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to express common image processing algorithms in a

high-level language. IPL is independent of any particular

computer architecture. Its implementation on a computer can

take advantage of the machine's architecture without

affecting the correctness of algorithms written in it. IPL

includes picture, mask, region, boundary, and histogram

domains. Unary, binary, and fly operations are described

~for picture, mask, and region domains and several examples
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CHAPTER ONE
INTRODUCTION

The rapid development of image processing by digital

computers in the past decade provides increased emphasis on

the definition of machine architectures J programming

languages which improve the digital coml 'rs' performance

in this area. Several workshops have be convened on these

topics and the proceedings of the 1980 z -481 workshops

are reported in Duff and Levialdi (1981). In the preface to

this report Duff and Levialdi summarize three different

approaches taken to develop an image processing language,

to program in a high-level language (such as,
for example Fortran) and to call from an image
processing library subroutines optimally designed
for a given machine; or to use an interpreter
like APL or PICASSO in which interactively and
accurate diagnostics may be obtained; or finally,
to define a high-level language having specific
control structures for local computations and
global parallelism, as will as data structures and
data types particularly useful in this field.
(Duff and Levialdi, 1981 p. vii)

The approach taken in this thesis to develop an image

~processing language is distinct from these three approaches.

I" I Instead the Image Processing Language (IPL) described in

~this thesis is developed from an examination of the domains

~and operations which are commonly used to express image

processing algorithms in strongly typed, high-level

Mi I I " I - .. ..
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languages. IPL is focused on abstract data types. The

exact structures used to represent a data type and the exact

implementation of the operations for these types are omitted

whenever possible. This approach removes consideration for

a particular architecture and emphasizes the fundamental

characteristics of these domains and operations.

Goals

The motivation behind this approach is to develop a

readable and portable language. In order for the language

to be readable it must be capable of expressing image

processing algorithms in a manner which models their use to

perform image processing rather than their development or

implementation. To be portable the language must separate

the expression of algorithms from their implementation.

Four immediate goals which support the developmant of a

readable and portable language are to

I - develop a language which contains a basic set of
! operations required to express common image
. processing operations;

- describe an implementation of the language in an
~existing, portable language;

- demonstrate the language's capabilities by
! expressing some common image processing algorithms

in it;

- and to provide for the capability to implement the

language on different machine architectures.

Of course the efficiency of algorithms is of critical

importance to image processing and an algorithm's efficiency4 is closely coupled to the architecture on which it is

.. .. . , 9 ..
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implemented. Therefore, a secondary objective of this

language is

- to define the operations required in an
architecture designed for image processing.

By expressing algorithms in a manner which models their use

rather than their development or implementation, a different

insight into the architectural requirements inevitably

results. Thus unique architectural ideas may be brought out

or the usefulness of previous ideas confirmed.

Previous Work

Even though the approach taken to develop IPL is

different from previous approaches, several other languages

were studied to insure that previously examined and useful

data structures or operations were not omitted. PIXAL

(Levialdi et al., 1981), L (Radhakrishnan et al., 1981),

PICASSO (Kulpa, 1981), MAC (Douglas, 1981), PPL

(Gudmundsson, 1981), ^PE (Chang, 1981), AND PLANG (Sinha,

! 1983) . Maggiolo-Schettini (1981) provides a review of these

ilanguages and outlines five crucial features used to measure

the expresssive power of a language for image processing.

~These features are:

(a) possibility of defining arrays on which to operate

~in parallel;

(b) possibility of selecting a subarray of an array for
~partial processing;

(c) possibility of comparison between the neighborhood
. of an element of an array and a given pattern;

, I~ *
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(d) availability of parallel instructions with global
control;

(c availability of parallel instructions with local
control. (p. 159)

All of these features are availbale in the implementation of

IPL presented in this thesis. In addition, the connection

between computer graphics and image processing languages was

examined to insure that any capabilities in this similar

field were also included (Foley and Van Dam, 1983;

Williams, 1979). No unique contributions from computer

graphics languages were found, however.

The majority of the languages for image processing

studied are characterized by an emphasis on the

implementation hardware available. In addition, they were

generally overlayed onto a high-level language such as

FORTRAN, PASCAL, or ALGOL, and oriented towards a particular

class of digital picture. These characteristics limited

these languages portability and readability.

~Since a certain amount of sequential programming is

required in any language operating on currently available

processors the IPL includes sequential constructs which are

useful for writing readable and portable code. These

constructs are D-type control structures and data type

I definition capabilities (both domain and operations over the

; domain) . The precise syntax for these capabilities is not

described here since they have been extensively studied andj described elsewhere, and their precise syntax is not

* .



important at this stage of the language development.

Ledgard and Marcotty (1981) provides the definition of these

features for this development.

Since the syntax for the D-type structures and data

typing are not included here, an existing language was used

to provide these syntax during IPL development. Ada* filled

this role. It was chosen because it had recently been

accepted as an ANSI standard and the development of the

language was heavily influenced by requirements for

readability and portability (Bulman, 1981), which are the

primary goals for IPL. The use of Ada as a starting point

for IPL did not restrict its development to only those ideas

which could be expressed in Ada, however. The "For Each"

control structure described later is the best example of

this. In fact, the IPL description is abstracted from any

implementation and made in an algebraic description of the

domains and operations over them. It is assumed, however,

I that Ada's array assignment and data type attribute

capabilities are available. These capabilities are

* described in detail in an Ada language description such as

Ada Programming Language (1983) . The ommiss ion of these

features from an IPL implementation would limit the

robustness of the language but does not effect its

expressiveness.

* Ada is a trademark of the Department of Defense (Ada Joint
Program Office).

I

*
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Organization

This description of IPL is organized into three topics:

a description of IPL in mathematical terms; an

implementation of IPL in Ada (Ada-IPL); and examples of the

use of Ada-IPL to express some common image processing

operations. The language description is formed by defining

IPL objects' domains in Chapter two. The operations over

these domains and a control structure for IPL are defined in

Chapter three. The Ada implementation of IPL in Chapter

four provides a second description of the language, a syntax

for demonstrating its use, as well as a capability to use

IPL immediately with an Ada compiler. Finally, the examples

of Ada-IPL's use in Chapter six provide an evaluation of

IPL's expressiveness and provide a second description of its

semantics.

IDOII



CHAPTER TWO
IPL OBJECTS

Five domains are described in this chapter, picture,

mask, region, boundary, and histogram. Objects from these

domains are commonly used to perform digital image

processing.

Picture

Informally, an image is a two-dimensional object whose

brightness or color may vary from point to point and is

usually modeled as a real valued function of two variables

(Rosenfeld and Kak, 1976). This image is digitized by a

sampling process which extracts from the image a discrete

set of values ("samples"), and then quantizes the samples

to yield values from another discrete set. In IPL, such

a digitized image is called a picture. In most practical

situations, a sample is the average value of the image over

some small area. The areas used to form the sample value

are generally the area around each member of a discrete,

usually regularly spaced, set of points. Thus, a

digitized picture can be thought of as a two dimensional

i array of digitized, average values. The elements of such

a picture a~e called Pats (Picture Atoms) in IPL.
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Pats, or Picture Atoms, are referred to in the current

literature as elements, pixels, or pels. Although, as

described above, a Pat's value is the digitized, average

value of the image over some area, in image processing the

Pat is generally assumed to contain the digitized value of

the image at a point. This may or may not be a good

assumption depending upon the sampling point set and area

size. For IPL however, this assumption is used. The

primary impact of ths assumption will be discussed below,

where the boundary of a region is defined. Thus, in IPL,

the Pat is the basic element of a picture and is allowed to

have any value, or vector of values, that the user defines.

In addition, the user must define the operations such as

comparison, addition, or any other operations used in an

algorithm for the specified Pat domain.

The location of the sampling points are also a part of

' the IPL picture. There are two common methods of organizing

! these sampling points, both of which IPL supports. The most

common method uses a regularly spaced, square array of

points, i.e., points (m'd, n'd) whose coordinates are

multiples of some unit distance d. Such an organization is

called orthogonal in IPL. The other method commonly used to

i organize a picture uses a regular hexagonal array of sample

points. This array can be obtained from a square array by

shifting the odd-numbered (even) rows d/2 to the right.

This organization is called Hex-odd (Hex-even) in IPL.

"I
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The domain from which pictures may be selected in IPL

is defined using the following domains:

Pat: {the discrete set of values allowed for the

image samples)

Organizations: {orthogonal, hex-even, hex-odd}

Index: [Values used to specify a location in or

around a picture or maski

Coordinates (C): [<m,n>l<md+kd,nd> are the

coordinates of the samples in the image, m

and n e Index, and k is determined as

follows -

If organization is orthogonal then k=O;

If organization is hex-even then k=O when m is

odd and k=1/2 when m is even;

If organization is hex-odd then k=1/2 when m is

odd and k=0 when m is even.}

The domain for pictures is

Picture (P): {<S, 0 >IS E {pi I<i,j> e Coordinates

and there exists a, b, c, and d e Index

such that if a<=i<=b and c<=j<=d

then pij c Pat} and 0 e Organizations'.

specify its Pat domain, Coordinate domain, and organization.The Coordinate domain is specified by stating the Index

domain.

I
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The IPL picture is a two-dimensional array and allows

the usual array operations of component selection and

assignment. Often, operations on a picture require values

which are not in the sampled portion of the image. These

values are required when performing operations that use the

value of "neighboring" elements such as determining the

average of a picture's values within a specified radius of

each element. Such operations will not have a complete set

of pictv e values when they are applied to Pat locations

which are "near" (within the specified radius) the edge of

the picture. Those Pat locations which are outside the

sampled area of the image but must have defined values for

certain operations are defined to be in the border of the

IPL picture.

The values assigned to border elements are usually an

identity element for the kind of operation being performed,

~such as the additive identity (zero) for a linear

combination. In general, however, these border elements may

take on any Pat value (such as the value of the "nearest"

available image element). The normal method of handling the

border in digitized image processing is to assign some

constant value to it. However, since the border value is

usually the additive identity for some operation, it is too

restrictive to recrjire it to be a constant in the image.

Instead, the border value should be a parameter for any

operation reauiring it. Also, the border value should not

*1be limited to constant values. Indeed, when working with a
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mosaic of several pictures the desired border value may be a

Pat value from a neighboring picture. A function

description provides the most general form of specifying a

border value whether it is a constant or a Pat value from

another picture. Thus, in IPL, BorderValue is a function

which is a parameter for any operation which might require.

Border Value: C x P - Pat.

Allowing the Border Value function to be a parameter for an

operation both highlights its importance to the operation

and allows a change in the method of computing a border

value for a particular operation without affecting other

operations.

Mask

An object similar to a picture which is also used in

image processing is a mask. Informally, a mask is a

neighborhood of some Pat, Pij' where the elements

of the mask are typically the neighbors of Pij"

A mask is used to define operators on a Pat,^^^^^

which is called the center of the mask in IPL. These

operations calculate a new Pat value for the mask center

based on the values of neighboring Pats. The mask defines

u which Pats affect the calculation by specifying their

I geometric relationship to the Pat center. Thus a mask must

have the same organization as some picture, P, to which it

is applied. The elements of a mask may or may not be Pat

values. Typically a mask may define the coefficients for
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some linear combination of the neighbors of its center, so

the values of the elements of the mask are the coefficients,

and not the Pat values themselves. A Mask which has

elements from a Pat domain is called a PatMask. In IPL,

the PatMask is a structural object used by a function to

calculate a new value from the values of "nearby" Pats.

Thus, the mask operation can be any function which uses the

values from a Pat Mask and returns a Pat value. This allows

a wide range of functions, including nonlinear and

discontinuous.

Structurally a mask and a picture are identical; the

difference between the two objects is in their semantics.

The conversion from a mask domain to a picture domain (and

vice versa) is straightforward due to this structural

equivalence. Thus any operations defined for picture

objects can be applied to mask objects once they are

3 converted to pictures. The reason for creating masks as

I separate objects in IPL is that they are used quite

differently from pictures to describe an image processing

algorithm. A picture is the object on which an algorithm

(operation) acts while a mask is an object which defines the

algorithm (operation). Typically a mask will have fewer

elements than a picture over which it operates, but this is

not a restriction. By separating the uses of picture-like

objects into those objects which define an operation (mask)

and those which are acted on by the operation (picture) the

expression of algorithms is clearer.
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The conversion between picture and mask domains is only

allowed when they both have elements from the same Pat

domain. The Sobel operator described in Chapter 6 has an

example of this conversion and its usefulness.

Regions

A segment is another important object in image

processing. In IPL an object of type region is used to

model a segment. Generally, a segment is a subset of an

image that is formed using a rule for the inclusion of

points in the segment. Generally, the rules for inclusion

of a point in a segment take the form of a range of

allowable values (both actual or calculated using a mask).

If a point has a value in the range, it is included in the

segment.

