprehensive vulnerability

analysis to be performed (Ref 5). Assume the original structure Is

analyzed by the described finite element program, then the equilibrium

equation for the structure is Equation 23. When the structure is dam-

aged, the equilibrium equation changes to the following form

K D P(74)

where K* is the actual stiffness matrix and P* is the actual response

for the damaged case. The main objective of a reanalysis technique is

to build an approximate solution of the modified structure, D* using

the information generated during analysis of the original structure,

Equation 23 and the known changes. Therefore, the response of the

damaged structure can be written in the form

D* D + QD (75)
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where the displacement vector D is the solution of the original undam-

aged structure, and vector dD is the true perturbed solution of the

damaged structure. The perturbed solution can be estimated by a trun-

cated Taylor series expansion as follows (Ref 5):

h D h h 2D

DidD =D = d i *- ! - dgi (7)= i=1 jIl agiagi

where gi is an implicit parameter whose change will affect the stiffness

of the ith element. There are h ways in which the stiffness of the

structure can be affected. The differential change in response can be

written as

h d _ h h a2 ddD Q d~ +D I Q gi9~ 2g- dgagidg (77)
j==l jjl agi(77

Multiplying Equation 77 by the original stiffness matrix K gives
h h h B2

hD 3D K ~dg i  + K i h h 2 dg dgj ( B= agi Z! i=l j=l i agj (78)

Since the loads, P, are not dependent on the gi, differentiating the

original equilibrium equation (Equation 23) with respect to gi gives

aKiagi Dgi (79)

Then differentiating Equation 79 with respect to gj gives

a2O DA aD a 2

K - -2--2- - -_ K D (80)ag1 ag agj agi  aglag i -

364 '
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Consider the last term in Equation 80, i.e., az-a D, in relation to

the construction of the stiffness matrix K, 
defined by Equation 20.

Examine an arbitrary term from Equation 20

#Tk
i jh th

Since the effects of g, are limited to the 
element, the i element

r is independent of gj or

=0 i@ (81)
agj

In addition, ki is assumed linear in gi giving

a2kI = 0 (82)

Therefore, the summation of Equation 20 
gives

2KK D = 0 (3

giagj  83)

Substituting Equations 79, 80 and 83 into 
Equation 78 gives

h aKh h __ BD d

S+.dgiddg j  (84)
" =1 g - = j l agj agi

Then Equation 84 can be written as

UP-- dK( + Q) (85)
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where

dK = l .K
Igi d gj

and

dD= hBD dgi
dD =

i=l agi

The iterative algorithm for the perturbed solution can now be written

from Equation 85 as

KdD q l = - dK(D + dDq ) (86)

where q is the cycle of iteration.

It is very important to note through a comparison of Equation 23

and Equation 86 that no new analysis is required in solving Equation 86.

Although the solution of Equation 23 gives the unknown displacement

vector D for a known load vector P while in Equation 86 the objective

is to solve for the perturbed displacement vector dDq+l, the stiffness

matrix K is th^ same in both equations. Since the stiffness matrix was

already decomposed using Equation 63 for the original undamaged struc-

ture it is available for the solution of Equation 86, and does not need

to be computed in each iteration. Therefore the solution of Equation 86

reduces to the forward and backward substitution steps which are the

least expensive of the total solution steps.

Estimation of the Effects of Yielding

In most everyday problems structural loads are designed to fall

within the linear range, i.e., the loadings under consideration

38
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generate stresses in each element such that Young's modulus is a con-

stant (See Figure 4). However, with the inclusion of thermal effects,

the proportional limit can be reduced or the addition of thermal

stresses can put the solution outside the linear regime. Therefore the

reanalysis program must be able to handle the effects of material non-

linearities. The most common method for introducing material nonlinear-

ities into the finite element analysis of structures is the piecewise

linear analysis procedure (Ref 15). This procedure uses the superposi-

tion of a series of linear steps. The applied load is divided into a

number of small load steps, and the stress-strain curve is approximated

by a series of straight lines (Figure 5) which are used to calculate the

variation of Young's modulus with stress level. Each load step is

applied sequentially with the Young's modulus in each step determined

from the stress level in each member calculated in the previous step.

The total solution is obtained by adding the solution of each step to

the previous solution, until the full load is reached. This procedure

requires many solutions of Equation 23 in the following form

KSADs = Aps

where KS is the current stiffness matrix using the appropriate Young's

modulus for the level of stress at step s, ADs are the displacements for

step s, and APS is the load increment for step s. Normally a minimum of

6 to 8 steps is required for realistic results. For the case of large

structures computing 6 to 8 solutions is very costly. This cost can be

reduced considerably by a modification of the iterative technique des-

cribed in the previous section. Since the nonlinear effects consist of

Young's modulus changes which were previously included in the definition

39
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STRAIN (in/in)

Figure 4. Typical St~ress-Straifl Curve
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CO~aPTENSION

X,

Figuire 5. Stress-Strain Curve by
Straight Line ApproximaUon
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of the stiffness change parameter gi in Equation 82, the only adjustment

needed to the iterative technique is to determine the amount of load to

include with each change of Young's modulus.

