M3-8135.854

INCLASSIFIED

PERFORMANCE ANALYSLS OF DECENTERED UNSTABLE RESONATORS
(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
SCHOOL OF ENGINEERING S M RINALDI DEC 82
AFIT/GEO/PH/82D- 12 ! F/G6 9/1




- v

"m 1O 1l 2
=
m" L] £ e
= 2
i2s fles e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU 07 STANDARDS - 1963~ A

| —t—

S e s “ e
i



G ahicas . . L, s
e i a5 A

AD-A2 35 p 54

W}

Approved for public zeleasey
Disuibution Unlimited

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY (ATC)

Wright-Patterson Air Force Base, Ohio

OTIC FILE COPY

DTIC |

ELECTE
‘§UEC 14 1983 K
B ]

AIR FORCE INSTITUTE OF TECHNOLOGY

g3 12 13 252

: — —
, R T

e i athenn > o * L
.y



AFIT/GEO/PH/82D-12

PERFORMANCE ANALYSIS OF

DECENTERED UNSTABLE RESONATORS

THESIS

Steven M. Rinaldi
AFIT/GEQO/PH/82D-12 2Lt USAF

DTIC

ELECTEN
DEC 1 4 1983

B L e 4

Approved for Public Release; Distribution Unlimited




»

AFIT/GEO/PH/82D~12

PERFORMANCE ANALYSIS OF

DECENTERED UNSTABLE RESONATORS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

by
Steven M. Rinaldi, B.S.E.E.
2Lt USAF
Graduate Electro-Optics

December 1982

Approved for Public Release; Distribution Unlimited




Preface

-
The purpose of this study was to examine the mode

eigenvalues, far field beam quality, and far field beam
steering of decentered, unstable resonators. Because of
the complex nature of mode modeling, much of the anlaysis
performed was numerical instead of theoretical. It is
hoped that the lack of explicit formulae and mathematical
developments will not detract from the value of the
numerical analyses.

As with any major undertaking, this study would not
have been possible without the support, aid, and encourage-
ment of many people. Much gratitude and appreciation is
due Lt Col John Erkkila, my advisor, for his constant guid-
ance and understanding, especially during the final phases
of this project. My thanks are due Capt Mark Rogers for
the many useful discussions of resonators and his help with
the computer (a monster by any measure!). Sharon Gabriel,
my typist, deserves much appreciation for her excellent
work. And finally, my sincerest appreciation goes to my
family and friends for their support and words of encourage-

ment throughout this endeavor,

Steven M. Rinaldi
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Abstract

~y e )

The mode eigenvalues, far field integrated intensity,
and far field beam steering angles of unstable, decentered
strip resonators were studied;5>The resonators examined had

magnifications of 2.0 and egquivalent Fresnel numbers in the

P N

range 9.3 < Neq < 9.9. The resonator modes were calculated

by the asymptotic method of Horwitz.

Two equivalent Fresnel numbers for the decentered reson-
ators were defined. The fundamental and second-order mode
eigenvalues exhibited periodicities in the equivalent Fresnel
numbers. The mode separation was observed to be a function
of the amount of decenter and the two equivalent Fresnel num-

bers. The cusps of the first two eigenvalues were cyclic in

Neq.

The far field integrated intensity was computed for spot
sizes of one, two, and three Airy disks. The percentage of
total power deposited in a given spot size increased as the
decenter increased. Beam gquality instabilities were observed
in all modes.

The beam steering angles of the first four modes were
calculated. The angles fluctuated about the optic axis as the

decenter was increased. The fundamental mode had significantly ’

lower beam steering than the higher-order modes. :




PERFORMANCE ANALYSIS OF

DECENTERED UNSTABLE RESONATORS

I. Introduction

Background

Optical cavities may be categorized in two general
classes: the stable and the unstable resonatcrs. Jtable
resonators are characterized by well-defined mod The
mode volumes of such cavities are generally quit .~all.
Output coupling of the modes is usually accomplis...d by
transmission through a mirror or other optical element.
Consequently, the output power levels achievakle in stable
resonator designs are limited to relatively low values.
Unstable resonators are characterized by large mode volumes.
The modes are outcoupled via diffraction around one or both
of the resonator mirrors. The output power levels of
unstable resonator lasers are not limited to low values;
hence, unstable resonators are used in high power applica-
tions.

The modes in a stable resonator are well-defined and
easily calculated. The modes are generally described in
terms of the Hermite~Gaussian or Laguerre-Gaussian
functions (Ref 1:1324). The modes of unstable resonators

are not so simply described. They must be computed by




using one of several different numerical techniques. One

solution technicue of particular interest is the asymptotic
method (Ref 2), which was used to determine the modes in
this study.

The geometry of a general resonator is depicted in
Figure 1-1. M 1is the geometric magnification, a; and
a, are the linear half-widths of mirrors M and M, ,

1 2

respectively, Rl and R2 are the radii of curvature of
the mirrors, and L is the axial length of the resonator.
The well-known g parameters are given by

R,
- _ i Lo
g = 1- 4 i=1,2 (1.1)

If 0 < 9,9, < 1 , the resonator is stable. Otherwise,
the resonator is classified as unstatl le.

The equivalent Fresnel number is defined by

1 a’
Nyg = 3 O - }4) -2 (1.2)
22 Lgl

A“ is the radiation wavelength. This parameter is related
to the number of Fresnel zcnes intercepted by mirror Mz.

