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" ABSTRACT

There are basically two techniques used to solve the Navier-Stokes

equations for fluid flow. These techniques are implicit and explicit

methods. Both methods along with characteristic boundary conditions

for solving quasi-one-dimensional nozzle flow are -esented. Two types

of characteristic boundary conditions, those of E ,er and McKenna,

were tested for each scheme. Solutions of isentr - supersonic flow

and flow with shocks were obtained for a divergii- zle. The

behavior of each boundary condition on both implicit and explicit

schemes were the same. They deviated from the theoretical values by

less than one percent. A test to determine the utility of each scheme

was run by allowing the exit boundary conditions to change in the hope

of forcing the shock to move upstream or downstream. The shock would

not move in the implicit scheme for either boundary condition. The

explicit scheme could move the shock, but only when Steger's boundary

p condition was used. (This is the one which specified only pressure.),

ix
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.9 I. INTRODUCTION

During the last decade much progress has been made both in the

development of computer systems that are more powerful and reliable

and in numerical techniques of solving the compressible Navier-Stokes

equations. In spite of this rapid progress in these two related areas,

we still cannot calculate the flow fields past complete aircraft

configurations (e.g., commercial transport, fighter aircraft, reentry

vehicles, etc.) at flight Reynolds numbers. If we could efficiently

- calculate the flow field, there would be no need to conduct wind

tunnel testing or build expensive experimental test vehicles. These

costly experimental devices could all be supplanted by simply solving

the compressible Navier-Stokes equations. Once the technique of solv-

ing these equations is perfected, the result wili be a dramatic

decrease in the design cost of new aerodynamic vehicles. Since we are

not yet able to efficiently solve the compressible Navier-Stokes

equations, continued research in this area is important. The process

of developing bigger and more powerful computers is one aspect in

solving the Navier-Stokes equations, but the development of numerical

-. algorithms that efficiently and accurately solve these equations is the

motivation behind this paper.

To date a number of algorithms have been written that accurately

solve for some flow fields. These algorithms however, are only accurate

for simplified configurations or components of complicated configura-

tions. Three important factors that must be considered in developing

".1
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a numerical algorithm are: first, its convergence rate (how fast it

can solve a problem); second, its robustness or reliability which means

providing correct answers for a variety of problems; third, its ability

to adapt to complicated geometries in either two or three dimensions.

This criteria was and still is the guide for developing a new and better

numerical algorithm.

Basically, algorithms can be classified into two categories:

b explicit and implicit methods. During the 1950's and 1960's several

explicit finite-difference algorithms were developed such as

Lax-Wendroff 1types and the popular MacCormack's method. 10These

methods were very popular and capable of handling a variety of problems.

They were able to solve high Reynolds number flow problems as well as

inviscid-viscous interactions. During the 1970's however, researchers

developed implicit methods to gain better computational efficiency over

the explicit methods. Again, both the implicit and explicit methods

have enjoyed some degree of success, but each have their own unique

limitations. For example, the convergence rate of explicit methods are

highly sensitive to space mesh size and in order to improve the solution,

the space meshes must be refined in areas such as boundary surfaces,

shocks, and stagnation points. Consequently, the computer time needed

to converge to a solution becomes very large. Also, explicit methods

are conditionally stable. Therefore, in order to calculate high Reynolds

number problems a large amount of computing time is required due to the

small time step limitation imposed by the stability condition. On the

other hand, implicit methods are unconditionally stable and are not

restricted to explicit stability conditions. However, they are more

complicated than explicit methods and are not as robust. They also

have problems in handling the inviscid region as well as with shock

2



capturing. Today the major emphasis is with implicit methods because

they do not requive as much computer time as explicit methods.

(MacCormack and Lomax2 as well as Hollanders and Viviand3 have

presented papers that compare the relative pros and cons of the explicit

and implicit methods as well as their many variations.)

The purpose of this paper is to study implicit techniques used in

solving the compressible Euler equations. Areas such as boundary

conditions, differencing techniques and shock capture are addressed.

Using the criteria of convergence rate, robustness, and adaptability,

the advantages and disadvantages of implicit methods will be determined.



II. GOVERNING EQUATIONS

Throughout this paper the test equations used are the quasi-one-

dimensional Euler equations. The one dimensional Euler equations are

used because of their simplicity to demonstrate the principles presented.

The extension to two and three dimensions as well as the full

compressible Navier-Stokes equations is straightforward. It is

important to stress the fact that if the extension to three dimension

were not straightforward, then that particular method would be useless.

Useless, because it cannot be applied to realistic problems.

The quasi-one-dimensional unsteady compressible form of the Navier-

Stokes equations, neglecting body forces and heat sources, can be

written in conservation form as

8U+ aF+H 0
-u +H=O (1)
at x

where

U (U) (2)

and

F pu + a (3)

\u(a+e)-kT

4
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and

and where

au a
a- p - 21, x (5

but by using Stoke's hypothesis (X p

aYMP u (6)

The vector F is the flux vector while U is the vector of conservative

variables and H is the source term. The governing equations are in the

"weak" conservation form because the source term (H) is outside of the

derivatives of the conserved variables. The primitive variables are

density p, pressure P, and velocity u. The total energy per unit volume

is represented by e and defined as

P 2
e - + R! L.. (7)

yl 2

where ganua (Y) is the ratio of specific heats. The viscosity

coefficients are X and 1. while the coefficient of heat conductivity

and temperature are represented as k and T respectively.

Normalized Governing Equations

The governing equations are normalized so that the characteristic

parameters of the problem may be independently varied. The reference
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condition used is the freestream condition. The dimensional values

are normalized as follows

U -P Pm

g EtinLPO

x - t F-

p nP.U e e, O-u

140

The continuity equation will be normalized to demonstrate how the

procedure is performed.

