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5: PREFACE
3
Study, development and accomplishment of this thesis has been a
Tt great learning experience for me as it introduced me to the full scope
‘\\4
oy
o of indepth study. The rigors of research: attaining an idea, develop-
)
ing it, and moving forward, (be the result a disappointment and return-
§ ing to step one, or a success and going on to more indepth concepts),
%3 have given me much appreciation and personal committment to the life
;.. of a seeker of truth.
i I could not give this paper proper preface without acknowledging
Sy Capt. James K. Hodge to whose credit I owe the beginning conception of
' this project. I most sincerely thank Capt. Hodge for his constant
1: interest manifest by his support and insight at times of frustration,
‘g and for his caring concern reflected by encouragement, be that in the
- form of enlightening criticism or compliments.
&Y
3 Individual thanks I also express to my sweet wife, Debbie, for her
D
£y loving support and assistance. I also thank my children, Joseph and
- Jamie for their patience with 'Dad' as he reached for his goal of
¥ achieving higher learning.
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ABSTRACT

There are basically two techniques used to solve the Navier-Stokes
equations for fluid flow. These techniques are implicit and explicit
methods. Both methods along with characteristic boundary conditions
for solving quasi-one-dimensional nozzle flow are ~esented. Two types
of characteristic boundary conditions, those of ¢ 1er and McKenna,
were tested for each scheme. Solutions of isentr : supersonic flow
and flow with shocks were obtained for a divergin - .zle. The
behavior of each boundary condition on both implicit and explicit
schemes were the same. They deviated from the theoretical values by
less than one percent. A test to determine the utility of each scheme
was run by allowing the exit boundary conditions to change in the hope
of forcing the shock to move upstream or downstream. The shock would
not move in the implicit scheme for either boundary condition. The
explicit scheme could move the shock, but only when Steger's boundary
condition was used. (This is the one which specified only pressure.)
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I. INTRODUCTION

During the last decade much progress has been made both in the
development of computer systems that are more powerful and reliable
and in numerical techniques of solving the compressible Navier-Stokes
equations. In spite of this rapid progress in these two related areas,
we still cannot calculate the flow fields past complete aircraft
configurations (e.g., commercial transport, fighter aircraft, reentry

. vehicles, etc.,) at flight Reynolds numbers. If we could efficiently
- calculate the flow field, there would be no need to conduct wind
tunnel testing or build expensive experimental test vehicles. These
costly experimental devices could all be supplanted by simply solving
3 the compressible Navier-Stokes equations. Once the technique of solv-
ing these equations is perfected, the result wil. be a dramatic
decrease in the design cost of new aerodynamic vehicles. Since we are
- not yet able to efficiently solve the compressible Navier-Stokes
equations, continued research in this area is important., The process
of developing bigger and more powerful computers is one aspect in
solving the Navier-Stokes equations, but the development of numerical
algorithms that efficiently and accurately solve these equations is the
motivation behind this paper.

To date a number of algorithms have been written that accurately
solve for some flow fields. These algorithms however, are only accurate
for simplified configurations or components of complicated configura-

tions. Three important factors that must be considered in developing

. - - - A -
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a numerical algorithm are: first, its convergence rate (how fast it

can solve a problem); second, its robustness or reliability which means
providing correct answers for a variety of problems; third, its ability
to adapt to complicated geometries in either two or three dimensions.
This criteria was and still is the guide for developing a new and better
numerical algorithm.
Basically, algorithms can be classified into two categories:

> explicit and implicit methods. During the 1950's and 1960's several

explicit finite-difference algorithms were developed such as

Lax-Wendroff1 types and the popular MacCormack's method.10 These

methods were very popular and capable of handling a variety of problems.
They were able to solve high Reynolds number flow problems as well as
inviscid-viscous interactions. During the 1970's however, researchers
developed implicit methods to gain better computational efficiency over
the explicit methods. Again, both the implicit and explicit methods

have enjoyed some degree of success, but each have their own unique
limitations. For example, the convergence rate of explicit methods are
highly sensitive to space mesh size and in order to improve the solution,
the space meshes must be refined in areas such as boundary surfaces,
shocks, and stagnation points. Consequently, the computer time needed
to converge to a solution becomes very large. Also, explicit methods
are conditionally stable. Therefore, in order to calculate high Reynolds
number problems a large amount of computing time is required due to the
small time step limitation imposed by the stability condition. On the

other hand, implicit methods are unconditionally stable and are not

restricted to explicit stability conditions. However, they are more
complicated than explicit methods and are not as robust. They also

have problems in handling the inviscid region as well as with shock

2
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capturing. Today the major emphasis is with implicit methods because
they do not require as much computer time as explicit methods.
(MacCormack and Lomax2 as well as Hollanders and Viviand3 have

presented papers that compare the relative pros and cons of the explicit
and implicit methods as well as their many variations.)

The purpose of this paper is to study implicit techniques used in
solving the compressible Euler equations. Areas such as boundary
conditions, differencing techniques and shock capture are addressed.
Using the criteria of convergence rate, robustness, and adaptability,

the advantages and disadvantages of implicit methods will be determined.




II.

GOVERNING EQUATIONS

Throughout this paper the test equations used are the quasi-one-
dimensional Euler equations. The one dimensional Euler equations are
used because of their simplicity to demonstrate the principles presented.
The extension to two and three dimensions as well as the full
compressible Navier-Stokes equations is straightforward. It is
important to stress the fact that if the extension to three dimension
were not straightforward, then that particular method would be useless.
Useless, because it cannot be applied to realistic problems.

The quasi-one-dimensional unsteady compressible form of the Navier-

Stokes equations, neglecting body forces and heat sources, can be

written in conservation form as

%% + %§-+ H=0 (1)
where
p
Ue{pu (2)
e
and ou
2
F=lpu +0 (3)
u(o+e)-ka
4
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ﬁ and where
P
X du du
¥ oc=p 1-5; 2p 3x (5)
’ 2
but by using Stoke's hypothesis (A = -3 7))
=
. 4 3Jdu
¥ O=P - M 3; (6)
X The vector F is the flux vector while U is the vector of conservative
5 variables and H is the source term. The governing equations are in the
. "weak" conservation form because the source term (H) is outside of the
. derivatives of the conserved variables. The primitive variables are
' density p, pressure P, and velocity u. The total energy per unit volume
~
N is represented by e and defined as
. P u2
: e s -;_—1 + '&—2 (7)
i: where gamma (y) is the ratio of specific heats. The viscosity
R coefficients are A and u while the coefficient of heat conductivity
@ and temperature are represented as k and T respectively.
g
3
b . Normalized Governing Equations
; The governing equations are normalized so that the characteristic
X parameters of the problem may be independently varied. The reference
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condition used is the freestream condition. The dimensional values
are normalized as follows
g £
U s = =
Qg P Po
X = z t = t
L L;uo
' P e
P = GauT " Bol
’ e
H ™
The continuity equation will be normalized to demonstrate how the
procedure is performed.
Given
a 3p U
& F5-0 (8)
multiply the whole expression by lu to get
L
3 P 3 p T _
3E_po 9% pouy 0 9
L7 Ug L
or in nondimensional form
S , 3ou
T T (10)
The momentum and energy equation are nondimensionalized the same way
PR 1 1 .
. only they are multiplied by =7 and =7 respectively.
| L
6
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III, BOUNDARY CONDITIONS

The study of boundary conditions is important in solving any
partial differential equation. Even the extension to finite difference
equations does not deter from this fact. The way boundary conditions
are chosen can influence the result of any numerical scheme (i.e. con-
vergence, stability, and accuracy). In fact, though one might start
out with a stable interior scheme (i.e., scheme for the interior points),
it can become unstable and inaccurate if the boundary conditions are
improperly treated.