Another important property of a segment is its

connectedness. Although the defintion of a segment does not

inherently define this property, many operations on a

! segment use its connectedness. The connectedness of a

segment is defined in terms of the adjacency of two points

~in the segment. Given a segment, if each point in the

segment is adjacent to some other point in the segment, then

the segment is connected. Adjacency is generally defined by

describing the geometric relationship which exists between

two points which are adjacent. In IPL the connectedness

property is specified by describing an adjacency function.jThe adacency function is then a parameter for any operation

*9 I#
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requiring the connectedness property. Although in general

any function which maps a pair of coordinates into a Boolean

value defines an adjacency rule (C x C -, Boolean), in

practice only three such functions are commonly used. One,

6-connected, is for hexagonal organizations; and two,

4-connected and 8-connected, are for orthogonal

organizations. The set of adjacencies available in IPL is

Adjacencies (A): {Arl

if 0 p {hex-even, hex-odd} then A =c6p r

else if 0 = orthogonal then A r {c4,c8}}.p r

The definiton of these adjacencies carries their

conventional meaning and their definition can be found in

Rosenfeld and Kak (1976, p. 335).

In IPL, an object of type Region is used to model a

segment. A region is a subset of the Pats in some picture.

The picture used to define a region ia a part of the region

object; the picture itself, however, remains distinct from

! the region. The relationship between a region and the

~picture from which it is derived can be thought of as making

4 a copy of the picture. This permits changes to the region

which do not affect the picture and vice versa, thus many

constraints on the permissible operations on regions are

avoided. The picture and region objects become independent

of each other and users may make changes to either regions

~or pictures without having to consider their origin or

relationship to other regions or pictures. In addition, the

reqion's underlying picture defines a limited dormain for

4 ° . --~- - ..... . .. . ?



15

operations between two regions (see Region Operations). The

domain of a region R from picture P is formally defined as

Region (R): {<T r, P r 0 r> Pr = <S p, 0> E Picture,

T r is a subset of S , and 0 = 0

Boundary

Another object used in image processing which is

available in IPL is the boundary of a region. Informally,

the boundary of a segment in an image is the line which

separates points in the segment from points not in the

segment. Since the Pats in IPL are digitized

representations of points in the image, a boundary of a

region can be reoresented as a collection of the Pats which

are in the region but adjacent to a Pat not in the region

(in the region's complement). The assumption that Pats are

representaions of points in the image is important to this

representation. If the Pats are not good approximation of

point values but represent areas of the image instead, a

~better method of describing a boundary would use different

4objects. As an example of the kind of object which might be

used, a boundary could be represented by a collection of the

points in the digitized image which are formed when the

areas of four Pats meet. But, since we have assumed Pats to

I be representations of points in the image, the

representation of a boundary by a collection of Pats is the

best representation. Thus, the houndary 3 of region R is

I
* i
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Boundary (B): {<Ub, Rb, 0 b, Ab> 1

Rb = <T, Pr' O > E Regions, 0 b = 0 rir' ' r

if 0Ob E {hex-even, hex-oddl then Ab = c6,

if 0 b = orthogonal then Ab E {c4, c8},

and Ub {<x,z>lz E Class where for x e Tr

there exists y E T such that

Ab(x,y) = True}}

where Class: {boundary, limitl and

Tr' is the complement of Tr.

The {boundary, limit} classifications of the Pats which are

on the boundary correspond to Pats which are either on the

boundary or to Pats which do not have enough information in

the picture that the region is derived from to determine

whether the Pat is on the boundary or not. These "limit"

Pats are located on the edge of the picture and the values

of some of these Pat's adjacent Pats are unknown (Pat b in

Figure 1). A limit Pat may be on the boundary of a region

or it may not, depending on whether the unknown Pats are in

the region or not. Since a particular application may not

i treat these points the same as points that are on the

boundary, this differentiation must be made.

ooxzxoo
ooooxooo

FIGURE 1: Boundary and Limit Classifications.
Pats x, and z are in a region. Pats labeled x are
on the ooundary of the region but Pat z cannot be
classified as on the boundary based on the
information available in the oicture. Therefore
Pat z is classified as a limit Pat of the boundary.

'4 I



17

Note that the adjacency used to specify a boundary does

not define a constraint on the adjacency between elements of

the boundary. In fact if 8c defines the boundary members,

then these members will be connected under 4c while if 4c

defines the members then a connected boundary may be

connected only under 8c. (Bear in mind that if two

coordinates are connected under 4c they are also connected

under 8c but not vice versa) (Rosenfeld and Kak, 1976). The

boundary may even have collections which have no two

elements adjacent under any of the given rules.

As with the relationship between region and picture, a

boundary is defined for a specific region and the creation

of a boundary object can be viewed as creating a copy of the

underlying region. Thus the values in a region may be

changed without affecting any boundary objects that it has

defined. The boundary differs from the region in that

neither Pat values, Region membership, nor Boundary

I membership may be changed once a Boundary object has been

i created. In order to make these kinds of changes, the

Region object must be changed and then a boundary of the new

region created. These restrictions are required in order to

insure that the Boundary object continues to represent a

Boundary. Thus, Region membership and Pat values are fixed

in a Boundary object.

- .----
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Histooram

A histogram is an object used in image processing to

represent the frequency with which each Pat value occurs in

a picture. Since the values allowed for a Pat form a

discrete set, then

Histogram (H); f<p,i>jp c Pat, i E Positive Integer;

and for all x c Pat, there exists at most one y

such that <y, i> c H}.

This definition, however, does not always represent the

information desired by a user. For example, when the Pat

domain is the same as some computer's domain of

approximations to Real numbers the user may not wish to have

the number of times each Real value occurs but, instead, the

number of times a value occurs in some range of the Pat

values. (This domain does form a discrete, albeit large,

set). In this case the histogram is generally formed by

mapping the allowable Pat values into some smaller discrete

set, for example inteqers within a certain range, and then

forming the histogram for these values. Thus the general

definition of a histogram in IPL is

Histogram (H) : {<ce,i~'le £ a discrete set (D)

and i € Positive Integers, and for each x £ D

there exists at most one <x,i> £ H}.

I I u. . . . . . .



CHAPTER THREE
IPL OPERATIONS AND

THE "FOR EACH" CONTROL STRUCTURE

Several operations which define mappings over the

picture, mask, region, and boundary domains are defined in

this chapter. Also defined are a collection of operations

which construct a registration between two IPL objects. In

addition to these operations one control structure, "For

Each", is defined. This control structure improves the

readability of a sequence of operations which are applied to

every member of a set.

Picture Operations

In this section four basic operations on pictures are

described. Three of these operations, PictureBinary_Oper-

*ations, PictureUnaryOperations, and Fly have incomplete or

generic descriptions which require the user to fill in

certain details before they can be used. The other

operation, Rotate_90, is completely described. The reason

• . only generic descriptions of the first two operations are

~given is because most operations on pictures are not closed

with respect to a single domain for Pats. In fact, there

are very few operations which are performed within a single

Pat domain. Typically a picture will enter an algorithm

19
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with a limited Pat domain caused by limited sensor or

transmission medium bandwidths. Taking an edge detection

algorithm as an example, this picture might then be mapped

into a real or integer domain, which would then be mapped

into a boolean domain for registration of the edges, and

finally mapped into still another limited domain for output

(such as to a video display). Clearly it is not possible to

define all of these operations without precise descriptions

of all the domains and mappings between them. Indeed, these

precise definitions are the major effort when defining an

image processing algorithm. Thus the generic descriptions

which follow provide a framework for specifying the

different domains and mappings.

In the descriptions which follow, P1, P2, and P3

represent pictures with Pat values from domains PDI, PD2,I and PD3 respectively. PDI, PD2, and PD3 may be distinct or

Ii ! identical domains.

Picture Unary Operations: P1 -~ P3

4The unary operation takes a single picture and maps it

into another picture. The mapping is defined by a user

defined mapping from PD1 - P03. Each Pat is operated

on independently. P1 and P3 each have the same number of

I Pats and organization although they do not need to have

identical indices. An example of a unary operation is the

mapping of one boolean picture into another boolean picture

I by applying a "not" operation to each individual Pat.

* • '1



21

Picture Binary Ooeration: Pl x P2 * P3

The binary operation takes a two pictures and maps them

into another picture. The mapping is defined by a user

defined mapping from PDL x PD2 - PD3. The Pats in P1

are combined with the Pats in P2 which are in a similar

location, i. e., the Pat in Pl's first row and first column

is combined with the Pat in P2's first row and first column

to yield the Pat in P3's first row and first column. P1,

P2, and P3 all have the same number of Pats and organization

although they do not need to have identical indices. An

example of a PictureBinary_Operation is to divide one

integer picture by another integer picture to give a real

valued picture.

Rotate 90: Pl x Positive Integer - P1

This operation returns a picture with the same number

of elements, organization, and Pat domain as the input

picture. The operation moves the value in the in^ut picture

' at location <Pl'First(l) + i, Pl'First(2) + j> to

<P2'First(1) + j, P2'Last(2) - i>.. First(l) and First(2)

represent the picture's first row and column index value

respectively; Last(2) represents the picture's last column

index value. This "exchange" is repeated the number of

I times specified by the positive integer.

I
*
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Fly: P1 x Mask Operation x Mask x C x Border Value - P3

Masks may be used to transform one picture into

another. In IPL this operation is called Fly. The Fly

operation computes a new picture from an old picture based

on the transformation defined by a MaskOperation. As for

Picture operations, Fly may be defined for pictures with

different domains.

The Fly function creates a new picture by computing a

new Pat value in the MaskOperation specified when the Fly

function is created. The MaskOperation is

Mask_Operation: Maskl x Mask2 -PD3.

Fly fills a mask with Pat values from the input picture

P1 which have the same positional relationship with respect

to the Pat value being calculated as the mask coordinates do

with respect to the input center coordinates (C). The size

of this mask is identical to the size of the mask input to

Fly. Fly then calls the Mask_Operation with the mask filled

I from P1 and the mask input to Fly to get a new Pat value.

Thus the Mask_Operation is always given masks of equal size.

By repeating this procedure for each Pat in the Picture a

new picture is generated. Fly also calls a BorderValue

function to determine a Pat value when a value outside the

picture is required. A similar Fly operation is available

• for regions with restricted mask domains and operations.

A common Mask__Operation found in image processing is

the linear combination of the Pats in the two input masks.

I
, This peratin is th sum o th e-met ofth.inr
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product of the two masks. (The binary product of two masks

is equivalent to a PictureBinary_Operation where the

operation is the product of two Pats). The definiton of

linear combination in this manner requires that the masks be

of the same size, that the product PD1 x PD2 - PD3 is

defined, and that addition is defined over PD3. An

instance of the function requires the user to specify

the domains for the masks and for the output, and to insure

that the above operations are defined.

The mask operations can be used to define many common

image processing operations such as filtering,

differentiation, texture edge enhancement, Sobel edge

enhancement, and template matching by cross correlation.

Examples of these operations written in the Ada

implementation of IPL are given in Chapter 5.

Region Operations

Eleven basic operations are available for a region:

[ ? Pat_Value, Make_PatRegion, MakeRegion, In_Region, Union,

- I Intersection, Difference, Complement, Picture_Of,

RegionBinary_Operation, and RegionFly. Each operation is

described below.

! Pat Value: R x C - Pat

This operation returns the value of the Pat located at

the given coordinates in the region. A ConstraintError

i OCCURS if the given coordinates are not within the bounds of

~the region.

I
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Make Pat Region: Pat x C - R

This ooeration creates a region object from a picture

object and the coordinates of a Pat in the picture. A

ConstraintError occurs if the given coordinates are not

within the bounds of the region.

Make Region: P x Boolean Picture - R

This operation creates a region object from a picture

object and another picture of equivalent size and index

values but with boolean elements (BooleanPicture). Those

elements in the Boolean-Picture with a value of True are

placed in the output region object while False locations are

not included.

In Region: R x C - Boolean

In_Region returns True if the given coordinates are in

the given region and False otherwise. A ConstraintError

occurs if the given coordinates are not within the bounds of

the region.

Union "+": R x R - R

This operation returns the reqion which contains all

Pats in either of the two input regions. The two input

regions must be formed from the same picture or an

~IncompatibleRegions error will occur. The output region

will be formed from the input regions' underlying picture.

I . . .... . i .. . . . . . .. ' , I I I ..., . .. . .,
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Intersection "*": R x R - R

This operation returns the region which contains all

Pats in both of the two input regions. The two input

regions must be formed from the same picture or an

IncompatibleRegions error will occur. The output region

will be formed from the input regions' underlying picture.

Difference "-": R x R - R

The difference operation returns the region with Pats

in the first input region but not in the second input

region. The two input regions must be formed from the same

picture or an Incompatible_Regions error will occur. The

output region will be formed from the input regions'

underlying picture.

Complement: R - R

This operation returns a region over the same picture

as the input region but whose members are not in the input

region.

Picture Of: R - P

This operation returns the underlying picture of the

given region.

! Region Binary Operation: R x P - R

The RegionBinary Operation provides the capability to

J combine a region object with a picture object to form a new

I region. The inputs must be of the same size or a

~ConstraintError will occur. The output region will bej
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formed from the input region's underlying picture.

Membership in the output region is determined by applying a

user supplied function which maps

Boolean x Pat - Boolean.

The function is applied to similarly located values of the

two inputs just as in PictureBinaryOperations.

Region Fly: R x BMO x Mask x C x Border Value - R

The Region_Fly operation provides the capabilty to

calculate a new region based on whether nearby Pats are in

the region or not. The BooleanMask_Operation (BMO)

supplied by the user provides this mapping and is of the

form

Boolean-Mask x Mask - Boolean.