As before, the first step in the procedure is to make a linear

analysis of the structure with the full load using the initial Young's

modulus. The effective stress ratios for each element are calculated

using the modified Von Mises criterion (Ref 16) defined by

= (IX I ( ) ( z)i + (.,x)2

where 1.j ) is the effective stress ratio for the i element at the jth
1

break of the stress-strain curve, ax9 ay and axy are the actual stresses

in the element and X., Y. and Zi are the respective stresses correspond-

ing to the jth break in the stress-strain diagram (Figure 5).

For simplicity the following derivation will assume a single break

in the stress-strain curve. The elements can then be divided into

elastic and inelastic groups, i.e., those whose stress levels fall with-

in the first and the second straight line segments of the stress-strain

curve, respectively. Elements with e < 1 belong to the elastic group,

while those with e > 1 t long to the inelastic group. Using the effec-

tive stress ratio, 0, two load factors are defined as

l
0max

and

(1 -

where emax is the maximum effective stress-ratio of all the elements,

I4
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X is the linear percent of the load or that portion of the stress

bounded by the break in the stress-strain curve and V is the remaining

percent. The total applied load is divided into two parts as follows

P =XP +

The total response can be divided into corresponding displacement vec-

tors by simple scaling as given by

where D is the response up to the break and D" is the remaining re-

sponse. Since the initial solution was calculated using the Young's

modulus defined by the first segment of the stress-strain curve, DX is

the valid solution for that portion of the problem. However, Young's

modulus changes in the second portion. Therefore the solution for the

second segment can be determined by the iterative technique as follows

KdD q + l = - dK(DI' + dDq) (87)

Here K is the original linear elastic stiffness matrix and dK is the

change in the stiffness matrix defined by

dK = ik i

where the summation is over those elements exceeding the proportional
liit ad i  IE - "2"'2

limit, and ni = - where El and E are the respective Young's

moduli for each segment. As described in the previous section this

solution requires only forward and backward substitutions repeated for
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each iteration cycle.

The total response of the structure is given by

D= D + DP + dDq+ l = D + dD
q+ l

* V + da = Gi + dai = . + i d.

where dDq+l is the displacement vector obtained from Equation 87, and

da is the stress vector in the ith element due to the displacement

vector d Dq4l. In all these computations it is assumed that Poisson's

ratio does not change during yielding.

An extension of this technique to the case of multiple breaks, b,

in the stress-strain curve is simply a repetition of the procedure as

new breaks are encountered. The load factors for each break are

computed by

~(j) 1

0ma x

(j) = j+l -

Using the above definitions the solution for each section can be deter-

mined from Equation 87. The total response can be written as

2*~ 2 3 3 b bD* DX + 2D + dDP 2 + (Dij + dDu )3 -" (D" + dD1 )
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Convergence Criterion

The solution converges if the perturbed solution can be written as

dD = lim dD
q

- (88)
q~o

where dDq is obtained from Equation 86 (Ref 5). To show the convergence

criteria for this solution technique, r;,jation 86 can be written as

dD = K-IdK(D + dDq) (89)

Substituting the iterative results into Equation 89 one obtains

dD q+ + I + t2 + t3 +...+ tq]tD (90)

where

S= - K-dK
- - (91)

The superscripts in Equation 90 are exponents denoting powers of the

matrix *. However, the exponent on the last term, q, is equal to the

number of iteration cycles performed. From Equation 90 the iteration

converges only if [I + * + .2 +...+ *q] converges. Note that the

convergence depends on the nature of the matrix . However, if *q -. 0

as q ®, the solution converges. This condition exists for small

changes in the structural stiffness (Ref 9).

It is important to stress that assurance of convergence is not the

sole justification for using this iterative technique. To be useful

this technique must be considerably cheaper than direct analysis of the

modified model for the damaged structure. The computation time required

for this method depends on the number of iteration cycles needed for the
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solution, and the rate at which the solution converges depends on the

amount of change in the stiffness matrix as shown in Equation 89. A

measure of the effectiveness of this procedure could be done by an

analysis of the number of calculations performed. However, many vari-

ables such as the variable bandwidth of the stiffness matrix, the number

of elements damaged, the type of elements damaged and the number of

iterations to be performed are either very problem dependent or very

hard to predict. Therefore actual run times were used to eialuate the

effectiveness of this technique. This produced the estimate that the

run time for approximately 30 cycles of iteration is equivalent to the

time required for one direct analysis of the damaged structure. Minor

damages require 3-5 iteration cycles, medium damage requires 5-15

cycles, while major damage resulting in collapse of the structure

requires 15-30 cycles (Ref 5). These results show that for many damage

cases the iterative technique will be cost effective.

The criterion for convergence used in most simple iteration schemes

is the amount of change of the solution from one iteration to the next.