In this section numerical boundary schemes are studied.
Specifically, those schemes that can be used with an implicit finite
difference scheme. Implicit boundary condition procedures have been
studied for several years for the purpose of reaching a time-asymptotic
steady state faster as well as for allowing a time step that is

unrestricted by the Courant, Friedrich, Lewy (CFL) stability criteria.

Backggpund Information

Congider the simple wave equation

2aeBoo, o1, 20 (11)

with the initial condition
u(x,0) = £(x)

Kreiss4 has shown that according to mathematical laws, in order to be

able to solve this type of problem, certain analytic boundary conditions

]J"‘ ORI LA e AT o
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must be specified. These boundary conditions are dependent upon the

sign of C (positive or negative). For example, if C is positive then
there must be a boundary specified at X = 0, or if C is negative then
the boundary condition must be specified at X = 1, In mathematical

terms

| u(l,t) = gl(t) for ¢<0
g o

u(0,t) = gz(t) for >0

Once this information is specified the solution of this problem can
proceed in a straightforward manner.

Now look at a system of two linear wave equations:

Ju Ju
5;-+ c sg»c 0

and (12)
%% + a %¥-= 0

The two boundary conditions needed to solve this problem are again

determined by the signs of 'c' and 'a'. For ¢>0 and a>0 the boundéry

conditions are given by specifying u and v at x = 0. Problems arise

though when 'a' and 'c' have different signs. To demonstrate this

suppose c>0 and a<0., This means that the waves in u travel from left to

right while the waves in v travel from right to left. Therefore, u

must be specified at x = 0 for one boundary condition while v must be

specified at x = 1 for the second boundary condition. Now if u and v

are expregssed (at the boundaries) in terms of each other, problems

arise. For example, let

u(x,0) = 1 v(x,0) = 0 (initial condition)




e v e

As the right running wave 'u' approaches the right boundary (x = 1) it
causes 'v' (which is in terms of u) to be non-zero. A disturbance is
generated each time a wave reaches the boundary. This type of boundary
condition is referred to as a "reflective boundary condition”.

The examples presented are simple models. It was easy to identify
the variables and where they were to be specified. The extension to
three coupled equations (i.e. Navier-Stokes) increases the complexity.
The choice of variables and how they are specified is no longer clear.
Problems with reflective boundary conditions are another problem area.
A method is needed to determine how these complicated boundary
conditions should be handled. This method should represent the physics

and be mathematically correct.

Characteristic Theory

The mathematical theory of characteristics for hyperbolic systems
of equations is an important clue in determining how boundary conditions
should be constructed. Many researchers have also used this clue
(ref. 5-9). Characteristic theory is an important clue because it can
be used to determine the number of boundary conditions needed to solve
a problem without over-determining it. Lets look again at a model

hyperbolic equation

du du
«a-E-rcs;‘--O (13)
and let
T
“'(8)
and
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> From characteristic theory it is known that the eigenvalues of a
b hyperbolic system of equations (known as the characteristic direction)
i: are used to determine which direction the information propagates at the
j: boundaries. Knowing which direction the information flows is vital in
h knowing how many or which boundary conditions are needed. For the model
. equation the eigenvalues (A) of the 'C' matrix are determined by

d

X

i 1-» 0

J . = (1-A) (~1-A) = 0

0 -1-A

% or

.% ,

‘ A1 =0
f: finally
2 A = $]

X The sign (positive or negative) of the eigenvalues is what determines
N vhich direction the information flows (see Figure 1).
N
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From this example it is clearly demonstrated (as stated previously)
that for positive A which is associated with r, a boundary condition is
needed at x = 0 and for negative A associated with s, a boundary
condition is needed at x = 1. Another view of characteristic theory is
obtained by exploring compatibility conditions. More specifically, a
hyperbolic system of equations such as the one-dimensional compressible
Navier-Stokes equations is equivalent to three characteristic
compatibility conditions. These compatibility conditions are valid
along the characteristic curves and are in the form of ordinary
differential equations. The slopes of the characteristic curves are
given by the eigenvalues. The direction of these characteristic curves,
which again are determined by the sign of the eigenvalues, are used in
determining boundary conditions. For example, those curves that reach
the boundaries from inside the computational domain are considered
"admissible". Admissible because they allow information to propagate
out of the domain, Those curves that reach the boundary from outside
the computational domain are called "inadmissible" because information
cannot propagate into the domain. Computational boundary conditions
are boundary conditions that are allowed to float or are calculated.
They are used with compatibility conditions associated with "admissible"
characteristic curves. Specified boundary conditions are boundary
conditions that are specified. They are used with those compatibility
conditions associated with "inadmissible" curves. In order to under-

stand this concept more easily, look at Figure 2 and Figure 3.

11




outflow boundary outflow boundary

>
>

B/c | B | c
interior exterior interior exterior
points points points points
Fig. 2 - Flow of Information Fig. 3 ~ Flow of Information

In Figure 2 the characteristic curves of A, B, and C are all
admissible, they propagate information out of the computational domain.
Therefore the boundary conditions must be calculated for all three
compatibility conditions. The sign of the eigenvalues are all positive.
In Figure 3 only curve C is inadmissible, therefore a specified
boundary condition is needed for this compatibility condition while the
boundary conditions for curves A and B are again calculated. Here, A
is positive for curves A and B but negative for the 'C" curve. It is
important to note that the eigenvalues do not need to be calculated.
The only information needed is the sign (positive or negative). The
role of positive and negative eigenvalues at the left boundary are
reversed at the right boundary. These concepts can and will be used

with the Navier-Stokes equations.

Nozzle Boundary Conditions

The determination of boundary conditions for a nozzle is dictated
by characteristic theory. The slope of the characteristic curve or

sign of the eigenvalue determines what variables are specified and

12
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which are calculated. As will be shown later, the eigenvalues for the
one-dimensional inviscid compressible Navier-Stokes equation are:

Al =u

Az = u+c

A3 = u~-c

where "u" is the velocity and "c" is the speed of sound. It is evident
that the eigenvalues, which determine the boundary conditions, will be
determined by the velocity (i.e., subsonic or supersonic).