This operation calls a BorderValue function, just as the

Fly operation did, to determine region membership values for

Pats which are not in the picture used to define the region

but whose values are required for Fly to complete. The

output region will have the same underlying picture as the

input region and will have members which have True results

from the BMO. The BooleanMask will be filled by the

RegionFly operation similar to the manner used in the Fly

~operation to fill its Pat Mask.

I Boundary Operations

The basic operations available for a boundary are:

PatValue, InRegion, MakeBoundary, OnBoundary, Next_Pat,

~and RegionOf. These 5 basic operations can be used to

! '
* *
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define other operations on boundaries such as length, slope,

or curvature. In addition, a boundary can be converted to a

region with the same elements and then any of the region

operations can be applied to the equivalent region object.

Pat Value: B x C - Pat

This operation returns the value of the Pat located at

the given coordinates in the picture from the region used to

define the boundary. If the coordinates are not within the

picture then a ConstraintError will occur.

In Region: B x C - Boolean

In_Region returns True if the given coordinates are

within the region used to define the boundary. If the

coordinates are not within the bounds of the region then a

Constraint Error will occur.

*Make Boundary (MB): R x A - B

This operation creates a boundary object from the given

region using the specified adjacency and the definition of a
2boundary.

On Boundary: B x C - Class

On_Boundary returns the classification of the Pat

located at the given coordinates within the boundary. A

Constraint Error occurs whenever the coordinates are not

within the bounds of the underlying region.

*1 ...
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Next Pat: B x C x C x A x Direction C, Where
Direction Clockwise, Counterclockwise}

NextPat provides a method of traversing a boundary by

stepping between Pats which are on the boundary or are limit

Pats. Steps are made only between Pats which are adjacent

under the given adjacency rule. An algorithm for performing

this border following is described in detail in Rosenfeld

and Kak (1976 a. 342). The direction indicates whether the

next step is to be taken in a clockwise or counterclockwise

direction. Two coordinates are required; one designates

the Pat from which the step is to be made while the other

indicates the Pat from which the search for the next Pat is

to be initiated. The later Pat must be at least c8 adjacent

(c6 for Hex organizations) to the former Pat. The Pat from

which the step is to be made must be either on the boundary

~or a limit Pat. The Pat from which the search is initiated

may be of any classification. (The Pat visited one step

back guarantees that the boundary will be traversed

completely.)

I The border following algorithm used has no memory of

~which Pats have been visited but merely calculates the next

Pat based on the given information. Thus this operation

will always return the coordinates of a Pat classified as On

or Limit. Users must remember where they have been and

j decide when they have visited every Pat on the given

boundary. Some boundaries may have Pats that will be

visited as many as three times before all Pats have been

IJ
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visited. In addition, this operation will not jump to

disconnected boundary segments within the same boundary

object. Finally, the operation visits only the minimum

number of Pats required to traverse the given boundary under

the given adjacency. It is possible that some Pats may not

be visited. For example, if the boundary was created with a

c8 adjacency rule and then traversed with the same rule, not

every member of the boundary must be visited to define a

connected path. Figure 2 shows an example of this

situation.

ooooaooo
oooacaoo
ooacvcao
ooaaacao
ooaooaao

FIGURE 2: Border Following Around a Closed Boundary.
In this picture Pats labeled as a, c, or v are in a
region. Pats labeled as a are on the c4 boundary
while Pats labeled as a or c are on the c8 boundary.
a traversal of the c8 boundary using steps between
Pats which are c8 adjacent would visit only the a
Pats. In order to visit both the a and c Pats the
boundary must be traversed under c4.

Region Of: B - R

This operation returns the underlying region of the

boundary.

I
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Registration

In image processing it is often necessary to define a

relationshio between two images. This relationship

generally defines the same or similar objects within the two

images. The objects within the two images may be identical

or they may be modified by a rotation or scale of the

object. In any case this relationship is a mapping between

the points of the two images. In IPL, such a mapping is

called a registration (Rg).

Rg(pij) -" Pmn' where Pij E Pa' Pmn E Pb'

and picture Pa is registered to picture Pb*

A registration can be defined by either a functional mapping

of the coordinates of the first picture into the coordinates

of the second picture, by an enumeration of the points in

the first picture and their associated points in the second

picture, or by some combination of the two.

In order to define the registration of two pictures by

an enumerated set this object and its associated operations

~must be defined. The object is

Set ofCoordinate_Pairs (SCP) : {<a,b>I

a,b E Coordinates; a is the coordinate

of a Pat in P to which b, the coordinates
a

of a Pat in Pb is registered; and

for each x € {the coordinates of a Pat in }

there is at most one <x,b> E SCP}.

The last requirement of a Set ofCoordinatePairs element

, allows the first coordinate in a coordinate pair to be an

4, 1
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index for that element and is the basis for the

Registered Coordinates use of the set. A

Set ofCoordinatePairs has the operations listed in the

following sections.

Make Coordinate Pair Set: C x C - SCP

This operation creates a SCP object from two

coordinates. The coordinates must designate Pats of the

pictures which defined the SCP or a Constraint Error occurs.

Union "+": SCP x SCP SCP

This operation returns the SCP which contains all

registered coordinates in either of the two input SCPs. If

<a,x> is in one of the input SCPs and <a,y> is in the other,

then x = y or an InconsistentRegistration error occurs. An

InconsistentSCP error occurs if the two input SCPs are not

defined over the same pictures.

Difference -": SCP x SCP - SCP

The difference operation returns the SCP with

registered coordinates in the first input SCP but not in the

second SCP. If <a,x> is in one of the input SCPs and <a,y>

is in the other, then x =y or an Inconsistent_Registration

error occurs. An InconsistentSCP error occurs if the two

input SCPs are not defined over the same pictures.

I
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Intersection "*": SCP x SCP * SCP

This operation returns the SCP which contains all

registered coordinates in both of the two input SCPs. If

<a,x> is in one of the input SCPs and <a,y> is in the other,

then either x = y and <a,x> will be in the output SCP or an

Inconsistent_Registration error occurs. An InconsistentSCP

error occurs if the two input SCPs are not defined over the

same pictures.

Registered Coordinates: SCP x C - C

This operation returns the coordinates which are

registered to the input coordinates in the input SCP. A

Constraint Error occurs if the input coordinates do not

designate a Pat of the from-picture (Pa) of the SCP.

Change Registered Coordinates: SCP x C x C - SCP

This operation changes the pair of coordinates in the

input SCP to the pair designated by the input coordinates.

If <a,b> represents the input coordinate pair then a must

designate a Pat in the from-picture (Pa and b must

designate a Pat in the to-picture (Pb) or a Constraint_Error

will occur. This operation can be defined in terms of the

previously defined operations.

I
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"For Each" Control Structure

In adddition to the basic control structures available

in most high level programming languages, and specifically

those available in Ada, one additional control structure for

IPL is desirable. This control structure defines a loop to

be repeated for each element of a set. Certainly this

control structure can be expressed using "D" type structures

and will be defined using them:

element := first element the set might contain;
Done := False;
While Not Done Loop

If element in set Then
Block of statements operating on element

EndIf
If element is the last one in the set Then

Done := True
Else element := next element which might

be in the set
EndIf;

EndLoop;.

The "For Each" control structure is equivalent to the above

statements but reduces the code required and the potential

for making a mistake in the code. The syntax of the For

Each statement is

For Each <identifier) of <set identifier> Loop
statement...

EndLoop.

_ . .. -- -- - -I, . .. .



CHAPTER FOUR
ADA IMPLEMENTATION

Appendices A and B contain the Ada generic package for

an implementation of the IPL language. Appendix A contains

the package declarations; appendix B contains the package

body. Ada was used for this implementation because of its

generic program units and its capability to package together

data type descriptions with their defined operations while

leaving implementation details hidden. The generic

capability permits the definition of a program template from

which (nongeneric) program units can be obtained. This

permits the creation of a program which can operate on a

class of data types without writing a separate program for

each distinct type. The picture binary and unary operations

are excellent examples of generic functions. These two

functions operate on pictures, a class of two dimensional

arrays with unspecified individual elements. An actual

binary function can be created by specifying the kind of

elements in the picture and the way in which these elements

are to combined. The Ada generic unit also provides an

indirect method for passing a function name as a parameter

to a function. This capability is used in almost all of the

generic units but was the primary reason for making the Fly

~34
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functions generic. The generic capabiltiy of Ada was most

useful in creating this implementation of IPL. In fact, the

entire implementaion is a generic package which can create

several different image processing packages for distinct Pat

domains. Binary, unary, and Fly operations can then be

specified to define how these different domains can be

mapped to one another, if at all.

It is also important to note that Ada effectively hides

the implementations of the various IPL operations from users

resulting in two advantages. First, a user of the language

can write in IPL by using the declaration section of the IPL

generic package for the syntax of the language, and the

language description as the semantics of the language. This

contributes to the portability of the code by inhibiting the

use of implementation details. Second, the implementations

of the operations and the private data types (regions and

boundaries) can be changed without affecting the correctness

• of algorithms written in the language as long as the

~algorithms do not rely on side effects for correctness and

the new implementations conform to the IPL semantics. Thus

the given implementations could easily be changed or

modified to take adavantage of hardware capabilities, such

as assigning multiple processors to the unary and binary

operations.

Additionally, the IPL language requires the

" availability of D-type control structures and the capabilty

~to specify data type domains as well as operations over

I
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those domains. By embedding IPL within Ada these

requirements are met. A user of the language has full

access to the Ada programming language as well as the

specialized constructs built for image processing. Thus the

image processing algorithms presented in this thesis use

several of the Ada capabilites.

The Ada Programming Language, ANSI/MIL-STD-1815A

(1933), is the source of information used to write this

implementation of IPL in Ada. No compiler was available so

the given implementation has not been compiled or tested.

It is included here as a second description of the language

and as a vehicle to demonstrate the usefulness of IPL in

stating image processing algorithms. There are two

additional benefits, however. First, given an Ada compiler

the testing and use of the Ada IPL is straightforward.

Since the Ada language is intended to be transportable, this

contributes to a transportable IPL. Second, the

' implementation of IPL in other languages can be modeled

directly from the Ada implementation. Ambiguities caused by

translating the Ada implementation can be resolved by

referring to the more formal description presented in this

thesis.

In order to implement the "For Each" control structure,

an additional function is added to the Ada IPL. Since a new

control structure could not be added directly to the

language without writing a precompiler or altering the

existing compiler, a function was added which would return a

'1J
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"next element" for those sets which required it. To step

through the Pats in a picture is a direct use of the Ada

"For" loops and does not require a "Next" function. Also,

the Boundary object already has a "Next" function (border

following) which can be used to step through the Pats in a

boundary. Regions and Sets ofCoordinatePairs, however,

require a "Next" function in order to perform the "For Each"

control. The region and Set ofCoordinatePairs "Next"

functions are given coordinates to mark where they are in

the set and then return the next coordinates in the set.

Null coordinates are returned at the end of the set and null

coordinate inputs request the first element in the set.

These functions proceed through the elements in the set in

an unspecified order without repetition.

Finally, the bodies for the procedures to input or

output a picture are not included in the body of the IPL

~package. The bodies of these operations are entirely

I dependent upon the hardware and architecture of the

~implementation and therefore cannot be defined here.

SII



CHAPTER FIVE
ALGORITHMS IMPLEMENTED IN IPL

Several algorithms which perform common image

processing tasks are written in the Ada-IPL and oresented in

this chapter. The algorithms demonstrate IPL's capability

to express them clearly and completely. At the same time

these algorithms demonstrate how IPL highlights the design

of the domain mappings critical to most image processing.

The algorithms presented were selected based on their common

usage in image processing and on their capability to

demonstrate the use of different IPL operations. Thus

readers who are familiar with image processing techniques

should already understand the intent of these operations and

be able to study the influence of IPL on their clarity.

Thresholding, Laplacian, differentiation, texture edge

detection, temolate matching by cross correlation, linear

~and nonlinear filtering, and Sobel edge enhancement

~algorithms are presented for picture operations. Expand,

~shrink, and area algorith, s are presented for regions.

"I 38
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Picture Algorithms

Threshold

A threshold algorithm for pictures is presented in

Figure 3 (Rosenfeld and Kak, 1976, p. 258,; Pratt, 1978

p. 534). The algorithm is basicly a unary operation on the

input picture which applies a threshold function to each Pat

in the picture. By writing the PatThreshold function

within the declaration section of Picture Threshold the

additional parameters, thresholdvalues and outputvalues,

are visible to PatThreshold. This allows the PatThreshold

function to conform to the parameter list required by

PictureUnary_Operation. An implementation of IPL which

allows parameter lists as well as function names to be

parameters would simplify this algorithm.