Given

PI+ 0 (8)x

multiply the whole expression by -2u0 to get
L

+ 0 =0 (9)at P0 WE PO0Luo L

or in nondimensional form

k+ a o (10)at ax -

The momentum and energy equation are nondimensionalized the same way

only they are multiplied by 1 and respectively.

L L

6



111. BOUNDARY CONDITIONS

The study of boundary conditions is important in solving any

partial differential equation. Even the extension to finite difference

equations does not deter from this fact. The way boundary conditions

are chosen can influence the result of any numerical scheme (i.e. con-

vergence, stability, and accuracy). In fact, though one might start

out with a stable interior scheme (i.e., scheme for the interior points),

it can become unstable and inaccurate if the boundary conditions are

improperly treated.

In this section numerical boundary schemes are studied.

Specifically, those schemes that can be used with an implicit finite

difference scheme. Implicit boundary condition procedures have been

studied for several years for the purpose of reaching a time-asymptotic

steady state faster as well as for allowing a time step that is

unrestricted by the Courant, Friedrich, Lewy (CFL) stability criteria.

Background Information

Consider the simple wave equation

au au

with the initial condition

u(xO) - f(x)

Kreiss 4has shown that according to mathematical laws, in order to be

able to solve this type of problem, certain analytic boundary conditions



must be specified. These boundary conditions are dependent upon the

sign of C (positive or negative). For example, if C is positive then

there must be a boundary specified at X - 0, or if C is negative then

the boundary condition must be specified at X - 1. In mathematical

terms

u(l,t) - gl(t) for c<0

or

u(0,t) - g2 (t) for c>O

Once this information is specified the solution of this problem can

proceed in a straightforward manner.

Now look at a system of two linear wave equations:

au + au

and (12)

av+ a - 0

The two boundary conditions needed to solve this problem are again

determined by the signs of 'c' and 'a'. For c>0 and a>0 the boundary

conditions are given by specifying u and v at x = 0. Problems arise

though when 'a' and 'c' have different signs. To demonstrate this

suppose c>0 and a<0. This means that the waves in u travel from left to

right while the waves in v travel from right to left. Therefore, u

must be specified at x - 0 for one boundary condition while v must be

specified at x = 1 for the second boundary condition. Now if u and v

are expressed (at the boundaries) in terms of each other, problems

arise. For example, let

u(x,O) - 1 v(x,0) - 0 (initial condition)

8



As the right running wave 'u' approaches the right boundary (x =1) it

causes IV' (which is in terms of u) to be non-zero. A disturbance is

generated each time a wave reaches the boundary. This type of boundary

condition is referred to as a "reflective boundary condition".

The examples presented are simple models. It was easy to identify

the variables and where they were to be specified. The extension to

three coupled equations (i.e. Navier-Stokes) increases the complexity.

The choice of variables and how they are specified is no longer clear.

Problems with reflective boundary conditions are another problem area.

A method is needed to determine how these complicated boundary

conditions should be handled. This method should represent the physics

and be mathematically correct.

Characteristic Theory

The mathematical theory of characteristics for hyperbolic systems

of equations is an important clue in determining how boundary conditions

should be constructed. Many researchers have also used this clue

(ref. 5-9). Characteristic theory is an important clue because it can

be used to determine the number of boundary conditions needed to solve

a problem without over-determining it. Lets look again at a model

hyperbolic equation

au + c u - 0 (13
ax 13)

and let

and

c -(0 -1)

92%



From characteristic theory it is known that the eigenvalues of a

hyperbolic system of equations (known as the characteristic direction)

are used to determine which direction the information propagates at the

boundaries. Knowing which direction the information flows is vital in

knowing how many or which boundary conditions are needed. For the model

equation the eigenvalues (X) of the 'C' matrix are determined by

14

0-1- (l-4) (-l-X) - 0l X0

or

X -2_- 0

finally

The sign (positive or negative) of the eigenvalues is what determines

which direction the information flows (see Figure 1).

* t

0x

Computational Domain

44*

Fig. 1

S1.

Qo0
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From this example it is clearly demonstrated (as stated previously)

that for positive X which is associated with r, a boundary condition is

needed at x = 0 and for negative X associated with s, a boundary

condition is needed at x = 1. Another view of characteristic theory is

obtained by exploring compatibility conditions. More specifically, a

hyperbolic system of equations such as the one-dimensional compressible

Navier-Stokes equations is equivalent to three characteristic

compatibility conditions. These compatibility conditions are valid

'" along the characteristic curves and are in the form of ordinary

differential equations. The slopes of the characteristic curves are

given by the eigenvalues. The direction of these characteristic curves,

which again are determined by the sign of the eigenvalues, are used in

determining boundary conditions. For example, those curves that reach

the boundaries from inside the computational domain are considered

"admissible". Admissible because they allow information to propagate

out of the domain. Those curves that reach the boundary from outside

the computational domain are called "inadmissible" because information

cannot propagate into the domain. Computational boundary conditions

are boundary conditions that are allowed to float or are calculated.

They are used with compatibility conditions associated with "admissible"

characteristic curves. Specified boundary conditions are boundary

conditions that are specified. They are used with those compatibility

conditions associated with "inadmissible" curves. In order to under-

stand this concept more easily, look at Figure 2 and Figure 3.

11
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outflow boundary outflow boundary

AA
BC Bl C

interior exterior interior exterior
points points points points

Fig. 2 - Flow of Information Fig. 3 - Flow of Information

In Figure 2 the characteristic curves of A, B, and C are all

admissible, they propagate information out of the computational domain.

Therefore the boundary conditions must be calculated for all three

compatibility conditions. The sign of the eigenvalues are all positive.

In Figure 3 only curve C is inadmissible, therefore a specified

boundary condition is needed for this compatibility condition while the

boundary conditions for curves A and B are again calculated. Here, A

is positive for curves A and B but negative for the 'C" curve. It is

important to note that the eigenvalues do not need to be calculated.