However, in this problem the solution must be in a state of equilibrium

requiring

q U

(92)

where Aq is the work of the external forces for iteration q given by

Aq 1 PDq (93)
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and Uq is the internal strain energy of cycle q, defined as

u il y V qT qdV
= { V (94)

1

From Equation 93 the magnitude of Aq+ l - Aq depends on the magnitude of

the loads as well as -q~l - Thus the rate of change of the dis-

placements is not a valid criterion for convergence. However, Equation

92 could be used as a criterion for convergence. Although the calcula-

tion oi' Aq is inexpensive requiring only the scalar product of two

vectors, the calculation of Uq is very expensive requiring the calcula-

tion of the stresses and strains for all the elements. Therefore to

reduce the calculations necessary to check for convergence, the work of

the external forces is defined as

Aq = A + dA
q

where A is the work of the external forces on the original undamaged

structure ard dAq = I PdD q is the work of the external forces resulting

from the perturbed solution. Then the rate of change in dAq can be used

as an intermediate criterion for convergence. When it falls within a

predefined limit, the strain energy Uq and the work Aq can be determined.

If the difference between these two quantities is over a prescribed

bound, the limit for the rate of change in dA is reduced, and the iter-

ation is continued. Otherwise the solution is considered to have

converged.

i
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III. Modeling the Thermal Effects

In order to evaluate the structural damage caused by a laser strik-

ing the structure, a method must be developed to model the thermal

effects of the beam. Although there are many configurations of a laser

beam striking an aircraft structure, which would involve the incidence

of the beam and the curvature of the structure, the scope of this study

will be limited to the basic situation of a continuous stationary laser

beam striking a flat plate at a normal incidence. The beam is consid-

ered axially symmnetric so that heat flux occurs only in the axial and

radial directions. This study will examine the effect that the absorbed

flux has on the structure. The effects of the surrounding medium and

the absorptivity of the plate are taken into account by properly adjust-

ing the absorbed flux. The effects of heat loss from the heated plate

have also been ignored, since the additional complexity required to in-

clude realistic radiation or convection loss conditions cannot be justi-

fied by the small impact they would have on the problem (Ref 17).

The thermal effects to be included are the loss of structure due to

melting, the induced thermal stresses resulting from thermal expansion,

and the change in material properties due to temperature dependence.

Although other effects could be included, these represent the major

damage mechanisms from a structural point of view.

Heat Conduction Problem

The purpose of the heat conduction problem is to determine the tem-

perature distribution from which the amount of melting, the thermal

stress, and the change in material properties can be determined. Tem-

perature distributions are solutions to the differential equation for
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heat transfer.

T fkaT' ak T1 + a _T+Cp ax L-- +  T L Y TZ TZJ+Q

where

Cp = specific heat (Btu/llbn OF)

p = density (Ibm/in
3)

T = temperature (OF)

k = thermal conductivity (Btu/Sec in OF)

= time (sec)

Q = rate of energy gain due to laser flux absorbed

(Btu/in 2 sec)

x,y,z = orthogonal directions

Consider the flat plate to be a cylindrical disk and the prescribed flux

to vary only in the radial direction. Then no heat transfer occurs in

the circumferential direction, and the problem reduces to two-dimensions

in a cylindrical coordinate system. Exact solutions have been found for

this problem for constant properties and temperatures below melting.

However, for problems with a sufficiently large flux to cause tempera-

tures to reach the melting point, available exact solutions are limited

to the case of one dimensional problems subjected to a uniform flux.

Therefore, a numerical solution must be used.

The solution could be found using a finite element analysis similar

to the technique described in Section II. But, since the problem is

time dependent, the solution would require a complete analysis at each

time step. Similarly, the use of a traditional finite difference

approach also requires a matrix inversion at each time increment.

49



AF IT/ GAE/AA/83M- 1

Therefore, the numerical approach used in this study is a modification of

an explicit technique that was initially reported by Dusinbeere (Ref 18).

This technique is based on dividing the disk into finite cells and per-

forming a heat balance on each. The advantage to this approach is that

it requires less computer storage and run time than either of the

traditional approaches and yields comparable results (Ref 1).

Numerical Solution

The first step in this procedure is to divide the disk into a num-

ber of finite cells. The thickness, h, of the disk is divided into a

number, NCI of layers, and similarly the radius, r, is divided into NR9

sections. Since the structural model in this study was generated with

elements of a single material, each cell is taken to have the same prop-

erties. For simplicity, the following development assumes that all

divisions are equal through the thickness and that each of the radial

divisions are of equal length, however, only minor changes would be

required to allow for unequal divisions. Thus the disk is modeled as

N C x N R cells (Figure 6.a). Each cell is then referenced as a two

dimensional array, where the first index refers to the thickness layer

and the second refers to the radial division (Figure 6.b). By using

this indexing scheme all properties associated with cell lij can be

referenced in the same manner.

Consider a typical cell shown in Figure 7. Cell i~j is surrounded

by four other finite cells, and heat conduction is the only form of heat

transfer. Using Fourier's law of heat conduction

ax
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(a) DineretinLgag the Area of Thermal Inflhueee

AmN

1.1 ]j.