FUNCTION PictureThreshold (P : Pictures;
Lower Bound, UpperBound,
InRange_Value, Out_Range_Value :Pats)~RETURN Pictures is

FUNCTION Threshold (Pat :Pats) RETURN Pats is
BEGIN

IF (Pat >= Lower Bound) OR (Pat <= Upper_Bound)
THEN RETURN InRange_Value;
ELSE RETURN Out_Range_Value;
ENDIF;

END Threshold;
FUNCTION Threshold_Op is NEW Picture_Unary_Op

i (Element 1lj Element_3 => Pats,
I Picture--i1 Picture_-3=> Pictures,

F => Threshold);
BEGIN

~RETURN Threshold_Op(P) ;
~END Picture_Threshold;

FIGURE 3: Ada-IPL Threshold Algorithm.*1

, J
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Laplacian

The Laplacian is a higher-order derivative operator

which is used to detect edges but is less sensitive to

orientation than a straight derivative operator (Rosenfeld

and Kak, 1976, p. 28,1; Pratt, 1979 p. 482). A Lapalacian

operation over a digital picture can be defined using a

linear combination of floating point and Pat values. Figure

4 contains the declarations needed for such an operation.

Using these declarations, the Laplacian operation could be

expressed as

FloatPic := FloatLCFly (PatPic, ((0, 1, 0)
(1, -4, 1)
(0, 1, 0)), (2, 2));.

Furthermore, the Float LC Fly can be used to express any

linear combination of floating point and Pat values over

whatever mask size required.

TYPE Float Mask is ARRAY
(MaskIndex RANGE 1..2, Mask Index RANGE 1..2) of Float;
( TYPE Float Picture is ARRAY(ITdex RANGE <>, Index RANGE <>) of Float;

(^FUNCTION Float LC is NEW LinearCombination

-- (Element 1 => Pats,
Mask 1 => Pat Mask,

Element 2 E~ement_3 => Float,
= Mask 2 => Float_Mask);

~FUNCTION FloatLC fly is NEW Fly
~(MaskIndex => Mask Index,

Element_1 => Float, Mask 1 => FloatMask,
Element_2 => Pats, Mask_2 => PatMask,
Picture 2 => Pictures,
Element 3 => Float, Picture 3 => FloatPicture,
F => FloatLC);

FIGURE 4: Ada-IPL Laplacian Declarations.

. ..II . . . I
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Differentiation

The derivative of a function of two variables can be

chara:terized by its gradient. The gradient is described by

its magnitude and direction (Rosenfeld and Kak, 1976,

p. 278). Figure 5, t. 42, presents an Ada-IPL algorithm for

computing the derivative of a picture. The derivative is

computed by first finding the difference between adjacent

Pats in the rows and columns. These are computed separately

using fly operations. These two pictures are then combined

in a PictureBinary_Op to form a picture with gradients as

its elements' values.

Texture Edge Detection

The algorithm described in this section is used to

detect the edges around objects which differ from their

background with respect to the average value of some local

property as opposed to objects which are characterized by

some Pat value. The pictures on which this algorithm would

~be useful qenerally have a large amount of salt and pepper

~noise, or noise at both extremes of the ?at domain

(Rosenfeld and Kak, 1976, p. 294) . The algorithm is shown

in Figure 6, p. 43. The alaorithm uses a variable size mask

which depends on the size, or radius, used to compute the

average Pat value. It then proceeds in a manner similar to

the differentiate algorithm, only it finds the differences

between the centers of the masks used to compute the Pat

averages rather than the differences between adjacent P3ts.
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TYPE Gradients is RECORD
Magnitude, Direction Float;
END RECORD;

TYPE Derivative Pictures is ARRAY
(Index RANGE <>, Index RANGE <>) OF Gradients;

FUNCTION Differentiate Picture (P : Pictures)
RETURN DerivativePictures is

TYPE Float Mask is ARRAY
(Mask Index RANGE 1..2, Mask Index RANGE 1..2) of Float;

TYPE Float Picture is ARRAY
(Index RANGE <>, Index RANGE <>) of Float;

FUNCTION FloatLC is NEW Linear Combination
(Element 1 => Pats,
Mask 1 => Pat Mask,
Element_2 IElement 3 => Float,
Mask 2 => FloatMask);

FUNCTION Float LC fly is NEW Fly
(Mask Index => Mask Index,
Element 1 => Float,

Mask -I> FloatMask,
Element 2 => Pats,
Mask 2 => Pat Mask,
Picture 2 => Pictures,
Element-3 => Float,
Picture-3 => Float Picture,
F => Fl3atLC);

FUNCTION Derivative Op (Left, Right : Float)
RETURN Gradients is

Dummy :Gradients;
BEGIN

Dumy.Mgniude:=Sqrrt(Left**2 + Right**2) ;
Dumy. iretio :=Arctan(Left/Right) ;

F ND DriFloatOo
FUCINPc eiaiepi E PictureBinary_Op

I -(Element_1-- Element_2 => Float,
Picture_1 Picture 2 => FloatPictures,

Element_3 => Gradients,
Picture_3 => DerivativePicture,
F => Derivative_Oo);

DelX,
DelY : DerivativePictures(P'RANGE(l), P'RANGE(2));

BEGIN
Del X :=FloatLCFly (P, ((1, -1),

Del Y :=FloatLC Fly (P, ((1, 0),

RETURN PictureDerivative_Op (Del X, Del_Y) ;
I END PictureDerivative;-

i FIGURE 5: Aria-IPL Differentiate Operation
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FUNCTION TextureEdge 
Detection

(P : Pictures;
R : Index RANGE l..Index'LAST) -- Radius

RETURN Pictures is
-- Assumes Pats is a subtype of Natural Integers

FUNCTION Integer LC is NEW Linear Combination
(Element 2 => Pats, Mask 2 => Pat Mask,
Element1 II Element_3 =7 Integer,
Mask I => Mask);

FUNCTION Integer LC Fly is NEW Fly
(Mask Index => Index,
Element_1 I Element_3=>Integer, Mask l=>IntegerMask,
Element 2 => Pats, Mask 2 => PatMask,
Picture-2 => Pictures, Picture_3 => IntegerPictures,
F => Integer_LC);

FUNCTION "/" is NEW Picture _3inary_Op
(Element_1 Element 2 1 Element 3 => Integer,
Picture I Picture-2 Picture-3 => Integer_Pictures,
F => "/1)

FUNCTION "+" is NEW Picture BinaryOp
(Element 1 Element 2-1 Element 3 => Pats,
Picture_1 Picture-2 Picture-3 => Pictures,
F = "+ )

FUNCTION Abs (Left :Integer) RETURN Pats is
BEGIN

RETURN Pats'Abs(Left);
END Abs;

FUNCTION Abs is N EW Picture Unary_Oo
(Element 1 => Integer, Picture 1 => InteqerPictures,

Element 3 => Pats, Picture 3 => Pictures,
F => Abs);

TextureMask :CONSTANT Integer Mask
(-R..R, -R..R) :=(OTHERS =(OTHERS => I));

Horiz Difference Mask :CONSTANT Integer Mask
! ~(O..O, -R..R) : (0 =>(-R => 1, R => -1, OTHERS => 0));
' V~ertDifferenceMask :CONSTANT Integer Mask

(-R..R, O..O) :=(-R => (1), R => (-1), OTHERS => (0));
, NormalizingPicture :CONSTANT

IntegerPictures (P'RANGE(1) , P'R<ANGE(2))
:(OTHERS => (OTHERS => (2R + ')**2));

Dummy, Horiz DiffPic, Vert Diff Pic :Inteoe_ nictures.
BEGIN

Dummy :=IntegerLCFly (P, TextureMask, (0, 0.,
Horiz Diff Pic :=Integer LC Fly

Hoi TDummy, HorizD~fferenceMask, (0, 0));
Horiz Diff Pic :=Horiz--Diff Pic/Normalizing_Picture;

Vert Diff Pic :=IntegerLCFly
(Dummy, Vert Difference Mask, (0, 0));

Vert Diff Pic :=Vert Diff Pic/NormalizingPicture;
RETURN (Abs (Horiz Diff Pic)) + (Abs (VertDiff Pic));
END TextureEdge_Detection;

I FIGURE : Ada-IPL Texture Edge Detection.

*4 _ _ _ _ __ _ __ _ _
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Finally, instead of computing the gradient, it computes an

approximation to the magnitude of the Jerivative by summing

the absolute values of the row and column differences.

An important problem for this algorithm is the mapping

of Pat values into other domains. This algorithm assumes

that the Pat domain is some subset of the Natural integers

(0 to +infinity). Then, by using the fact that the Natural

integers are closed with respect to addition, it follows

that by integer-dividing the sum by the number of elements

in the summation, an integer within the Pat subrange will

result. Thus the "average" operation is closed with respect

to the Pat domain but must be computed with values outside

of the domain. In addition, the absolute value function is

redefined to return an object of type Pat. In summary then,

"/" operates over Naturals, Abs operates on Naturals

returning Pats, and there are two "+-" operations, one

operating over Pats and another (within the linear

I combination) operating on a Pat and a Natural returning a

Natural. Once these mappings are defined, the algorithm

I follows directly from the mathematical model.

Observe that when using IPL to express such an

~algorithm as the texture edge detection, the bulk of the

~effort is to map the Pats domain into a suitable domain(s)

for the desired operations, and then to map from that

domain(s) back into the Pat domain. Once this is

accomplished, it is fairly easy to express the desired

mathematical relationships.

*i
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Template Matching

The normalized cross correlation can be used to locate

areas of a picture which match a template (Rosenfeld and

Kak, 1976, p. 298,; Pratt, 1978 o. 551). The method is not

described in detail here but in general is accomplished by

cross correlating the template with the picture and then

normalizing this result by dividing by the square of the

picture's Pat values summed over the template area. The

algorithm in Figure 7, p. 46, performs this operation for a

template of any size. The algorithm includes a

straightforward use of the Fly, Binary, and Unary picture

ooerations. Calculations are performed in the floating

point domain primarily due to the division required to

normalize the cross correlation. There are usually small

differences between "exact matches" and "near misses"

requiring the increased accuracy of the floating point

domain. Although the output of this operation is a oicture,

! it would most likely be next operated on by a search

~operation to create a registration between the template and

the picture. After the completion of this registration, the

output picture would most likely be discarded.

Linear Filter

~The template matching algorithm above restricted

~template values to the Pat domain. In general, however, the

exact grey levels of a pattern are not as important as the

shape of the pattern. Thus it is desirable to cross

I- -
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FUNCTION NormalizedCrossCorrelate
(P : Pictures;
Template : Pat Mask;
Template Center : ValidCoordinates)

RETURN Float Pictures is
FUNCTION Pat LC is NEW Linear Combination

(Element 1 I Element 2 => Pats,
Mask_1 T Mask 2 => Pat Mask,
Element 3 => Float); -

-- Must have "*" (Left, Right : Pats) RETURN Float defined
FUNCTION Pat LC fly is NEW Fly

(Mask Index => Mask-Index,
Element 1 => Pats,
Mask 1 > Pat Mask,
Element_2 => Pats,
Mask 2 => Pat Mask,
Picture 2 => Pictures,
Element 3 => Float,
Picture 3 => FloatPicture,
F => Pat LC);

FUNCTION "/" is NEW Picture Binary Op
(Element 1 Element 2 Element 3 => Float,
Picture-1 Picture 2 Picture 3 => Float Pictures,
F => "/7)

FUNCTION "**" is NEW PictureUnary_Oo
(Element 1 I Element_3 => Pats,
Picture 1 Picture 3 => Pictures,
F => of**')

CorrelationofTemplateand_P,
PSquared :FloatPictures (P'RANGE(l), P'RANGE(2));

Temp :Pictures (P'RANGE(l), P'RANGE(2));
Template ofIs : CONSTANT

Pat_Mask (Template'RANGE(l) , Template'RANGE(2))
:(OTHERS => (OTHERS => 1));

BEG IN
Correlation of Template andP :

~Pat LCFly (P, Template, TemplateCenter);
Temp := *2
PSquared :=PatLCFly

(Temp, Template of is, TemplateCenter);
RETURN Correlation of Template andP / PScuared;
END NormalizedCrossCorrelate;

FIGURE 7: Ada-IPL Normalized Cross Correlation

AJ
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correlate derivatives (magnitude only) of the template with

the picture (Rosenfeld and Kak, 1976, p. 306). The

declarations in Figure 8 provide the capability to apply a

general linear filter to a picture by cross correlating a

template of floating point values with it. The template may

be any size. The operation of multiplying a Pat and a

floating point value to yield a floating point value must be

defined for these declarations to be useful.

FUNCTION LinearFilter is NEW Linear Combination
(Element 1 => Pats,
Mask 1 => Pat Mask,
Element_2 I Element 3 => Float,
Mask_2 => FloatMask);

FUNCTION LinearFilterfly is NEW Fly
(Mask Index => MaskIndex,
Element 1 => Float,
Mask I => FloatMask,
Element 2 => Pats,
Mask 2 => Pat Mask,
Picture 2 => Pictures,
Element 3 => Float,
Picture 3 => FloatPicture,
F => Linear Filter);

FIGURE 8: Ada-IPL Declarations for a Linear Filter.

~As an example of the use of this operation, suppose we

wished to locate thin (one Pat) , vertical lines in a

~picture. A filter for such an operation is the digital

Laplacian of an ideal thin vertical line (Rosenfeld and Kak,

1976, p. 306)

S-1/2 1 -1/2
S-1/2 1 -1/2
S-1/2 1 -1/2.

j
i !*
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This filtering can be performed in the Ada-IPL by

Filtered Pic := LinearFilter_Fly
(P, ((-0.5, +1.0, -0.5),

(-0.5, +1.0, -0.5),
(-0.5, +1.0, -0.5)), (2, 2));.

