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Preface

The purpose of this study was to examine the mode

eigenvalues, far field beam quality, and far field beam

steering of decentered, unstable resonators. Because of

the complex nature of mode modeling, much of the anlaysis

performed was numerical instead of theoretical. It is

hoped that the lack of explicit formulae and mathematical

developments will not detract from the value of the

numerical analyses.

As with any major undertaking, this study would not

have been possible without the support, aid, and encourage-

ment of many people. Much gratitude and appreciation is

due Lt Col John Erkkila, my advisor, for his constant guid-

ance and understanding, especially during the final phases

of this project. My thanks are due Capt Mark Rogers for

the many useful discussions of resonators and his help with

the computer (a monster by any measure!). Sharon Gabriel,

my typist, deserves much appreciation for her excellent

work. And finally, my sincerest appreciation goes to my

family and friends for their support and words of encourage-

ment throughout this endeavor.

Steven M. Rinaldi
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Abstract

The mode eigenvalues, far field integrated intensity,

and far field beam steering angles of unstable, decentered

strip resonators were studied. >The resonators examined had

magnifications of 2.0 and equivalent Fresnel numbers in the

range 9.3 s N 5 9.9. The resonator modes were calculatedeq

by the asymptotic method of Horwitz.

Two equivalent Fresnel numbers for the decentered reson-

ators were defined. The fundamental and second-order mode

eigenvalues exhibited periodicities in the equivalent Fresnel

numbers. The mode separation was observed to be a function

of the amount of decenter and the two equivalent Fresnel num-

bers. The cusps of the first two eigenvalues were cyclic in

Neq"

The far field integrated intensity was computed for spot

sizes of one, two, and three Airy disks. The percentage of

total power deposited in a given spot size increased as the

decenter increased. Beam quality instabilities were observed

in all modes.

The beam steering angles of the first four modes were

calculated. The angles fluctuated about the optic axis as the

decenter was increased. The fundamental mode had significantly

lower beam steering than the higher-order modes.

viii



PERFORMANCE ANALYSIS OF

DECENTERED UNSTABLE RESONATORS

I. Introduction

Background

Optical cavities may be categorized in two general

classes: the stable and the unstable resonators Jtable

resonators are characterized by well-defined mod, The

mode volumes of such cavities are generally quit --ll.

Output coupling of the modes is usually accomplib-.-d by

transmission through a mirror or other optical element.

Consequently, the output power levels achievable in stable

resonator designs are limited to relatively low values.

Unstable resonators are characterized by large mode volumes.

The modes are outcoupled via diffraction around one or both

of the resonator mirrors The output power levels of

unstable resonator lasers are not limited to low values;

hence, unstable resonators are used in high power applica-

tions.

The modes in a stable resonator are well-defined and

easily calculated. The modes are generally described in

terms of the Hermite-Gaussian or Laguerre-Gaussian

functions (Ref 1:1324). The modes of unstable resonators

are not so simply described. They must be computed by

r1



using one of several different numerical techniques. One

solution technique of particular interest is the asymptotic

method (Ref 2), which was used to determine the modes in

this study.

The geometry of a general resonator is depicted in

Figure 1-1. M is the geometric magnification, a1  and

a2 are the linear half-widths of mirrors M1 and M2

respectively, R1 and R2  are the radii of curvature of

the mirrors, and L is the axial length of the resonator.

The well-known g parameters are given by

R.
g I i = 1,2 (1.1)

If 0 glg 2 f 1 , the resonator is stable. Otherwise,

the resonator is classified as unstalle.

The equivalent Fresnel number is defined by

N 1 1(M (1.2)
eq 2 2"Lg1

X' is the radiation wavelength. This parameter is related

to the number of Fresnel zones intercepted by mirror M2.

The geometry of misaligned and decentered resonators

is depicted in Figure 1-2. It can easily be shown (Ref 3:

19-23) that a misalignment of mirror M2  is equivalent to

a decenter of that mirror:

it 2
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M1

R2 a2 Optic

Axis

L

Figure 1-i. Geometry of an Unstable Laser Resonator

a2 0 M + 1(136 = a2  ~ MIl(1.3)

'Neq M - 1

where 6 is the fractional offset of M and e is the

angle through which M2  is tilted. As a result, off-axis

resonators can be analyzed as misaligned resonators, and

vice-versa.

The confocal resonator is a special type of cavity.

The g parameters of this resonator must satisfy the

relationship:

3*1



Ml.- LIGNED RESONATOR

Tilted optic

DECENTERED RESONATOR

Figure 1-2. Geometries of Misaligned
and Decentered Resonators
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gl + g 2 = 2glg2  (1.4)

The output beam of a confocal resonator is collimated. In

the geometric optics limit, the beam is a plane wave. This

is a limiting value of the spherical wave mode (in the

geometric optics limit) of a general unstable resonator.

The Asymptotic Method

This section discusses the asymptotic method of

solving for bare, strip resonator modes. As this solution

technique is derived in detail elsewhere (Refs 2, 3, 4, 5),

the following development is simply a brief outline.

The generalized integral equation describing the

resonator modes is

b
Xu(x) = f K(x,y)u(y)dy (1.5)

a

where u(x) is the mode, X is the mode eigenvalue, and

K(x,y) is the kernel of the integral. For a decentered

resonator, Eq (1.5) becomes

Xg(x) = f g(y) exp[-it(y-x/M)2]dy (1.6)
IF1+6

5
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where

iTN x 2

g (x) = e eq u (x) (1.7)

TMa 2
t = 7MF = 21"ag (1.8)

In Eq (1.6), the half-width a2 of mirror M2  has been

normalized to unity. The integration is thus taken over

the surface of M2 , with the decenter accounted for.

y is a dummy variable of integration.

g(x) can be approximated as a unit amplitude spherical

wave plus a finite series of higher-order edge-diffracted

waves. This expansion is given by

N
g(x) = 1 + I [a Fn (X) + bn G n(x)] (1.9)

n=1

where

Fn (x) - exp [-it (l-x/M n ) 2/Mn- 1  (1.10)

n 4 Fiff lt(1 _ x/M n

n 1 exp[-it(l+x/Mn ) 2/mn-11

n(x) = - ( + x/M n )

n
M = 

2 k

k=0

*1 6J __ _ __ ,_ _ ,____._._......_



Equations (1.9), (1.10), and (1.11) are substituted

into Eq (1.6). The resultant integral equation is evaluated

by the method of stationary phase. The final result is

N
X{l + E [a F n(x) + b G (x)]} = 1 + F1 (x) + Gl(x)

n=l

N
+ I [anFn+ l (x) + bnGn+ l ( x ) ]

n=l

N
+ F1 (x) [ [anF n() + b n (G)]

n= n n n

N
+ G1 (x) I [anF n (a) + bnGn(a)] (1.13)

n=l

where

a = -1 + 6 (1.14)

= 1 + 6 (1.15)

As shown in Chapter II, Eq (1.13) can be reduced to

a polynomial expression in X with known coefficients. The

equation can be solved numerically for the eigenvalues. The

coefficients an and bn  are then easily computed.

Finally, the mode u(x) is calculated from Eqs (1.9) and

(1.7).

i7
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Obj ectives

The objectives of this study are to examine the

behavior of the eigenvalues and the far field modes as

functions of the decenter parameter 6 . Specifically,

the objectives are:

(1) To determine how the eigenvalues evolve as 5

is increased from zero. The relationships

between the cusping nature of the first two

eigenvalues and the equivalent Fresnel numbers

Neq,L and Neq,U will be explored (see

Chapter II).

(2) To determine how the far field integrated

intensity changes as a function of 6 for

the first four modes.

(3) To explore the relationship between the far

field beam steering angles and 6 for the

first four modes.

(4) To develop a simple set of design criteria

* for unstable resonators based on the observa-

tions listed above.

Assumptions and Limitations

The assumptions and limitations of Reference 3 apply

to this study, as the computer model developed in that

work was used to predict the resonator modes. The following

additional assumptions and limitations are made:

18



(1) The Fraunhofer approximation is sufficient to

calculate the far field mode patterns. This

approximation is valid if the far field patterns

are calculated at distances far from the resonator

output aperture. Since this separation was taken

to be infinite, this approxination is valid.

(2) The computer code used to predict.the resonator

modes is valid for decenters of 0.0 6 5 0.9.

Weiner asserts that this is essentially true

(Ref 6:1831), based on comparisons of modes

calculated by the asymptotic method and the

power method (Ref 7).

(3) Only bare strip resonators with magnification

M = 2 and equivalent Fresnel numbers in the

range 9.3 ! N eq ! 9.9 will be studied. The

results of Appendix A, however, are valid for

general M and N values.
eq

Throughout this study, reference will be made to the

"geometric mode." This is the geometric mode of a confocal

resonator - a uniform plane wave. Upon emergence from the

resonator, the mode will have a uniform "annular" profile.

Organization

In Chapter II, a general theory of mode eigenvalues

is presented. The eigenvalue polynomial equation is devel-

oped, and theoretical predictions about eigenvalues of

9
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decentered resonators are made. The far field integrated

intensity and beam steering are discussed in Chapter III,

based on a Fourier optics treatment of the geometric mode.

In Chapter IV, the major sources of numerical error that

exist in the computer code that determines the far field

modes, integrated intensity, and beam steering are evaluated.

The study results are presented in Chapter V. The general

unstable resonator design criteria are presented in Chapter

VI, and the overall conclusions and recommendations are

relegated to Chapter VII.

10
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II. Theory of Mode Eigenvalues

A general theory of the mode eigenvalues is presented.

The polynomial equation used to compute the eigenvalues

in the asymptotic approximation is derived for completeness,

even though its development exists elsewhere (Refs 3:28-30;

4:24-29). The concept of two equivalent Fresnel numbers

for decentered resonators is developed, and its relationship

to the mode eigenvalues is discussed.

Background Theory of Eigenvalues - Aligned Resonators

The general form of the integral equation describing

the round trip propagation through a resonator is

b
Xu(x) = f K (x,y) u (y) dy (2.1)

a

This is an eigenvalue problem. X is the eigenvalue and

the integration is the operator.

After a round trip through the resonator under steady

state conditions, the mode must be essentially unchanged in

form. After the propagation, the mode u'(x) must be

given by

u'(x) = Xu(x) (2.2)

At every point on the wavefront, the amplitude is scaled

i



by the magnitude of the eigenvalue and the phase is

shifted by the phase of the eigenvalue.

The fraction of energy coupled out of the resonator

is related to the eigenvalue. For strip resonators,

(Outcoupled Energy Fraction) = 1 -M (2.3)

where i refers to the ith mode and M is the geometric

magnification of the resonator.

The symmetric mode eigenvalues exhibit a periodicity

when plotted against the equivalent Fresnel number of the

resonator. Notably, the separation between the magnitudes

of the first and second symmetric mode eigenvalues has

maxima at approximately

3

N n + 3 n=0,1,2,... (2.4)
eq 8

* and minima at approximately

Ne n + , n=0,1,2,... (2.5)
eq8

This behavior is apparent in Figure 2-1. This plot displays

the magnitudes of the first seven (symmetric and anti-

symmetric) mode eigenvalues. A periodic nature of the

eigenvalues is rather clear.

12
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Below some critical equivalent Fresnel number,

Neq(crit) , the first and second symmetric eigenvalues

display either crossing or cusping at the mode separation

minima points. Above Neq(crit) , crossing of the first

two eigenvalues ceases. Neq(crit) is given by (Ref 9:4149):

N eq~crit11.5 (2.6)
eq(crit) -(n M)3

Above Neq(crit) the overallperiodicity of the eigen-

values still exists. The amplitude of the fluctuations

of the magnitude of X1 decreasesas Neq increases (Ref 2:

1536).

The periodic fluctuations of Ixil may be better

understood if the following argument is advanced. The

equivalent Fresnel number is equal to the number of half

wavelengths between the edge of the output mirror and the

closest point on the geometric wave inside the resonator

when that wave just touches the center of the mirror

(Ref 10:360). This is depicted in Figure 2-2. Of all the

waves that are scattered from the edge of the mirror, that

which is propagated back into the resonator along the ray

direction of the outgoing geometric wave is the most

important. It is focused back along the optic axis, where

it can interfere with the resonator mode (Ref 11:263). As

N is changed by unity, the phase of this re-entrant rayeq

is changed by 27 radians. Consequently, there should be

14
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- Neq

%1

I'I

Figure 2-2. Interpretation of N (Ref 10:360)eq

cyclical constructive and destructive interference along

the axis, with a period of unity in Neq

Considering just the fundamental mode, when the re-

entrant ray interferes destructively with the mode, the

field on the resonator axis should be relatively diminished

compared to the field near the edges of the mode. If

the re-entrant ray interferes constructively with the mode,

the field on the optic axis should be relatively more

intense than the field near the edges of the mode. Hence,

a resonator with N such that destructive interferenceeq

occurs should outcouple relatively more power than a

resonator with N such that constructive interference
eq

occurs.