(b) Indezli& Sbene for the Thermai Celle

Figure 6. Division of Disk into Finite Cells
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ILL

Figure 7.Heat Balance on Each Cell
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where A is the area normal to the direction of the heat flow and x is

the variable length between the points of interest, the approximation

for the heat flow conducted out of cell ij can be given as

Ti - Ti,+
QRij = kRi jARij AR

and
T. . - Ti~~

QZi,j - kzi,jAzi'j T z i+1'j

Here Q is the heat conducted, A the length the heat travels, and the

subscripts R and Z denote the radial and axial directions respectively.

To perform a heat balance on each element, it is necessary to con-

sider the location of the element with respect to the entire disk. If

an element is located on the surface of the disk, it is possible that

energy, Fi j, could be added by the absorption of external flux due to

the laser, and there would not be convected energy incoming from the

thickness direction since there are no cells above it, i.e., from a cell

of lower index i. For the center cells, incoming conduction in the

radial direction is zero, since they are solid disks. In addition, the

bottom cells and outer edge cells have no outgoing convected energy in

the thickness and radial directions, respectively, due to the imposed

insulated boundary conditions. These are accounted for by setting to

zero the appropriate Q. Considering each cell to have flux values and

convection terms on all four sides, and combining the external flux

term with the incoming convected energy terms and subtracting the out-

going energy terms, the general expression for the heat balance of
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cell ij is given by

Qi j Fi~j + QRij + Qzij - QRi,J -Qzi,j

where AQi, j is the amount of energy remaining to cause a change In the

temperature of cell i,j.

Providing the melting temperature has not been reached, the tem-

perature rise in cell ij during a time increment AT can be written as

AQ. -LT

i pi,j M j

where Mi j is the mass of cell ij.

Melt Calculations

In some later time increment, AT, the temperature will reach the

melting temperature. When the melting point is reached, the cell has

not actually melted, and more energy must be added to bring about the

complete phase transformation of all the mass in the cell. Thus, the

total energy required to melt cell ij after it has reached the melting

temperature is given by

0
Y i j a r i lj im j

where ri . is the heat of fusion. To model this phenomena an energy
0

bank is established for each cell with the appropriate yij value.

Then, once the cell i,j reaches the melting temperature, A&rAQij is
0

subtracted from yi, and the temperature of the cell is held at melt-

ing. At i time increments after cell ij reaches melting temperature

i Y 0 1 E , ,
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and the entire cell is presumed to have melted in the time increment

when y -'j 0.

Since the melted material will add little or no stiffness to the

structure, the melt is considered to be instantaneously removed. There-

fore, the conductivities of that element are set to zero, and any

external flux received is transferred to the cell immediately below,

i.e., from cell i,j to cell i+l,j.

Laser Flux Profile

The incident laser flux is assumed to be circular with either a

Gaussian or uniform profile. Neither of these approximations represents

the exact spatial profile, because experience has shown that in reality

hot spots can occur (Ref 19:13). However, the Gaussian profile is con-

sidered, in general, to be a suitable approximation for this type of

parametric study, because of the random nature of the intensity, size,

and location of such hot spots.

If the Gaussian profile is used, the incident energy absorbed by a

cell i~j on the surface is determined by

Fi,j = o Zi,je(.R2/1)

where F 0is the , 'ak absorbed intensity, R is the distance from the cen-

ter of the beam to the center of cell i~j having an area Az .ij, and 2c

is the radius of the laser beam. The assumed Gaussian beam is actually

of infinite radius, but by defining the beam radius in this manner 86.5%

of the total energy absorbed by the plate is within this radius.F

is taken to be zero for R 2a, thus, the remaining 13.5% of the energy

is neglected.

55



AFIT/GAE/AA/83M-1

When the uniform profile is selected, the incident energy absorbed

is given by

Fi, j  FoA Zi,j

for R < 2c and Fi, j = 0 for R - 2a.

Results of the Temperature Distribution

The output of the computer program is the response of a structure

incurring a laser strike. Although the temperature distribution plays

an important part in the final solution, it is not possible to observe

only the behavior of the temperature solution once it has been integra-

ted with the structures program. Therefore this section deals with the

accuracy of the temperature solutions and discusses the effects that

some structural configurations could have on the solution.

To measure the accuracy of the technique, comparisons between the

temperature fields predicted by the numerical technique and exact solu-

tions or other approximate solutions were made by Torvik (Ref 1). To

ensure the accuracy of the program developed for this study, a compari-

son was made for the one dimensional heating of an semi-infinite solid.

The exact solution, valid to the onset of melting, is given by (Ref 20)

2F°O(a-)I1/2 x

T-T 0 = k ierfc 2 ()/2 88)

where a is the diffusivity, k/pC p, and ierfc denotes the first integral

of the complementary error function. The front surface temperature is

given by
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2F 1/2
T-T - 0 at

0 k (89)

The comparison was made using the properties of AI203. This mater-

ial was chosen as it is a poorer conductor than metals, producing higher

thermal gradients and a more stringent test of the numerical process.