The geometry of misaligned and decentered resonators
is depicted in Figure 1-2. It can easily be shown (Ref 3:
19-23) that a misalignment of mirror M2 is equivalent to

a decenter of that mirror:




Figure 1-1. Geometry of an Unstable Laser Resonator

§ = -2 8 | (1.3)

where § 1is the fractional offset of M2 and 86 1s the

angle through which M2 is tilted. As a result, off-axis
resonators can be analyzed as misaligned resonators, and
vice-versa.

The confocal resonator is a special type of cavity.

The g parameters of this resonator must satisfy the

relationship:
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9, +9, = 29,9,

The output beam of a confocal resonator is collimated. 1In

(1.4)

the geometric optics limit, the beam is a plane wave. This

is a limiting value of the spherical wave mode (in the

geometric optics limit) of a general unstable resonator.

The Asymptotic Method

This section discusses the asymptotic method of

solving for bare, strip resonator modes. As this solution

technique is derived in detail elsewhere (Refs 2, 3, 4, 5),

the following development is simply a brief outline.
The generalized integral equation describing the
resonator modes 1is
b
ax) = 0 K(x,y)u(y)dy
a
where u(x) is the mode, X is the mode eigenvalue, and
K(x,y) 1is the kernel of the integral. For a decentered

resonator, Eq (1.5) becomes

145
g(y) exp[-it(y-x/M)?]dy
8

it
=

Ag(x)

(1.5)

(1.6)




where

inNe x?
g(x) = e q u(x)
nMa2
t = T1WTMF = EXTZGI

In Eq (1.6), the half-width a, of mirror M2 has been
normalized to unity. The integration is th&s taken over
the surface of My with the decenter accounted for.
y 1is a dummy variable of integration.
g(x) can be approximated as a unit amplitude spherical

wave plus a finite series of higher-order edge-diffracted

waves. This expansion is given by

N
g(x) = 1+ zl [anFn(x) + bnGn(x)]
where
. n, 2
F (x) = — I.l—l exp[-it (l-x/M") /Mn-1]
n V dint 1= o
; n, 2
6 (x) = — Mn_1 exp[-it (1+x/M") /Mn—ll
n dint =
(1 + x/M)
n
M, = ) M2k
k=0
6
) l' ! ' _

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)




Equations (1.9), (1.10), and ('.11) are substituted
into Eq (1.6). The resultant integral equation is evaluated

by the method of stationary phase. The final result is

N
M+ ] [a F (x) + b G (x)]} = 1+ F (x)+G,(x)
n=1

N
+ nZl[anFn+l(x) + b G q1(x)]

N
+ Fj (x) ) [a F (B) + b G (B)]

N
+ G (x) n£1 [a F (@) + b G ()] (1.13)
where
) a = =1+ § (1.14)
E
- B = 1+38 (1.15)

As shown in Chapter II, Eqg (l1.13) can be reduced to
a polynomial expression in A with known coefficients. The
equation can be solved numerically for the eigenvalues. The
coefficients a, and bn are then easily computed.

Finally, the mode u(x) is calculated from Egs (1.9) and

(1.7).

!
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Objectives

The objectives of this study are to examine the
behavior of the eigenvalues and the far field modes as
functions of the decenter parameter § . Specifically,
the objectives are:

(1) To determine how the eigenvalues evolve as §
is increased from zero. The relaFionships
between the cusping nature of the first two
eigenvalues and the equivalent Fresnel numbers
Neq,L and Neq,U will be explored (see

Chapter II1).

(2) To determine how the far field integrated
intensity changes as a function of § for
the first four modes.

(3) To explore the relationship between the far
field beam steering angles and 6 for the
first four modes.

(4) To develop a simple set of design criteria
for unstable resonators based on the observa-

tions listed above.

Assumptions and Limitations

The assumptions and limitations of Reference 3 apply
to this study, as the computer model developed in that
work was used to predict the resonator modes. The following

additional assumptions and limitations are made:




(1) The Fraunhofer approximation is sufficient tc
calculate the far field mode patterns. This
approximation is valid if the far field patterns
are calculated at cdistances far from the resonator
output aperture. Since this separation was taken
to be infinite, this approxiration is valid.

(2) The computer code used to predict the resonator
mocdes is valid for decenters of 0.0 < § < 0.9.
Weiner asserts that this is essentially true
(Ref 6:1831), based on comparisons of modes
calculated by the asymptotic method and the
power metacd (Ref 7).

(3) Only bare strip resonators with magnification
M = 2 and ecuivalent Fresnel numbers in the
range 9.3 < N £ 9.9 will be studied. The

eq
results of Appendix A, however, are valid for

general M and Neq values. j
Throughout this study, reference will be made to the
"geometric mode." This is the geometric mode of a confocal

resonator - a uniform plane wave. Upon emergence from the

resonator, the mode will have a uniform "annular" profile.

Organization

In Chapter II, a general theory of mode eigenvalues
is presented. The eigenvalue polynomial equation is devel-

oped, and theoretical predictions about eigenvalues of

9




] i decentered resonators are made. The far field integrated

intensity and beam steering are discussed in Chapter III,

based on a Fourier optics treatment of the geometric mode.