Since the outcoupled energy of a mode is related to

JXJ as in Eq (2.3), IJX should also be related to the

15b-



constructive and destructive interference. When the re-

entrant ray interferes constructively, JlX should be

near its maximum. When destructive interference occurs,

Ill should be near its minimum. Hence, for 1ll near

its maximum, the mode should be relatively built up on

the resonator axis and depressed near its edges. When

AlX is near a minimum value, the mode should be depressed

on the optic axis and built up near its edges.

An examination of the fundamental mode for 5 < N < 21eq

confirms the above. ly reaches its peak value when

N8 (n=0,12, ) and its minimum value wheneq n, .
7N eq =n + The fundamental mode does have a depressed

intensity on axis when N n + 1 and relative intensity
eq 8~ 3 . iue 2-3 and 2-4 show

peaks on axis when N n + - .Figures 2eq 8

representativc. plots of this behavior.

Wtg- 14.S7
jfAOZ 2.00

DELTA= .0000

MODE - I
p000 E1INVL2E.

SD 1.043 1. l0,3E-

.21

0.00 " O
-3.OC -200 .00 1.00 20 3.00 4.00

MRROR PLANE

Fig. 2-3. Fundamental Mode Intensity for N eq=14. 3 7 with 6=0.0
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Fig. 2-4. Fundamental M111ode Intensity for N eq =14.8825 with 6=0.0

The Polynomial EigenvalueEquat ion

The stationary phase approximation to the integral

equation results in the expression

N
Xl+ [an F n (x ) + b nS (x) ]} =l+ Fl (x )  G G (x )

n=1 l"

N
+ [anFn (x ) + bnGn (x ) ]1 n=1

/ N

FI(x) Z [anFn) + bnGn()
1 n=l nnnn

N

+ G 1 G(X) X [anFn(a) + b n Gn) (2.7)

n=l

17
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With the manipulations detailed below, Eq (2.7) can

be reduced to a polynomial in X of order 2N+1 The

polynomial can be numerically solved for the 2N+1 eigen-

values.

The initial step is to equate the constants and the

coefficients of Fn  and G on both sides of Eq (2.7).n n

Equating the constants yields

X 1 + aNFN+ 1 + bNGN+ 1  (2.8)

FN+ 1  and GN+ 1 are essentially constant, as may be seen

in Eqs (1.10) and (1.11).

Equating the coefficients of F1(x) and Gl(x)

gives

N
Xa = 1 + I [an F n() + b G ()] (2.9a)n=1 nn

N
bI  1 + I [an F n (a) + b G n(a)] (2.9b)1n= n n n"

n= 1

Finally, equating the coefficients of F (x) and G (x)n n

nXl , yields

Xan+ 1  an  (2.10a)

n+1 n

b+ 1  =b n  (2.10b)

t 18
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From Eq (2. 1Oa),

a n a1
anl = - - (2.11)

Changing the subscripts slightly, and using Eq (2.11) twice

yields

a N 1- - (2.12)

= a X nN (2.13)
n

Similarly,

bN = b nX nN (2.14)

Using Eqs (2.13) and (2.14), Eq (2.9) reduces to

N 1 + N x - [a F ( ) + b G (s](2.15a)
N= N n N n

bNN + N N-n
1 + x [aFN F n + bN G n(c)I (2.15b)
n=1

Following Reference 3, define

19



N

F = x N-nF (a) (2.16a)
n=l n

N -
SXNnF (8) (2.16b)

n=l

N
Go = I xN-n (4) (2. 16c)

n=l

N

G N AN-nG (") (2.16d)
n=l

Substitution of Eq (2.16) into Eq (2.15) and factoring out

the constants a N and h N gives

N
a N 1i + a NF + b NG (2.17a)

b -NN 1 + aNF ° + bNG (2.17b)

Solving Eqs (2.17a) and (2.17b) simultaneously results in

C - G + AN

aN 2N N O (2.18a)

N ~ ~ ~ xx 2 N - N F + a ) + F Ga - a 8

F - F + AN
b N FBGN -a G (2.18b)

x -x (F +G ) + FG L- F aG

20
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After substituting Eqs (2.18a) and (2.18b) into

Eq (2.8) and rearranging the terms, the final expression

in X is

2N+l _ X2N _ X FNl N(FF +GGN+)

+ X(F G1-F G) + (FaGS-FBGa)

+ F N+(G a-G) - G N+(F -F ) = 0 (2.19)

Equation (2.19) is the desired polynomial expression in X

Note that F a , Fe , Ga , and Ge are all polynomial

functions of X All coefficients of X in Eq (2.19)

can be calculated, and the 2N+l values of A can be

evaluated numerically.

Edge Effects and Decentered Resonators

When the feedback mirror M2 of the resonator is

decentered, two equivalent Fresnel numbers can be defined

for the cavity. For an aligned (non-decentered) resonator,

Eq (1.2) defines the N as
eq

a2  (M-
N = 2  1 (2.20)

eq -X L (l2 M~

21
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Referring to Figure 1-2, one equivalent Fresnel number can

be defined for the section of M2 extending above the

optic axis, and one for that below the optic axis. Thus,

N 2- M-i (2.21)
eq,U 2X'LgI  2 (M -

(1+6)2 N (2.22)
eq

Similarly,

N = (1-6)2 N (2.23)eq,L eq

The subscripts U and L refer to the upper and lower

sections of M2

Drawing an analogy to the aligned resonator case, the

edge effects would be expected to influence the separation

of Ili and IX21 when Neq U and N equal
1 2 eqUeq,L

3 7
n + 2 or n + , n=0,1,2,... As 6 increases from zero

to unity, Neq,U and Neq,L are swept through a number of

such points.

The values of 6 for which the edge effects should

alter the eigenvalue separation are easily determined.

Starting with Neq,L

N q 3 + (2.24)
eq,L 2
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whe re

0,2,4,.... for maximum mode separation
K3,. for minimum mode separation (2.25)

(1-6)2 N 2 + E (2.26)

1 3 + K

6(K) = 1 Z (2.27)

Equation (2.27) is identical to Eqs (11) and (12) of

Reference 6.

Similarly, for NeqU

N -+-E+INT(N )(2.28)
eqU 8 2 eq

where

{0,2,4,... for maximum mode separation
K" -

1,3,5,... for minimum mode separation (2.29)

and where INT(Neq) is the integer portion of Neq With a

little rearranging,

INT (N + (2- + 1

6(K') = N eq  - 1 (2.30)L eq
K and K can only assume integer values in Eqs (2.27)

and (2.30).
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6(K) and 6(K') are specific, calculated values of

the variable 5 at which the separation between IlI and

Ix21 should be maximal and minimal. Neq,L might play the

dominant role in determining the shape of the eigenvalue

curves as functions of 6 , especially at large values of

6 . As 6 approaches unity, N ,L becomes much smallereq

than Neq,U * As noted earlier, studies of aligned resona-

tors show that the depth of the cusps of Iall decreases as

N eq is increased beyond Neq(crit) Consequently, for

large decenters, Neq,L may play the dominant role in deter-

mining the structure of the eigenvalue curves.

The particular importance that Neq,L has on the shape

of the eigenvalue curves has been reported by Weiner (Ref 6:

1830-1). From Figure 2 of Reference 8, 6(K) correlates

well with the 6 values at which maximum and minimum separa-

tions occur between Ix11 and IX2 1. No correlation

between 6(K') and the separation fluctuations is made,

however.
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III. Theory of Integrated Intensity and Beam Steeri

A general background theory of the far field inte-

grated intensity and beam steering is presented. General

relationships between the power in a given spot size and

the decenter parameter 6 are discussed. The beam center

is defined and a simple expression relating it to the beam

steering angle is given. Particular attenti'on is paid to

a Fourier optics treatment of the geometric mode throughout

this chapter.

Integrated Intensity

Integrated intensity is a measure of beam quality.

The integrated intensity is the amount of power falling

into a given spot or "bucket" located symmetrically about

the beam center. The total beam power is often normalized

to unity. The integrated intensity or "power in the

bucket" is then the percentage of total power falling or,

the spot. Plots of the far field intensity profile and the

corresponding integrated intensity vs spot size curve for

N =9.36 and 6 = 0.0 are given in Figures 3-1 and 3-2.eq

A number of studies, both theoretical (Refs 6, 12)

and experimental (Refs 13, 14), have examined how de-

centering the feedback mirror affects the integrated

intensity. As 6 is increased from zero to unity, the

percentage of total power falling inside the first Airy
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Fig. 3-1. Far Field Intensity Pattern for the Fundamental
Mode with N 9.36 and 5 0.0
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Fig. 3-2. Far Field Integrated Intensity vs Spot Size for
the Mode of Figure 3-1.
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disk increases monotonically for the geometric mode (Ref 12).

Anen'ev et al (Ref 13) noted that the axial brightness of

a Nd:YAG laser with 6 = 1 was much higher than that of

the same laser with 6 = 0. The output aperture with

6= 1 was effectively twice as large as that with 6 = 0,

since the energy was extracted from a single side of the

feedback mirror. Consequently, the beam divergence angle

(which is proportional to the inverse of the aperture size)

was reduced and the axial brightness was increased.

The far field intensity pattern for the geometric

mode is derived in Appendix A. The resulting intensity

I(xo) is

I() = 1 ic (M-l) (i+5)Xo]

S(M-) 2 (1+6)2 C2  z

(M-1) (1-.))x
+ (M-1) 2 (1_8)2 sinc

2  0]

2Tr (M+I) x

+ 2(M_1) 2 (1_62) cos [ z

(M-1) (1+6)x (M-1) (1-6)x 0
o]sinc xz sinc [ o] } (3.1)

where X' is the radiation wavelength, z is the separation

between the output aperture of the resonator and the obser-
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vation plane, and x is the coordinate in the observation0
plane. Setting M = 2.0 (corresponding to the cases

examined in this study) and 5 = 0.0 , Eq (3.1) reduces to

2 6rx 0  x

I"(x 0 ) = + cos (T--)] sinc 2 ( (3.2)

Equation (3.2) is the far field intensity pattern for a

nondecentered resonator. Setting 6 = 1.0 , corresponding

to a highly decentered resonator, the far field intensity

pattern becomes

2 n 2x
I' ) = (2 0sine 2  z 3.3)

The 1 + cos(6Tx o/X'z) term in Eq (3.2) causes the

energy to be spread out more than in Eq (3.3). More power

will thus be deposited in a given spot for the decentered

resonator (6=1.0) than for the nondecentered resonator

(6=0.0) . In fact, as 6 is increased, the energy deposited

in the first Airy disk increases monotonically (Fig. 3,

Ref 6:1832).

The above discussion suggests that a highly decentered

resonator may be capable of depositing more energy into

a given spot than a nondecentered resonator. The actual

resonator modes show amplitude and phase fluctuations, while

the geometric mode has uniform intensity and phase profiles.

However, since increasing 6 changes the output aperture
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from two slits to a single wider slit, the resonator modes

will most likely show an increas. in integrated intensity

for increasing 6 This is in line with the observations

of the previously cited works.

Beam Steering

The beam steering is the displacement from the optic

axis that the center of the far field pattern suffers. A

knowledge of the beam steering properties of a resonator

is a obvious importance. Targets in the far field might

be missed entirely if the beam wanders to a great degree;

optical elements at the output end of the resonator might

be damaged if the beam is excessively displaced from the

optic axis. A particularly interesting question is how

decentering the feedback mirror affects the beam steering.

The center of the beam will be defined as the centroid

of the intensity profile. For a one-dimensional beam, half

the power lies on either side of the centroid. Defining the

center of the beam as the centroid instead of the peak

intensity point can be justified by considering Figure 3-3.

Although Figure 3-3 is the TEMI0 mode of a stable resonator,

the argument is the same. The intensity peaks are shifted

considerably from the cente °- ,f the beam, while the centroid

is coincident with the centei. The centroid will in general

provide a better approximation of the beam center; hence,

it shall be defined as the center of the beam.
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PEAK INTENSITY

BEAM 0

CENTER

Fig. 3-3. Intensity Profile of the TEM 1 0 Mode

Note that the intensity peaks are
displaced from the center of the beam.

The beam steering angle 0 is given by

x
o (3.4)

z

where x is the location of the centroid in the observa-0

tion plane. Multiplying by the dimensionless parameter

2Ma 2/A'

2Ma 2 2Ma f (3.5)

6 )vz 2 2x

where f is the spatial frequency corresponding to thex

location of the centroid. Further, by setting a2  equal
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to unity, the normalized beam steering angle becomes

6 = 2Mfx (3.6)

where the subscript N refers to the normalizations

employed. The half-width of the central maximum of the

Fraunhofer pattern of a slit of width 2M is 9, = 1.0

6N can thus be used to relate the beam steering angles to

the radius of the Airy disk; it will be referred to as the

"normalized half angle." 6N  is a very general parameter,

as A' , z , and a2 are not explicitly required for

its calculation.