The properties are:

p = 3.8 gm/cm
3

k = 0.104 joule/(cm sec 'c)

Cp = 0.885 joule/(gm °c)

Tmelt = 2313 0K

F = 4000 joules/(cm 2 sec)

To = 3000K

The temperature profiles, determined using Equations 88 and 89, are

plotted at 0.02, 0.04 and 0.06 seconds in Figure 8 as solid lines. The

temperature distribution at the mid-points of each cell, determined by

the numerical procedure described in the preceeding section using a

layer thickness of 0.015 cm and a time step of 0.001 sec, is shown by

the asterisks in Figure 8. As can be seen, the results of the exact

and numerical solutions are indistinguishable.

In addition to using the numerical solution to calculate known

solutions to verify the accuracy of the program, the heat transfer pro-

gram was used to observe the effects of an internal structure. Relating

the temperature distribution to an external surface that can be approxi-

mated by a flat plate is a fairly simple procedure involving the calcu-

lation of the radial distance a given point from the beam center and
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applying the temperature calculated at that distance. However, applica-

tion to a realistic wing structure involves calculating the effects of

ribs and spars and the temperature distributions within them. The

addition of structure below the skin will act as a heat sink and could

result in a much cooler temperature distribution on the skin. To esti-

mate the effect of inner structure on the temperature distribution, a

"1worst case" was examined. The "worst case" involved placing an in-

ternal structure directly under the beam spot. The resulting tempera-

ture distribution was plotted against the temperature distribution

calculated for the flat plate. To observe possible effects on the

melting mechanism, laser application times of 0.1 and 1.0 sec were used,

giving one case with minor surface melting and one case with melt com-

pletely through the skin.

For both endurance times the inclusion of internal structure re-

sulted in only slightly lower temperatures within the beam spot. The

influence away from the beam diminished with distance (See Figure 9).

In addition, the area of the plate removed by melting is not affected.

Therefore this study will consider the effects of any internal structure

to have no effect on the temperature distribution. This results in a

conservative approximation of the damage incurred, due to the slightly

hotter temperature solution.
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IV Modeling the Damage

Once the heat conduction problem has been solved, the damage

incurred by the structure must be modeled. The types of damage to be

considered are:. loss of structure due to melt, addition of thermal

stresses resulting from thermal expansion, and dependence of Young's

modulus on temperature.

Damage Due to Material Loss

The damage due to material loss is defined as the loss of stiffness

that a finite element incurs when some of its material is removed

through melt. In order to model this phenomenon, a parametric study

was conducted by modeling a flat plate in a state of tension with holes

of varying diameters and depths. The plate and the hole were considered

to be symmnetric about both the x and y axis. Symmnetric boundary condi-

tions reduced the problem to a quarter section of the plate (Figure 10).

The symmnetric boundary conditions used restricted those points lying on

the y-axis from motion in the x direction and those points on the x-axis

from motion in the y direction. The symmnetry reduction was also consid-

ered when the loads were calculated. To simulate a uniform load across

the entire edge, the magnitude of the loads at each corner must be

halved, because the mirror image symmietric section would also have a

node at that point with a equal load.

When the laser beam spot is considered to be round, the material

loss will appear as a circular hole partially or entirely through the

thickness. Although most of the cases studied consisted of circular

holes, non-circular holes were also considered. In an actual structure,

4 non-normal incidence or beam jitter along a preferred axis could produce
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Figure 10. Flat Plate
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a non-circular beam. The resulting damage would then be somewhat' ov31.

Therefore, oval holes through the entire thickness with the major axis

transverse to the load were also considered so that the stiffness loss

could be compared with that for circular holes.

The stiffness for the damaged plate was calculated as a percent of

the stiffness for the undamaged plate by dividing the average edge dis-

placement of the complete plate by the average edge displacement of the

damaged plate. The results are shown in Figure 11, where the cases

modeling circular holes are represented by solid lines. The cases cal-

culated for oval holes through the entire thickness are shown as aster-

isks. This data reflects the effect of an elliptical versus a circular

shaped hole on the plate and shows the stiffness of plates with oval

holes to be greater than those with circular ones. Thus using the cir-

cular hole values gives a conservative estimate.

The shape of the sides of the hole must also be considered, because

the hole is not in reality a cylinder perpendicular to the plane of the

plate. Such an assumption neglects a wedge of material at the lower

edge of the hole. However, because of the high temperature, the mater-

ial in the wedge will not add significantly to the stiffness of the

plate and can be neglected. Since the program uses the total energy,

Y',required to melt cell i~J to determine the time at which cell i,j

melts, the percentage of melting for the cell can also be determined

from yj.The program searches the yijlooking for non-zero values

to determine the amount of material melted and the dimensions of the

hole created. The radial dimension of the melted area is taken to be

determined solely by the top layer and the depth of the hole by the

center division. Each Y,,j is tested, starting from the center ,,
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until a value greater than zero is found in y1 ,N The radius of the

hole is then determined by RM - NMRAR, where NMR is the index of the

first non-zero term radially and AR is the length of the radial divi-

sion. Similarly each yi,l is searched through the thickness giving

TM = NHZAZ, where NMZ is the index of the first non-zero term through

the thickness and Az is the thickness of each layer. The stiffness loss

is then determined from the hole's radial and thickness dimensions by

interpolating from the data for circular holes presented in Figure 11.