For nozzle flow, the boundary conditions are simply determined by
the velocities at the inflow and at the exit. For the subsonic inflow

condition the signs of the eigenvalues are:

Al = w0
Az = u+c>0

A3 = u-c<0

1

here X1 and Az are positive while Aa is negative. This corresponds

to the slopes of Figure 3 (only this time it is for the inflow boundary).
The only characteristic curve that propagates information from the
computational domain to the boundary is A3. This means that the
variables associated with Xa should be calculated while the variables
associated with Al and 12 should be specified. The variable associated
with Al is from the continuity equation. The variables associated with
Az and 13 are derived from the momentum and energy equations

respectively. For the supersonic inflow condition:

Al = 00
Ay = usc>0

Aa = y=c>0

13
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all the eigenvalues are positive which correspond to characteristic
curves propagating information to the boundary from outside the
computational domain. Therefore all the inflow variables should be
specified. Note that the eigenvalues for the subsonic outflow have the
same sign as the eigenvalues for the subsonic inflow but the boundary
conditions are not the same. They are reversed. For the subsonic
outflow according to Figure 3 Al and Az should be calculated while A3
should be specified. For supersonic outflow conditions all the
variables should be calculated. This was the procedure used in
determining boundary conditions for the algorithm.

Note, nothing has been said about the variables associated with the
eigenvalues. At first, one would think that the variables should be
the primitive variables: density-continuity equation, velocity-momentum
equation, and pressure-energy equation. Upon closer examination it is
noticed that when the equations (Navier-Stokes) are uncoupled these are

not the correct variables.

Characteristic Variables

Characteristic variables are the variables associated with
eigenvalues. These are the variables that need to be specified or
calculated. The inviscid Navier-Stokes equation representative of one-

dimensional flow is given as

-g%+-g—§+n=o (14)

Now by using the Jacobian Matrix which is defined as

AW = 3% (15)

14
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The equation can be rewritten as

EramyEru=o (16)
The Jacobian matrix can be reduced to

1

A(U) =X DX (17)

where x-1 is the eigenvector matrix and D is the diagonal matrix of the
eigenvalues. The Jacobian Matrix (A(U)) for these equations (with

viscous terms neglected) is given by

0 1 0
aF u2
A(U) = il (Y-3)-§- ~-(y-3)u v-1 K18)
e 3 e 3 2
Q:yu (p) + (y=-1u (p) - (EJ(Y-I)U Y%_

(see Appendix A for the derivation of the Jacobian)

The eigenvalue matrix is

D= 0 u+c 0 (19)

The transformation matrices are

1 a o ]




B 2
u -1
- ()
u2 |
x = | B((y=1) = - uc)

(y-1) é%
B(c - (y=1)u)

2
B((y-1) E%— + uc)

=B(c + (y=1)u)

1

B = e
vZpe

Now substitute equation 17 into equation 16 to get

du + ?(xDx-l)U

e O

Now multiply the whole equation(22)by x—l to get

-1
x-l du . x-l 3(xDx u

ot ax =0

derivative expression.

-1 -1
dx ‘u + aDx "u

: at . ax =0
or
3 3D Q _
5% *ox T 0
where
x1yag
and
xlxe1
This equation
3Q aQ _
FE +D I 0

...............

()
B(y-1)

B(y-1)

|

Since Xm1 is a constant matrix (locally) it can be placed inside the

X TE T T e W I TR TR TR

(21)

(22)

(23)

(24)

(25)

(26) |

(27)

(28)
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looks like the simple wave equation (12)that was used as a model,
i Instead of the variables u and v the variables are now Ql’ Q2’ and Q3,

which is simply the U matrix (vector of conservative variables)

»
P N R R

multiplied by the eigenvector matrix X-l. The results are

e *r “r
-4 2

- P = El"f

| X v - Q; = | B+ poCoU (29)
- P = poCol

3 It was assumed that deviations from the free stream are so small that
-i the entries in the Jacobian can be treated as constants-locally. That
; is where the Q-subscript originates. The eigenvalues associated with

j; 'a' and 'c' are u, u+c, and u-c.
From the sign of the eigenvalues (u, u+c, u-c) and the

characteristic variables, boundary conditions can be defined.

<

; Numerical Conditions

3 Numerical boundary conditions are boundary conditions used with

2 finite difference equations. They are the numerical implementation of
% analytic boundary conditions. Interesting problems arise between the

N differencing technique and the way boundary conditions are chosen. For
- example, the way the spatial derivative term (%%) is differenced

%E ' _ affects the way boundary conditions are specified. To demonstrate

Z this fact, suppose a central finite difference approximation is used

{j ) for the spatial term. There are now two points outside the boundaries

17
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that need to be either specified or calculated. Another way to look

at it is to look at a discrete mesh (Figure 4)

inflow boundary

$

3

$
-1012340'oocooJ"1JJ+1

outflow boundary

v

Fig. 4 - Discrete Computational Mesh

with J points in the computational domain, The points -1 (outside the
inflow boundary) and J+1 (outside the outflow boundary) are outside the
computational domain. The value of these points must be made known

in order to solve for the Jth and 0th point according to the difference

relation
(u -u; .)
Jdu J+1 J=-1
= [, A% (30)
and
(u; ~u )~
Ju 1 -1

How these values are determined is directly related to the boundary
conditions.

As already stated before, the sign of the eigenvalues determines
which direction information flows at the boundary. Boundary points are
calculated by use of this information. For example, if the eigenvalues
are positive at the outflow boundary, a backward differencing scheme
should be used. If the eigenvalues are negative then a forward
differencing scheme should be used. This is because with positive
eigenvalues information flows from inside the computational domain to
the boundary. Therefore one would not want to use a forward

differencing scheme because then there would not be any continuity

18
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(of information waves) at the boundary. Visually this can be

represented by Figure 5.

Outflow Boundary Outflow Boundary
J-1 J J+l J-1 J J+l
interior points exterior points interior points exterior points
. A>0 A<0
backward differencing scheme forward differencing scheme

Fig. 5 - Differencing Scheme
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3 IV. MACCORMACK'S IMPLICIT ALGORITHM

MacCormack has developed a new implicit algorithm for solving the inviscid
Navier-Stokes equation. It is an extension of his 1969 explicit
predictor-corrector algorithmlo. Because it is an extension of an
explicit algorithm this new scheme is not truly implicit. For example,
it is not unconditionally stable but it does retain a few of the
advantages of implicit algorithms such as larger time steps.

The new method11 is composed of two parts. The first part
explicitly solves the governing equations by using known flowfield
properties to determine local flowfield changes. The second step

numerically transforms the equation into an implicit form to remove

CN Ax

the explicit stability criteria (At u+a

) The true flowfield

changes are then calculated and substituted into a Taylor series in

time to find the new flowfield properties.