In Chapter IV, the major sources of numerical error that

exist in the computer code that determines the far field

modes, integrated intensity, and beam steering are evaluated.
The study results are presented in Chapter V. The general
unstable resonator design criteria are presented in Chapter
VI, and the overall conclusions and recommendations are

relegated to Chapter VII,. r

10




II. Theory of Mode Eigenvalues

A general theory of the mode eigenvalues is presented.
The polynomial equation used to compute the eigenvalues
in the asymptotic approximation is derived for completeness,
even though its development exists elsewhere (Refs 3:28-30;
4:24-29). The concept of two equivalent Fresnel numbers
for decentered resonators is developed, and its relationship

to the mode eigenvalues is discussed.

Background Theory of Eigenvalues - Aligned Resonators

The general form of the integral equation describing

the round trip propagation through a resonator is
b
au(x) = [ K(x,y)u(y)dy (2.1)
a

This is an eigenvalue problem. A 1is the eigenvalue and
the integration is the operator.

After a round trip through the resonator under steady
state conditions, the mode must be essentially unchanged in
form. After the propagation, the mode u’(x) must be

given by

u’(x) = 2Au(x) (2.2)

At every point on the wavefront, the amplitude is scaled i

11
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s A e o

by the magnitude of the eigenvalue and the phase is
shifted by the phase of the eigenvalue.
The fraction of energy coupled out of the resonator

is related to the eigenvalue. For strip resonators,

[

(Outcoupled Energy Fraction)i = 1 - J' (2.3)
where i refers to the ith mode and M is the geometric
magnification of the resonator.

The symmetric mode eigenvalues exhibit a periodicity
when plotted against the equivalent Fresnel number of the
resonator. Notably, the separation between the magnitudes
of the first and second symmetric mode eigenvalues has
maxima at approximately

N = n+3 n=0,1,2 (2.4)

eq 8 ’ [4 I I""
and minima at approximately

N = n+ L n=0,1,2,... (2.5)

eq 8 14 14 14 4

This behavior is apparent in Figure 2-1. This plot displays
the magnitudes of the first seven (symmetric and anti-
symmetric) mode eigenvalues. A periodic nature of the

eigenvalues is rather clear.

12
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Below some critical equivalent Fresnel number,
Neq(crit) + the first and second symmetric eigenvalues
display either crossing or cusping at the mode separation

minima points. Above , crossing of the first

Neq(crit)

two eigenvalues ceases. Neq(crit)

11.5

N . _—
eg(crit) (2n M) >

Above » the overall periodicity of the eigen-

Neq(crit)
values still exists. The amplitude of the fluctuations

of the magnitude of Al decreases as Neq increases (Ref 2:
1536).

The periodic fluctuations of lxil may be better
understood if the following argument is advanced. The
equivalent Fresnel number is equal to the number of half
wavelengths between the edge of the output mirror and the
closest point on the geometric wave inside the resonator
when that wave just touches the center of the mirror
(Ref 10:360). This is depicted in Figure 2-2. Of all the
waves that are scattered from the edge of the mirror, that
which is propagated back into the resonator along the ray
direction of the outgoing geometric wave is the most
important. It is focused back along the optic axis, where
it can interfere with the resonator mode (Ref 11:263). As
N is changed by unity, the phase  of this re-entrant ray

eq
is changed by 2w radians. Consequently, there should be

14

is given by (Ref 9:4149):




Figure 2-2. Interpretation of Neq (Ref 10:360)

cyclical constructive and destructive interference along
the axis, with a period of unity in Neq .

Considering just the fundamental mode, when the re-
entrant ray interferes destructively with the mode, the
field on the resonator axis should be relatively diminished
compared to the field near the edges of the mode. If
the re-entrant ray interferes constructively with the mode,
the field on the optic axis should be relatively more
intense than the field near the edges of the mode. Hence,
a resonator with Neq such that destructive interference
occurs should outcouple relatively more power than a
resonator with Neq such that constructive interference
occurs.

Since the outcoupled energy of a mode is related to

|x] as in Eq (2.3), |A]| should also be related to the




r3

H -
«Q

constructive and destructive interference. When the re-
entrant ray interferes constructively, |A| should be
near its maximum. When destructive interference occurs,
|A| should be near its minimum. Hence, for |A]| near
its maximum, the mode should be relatively built up on

the resonator axis and depressed near its edges. When

|A] is near a minimum value, the mode should be depressed
on the optic axis and built up near its edges.

An examination of the fundamental mode for 5 < Ne < 21

q
confirms the above. ]Xl! reaches its peak value when
Neq = n + % (n=0,1,2,...) , and its minimum value when

N = n + % . The fundamental mode does have a depressed

eq
intensity on axis when Neq =n + % and relative intensity
peaks on axis when Neq = n + % . Figures 2-3 and 2-4 show

representative plots of this behavior.
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The Polynomial Eigenvalue Ecuation

The stationary phase approximation to the integral

equation results in the expression

N

A{1 + ngl [a F (%) + b G (x)]} =1+ F)(x) + Gy(x)
N
+ nzl [a F 41 (%) + b G 4(x)]
N
+ Fl(x) nZl [anpn(e) + b G (8)]
N

(2.7)

+ Gy (x) zl [a F (a) + b G (a)]




With the manipulations detailed below, Eq (2.7) can

be reduced to a polynomial in A of order 2N+1 . The
polynomial can be numerically solved for the 2N+1 eigen-
values.

The initial step is to equate the constants and the
coefficients of Fn and Gn on both sides of Eq (2.7).