Nonlinear Filter for a Thin, Vertical Line

Rosenfe..c and Kak (1976, p. 307) point out that the

linear filter for a thin, vertical line discussed above has

undesirable responses to step edges and isolated points.

They then describe a nonlinear filter for detecting these

lines (1976 p. 309). Figure 9 displays the declarations

required for this filter. An application of this function

does not use the element values of an input template since

it is tailored for a thin, vertical line only. The fly

operation does require a 3x3 mask, however, so that the

proper sized Pat mask will be supplied to the

NonlinearVertLineFilter function. Thus the Fly Ml

parameter is provided with a 3x3 mask with "0" elements.

i The function can be applied to a picture, P, by

New P :=NonlinearVLFilterFly
i - (P, ((0, 0, 0),

(0, 0, 0),
I (0, 0, 0)), (2,2));.
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FUNCTION Nonlinear Vert Line Filter (Ml Pat Mask;
M2 FloatMask)

RETURN Float is

FUNCTION Linear Filter is NEW Linear Combination
(Element 1 => Pats,
Mask 1 => Pat Mask,
Element_2 I Eement 3 => Float,
Mask_2 => FloatMask);

I, J : MaskIndex;
BEGIN

I MI'FIRST(l);
J Ml I'FIRST(2);

SIF M1 I-I, J) > MI(I-I, J-1)

AND Ml(I-i, J-l) > MI(I-I, J+l)
AND M1 I, J) > Ml(I, J-l)
AND Ml(I, J-1) > Ml(I, J+l)
AND Ml(1I+l, J) > Ml(I+l, J-l)
AND Ml(I+l, J-l) > Ml(I+l, J+l)
THEN RETURN Linear Filter

(Ml, ((-0.5, +1.0, -0.5),
(-0.5, +1.0, -0.5),
(-0.5, +1.0, -0.5)), (2, 2));

ELSE RETURN 0;
END IF;

END NonlinearFilter;

SUBTYPE Float Mask 3x3 is FloatMask (1..3, 1..3);
FUNCTION Nonlinear-VLFilter Fly is NEW Fly

(Mask Index => MaskIndex,

Element_1 => Float,
Mask 1 => FloatMask_3x3,
Element 2 => Pats,
Mask 2 => Pat Mask,
Picture_2 =^ Pictures,~Element_3 => Float,

~Picture 3 => FloatPicture,
~F => NonlinearVertLine Filter);

FIGURE 9: Ada-IPL Declarations for
a Nonlinear Filter of a Thin Vertical Line.

*1
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FUNCTION Sobel (Ml : FloatMask; M2 : Pat Mask)
RETURN Float is

FUNCTION "*" is NEW Pictur Binary_Op
(Element_1 Element 3 => Float, Element_2 => Pats,
Picture-1I Picture-3 => FloatPictures,
Picture 3 => Pictures);

-- The Function 7*" (Left : Float; Right : Pat)
-- RETURN Float must be defined.

I : Index;
X, Y : Float := 0;
Temp Mask : FloatMask (MI'RANGE(l), 112'RANGE(2));

BEGIN
Temp_Mask := Float Pictures(Ml) * Pictures(M2);

-- Masks can be explicitly converted to Picture types
FOR I IN TempMask'RANGE(l) LOOP
Y := Y + TempMask(I, 1) - Temp_Mask(I, 3);
END LOOP;

FOR I IN TempMask'RANGE(2) LOOP
X := X + TempMask(3, I) - Temp_Mask(l, I);
END LOOP;

RETURN SQRRr (X**2 + Y**2);
END Sobel;

FUNCTION Sobel Fly is NEW FLY
(Mask Index => MaskIndex,
Element_1 => Float,
Mask I => FloatMask,
Element_2 => Pats,
Mask 2 PatMask,
Picture 2 => Pictures,
Element--3 => Float,
Picture--3 => FloatPicture,
F => Sobel);

I FIGURE 10: Ada-IPL Declarations for Sobel Edge Enhancement.

Sobel Edge Enhancement

The Sobel operator is a nonlinear edge enhancement

technique using a 3x3 mask (Pratt, 1978, p. 487) . Figure 10

contains the implementation of this operator in Ada-IPL. As

with the nonlinear vertical line filter, the input mask to

the fly operation defines the size of the mask required by

the Sobel function. However, because of the symmetry for

J -
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the coefficients in the Sobel operation the mask elements

can be used to pass these values adding another degree of

variability to the function. An example of the use of this

Sobel edge enhancement is

Float-Picture := Sobel_EdgeEnhance
(P, ((1, 2, 1)

(2, 0, 2),
(1, 2, 1)), (2, 2));.

Note that a PictureBinary_Operation is defined for this

function and then applied to the masks. Ada provides for

explicit conversions between different array types when they

have the same dimensionality, index types, and component

types (Ada Programming Language, 1983, p. 4-22).

Region Algorithms

Expand

The expand operation is commonly used to expand the

region uniformly in all directions towards the edge of the

picture. This operation is referred to by Rosenfeld and Kak

as propogation (1976, p. 362). Pats are included in the new

' region if they are in the original region or if they are

adjacent to a Pat in the original region. Those Pats in the

original region remain in the expanded region. The Ada-IPL

~implementation of expand is presented in Figure 11. The

~adjacency mask function in the expand operation is designed

to return True if the two input masks have True values in

any identical locations and False otherwise. Thus, the body

of the algorithm flies the appropriate mask over the picture
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FUNCTION Expand (R : Reqion;
A : Adjacencies;
Num Times : Integer 1);

RETURN Region is
FUNCTION AdjacencyMask (Ml, M2 BooleanMask)

RETURN Boolean is
I : Index;
Temp : Boolean := False;

BEGIN
FOR I in Ml'RANGE(l) LOOP

MI(1) := (Ml(I) AND M2(I)) OR MI(l);
END LOOP;

FOR I IN Ml'RANGE(2) LOOP
Temp := Temp OR Ml(l, I);
END LOOP;

RETURN Temp;
END Adjacency_Mask;

FUNCTION Adjacency_Fly is NEW RegionFly
(MaskIndex => Mask Index, Element 1 => Boolean,
Mask 1 => Boolean _ask, F => Adjacency_Mask);

X : CONSTANT Boolean True;
0 : CONSTANT Boolean False;
Dummy : Region (R.Row First, R.Row Last,

R.ColumnFirst, R.ColumnLast);
BEGIN

WHILE Num Times /= 0 LOOP
IF OrganTzation = Hex-Even
THEN Dummy := Adjacency_Fly (R, ((0, X, X),

(X, X, X),
(0, X, X)), (2, 2));

ELSIF Organization = Hex Odd
THEN Dummy Adjacency_Fly (R, ((X, X, 0),

(X, X, X),
(X, X, 0)) , (2, 2));

ELSIF A = c4
THEN Dummy := AdjacencyFly (R, ((0, X, 0),

(X, X, X),
(0, X, 0)), (2, 2));

ELSIF A = c8
THEN Dummy := Adjacency_Fly (R, ((X, X, X),

(X, X, X),
(X, X, X)), (2, 2));

ELSE RAISE InconsistentAdjacency;
END IF;
Num Times := Num Times - 1;
END LOOP;

RETURN Dummy;
END Expand;

FIGURE 11: Ada-IPL Expand Algorithm.

0-6--*
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for the given adjacency and repeats this the specified

number of times. Defining "X" as True and "0" as False

simplifies the visualization of the masks.

Shrink

Conceptually the shrink operation is the opposite of

the expand operation, even though they do not commute or

annihilate each other. Still Shrink is easily defined as

expanding the complement of the given region and then taking

the complement of this result (Rosenfeld and Kak, 1976,

p. 362). Figure 12 is the algorithm which performs this

operation.

FUNCTION Shrink (R : Region;
A : Adjacencies;
Num Times : Integer 1);

RETURN Region is
BEGIN
RETURN Complement (Expand (Complement(R), A, Num Times));
END Shrink;

FIGURE 12: Ada-IPL Shrink Algorithm.

Area

The area operation presented here is merely the number

of Pats which are in the given region. It is shown in

Figure 13. The algorithm demonstrates how the "For Each"

control structure is implemented in Ada using the

NextMember function. The NextMember function returns the

coordinates of Pats in the region in some unspecified order.

L'
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In order for the function to know where in the "list of

members" it is located, it is given a "orevious" Pat's

coordinates. If it is given null coordinates then it

returns a "first" member. After a "last" member it returns

the null coordinates. The order of the members in the

"list" as well as which members are "first" or "last" is

undefined. The implementation of the "For Each" structure

using this Next-Member function is straightforward.

FUNCTION Area (R : Region) RETURN Integer is
Temp : Integer := 0;
Point Coordinates := (Nullity => Nil);

BEGIN
Point := Next Member (Point, R);
WHILE Point.Nullity /= Nil LOOP

Temp : Temp + 1;
Point Next Member (Point, R);
END LOOP;

RETURN Temo;
END Area;

FIGURE 13: Ada-IPL Area Algorithm.

Although it would be much clearer to express this

algorithm using a "For Each" loop, it is not possible to add

control structures to existing languages without modifying

the compiler or requiring a precompiler. When imbedding IPL

within a high level language the cost of precompiling or

modifying the compiler is generally not worth this increase

in clarity. If a compiler were implemented for the IPL

language, however, it would certainly be desirable to

include a direct implementation of a "For Each" loop rather

ji than rely on equivalent constructs.



CHAPTER SIX

CONCLUSION

An image processing language (IPL) is developed from an

examination of the domains and operations which are commonly

used to express image processing operations in a strongly

typed, high-level language. The motivation behind this

approach is to develop a language which is portable and

readable. The domains, operations, and a control structure

are described for the language. In addition, the language

is implemented in Ada and several image processing

algorithms are expressed in this implementation.

Summary

This description of IPL assumes the existence of D-type

control structures and data type definition capabilities.

In addition, IPL defines picture, mask, region, boundary,

and histogram data types. The domains for these types are

described in terms of a basic element called Pat (for

picture atom) whose domain definition is undefined. Thus,

each of the above domains is available for any Pat domain.

The structures for objects from the picture and mask domains

are identical, a two-dimensional array, but their semantic

uses in IPL are different. In general, pictures are the

results of IPL operations while masks help define the

55
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operations. The structures for objects from the region and

boundary domains are not specified. Histogram objects are

equivalent to one dimensional arrays which are indexed by

either the Pat domain or another domain into which the Pat

domain is mapped.

Several operations are defined for these domains.

Picture, mask, and region domains have three basic

operations; unary, binary, and fly. Unary and binary

operations can be completed without reference to the values

of neighboring Pats while fly operations require such

information. Rotate_90 is also defined for the picture

domain. The region domain has the set operations of union,

intersection, and division; object creation operations;

and component selection operations. The boundary domain has

the creation, selection, and set operations listed for

regions. It also has a border following operation for

traversing the boundary. One object can be registered to

another object in IPL by defining a registration, a

functional mapping from the coordinates domain of the first

object to the coordinates domain of the second. This

mapping can be described with a SetOfCoordinatePairs or

as some rule. The set operations (union, intersection, and

division), a creation operation, and component selection

operations are available for Set OfCoordinatePairs

objects.
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One additional control structure, "For Each" is defined

for IPL to provide the capability to clearly expresE. the

execution of a sequence of operations for each member of a

set. This control structure is not implemented directly in

the Ada implementation of IPL but is implemented indirectly

through a D-type loop structure and a "Next" function. The

"Next" function provides a capability to step through all

the elements which are members of a set. This differs from

the equivalent D-type structure which steps through all

potential members of the set and conditions execution of the

sequence of operations on set membership. The inclusion of

the "For Each" construct improves the readability of IPL

code.

Results

The IPL operations form a basic set of operations which

can be used to express common image processing algorithms.

This satisfies the first goal for the IPL development.

The Ada implementaion of IPL (Ada-IPL) satisfies the

second goal, to describe an implementation in an existing,

portable, high-level language. Ada was chosen for this

implementation because one of its design goals was to

develop a portable language. Ada is also a high-level

language with the D-type control structures and data type

definiton facilities required by IPL. In addition, Ada

provides the capability to describe generic subprograms, or

templates, which allowed IPL to be implemented without

/! i



58

specifying a Pat domain. This generic capAbility was also

used to define the unary, binary, and fly operations.

Ada effectively separates the actual implementation of

operations from their use. Thus, portions of this

implementation of IPL may be changed without affecting the

correctness of algorithms written it. This satisfies the

fourth goal of the IPL development.

The Ada-IPL is not complete nor has it been compiled or

tested. Picture input and output operations are not defined

since they depend on the environment in which they are used.

Also, no Ada compiler was available to check or test this

implementation. The Ada-IPL is presented primarily as a

demonstration of an implementation of IPL. It also orovides

a second description of IPL as well as a syntax for

expressing algorithms in IPL.

In order to demonstrate IPL's capability, several

common image processing algorithms are expressed in Ada-IPL.