Derivation
Differentiating the one-dimensional Navier-Stokes equations with

respect to time gives

9 /U 9 (OF dH
w@  wG) o (32)
Using the Jacobian, the above equation can be rewritten as
i(ﬂ) 2 (A3U), 3H QU _
3 (56) * = 5t) ¢ 59 3t (33)
20

................
--------

PR P R L SRR R T .. - i PR L. R
Tttt ettt Al e P P SRR AP SR Nl SR I '.-\_ _n_l-\A\-A-l‘ At e m™ e e AR T Tt e e e e



M N Sd S A A A i
. e e T RN R e

Implicitly approximating this equation (33) leads to

N+l N
dA° ol \ aU au
(I + At T +At —BU)—_& =3 (34)

The dot means the derivative operates on the term outside the

parenthesis. The equation (34) can now be rewritten as

<I + At -g%' + At -g%) ooyt = au} (35)
- if the following are defined
suM*l . —-Ug-i At (36)
E and
: At = 3"—1‘- At (37)
A closer look at equation (35) reveals the two step procedure.

The right hand term represents the explicit solution of the governing
equations while the left hand side of the equation represents the
numerics of the implicit algorithm., Because MacCormack uses a
predictor-corrector approach equation (35) is rewritten as

: predictor:

(2 + 48 1alf +At( &) el BTl A elT

1+l i+l

where

. IR c L. . I T T S P
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o) corrector:

— N+1 —

At N+1 oH N+1 N+1 At N+1 N+1
1+ g Al e ae (5); ) ool o= aultt e (At eult)
where —

NiT P 'Fr‘hi R+l
AL o e [ A2 ) e g
i i
and where
) 0 0 0
oH - (x-l) 2 9A _ (1-1) A (y-1) 23A
_ 11 a0 = 5 Y% & =&
,;:: 0 0 0

Spatial derivative terms are approximated by a forward difference for
predictor and backward difference for corrector,

The Jacobian (A) is the same as previously defined in equation 17
and 18, The absolute value of the Jacobian (|A|) which is used in the
predictor and corrector equations is defined as

1

|a] ~ %2, X7 (38)

(The transformation matrices have already been given, see equations
20 and 21).

The eigenvalue matrix is written as

PR
AA - 0 AAZ 0 (39)
0 0 A
— A34

22
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where

AAI = max (Iul -CE (%%) , 0.0)

A
AAZ = max <lu+c| -CE(K% ’ 0.0)

AAa = max (|u-c| -CE(%%), 0.0)

CE = a constant related to the Courant number used for
the explicit stability.

where

< CE (Ax)

At = zu-l-cs

If the explicit stability criteria is used the AA matrix goes to zero.

This allows the true flowfield changes to be calculated in the explicit

part of the program thereby skipping altogether the implicit part.
Throughout this paper only the inviscid form of the equations were

used. If viscous effects are included, the eigenvalue matrix would

become:
A = |u] +'52-A'\::--CE'2_:
Ay = |use| +32A%:'-CE %
Ay = |u-c| FZAY,?-CE -ﬁ—’t‘

(Note: v is nondimensionalized by dividing it by Vo)

Modification to MacCormack's Implicit Algorithm

Careful analysis of MacCormack's predictor - corrector equations
reveals that after the explicit (local) flowfield changes have been

calculated and substituted into the right hand side of equation (35)

an upper block bidiagonal system of equations will result for the

23
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predictor step. A lower block bidiagonal system of equations will

result for the corrector step. In order for the solution to progress a
matrix inversion must be performed at each computational point which
will result in a large amount of computer time, thus defeating one
advantage of implicit methods.

MacCormack however, has devised an ingenious way to circumvent
the inversion process. The [Al matrix, which needs to be inverted, is
diagonalized thus making its inversion trivial., Problems with this
technique arise when the source term "H" is included in the implicitly
approximated governing equations (equation 35). The diagonalization
cannot be performed and a matrix inversion must be computed for each
point. However, a modification to MacCormack's scheme that will allow
a diagonalization by neglecting the source term in the implicit
numerics was presented in a paper by White and Andersonlz. They
reasoned that the source term "H" could be removed from the implicit
numerics because "The physics of the flow is carried by the explicit
step (which contains the source term in the governing equations), and
the implicit step (which under the present modification dces not contain
the source term) is simply numerics to bring about enhanced stability."

Using their modification the implicitly approximated equation can be

revritten as predictor:

F, -F.

N i+l i N

Aui = - At ¥ - At Hi
At N\ . N+1 N At N N+
(I * Bx |a] i) Uy =AUy ¢ Ax 4] i+l *iel

ol LN N
i i i
24
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iﬁf corrector: _
. AU§+1 = - At Eg:;&;;;i - At H§:T
(o g5 1l TT) oot = T 48 1oy T ]
PR

This is in a form that results in an upper and lower block

bidiagonal system which will allow a diagonalization to occur.

-i Solution Method
: As already stated before, this scheme is a predictor - corrector
'E type. The predictor equations are solved first and their results
are used in solving the corrector equations. The results from the
corrector step, the true flowfield properties, are then used in
calculating the predictor step. This process is repeated until the
‘;‘ scheme converges. In order to understand this scheme more fully the
predictor step will be reviewed in detail. The principles used in the
}' corrector step are the same as those used in the predictor step. The
: extension therefore should be straightforward.

Initially all the conservative variables "U" are specified
(initial guess) for all i = 1,2,3...J (J = is the total number of

computational points). Once the end boundary condition is found

N N+1 . . . .
. |A| i+l 6Ui+1 the right hand side of the predictor equation can be

solved and represented as "W"

e RN I o
LIER AR i LY Ul (41)
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+1 . . At N
, @ matrix inversion of (I + T [A] ;) must

In order to solve for 6U?
be performed. By using the relation A = XDX-1 the matrix may be
diagonalized thereby foregoing the costly (in computer time) matrix

inversion. Making this substitution, the equations can be written as

At -1\ N+l
(1+-A—xanx )6Ui =W (42)

Now pre-multiply both sides by X-l to get

-1 At -1 N+l -1
(x +EDAX)6U1 =X tWavy (43)

Regrouping, the left hand side is now written as

At -1 . N+1
(I * DA) X GUE =V (44)

The matrix (I + %& DA) is diagonal so that its inversion is trivial.

The equations can now be written as

-1 . N+l At -1
X sutt = (1 + 5 DA) V=Y (45)
Where 6UN+1 is found by multiplying the equation by X. The flowfield

i
changes for the point i have just been calculated. Now, in order to

calculate the values for the next point (i-1l) the term |A| ? 6U§*1 must

be calculated. Calculating this term will give all the values for the
right hand side of the equation. Once all these values are obtained the
procedure used to solve for GUQ:i (on the left hand side) is exactly
the same as stated before. An efficient way to calculate the |A] ? su;

term is to multiply the already known value of Y by DA then by X. In

mathematical terms

4| ‘: GU?_H =XD, Y (46)
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Using this method the predictor step sweeps down from i = J to the

i = 1 computational point. The corrector step starts at i = 1 and
marches to the i = J point. Local values are used in calculating the
matricies X, D, and X-l at each point.