A major cause of beam steering is tilts on the phase

of the resonator mode. If the field immediately beyond

the resonator output aperture is u(x) , the corresponding

far field pattern will be k U(fx ) , where U(f ) is

the Fourier transform of u(x) and k is a complex

function. A linear phase tilt may be placed on u(x) by

multiplying u(x) by exp(iwx) Since

F[u(x)elitx ]  U(f - w/21T) (3.7)x

where F is the Fourier transform operatoi, the centroid

of the far field pattern is shifted by an amount propor-

tional to the magnitude of the phase tilt. Thus, tilted

resonator modes will suffer beam steering proportional to
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the sizes of the tilts.

Examination of Eq (3.1) shows that the far field

intensity is an even function of x , regardless of M0

or 6 . The geometric mode will, therefore, suffer no

beam steering at any value of . The phase (as well

as amplitude) profiles of resonator modes show tilts and

aberrations as the resonator is decentered. The degree of

phase tilting should impact the relative beam steering.

If the resonator modes roughly approximate the geometric

mode, the beam steering should be small. However, if the

ohase fronts become grossly tilted, the beam steering will

be pronounced.
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IV. Error Analysis of FOCAL

The computer code FOCAL propagates the resonator

mode to the far field, locates the bean centroid, calcu-

lates the integrated intensity, and determines the beam

steering angle. The various sources of numerical errors

that enter the calculations are examined in this chapter.

The errors are due to the numerical techniques and approxi-

mations employed. As it is difficult to quantify exactly

the magnitudes of these errors, the following discussions

will refer only to the relative sizes of the errors. A

listing of the code FOCAL may be found in Appendix C.

Far Field Intensity Calculation Errors

Calculating the far field intensity requires per-

forming a numerical Fourier transform of the resonator

output field. Four primary sources of error exist in the

calculation. Errors can be introduced if the mesh points

of the resonator mode are too widely spaced. Inherent

inaccuracies exist in the integration technique used to

compute the Fourier transforms. Errors arise if the far

field intensity is calculated at spatial frequencies above

a certain limit. Finally, spacing +t.-e mesh points on the

far field pattern too far apart will create additional

discrepancies.
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If the resonator mode mesh spacing is too wide, high

spatial frequency information will be lost (see Figure 4-1).

The field that is calculated will be a low-pass filtered,

and thus inaccurate, representation of the mode. This is

easily remedied by increasing the number of field points

calculated, with a corresponding decrease in the mesh

spacing. Unfortunately, this solution can become expensive

in computer time. A reasonable compromise was made in

this study by calculating the field at 100 points over the

surface of the feedback mirror. Increasing the number of

points from 100 did not produce a noticeable increase in

mode detail. Consequently, the error introduced in the

calculation of the near field pattern (resonator mode) can

be considered negligible.

Rather than use one of the available fast Fourier

transform (PET) routines, an algorithm based on a numerical

integration was written to perform the beam propagation.

The integration technique used was Simpson's rule (Ref 15:136-138).

This method connects adjacent data points with quadratic

curves and sums the resultant areas. This will produce some

error if the data points are not connected by quadratic

functions (see Figure 4-2). A higher-order scheme, such as

Weddle's rule, could have been employed. However, this

would have required additional computer time, so the simpler

(and less accurate) Simpson's rule was used. This probably

introduced the greatest error in calculating the far field

intensity. 
3



f (x)

xxxI1 x 2  x 3  x 4  x 5

Fig. 4-1. Plot Depicting Improper Sample Spacing

Note the loss of high frequency data.

The Nyquist criterion states that a signal with a

highest frequency component W can be perfectly recovered

if it is sampled at a rate f > 2W and the samples are
s

processed by a low-pass filter (Ref 16:68-71). Using this

criterion, the far field intensity can only be calculated

for spatial frequencies fx in the range

1 < f 5 1 (4.1)
2T x 2T

s s

where Ts  is the mesh spacing on the resonator mode. In

this study, f was always less than 1/35T . As a

result, this source of error can be considered negligible.
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f (x)

Fitted

xn- 1  xn  xn+ 1

Fig. 4-2. Exaggerated Plo, Showing the Discrepancy
Between f(x) and a Fitted Quadratic.
Error is Shaded.

The final source of error is the spacing between data

points on the calculated intensity pattern. This is identi-

cal to the problem of mesh spacing on the resonator mode -

a wide spacing creates loss of higher frequency data. This

problem can be resolved by decreasing the data point separa-

tion. During actual runs, the far field intensity profiles

were found to be quite smooth. A mesh spacing of approxi-

mately 0.06 normalized half angles (nha) was discovered to

be much more than adequate to recover all of the fine detail.

The errors introduced in this manner were thus quite small.

The use of Simpson's rule in the Fourier tranform

routine introduced the most error into the far field

intensity calculation. The other three error sources were

small by comparison, and can most probably be neglected.
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Errors Associated with Locating the Centroid

The centroid of the far field intensity is located

in a three-step process. First, the total power P0

between two interactively-specified limits is determined

by a numerical integration. Then, starting at the lower

limit, the intensity is integrated until the two mesh

points on either side of the half-power point are found.

Finally, a linear interpolation is used to approximate

the location of the centroid between the two mesh points.

This suggests three main sources of error: part of the

power is not used in the integration due to the finite

limits imposed, the exact power cannot be determined because

of problems inherent in the numerical integration, and the

linear interpolation will not precisely locate the centroid.

The far field intensity pattern theoretically extends

from -- to + . Beyond a few Airy disks from the

centroid, though, the intensity becomes negligible. Since

the numercial integration cannot be performed from -

to + , some of the power is necessarily ignored. This

introduces error into tha calculation, as the intensity

profiles generally are not symmetric. To minimize this

error, a criterion was established that at least 90% of

the power must lie between the limits of integration. (This

was readily determined. The power in the beam leaving the

resonator was normalized to unity. As long as the power

between the limits of integration was greater than 0.9, the
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90% criterion was fulfil.led.) In general, the power between

the limits of integration ranged from 90% to 950%. This

was deemed to yield sufficiently accurate results.

The use of Simpson's rule as the integration technique

introduces some error into the calculation. The reasons are

discussed earlier in this chapter. The far field intensity

patterns were quite smooth, and 501 mesh points were used

in the calculations (which roughly equates to 85 points

across the Airy disk) . Consequently, the errors introduced

by the integration were probably small.

The linear interpolation adds further error to the

calculation. This is illustrated in Figure 4-3. Point A

represents the actual centroid. Point B is the 'centroid"

located by the interpolation. An error equal to c thus

exists.

The maximum value l can have is x n 1 - xn

which is the mesh spacing. l could be reduced by

decreasing the data point spacing. This would require

additional mesh points and more computer time. During

actual runs, Ixn+1 - x n was on the order of 0.025 nha.

Decreasing the spacing beyond this limit would have

required inordinate amounts of extra computer time. lei

could also be decreased by using a higher-order inverse

interpolation scheme. Such a technique did not exist as

a computer library routine, and the time required to create

a routine was not deemed justifiable in terms of the poten-

tial returns. 
3



f (x)

1 0 __________ 1 X B ___

x x
x x n+l

Fig. 4-3. Linear Interpolation Contribution to
the Centroid Error. A is the centroid,
B is the estimated centroid, and c is
the error.

A value of the "maximum error in centroid location"

is printed by FOCAL. This is equal to the mesh spacing.

Three main sources of error exist in locating the

centroid. It is somewhat unclear as to which introduces

the greatest inaccuracy. Measures were taken to reduce

the errors in all cases.

Integrated Intensity Calculation Errors

The integrated intensity is calculated in a two-step

process after the centroid is located. First, the intensity

profile is recomputed between symmetric limits about the

centroid. Then, using Simpson's rule, the intensity is
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integrated outward from the centroid to the limits. Errors

enter the calculation during the location of the centroid,

the computation of the intensity pattern, and the outward

integration. The first two sources of error have been

discussed earlier.

The third source of error is again due to the inherent

problems of the numerical integration. Since the intensity

patterns were relatively smooth and the mesh spacing small

(0.025 nha), the inaccuracy of the integrations was mini-

mized. Decreasing the mesh spacing further would probably

have produced a small increase in accuracy for the additional

expenditure of computer time.
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V. Study Results

This chapter presents the results of the computer

analyses of the resonator. The effects of decenters on

the eigenvalues are discussed first. Next, the changes in

beam quality due to decenters are presented. The chapter

is concluded by examining how decenters affect the beam

steering.

Effects of Decenters on the Eigenvalues

The eigenvalues were studied as functions of 5

with N a fixed parameter. The twenty-five caseseq

examined are listed in Table I. The N values were
eq

chosen to lie about the points of maximum and minimum

separation between jXij and I1 (9.37 and 9.87,

respectively) and an intermediate value (9.60). In all

cases, the increment value for 6 was 0.004. Typical

plots are shown in Figures 5-1 through 5-6.

A note should be made concerning several conventions

used. 6(K) and 6(K) refer to the 6 values calcu-

lated from Eqs (2.27) and (2.30), respectively. 6(K even)

refers to those values of 5(K) for which K is even.

Similar remarks may be made for 6(K odd) , 6(K' even) ,

and 6(K' odd)

The eigenvalue plots were analyzed for five different

items. First, the overall and fine structures were
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TABLE I

Eigenvalue Analysis -Cases Examined

N eq Range N eq Range

9.30 0.0-0.4 9.60 0.0-0.9

9.31 0.0-0.4 9.625 0.0-0.9

9.32 0.0-0.4 9.65 0.0-0.4

9.33 0.0-0.4 9.80 0.0-0.4

9.34 0.0-0.4 9.81 0.0-0.4

9.35 0.0-0.4 9.82 0.0-0.4

9.36 0.0-0.9 9.83 0.0-0.4

9.37 0.0-0.4 9.84 0.0-0.4

9.38 0.0-0.9 9.85 0.0-0.4

9.39 0.0-0.4 9.86 0.0-0.9

9.55 0.0-0.4 9.87 0.0-0.4

9.575 0.0-0.4 9.88 0.0-0.9

9.89 0.0-0.4
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correlated to 5(K) and 5(K') , respectively. The

crossing and cusping nature of ly and IX2 1 was

examined in detail. Next, the separation between !Xl1

and Ix2 1 was related to Neq,U , NeqL , and 6

The interleaving of the higher-order eigenvalues was

explored. Finally, crossings between I 21 and 1X3 1

were examined.

Examination of Figures 5-1 through 5-6 reveals

that I and IX2 1 have an overall periodicity in

Neq,L This periodicity was observed in all the cases

studied. The separation between li and IX2' exhibit

maxima and minima quite close to the 6(K) values. In

the six applicable cases, 6(K=0) was somewhat greater

than the 6 value at which the peak separation occurred.

Superimposed on the overall oscillatory structure is

a fine structure periodic in N eq,U The structure is
eqqU

most pronounced for 6 <0.2 ,where N eq,U is of the

same order as Neq,L For 6 > 0.75 , the periodicity

still exists, but does not go exactly as NeqU

The separation between ll and IX2I exhibits

minor minima at the 6(K' odd) values. This agrees

with the theory of Chapter II. At these 6 values, the

I ll curves are depressed and the X2 1 curves are

peaked. The magnitudes of the depressions and peaks

decrease as 6 increases. The correlation between these

minor minima and 3(K odd) is excellent for 6 < 0.7

For 6 > 0.7 , the correlation begins to break down.
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At the 6(K' even) values, two distinct types of

behavior are observed for ly and IX1. In the

first type of behavior, a minor separation peak is observed.

Alternatively, both the \1j and IX~21 curves exhibit

very steep slopes of opposite sign. The slopes of the

curves in these regions are considerably greater than the

slopes in the surrounding neighborhoods. Even though

separation peaks are not exhibited, the curves appear to

be "stretched apart," thus creating the steep slopes. This

form of behavior occurred more often than the other. The

correlation between the two types of behavior and 6(K' odd)

is excellent for 6 < 0.7 .For 6 >0.7 , the correlation

begins to break down.

Prominent cusps or mode crossings between ly and

J 2 1 exist at almost all 6(K odd) values. Weiner (Ref 6:

1831) asserts that at moderately large N eqvalues (coin-

parable to those used in this study) , the first crossover

points do not occur until 6 is relatively large. In

this study, crossings were observed for 6 as low as 0.01

(N eq= 9.88, 9.89). Cusping can - and usually does - occur

when 6 is increased from the first crossing point. only

crossing behavior is observed for 6 > 0.5

The 6(k odd) cusps evolve in a regular manner as

N eqis increased. The four major stages of the cyclic

behavior are displayed in Figure 5-7. N eUand N e,

play important roles in the evolutionary cycle.
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6(K) 6 (K') (K)l 6;(K

(a) (b)

6 (K') 6 (K) 6 (K-) 6 (Y.)