Addition of Thermal Loads

With the heating of elements due to the laser strike, thermal

expansion occurs and generates thermal stresses. With the addition of

the thermal load, Equation 5 becomes

Ui= f (1 T Te Toi)i i.idV (90)

V.

whr £ sthe thermal strain produced by heating the ith elmn. o

is given by

0
i = 1iAT

where ai is the vector of coefficients of thermal expansion and ATi is

the change in temperature.

The first term in Equation 90 will follow the development presented

in Section II. Substituting Equations 6, 8 and 9 into the second term

of Equation 90 gives

F T!T OT o
- i i i i  V (a)

iv
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Because all elements included in this program are isentropic plane

stress elements, the thermal strain vector is given by

(91)

Multiplying (a) by the material property matrix E1 gives

E = ( _ 'i) i (92)

Since Equation 92 is independent of volume and since all elements in

this program were constructed using a linear relationship between the

internal and nodal displacements, -T-T is also independent of volume.

Therefore (a) can be written as

TNTBT Ei iATi 10]
- i.i-i (I - i) 0. dV

or

_T T T EiaiaT i  
I

N iBi i (1 - i 1 Vi (b)

If

T T EIQiATi 11±1 i~i ( T [1ji Vi 9

Vi)
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then (b) can be written as

- Ti (c)

With this term Equation 17 gives the following form for the total

potential energy when thermal loads are included

nR _uT k u. T uT (94)

p i 1 i - i - (ii

Substituting the transformation matrix defined in Equation 18 and

letting

n aT

: i 1a i i

the total potential energy becomes

DTKD _ DTp _ DT

Taking the first variation with respect to the displacement gives

an = 8DT(KD - P -ip
and when the stationary requirement is met the equilibrium equation

becomes

KD -P 0 (95)
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Combining the nodal forces and the thermal loads as

P* = P + V 96
P ~ (96)

and substituting into Equation 95 gives

- =0 (97)

which is exactly the same form as Equation 23. Therefore, by using

Equation 94 to calculate the thermal loads and then combining the two

load sets, all the equations for the reanalysis technique remain the

same and can be used with no modification. It is important to note

that the original solution upon which the iterative technique is based

must include the affects of the thermal loads.

Temperature Dependence of Young's Modulus

Although the major loss of stiffness to an element would be due to

a loss of material caused by melting, the effect on the entire structure

would not be significant unless the melt occurred on a major load carry-

ing member. However, due to the high conductivity of metals, a tempera-

ture rise can occur over a large section of the structure. This can

reduce the magnitude of Young's modulus in a number of elements and

result in a major stiffness change for the entire structure. Therefore,

changes in Young's modulus can be the major damage mechanism for the

structure as a whole.

To apply the temperature dependence affect to this damage program,

a table of Young's modulus vs temperature was developed. For the sample

problems in this study the Young's modulus vs temperature curve for

T2014 aluminium from Mil Handbook 5, Figure 12, was approximated in

tabular form. The temperature for each node was calculated from the
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temperature solution, and the elemental temrerature was determined as

an average of the nodal temperatures. Using that calculated tempera-

ture, an interpolation of the table resulted in the new Young's modulus,

E', for the element.

The reduction factor to be used in the iterat,ve technique is given

as

E i  - Ei

Ei
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V Results

The laser damage program developed in the present study was applied

to two different structures. These structures are of two different

levels of complexity, one being a simple two-dimensional plate and the

other a much more refined three-dimensional wing structure. These prob-

lems demonstrate the ability of the program to be used for a smaller

localized analysis as well as for a large aircraft structure. A com-

plete description of the two structures and the reanalysis results are

described in this Section.

Flat Plate

The first structure was a flat plate clamped on one edge, subjected

to a uniform tensile loading, and modeled with both triangular membranes

(See Figure 13) and quadrilateral membranes (See Figure 14). The mater-

ial of the structure was assumed to be aluminum with a Young's modulus

6 3
of E = l0.0x106 psi and a density of p = 0.1 lbf/in . Six subcases were

defined by varying the number and location of elements exposed to the

laser strike. Table 1 lists the various cases considered for this

structure. The laser size and strength were varied to produce different

damage levels for each case.

The overall size of the plate was 12.0 in x 8.0 in x .1 in, and the

elements were uniform in size with an area of 2.0 in 2 and 4.0 in2 for

the triangular membranes and the quadrilateral membranes, respectively.

This structure was selected because of its simplicity and its size.

Since it is a two-dimensional model, the damage effects are easier to

understand. Because the plate is small and the conductivity of aluminum

J is high, the laser strike affected the temperature of all the elements.
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These attributes define a model that is easy to verify and will show an

entire structure changing rather than the effects of modifying a local-

ized area. As a result, the model is a "worst case" example.

In order to provide a baseline to compare the damage cases, the

solution to the original undamaged case was used. The maximum displace-

ment was 0.60 in for both models, and the computer time required was 309

and 331 10-millisecond tics for the triangular membrane model and the

quadrilateral membrane model, respectively. The resulting deformed

shapes are shown in Figures 15 and 16.