The solution process can be summarized in the following seven steps:

N N+l
1. W= AU, lAl i+l U1:+1
2. v=x1lu
3. DA is calculated
At -1
4. Ya(I+-A—x-DA> v
50 6I€+1=XY
7. Ja| Vet =xz
i i

Because the matrix is diagonal in step 4 the inversion is trivial.
Step 5 calculates the flowfield changes while step 7 calculates the
flux to be used for the next computational point. If Neumann type

boundary conditions are used the [A] I; 6U2N+1 term is saved and used

as the boundary condition for the corrector step. The |A| N+1 UN+1
term is saved from the corrector step and used as the boundary

condition for the predictor step. Because of this the boundary

conditions are not truly implicit but lag by 1/2 time-step.

Extension to Multi-Dimensions

The value of any one-dimensional scheme is proportional to its
ability to adapt to multi-dimensions. A one-dimensional scheme that

is extremely accurate but not able to convert to multi-dimensions is

27
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severely limited. The method in devising any numerical scheme is

to start out with a simple model, then add upon that model so that it
can handle a wider variety of problems, If the model cannot expand then
it is a poor model. If the model can expand while still retaining some
degree of accuracy then one has a good model. The idea is to start out
simple and then become more sophisticated.

MacCormack's implicit scheme is a robust scheme. It can handle a
wide variety of problems as well as being able to expand to two and
three dimensions. The extension from the simple one-dimensional case
to two and three dimensions is straightforward. To demonstrate this
fact the scheme will be developed for the two-dimensional case. The

general equation form is given by

%4-%;*-%%30 * (48)

Differentiating the general equation (48) with respect to time and

using the Jacobian yields

333 ) @)
at . at/ at/ _ 0 (49)
ot 9x 3y

(A and B are the Jacobians). Now implicitly approximate the above
equation (49) in time to get

38-) autt oV

3A*
(1 + At Tl At B Tl - (50)

The dots have the same meani:.. as before (the derivative acts on the

term outside the parenthesis). U.ing the following substitutions

aut

AUN = At TE- (51)
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and

N+1
su™*l o at E%ﬁ;- (52)

and by using forward and backward differencing the above equation (50)
can be written in predictor~corrector notation as

predictor:
N N N N

ot - (Fi+1,ij i), (Chainl _ Gili>

A

At N At , N N N+I _ , N
(t-% (Aa,5 - Ai,j)) (T -3 (Bj 500~ Bi,4) U5 5 = dug

i,] i, i,]

o el

1] 1,] 1,]

corrector:
N+1 _ FN+1 N+l GN+1
N+l _ i,j i-1,j i,j i,j-1
AUi,' At ( A% ) + ( By )

At At N+l _ , N+l
(T + 5 Ay 5= 85,50 (T+g B 5 -8 5 ) oupty = au

uy =2 (0F,5 + UL TE 4 Uyt
1,] 2\ 1,] 1,]

1 and B = yo.Y !

B
where the matrices X, DA’ and X-l are the same as beiore except for the

The Jacobians are defined (same as before) as A = XDAX-

terms from the Y ~ momentum equation. The matrices Y—1 and D, are found

B
the same way as X.'1 and DA were. They are given as
B 2, 2
(u™+v%) u(y-~1) v(y-1) -(1-1)._
1-(y-1) 2 c? cé c
-u 1
. 5 5 0 0

(u2+v2)
— (y-1)=cv  -u(y-1) c~viy-1) (y-1)
(u2+v2)

L-—z—— (y=D+cv  -u(y~1) -c-v(y-1) (y-1)
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and

v 0 0 0
0 v 0 0
Dy = (54)
0 0 vV +ecC 0
0 0 0 V-ce

The solution procedure for this scheme in two-dimensions is explained
in detail in reference 11. It will not be discussed further.

From this example it has been shown that MacCormack's implicit
scheme can be expanded to multi-dimensions. The extension to three-
dimensions is straightforward. This little example shows the utility

of this scheme.

Boundary Conditions

The boundary conditions used in MacCormack's algorithm are based
on characteristic theory. They are applied to a diverging nozzle that
has a constant supersonic inflow and an outflow that varies between
subsonic and supersonic. Two boundary conditiomns, one by McKenna13 and
the other by Steger14, were studied for their use in subsonic (exit)
flows.

The upstream boundary conditions for the su:personic (inflow)
nozzle were set by holding the characteristic variables constant. This
is because the eigenvalues which are all positive dictate specified
boundary conditions. The characteristic variables which are functions

of the primitive variables (density, velocity, and pressure) are the
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variables that need to be specified. They are specified by holding the

AT

primitive variables constant at their inflow values. They are

", TemiX "

represented as

.

: inflow

i mathematically numerically

, P

- Q1 = p - gz = constant p(l) = constant

. 0

. y

F Q2 = P + p,C,U = constant U(1l) = constant
’ Q3 = P - pyCyU = constant P(1) = constant

Numerically these boundary conditions were written so that the inflow
variables were the same for each time-step.

The downstream boundary conditions for the supersonic (exit)
nozzle were calculated. The eigenvalues are positive, thereby
indicating right running waves, the same as at the inlet. The difference
is that the right running waves approach the boundary ffom inside the
computational domain. The characteristic variables must therefore be
calculated. Neumann type boundary conditions were used for this

condition. They are represented as

outflow
mathematically numerically
%9, , , |
—Sx— =0 (Ql)J = (QI)J“]- ‘
‘ N, . . |
-a-x— = Q (QZ)J = (QZ)J_]'
3Q, . .
T 0 (Q )5 = (Qy)j-1
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Using this type of boundary condition insures that waves are not
reflected at the boundary13.

The exit boundary conditions (Neumann) were implemented into the
program by setting the next to last computational point in the corrector

step equal to the last point in the predictor step.

(Qi)jmax = (Qi)jmax -1

Predictor Corrector

This is because the predictor step sweeps from the exit of the nozzle to
the entrance while the corrector sweeps from the entrance to the exit.

Therefore, the exit boundary condition (used in the predictor step)

should come from the corrector step.

The boundary conditions of McKenna and Steger were used for the
- subsonic (exit) boundary condition, The subsonic boundary condition is
. more complicated because two of the eigenvalues are positive while the

third is negative. This corresponds to having the first two variables

calculated while the third is specified. Mathematically it is

represented as

2,
=0

aQ
-'—g.eo

x
N = Constant = K3

Numerically, in order to specify K3 which is equal to

K3 = P - p,C,U
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the pressure and velocity must be known at the outflow boundary.
(Remember p, and C, are values used from the previous time step.)