(c) (d)

Fig. 3-7. Life Cycle of a Major Cusp

(a) First Stage; (b) Second
Stage; (c) Third Stage;
(d) Fourth Stage
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In the first stage of the cycle, a deep cusp forms

at a pair of 6(K odd) and 6(K' odd) values that are

approximately equal. Invariably, 6(K odd) < 6(K' odd)

As N is increased, 6(K odd) and 6(K' odd) becomeeq

almost equal, and the cusp deepens. In the second stage,

6(K odd) is irtually equal to 6(K odd) The cusp

exhibits two mode degeneracy points. As N is furthereq

increased, the third stage is entered. 6(K odd) becomes

larger than 5(K' odd) , and one of the degenerate points

breaks open. At this stage, the cusp has evolved into a

single mode crossing. In the fourth stage, 5(K odd)

and 6(K' odd) are somewhat separated. The remaining

mode degeneracy breaks open, and the eigenvalues completely

separate. As N is increased further, the mode separa-eq

tion becomes greater until no cusping nature is evident.

What was once a cusp has evolved into a region of relatively

large mode separation. This evolutionary behavior was

observed in virtually all cusps corresponding to 6(K odd)<0.4.

The separation between I1 1  and IX21 is a function

of Neq,U , Neq,L , and 6 Several distinctive types of

behavior may be observed.

If K and K' are of the same parity, several pairs

of 6(K) and 6(K') are approximately equal, and if

6 < 0.15 , then the mode separation is characterized by rapid,

deep oscillations. This behavior is observed near N =

9.37 and 9.87. In these regions, the cusps are quite deep
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and often doubly degenerate. Mode crossings occasionally

occur. The mode separation is quite unstable and changes

rapidly for small changes of 6 .The behavior suggests

that the edge waves from both edges of the feedback mirror

reinforce each other, thus creating the large oscillations

in lI and IX2 1

If K and K' are of the opposite parity, several

pairs of 6(K) and 6(K') values are approximately equal,

and if 6 <0.15 , then the mode separation remains roughly

constant at an intermediate value. This behavior may be

observed near N eq= 9.625. In these regions, changes in

6 produce minor changes in the separation between

and Ix1. It appears that the edge waves from both edges

of the feedback mirror interfere destructively with each

other. Each wave nulls out the effeczs of the other.

Consequently, the oscillatory behavior is suppressed, and

the mode separation remains roughly constant.

The greatest mode separation occurs for 6 2 0.8

near 6(K = 0) .The separation stability is quite good

near 6 =0.8 ~-(IXl~~I is rather small. For

6 > 0.3 ,the separation of the peaks of the overall

oscillatory structure increases with 6 .A comparison of

the mode separations for 6 i0.0 and 6 0.8 is given

in Table II. The separations show improvements of 38% to

51% when the resonator is highly decentered. This agrees

with the observations of Weiner (Ref 6:1831).
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TABLE II

Comparison of Eigenvalue Separation

N eq 6* 1i Ix21 AX** A%***

9.36 0.0 1.0515 0.8107 0.2408
42.4

9.36 0.776 1.1437 0.8007 0.3430

9.38 0.0 1.0519 0.8105 0.2414
41.7

9.38 0.776 1.1416 0.7996 0.3420

9.60 0.0 1.0318 0.8096 0.2222
47.0

9.60 0.792 1.1352 0.8085 0.3267

9.625 0.0 1.0272 0.8079 0.2193
51.2

9.625 0.788 1.1363 0.8048 0.3315

9.86 0.024 1.0495 0.8087 0.2408
38.4

9.86 0.792 1.1368 0.8035 0.3333

9.88 0.024 1.0502 0.8075 0.2427
38.8

9.88 0.792 1.1372 0.8002 0.3369

6 values listed correspond to the maximum AX

values nearest 6=0.0 or K=0.

** AX = IAX - 1A2 1

AX K 0 - AX
*** A% = 1 100

AX
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The eigenvalue magnitudes of the higher-order modes

interleave with and cross one another. The interleaving

is somewhat regular for 6 < 0.6 , but no periodicity in

Neq,U , Neq,L , or 6 can be readily discerned. Some modes

appear to meander with no apparent periodicity for 6 < 0.6

For 6 > 0.6 , the periodicity is much more pronounced. The

"meandering modes" generally cease to exist, leaving only a

diamond-shaped interleaving pattern. The pattern is roughly

periodic in Neq,u

Crossings between IX2 1 and 1X3 1 occur at all values

of 6 . For 6 < 0.4 , the mode crossings are sporadic and

aperiodic. For 0.4 < 6 < 0.65 , the crossings are more

frequent. For 6 > 0.65 , the crossings are quite regular

and approximately periodic in NeqU

In summary, the eigenvalues exhibit an overall and a

fine structure periodic in N and N , respectively.
eq,L eq,U

6(K) and 6(K') correlate very well to the maximum and

minimum separation points of ll and IX2 1 The cusps

at the 6(K odd) values show a cyclic behavior in N .eq

The separation between the first two eigenvalues is apparently

influenced by the edge waves from the feedback mirror. The

maximum separation of these two eigenvalues occurs near

6 = 0.8 ; the peaks in the separation increase in magnitude

as 6 increases. Finally, the higher-order eigenvalues

display a periodic interleaving for large 6 values.
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Effects of Decenters on Beam Quality

The far field integrated intensity of the first four

modes was examined for decentered resonators with equivalent

Fresnel numbers of 9.36, 9.625, and 9.86. 6 ranged from

0.0 to 0.9 in increments of 0.05. Specifically, the power

deposited within one, two, and three Airy disks (normalized

half angles) of the optic axis was calculated. The number

of Airy disks required to capture 90% of the'power was also

computed. Plots of the results for N eq=9.36 are shown

in Figures 5-8 through 5-15. Each plot shows the results

for the geometric mode and either modes one and two or modes

three and four.

The plots were examined for five specific items. First,

general increasing or decreasing trends of the data with

6 were observed. Second, the modes were compared to determine

if any mode had consistently better beam quality than the

others. The same comparisons were then made between the four

resonator modes and the geometric mode. Next, the percent

differences of the integrated intensity for 6 = 0.0 and

6 = 0.8 were calculated. Finally, the range of 6 values

for which the beam quality was the best (most power deposited

in a given spot size) was determined.

The integrated intensity of the geometric beam is dependent

on 6 .The power deposited in one Airy disk increases

monotonically as 6 is increased. This agrees with results

published in the literature (Ref 12). The power in two Airy
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disks decreases slightly with increasing 6 .For three

Airy disks, the power first increases until 6 =0.6 and

then decreases. Finally, the number of Airy disks required

to capture 90% of the power increases until 6 = 0.2 and

then levels off.

For spot sizes of one and two Airy disks, all the modes

show increases in integrated intensity as 6 increases.

The increases are more pronounced for the third and fourth

modes. The increasing trend is not as obvious when the spot

size is increased to three Airy disks. M',odes one and two

display decreasing integrated intensity for 6 < 0.5 ,and

slightly increasing integrated intensity for 6 > 0.5 .The

third and fcurth modes have slightly increasing integrated

intensity for this spot size. The number of Airy disks required

to capture 90%. of the power generally decreases as 6 increasei.

The first two modes have widely scattered values as 6 in-

creases, with only a slight downward trend. Modes three and

four display less scattering and have more pronounced decreas-

ing trends.

All modes have beam quality instabilities for 0.2 < 6 <

0.75 .At an instability, the beam quality deteriorates

rapidly. Generally, the beam quality recovers from an instabil-

ity within 6 = ±~0.05 .In some instances, a series of

r instabilities exists, giving the overall beam quality an

oscillatory nature. The fundamental mode always exhibited an

instability near 6 = 0.7 .This instability has been noted

in the literature (Ref 6:1831-2).
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Individual instabilities can be traced through all

three spot sizes, and affect adversely the number of Airy

disks required to capture 90% of the total power. For

example, the instability at 6 = 0.7 for the fundamental

mode appears in Figures 5-8, 5-10, 5-12, and 5-14. The

effect of the instability on the 90% power point is rather

dramatic.

No mode appears to have better overall beam quality

than the other modes. This can partially be attributed to

the instabilities that all the modes suffered. In general,

the fundamental mode has slightly worse beam quality than

the other modes. For almost any specified 6 and N e

values, no method of determining a priori which mode would

have the highest integrated intensity values could be developed.

All modes have comparable or better beam quality than

the geometric mode for spot sizes of one and two Airy disks

when 6 > 0.6 . (This is not true at a beam quality instabil-

ity.) For a spot size of three Airy disks, all modes have

somewhat worse beam quality than the geometric mode, regard-

less of 6 . All the modes require high 6 values to have

the same or fewer number of Airy disks to reach the 90%

power point when compared to the geometric mode. overall,

at high 6 values, the modes appear to have comparable or

better beam quality than the geometric mode.

The percent difference A% in integrated intensity for

6 =0.0 and 6 = 0.8 is defined as
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Power in Spot) Pwth _n Spot)
- with 6 = 0.8 Pwter=00- 0 (5.1)Power in Spot) 0

~with 6 = 0.0

The percent differences were calculated for all cases examined

and are listed in Table III. A similar definition may be made

for the percent difference in the number of spots required to

capture 90% of the power:

(Number of Spots) -Number of Spots)

Awith 6= 0.0 with 5=0.8 x100 (5.2)
Number of Spots)
with 6 = 0.0

The A'% values are listed in Table III under the A% column.

Table III reveals soveral interesting characteristics.

In all cases, more power is deposited in one and two Airy

disks when 6 = 0.8 than when 6 =0.0 . A% always monoton-

ically decreases as the spot size increases. In some instances,

particularly for the fundamental mode, ',% is less than zero

when the spot size is three Airy disks. Modes two, three,

and four deposit 90% of their energy in smaller areas when

6 = 0.8 than when 6 = 0.0 .These observations indicate that

the power densities near the beam centroids are hiqher when

6 = 0.8 than when 6 = 0.0

In general, the integrated intensity value- "re the

highest for 6 > 0.7 .The only major beam quality instability

in this range occurs in the fundamental mode (0.7). This
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TABLE III

Integrated Intensity Percent Differences

Mode N Case* A% Mode N Case* A
eq eq

1 9.36 1 60.5 3 9.36 1 100.
1 9.36 2 4.2 3 9.36 2 22.6
1 9.36 3 - 7.7 3 9.36 3 9.5
1 9.36 90 -55.2 3 9.36 90 66.9

1 9.625 1 59.9 3 9.625 1 93.2
1 9.625 2 3.6 3 9.625 2 21.6
1 9.625 3 - 7.3 3 9.625 3 7.8
1 9.625 90 -15.0 3 9.625 90 69.4

1 9.86 1 57.9 3 9.86 1 36.4
1 9.86 2 6.4 3 9.86 2 19.7
1 9.86 3 - 4.6 3 9.86 3 5.9
1 9.86 90 6.3 3 9.86 90 53.1

2 9.36 1 41.2 4 9.36 1 95.7
2 9.36 2 19.9 4 9.36 2 23.3
2 9.36 3 9.3 4 9.36 3 6.6
2 9.36 90 51.7 4 9.36 90 33.3

2 9.625 1 36.1 4 9.625 1 42.7
2 9.625 2 13.7 4 9.625 2 28.8
2 9.625 3 4.7 4 9.625 3 7.4
2 9.625 90 44.9 4 9.625 90 47.6

2 9.86 1 81.8 4 9.86 1 40.5
2 9.86 2 6.6 4 9.86 2 17.5
2 9.86 3 - 2.7 4 9.86 3 4.0
2 9.86 90 5.8 4 9.86 90 27.3

*Case refers to the number of Airy disks over which

the intensity was integrated. Case of 90 refers

to A'% values.
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agrees with a conclusion from Chapter III: the beam quality

should be improved at high values of 6

Effects of Decenters on Beam Steering

The far field beam steering of the first four modes was

examined for decentered resonators with N = 9.36, 9.625,eq

and 9.86. 6 ranged from 0.0 to 0.9 in increments of 0.05.

Additionally, the fundamental mode was analyzed at a much

higher resolution for N = 9.36 . For this case, 6 varied
eq

between 0.0 and 0.9 in increments of 0.01. Plots of the

results for N = 9.36 are presented in Figures 5-16 through
eq

5-18.

The beam steering data were examined in three different

areas. First, the data were analyzed to determine if the beam

steering angles had some linear dependence on 6 Next,

the oscillatory nature of the data was checked to see if a

simple periodicity existed, and how the amplitude of the

oscillations varied with 6 Finally, the means and

standard deviations of the beam steering angles were computed

and compared to one another.