The only information needed is the sign (positive or negative). The

role of positive and negative eigenvalues at the left boundary are

reversed at the right boundary. These concepts can and will be used

with the Navier-Stokes equations.

Nozzle Boundary Conditions

The determination of boundary conditions for a nozzle is dictated

by characteristic theory. The slope of the characteristic curve or

sign of the eigenvalue determines what variables are specified and

12
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which are calculated. As will be shown later, the eigenvalues for the

one-dimensional inviscid compressible Navier-Stokes equation are:

A2 - u+c

A3 - u-c

" where "u" is the velocity and "c" is the speed of sound. It is evident

that the eigenvalues, which determine the boundary conditions, will be

determined by the velocity (i.e., subsonic or supersonic).

For nozzle flow, the boundary conditions are simply determined by

the velocities at the inflow and at the exit. For the subsonic inflow

condition the signs of the eigenvalues are:

X - u>O

X2 - u+c>O

X3 - u-c<O

here X1 and X2 are positive while X3 is negative. This corresponds

to the slopes of Figure 3 (only this time it is for the inflow boundary).

The only characteristic curve that propagates information from the

computational domain to the boundary is X3. This means that the

33
variables associated with 3 should be calculated while the variables

associated with X1 and X2 should be specified. The variable associated

with AI is from the continuity equation. The variables associated with

A2 and A3 are derived from the momentum and energy equations

respectively. For the supersonic inflow condition:

41 X' I W u>O

A2 - u+c>O

A 3 - u-c>O

13
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all the eigenvalues are positive which correspond to characteristic

curves propagating information to the boundary from outside the

* computational domain. Therefore all the inflow variables should be

specified. Note that the eigenvalues for the subsonic outflow have the

sawe sign as the eigenvalues for the subsonic inflow but the boundary

conditions are not the same. They are reversed. For the subsonic

outflow according to Figure 3 X 1and X 2should be calculated whileX3

should be specified. For supersonic outflow conditions all the

variables should be calculated. This was the procedure used in

determining boundary conditions for the algorithm.

Note, nothing has been said about the variables associated with the

eigenvalues. At first, one would think that the variables should be

the primitive variables: density-continuity equation, velocity-momentum

equation, and pressure-energy equation. Upon closer examination it is

noticed that when the equations (Navier-Stokes) are uncoupled these are

not the correct variables.

Characteristic Variables

Characteristic variables are the variables associated with

eigenvalues. These are the variables that need to be specified or

calculated. The inviscid Navier-Stokes equation representative of one-

I dimensional flow is given as

au aF
X (14)

"4

Now by using the Jacobian Matrix which is defined as

* 8F
A(U) r 15

14
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The equation can be rewritten as

a + AM a+ H 0 (16)

The Jacobian matrix can be reduced to

A(U) X D X-1 (17)

where X is the eigenvector matrix and D is the diagonal matrix of the

eigenvalues. The Jacobian Matrix (A(U)) for these equations (with

viscous terms neglected) is given by

0 1 0

3F2
A(M) = " (y-3) !L -(y-3)u y-l (18)

L ( ) + (Y-1)u3  .. (.b.(Y-1)u Y

(see Appendix A for the derivation of the Jacobian)

The eigenvalue matrix is

ru 0 0]

D 0 u+c (19)

L0 0 u-c

The transformation matrices are

1 OL

x- u a(u + c) Q(u -c) (20)

22 C2 u2 C2
a2-+ uc+_) uc +2 (2Y-i(

a-

15 %!



and

1 (Y-1)

2
x ((Y-1) -.- uc) (c - (Y-l)u) O(Y-l) (21)

2

((y-1) - + uc) -a(c + (y-l)u) a(y-I)

1

rPc

Now substitute equation 17 into equation 16 to get

au 3(xDx-l)ur" + ax 0  (22)

Now multiply the whole equation(22)by X-1 to get

-1 au x-1 (xDx-l )u 0  (23)
at +  . ax

Since X-1 is a constant matrix (locally) it can be placed inside the

derivative expression.

Ox-lu U vx-luax--- u = x (24)
at ax

or

a+ 3D Q 0 (25)

where

X "I U = Q (26)

and

X X W I (27)

This equation

3Q + D - 0 (28)

16



looks like the simple wave equation 12)that was used as a model.

Instead of the variables u and v the variables are now Ql' Q2, and QV

which is simply the U matrix (vector of conservative variables)

-1
multiplied by the eigenvector matrix X- . The results are

P
iC

X- U = Q + PoCoU (29)

: P- 0C0U/

It was assumed that deviations from the free stream are so small that

the entries in the Jacobian can be treated as constants-locally. That

is where the O-subscript originates. The eigenvalues associated with

a and 'c' are u, u+c, and u-c.

From the sign of the eigenvalues (u, u+c, u-c) and the

characteristic variables, boundary conditions can be defined.

Numerical Conditions

Numerical boundary conditions are boundary conditions used with

finite difference equations. They are the numerical implementation of

analytic boundary conditions. Interesting problems arise between the

differencing technique and the way boundary conditions are chosen. For

example, the way the spatial derivative term (%) is differenced
"ax

*i affects the way boundary conditions are specified. To demonstrate

this fact, suppose a central finite difference approximation is used

for the spatial term. There are now two points outside the boundaries

17



that need to be either specified or calculated. Another way to look

at it is to look at a discrete mesh (Figure 4)

inflow boundary outflow boundary

)

-1 0 1 2 3 4 . . . . . . . J-1 J J+l

Fig. 4 - Discrete Computational Mesh

with J points in the computational domain. The points -1 (outside the

inflow boundary) and J+l (outside the outflow boundary) are outside the

computational domain. The value of these points must be made known

in order to solve for the J th and 0th point according to the difference

relation

u (U J+l J-1 ) (30)- 2Ax (0

and

au / =(U 1 - U-1 (31

" 10o u 2Ax (31)

How these values are determined is directly related to the boundary

conditions.