This is not helpful for real nozzle flow because the only known

variable downstream is the pressure. Specifying the velocity downstream
is mathematically correct but not realistic. McKenna has used this

information in writing his boundary conditions. They are given as

n
K P.
n n Po 3 j=-1 n
. = P, + - + U.
R pJ pj-l 2C, poCoAj PoCo j-1
n
o = 1 s Pj-l _ K3
J 2\7j-1  p,C, Ajpoco

n
n _ peCo {Fj-1 . .n )
P, = 22._1 _J—— + U. 4 mm—am—

where

K3 = Py - 0,C,U;

(The derivation of this boundary condition is in the Appendix)

One assumption that McKenna makes that is suspect is his assumption

that K3 is constant.

A set of subsonic downstream boundary conditions which only

specify the pressure were also used. They are Steger's boundary

:& conditions. The derivations of these boundary conditions are also
4
-3 given in the appendix. They are represented as
5 p. = 0. +-%-(P°°-P. )
.- J -1~ €5 j-1
> U, =U. , + =2 (P, , = Py)
) J=1 " peCy -1

P

= Py

i
This type of boundary condition is more common in an experimental setup

but allows reflection of waves.
33




- V. RESULTS

-l A series of computer runs were made using both MacCormack's

b implicit and explicit algorithms. Boundary conditions were tested for
F{ various nozzle conditions to determine their impact on both schemes. A
‘! ’ problem of special interest that was investigated was to determine how

MacCormack's algorithm (with the help of characteristic boundary

conditions) could handle the relationship between the shock location
and back pressure.

The results are plotted against the theoretical solution for
comparison. Notice that the theoretical shock is smeared. This is
because the theoretical solution is calculated and plotted at each
computational point. This will give a better comparison between the
numerical results and the theoretical solution.

The first test performed was comparing the implicit to the explicit
algorithm for the supersonic nozzle. Boundary conditions were not a
factor in this computer run because both algorithms handled the
conditions the same--numerically. The supersonic downstream boundary
conditions were Neumann type. The results were not surprising. The
implicit run converged in 135 time-steps while the explicit converged

in 1408 time-steps. Interestingly, the implicit run did not converge

V% to the same values of the explicit run. This was a result of a constant

which is related to the CFL condition located in the eigenvalue matrix.

After this constant was adjusted to 0.9 both algorithms converged to
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the same values. These values were within 1% of the theoretical values.
The results are plotted on Figures 6 through 9.

The second test performed was a comparison of McKenna's and
Steger's boundary conditions. McKenna's was the characteristic boundary
condition where both pressure and velocity are specified while Steger's
characteristic boundary condition only specified the pressure. Each
boundary condition was used in the implicit and explicit algorithm.

The subsonic (exit) nozzle was used because characteristic theory states
that with subsonic flow there will be one left running wave and two
right running waves. This is a perfect condition in which to test the
two boundary conditions for their reflection effects on the algorithm.
The convergence of both boundary conditions in the implicit case compare
quite well. The boundary condition that specified pressure and velocity
(McKenna) required one less time-step to converge than Steger's boundary
condition. Except for the jumps (Gibb's phenomena) around the shock,
both conditions converged to the theoretical values with a deviation of
less than one percent. The results are plotted in Figures 10 through 13.
The plots for the explicit case are located in Figures 14 through 17.
Notice that the Figures are not as smooth as those of the implicit case.
After 2,500 iterations the scheme still had not converged. It simply
oscillated around the theoretical values. It was suggested that by
allowing the time-step At to float it would cause the waves to

decrease. Accordingly, At was set to

CN * AX

At = 51 C

for each computational point. The results justified this line of
reasoning. Note how smooth the results are--just like in the implicit

cagse (see Figures 18 and 19). The reason the jumps disappeared is
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because the truncation error from the time derivative term cancelled the
artificial viscosity generated by the convective term. (For further
information concerning this point see ref. 15).

The results up to this point showed that the affects of both
boundary conditions are about the same,

A special test was run to determine how MacCormack's algorithms
could handle the relationship between shock location and back pressure.
Both boundary conditions were used to test their effects on the
algorithms. The results are located in Figures 20 through 27. The
test was run by allowing the scheme to converge to an initial guess.
Then, after convergence was achieved the boundary condition was changed.
It was initially hoped that the implicit scheme would allow the shock
to move upstream especially when McKenna's boundary condition was used.
This condition was the one that specified pressure and velocity at the
exit. It was thought that by specifying two variables at the boundary
it would "force" the shock to move, but such was not the case.

The first test case involved the implicit algorithm. McKenna's
boundary condition did not work for either moving the shock upstream or
downstream. Immediately after the initial guess converged and the
boundary condition changed, negative values for the pressure and density
appeared. The results were meaningless. The results for the implicit
algorithm with Steger's boundary conditions were the same as McKenna's.
They both failed. They did the same thing--produced negative values
for pressure and density and became numerically unstable. This was
surprising. It was hoped that MacCormack's implicit algorithm could

handle the problem of allowing the shock to move.
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The results for the explicit case were successful. McKenna's

boundary condition that specified pressure and velocity still did not

‘l

o

E allow the shock to move upstream or downstream, but Steger's boundary
} condition that specified just the pressure did. As Figures 20 through
X

23 show, Steger's boundary condition moves the shock up and down the
nozzle right where it is supposed to be (for the corresponding pressure).
This is an interesting point. It shows that the boundary condition

that specifies only pressure is the logical choice to use both
theoretically and numerically. Theoretically, pressure is the driving
mechanism for nozzle flow problems. Numerically, specifying pressure

at the boundary works.

It was then decided to allow the time-step (At) to float to see if
the jumps could be smoothed out. The test was run for both boundary
conditions in the explicit algorithm. The results for attempting to
move the shock upstream are located in Figures 24 and 25. Only Steger's
boundary condition was stable. Notice, the shock did not move. In
fact, the results are exactly the same from the inflow to the shock
location (original location) as the initial theoretical values. Once
past the shock the results for each boundary condition varied.

Analyzing the results it appears as though once the shock initially
forms, a change in the downstream boundary condition cannot be felt
upstream of the shock. The effects of the downstream boundary
conditions are just reflected back and forth from the shock to the exit.

The attempts to let the shock move downstream were disappointing.
Neither boundary condition worked. The condition that specified only

pressure did converge but again the shock did not move. McKenna's

boundary condition was again unstable. The upstream values were the
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same as the initial guess (converged solution), but the downstream
values were radically different (same as before). See Figures 26 and 27
for the results. The results for this section were very surprising.

It was thought that the shock would move downstream (maybe not upstream,
but at least downstream) due to the subsonic nature uf the flow, but

as stated, the results readily proved this inaccurate. This is an

interesting case because when At is held constant the shock moves!
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VI. CONCLUSIONS

Numerical experiments for the quasi-one-dimensional Euler
equations have been applied to nozzle flow problems. These experiments
included boundary condition analysis and a comparison of MacCormack's
implicit and explicit algorithms. The results from these experiments
are judged by how well the equations are solved. The judgment criteria
is convergence rate, robustness, and adaptability.