The beam steering angles of the geometric mode are super-

imposed on Figures 5-16 through 5-18. The steering angle for

any 6 value is either -0.011 or -0.01 normalized half angles

(nha). Since the uncertainty in the location of the centroid

is approximately 0.025 nha, the optic axis lies within the

error bounds. This agrees with the conclusion reached in

Chapter III that the geometric mode should display no beam-i
steering, regardless of 6 .
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Fig . 5-18. Beam Steering Angles for Mode One
Under Higher Resolution. N eq= 9.36

No linear dependence of the beam steering angles on 6

can be discerned from the plots. A linear regression was

performed on the data; the results are listed in Table IV.

(YINT' m, and r are the y axis intercept, slope, and correla-

tion coefficient, respectively.) The magnitudes of the

correlation coefficients are less than 0.25, except in two

instances. This implies that the data correlate poorly to

straight line fits. Thus, the beam steering angles display

no linear dependence on 6

All the modes have beam steering angles that oscillate

pseudorandomly about the optic axis. No period in 6c e

Neq,U for Neq,L is readily discerned. The amplitudes of

ct e pi
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TABLE IV

Statistical Analyses Results - Beam Steering Angles

Neq Mode YINT m r x o

(nha) (nha/unit 6) (nha) (nha)

9.36 1 0.0146 -0.0186 -0.075 0.0062 0.0698

9.36 2 0.0787 -0.3244 -0.355 -0.0673 0.2565

9.36 3 0.0141 -0.1403 -0.205 -0.049 0.1924

9.36 4 -0.1935 0.2294 0.133 -0.0902 0.4865

9.625 1 -0.0017 -0.0U61 -0.03 -0.0044 0.0576

9.625 2 0.0256 -0.225 -0.24 -0.0757 0.2632

9.625 3 0.0677 -0.1729 -0.271 -0.0101 0.1794

9.625 4 -0.0106 0.0943 0.095 0.0318 0.2781

9.86 1 -0.0162 0.0075 0.041 -0.0128 0.0516

9.86 2 -0.0261 -0.0507 -0.09 -0.0489 0.1583

9.86 3 -0.1311 0.0585 0.055 -0.1048 0.3016

9.86 4 -0.0181 -0.0327 -0.033 -0.0328 0.28

the oscillations appear to be random. The oscillatory nature

is more apparent in the high resolution case (Figure 5-18).

Again, the period does not correlate to 6 N q,U or

Neq,L It is interesting to note that the beam steering

instability at 6 = 0.71 is coincident with a major beam

quality instability (see Figure 5-8).
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The mean values x and the standard deviations a of

the beam steering angles were computed for all cases. The

results are listed in Tabl.e IV. The mean value is always

less than 0.105 nha; in two-thirds of the cases, it is less

than 0.05 nha. A rather simplistic error bound on the mean

values is 0.025 nha. Thus, the mean beam steering angles are

quite close to the optic axis. The standard deviations are

generally less than 0.3 nha. No standard deviation exceeds

0.5 nha. The fundamental mode quite clearly has the lowest

standard deviation. Its standard deviation is approximately

one-third (or less) of the standard deviations of the other

modes for any N eqvalue.

In summary, the beam steering angles oscillate somewhat

randomly about the optic axis. No linear dependence of the

beam steering angles on 6 is apparent. The average values

of the beam steering angles are quite close to zero, and the

standard deviations are generally less than 0.3 nha. Finally,

the fundamental mode has the lowest beam steering; its standard

deviation is one-third of or less than the standard deviations

of the higher-order modes.
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VI. Unstable Resonator Design Criteria

This chapter presents several simplified design criteria,

based on the observations described in Chapter V. Design

criteria for decentered resonators are presented first, followed

by criteria for nondecentered resorators. It is important to

realize that the comments below are based on properties of

resonators with 9.3 5 Neq : 9.9 The criteria may vary for

resonators with N values removed from this range.eq

Decentered Resonator Design Criteria

From the observations of Chapter V, highly decentered

resonators offer certain advantages over nondecentered

resonators. The beam quality tends to be better and the mode

separation greater for highly decentered resonators. A

cavity can be designed to exploit these advantages. The

following guidelines are advanced for decentered resonator

designs.

(1) The resonator should be designed for operation in

the fundamental mode. This follows directly from

the beam steering results. The fundamental mode

has considerably lower beam steering angles than

the higher-order modes. The standard deviations

of the fundamental mode beam steering are approxi-

mately one-third ' or less than the standard

deviations of the higher-order modes. The mean
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beam steering angles for the fundamental mode

are extremely close to the optic axis. Operation

in the fundamental mode will generally yield the

lowest beam steering angles.

(2) The resonator should be designed for very high

decenters (near S(K=0)). For the particular Neq

range studied, 5 should be approximately 0.8.

This value is based on the mode separation and the

separation stability, the integrated intensity, and

mechanical design considerations.

The greatest separation between 1Aii and the magnitudes

of the higher-order eigenvalues occurs for 6 = 0.8 . This

value of 6 will enhance the single mode operation of the

resonator. The separation is quite stable for 6 = 0.8 ; only

small changes in the separation will occur if 6 deviates

slightly from the operating point.

Highly decentered resonators tend to deposit more energy

in a given spot size than nondecentered resonators. The

percent difference values recorded in Table III illustrate

this point. The fundamental mode deposits more energy in spot

sizes of one and two Airy disks when 6 = 0.8 than when

6 = 0.0 . The overall results indicate that the power densities

near the beam centroid are greater when 5 = 0.8 than when

S = 0.0 for the fundamental mode. The higher-order modes

also show '-eam quality improvements at high decenters. Any

higher-order modes existing in the resonator would thus have
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improved beam quality when 6 = 0.8

The mechanical construction is simplified if the reson-

ator is highly decentered. Nondecentered resonators typically

must be built with the feedback mirror mounted on a transmissive

optical element or suspended by a spyder. Consequently, the

outcoupled beam is partially blocked by a mechanical element.

This can be particularly bothersome if the power densities are

very high. (Krupke and Sooy (Ref 17:580-1) have reported the

use of an annular scraper mirror to avoid these difficulties.)

In a highly decentered resonator, the spyder sizes can be

reduced and the clear aperture size increased. Notably, if

6 = 1.0 , no spyder or other interfering mechanical mounting

device need block any portion of the outcoupled beam. This

is illustrated in Figure 6-1.

Nondecentered Resonator Design Criteria

The results of the eigenvalue study suggest an optimum

equivalent Fresnel number for the resonator if fundamental

mode operation is desired. This value is

N = n 5/8 , n=0,1,2,... (6.1)
eq, opt

Neq,opt results in the best mode separation stability. Small

accidental misalignments of the resonator mirrors will have

little effect on the mode separation at this value of N
eq

Essentially, the edge waves from the feedback mirror tend to
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OUTPUT APERTURES NEAR FIELD BEAMS

(a) (b)

(c) (d)

(e) (f)

Fig. 6-i. Resonator Output Apertures and the Corresponding
Near Field Beam Shapes. Note effects of the
spyders and feedback mirrors on the beam shapes.
(a),(b) =O; (c),(d) 0 < 6 < 1; (e),(f) 8=1.
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null each other out. The result is a relatively constant

mode separation for 6 < 0.15 Perkins and Cason (Ref 18:

200) report a similar choice for Neq,opt , but do not justify

its choice through edge effects arguments.

Limitations

As noted in the introduction, the above design criteria

are based on studies of resonators with 9.3 N 9.9
eq

The criteria may not be particularly applicable for resonators

with very high or low equivalent Fresnel numbers. Any specific

design may deviate from these criteria because of effects

not analyzed or considerations not taken into account in the

above discussions.
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VII. Conclusions and Recommendations

The conclusions of this study are summarized in this

chapter. Areas that warrant additional research are

outlined.

Conclusions

(1) Two equivalent Fresnel numbers, N and Neq,U eq,L'

can be defined for decentered resonators. N and N
eq,U eq,L

are functions of the feedback mirror fractional decenter 6

The defining relationships for the two Fresnel numbers are

given in Eas (2.22) and (2.23).

(2) Drawing an analogy to the case of a nondecentered

resonator, two functions, 6(K) and 6(K'), can be derived

that yield 6 values at which the separation between Ii

and Ix21 is minimal or maximal. IXlI and I1X21 are the

magnitudes of the two lowest-order eigenvalues. K and K'

are integer variables used in the functions defining 6(K)

and 6(K'), respectively (see Eqs (2.27) and (2.30)).

(3) The eigenvalues are functions of N and Neq,U eq,L

Two types of structure are exhibited in the '.ll and 1X21

curves: an overall structure periodic in NeqL and a

superimposed fine structure periodic in Neq,U . (K) and

6(K') quite accurately predict the values of 6 at which the

separation between 1lly and IX2i is maximal or minimal.

(4) Major cusps in the l1ll and 1X2 1 curves occur

at the 5(K odd) values. The cusps undergo a regular
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evolutionary pattern with four phases as N eqis increased:

a very deep cusp, a doubly degenerate cusp, a mode crossing with

a single degenerate point, and a complete separation of the

modes. The cyclic behavior is apparently related to N eqU

N eqL and constructive and destructive edge effects from

the feedback mirror.

(5) The mode separation maxima between ly and IX21

at the 6(K even) values tend to increase in magnitude as

6 is increased. The greatest separation invariably occurs when

6 216(K=0) .At this 6 value, the mode separation is very

stable.

(6) The higher-order eigenvalues interleave somewhat ran-

domly at low 6 values. The interleaving becomes regular and

roughly periodic in N for 6 > 0.65 The crossings
eq,U

between Ix 2  and X3 I behave similarly.

(7) The power deposited in one and two Airy disks gener-

ally increases as 6 increases for all modes. The trend is

somewhat nebulous when the spot size is increased to three

Airy disks. The number of Airy disks required to receive 90%

of the power generally decreases as 6 increases. This trend

is somewhat vague for the fundamental mode, but is quite pro-

nounced for the third and fourth modes.

(8) All modes display beam Quality instabilities for

0.2 !5 6 !5 0.75

(9) No mode consistently deposits more energy into a given

spot size than the other modes. On the average, the fundamental
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mode appears to have slightly lower beam quality than the

other modes.

(10) The beam steering angles have no linear dependence

on 6 This is confirmed by the low correlation coefficients

from the linear regression analysis.

(11) The beam steering angles for all modes fluctuate

pseudorandomly about the optic axis. No periodicity in 6

Neq,U , or Neq,L is readily apparent. The amplitudes of

the fluctuations display no general trends with 6 , Neq,U'

or Neq,L

(12) The means and standard deviations of the beam steer-

ing angles are lowest for the fundamental mode. The standard

deviations of this mode are at least one-third as small as those

of the higher-order modes. The standard deviations of all modes

tend to be less than 0.3 normalized half angles, although in

one case, 6 ' 0.5 normilized half angles.

Recommendations

! (1) The analyses of this study were performed on a limited

class of resonators (9.3 ! N 9.9, cavity magnification = 2).eq

The same analyses should be performed on resonators of lower

and higher equivalent Fresnel numbers and various magnifications.

It should be determined if the observations and results of this

study apply to other classes of unstable resonators.

(2) The beam steering angles should be correlated to the

phase tilts on the output modes. The tilts might have to be

weighted to account for intensity fluctuations and the asymmetric
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shape of the output aperture.

(3) The beam quality instabilities might correlate

to large resonator mode aberrations. This possibility should

be examined, and a model developed to predict at what 6

values the instabilities will occur.

(4) As noted in Chapter V, a beam quality instability

and a large beam steering angle exist in the fundamental mode

for 5 = 0.71 , N = 9.36 . This observation should beeq

investigated further to determine if there is a general cor-

relation between beam quality instabilities and beam steering,

or if this is merely an isolated coincidence.
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APPENDIX A

Far Field Intensity of the Geometric Mode

The far field intensity pattern for the geometric mode

of a decentered resonator is derived in detail below. The

geometric mode has a uniform amplitude and phase on any plane

perpendicular to the optic axis inside the resonator (see

Chapter I). The mode amplitude is exactly zero beyond the

shadow boundaries. In this derivation, the amplitude is

arbitrarily set equal to unity and the phase to zero.

Referring to Figure A-i, the transmission function of

the output aperture of the resonator is

t(x) = rect[ x - (M+l) (1+6)
(M-l) (1+6)

+ rect[ x + (M+I)(1-6) (A.1)
(M-l) (1-6)

where a2 has been normalized to unity and
2X<

rect(x) = (A. 2)

1i 0 elsewhere

Assuming that

Z >> 2 (A.3)
2

the Fraunhofer diffraction formula may be used. Here, z is

the distance to the far field observation plane and
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k = 27X/ is the propagation constant. Then (Ref 8:61),

ikx
2

exp (ikz) exp( (-z-)

U(x o ) - (i z 2 F[ U(x)t (x)] (A.4)0 ix'z
x

fx = 0'

where F is the Fourier transform operator, U(x) is the

far field distribution, and U(x) is the geometric mode.