Since the temperature of all the elements changed, thermal loads

were generated for all the nodes. Some of these loads were quite large.

For example, the maximum magnitude of the nodal loads generated from the

thermal effects in Case 1 was 13,880.33 lbf. With such large loads the

panels can buckle. However, buckling considerations are not included in

this study.

The results for the flat plate cases are summ~arized in Table 2. In

order to visualize the damage effects, the deformed shapes for these

cases are shown in Figures 17 through 22. The plots shown in these fig-

ures represent both reanalysis and NASTRAN results. The deformed shapes

show the expected responses. The figures show the deformed shape skewed

to one side representing some in-plane bending. Since the beam does not

strike on the center line of the plate, the side of the plate receiving

the strike is hotter and incurs more damage. Thus, deformation on the

side of the laser strike is greater, resulting in the skewed appearance

of the damaged plate (Figures 17-22).

In the cases where the damage appeared minor, i.e., the change in

the maximum displacement from the undamaged case was small, the

4 reanalysis technique does not seem to be as efficient as in the case

75



AFIT/GAE/AA/83M- 1

-31~ - -

,g0

'id

76



AFIT/GAE/AA/83M-1

I

-- T -

i '

0 o

77

• . " " . ...



AFIT/GAE/AA/83M-1

to 0 0 0 0

wC Cn C ) C m d

E E E

Uj q- -l

Lin P.G) M~ tC L L

CC)

a.' - - O l C 0 r

4:m - LAi m~ - M q nE
Li _ - C')J fl. 0 M

C ,

4A.-- m' Ln LA. i O
>, C co Wd al %D LA O

(Ai t') LA t-. c) %D
fa. iD L

.- OC - NE 78



AFIT/GAE/AA/83M-1

------------------------------------------

\\NN: d

790



AFIT/GAE/M/83M-I

2. 0?aI
*1

I I I 1 0I
\l \I k

h--- be

I I I,

0

a..
0

0

'V

_________ _________ _________ 0%EI
V

'.4

V
Si

80

_______ 'I



AFIT/GAE/AA/B3M-I

' N"I
, N i x  I\  I

I i I I-
N N x I \I 1 z

\ \
--,1  .-. 0{

--- -- I '

N\ I 0

| I IN"i ll I I , ... ..



AFIT/GAE/AA/83M-1

_ _ _ __ _ I I I I l

liii
4 0

.. . ...... ~ ~ i-.. . [ I - - - -- - - - -- - - -
l '

-- - - --- - - - - - -

82



AFIT/GAE/AA/83M-1

I I U
SI I 0

- - - -

II I I
I__ _ I 4 J - -I.

In

83

___ __ _ _I__

J 83

t



AD A 35 874 REANALYI METHODS FOR STRUCTARES WITH LASER INDUCED
DAMAGEU AIR FORCE INSOF TECHWRIGHT-PATTERSON AR N
OH SCHOD 0 O ENGIERIN NO K BR AN MAR 83

AN(!LASSIFED AFIO/AE/AD R3M- '0/ 9/ 2 L



1.0 1~2.8 12.
3.2 2.2

I liii1.8
- ((1(1.25 (f(L j . 6

+ MICR1OCOPY RESOLUTION TEST CHART
NATIONAL OUREAV OITSTANORS9

6 3
-A

II
W 

OF= a



AFIT/GAE/AA/83M-1

- do

*1Le

rc

- -9

184



AFIT/GAE/AA/83M-l

of damage due to conventional weapons (Ref 5). However, since a temper-

ature change in every element caused the appearance of one or more

damage mechanisms in every element, the iteration extended over all the

elements. Thus the actual change in the stiffness matrix was a major

reduction, requiring an adjustment of every element. As a result, the

stiffness change in each of the reported cases is considered a major

damage condition, and the reanalysis technique proved to be as effective

or better than expected. In a larger structure the damage mechanisms

would be more localized, and the efficiency will become more obvious.

This is shown with the intermediate complexity wing model described

later.

In addition to evaluating the computer run times, the manhours to

set up the models must also be considered. The size of the model also

affects the manhours. Altering the finite element model to reflect a

material loss for the flat plate structure is a simple task requiring

less than 10 minutes clock time. However, to include the Young's modu-

lus changes and the thermal loads is much more time consuming. Since

NASTRAN is a well known finite element code, time comparisons will be

based on the generation of data required for it. Some method must be

used to generate a temperature distribution for each different laser

strike condition. The Young's modulus effects can be incorporated by

specifying that the material is temperature dependent and including an

E versus T table. However, in order for the program to use this data or

to generate the thermal loads, temperatures must either be input for

each node or each element. Without the program developed during this

study, the task of converting the temperature distribution results to

node point temperatures would have to be done by hand. The time
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required to generate the data in the correct form is about 8 manhours

for each strike. Note that even if the laser strike conditions remain

the same, a variation of the location of the strike will require this

conversion to be made. Therefore, taking a simple model, such as a flat

plate with laser strikes in three locations, the program developed in

this study shows a manhour savings of three days.

Intermediate Complexity Wing

The second structure was a cantilevered wing shown in Figure 23.