There were two (exit) boundary conditions used, each based on
characteristic theory. One boundary condition specified pressure and
velocity (characteristic variable) while the other only specified
pressure. The convergence rate for both conditions was just about the
same. The condition that specified pressure and velocity was initially
thought to be mathematically superior in that a non-reflecting boundary
condition would prevail. The results showed just the opposite. The
condition that only specified pressure was robust. This was the only
boundary condition in which the shock moved upstream and downstream.
The adaptability of both boundary conditions are about the same. This
is a result of the fact that they were both derived from characteristic
theory. Judging the two boundary conditions, it is evident that the
condition which specifies only pressure is more useful.

Each of MacCormack's algorithms has their advantages and
disadvantages. The explicit method is very reliable and can be used
for a wide variety of problems. The main drawback is the large amount

of computing time required to solve a problem. MacCormack's implicit
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method is a new method which yields highly accurate results with a
considerable amount of reduction in compiter time. The method is not
truly implicit because it is not unconditionally stable. The main
advantage of the implicit method is that when the problem becomes more
complex (viscous effects and turbulence) the explicit part of the
scheme becomes more complex too, but the implicit numerics are not
affected--therefore, a great reduction in computer time exists. The
inability of the implicit scheme to move the shock upstream or
downstream was a disappointment.

Areas of further study that need to be investigated are:
1) McKenna's boundary condition and why they did not work for the
explicit case., 2) The importance of initial conditions. (This might

account for the fact that McKenna's boundary condition did not work.)
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APPENDIX A

Derivation of the Jacobian

The Jacobian (A) is defined as

31"1

Alm(U) = 3-11—
m

In order to calculate it, the flux vector "F" should be redefined in
terms of the conservative variables "U".

Given

P (o]
U= {pud)={m
e e
then "F" can be rewritten as
pu m
2 3-Y
F= !p+pu = ('y-l)e+—i-—T

Y me _ (Y-1) w3

u (e + p) 5 5

N

The Jacobian can now be computed as
oF
A =3

[

om

B.FE-Q

*
c:l'
—

JF
1 om
Au"m;'s;'l

oF
A - 1 = dm =0
13~ 30,  Be
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or

AR )

‘‘‘‘‘

Summarizing we have

22X
A = oF, c 8((Y-1) e + ( 2 )_Q) _=(3-y) tn2
21 730, 7T 3p 7 2
: ; p
3-
A =?F2=3((‘Y-1)e+( ) ) - (3-y) B
22 7 3T, dm o
2
3-Y\ m
p o E e . DF
23790, T de Y
yme _ Y-l
a o3 2% (5 )"f) —yme , (y-Dm>
3oy, 3p ‘ p? p?
9F yme _ X1 m_3
A =.3_3(p (Z)pz)_ﬁ_é_(_l)m
32 790, T im " T TT T T
5F yme _ (Y=l w
A .-_-;_2.13(9 (2)'52')=m
33 aUa ae P
Ay A, A3
A= A oY) A3
A3y Y, A3
0 1
2
3y m (3-y) =
- =
X 4 (y-1) m Xe (Y-l)
G Y oT o 272'

.-
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APPENDIX B

Characteristic Boundary Conditions: P & U Specified (McKenna)

The characteristic variables are
Q, =p - p/C;
Q, =p+ poC;U
Q3 = P - peCol

In terms of primitive variables they are

Lt Y
P 2

These values were derived by solving the three equations (above) for
three unknowns.

This information is now applied at the subsonic (exit) boundary.
Subsonic Outflow:

The boundary conditions are mathematically represented as

Q3 = constant = K

3
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Refer now to the primitive variables written in terms of the
characteristics. The velocity, for example is written as

Q2-Q3

U=
2p,Cy

This term contains two characteristics - the second and third. McKenna
reasoned that Q3 is constant while Q1 and Q2 (at the exit) are allowed
to float, Therefore in order to set the exit boundary condition, Q1 and

Q2 should be expressed in terms of the primitive variables. Q3 is held

constant at K3. The velocity term would then become

Q2 Q3
P + p,C,U - Ky
U =
20,C,

The other terms are

(p + poCol) + K
o= (p-gp) + g

(p_+ poCol) + K5
P= 2

The variables are numerically implemented into the program as:

P K
P?-Eﬂ-qg. __L-i+01:l + 3
PoCo  3-1 ~ PGy

A SRR SR M S R o At i S Ao e o e




Where p, & C; are evaluated at the jth point for the n - 1 time-step.

K3 is a constant represented as
Ky = Po = C P U

070 @

Here P, and U, are the values at the exit.
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APPENDIX C

Characteristic Boundary Condition: P specified (Steger)

Subsonic Outflow:

Steger represented the outflow boundary as

8Q,
E

Q)
c Q)
ngF

This can be rewritten as

In terms of the primitive variables they are written as

2 2 -
p. = Pj/C° = pj_1 - Pj-1/c°

Pj + pocouj = Pj-l + 0,C, Uj—l

P, = P

|
|
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Now solving for the density and velocity we get

1
pj = pj—l + ‘C-of (Pm - Pj_l)

1
Uy =0,y + 5ac, (PJ._1 Py)

P. = Py

Numerically these equations are represented as

n n 1 n
57051t ez (Po - Fyy)

°©
L]

n 1 n
i =Vt 5c By Fe)

[~}
[

Py and C, are the same as before.
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LPPENDIX D

Sample Calculations for the

Initial Shock Location:

P

2
o = 10,000 1b /ft

Given:

2

Py = -00883 lbfsec ft4

The values of various points are:

PT #2
(X = 04) A2 = 1-0514 M2 = 1-5
A P o]
— - — = / = o
Fm 176 =272 2= 3950
A% = L8941 P, = 2726 o, = €034
U,= 1568.45
PT #1
AL 1.0s512
(X = 0.0) y a7 i 1.1757 M = 1.4996
1; = .2726 £ = .3951 C = 1045.9
) Py
U, = 1568.38 P = 2726 p, = .003

C = 1045.6




The shock is at

point 16:

PT #16
A6 1.6284
(x = 600) A* = 08941 = 10821 M16 = 2009
PE = 1111 £ = .2081 C = 920.04
[} 0
U = 1922.9 P = 1111  p = .0018
After the shock
M = .5628 22 -4.929 B2 -2 798
y Py C
Pov o 6780 Die - 1636
Poy Po2
U =687.3 P =5476.12 p_ = .0051
y y y
FP- = .8065 2~ = .8576
oy Ooy
Po_ = 6789  p,. = .0059 A = 1.2363
y y y
AE _ A2s A* Aje _A¥=.é.2.§.
A* A1e A, AX - A%
Ap 16 %y fy Ty
Ap _1.7445 . 1 1, 1.2363 _
Az~ Teoal T Toer 1 1 1.3248
Mys = .508 FL = .8385 £~ = .8817 C,s = 1228.6
° Po
y y _
PT #25
(X = 9.6) U25 = 624 st = 5692.6 pzs = 00052
PT #26
) AR _ 1.7447 | _ 1, 1.2363 _
(X = 10.0) A = oAl T Toem - 1.3249
73
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L L Y, Ty
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Mzs = 0508




I3

l6

25

26

L

1568.38

1568.45

1922.9
687.3
623.99

623.0

..............
..................