Performing the indicated operations yields

ikx2

exp(ikz)exp( 2z0
U (xo ) = if" z_ __ __

0 ix'z

{ (M-l) (l+0)exp[-i-f (M+1) (1+6)] sinc y

+ (M-1) (1-6)exp[ i-Rf (M+1) (1-6)] sinc n) (A.5)x

where

y = (M-1) (1+6) fx  (A. 6a)

n = (M-1) (1-6)f (A.6b)

The far field intensity is of primary in'ortance; it is

given by the product of U(xo) and its complex conjugate

U (x) Denoting the intensity as I(xo) , after some

straightforward manipulations I (xo) reduces to
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I(x) 1 2 {(M-1)1(1+6) 2 sinc2 y

+ (M-1) 2 (1-6) 2 SinC2 n

+ 2 (M-1) 2 (1_62) sincy sincn cos f 2rrf (M+1)1} (A.7)
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M (1+6)
x

1+6

~7 7 -M (1 -)

Fig. A-1. Output Aperture of the Resonator

Note a 2 has been normalized to unity.
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APPENDIX B

Program Listing - EIGEN

The computer code LIGEN calculates and plots the eigen-

values of a decentered, unstable resonator. Two modes of

operation are allowed: N can be held fixed and 6 varied,eq

or 6 can be held fixed and N varied. Tables of theeq

eigenvalues are generated and written to TAPE7. The program

is essentially a modified version of the eigenvalue routine of

BARC2 (Ref 3:61-74). The modifications include the provisions

for iterated calculations and the addition of a plotting

routine.

The required inputs are listed below. All inputs are

real variables, except as noted.

IRES: flag - enter N if N is the variable
eq

and any other letter if 6 is the variable

' \G: cavity magnification

The following inputs are required if N is the
eQ

variable:

NEQMIN: minimum N valueeq

NEQMAX: maximum N valueeq

NUMNEQ: number of N values at which theeq

eigenvalues are to be calculated

DELMIN: 6 value (fixed parameter)

The following inputs are required if 6 is the

variable:

84I
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DELMIN: minimum 6 value

DELMAX: maximum 6 value

NUMDEL: number of 6 values at which the eigen-

values are to be calculated

NEQMIN: N value (fixed parameter)eq

The IMSL mathematics library and DISSPLA plotting

package are required for program execution. Since DISSPLA

is used, the code should be submitted as a batch job.
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PR)G-iA4 E1CCN(It.PLT *OUTUT TAP:=!PUT.IAPF. =JTPlUT.PLV!LC:l TAPE?

C.................................. . . . ...
c TMI I PKG'A~l CALCULAIL; tH: Lit;L.%VALLE:, CF A 0- CE'.TL4,O. Ut. "ABLE
C S71IP 0f.;CAro, Qof- A Pfjf -A.~ P10 :4 LiLTA VALl.f .
C EITHELR THE f .EQ i.S rd(L. f!XtU LA.0 Cc .TA *5 VALc:Os ..- &LTA :HcLO
C FIALLU A-.i0 rNf I. VA~hij. 7!i! , CG AM . E!.L%lI ALLY W~. fxm*E~oflLD
C Vf~i&t~l. JF THE 116E.VALLE -U , Jf iiAC2 (PS IME' 1.

C RC

C REQU1IRED INPUTS*
C :L N If ft Q I . f.: ilit THE YA4:DILI; ANY T-~i -i LCTIC IF
C DELTA I IC HE It~ kA!AbLL
C 14AG CAVITY P AG%rICAI;.
C
C THE FJLL:UIP.G INPUT-t AntL kEQUIkEU !F GLO IS THE~ VARIABLE:
C
C 'iCI2'41!j = J'NIPIU'I hll IWALut.
c %EUMAX =MAX!MUM %.Lo VALUE,
C NUMP.EG ?.UPHEI ~F Kfb VALLE- AT Wui:Ch THE EYG(NWA.UES ACE
C TO HiE CALCULAT.U
C OEL41IP= DELTA VALUE. tfIXED Ti*JUGHWUT THE CALCULAT16%)

C THE FOLLCMI?.G INP-UTS ARE RE~ullpO If DCLTA IS TH4E IAIAHLE:

C DELMIA= M!I&HLMI DfL7A VALUt
C OELMAX = IAXKUM DELIA VALUk.
C IwUMOEL = UH&ICP CFE VLLA VALJE AT WHICHl 'ME E16ENVALUE.; A.;E
C TO LIE CALCULATtU
C %EQMIi tNEG VALUE (1-11(10 Tmri-iUGHCUT THE CALCULATI,'%)
C
C
C rmis P-A)GRA14 REOII..L TtHE D0S:FLA GRAPH!Ci FACi(AG AND IMF !"SL
C MAT H L 11 AlrY. !iItCE Dli.PLA IL REQUIRLD. THE P-RCG-.AN MLSt HIE RUN
r BA'CH.
C
C FIN~AL F344: 22 NCVEMIP,-. 1l'-2. 21!T Z. M. 'NALIM
C.........................................................

REAL EgIQtE A0Ul.I),PPt,).CL,,A
REAL MAG1u..4OAG2i:,PAGI.-AG?1 ,MA';12.'AIG22,HAr.LA"(?3
CCMPLII Ui ,COff(Tl ).LAtilOA(,)
COMPLEXI LAP8l1.LAPMI#.Cl

COMPLEX FALPHA( 1),FiLTAI5i3,CAL,'HA(tl3.jiliE'AC 1)
DIMENShrN LFITLkl( ),LtlTLL-(.),L :TLf3(A3.XAR4AY( 73
DATA EyFPli.IEQI(J.,1.)3..IA--i.3~lc,1HE/
DATA MAGLA/7(4.3/
REAW5'. IJI ) l'31

1010 Foim A r ,Al)
IF(IRt-iNE.1Nr0300 TO IC20

C
C SET UP SYSTLA FOR NtO VAoIA(ILE
C

NED I'CaP4EQfrAKP.EV4IN/c'.U*.EG-I.)
OUL INCZJ.

GO Tj 10330
C
C SET UP SY ;d1P CUP V0ALL tLA
C

1020 l£1,.3tL OLA* UfLL ' .,G

DEL 1 '4C= (DOIPAX-OLIN: 11 3( 41UUL- i.3
NED INC"r.
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NUNt:Q
NFJMAX z,%E 014 IN

C
C %NIT IALI ZE 01SSPL A F LOTT I N~ ACuT INC
C

1030 CALL C, MPRS
CALL flGjPLt-1b,
CALL A-ALF (thiAI,JA- LI
CALL MIAL(CIL/C61ELKI

CALL TITLE(I -M.H3,tPA(LII~,C,.
LTI ',LEI (I V'ZCH0IAG((tI) V

ENC ( fI'#J9'LU, ,2r,,A1
1050 FA4ATIH:.JO t-AtL1 ,~.1',K:rxF..1

EtC)at(2j#1Cb&.LT: Lt2)JLLMP.
1060 FO,(NAT(1-,I1tLTA

60 Ti lore
1049) CALL TITLE(IN -,,-tA'oV4G(I,,L,.

LTIrLf1(1I)=l0H0AGC(LII V
LT! TLEI(2I='THS. DFL TAS
ENC OE( 4091L.5C I T IT L13), I(LM -0f L 'A X

ENC 2DE(2,1J90LT1Lt.Qr-',
109C F.')4 NAr I Hi~ =,I X F,-4 .' HS)
1010 CALL HtA91i(LTI LEI,1.X.,I

CALL tADli.(LTI.Li2 91C, 2*3)
CALL I*ADIN.CLTTL7 .10v2931
CALL MARd(EC (1
IF( R -~ 5E~a. 1,,.[ 0ICALL G Af (r.t *J. :CALf i.1 0'A( .. ' .-)HCALF , I.I1 I
IF( IRE;.NE.INEO)CALL G.AF(LWt LPI .o,1,;CALt 93FL-Ago.3,.I:CALL .1.1' 1

C
C OIfPUT AU% DATA
C

2000 FO(MAT(1N1,1K..k IGC..YALUL TAtqLL A: A 1.L%CTtI'. 'F

2#,*.UN1F OF 7.10 VAL'K., z,~kUL (C'.',TA' TI
201G F9ANX.~fVL7tAftLt A: A fL%CT !'. .F OwLTA./Iwq..AN

LE Of DCLTA: *9, .f,9x..i, .- 11..UIv LTA 1.ci -tNr VALut o

2ts.6/l:..%UNHEP OF OLLTA WALULb. z,3iX. (C..'STA%*.

C MISUi34l I * i/4AG..2 * .I/MAG..C2.1-21

C

MSQPNd(II I'_
Dc 10 1=2051

10 COiTINUE

I1 NEIG.LbE .5C. IOL 11 ?

996 F.34pArIgof.CALCULArto %'.116 *.f-.q/1)(9.SELEC!IO EIKO -9211
C
C FI%ISM VITITALIZATI.0,S AN.D "'ET UP' L1 L:P'
C

NEa=%t7]p1
D:O 2021 tIN[O~l,t.UM:.EU

DELTrA=OLLI: I.

DO0 2030 IDiLTA~1.NUMOEL
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c COMP$UTE Cf)FC!f.t~ , F rTHE rGLYN,1AL
C P QI - CJCF ( 1- l.Lht~ ;;* CIt(.'I -Z- tOt6G-1J I #
C CJEF(NOEG).Z * CJ)LF('.LtLG.1)

ALPH'A= :-. fLI A
BET? A=1..+DEL TA
C.)EF(l):CMPLXI.*,..

NCJ f:Fr.OE G-I

Du 16=.1

Af..? -T.E7YE/P-3UtI'.( 11

F)3L TAC ) :-( CEkP CAf,2 *A'. *. 2)1 A'S) A.1

G'If.TAt I):(Ct.XP( Ar.2-.t., .2)/A't, I A.d

15 CJvTINUE
FAL?4A 4):C XPCAt2. i TA-21/ht.TA/(-Al .1)
Fiff iA(M)=FALPHACA')

GAL PtACMt :6IMLA(M)
CCtF2)-(FETA(1).tALP.IA(1).1.)

*A= I
%8=1I
Dc 21. 1:3.11
)12:CMPLXIO. .0.11

D. 18 JA=1.IA
CA=.A-JA.!
X=ITAJA)GALP.A(KA)-FALF'IA(JA).Gtk jACKA)
X2= Xl IC2

ie COtTINJC
IFC1.E(J.31 GU TC 2J
0., 1') J11f.6

T1=FALPdA(.JI1.GhtL1ACK3-FL:A(J)GALPA(KHJ)

NHz,.K. I
20 Z:t(~3F~IC:

NA: '4A.*

21 L 4T:UG

NA--.BIG-1

DO Ld 1:L2,t.CCfF

X 'rCMPLX(0..,0.)

IF(I.fJ..CkfF) bu t' 25
03 22 JA=l,tA

XKVH1T AllM-JA) -GALP -A( KA 1-FALFt.All -JA).,dL TACKA)

IF( ;.CQ.L2) G'" L
23 cc !q iltI,ff

KH:,..IG.JH-' K
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24 C .14 TI NUE
N"=I .8-1
60 340 21

25 042 2. JHItt?.BIG

26 C YJ r 9'.JE

CCLII 139-2.2ZI-Z2
N Az.A- 1

20 C J% I .uc
c
C C UM.'UT 4 Jz'TS Lr EV h:-I AL .ii Ti m P.L '~Ut f Z CP 'L Y T.^.
C 014T A :. r#< F IGLIVAL Ut Ar,.) rml ,Ot,t I10VALUF S b V
C SIZE.
c

C AL L ZCP LT 4C F o.!.9'GvL APIUA .t

SIZE= eEAL(LA~bDA(I 3)....AIA(LA0tJUA(,33..2
K=I

SI? E1:=tEAL( LAMHO[A CJ ) . 2.AI PAG( LAfIDOA( dl 3. .
IF(SIZEI.LT.SIZL) G6~ rC 75
K -J
SIZ:SI !E

75 CON. h~fur
C JM=L AM4OA ( I I
LAIIA( I ):L AMHDA(lk I
LAMfIOA(K IC UM
C LtfI =)LAmtiOA I 

SMA42:S0RT( MAI
IIRI If C 1, 3 33 11 ,LAMHIOA 1 1 : S!AG #E V

333 A F0 A( X91 X,4(G: .7 1)(1)

I =:I
To CON T1%JE

EVIPM:ArAk-2(A1P.AG 1LA304 A(%~Uf G, I * EAL ILA(t3DA(F.42EG 3I 13./PI

SMAG=SQKIRU MAI

C SEA.4CH FLCi MAX ANDO PIN P-0E SEi-A"ATI.~NC, A%0 P~AX A'40 MI'k
C EIGL14VALL.ES.