As already stated before, the sign of the eigenvalues determines

which direction information flows at the boundary. Boundary points are

calculated by use of this information. For example, if the eigenvalues

are positive at the outflow boundary, a backward differencing scheme

should be used. If the eigenvalues are negative then a forward

differencing scheme should be used. This is because with positive

eigenvalues information flows from inside the computational domain to

the boundary. Therefore one would not want to use a forward

differencing scheme because then there would not be any continuity

18
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(of information waves) at the boundary. Visually this can be

represented by Figure 5.

Outflow Boundary Outflow Boundary

J-l J J+l J-1 J J+l

interior points exterior points interior points exterior points

X>O X<0

backward differencing scheme forward differencing scheme

Fig. 5 - Differencing Scheme

4
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IV. MACCORMACK'S I"PLICIT ALGORITHM

MacCormack has developed a new implicit algorithm for solving the inviscid

Navier-Stokes equation. It is an extension of his 1969 explicit

10predictor-corrector algorithm . Because it is an extension of an

explicit algorithm this new scheme is not truly implicit. For example,

it is not unconditionally stable but it does retain a few of the

advantages of implicit algorithms such as larger time steps.

The new method11 is composed of two parts. The first part

explicitly solves the governing equations by using known flowfield

properties to determine local flowfield changes. The second step

numerically transforms the equation into an implicit form to remove

CNAxthe explicit stability criteria (At = a . The true flowfield

changes are then calculated and substituted into a Taylor series in

time to find the new flowfield properties.

Derivation

Differentiating the one-dimensional Navier-Stokes equations with

respect to time gives

a a B F0 (32)

Using the Jacobian, the above equation can be rewritten as

t t a t au at
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Implicitly approximating this equation (33) leads to

'I + At 3- +At 1H )u N+l au N(4
x au)at 3t

The dot means the derivative operates on the term outside the

parenthesis. The equation (34) can now be rewritten as

MeAt aH, 60+1 NAU

(I* all) 1 N('35)

if the following are defined

N+l all+l
6U = -- ~At (36)

and

AUN . 4!U. At (37)

A closer look at equation (35) reveals the two step procedure.

The right hand term represents the explicit solution of the governing

equations while the left hand side of the equation represents the

numerics of the implicit algorithm. Because MacCormack uses a

predictor-corrector approach equation (35) is rewritten as

* predictor:

where

AU. -- At -At H2. A

21
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corrector:

At~N~ INl+A 'HN+)N+l At IN+1 NU!-i:+: - + 0+1 + I; Al- U-

where

iN( _At) At H

and where

0 0 0

3H - 2 3A x-l) 8A (y-1) DAu ITU- 2A u rx- a A TX
o 0 0

Spatial derivative terms are approximated by a forward difference for

predictor and backward difference for corrector.

The Jacobian (A) is the same as previously defined in equation 17

and 18. The absolute value of the Jacobian (IAI) which is used in the

predictor and corrector equations is defined as

IAI - X X A (38)
-

(The transformation matrices have already been given, see equations

20 and 21).

The eigenvalue matrix is written as
-I

F 0 0
A1

- A = 0 XA2 0 (39)

0 0 A3

2
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where

max (Jul -CE 0.0)A at
-: A -max j 1lL~h1 -CE ) 0J.0

max (lu-cl o.o)

CE = a constant related to the Courant number used for
the explicit stability.

where

At < CE (Ax), - (u+c)

If the explicit stability criteria is used the XA matrix goes to zero.

This allows the true flowfield changes to be calculated in the explicit

part of the program thereby skipping altogether the implicit part.

Throughout this paper only the inviscid form of the equations were

used. If viscous effects are included, the eigenvalue matrix would

become:

X-ul+ 2V CEx

'PAX At

2 lu+cl + - -CE
A -CE At

A3  lu-cl 2v -CE Ax3 pax At

(Note: v is nondimensionalized by dividing it by vo.)

Modification to MacCormack's Implicit Algorithm

Careful analysis of MacCormack's predictor - corrector equations

reveals that after the explicit (local) flowfield changes have been

calculated and substituted into the right hand side of equation (35)

an upper block bidiagonal system of equations will result for the

23
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predictor step. A lower block bidiagonal system of equations will

result for the corrector step. In order for the solution to progress a

matrix inversion must be performed at each computational point which

will result in a large amount of computer time, thus defeating one

advantage of implicit methods.

MacCormack however, has devised an ingenious way to circumvent

the inversion process. The JAI matrix, which needs to be inverted, is

diagonalized thus making its inversion trivial. Problems with this

technique arise when the source term "H" is included in the implicitly

approximated governing equations (equation 35). The diagonalization

cannot be performed and a matrix inversion must be computed for each

point. However, a modification to MacCormack's scheme that will allow

a diagonalization by neglecting the source term in the implicit

12
numerics was presented in a paper by White and Anderson . They

reasoned that the source term "H" could be removed from the implicit

numerics because "The physics of the flow is carried by the explicit

step (which contains the source term in the governing equations), and

the implicit step (which under the present modification does not contain

the source term) is simply numerics to bring about enhanced stability."

Using their modification the implicitly approximated equation can be

rewritten as predictor:

N N

SAt N.

+ x6xNU t+l x N ) At H .. Nl

(+ A- AI )6U =AT + JAI i l

N +l N!+U~U. -2
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p
corrector:

N~~l F V Fii
AUN I  -At 1 i-I -At H.

1 ~Ax )

I +LtAI ) 6u N+l 6FI + L AI N~l 6U lAX + i i I i X i-1 Ui-l

U + . U + 6U+l)

This is in a form that results in an upper and lower block

bidiagonal system which will allow a diagonalization to occur.