(same as PT #25)

E

2726
2724
1111
5476.12
5692.6

5692.9
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.0034
.0034
.0018
.0051
.0052

.0052

Ix

1.4996
1.5

2.09

+5628
.508

.5080
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APPENDIX E

Theoretical Values for Moving the Shock Upstream and Downstream:

Upstream: (From the original shock) Choose point #12 for the

new shock location

Ay,  1.2431
Ax —  ,8941

PT #12 = 1.3904 M2 = 1.7540

P L.
7= = -1867 == .3016

t t
P;, = 1867 = ,0027 U = 1725.8
' P Pt P P
= --L=‘ . —-l:: . —Lﬂ - —— .
My 6271 2 3.422 Ptxz 8328 26 2.285 Py 8276

P = 6388.9 = .0063 U = 753.2 P. = 8328 = .0075
y Py y ty Pey

The exit conditions are now calculated

AE _ 1.7445 ., 1, 1, 1.1582

Ax " =8%1 T1.3904 T T = 1.6233
Mys = .3895 T,P— = .9007 2 = .9280
. t Pe

Pps = 7501 p2s = .0070 Uzs = 477.1




Downstream: (From the original shock) Choose point #20 for the

new downstream shock

Ayo _ 1.7343 _ ~ ~
PT 420 5 = Sy - 19398 Mao = 201827 M= L5521
£ = 1919 IE2 - 6408 0017 22212.8
E o P = . pzo = . 7 -P— = . 997
t t, 1
: A . i i
E M 5521 e 1.2519 o¢ = ,8625 Pty = 6408 pty = ,002
X
i . The exit conditions are now calculated
LQ
: Ap _l.7445 . 1 1, 1.2519 _ ..o,
- * - .
k AE «8941 1.9398 1 1
Mys = .5472 -1,3- = .8159 £ = .8647
, t Pt

Pys = 5228 P2s = .0017 Uzs = 1,135
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APPENDIX F - Program Listing

TCI2)XANX( I TIXIN-C 1DAUY/P X1’

IXd0
IXdN
IXdN
YXdN
I XdN

WM UMM

(CI°TH)XdNEC IV /(12
(I)dv/(1°%

% nsZ o« s 8

3NNTLNOD
(CDINA+( L1 ¥Ne(r’1)dN
£t=1 08 04

N°t=f 06 04
3NNILNOD

95 01 09

del

9L 04 09 (9°03°d)d1
T-Wed
WEN’LM’SIXLYY 11D
WLA‘9n AIXLIYE 179D
W'NA‘9M'SIXLvU 1199
(WIN°SN’TTQIXIYE 1Y)
(MSA*PMY XSINLYY 1Y)

s 3SNNILNOD

(T4’ IENIXA/LQ+ (N IINTI3CeCUT)PA
€11 29 0Q
C(N'E)IN-CT+U’E) N EXA/10~-=(R°EINT3A
COUDYY-( T NYI TN EINEXT/ LA+Y

(R )4N-CT+L°2) 4N xXq/L0-=(W’2)NT130
(W DI IN=-CT+W T INIEXA/ LQ-=(R‘3INI3Q
CCWIOR(W2IN) /XAXND= LA

3NNILNOD

(T+WEM’2N°SIXLUW 119D
(T+°20°TM°QIXLIBU T1IWD
(T+U°IN’NA°XS)IXLIVW ugco

NHeld

(N’3N‘N¥Y‘NIXWINEN 11D
(110°91$°A)3A7114 179D
(Q’9IS‘I‘NMQINI4 179D
(XS'N’I°MXS1TT4 178D
(“5ISND°NISTITY 1190

INNTLNDD
CCIDINACTE)INEVUNYD ) LEDS=( 12D

N°Tel ¥ OQ

Xy ‘t="1 666 04

(
¢
¢

Pts3ttetszoeestee 33383330333 33333 33332023333 3¢333343 220281 1-7]
SEETISEETTXEILSTSLILLAAIILY HOLILQING IHL SI SIML IXXRXEXEX0BL

(Id3)IENOJ3S 1790

1082232831202+ 2833283383283 e 2etd it dtississtieets s st ed il il XAXESX
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*@e(N‘EINA
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TTXTEAXXTZXLEETTIXREES HOLOIUHOI 3L ¥03 3INT0S NON SXXXSEXXR-QLTY
nnnnunnnnununnuunnununnnuunnunnnnuunnuunnuuuuununnnnunnuunun-ow«a

*O=(N‘2)Ng «Q2L

.e "RsI(N‘IING Bl
6°2695-(N’EIN ~00.L

*00€1 9°€29+(N°2)N *069
«0621 62509°0=(N°1)N =989
-2821 JNNTLINDD SE-0.9
L2217 1°9105+(1)1390°22~(1°€E)N *039
@521 I8°12B+(1)85218°L-=C1'2)N «959
*0521 Y8rO0°0+(1)X9L10000°0=C1°TIN -9
001-0b21 IN‘LTe] SE 0OQ «0EY
Y- 1-3 3ANNTLNOD o€-029
0221 Er ¥SB2¢(I)EPI2°SIT-=(1’ENN -919
=212% 8°LISTH(1)X2E S2=(172)0 -0e9
«2021 2LEQO°O+(1)28T1000°0--(171)N *05S
2611 91°2«1 @t 0Q =085
KXX8 o*3ate=(1'EIN ~9LS
8E°89S5T«(172)N *095

P37 3 B8rEGO BTN =0SS
$3IGVINUN INILINING 3HL L3S NON XXXXLEEEX+0FS

x28 3NNTILNOD 92-0tS

C(CC P-(1IX3B Q% =925

06-0511 )=)dXI+(r-(IIXEB° V)X /(¥ ]IXXB @) -)dX3-% =21S
08-0r11 (P=(IIXXB°Q)dX3I) IELPE " O+B6E " To( 1)Uy =005
«QC1Y H'1=1 02 og “06¥
0211 Y3NY 31ZZ0N 3HL L35 MON XXXEXEXRK-08F
0L-011% 3NNILNOD [ 141724
=0011 XA+(3-IIX=(1)X «09p
=0601 N‘2s1 o1 0a -9S¥
=0801 @ e=(T)X 134
=0L0% NN31lYd QIND 3L dN L35 MON EXLXEXXXE=-0CH
«990%1 XA/°5=91S 02y
«0501 IN/G1314XQ 3
=07 6°9=NJ 1.1
-9c01 XoUCx 51093y =Q6€
-2201 o lIXUWL(X°T) 311NN =Q8E
99-0101 0°01-Q71314 -@LE
«900% T-N=TN «03€
=066 92=N =9SE
=086 SHILIYAIYA OTHIWNAN 3IHL L3S NON XXIXEXILE-OFE
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=056 *@ T eXUhX =Q1E
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