Equating the constants yields

A= 1 + aNFN+1 + bNGN+l (2.8)

FN+1 and GN+1 are essentially constant, as may be seen
in Egs (1.10) and (1.11).
Equating the coefficients of Fl(x) and Gl(x)

gives

N

ra; = 1+ __Z_l a F () + b G (8)] (2.9a)
N

Abl = 1 + nzl [a F (@) + b G (a)] (2.9Db)

Finally, equating the coefficients of Fn(x) and Gn(x) ,

n#l , yields

Aapg, T oA, (2.10a)
Ab ., = b (2.10b)
18
AR
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From Eq (2.1l0a),

an al
I - (2.11)

>

Changing the subscripts slightly, and using Eq (2.11) twice

yields
al anxn_l
a = = = —_—N- (2.12)
N AN 1 AN 1
_ n-N
= ank (2.13)
Similarly,
_ n-N
bN = bnk (2.14)
Using Egs (2.13) and (2.14), Eq (2.9) reduces to
N N N-n
adt = 1+ n£1 A [aNFn(B) + by G (B)] (2.15a)
N N N-n
byAm = 1+ ngl A [ayF, (@) + byG ()] (2.15b)

Following Reference 3, define
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(2.16a)

(2.16Dh)
(2.16c)
X N-n
GB = Z A Gn(e) (2.16d)
n=1
Substitution of Eq (2.16) into Eg (2.15) and factoring out
the constants ay and bN gives
asY = 1+aF, +boG (2.17a)
N N B NTR )
!
' bAN = 14+ aF +bsG (2.17b)
N N a N a °
Solving Egs (2.17a) and (2.17b) simultaneously results in
G8 - Ga + AN
N T N T ¥ r i) s ro —ro (2.18a)
8 Yo 8 a a B
F - FB + XN
bN = Q (2.18Db)
2N N
A - A (F8+Ga) + FBGOl - FaGB




After substituting Egs (2.18a) and (2.18b) into
Eq (2.8) and rearranging the terms, the final expression
in A is

2N+1 2N N+1 N
A - A - A (FB+Ga) + A (FB-FN+1+Ga-GN+1)

+ X(FBGQ-FQG ) + (FaG -F Ga)

B B "8

+ FN+1(GG-G8) - GN+1(Fa_F8) = 0

Equation (2.19) is the desired polynomial expression in A
Note that Fa ' F8 ' Ga , and GE are all polynomial
functions of A . All coefficients of X in Eq (2.19)

can be calculated, and the 2N+1 values of ) can be

evaluated numerically.

Edge Effects and Decentered Resonators

When the feedback mirror M2 of the resonator is

decentered, two equivalent Fresnel numbers can be defined

for the cavity. For an aligned (non-decentered) resonator,

Egq (1.2) defines the Neq as
2
a
_ 2 1 1
Neq B (ZA’Lgl) 7 M- g

(2.19)

(2.20)




Referring to Figure 1-2, one ecuivalent Fresnel number can
be defined for the section of M, extending above the

optic axis, and one for that below the optic axis. Thus,

[(1+<S)a2]2 1 1
Neq,U = 2A’Lgl _2" (M - M (2.21)
— 2
= (1+9) Neq (2.22)
Similarly,
= - 2
Neq,L = (1-9) Neq (2.23)

The subscripts U and L refer to the upper and lower
sections of M2 .
Drawing an analogy to the aligned resonator case, the

edge effects would be expected to influence the separation

of |Al| and [X,] when Neq,u and Neq,L equal
n + % or n + % , n=0,1,2,... As & increases from zero
to unity, Neq,U and Neq,L are swept through a number of

such points.
The values of &8 for which the edge effects should
alter the eigenvalue separation are easily determined.

’

Starting with Neq,L

N =

eq, L {2.24)

f
+
o
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where
0,2,4,... for maximum mode separation
K =
1,3,5,... for minimum mode separation (2.25)
-5) 2 = 34K
(1-6) Neq 8 t 3 (2.26)
3+x
eq
Equation (2.27) is identical to Egs (l1l) and (12) of
Reference 6.
Similarly, for Neq,U ’
_ 3 K~
Neq,U = g+t3 + INT(Neq) (2.28)
where
0,2,4,... for maximum mode separation
K° =
1,3,5,... for minimum mode separation (2.29)

and where INT(Neq) is the integer portion of Ne . With a

little rearranging,

3 K-k
INT (N ) + (= + 5 )
§(K) = eq 8 2 -1

(2.30)

K and K” can only assume integer values in Egqs (2.27)

and (2.30).
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§(K) and 8(X") are specific, calculated values of
the variable ¢ at which the separation between lAl{ and

|A2| should be maximal and minimal. Neq,L might play the

dominant role in determining the shape of the eigenvalue
curves as functions of § , especially at large values of

} § . As § approaches unity, Neq,L becomes much smaller

than Neq v - As noted earlier, studies of aligned resona-
’

% tors show that the depth of the cusps of fklf decreases as

Neq is increased beyond N

; large decenters, Neq ;, may play the dominant role in deter-
r’

eq(crit) Consequently, for

mining the structure of the eigenvalue curves.