The picture algorithms are thresholling, Laplacian

filtering, differentiation, texture edge detection, template

matching by crcss correlation, linear and nonlinear

filtering, and Sobel edge enhancement. The region

algorithms demonstrated are expand (oropogate) , shrink, and

the area of a region. These algorithms were selected based

on their common use. Thus, they should be familiar to most

readers. In addition, the algorithms demonstrate the use of

the IPL unary, binary, and fly operations and they highlight

the effect IPL has on their expression.

.... ii, ---- E -, ---- I ,.
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Further Work

Several areas of further work on IPL are indicated.

Obviously, compiling and testing the Ada-IPL is necessary

before it can be used as a programming language. Until this

is accomplished, it is only useful as a design or

specification language. Concurrent with this testing, the

implementation of the operations should be modified to

improve their performance. The implementations provided

were used based on the ease of establishing their

correctness and communicating the semantics of the

operations. In a testing environment, these operations

should be implemented with increased performance where

possible.

Additional work is also needed to examine other image

processing algorithms to determine if any additional

operations are required to describe them. The given

operations appear to be adequate to express any image

processing task, but their completeness is not proven.

Further efforts to find additional operations or demonstrate

the completeness of the given operations is required.

Finally, an architecture could e designed to directly

implement the unary, binary, and fly operations. The fly

ooeration appears to be the most time intensive of all the

IPL operations. By focusing an architecture on improving

the performance of the fly as well as the unary and binary

operations, a very efficient architecture for image

processing can be ceveloped. The nature of these three

U



60

operations suggest an architecture similar to that described

for the CLIP4 (Duff, 1979), but since the development of

this language was purposefully divorced from architectural

considerations, the subject of an architecture for the

language requires much closer examination.

'dl



REFERENCES

Ada Programming Language, ANSI/MIL-STD-1815A, 22
January 1983, Naval Publications and Forms Center,

Phildelohia, Pa. (1983).

Bulman, David M., "Is Ada the Answer?" The Yourdon
Report, vol. 6-6, 7-1, Yourdon Inc., New York

(1981).

Chang, Nina-San, Image Analysis and Image Data Base
Management, UMI Research Press, Ann Arbor, Michigan

(1981).

Douglas, R. J., "MAC: A Programming Language for
Asynchronous Image Processing," in Lanauages and

Architectures for Imaae Processina, Duff M. J. B.,
and Levialdi, S. (ed.), Harcourt Brace Jovanovich,
Publishers, New York, pp. 41-52 (1981).

Duff, M. J. B., "Parallel Processors for Digital
Image Processing," in Advances in Digital Ima e

Processing, Stucki, P. (ed.), Plenum Publishing

Corp., New York, pp. 265-276 (1979).

Duff, M. J. B., and Levialdi, S., Languaaes and
A Architectures for Image Processing, Harcourt Brace

Jovanovich, Publishers, New York (1981).

Foley, James D., and Van Dam, Andries, Fundamentals
of Interactive Comouter Graphics, Addison-Wesley

Publishing Company, Inc., Reading, Massachusetts

(1983).

Gudmundsson, B., "Overview of the High-level
Language for PICAP," in Languages and Architectures
for Image Processing, Duff, M. J. B., and Levialdi,
S. (ed.), Harcourt Brace Jovanovich, Publishers,
New York, pp. 147-156 (1931).

61

i



62

Kulpa, Z., "PICASSO, PICASSO-SHOW, and PAL -- A
Development of a Hiqh-level Software System for
Image Processing," in Languages and Architectures
for Image Processing, Duff, M. J. B., and Levialdi,
S. (ed.) , Harcourt Brace Jovanovich, Publishers,
New York, pp. 13-24 (1981).

Ledgard, Henry and Marcotty, Michael, The
ProGramming Languaqe Landscaoe, Science Research
Associates, Inc., Chicago, Ill. (1981).

Levialdi, S., Maggiolo-Schettini, A., Napoli, M.,
Tortora, G., and Uccella, G., "On the Design and
Implementation of PIXAL, a Language for Image
Processing," in Languages and Architectures for
Image Processing, Duff, M. J. B., and Levialdi, S.,
(ed.), Harcourt Brace Jovanovich, Publishers, New
York, pp. 89-98 (1991).

Maggiolo-Schettini, A., "Comparing Some High-level
Languages for Image Processing," in Languages and
Architectures for Image Processing, Duff, M. J. B.,
and Levialdi, S. (ed.), Harcourt Brace Jovanovich,
Publishers, New York, pp. 157-164 (1981).

Pratt, William K., Digital Imaae Processing, John
Wiley and Sons, Inc., New York (1979).

Radhakrishnan, T., Barrera, R., Guzman, A., and
Jinich, A., "Design of a High-level Language (L)
for Image Processing in Languages and Architectures
for Imaae Processing, Duff, M. J. B., and Levialdi,
S. (ed.), Harcourt Brace Jovanovich, Publishers,
New York, pp. 25-40 (1981).

Rosenfeld, Azriel and Kak, Avinash C., Diaital
Picture Processing, Harcourt Brace Jovanovich,
Publishers, New York (1976).

Sinha, R. M. K., "PLANG -- A Picture Language
Schema for a Class of Pictures," Pattern
Recognition, vol. 16, no. 4, pp. 373-383 (1983).

Williams, Robin, "Image Processing and Computer
Graphics," in Advances in Digital Image Processing,
Stucki, P. (ed.), Plenum Publishing Corp., New
York, pp. 219-234 (1979).

I'

4'_ _ _ _ _ _ _ _ _ _ __ _ _ _ _

- -- - -- _ _



APPENDIX A
ADA IMPLEMENTATION OF IPL

GENERIC
TYPE Pats is PRIVATE;
Organization : IN (Orthogonal, Hexeven, Hexodd)

Orthogonal;
MaskIndexFirst : IN Integer := 1;

PACKAGE IPL is
TYPE Index is Integer;
TYPE Pictures is

ARRAY (Index RANGE <>, Index RANGE <>) OF Pats;
Incompatible Pictures : EXCEPTION;

--Picture Operations
GENERIC

TYPE Element I is PRIVATE;
TYPE Picture 1 is ARRAY

(Index RANGE <>, Index RANGE <>) OF Element 1;
TYPE Element 2 is PRIVATE;
TYPE Picture 2 is ARRAY

(Index RANGE <>, Index RANGE <>) OF Element_2;
TYPE Element 3 is PRIVATE;
TYPE Picture 3 is ARRAY

(Index RANGE <>, Index RANGE <>) OF Elcment 3;
WITH F(Left Element 1; Right : Element_2)

RETURN Element 3 is <>;
FUNCTION Picture Binary_Op

(Left : Picture 1; Right Picture 2)
RETURN Picture 3;

-- Left and Right must be of the same size
-- i.e. Left'LENGTH = Right'LENGTH
-- Incompatible Pictures is raised if they are not
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GENERIC
TYPE Element 1 is PRIVATE;
TYPE Picture 1 is ARRAY

(Index RANGE <>, Index RANGE <>) OF Element_1;
TYPE Element 3 is PRIVATE;
TYPE Picture 3 is ARRAY

(Index RANGE <>, Index RANGE <>) OF Element 3;
WITH F(Left Element 1) RETURN Element 3 is <>;

FUNCTION PictureUnary_Op (Left : PictureI)
RETURN Picture_3;

FUNCTION Rotate 90 (P : Pictures; Times : Natural)
RETURN Pictures;

PROCEDURE InputPicture (P : OUT Pictures);
PROCEDURE Output_Picture (P : IN Pictures);

TYPE Nullities is (Nil, Valid);
TYPE Coordinates is RECORD (Nullity : Nullities := Nil;

Row First Index;
RowLast Index;
Column First Index;
ColumnLast Index)

CASE Nullity is
WHEN Nil => NULL;
WHEN Valid =>

Row : Index RANGE Row First..Row last;
Column : Index RANGE ColumnFirst..ColumnLast;

END RECORD;
SUBTYPE ValidCoordinates is

Coordinates (Nullity => Valid);

TYPE Histograms is ARRAY (Pats RANGE ->) of Natural;

I~I
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-- Mask Operations
SUBTYPE MaskIndex is

Index RANGE MaskIndexFirst..MaxInt;
TYPE Pat Mask is ARRAY

(Mask Index RANGE <>, Mask Index RANGE <>) OF Pats;
-- Mask objects can be explicitly converted to type Picture

GENERIC
TYPE Mask Index is RANGE <>; -- Integer Type
TYPE Element 1 is PRIVATE;
TYPE Mask 1 is ARRAY

(Mask Index RANGE <>, Mask-index RANGE <>)
OF Element 1;

TYPE Element 2 is PRIVATE;
TYPE Mask 2 is ARRAY

(Mask Index RANGE <>, Mask-index RANGE <>)
OF Element 2;

TYPE Picture 2 is ARRAY
(Index RANGE <>, Index RANGE <>) of Element_2;

TYPE Element 3 is PRIVATE;
TYPE Picture_3 is ARRAY

(Index RANGE <>, Index RANGE <>) of Element 3;
WITH FUNCTION Border Value (I, J : Index)

RETURN Pats is Zero Border;
WITH F (Ml : Mask 1; M2 Mask 2)

RETURN Element 3 is 7>;
-- F is called by Fly only with masks of the same size
-- i. e., Ml'Length(l) = M2'Length(1)
-- AND Ml'Length(2) = M2'Length(2)
FUNCTION Fly (P2 : Picture 2;

MI : Mask 1;
Mask Center Valid Coordinates)

RETURN Picture_3;
-- P2 and P3 must be the same size
-- i.e. P2'LENGTH = P3LENGTH
-- Incompatible Pictures is raised if they are not

GENERIC
TYPE Element 1 is PRIVATE;
TYPE Mask 1 is ARRAY

(Mask Index RANGE <>, Mask index RANGE <>)
OF Element 1;

TYPE Element 2 is PRIVATE;
TYPE Mask_2 Ts ARRAY

(Mask Index RANGE <>, Maskindex RANGE <>)
OF Element 2;

TYPE Element 3 is PRIVATE;
WITH "*" (El-: Element 1; E2 Element 2)

RETURN Element 3) is <>;
FUNCTION Linear Combination (Ml Mask_1; M2 Mask 2)

RETURN Element 3;
-- Ml and M2 must be of the same size
-- or Constraint error is raiser

t __ _ _ _ _ _ _



66

TYPE Adjacencies is (C4, C8, C6);
FUNCTION Adjacent (Cl, C2 : Valid Coordinates;

A : Adjacencies) RETURN Boolean;
Inconsistent_Adjacencies : EXCEPTION;

-- Region Operations
TYPE Region (Row First Index;

Row Last Index;
Column First Index;
Column Last Index) is PRIVATE;

FUNCTION Pat Value (R : Region; C : ValidCoordinates)
RETURN Pats;

FUNCTION Make Pat Region
(P : Pictures; C : Valid Coordinates) RETURN Region;

TYPE Boolean Pictures is ARRAY
(Index RANGE <>, Index RANGE <>) OF Boolean;

FUNCTION Make_Region
(P : Pictures; BP : Boolean Pictures) RETURN Region;

FUNCTION InRegion (R : Region; C : ValidCoordinates)
RETURN Boolean;

FUNCTION "+" (RI, R2 : Region) RETURN Region;
-- Union

FUNCTION "*' (RI, R2 : Region) RETURN Region;
-- Intersection

FUNCTION "-" (RI, R2 : Region) RETURN Region;
-- Difference

FUNCTION Complement (R : Region) RETURN Region;
FUNCTION PictureOf (R : Region) RETURN Pictures;
FUNCTION Next Member (C : Coordinates; R : Region)

RETURN Coordinates;
-- C must be in R or the Null Coordinates

Incompatible_Regions : EXCEPTION;

--Region Binary Operation
GENERIC

TYPE Element 2 is PRIVATE;
TYPE Picture 2 is ARRAY

(Index RANGE <>, Index RANGE <>) OF Element_2;
WITH F(Left Boolean; Right : Element_2)

RETURN Boolean is <>;
FUNCTION Region BinaryOp

(Left : Region; Right : Picture_2) RETURN Region;
-- Left and Right must be of the same size
-- i.e. Left.Last - Left.First = Right'LENGTH
-- IncompatibleRegions will be raised if they are not

-- Region Mask Operations
TYPE Boolean Mask is ARRAY

(Mask-Index RANGE <>, Mask Index RANGE <>)
of Boolean;

tA
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GENERIC
TYPE Mask Index is RANGE <>; -- Integer Type
TYPE Element I is PRIVATE;
TYPE Mask3 is ARRAY

(Mask Index RANGE <>, Mask index RANGE <>)
OF Element 1;

WITH FUNCTION Border Value (I, J : Index)
RETURN Boolean is Not In Border;

WITH F (Ml : Mask 1; M2 : BooleanMask)
RETURN Boolean is <>;

-- F is called by Fly only with masks of the same size
-- i.e. Ml'Length(l) = M2'Length(l)
-- AND Ml'Length(2) = M2'Length(2)
FUNCTION Region_Fly (R : Region;

MI : Mask 1;
MaskCenter : Valid Coordinates)

RETURN Region;

--Boundary Operations
TYPE Boundary (Row-First : Index;

Row Last : Index;
Column First Index;
Column-Last Index) is PRIVATE;

TYPE Boundary Classifications is (On, Off, Limit);
FUNCTION Pat-Value (B : Boundary; C ValidCoordinates)