Solution Method

As already stated before, this scheme is a predictor - corrector

type. The predictor equations are solved first and their results

are used in solving the corrector equations. The results from the

corrector step, the true flowfield properties, are then used in

calculating the predictor step. This process is repeated until the

scheme converges. In order to understand this scheme more fully the

predictor step will be reviewed in detail. The principles used in the

corrector step are the same as those used in the predictor step. The

extension therefore should be straightforward.

Initially all the conservative variables "U" are specified

(initial guess) for all i 1 1,2,3...J (J = is the total number of

computational points). Once the end boundary condition is found

IAI Nl 60+1 the right hand side of the predictor equation can be
''1+1 2.+.

solved and represented as "W"

N At N 6UN+W - AU + IAI iil iil (41)
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In order to solve for 6 , a matrix inversion of (I + A J A ) must

be performed. By using the relation A = XDX- l the matrix may be

diagonalized thereby foregoing the costly (in computer time) matrix

inversion. Making this substitution, the equations can be written as

Ax DA X-I+ XDi 61 -w (42)

Now pre-multiply both sides by X to get
-1 At 1) =N+  X-1 -V(3

( -9 + DA X-) 6Ui X W V (43)

Regrouping, the left hand side is now written as

SAt X- 
6

-  V (44)+X A) X

The matrix (I + 4L DA) is diagonal so that its inversion is trivial.

The equations can now be written as

X i6 UN+l = (I + DA V=Y (45)

Where 6UN.l is found by multiplying the equation by X. The flowfield
1

changes for the point i have just been calculated. Now, in order to

calculate the values for the next point (i-1) the term IAI N 6U l musti 5i ms

be calculated. Calculating this term will give all the values for the

right hand side of the equation. Once all these values are obtained the

procedure used to solve for 6UN +  (on the left hand side) is exactlyprocdureuse to olvefor i-I

the same as stated before. An efficient way to calculate the IAI N 60UN+

term is to multiply the already known value of Y by DA then by X. In

mathematical terms

IAI 6 + =X DA Y (46)
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Using this method the predictor step sweeps down from i - J to the

i - 1 computational point. The corrector step starts at i = 1 and

, marches to the i - J point. Local values are used in calculating the

matricies X, D, and X-1 at each point.

The solution process can be summarized in the following seven steps:

1. W N At IAI N 6UN l

I A i+l i+l

2. V-X-1 W

3. DA is calculated

4. Y (I+"DA )V

5. 6+.- = XY

6. Z-DA Y

4.7. JA !6UN. 1 =-X Z

.1

Because the matrix is diagonal in step 4 the inversion is trivial.

Step 5 calculates the flowfield changes while step 7 calculates the

flux to be used for the next computational point. If Neumann type

boundary conditions are used the JAI N 6u12 term is saved and used

N+I 6UN+l
as the boundary condition for the corrector step. The JAI J-1 J-

term is saved from the corrector step and used as the boundary

condition for the predictor step. Because of this the boundary

conditions are not truly implicit but lag by 1/2 time-step.

Extension to Multi-Dimensions

The value of any one-dimensional scheme is proportional to its

ability to adapt to multi-dimensions. A one-dimensional scheme that

is extremely accurate but not able to convert to multi-dimensions is

27.
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severely limited. The method in devising any numerical scheme is

to start out with a simple model, then add upon that model so that it

can handle a wider variety of problems. If the model cannot expand then

it is a poor model. If the model can expand while still retaining some

degree of accuracy then one has a good model. The idea is to start out

simple and then become more sophisticated.

MacCormack's implicit scheme is a robust scheme. It can handle a

wide variety of problems as well as being able to expand to two and

three dimensions. The extension from the simple one-dimensional case

to two and three dimensions is straightforward. To demonstrate this

fact the scheme will be developed for the two-dimensional case. The

general equation form is given by

a u + 3 F + 3 G (4 8 )

Differentiating the general equation (48) with respect to time and

using the Jacobian yields

+ - + ay -0 (49)

(A and B are the Jacobians). Now implicitly approximate the above

equation (49) in time to get

A. *\ N + I  UN

,I + At B- At 3 -u N (50)
Ix + -) at atE

The dots have the same meani,< ac before (the derivative acts on the

term outside the parenthesis). U~ing the following substitutions

N At _ (51)
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and
.l a- uN+ I

6uN+ At (52)

and by using forward and backward differencing the above equation (50)

can be written in predictor-corrector notation as

predictor:
IN N N N

N F. F. (G.~ G.
Au N _ At i+l,j .1,3) + ( iOj+l 20

Au.. AX Ay

(i t A N - At ~ N hl N
- (Ai+l,j -A~ (I - (Bi,j+I  B Bi,j)) iUNj = AU,

UNi uN  NTl
. = .. + 6U.1,3 1,3 1,3

corrector:

" N+1 _N+I N+1 N+1
F F1ti) G.7AU l At - Fi + ( - 1

.. + A (A. A ( + Lt (Bi - 6-Ul) ij i

N1 =g (,j + + 6Ui~j)

"- D-1

The Jacobians are defined (same as before) as A = XDAX and B =YD Y
A B

where the matrices X, D A and X are the same as before except for the

terms from the Y - momentum equation. The matrices Y-1 and D are found
Bq--1

the same way as X and D were. They are given as
A

(22 2

"":( 2 (y-l) -cvC

(u.V.. 1-c -u(Y-l) --vky-l) (Y-l)
2 29
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*and

v 0 0 0

0 v 0 0

DB =(54)

o 0 v+c 0

0 0 0 v-c

The solution procedure for this scheme in two-dimensions is explained

in detail in reference 11. It will not be discussed further.

From this example it has been shown that MacCormack's implicit

scheme can be expanded to multi-dimensions. The extension to three-

dimensions is straightforward. This little example shows the utility

of this scheme.