The particular importance that Ne has on the shape

q,L
of the eigenvalue curves has been reported by Weiner (Ref 6:
1830-1). From Figure 2 of Reference 8, J(K) correlates
well with the § values at which maximum and minimum separa-

tions occur between IAll and |X No correlation

2| '
between &(K°) and the separation fluctuations is made,

however.
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ITITI. Theory of Integrated Intensity and Beam Steering

A general background theory of the far field inte-
grated intensity and beam steering is presented. General
relationships between the power in a given spot size and
the decenter parameter § are discussed. The beam center
is defined and a simple expression relating it to the beam
steering angle is given. Particular attention is paid to
a Fourier optics treatment of the geometric mode throughout

this chapter.

Integrated Intensity

Integrated intensity is a measure of beam guality.
The integrated intensity is the amount of power falling
into a given spot or "bucket" located symmetrically about
the beam center. The total beam power is often normalized
to unity. The integrated intensity of "power in the
bucket" is then the percentage of total power falling on
the spot. Plots of the far field intensity profile and the
corresponding integrated intensity vs spot size curve for
Neq = 9.36 and § = 0.0 are given in Figures 3-1 and 3-2.

A number of studies, both theoretical (Refs 6, 12)
and experimental (Refs 13, 14), have examined how de-
centering the feedback mirror affects the integrated

intensity. As § 1is increased from zero to unity, the

percentage of total power falling inside the first Airy
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disk increases monotonically for the geometric mode (Ref 12}).

ST e e e

Anen'ev et al (Ref 13) noted that the axial brightness of

a Nd:YAG laser with § =1 was much higher than that of

the same laser with § = 0 . The output aperture with

§ = 1 was effectively twice as large as that with § = 0 ,

since the energy was extracted from a single side of the
feedback mirror. Consequently, the beam divergence angle
(which is proportional to the inverse of the aperture size)

was reduced and the axial brightness was increased.

Bt

The far field intensity pattern for the geometric
mode is derived in Appendix A. The resulting intensity
I(xo) is

(M-l)(l+5)xO

Az

]

I(xo) = TXi;Tz{(M-1)2(1+5)2 sinc? [

(M—l)(l-d)xO

+ (M-1)%(1-8)? sinc? [ N ]
2n(M+1)xo
+ 2M-1)% (1-82%) cos [———Tr;———]
(M~1) (1+8)x_ (M-1) (1-8)x
« sinc [ ] sinc [ 1} (3.1)

Az Az

where )\~ 1is the radiation wavelength, 2z is the separation
between the output aperture of the resonator and the obser-
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vation plane, and X, is the coordinate in the observation
: plane. Setting M = 2.0 (corresponding to the cases

examined in this study) and &8 = 0.0 , Eq (3.1) reduces to

j 2 61X X,
I (Xo) = wz—)z[l + COs (W)] sinc? (ﬁ) (3.2)

Equation (3.2) is the far field intensity pattern for a
nondecentered resonator. Setting 6 = 1.0 , corresponding
to a highly decentered resonator, the far field intensity

pattern becomes

2 2xo

il — 2 : 2

I (xo) = (Xr;) sinc (TTE) (3.3)
The 1 + cos(6nxo/k’z) term in Eg (3.2) causes the

energy to be spread out more than in Eq (3.3). More power

will thus be deposited in a given spot for the decentered

resonator (6=1.0) than for the nondecentered resonator

(§=0.0) . 1In fact, as § 1is increased, the energy deposited
in the first Airy disk increases monotonically (Fig. 3,
Ref 6:1832).

The above discussion suggests that a highly decentered
resonator may be capable of depositing more energy into
a given spot than a nondecentered resonator. The actual
resonator modes show amplitude and phase fluctuations, while
the geometric mode has uniform intensity and phase profiles.

However, since increasing & changes the output aperture
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from two slits to a single wider slit, the resonatcr modes
will most likely show an increasc in integrated intensity
for increasing ¢§ . This is in line with the observations

of the previously cited works.

Beam Steering

The beam steering is the displacement from the optic
axis that the center of the far field pattern suffers. &
knowledge of the beam steering properties of a resonator
is a obvious importance. Targets in the far field might
be missed entirely if the beam wanders to a great degree;
optical elements at the output end of the resonator might
be damaged if the beam is excessively displaced from the
optic axis. A particularly interesting question is how
decentering the feedback mirror affects the beam steering.

The center of the beam will be defined as the centroid
of the intensity profile. For a one-dimensional beam, half
the power lies on either side of the centroid. Defining the
center of the beam as the centroid instead of the peak
intensity point can be justified by considering Figure 3-3.
Although Figure 3-3 is the TEMlO mode of a stable resonator,
the argument is the same. The intensity peaks are shifted
considerably from the cente- .f the beam, while the centroid
is coincident with the centexr. The centroid will in general
provide a better approximation of the beam center; hence,

it shall be defined as the center of the beam.
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CENTRCID
- } <>xo
BEAM
CENTER
Fig. 3-3. Intensity Profile of the TEMlo Mode
Note that the intensity peaks are
displaced from the center of the beam.
The beam steering angle 8 1is given by
*o
3] = ? (3.4)

where Xq
tion plane.
2Ma2/x’ ’

e)

where fx

is the location of the centroid in the observa-

Multiplying by the dimensionless parameter

2Ma2xo

Az 2Ma2fx

is the spatial frequency corresponding to the

location of the centroid. Further, by setting a, equal
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to unity, the normalized beam stecring angle becomes
8 = 2fo (3.6)

where the subscript N refers to the normalizations
employed. The half-width of the central maximum of the
Fraunhofer pattern of a slit of width 2M is SN = 1.0 .