RETURN Pats;
FUNCTION In Region (B : Boundary; C ValidCoordinates)

RETURN Boolean;
FUNCTION MakeBoundary (R : Region; A : Adjacency)

RETURN Boundary;
FUNCTION OnBoundary (B : Boundary;

C : Valid Coordinates)
RETURN Boundary_Classification;

TYPE Direction is (Clockwise, Counterclockwise);
FUNCTION NextPat (B : Boundary;

A : Adjacency;
D : Direction;
C_On, Cprevious : Coordinates)

RETURN Coordinates;
FUNCTION Region Of (B : Boundary) RETURN Region;
IncompatibleCoordinates EXCEPTION;

AL
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-- Registration
GENERIC

From Picture IN Pictures;
To Picture : IN Pictures;

PACKAGE Coordinate Pair Sets is
TYPE Coordinate Pair Set is PRIVATE;
TYPE FromCoordinates is Valid Coordinates

(RowFirst => From Picture'FIRST(l),
Row Last => FromPicture'LAST(l),
Column First => From Picture'FIRST(2),
ColumnLast => From Picture'LAST(2));

TYPE ToCoordinates is Coordinates
(Row First => To Picture'FIRST(l),
Row Last => ToPicture'LAST(l),
Column First => To Picture'FIRST(2),
ColumnLast => ToPicture'LAST(2));

TYPE Coordinate Pairs is
RECORD (Nullity : Nullities := Nil)

CASE Nullity is
WHEN Nil => NULL;
WHEN Valid =>

From : From Coordinates;
To : To Coordinates;

END Record;
SUBTYPE Valid Coordinate Pairs is

Coordinate Pairs (Nullity => Valid);
Null CPS : CONSTANT Coordinate Pair Set;
Inconsistent CPS : EXCEPTION;

-- This implementation does not use this error.
-- Its occurance is prevented by the package parameters
-- restricting calls to these functions with CPSs from
-- the input pictures only (From and To)

InconsistentRegistration: EXCEPTION;
FUNCTION "+" (Set_1, Set_2 : Coordinate Pair Set)

RETURN Coordinate PairSet; -- UNION
FUNCTION "*" (Set 1, Set 2 : Coordinate Pair Set)

RETURN Coordinate Pair Set; -- INTERSECTION
FUNCTION "-" (Set 1, Set 2 : Coordinate Pair Set)

RETURN Coordinate Pair Set; -- DIFFERENCE
FUNCTION Convert To Set (CP-: ValidCoordinate Pairs)

RETURN Coordinate Pair Set;
FUNCTION NextElement (CP :-CoordinatePairs;

Set : Coordinate Pair Set)
RETURN Coordinate Pairs;

-- CP must be in Set or-the Null_RegisterdCoordinates
FUNCTION Registered Coordinates

(Cl : From Coordinates; Set : CoordinatePair Set)
RETURN To Coordinates;

FUNCTION Change_RegisteredCoordinates
(CP : Valid Coordinate Pairs;
Set : Coordinate Pair-Set)

RETURN CoordinatePairSet;
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GENERIC
WITH FUNCTION Map (Frompt: FromCoordinates;

Enumerated Map: Coordinate Pair Set)
RETURN To Coordinates is <>;

From Picture: IN Pictures;
ToPicture: IN Pictures;
RegisteredMap : CoordinatePairSet;

PACKAGE Register is
No Registered Value : EXCEPTION;
FUNCTION Registered Coordinates

(From Point: FromCoordinates)
RETURN To Coordinates;

FUNCTION RegisTeredValue
(From Point: FromCoordinates) RETURN Pats;

END Register;
PRIVATE
TYPE Coordinate Pair Set is ARRAY

(From Picture'RANGE(l), FromPicture'RANGE(2))
OF To Coordinates;

NullCPS : CONSTANT Coordinate Pair Set
:= (OTHERS => (Nullity => Nil));

END CoordinatePairSets;

PRIVATE
TYPE Region is RECORD (Row First : In.lex;

Row-Last : Index;
Column First : Index;
ColumnLast Index)

BasePicture : Pictures (RowFirst..RowLast,
ColumnFirst..ColumnLast) ;

Region_Members : ARRAY
(Index RANGE Row First..RowLast,

Index RANGE ColumnFirst..ColumnLast)
of Boolean;

END Record
TYPE Boundary is RECORD (RowFirst : Index;

Row Last : Index;
Column First : Index;
ColumnLast : Index)

Base_Region : Region (RowFirst, Row Last,
Column First, Column-Last);

Boundary_Members : ARRAY
(Index RANGE Row First..Row Last,
Index RANGE Column First..Column Last)

of Boundary_Classifications
(OTHERS => Off);

Boundary_Adjacency : Adjacency;
END Record;

END IPL-

I'o
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APPENDIX B
BODY FOR THE ADA IMPLEMENTATION OF IPL

PACKAGE BODY IPL is

FUNCTION PictureBinaryOp (Left Picture 1;
Right Picture_2)

RETURN Picture 3 is
I, J Index;
Dummy Pictures (Left'RANGE(l), Left'RANGE(2)

BEGIN
IF NOT ((Left'Range(l) = Right'Range(1))

OR (Left'RANGE(2) = Right'RANGE(2)))
THEN RAISE IncompatiblePictures;
ENDIF;

FOR I in Left'RANGE(l) LOOP
FOR J in Right'RANGE(2) LOOP

Dum ynv (I, J) := F (Left(I, J), Right(I, J)
END LOOP;

END LOOP
RETURN Dummy;
END PictureBinary_Op;

FUNCTION Rotate 90 (P Pictures; Times Positive)

RETURN Pictures is

I, J, N : Index;
Dummy : Pictures (P'RANGE(l), P'RANGE(2));

*BEGIN
WI- ILE Times /= 0 LOOP

N := Dummy'LAST(2);
FOR I in P'RANGE(l) LOOP

FOR J in P'RANGE(2) LOOP
Dummy (J, N) := P (I, J);
END LOOP;

N := Index'PRED(N);
END LOOP;

Times := Times - 1;
END LOOP;

RETURN Dummy;
END Rotate 180;

4 70
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FUNCTION Picture UnaryvOp (Left : Picture_1)
RETURN Picture 3 is

I, J Index;
Dummy Pictures(Left'RANGE(l), Left'RANGE(2));

BEGIN
FOR I in Left'RANGE(1) LOOP

FOR J in Right'RANGE(2) LOOP
Dummy (I, J) := F (Left(I, J));
END LOOP;

END LOOP
RETURN Dummy;
END PictureUnary_Op;

FUNCTION Adjacent (Cl, C2 : ValidCoordinates)
RETURN Boolean is

Adj : Boolean;
BEGIN

IF (((A = C6) AND (Organization = Orthogonal))
OR ((A /= C6) AND (Organization /= Orthogonal)))
THEN RAISE AdjacencyError;
ENDIF;

Adj := ((((Abs (C!.row - C2.row)) = 1)
AND (C1.Column = C2.Column))
OR (((Abs (Ci.Colimn - C2.Column)) = 1)

AND (Ci.Row = C2.Row)));
IF NOT Adj
THEN IF A = .8

THEN Adj := (((Abs (Ci.Row - C2.Row)) = 1)
AND ((Abs (Cl.Column - C2.Column)) 1));

ELSEIF ((A = C6)
AND ((Abs (Cl.Row- C2.Row)) = 1)

THEN IF C2.Column - C1.Column = 1
THEN Adj := (((Organization = HexEven)

AND ((Rem (C1.Row, 2)) = 1))
OR ((Organization = HexOdd)
AND ((Rem (Ci.Row, 2)) 0)));

ELSEIF Ci.Column - C2.Column = 1
THEN Adj := (((Organization = Hex Even)

AND (Rem (Ci.Row, 2)) = 0))
OR ((Organization HexOdd)
AND ((Rem (Cl.Row, 2)) = 1)));

ENDIF;
ENDIF;

ENDIF;
RETURN Adj;
END Adjacent;

FUNCTION Zero Border (I, J: Index; P: Pictures)
RETURN Pats is

BEGIN
RETURN 0;

END ZeroBorder;
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FUNCTION Fly (P2 Picture 2;
Ml Mask 1;

Mask center IN Valid Coordinates)
RETURN Pictures is
Dummy : Pictures (P2'RANGE(l) , P2'RANGE(2));
M2 : Mask 2 (Ml'RANGE(l), MI'RANGE(2));
I, J, I Offset, J Offset, K, N : Index;
Hex Correction : Index RANGE 1..0;

BEGIN
FOR I IN P2'RANGE(1) LOOP
FOR J IN P2'RANGE(2) LOOP

IF (Organization /= Orthogonal)
AND THEN ((Rem (Mask Center.Row, 2))

= (Rem (1, 2)))
THEN Hex Correction 0;
ELSE HexCorrection 1;
ENDIF;

FOR K IN M2'RANGE(1) LOOP
FOR N IN M2'RANGE(2) LOOP

I Offset I + Mask Center.Row - K;
J-Offset := J + Mask-Center.Column - N

+ Hex Correction;
IF (I Offset IN P2'RANGE(1))

AND (J Offset IN P2'RANGE(2))
THEN M2(K,N) P2(I Offset, JOffset);
ELSE M2(K,N)

Border Value(IOffset, J Offset);
ENDIF;

END LOOP;
END LOOP;

Dummy(I,J) := F(Ml, M2);
END LOOP;

END LOOP;
RETURN Dummy;
END Fly;

FUNCTION Linear Combination (Ml : 1ask_; M2 MIask 2)
RETURN Element 3 is

-- Ml and M2 must be of the same size

-- or Constraint Error is raised
IMl, JMl, IM2, JM2 : Index;
TEMP Element_3 := 0;

BEGIN
IMI Ml'FIRST(l); JMl := MI'FIRST(2);
FOR IM2 in M2'RANGE(l) LOOP

FOR JM2 in M2'RANGE12) LOOP
Temp Temp + (MI(IMI, JMI) * M2(IM2, JM2));
IM: Index'SUCC(IMI);
END LOOP;

JM! := Index'SUCC(JMI);

END LOOP;
RETURN Temp;
END LinearCombination;

Iw
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PACKAGE BODY Coordinate Pair Sets is
FUNCTION "+" (Set 1,-Set 2 : Coordinate Pair Set)

RETURN CoordinatePairSet is -- UNION
I, J Index;
Dummy Coordinate Pair Set

(Set--'RANGE(l), Set 2'RANGE(2))
:= (OTHERS => (Nulli-ty => Nil));

BEGIN
FOR I IN Set 1'RANGE(l) LOOP

FOR J IN Set 1'RANGE(2) LOOP
IF Set II, J) /= (Nullity => Nil)

THEN IF Set 2(1, J) = (Nullity => Nil)

OR Set l(I, J) Set_2(I, J)
THEN Dummy(I, J) Set_1(I, J);
ELSE RAISE InconsistentRegistration;
ENDIF;

ELSE Dummy(I, J) := Set_2(I, J);
ENDIF;
ENDLOOP;

ENDLOOP;
RETURN Dummy;
END +

FUNCTION "* (Set 1, Set 2 : CoordinatePair Set)
RETURN CoordinatePairSet is -- INTERSECTION

I, J Index;
Dummy Coordinate Pair Set

(Set I'RANGE(l), Set 2'RANGE(2))
:= (OTHERS => (Nullitv => Nil));

BEGIN
FOR I IN Set 1'RANGE(l) LOOP

FOR J IN Set 2'RANGE(2) LOOP
IF Set 1(I. J) /= (Nullity => Nil)

THEN IF Set 1(1, J) = Set 2(1, J)
THEN Dummy(I, J) := Set !(I, j);
ELSEIF Set 2(1, J) /= (Nullity => Nil)

, 'THEN RAISE Inconsistent Reoistration;
ENDIF;

ENDIF;
ENDLOOP;

ENDLOOP;
RETURN Dummy;
END "*"-

FUNCTION Convert To Set (CP : Valid Coordinate Pairs)
RETURN CoordinatePairSet is

BEGIN
RETURN (CP.From Coordinates.Row =>

(CP.FromCoordinates.Column =>
CP.To Coordinates),

OTHERS => (OTHERS => (Nu'litv => Nil)));
END ConvertToSet;*1

*
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FUNCTION "-" (Set 1, Set 2 Coordinate Pair Set)
RETURN CoordTnatePairSet is --- DIFFERENCE

I, J Index;
Dummy Coordinate Pair Set

(Set 1'RANGE(1) , Set 2'RANGE(2))
:= (OTHERS => (Nulli-ty => Nil));

BEGIN
FOR I IN Set 1'RANGE(l) LOOP

FOR J IN Set 2'RANGE(2) LOOP
IF Set l(I, J) /= (Nullity => Nil)
THEN IF Set 2(1, J) = (Nullity => Nil)

THEN Dummy(I, J) := Set 1(1, J);
ELSEIF Set l(I, J) /= Set_2(I, J)
THEN RAISE InconsistentRegistration;
ENDIF;

ENDIF;
ENDLOOP;

ENDLOOP;
RETURN Dummy;
END "-"•

FUNCTION NextElement (CP : CoordinatePairs;
Set : CoordinatePairSet)