Boundary Conditions

The boundary conditions used in MacCormack's algorithm are based

on characteristic theory. They are applied to a diverging nozzle that

has a constant supersonic inflow and an outflow that varies between

subsonic and supersonic. Two boundary conditions, one by McKenna 13 and
"" 14

the other by Steger , were studied for their use in subsonic (exit)

flows.

*The upstream boundary conditions for the s':personic (inflow)

nozzle were set by holding the characteristic variables constant. This

is because the eigenvalues which are all positive dictate specified

boundary conditions. The characteristic variables which are functions

of the primitive variables (density, velocity, and pressure) are the
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variables that need to be specified. They are specified by holding the

primitive variables constant at their inflow values. They are

represented as

inflow

h mathematically numerically

p - = constant p() - constantQ C2
0

Q2 = P + pOCoU = constant U() = constant

Q3 = P - poC°U = constant P() = constant

Numerically these boundary conditions were written so that the inflow

variables were the same for each time-step.

The downstream boundary conditions for the supersonic (exit)

nozzle were calculated. The eigenvalues are positive, thereby

indicating right running waves, the same as at the inlet. The difference

is that the right running waves approach the boundary from inside the

computational domain. The characteristic variables must therefore be

calculated. Neumann type boundary conditions were used for this

condition. They are represented as

outflow

mathematically numerically

0 (Q )j = (Q )j-l

aQ3

7 0 (Q3)j - (Q3 )j-l
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Using this type of boundary condition insures that waves are not

13
reflected at the boundary

The exit boundary conditions (Neumann) were implemented into the

program by setting the next to last computational point in the corrector

step equal to the last point in the predictor step.

(Qi~imax (Q i )'max-1

Predictor Corrector

*This is because the predictor step sweeps from the exit of the nozzle to

*the entrance while the corrector sweeps from the entrance to the exit.

Therefore, the exit boundary condition (used in the predictor step)

should come from the corrector step.

The boundary conditions of McKenna and Steger were used for the

subsonic (exit) boundary condition. The subsonic boundary condition is

more complicated because two of the eigenvalues are positive while the

third is negative. This corresponds to having the first two variables

calculated while the third is specified. Mathematically it is

represented as

l- 0

ax

nA Constant -K3

Numerically, in order to specify K3 which is equal to

KC3 -P -p 0C0U
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the pressure and velocity must be known at the outflow boundary.

(Remember p0 and CO are values used from the previous time step.)

This is not helpful for real nozzle flow because the only known

variable downstream is the pressure. Specifying the velocity downstream

is mathematically correct but not realistic. McKenna has used this

information in writing his boundary conditions. They are given as

Jn n + K3 n + /n

ui uJ -1  K3 OC

e 1 _ +

j 21 j I p0C0 O O 0

/ K
e POCO Vi-l-+ uA 3

1 2 PoCo j-1 A O

where

K3 -P 0CU-

(The derivation of this boundary condition is in the Appendix)

One assumption that McKenna makes that is suspect is his assumption

*that K3 is constant.

A set of subsonic downstream boundary conditions which only

specify the pressure were also used. They are Steger's boundary

conditions. The derivations of these boundary conditions are also

given in the appendix. They are represented as

P. - +-P.

j 1 + (P -1

P. - PW

This type of boundary condition is more common in an experimental setup

but allows reflection of waves.
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V. RESULTS

A series of computer runs were made using both MacCormack's

implicit and explicit algorithms. Boundary conditions were tested for

various nozzle conditions to determine their impact on both schemes. A

problem of special interest that was investigated was to determine how

MacCormack's algorithm (with the help of characteristic boundary

conditions) could handle the relationship between the shock location

and back pressure.

The results are plotted against the theoretical solution for

comparison. Notice that the theoretical shock is smeared. This is

because the theoretical solution is calculated and plotted at each

computational point. This will give a better comparison between the

numerical results and the theoretical solution.

The first test performed was comparing the implicit to the explicit

algorithm for the supersonic nozzle. Boundary conditions were not a

factor in this computer run because both algorithms handled the

conditions the same--numerically. The supersonic downstream boundary

conditions were Neumann type. The results were not surprising. The

* implicit run converged in 135 time-steps while the explicit converged

in 1408 time-steps. Interestingly, the implicit run did not converge

to the same values of the explicit run. This was a result of a constant

which is related to the CFL condition located in the eigenvalue matrix.

After this constant was adjusted to 0.9 both algorithms converged to
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the same values. These values were within 1% of the theoretical values.

The results are plotted on Figures 6 through 9.

The second test performed was a comparison of MicKenna' s and

Steger's boundary conditions. McKenna's was the characteristic boundary

condition where both pressure and velocity are specified while Steger's

characteristic boundary condition only specified the pressure. Each

* boundary condition was used in the implicit and explicit algorithm.

The subsonic (exit) nozzle was used because characteristic theory states

that with subsonic flow there will be one left running wave and two

right running waves. This is a perfect condition in which to test the

two boundary conditions for their reflection effects on the algorithm.

The convergence of both boundary conditions in the implicit case compare

quite well. The boundary condition that specified pressure and velocity

(McKenna) required one less time-step to converge than Steger's boundary

condition. Except for the jumps (Gibb's phenomena) around the shock,

a. both conditions converged to the theoretical values with a deviation of

less than one percent. The results are plotted in Figures 10 through 13.

The plots for the explicit case are located in Figures 14 through 17.

Notice that the Figures are not as smooth as those of the implicit case.

After 2,500 iterations the scheme still had not converged. It simply

oscillated around the theoretical values. It was suggested that by

allowing the time-step At to float it would cause the waves to

-4 decrease. Accordingly, At was set to

for each computational point. The results justified this line of

reasoning. Note how smooth the results are--just like in the implicit

case (see Figures 18 and 19). The reason the jumps disappeared is
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because the truncation error from the time derivative term cancelled the

* artificial viscosity generated by the convective term. (For further

information concerning this point see ref. 15).

The results up to this point showed that the affects of both

boundary conditions are about the same.