GN can thus be used to relate the beam steering angles to
the radius of the Airy disk; it will be referred to as the
"normalized half angle." GN is a very general parameter,
as A" , z , and a, are not explicitly required for
its calculation.

A major cause of beam steering is tilts on the phase
of the resonator mode. If the field immediately beyond
the resonator output aperture is u(x) . the corresponding
far field pattern will be k U(fx) , where U(fX) is
the Fourier transform of u(x) and k is a complex
function. A linear phase tilt may be placed on u(x) by
multiplying u{x) by exp(iwx) . Since

Flu(x)el®¥] = U(f, ~ w/2m) (3.7)
where F is the Fourier transform operatc:i, the centroid
of the far field pattern is shifted by an amount propor-

tional to the magnitude of the phase tilt. Thus, tilted

} resonator modes will suffer beam steering proportional to
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the sizes of the tilts.

Examination of Eq (3.1) shows that the far field
intensity is an even function of X v regardless of M
or § . The geometric mode will, therefore, suffer no
beam steering at any value of & . The phase (as well
as amplitude) profiles of resonator modes show tilts and
aberrations as the resonator is decentered. The degree of
phase tilting should impact the relative beém steering.

If the resonator modes roughly approximate the geometric
mode, the beam steering should be small. However, if the
phase fronts become grossly tilted, the beam steering will

be pronounced.
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IV. Error Analysis of FOCAL

The computer code FOCAL propagates the resonator
mode to the far field, locates the bean centroid, calcu-
lates the integrated intensity, and determines the bheam
steering angle. The various sources of numerical errors
that enter the calculations are examined in this chapter.
The errors are due to the numerical techniq&es and approxi-
mations employed. As it is difficult to gquantify exactly
the magnitudes of these errors, the following discussions
will refer only to the relative sizes of the errors. A

listing of the code FOCAL may be found in Appendix C.

Far Field Intensity Calculation EZrrors

Calculating the far field intensity requires per-
forming a numerical Fourier transform of the resonator
output field. Four primary sources of error exist in the
calculation. Errors can be introduced if the mesh points
of the resonator mode are too widely spaced. Inherent
inaccuracies exist in the integration technique used to
compute the Fourier transforms. Errors arise if the far
field intensity is calculated at spatial frequencies above
a certain limit. Finally, spacinag tae mesh points on the
far field pattern too far apart will create additional

discrepancies.
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If the resonator mode mesh spacing is too wide, high
spatial frequency information will be lost (see Figure 4-1).
k The field that is calculated will be a low-pass filtered,
| and thus inaccurate, representation of the mode. This is
easily remedied by increasing the number of field points

calculated, with a corresponding decrease in the mesh

L

spacing. Unfortunately, this solution can become expensive
in computer time. A reasonakle compromise was made in

this study by calculating the field at 100 points over the
surface of the feedback mirror. Increasing the number of

points from 100 did not produce a noticeable increase in

mode detail. Consequently, the error introduced in the
calculation of the near field pattern (resonator mode) can
be considered negligible.

Rather than use one of the available fast Fourier
transform (FFT) routines, an algorithm based on a numerical
integration was written to perform the beam propagation.

The integration technique used was Simpson's rule (Ref 15:136-138).
' This method connects adjacent data points with quadratic
curves and sums the resultant areas. This will produce some
error if the data points are not connected by quadratic
) functions (see Figure 4-2). A higher-order scheme, such as
Weddle's rule, could have been employed. However, this
would have required additional computer time, so the simpler
(and less accurate) Simpson's rule was used. This probably

introduced the greatest error in calculating the far field

) intensity.
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Fig. 4-1. Plot Depicting Improper Sample Spacing

Note the loss of high frequency data.

The Nyquist criterion states that a signal with a
highest frequency component W can be perfectly recovered
if it is sampled at a rate fS > 2W and the samples are
processed by a low-pass filter (Ref 16:68-71). Using this
criterion, the far field intensity can only be calculated

for spatial frequencies fx in the range

1 1
7. 5 x5 37
s S
where Ts is the mesh spacing on the resonator mode. In

this study, fx was always less than 1/3STs . As a

result, this source of error can be considered negligible.
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Fitted
Quadratic

Fig. 4-2. Exaggerated Plo. Showing the Discrepancy
Between f(x) and a Fitted Quadratic.
Error is Shaded.

The final source of error is the spacing between data
points on the calculated intensity pattern. This is identi-
cal to the problem of mesh spacing on the resonator mode -

a wide spacing creates loss of higher  frequency data. This
problem can be resolved by decreasing the data point separa-
fion. During actual runs, the far field intensity profiles
were found to be quite smooth. A mesh spacing of approxi-
mately 0.06 normalized half angles (nha) was discovered to
be much more than adequate to recover all of the fine detail.
The errors introduced in this manner were thus quite small.