200IFlItNEOIDLTA-324.25,o~

MAG.2:CAOI .LAMH.1A1 )I
4 SFP2=MAGI 2-AG2.2

60 TO 2C1a
2050 LAW41II=ILA.'4flA(t)

LAMtl21=LAmjiI0A(: 3

MAGI1:CA,J;(LAI'H0A(1 3

SEP IPIAGII-P-Al
G1 1,) 227i.

2060 MA.4J:CAti3.,lA43IA(l 3)
MA)2)=CAti (LAW&WUAC? 33
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SEP:jm 1G0-PAG2u
M M1AGI 1. 67.MAGI 2. A .0.%Ail I.GT.PAG1I ) TL(7,2 13 ILA"OlI 9)VAGI1.L'C

11
IF( PAG I. L 1MAG12 .A .VA IA I LT. -Atil )W- i i 9'.1L"lI94GII I

If( MAG2.GTRA.' 62.A'..AG.4i.fA2j ) I 7r 21 .. Alld21IeMAG21 #L C

1I(MA62 I. LlMAG22o.A .N.AG21 Lr.,-AGC )W, .Tit 72110LA "42 1 ,,A G21L'C
11
IF( CP1I. GT. -P2.A%1..L G .61. P )6 E(91 ILl

LAd21=LAMND0A42'

R AG 22= "A 6 21
RAG I IzAGI.
NAG,21=4AG2!1
SL'P2=SEPI

LG;ClzCMPXU.EQ#0EL- A)
2080 FrIAMATC11X.AXIMUM VALUtL UtTEC7L FC9 LA~dOA(1):.13X..LAfPUOA(1)

1 *.1.3.3,l?1IX.*NAuCLAr'nDAC~)) I ,r1c.I-/x..a =*Vd.

2090 F-)iArt/IAX..u6:M.U4 IALL VLILC II) F. b- LA~l%0A(l)'I/3K..LA-IiA(1I
1 -,F12.lO93X9Fl.'.I)/5x,-PMAG(L.A-UAtl)I Z/12lVX,..t
24liXv.OLLrA= .tf/

2100 FOlMATrcIK,.NAX:NLiM VALUEI Ot TLC-ED F-36. LAM6OA(?):./3X..LAMtIOA(,)
1 -ofl..10*3x,IF12.1l./!X,-*iAG(LA-iOA(,'$I =,1./3,~

2110 FU.4.Ar/l,x 1 .I,MUM VALLL ULhEC7ED Fc*. LAA.HA0):*/3X,*LAMuA2

2##15X,.0.CLTA
212.) FC4MArl/lX,'NCL)C t'A.OA -':. PLAK OElLC7.D:-/3,.-SPAMRA!l!:. ,

2130 FC 4Ar(/1X,.NL0[ i'PA.A' IC'. AIPUE i CltD:013X,. ;r"A,.ATrr,1 z
IFlJ .6/5XgK.*?( = ,k.43X,-Dt-LTA = ,I*'6.6/)

c
C PL.,T TH1E FjI'ST .V E II OJVALUt>
C

2070 NL/9PLOT~l

IF(%'.;.LT. f.U NILOT) '.L MF 10 1 .DrCC.

M AG LAN MII PLC I =C AV L A 1d'A C. i L& 0'

I F( Rf ;. L . 1 Nt I XA"'-A Y I PLC 7 1 =*.LtIA

2140 C 0;4 T I N' f
CA,.L CL'RVECXAIkPAV.4AGLAP,%.L'iFL;,-I I

200DLITA=DiL~rk*oELINC
200CONTINUE

NEQ=MNf]rE0!NC
2020 C~ T114611

GO TO 2150
77 VRITE1?q2Lft,)

2160 W At1,0(n)/x*~~,A AS TEINIl.ATED BECAUSE N.41G WA^, C
1UTiOL I' ITS LNT./1,QC13

2150 CALL ENiOPL(Il
CALL 0.T4EPL

c NO
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APPENDIX C

Program Listing - FOCAL

The code FOCAL performs all of the far field calcula-

tions. The resonator mode is propagated to the far field,

the centroid is located, the integrated intensity is computed,

and the beam steering angle is calculated. The output includes

intensity profile and integrated intensity data (TAPE8) and

plots (TAPE9).

The input data is read from TAPE7 and is entered

interactively. The data on TAPE7 in the order required is:

MAG: cavity magnification (real)

NEQ: equivalent Fresnel number (real)

DELTA: 6 (real)

MODE: mode number (integer)

ROOT: mode eigenvalue (complex)

XMIN: minimum x value at which the resonator mode

mode is calculated (real)

XMAX: maximum x value at which the resonator

is calculated (real)

INCX: number of points per unit x at which

the mode is calculated (integer)

NDATA: total number of points at which the

mode is calculated (integer)
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FIELD: the complex field values (complex)

SLOPE: slope of the phase front in the plane of

the feedback mirror - required only for

mode one (real)

Data entered interactively includes:

AMIN: minimum normalized half angle value at

which the far field intensity is to be

calculated (real)

AMAX: maximum normalized half angle value at

which the far field intensity is to be

calculated (real)

NUMF: total number of points at which the far

field intensity is to be calculated

(integer)

IRES: response to a posed question - input Y

for "yes" and any other letter for "no"

CCPLOT56X or CCPLOT1038 is required to generate the

Calcomp plots.
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P~i.tRtAM FOCAL( 1:.PU I ,jUTPUT*I APt1--LPUT #IAPE (,OUT PUTTAPF It IAPE" OTA
iPE) I

............. *.. ... . . . .. . . . . .. . .. . .

THIS PRIGHAPI TAKES 
T
HE I.CAq fItID nATA 6f*41ATrO BY

5 ARC1 CEHO,. TAP!I I3 AU PROP~UGAI f S Ifft F-: Of: f : THE
FAi FIELD. A £.MPLL I 'I EG4A I. 0LJTC F^,~ THEr
FOURIER T'RA-'SF;,M F,'k THE P~FALT.A P151' CF rfiE

.CENdTH!l) Zl Ttif. L6.CATEO, A'.U fhIL %TE%,,Alirj !'TESITY
IS CALCULATED FIM ,HL w~ccirsoa. ;HE ffI.TEGATED
INTENSITY IL AL.,O PLJTTD.

REQUIRED INPUT:

AMIl. zL061A L.0-11 FCr PLi':
AMAX t UPPEM LNMIT FCFP PL-5
NUNE = TCTAL *VMlit, .OF Pt.T , AT WH1ICH THE FIELD

1S (AICULATLO
IRES = Rl,F1Nf To A P;L.LD QUEYl.l.. F-JEF Y FOR

YES# A,.a A&Y OTHER~ LETTr~f fuj, ;.

THIS CSOE :,iSLI-ES LCPL TI33 f CAIHE PLCTS, Ur
CCPLUT'ibK fLT PPEi(ILWING PL-TS AT A GRAPHIC:
TER MINAL.

F INAL FORM: 7 CCIalitFLPitl3 . 20T S. 14. flINALDT.

..................................................................................................
CUMPJNg Ff3L)(... 9X "Et s[IXMAXA 9 1C, CL LTA.' LJATAFlN.F4AX,f fC(LN,

CUMPLEX ElftI'EL),,,UT
RiEAL 14AG9%tC;
OWNSIL)N LAHtL417)

DATA LABEL/1ftldi J/
EYC (3..I.*a

DATA I~t. /.,Tv/

READ?,.) (F:IL[)(l a, =I,.DATA)
IF(MJDL.EG.I)o;IAO(l,*)-;LPC

CO9DOITIS4 fXELD - ZFT PCWEk =1. A16O BLAN.K FIELD 3VFR FfEOHACK
MIRROR.

K I'.C: 1./ 1;.C x

CALL CGOD!

OUTPUT RUN DATA rta CRT AP.O LUTFELT #.1.1 ITAPIE)

MRI (4 .0, L'. P.o A) A AR F ., 4A A i. .A 'IDC x - ,-./

IA ,.r.EQ = ,1.I ,OLtfF ./ ~ P'. * . 5.R1X,.AL4A
2= *,Fo3.IA,XI.C Of .,%Ix..1C *,I3/It,.V

INOLIE EICE.ALLJL Z*.FIC.eo2AFIj.-1l

PAL'? MqAXIMUM ALLC4JAIILL SPATIAl t-EouL'CY; FA3 ) .I ~IU iPA IAL
FI(LQULNCY L:DMIt..

WAITE(rt,30)-Atl~sALlN
'l F0,MAT4IX,LIlal't; Thl hu.-MALILD ,IAIF A'.(;LF A-t: *,F- .4,-' S
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2 00)!NISI, /I ,; ti GEd ', ArEL):.t i
REAt3(N,.3A~i%,APAX,.UMqF
FA N= A041 4 1 AG)
F RA AMAC /(..A6 I
P vIN (f C MA K-I M1N4I/ ( -f

CALL FFCALC

LIST INTEI.YYT, It oLSt. FU.

SlRI TE4,,qtli
%a FGMAC/X.W. LLU I Ui LIKE A FP.If.t.UT A1.0 C-I L!ST ihG CFP THE? ~.p

lSivy?./I

'i00 F ,ACA(A
IF( IRE ;.ht-. !yt ;)GL.

hIRI YE(C.,,iCCI

.0 FPj, mATC(/q x.,.. HACA A%4LuL SIXI '.TV %.lT Y'//

hIRi TEC.. ,)fVALIA ( )*Ff: 1.%T(I I
Wit! TE (. I. 10 )FVIALLL C ( ) vfF !N NI

,0 CONTIU(

PLOT INTEV ITY

0 CALL PLOTSIC.f..,4I
LAILLC1I)=1ZHFA. PILLO

LAtCEL121=10-lt' L)CLTAf
LAC1ELC51.361H DtLT

LAdE(C 1) 1 . P.fA

LAtlELtI13z1CH _CA~tD I
LA'JELC2I.lTk%,..IIy

ENCD( 0l J,1,A6 L (11 J)Ptj
ENCJPL(IO.110.LA1$tLC1I&IMLUL
ENCUOFCII ,I I,LAkUL Cbli AG

0 FORNATtF'.1,i
100 F4)tMATCI'i.CI

110 FOG MAr IX ,.N. .1x,1'j
120 Pi0CMATCI,.4)t

CALL HGAPHCIVALULvINTk,NUMFLADLL,I.LII

INITIALIZE PCI. THES NTCSGR&TtO 1I.Tt'.ATT K0u1'.E

WX! TEC, .1 31 IfI "c
13 C404A r 4/1Xq.PtAK PIEL :.S LjCAILO AT A z ,FI3.7/I

WRI TEC691 3L. ILtC
130 FrCVMATC/1K..fIAK I:(LO IS LvCAltD AT A z .F1tl.7/lX,-.TrP( MIKPUP

1 ANDL MAXIMUM mALI A, GLt VALUJ L- tui. rilE LPT ATD./1Xs.:*.TSI Ty a
2.)UI INE , A40 TIMUI .ptt A - P, '%I IQ IHL fi ,t'AT FO:/

3 RLAUC'j,-)AM!.N,A-AL, .Um'

WRI TE I. q1 52 )AMI m.,AM AXt,LPRF
132 PF rtMAT(C/I A, -! .T t -A' U ; It - II ",JT I !J PA- A i E 1..:I1 -Am!-

FMIJiAI d/(-. -MAGI
FPAX=A,-!AX I ,.C-AG

CALL PIICALC
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CALL Pt ttm~m,ctrho1

C WkTL INTE4.1ATED hrTENSITY DATA TC fAPLi, Af.D OUTPUT
C

* 150 F6KNArtix,.uo Yju hlA'lT A CKT L:.1P.ti F THlL INTEG4ATED I?.TL!4SITV?

R EA 0(5,33 :Rf
IF(IR1;L.. :YIsoo *i :~o
W"L TfA(,I.1 h I

110 fu4iAT(/IX..11.IGmA~tlo NT tiY VALUL ,./(,X..f. H A.GLE.,1x.-!NTEG

190 FCMACt(gXFiu.7,1Gx,Flj.7)

180 COA3I r:
160 W! r I( , 1 7

200 c o. r wit
C
C WRITYE LNIEGmtATt-0 I1jENS:TY DATA TO THlt PLOT FILE
C

L Ad EL (I1 =I 1 TtIHA T D
LA~tL (23z CH 1?.? E3.!ITY
LAIIFLCI I 3=1..HX3.'LGl4 ATLI)
LAUCL(12)=1t.H 1tI'iE Ir
CAL.L NGrAPH(FVALUEPITHA,10iD,LA3ILL,1,dCI

C
C COMPUTE UlfFRACTIONd AND GLut'Lfl'C titAh O iELFING AN~GLES
C

THE TA=IkLLTA.2 ..HAG..ED- (PA.-I I /0AG.1.
OME(A2.*Tt.3'A/(MAG-1.)

hd!TE(.,,21031.t'AJ'LGA.CC;'su(I
210 F0Q4"AT(/IX,. EStNAt.,, A'.0 Jlff-,ACTICN A-.GLf- I3X9.GErmFTPIC TILT

IANA3LL =*,F14.l/3X.,-KLLNATjk AAiI. TILl *,EL,../ZX,.D1FF .ACTION
2 A'.GLE z, 014.7)

£F(mO~t.Cfl.I)WkPTE( 2,?ShL,Pf

220 F, iMAT(3X,*;.L0i'L *E1.
CALL PL )T Er.N N%.N

E NO
C

**. ........... . **...... ...............

C
SURROUrpNt CONDI!T

C
C TI S OUniC'T~E CENOITI :.. 7ht fItLD C gLT THE PLA.EC OF THlE
C FEEDBACK 414U1. SPECIFICALLY, FILLD WALUF C% THlL M:o-: P*
C SU-1fAC[ AKEt SfT TG O,3 TigL INTTl ! THE% NOPMALIZEO
C SO THAT IT-. I3rf.GkATED VALUtI- I-;,-~.