A special test was run to determine how MacCormack's algorithms

could handle the relationship between shock location and back pressure.

Both boundary conditions were used to test their effects on the

algorithms. The results are located in Figures 20 through 27. The

test was run by allowing the scheme to converge to an initial guess.

Then, after convergence was achieved the boundary condition was changed.

It was initially hoped that the implicit scheme would allow the shock

to move upstream especially when McKenna's boundary condition was used.

This condition was the one that specified pressure and velocity at the

exit. It was thought that by specifying two variables at the boundary

it would "force" the shock to move, but such was not the case.

The first test case involved the implicit algorithm'. McKenna' s

boundary condition did not work for either moving the shock upstream or

downstream. Immediately after the initial guess converged and the

boundary condition changed, negative values for the pressure and density

appeared. The results were meaningless. The results for the implicit

algorithm with Steger's boundary conditions were the same as McKenna's.

They both failed. They did the same thing--produced negative values

for pressure and density and became numerically unstable. This was

surprising. It was hoped that MacCormack's implicit algorithm could

handle the problem of allowing the shock to move.
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The results for the explicit case were successful. McKenna's

boundary condition that specified pressure and velocity still did not

allow the shock to move upstream or downstream, but Steger's boundary

condition that specified just the pressure did. As Figures 20 through

23 show, Steger's boundary condition moves the shock up and down the

nozzle right where it is supposed to be (for the corresponding pressure).

This is an interesting point. It shows that the boundary condition

that specifies only pressure is the logical choice to use both

theoretically and numerically. Theoretically, pressure is the driving

mechanism for nozzle flow problems. Numerically, specifying pressure

at the boundary works.

It was then decided to allow the time-step (At) to float to see if

the jumps could be smoothed out. The test was run for both boundary

conditions in the explicit algorithm. The results for attempting to

move the shock upstream are located in Figures 24 and 25. Only Steger's

boundary condition was stable. Notice, the shock did not move. In

fact, the results are exactly the same from the inflow to the shock

location (original location) as the initial theoretical values. Once

past the shock the results for each boundary condition varied.

Analyzing the results it appears as though once the shock initially

forms, a change in the downstream boundary condition cannot be felt

upstream of the shock. The effects of the downstream boundary

conditions are just reflected back and forth from the shock to the exit.

The attempts to let the shock move downstream were disappointing.

Neither boundary condition worked. The condition that specified only

pressure did converge but again the shock did not move. McKenna's

boundary condition was again unstable. The upstream values were the
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same as the initial guess (converged solution), but the downstream

values were radically different (same as before). See Figures 26 and 27

for the results. The results for this section were very surprising.

It was thought that the shock would move downstream (maybe not upstream,

but at least downstream) due to the subsonic nature uf the flow, but

as stated, the results readily proved this inaccurate. This is an

interesting case because when At is held constant the shock moves!
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VI. CONCLUSIONS

Numerical experiments for the quasi-one-dimensional Euler

equations have been applied to nozzle flow problems. These experiments

included boundary condition analysis and a comparison of MacCormack's

implicit and explicit algorithms. The results from these experiments

are judged by how well the equations are solved. The judgment criteria

is convergence rate, robustness, and adaptability.

There were two (exit) boundary conditions used, each based on

characteristic theory. One boundary condition specified pressure and

velocity (characteristic variable) while the other only specified

pressure. The convergence rate for both conditions was just about the

same. The condition that specified pressure and velocity was initially

thought to be mathematically superior in that a non-reflecting boundary

condition would prevail. The results showed just the opposite. The

* condition that only specified pressure was robust. This was the only

* boundary condition in which the shock moved upstream and downstream.

The adaptability of both boundary conditions are about the same. This

is a result of the fact that they were both derived from characteristic

theory. Judging the two boundary conditions, it is evident that the

* condition which specifies only pressure is more useful.

Each of MacCormack's algorithms has their advantages and

disadvantages. The explicit method is very reliable and can be used

for a wide variety of problems. The main drawback is the large amount

of computing time required to solve a problem. MacCormack's implicit
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method is a new method which yields highly accurate results with a

considerable amount of reduction in compiter time. The method is not

truly implicit because it is not unconditionally stable. The main

advantage of the implicit method is that when the problem becomes more

complex (viscous effects and turbulence) the explicit part of the

scheme becomes more complex too, but the implicit numerics are not

affected--therefore, a great reduction in computer time exists. The

inability of the implicit scheme to move the shock upstream or

downstream was a disappointment.

Areas of further study that need to be investigated are:

1) McKenna's boundary condition and why they did not work for the

explicit case. 2) The importance of initial conditions. (This might

account for the fact that McKenna's boundary condition did not work.)
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APPENDIX A

Derivation of the Jacobian

The Jacobian (A) is defined as

A (U) -
l m

In order to calculate it, the flux vector "F" should be redefined in

terms of the conservative variables "U".

Given

J

then "F" can be rewritten as

Pu (U

F 2 = (y-l)e + 2

u (e + p)j Y me (y-l) m3

p 2

The Jacobian can now be computed as

aFA . -1 am

A F1 am 1-- r

A 8F 1 am
A13 - We 0

3
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- ,.

3F% 2

A 2 8 ((y-1) e + 2 -(3- _a
"9 A2 1  DU ap 2 2

.1 p

.:-' 2

3F -A. 2 a (Q-1) e + (32 p (3-y)2 A 2  am p

8F (
.2 D (y-1) e 2/A:< L -- = (y-1)

A23  a Be

F Y ) --. e + (.f_),
A3 1 = U ap p2  p

13
3F ym _ !- 2

.3 a 2 p2)_ le 3( )mA32 = am p 2 p
2

8F~ (Yme -(Y~) M)
: 33 7U."3 Be p

Summarizing we have

A11 A 12 A13

A A 21  A22 A23

L A 31 A32 A33

or

0 0

A 3 m_ (3-y) -  (-l)

- e.z m 3  ,n 22 p

p P
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APPENDIX B

Characteristic Boundarx Conditions: P & U Specified (McKenna)

The characteristic variables are

Q = p - p/C2

Q2 = p + POCoU

Q3 = p - P°C°U

In terms of primitive variables they are

Q2 + Q3• P= 
2

' Q2 - Q3

P p =Ql + Q2,+ Q3
;: 2C2

These values were derived by solving the three equations (above) for

three unknowns.