The use of Simpson's rule in the Fourier tranform
routine introduced the most error into the far field
intensity calculation. The other three error sources were
small by comparison, and can most probakly be neglected.
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Errors Associated with Locating the Centroid

The centroid of the far field intensity is located
in a three-step process. First, the total power Po
between two interactively-specified limits is determined
by a numerical integration. Then, starting at the lower
limit, the intensity 1is integrated until the two mesh
points on either side of the half-power point are found.
Finally, a linear interpolation is used to approximate
the location of the centroid between the two mesh points.
This suggests three main sources of error: part of the
power is not used in the integration due to the finite
limits imposed, the exact power cannot be determined because
of problems inherent in the numerical integration, and the
linear interpolation will not precisely locate the centroid.
The far field intensity pattern theoretically extends
from -» to +o |, Beyond a few Airy disks from the
centroid, though, the intensity becomes negligible. Since
the numercial integration cannot be performed from -«
to +« , some of the power is necessarily ignored. This
introduces error into tha calculation, as the intensity
profiles generally are not symmetric. To minimize this
error, a criterion was established that at least 90% of
the power must lie between the limits of integration. (This
was readily determined. The power in the beam leaving the
resonator was normalized to unity. ' As long as the power

between the limits of integration was greater than 0.9, the
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90% criterion was fulfilled.) 1In general, the power between
the limits of integration ranged from 90% to 95%. This
was deemed to yield sufficiently accurate results.

The use of Simpson's rule as the integration technique
introduces some error into the calculation. The reasons are
discussed earlier in this chapter. The far field intensity
patterns were quite smooth, and 501 mesh points were used
in the calculations (which roughly equates to 85 points
across the Airy disk). Consequently, the errors introduced
by the integration were probably small.

The linear interpolation adds further error to the
calculation. This is illustrated in Figure 4-3. Point A
represents the actual centroid. Point B is the "centroid"

located by the interpolation. An error equal to ¢ thus

exists.
The maximum value |e| can have is x -x_
n+l n
which is the mesh spacing. |e| could be reduced by

decreasing the data point spacing. This would require
additional mesh points and more computer time. During

actual runs, |xn+l - x was on the order of 0.025 nha.

l
n
Decreasing the spacing beyond this limit would have
required inordinate amounts of extra computer time. |el
could also be decreased by using a higher-order inverse
interpolation scheme. Such a technique did not exist as
a computer library routine, and the time required to create

a routine was not deemed justifiable in terms of the poten-

tial returns.

38




£(x)y /

N
lae)

{
'

n+l

Fig. 4-3. Linear Interpolation Contribution to
the Centroid Error. A is the centroid,
B is the estimated centroid, and ¢ is
the error.

A value of the "maximum error in centroid location"
is printed by FOCAL. This is equal to the mesh spacing.

Three main sources of error exist in locating the
centroid. It is somewhat unclear as to which introduces
the greatest inaccuracy. Measures were taken to reduce

the errors in all cases.

Integrated Intensity Calculation Errors

The integrated intensity is calculated in a two-step
process after the centroid is located. First, the intensity
profile is recomputed between symmetric limits about the

centroid. Then, using Simpson's rule, the intensity is
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integrated outward from the centroid to the limits. Errors
enter the calculation during the location of the centroid,
the computation of the intensity pattern, and the outward
integration. The first two sources of error have been
discussed earlier.

The third source of error is again due to the inherent
problems of the numerical integration. Since the intensity
patterns were relatively smooth and the mesh spacing small
(0.025 nha), the inaccuracy of the integrations was mini-
mized. Decreasing the mesh spacing further would probably
have produced a small increase in accuracy for the additional

expenditure of computer time.
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V. Study Results

This chapter presents the results of the computer

analyses of the resonator. The effects of decenters on

the eigenvalues are discussed first. Next, the changes in

beam quality due to decenters are presented. The chapter
is concluded by examining how decenters afféct the beam

steering.

Effects of Decenters on the Eigenvalues

The eigenvalues were studied as functions of &

with Ne a fixed parameter. The twenty-five cases

g

examined are listed in Table I. The Neq values were

chosen to lie about the points of maximum and minimum

separation petween |2 and | (9.37 and 9.87,

ll 2l
respectively) and an intermediate value (2.60). In all
cases, the increment value for & was 0.004. Typical

plots are shown in Figures 5-1 through 5-6.

A note should be made concerning several conventions

used. 6(K) and &(K”) refer to the § wvalues calcu-
lated from Eqs (2.27) and (2.30), respectivelv. 6(K even
refers to those values of 3§(K) for which K is even.
Similar remarks may be made for §(K odd) , 6(K” even)

and §(K”° odd) .

)

14

The eigenvalue plots were analyzed for five different

items. First, the overall and finc structures were
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TABLE I

Eigenvalue Analysis - Cases Examined

Neq Cirange || s, ¢ Range
9.30 0.0-0.4 9.60 0.0-0.9
‘ 9.31 0.0-0.4 9.625 0.0-0.9
? 9.32 0.0-0.4 3.65 0.0-0.4
; 9.33 0.0-0.4 9.80 0.0-0.4
9.34 0.0-0.4 9.81 0.0-0.4
9.35 0.0-0.4 9.82 0.0-0.4
9.36 0.0-0.9 9.83 0.0-0.4
9.37 0.0-0.4 9.84 0.0-0.4
9.38 0.0-0.9 9.85 0.0-0.4
9.39 0.0-0.4 9.86 0.0-0.9 g
9.55 0.0-0.4 9.87 0.0-0.4 ;
9.575 0.0-0.4 9.88 0.0-0.9
9.89 0.0-0.4
S, |
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correlated to §(K) and &(K”) , respectively. The

crossing and cusping nature of fkll and |A was

2|

examined in detail. Next, the separation between ixll

and ]Azl was related to N , , and § .

eq,U Neq,L

The interleaving of the higher-order eigenvalues was

explored. Finally, crossings between {Azl and  [XA4]

were examined.
Examination of Figures 5-1 through 5-6 reveals

that |A;| and |[A have an overall periodicity in

2|

Neq L This periodicity was observed in all the cases

’

studied. The separation between |[X;]| and [X, exhibit
maxima and minima quite close to the §(K) values. In

the six applicable cases, §(K=0) was somewhat greater
than the ¢ value at which the peak separation occurred.