RETURN Coordinate Pairs is
-- CP must be in Set or the NullRegisterdCoordintes

I, 3 Index;
BEGI1N

IF CP.Nullity = Nil
THEN I Set'First(l);

J Set'First(2);
IF Set(I, J).Nullity /= Nil
THEN RETURN (Valid,

From => (I, J),
To => (Set(I, J));

ENDIF;
ELSE I CP.From.Row;

J CP.From.Column;
ENDIF;

WHILE (I /= Set'Last(l))
AND (J /= Set'Last(2)) LOOP

IF J = Set'Last(2)
THEN J := Set'First(2);

I := Set'RANGE(l)'Succ(I);
ELSE J:= Set'RANGE(2)'Succ(J);
ENDIF;

IF Set(I, J).Nullity /= Nil
THEN RETURN (Valid, (I, J), Set(I, J));
ENDIF;

ENDLOOP;
RETURN (Nullity => Nil);

END Next Element;

j
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FUNCTION Registered Coordinates
(Cl From Coordinates;
Set CoordinatePairSet)

RETURN ToCoordinates is
BEGIN

RETURN Set (Cl.Row, Cl.Column);
END RegisteredCoordinates;

FUNCTION Change Registered Coordinates
(CP Valid Coordinate Pairs;
Set : Coordinate Pair Set)

RETURN CoordinatePairSeE is -

BEGIN
Set(CP.From Coordinates.Row,

CP.From Coordinates.Column)

CP.To Coordinates;
Return Set;

END Change_RegisteredCoordinates;

PACKAGE BODY Register is
FUNCTION RegisteredCoordinates

(From Point: FromCoordinates)
RETURN ToCoordinates is

BEGIN
RETURN Map (FromPoint, Registered-Map);

END Registered-Coordinates;

FUNCTION Registered Value
(From -Point: FromCoordinates)

RETURN Pats is
Pt : ToCoordinatesl

BEGIN
Pt := Map (FromPoint, Registered_Map);
IF Pt.Nullity = Nil
THEN RAISE NoRegistered_Value;
ENDIF;

RETURN To Picture(Pt.Row, Pt.Column);
END RegisteredValue;

END Register;
END CoordinatePairSets;

A.
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-Region Operations
FUNCTION PatValue (R :Region; C ValidCoordinates)

RETURN P ats is
BEGIN

RETURN R.BasePicture (C.Row, C.Column);
END PatValue;

FUNCTION MakePat Region (P : Pictures;
C : Valid-Coordinates)

RETURN Region is
Dummy : Region (P'FIRST(l), P'LAST(l),

PtFIRST(2), P'LAST(2));
BEGIN
Dummy.BasePicture:=P
Dummy.Region_-Members (C.Row, C.Column) :=True;
RETURN Dummy;

END M4ake_Pat_Region;

FUNCTION Make_Region (P :Pictures;
BP :Boolean-Pictures)

RETURN Region is
Dummy : Region (P'FIRST(l), P'LAST(I),

P'FIRST(2), P'LAST(2));
BEGIN

IF (P-LENGTH(l)) /= BP'LENGTH(1)
OR (P'LENG-TH(2) /= BP'LENGTH(2))

THEN RAISE IncompatiblePictures;
END IF;

Dummy.BasePicture := P
Dummy.RegionMembers := BP;
RETURN Dummy;

END Make_Region;

FUNCTION In_Region (R : Region; C : Valid-Coordinates)
RETURN Boolean is

BEGIN
RETURN R.RegionMembers (C.Row, C.Column);

END InRegion;

FUNCTION "+" (RI, R2 : Region) RETURN Region is -- Union
I : Index;

BEGIN
IF Rl.BasePicture /= R2.BasePicture
THEN RAISE IncompatibleRegions;
ENDIF;

FOR I IN RANGE Rl.Row First. .Rl.Row. .Last LOOP
Rl.Region_Members(I) : RI.RegionMembers(I)

ENDLOOP;OR R2.Region-Members(I);

RETURN RI;
END ""
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FUNCTION H*" (Ri, R2 :Region) RETURN Region is
-- Intersection

I :Index;
BEG IN

IF Rl.BasePicture /= R2.BasePicture
THEN R.AISE Incompatible_Regilons;
ENDIF;

FOR I IN RANGE Rl.RowFirst. .Rl.Row Last LOOP
RI.Region_Members(I)T: Rl.RegionMembers(I)

ENDLOOP;AND R2.Region_Members(I);

RETURN Ri;
END 14*1 ;

FUN4CTION "-" (RI, R2 :Region) RETURN Region is
-- Difference

I :Index;
BEGIN

IF Rl.Base Picture /= R2.BasePicture
THEN RAIS9E Incompatible_Regions;
ENDIF;

FOR I IN RANGE Rl.Row first. .Ri,RowLast LOOP
Rl.Region_Members(I) : Rl.RegionMembers(I) AND

(NOT R2.Reaion Members(I) );
ENDLOOP;

RETURN Rl;
END If-to

FUNCTION Complement (R :Region) RETURN Region;
Dummy .Region (R.Row First, R.RowLast,

R.ColumnFirst, R.ColumnLast);
* I :Index;

BEGIN
Dummy.Base_Picture :=R.Base Picture;
FOR I IN R.RowFirst. .R.RowLast LOOP
Dummy.Region_Menbers(I) :=NOT R.RegionMe-,Thers(I);
END LOOP;
RETURN Dummy;
END Complement,

FUNCTION PictureOf (R :Region) RETURN Pictures is
BEGIN

RETURN R.BasePicture;
END PictureOf;
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FUNCTION NextMember (C Coordinates; R :Region)
RETURN Coordinates is

-C must be in R or the Null Coordinates
I, J :Index;

BEGIN
IF C.Nullity = Nil
THEN I R.RowFirst;

J R.Column-First;
IF In-Region (R, (I, J))
THEN RETURN (Valid3, Row => I,

Column => J);
END IF;

ELSE I C.Row;
J C.Column;

ENDIF;
WHILE (I 1=R.RowLast)

AND (J /= R.ColumnLast) LOOP
IF J = R.Column Last
THEN J R.ColumnFirst;

I Index'Succ(I);
ELSE J:= Index'Succ(J);
ENDIF;

IF in Region (R, (I, J))
THEN RETURN (Valid, I, J);
ENDIF;

ENDLOOP;
RETURN (Nulllitv => Nil)

END NextMember;

FUNCTION Region_BiJnary_Oo (Left :Region;
Right :Picture_2)

RETURN Region;
-Left and Right must he of the same size

i- .e. Left.Last - Left.First = Right'LENGTH
C -- IncomoatibleRegions is raised if they are not

I, J Index;
Dummy Region (R.Row_-First, R.RowLast,

4 R.ColumnFirst, R.C olumn_Last);
BEGIN

IF NOT ((R.RowLast-R.RowFirst = Right' Range~l))
OR (R.ColumnLast - R.Column First

= Right'RANGE(2)))
THEN RAISE Incompatible_Regions;
ENDIF;

Dummy.Base Picture :=Left.BasePicture;
FOR I in Right'RANGE(l) LOOP

FOR J in Right'RANGE(2) LOOP
Dummy.Region Members (I, J)

:F(Left.Reqion_Members(I,J), Right(I,J));
END LOOP;-

END LOOP
RETURN Oumm;

END PictureBinaryOp;
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FUNCTION Not InBorder(I, J Index) RETURN Boolean is
BEGIN

RETURN False;
END NotInBorder;

FUNCTION RegionFly (R : Region;
Ml : Mask 1;
Mask-Center : ValidCoordinates)

RETURN Region;
Dummy : Region (R.Row First, R.Row Last,

R.Column First, R.ColumnLast);
M2 : Boolean Mask (Ml'RANGE(l), Ml'RANGE(2));
I, J, I Offset, J Offset, K, N : Index;
HexCorrection : Index RANGE 1..0;

BEGIN
FOR I IN R.Row First..R.RowLast LOOP

FOR J IN R.Column First..R.Column Last LOOP
IF (Organization /= Orthogonal)

AND THEN ((Rem (Mask Center.Row, 2))
= (Rem (I, 2)))

THEN Hex Correction 0;
ELSE HexCorrection :=;
ENDIF;

FOR K IN M2'RANGE(l) LOOP
FOR N IN M2'RANGE(2) LOOP

I Offset I + Mask Centec.Row - K;
J-Offset := J + Mask Center.Column

- N + Hex Correction;
IF (IOffset IN R.RowFirst..R.Row Last)

AND (JOffset IN
R.ColumnFirst..R.ColumnLast)

THEN M2(K,N)
R.Region Memebers(IOffset,J_Offset);

* ELSE M2(K,N)
Border Value(IOffset, J Offset);

ENDIF;
END LOOP;

END LOOP;
Dummy.Region_Members(I,J) := F(Ml, M2);
END LOOP;

END LOOP;
Dummy.BasePicture R.BasePicture;
RETURN Dummy;
END Region_Fly;

4f
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-- Boundary Operations

FUNCTION Make Boundary (R Region; A Adjacency)
RETURN Boundary is
Dummy : Boundary (R.Row First, R.Row Last,

R.Column First, R.ColumnLast);
C : Coordinates := (Nullity => Nil);
I, J, K, N : Index;
Done : Boolean;

BEGIN
Dummy.BaseRegion := R;
Dummy.Boundary Adjacency := A;
C := Next Member (C, R);
WHILE C.Nulllity /= Nil LOOP

Done := False;
K 0;
N -1;
WHILE NOT Done LOOP

CASE K is
WHEN -1 => N N + 1;
WHEN 0 => K K + N;
WHEN +1 => N N - 1;
WHEN OTHERS => NULL;
END CASE;

IF Abs (N) = 2
THEN N := N/2;
K := 0;
ENDIF;

I C.Row + K;
J C.Column + N;
IF (I IN RANGE R.Row First..R.Row Last)

AND(J IN RANGE R.Column First..R.ColumnLast)
AND THEN (Adjacent (C, (I, J), A))
AND THEN (NOT R.Region Members (I, J))
THEN Dummy.BoundaryMembers (I, J) := On;
Done := True;

ELSEIF (K = 0) AND (N = -i)
THEN Done := True;
IF (Dummy.Boundary_Members

(C.Row, C.Column) = Off)
AND THEN ((C.Row = R.Row First) OR ELSE

(D.Row = R.Row Last) OR ELSE
(C.Column = R.Column First)

OR ELSE (C.Column=R.ColumnLast))
THEN Dummy.Boundary_Members

(C.Row, C.Column) Limit;
ENDIF;

ENDIF;
END LOOP;

C := NEXT Member (C, R);
END LOOP;

END MakeBoundary;

-- - . -- - -- ,- _ ..... __ __ __
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FUNCTION Pat Value (B : Boundary; C : ValidCoordinates)
RETURN Pats is

BEGIN
RETURN B.Base Region.BasePicture (C.Row, C.Column);

END PatValue;

FUNCTION InRegion ( B : Boundary; C : ValidCoordinates)
RETURN Boolean is

BEGIN
RETURN B.BaseRegion.Region_Members(C.Row,C.Column);

END In_Region;

FUNCTION OnBoundary (B : Boundary;
C : Valid Coordinates)

RETURN Boundary_Classification is
BEGIN

RETURN B.Boundary_Members (C.Row, C.Column);
END OnBoundary;

FUNCTION Region_Of (B : Boundary) RETURN Region;
BEGIN

RETURN B.Base Region;
END RegionOf;

-J

I

JY

_ __ _ _ _ _ _---
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FUNCTION NextPat (B : Boundary;
A : Adjacency;
D : Direction;
C_On, C_previous Coordinates)

RETURN Coordinates is
I, J, K, N : Index;
Found : Boolean;

BEGIN
IF (B.BoundaryMembers(COn.Row, COn.Column) = Off)

OR (B.Boundary_members
(C Previous.Row, C Previous.Column) = Off)

OR NOT (Adjacent (C On, C-Previous, A))
THEN RAISE IncompatibleCoordinates;
ENDIF;

K := C On.Row - C Previous.Row;
N COn.Column - C.Previous.Column;

Found := False;
WHILE NOT Found LOOP

CASE K is
WHEN -1 => IF D = Clockwise

THEN N N + 1;
ELSE N := N - 1; --Counterclockwise
ENDIF;

WHEN 0 => IF D = Clockwise

THEK K K + N;
ELSE K K - N; --Counterclockwise
ENDIF;

WHEN +1 => IF D = Clockwise

THEN N N - 1;
ELSE N N + 1; --Counterclockwise
ENDIF;

WHEN OTHERS => RAISE Incompatible Coordinates;

END CASE;
IF Abs (N) = 2
THEN N := N/2; K := 0;
ENDIF;

I := C On.Row + N; J := C_Column + K;
-- Have the next 8-neighbor to try

IF (I IN RANGE R.Row First..R>RowLast)
AND (J IN RANGE R.Column First. .R.Column Last)
AND THEN (B.Boundary_Members (I, J) /= OTf)
AND THEN (Adjacent ( (I, J), COn, A))
THEN Found := True;

ELSEIF (I = C On.Row - C Previous.Row)
AND (J-= C On.Column - CPrevious.Column)

THEN EXIT LOOP;
ENDIF;

END LOOP;
IF Found
THEN RETURN (I, J);
ELSE RETURN COn;
ENDIF;

END NextPat;
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