This "Intermediate-Complexity Wing" was chosen for study as an illus-

tration of the application of the program in the preliminary design of

a lifting surface. It is a typical wing box structure clamped at the

root and modeled using rods, triangular membranes, quadrilateral mem-

branes, and shear panels. The top and bottom skins are modeled using

triangular and quadrilateral membranes and the spars and ribs by shear

panels with rods providing the axial support. The finite element model

has 88 nodes and 158 elements (See Figure 24). The applied loading con-

dition was generated by using simplified pressure distributions repre-

sentative of a subsonic, forward-center-of-pressure loading (Ref 5).

The material is assumed to be aluminum with the following properties:

E = l0.5x0 6 psi, v = 0.3, p = 0.1 lbf/in3.

The damage cases for this structure were constructed as the analy-

sis proceeded by varying the locations and the duration times of the

laser strikes using a beam radius of 4.0 in and a peak intensity of

Fo a 25 Btu/in
2 . The overall objective was to observe the response of

the structure as the damage increased to the level where the structure

would collapse. The various cases are listed in Table 3. Although each

of these four cases results in the loss of skin from the upper surface,
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Figure 23. Aerodynamic Planform and Primary Structural
Arrangement of Intermediate-Complexity Wing
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Notes:

Even numbered nodes are on

bottom surface

Elements:

1-64 top and bottom skins
(membrane elements)

65-96 shear panels (ribs)

97-119 shear panels (spars)

120-158 posts (bars)

191

337 3

fFigure 24. Intermediate Complexity Wing Model
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the program can be used to analyze laser strikes on any part of the

structure.

Results for the wing cases are shown in Table 4 and the deformed

shapes are shown in Figures 25 through 29. This structure is different

from the flat plate, because it is,three-dimensional and the lower skin,

spars, and webs create a pseudo redundancy within the structure. In

addition, the overall size of the structure is large enough, 90 in.,

that the temperature changes are more localized. Therefore a major

damage to an element, such as complete removal through melt, and the

resulting temperature distribution will generate a localized damage con-

dition and the change in the total structure will be minor. This

phenomena can be seen in Case I where element 27 has been entirely

removed by damage, and yet the maximum displacement for the structure

has changed by only 2.3% from the undamaged response.

Case 4 represents a collapse condition. The laser damage induced

represents that of a beam moving across the wing at approximately center

span. The result is a hole cut through 93.75 percent of the chord at

that spanwise location.

Figure 30 reflects the results of all four cases. In this figure

the total laser energy added is plotted against the maximum displacement

for each case. The plot indicates that an energy threshold exists,

above which the damage level increases significantly. The energy added

in Cases l and 2 are below this threshold while Cases 3 and 4 are above.

An undamaged analysis was performed to give a run time value to use

in the operating cost evaluation. The undamaged solution was computed

in 3325 10-millisecond tics. For Case 1, with minor damage, the itera-

tive reanalysis program required only 15% of the undamaged solution time
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to predict the solution. But for Case 4, the collapse condition, the

iteration time was 360%. It must be noted that because the overall size

of the structure is large, the number of elements damaged is small com-

pared to the total number of elements. In such a case the iterative

procedure has shown to be as effective as that reported for damage

incurred through conventional weapons (Ref 5).

When evaluating the manhour savings, once again the size of the

structure is an important consideration. The addition of a third dimen-

sion further complicates the model and increases the time estimation.

As with the flat plate, the change in stiffness of the element due to

melt can be incorporated into NASTRAN data at a relatively low cost

(like 10 minutes). But the temperature calculation, by hand, would take

approximately 3 days. For investigating a large number of damage cases

this program could save a considerable amount of time. For example, the

savings for the four damage cases reported here represent 12 days.
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Based on the results the reanalysis program with laser damage cal-

culations is capable of predicting the response of a structure under

loads subjected-to a laser strike. Due to the numerous assumptions,

the numerical values computed should be treated as tentative, but suited

to the conceptual design phase. From this premise, the following con-

clusions and recommnendations are submitted.

Concl usions

1. The reanalysis program developed has met the objective of this

thesis study. That is, it provided a sufficient method for the pre-

diction of structural integrity for a structure encountering a laser

strike.

2. The findings indicate that for most minor and medium ranges of

damage, the reanalysis technique is an efficient method for analyzing a

large number of damage possibilities.

3. When the manhours are compared for the preparation of multiple

damage models, the reanalysis technique provides substantial savings

over the generation of a model for each case.

Recommnendations for Further Development

There are several directions that may be taken at this point. The

intent of this study was to predict the response of an isotropic air-

craft structure. With the current trend to use composites in.aircraft

structures, the addition of the capability to analyze these structures

would be a major improvement.
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The investigation of laser damage is not limited to aircraft struc-

tures, but also includes a significant amount of work with missile

structures. Including isoparametric elements to allow for the analysis

of this type of curved surface is another area of current interest.

Other improvements that are considered to be possible modifica-

tions, but would not have a major impact, are including additional

structural considerations such as buckling and extending the heat

conduction solution to three dimensions.
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