SC0-4m J N F IL Lf(4 c, )9X M 1.X M A X. X I .C,@L LT As .0A T A vF 14 vF mA XF I %C o NU mf F
IFIN T46R;C FrL(C F VALUE3 Gc iq, IlhAcO3, ",AG
CO0lPLEX FILLOoLVE
REAL PIAL.

A21Jf'PE,=1 .. ut LT A

DO 10 1=IsN0ATA
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I P= (11 )-3 2
IF( I .D..1.1 .1.1 Q.r.UAT A) GC 02

G63 0 3U
20 SLH'SUM.F4A6

10 C'~iT I1,F
sF=,Um. wi.C13.

03 ;~J 1=10,.LATA
F ItLD(hI3 =: L()I&.It

40 C 0'0TP1.Jl
RET URN.
EP.O

C.......... a * .*.. 6..............................

SUIItourINE FFCALC

c f MI ;. URC uuOT Ih PAJPAGA I LS rtI m uPUT ;1.0 tC I rit FA 9IILD.
c THL PCAK II~fENSIT1 POPj? I'- ,iETL'.EL ALA.6 WITH TIL FA, FIELD

CCM-4) F1ILOft0 ) 9,XM11.9 XMAX,9X:,.C OLLTA,I.DA'A 9FM I .FAXFl .C,NJ4FF
IF 1'. Tibid3 *F OC.9 VAL UL(.'le 3,, A.t Tt , ?'AG
CU'IPLIX f9 10,1YE.1Um.I.lA#uo.,L"F,'UMI

iEAL MA6

C SET UP 00 LCOP AOiJUT F VALUE.;
C

DO 10 Li-uz1.NU04

12o#lF=-EYE-2.-P1 .F

C SET up aJ LCtIP TO# TAKE FLUtI!i rFAFC.M.
C INTE6$(ArI C1. TICaINIOUL MUZ9~~~ ILE.

FVALUE( 1FOI=F.2..MAG
00 20 [X=1,.OATA
Il.1A(RGFIE1DEIXK3.CEXPC1ePIF.A3

IXt=IX/2).2

IFC!EP.LQ.lx)'UM:TUMIt..:r4.A,.
IF([XP.I.L.1X)SUM=SUM.2..PdAt6
60 To 41)

30 SUA=SUM*INIARG
4 O KRKPI4c
20 CC'iTI%UL

SU41=SUM. xl .CI3.

F LOC :F .2.aM AG
50 F:F.FI,.C
10 C0NTr14JE

REV uRPI
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C .......................................
C

C THI ' SUHR WTIKL C M'uT -' I'.I tGATklIX t .tTY Frz THE fAt, FIELD
C PAT RI-~. tLAI4 CENT~ -4L) I ., 1AKt , A THE[ PLIPT AT mI1C1l HALF TmL
C TIL PcJWIK LIE wi LITmEK. .10t .
c

CO%4MJN FILL.U( U ) ,XM1f,AAX,XI.C, U&LT A. .UATA,Fml'i.f -AXF1NC.aoU-FsF
IF 1% 1 (u I FLLC of VAL. U. O-dJ I of 11A( 15- 1 PAG,
Cw'4PLfE FUELD
RLAL '(AG

C
C Ut i 44*f.L TuTAL Pe~t$ Li.~C ".)I . FrLV:LUSLY f ,f
C

D( 1 I~3 lo%Li4F

IF( IE~.A .E~ U..'-F )GO T - 2,

IF( 0P ,U 1. 1 .m l m f :*, I). .

20 S UM '440: I ?i T ( I

POdL.(;U(.f Ehd'.
C
Ic LOCATE L SAm CENTRO1D W, il AID 0d A L LILAk 1?.TFRPZ:.AT:Ct..
c

F Iv C 2 F 1,C -2

40 I=, .1

IF( L$'I I U~~-fla'( I I -FIrC2
Go O &j

50 SUP4=3U".FFlr.T().fIr,C

60 IF(SUM.LT.vC~d(A)Gl. u "U,

CE'.~OI~FM * 1-2. *FP.C ( , A--UPJ').F IA.C/( SUl-] 1P)
DlS ? 'f MAX-f MIP.)2.

1002 F4A(1,HA CE.A.DL CA;tD A! A ..E14.7)

10011 Ft,,M4AT(/1X,.PLLLf.TA4,L im~toJ I A .'L6iCN USE[)~ FCq LOCATING. CENTPO

ER JR z2. -" M4(lF !)
haRE E(a.1'J.)Lmt'i-

1000 FL,.MATlII*,.'(AX ER.H 1:. C.f.....O L-2CAT kEN (1% '.'1M. IALF A%.GLL UK~
SITi) - -t O7

CALL ii CALC
C
C iNrIIAPAIL iHL INTPr ITY
a-

I9
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P1! I II j.

F I ).u.f. I C

I tNLx= 1 /2

0-) 13 t1,IsINO~k

I Az 2 - 11 -2
1 H: [ A* I
I C= Id. I

F-ID. ).9JFF I'. -I.)*INC-l.-MiCIP AI)

70 C 0% TI Nuc
FVA LU( INU I 1 OX.F! .C- .. aAG
XLI U1414

C
C........................................... ......................... ...........

C

DIi4CNSiON XC1).Y(1ILC23) S IF ('~L.)CALL PLCT(-L. -592.1C,-3)
IF CNO.EQ.?) Gr TO 5u t IF~ (tN).LT.,) Gr TJ 10
CALL SCALC(X,7.,!.vlI t CALL .CALLi(Y,t).d,sl

t0 CALL PLOT(L.91I..2) S CALL f'LkTlU.5,11.,2)
CALL PLOTC:i.5su.,1) S CALL LTi0.Z

CALL PLOT(l.3E91.3-,,-31 S CALL LT'.30-3
IF( 10( 1).i:0.9,i ) GO To0t
CALL PO.1.1-) S CALL VLtCT(C.9-2.9-2)
CALL SYMd)ll-.259.39.379 '( I ),I', .J
CALL SY kJC1, 0t.3#.5 ,

CALL SYM'ACL4.C59.-.s t:i(1).,~
CALL .,2,)~,.,.C,(1b
CALL SYT ICL 1 .65.3 1 IUe)
CALLST L .1,..0,ul,..a
CALL PLur~c.ie.,3i S CALL PL,T(1.2'*.9.2)
CALL PLOT (I.25,2.,?.a I CALL PLLT(5.92.,-211
CALL P(T-1.,5

25 CALL L)C.,.-2
CALL SLTO,.02 CALL PLCTC-z. ,C.,-?)
CALL PLO'(5.3,.159-!)
CALL AXI C 0 .90 .,!D , -i I. ('- v ,X( .* AF,.2 )
IF(%.LU.3) GO TO 21

GO~ To 3
27 C AL L AX IS0. s0.,U( 1 1 ),2s. 9 ,(N1,CI.)
30 rf(j ,2)=-Y (%.2) S1 CALLL .CYM,%I*PJ)

Ytli.23 -Y(,*2) I CALL PLCT(I-c'.-2.IC,-i)
RET uHI S LfYD

C...........................................................................
C

OIME:4:;ION LMl S S:'GA1I,/.~ A DX:.1.C1AAD (A DY=.I.%10.(A)
9 ~~IC.1...G41I,'.C) S .C: b CI .l S .j S A:... 1 y'yzS

10 CALL PL..T(X,V,311 S XzX.UX & y:1.JI I CALL PILIi(X0,.
CALL PLUT(-.210YCtY*.21-X-C,.3I

IF(J. 353CALL Pr-~*Y.,.4 IAC2
!Fti.LU.113 CALL P~(1u.CY.~D.C~

t4:M10(.,1. %'f $ i.. I ~ (ki ;L ) Ut T 0 10
A-- P.G-(iC*1).D.I S C1;6.)( A J'D ... j

511.^C0-!-)DY A y7Y,.c-tjy.Ljx

IR= I V(Ah'0-3 ) If (" .L.) -z-( "+) A -A0
RI= 6I/I. -- IR S U 1 =t- /IC... A L

20 £P.CJOAT1,1CIS)-1 S CALI. "YMdCL(WVWY.L.!,.zA.7) II:~.
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4 z -JA S Y* Y S R -I.I L I (1.L J G.. 5
Rz( .L -. 1.I Cu. I Lz.I. I IC

x l#(IXcU 1-Y U~.Y.C.Oii
CALL Symll) (X,,. .L ,A.., L -3 IF(:IP.tU. IT~
Ei.C oU1 (i. 1. .111) S CALL .1-9 .L( - .>' v.. At.(,.'
CALL W11I(Xo,0A3
ErC Ot 4 .1 1, .) I; S CALL Y ut,.I~,N,

102 F -- A I ( *r-
103 FI,(ATA!3b

C
C ,,UHU(tdI.E[ 5CAL(0ATAL',Ihl?..K)
C
C P(F ALU fA IA = K L!I; t -1 '.tf) A','AY 01 UATA T^ H- :CALI 0
C ' !stAA-t' z .UI I JA 'A P f .;-
C -LAL L0 G),T= 010HA .I 'L L-, AN.. (f.5,. .. .H
C ;NtiLA K~ = ULL,LU # tA'A'L ; CLULjiu F', C.-0A'!lI!L.TV
C W ~ IdIOM f,1 E0U ALt .T LALC( M iI i -z UT IjI.E.
C

C THE FJLLIf.6 VALUL, A-L t I utd tU:

C U)AIA(.01 b AUJU ,TkL tli ATA PI'.MU-
C I'ATA(1-2 I '.Lt* -LALL f*ALT.,, 1% (JATA UN.IT-
C Ft TO L.uA : H .10 IT(L.G. VIL T I.C,1)J
C
C................................................................................

C

C Cl4i'UTL Tlt 'SAW Z CALL f AC'

0 011 '.z,0m4X mk)A rA 4I1

IF (DATAEID. UI. L-AX) (J-AX 0AIWI:
12 C t% II .-)L
C
C EXCLU~t: kiVIAL Lkt CK LA,.1.,
C

DAT Ar..1I) * M1.
DA' A(d14 1.0
IF (LE.IiTH .L. .J. . U MAX .Q. DoN:, r[Tt-

RA.IF = OPIAX -MPI I LL.(,TH

C RAwi.f r SFP.ANT *IUl * SFLX,, WHEIiL 1 *LL. ZFPAP.T .LT. 1&

SFEXP = AI'.TC ALOGII AWE J
*If ( RAW..'F .LT. I.J ) 2.ELAT- -tLXP - j

SFPIAIT = AWdSF - 10.1 *. (-..FfI-)

C LCCATE NEXT LAiP6ER '.ICL" .CALL FAC"Cit

0j 2u' I,
20 If ( 4t([) .G7. SFMAI.T I v,. Tr. 3c.

PPIT..* SCAti:.SCALI f2r, Pr- .. I$Tuah
30 S ,C *4I -, ;(I3 1 10 . .. kp

C C.MP.JTke ADJUSTED DATA 3.~M,

AU.J-'1'. z .. A_ 4 D-;. / ~'.:CL I :Ff.:ct
IF ( Ai)j'4[,. .#.r. tJ4:?, 3AIJ-:1. :AOJMII. - F% C
IF i CU14AX AUJMII. / -F.FACL Lt1. Lk'L,00 G I' T 4
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£ NUFUJ r U~k THF %[XT LA-.L CALE: FACT-4

If ( , *LT. 5 1 SVN1C = ;F ii1 - 10., :FL~iXP
IF ( I Cto. 5 ) SVI.ICI 2. - 10..: .. EX
£flJ'*IN =A:P.l ( OPV. / 1I.,CL ) * - Ik
IF ( AJJP". .GT. OMI.. ADJP4.,. zAUJ;d -

OATA(-4.23 A.1CE
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