This information is now applied at the subsonic (exit) boundary.

*Subsonic Outflow:

The boundary conditions are mathematically represented as

aQi
Z =0

ax
00

ax

Q3 constant = K3
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Refer now to the primitive variables written in terms of the

characteristics. The velocity, for example is written as

Q2 - Q3U 2poCo

This term contains two characteristics - the second and third. McKenna

reasoned that Q3 is constant while Q and Q2 (at the exit) are allowed

to float. Therefore in order to set the exit boundary condition, Q1 and

Q should be expressed in terms of the primitive variables. Q is held

constant at K3 . The velocity term would then become

Q2 Q3

p + POCOU - K3

2PoC o

The other terms are

P (P -. ) + p+PoCoU) +2C2
0 0

(p + PoCoU) + K3
2

The variables are numerically implemented into the program as:

PACQ I n K3 _1

SPoCo0 + Uj-_ + poCo

0 - 1 j- 1 + Po o _-J

n n + Pj+ 0n
j _1 +2C O oCo j-
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Where p. &C. are evaluated at the j t point for the n -1 time-step.

1(3 is a constant represented as

Here P,, and U,, are the values at the exit.
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APPENDIX C

Characteristic Boundary Condition: P specified (Steger)

Subsonic Outflow:

Steger represented the outflow boundary as

* aQ2.- = 0

ax

P =P

This can be rewritten as

Qi. = lj_1

Q 2 = Q2 j_ 1

P - P'0

In terms of the primitive variables they are written as

Oj - Pj/C

P + PoCoUj = Pj-1 + PoC 0 Uj- 1

P o
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Now solving for the density and velocity we get

Pj = Pj-1 + - P j-1)
0

U. = uj_1 + (P j- - POO)

P=P

Numerically these equations are represented as

n n 1 n

S U. 1 
+  C (n p c1 )PO0

P. p

C

Po and Co are the same as before.
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.2PENDIX D

Sample Calculations for the Initial Shock Location:

P0  10,000 lbf/ft2

Given:

2 4Po .00883 lb sec ft

The values of various points are:

PT #2

(X = .4) A = 1.0514 m = 1.5

-- =1.6-P .2724 .3950- A* PO Po

A*= .8941 P 2 = 2724 P 2 
= .C034 C = 1045.6

U f 1568.45
2

PT #1

xA 1  1.0512 1.1757 M = 1.4996

-(X fi 0 A0) .894]

-= .2726 = .3951 C = 1045.9
P0  P0

U = 1568.38 P1 = 2726 p, ; .0034
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The shock is at point 16:

PT #16

(X = 6.0) A16  1.6284 = 1.821 M = 2.09
.8941 M16

p 1111 .2081 C = 920.04
P0

U =1922.9 P =1I P6 0018

After the shock

M = .5628 P2 4.929 2 2.798
y CI

LOY = .6789 -1= .1636
PoX P0 2

U = 687.3 P = 5476.12 py .0051

P .8065 -2- = .8576
Poy POy

Poy = 6789 p = .0059 A = 1.2363

~j A2 A* A16 A25
AE A* A 6  Ay A Y

A 1.7445 1 1 1.2363Aft .941 ~wr - =1.3248

.8941 1.821 f 1

-25 = .508 f= .8385 o = .8817 C 25 = 1228.6
Pay Pay

PT #25

(X = 9.6) U25 = 624 P 2 5 = 5692.6 P25 = .0052

PT #26

(X = 10.0) A 1.7447 o 1 • 1.2363= 1.3249 M26 = .508
At .8941 1.821 1
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(same as PT #25)

PT U e . M

1 1568.38 2726 .0034 1.4996

2 1568.45 2724 .0034 1.5

16 1922.9 1111 .0018 2.09

y 687.3 5476.12 .0051 .5628

25 623.99 5692.6 .0052 .508

26 623.0 5692.9 .0052 .5080
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APPENDIX E

Theoretical Values for Moving the Shock Upstream and Downstream:

Upstream: (From the original shock) Choose point #12 for the

new shock location

PT #12 A1 2 = 1.2431 1.3904 M 12 = 1.7540
A *  .8941

P = .1867 = .3016
t p 

Pt

P1 2 = 1867 .0027 U = 1725.8

M,= .6271 -- =3.422 TX= .8328 - 2.285 7- .8276
P12 Pt1 2  P2 Pt

Py 6388.9 P = .0063 U y 753.2 P = 8328 p y 0075

The exit conditions are now calculated

AE 1.7445 I 1 1.1582

A; .8941 1.3904 1 1 1.6253

M2= .3895 P= .9007 .9280
Pt Pt

P 2 s = 7501 P25 = .0070 U 2 S = 477.1

75
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Downstream: (From the original shock) Choose point #20 for the

new downstream shockA20 -1.7343

PT #20 A*- 1.7343 = 1.9398 M 20 = 2.1827 M f .5521A* .894 =.89

.1919 Pt2 = .6408 P20 = .0017 " 2.8997
Pt1  P1

H - .5521 - f 1.2519 .0= .8625 = 64082
A* Pt ty ty

The exit conditions are now calculated

& = 1.7445 • 1 1 1.2519 = 1.2593
A; .8941 1.9398 1 1

= .5472 = . = .8647
Pt Pt

P 2 5 = 5228 P25 = .0017 U25 = 1,135

p7

0
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