Superimposed on the overall oscillatory structure is

a fine structure periodic in Neq,U' The structure is
most pronounced for § < 0.2 , where Neq,U is of the
same order as Neq,L . For § > 0.75 , the periodicity
still exists, but does not go exactly as Neq,U

The separation between lAl[ and [Xz[ exhibits

minor minima at the §(K” odd) values. This agrees
with the theory of Chapter II. At these § values, the
|A;| curves are depressed and the [|X,| curves are
peaked. The magnitudes of the depressions and peaks
decrease as ¢§ 1increases. The correlation between these

minor minima and &(K” odd) 1is excellent for & < 0.7

For &§ > 0.7 , the correlation begins to break down.
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At the §6(K° even) values, two distinct types of

behavior are observed for [Al} and |X In the

|-
first type of behavior, a minor separation peak is observed.
Alternatively, both the ]Xl| and |X,| curves exhibit
very steep slopes of opposite sign. The slopes of the
curves in these regions are considerably greater than the
slopes in the surrounding neighborhoods. Even though
separation peaks are not exhibited, the cur&es appear to

be "stretched apart," thus creating the steep slopes. This
form of behavior occurred more often than the other. The

correlation between the two types of behavior and §(K” odd)
is excellent for & < 0.7 , For & > 0.7 , the correlation

begins to break down.

and

Prominent cusps or mode crossings between |A1|
[A,| exist at almost all §(K odd) values. Weiner (Ref 6:
1831) asserts that at moderately large Neq values (com-
parable to those used in this study), the first crossover
points do not occur until § is relatively large. 1In

this study, crossings were observed for § as low as 0.01
(Neq = 9.88, 9.89). Cusping can - and usually does - occur
when ¢ is increased from the first crossing point. Only

crossing behavior is observed for § > 0.5 .

The §(k odd) cusps evolve in a regular manner as

Neq is increased. The four major stages of the cyclic

behavior are displayed in Figure 5-7. N and N,

eq,U q.L

play important roles in the evolutionary cycle.
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In the first stage of the cycle, a deep cusp forms
at a pair of &(K odd) and §&(K” odd) values that are
approximately equal. Invariably, 6(XK odd) < §(K” odd) .
As Neq is increased, §&(K odd) and &(K” odd) become
almost equal, and the cusp deepens. 1In the second stage,
§(K odd) is .irtually equal to 6(K” odd) . The cusp
exhibits two mode degeneracy points. As Neq is further
increased, the third stage is entered. d(K'odd) becomes

larger than 5(K” odd) , and one of the degenerate points
breaks open. At this stage, the cusp has evolved into a
single mode crossing. In the fourth stage, §(K odd)

and §(K” odd) are somewhat separated. The remaining

mode degeneracy breaks open, and the eigenvalues completely
separate. As Neq is increased further, the mode separa-
tion becomes greater until no cusping nature is evident.

What was once a cusp has evolved into a region of relatively
large mode separation. This evolutioﬁary behavior was
observed in virtually all cusps corresponding to §(K odd)<0.4.

The separation between [A;| and [ is a function

5l

of N , and & . Several distinctive types of

eq,U ' Neq,L
behavior may be observed.

If K and K” are of the same parity, several pairs
of §(K) and §(K”) are approximately equal, and if
8§ < 0.15 , then the mode separation is characterized by rapid,
deep oscillations. This behavior is observed near Neq =
9.37 and 9.87. 1In these regions, the cusps are quite deep
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and often doubly degenerate. Mode crossings occasionally
occur. The mode separation is quite unstable and changes
rapidly for small changes of § . The behavior suggests
that the edge waves from both edges of the feedback mirror
reinforce each other, thus creating the large oscillations
in |Al| and |A2| .

If K and K~ are of the opposite parity, several
pairs of §(K) and ¢(K”) values are approximately equal,
and if 6§ < 0.15 , then the mode separation remains roughly
constant at an intermediate value. This behavior may be
observed near Neq = 9.625. In these regions, changes in
§ produce minor changes in the separation between [All
and |A2| . It appears that the edge waves from both edges
of the feedback mirror interfere destructively with each
other. Each wave nulls out the effeccs of the other.
Consequently, the oscillatory behavior is suppressed, and
the mode separation remains roughly constant.

The greatest mode separation occurs for & = 0.8 ,
near 6(K = 0) . The separation stability is quite good
near § = 0.8 : é% ([Al|-|k2|) is rather small. For
§ > 0.3 , the separation of the peaks of the overall
oscillatory structure increases with § . A comparison of
the mode separations for & % 0.0 and § = 0.8 1is given
in Table II. The separations show improvements of 38% to

51% when the resonator is highly decentered. This agrees

with the observations of Weiner (Ref 6:1831).
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TABLE II

Comparison of Eigenvalue Separation

Neq §* ]xll |x2| ANK** Ag***
9.36 0.0 1.0515 0.8107 0.2408

42.4
9.36 0.776 1.1437 0.8007 0.3430
9.38 0.0 1.0519 0.8105 0.2414

41.7
9.38 0.776 1.1416 0.7996 0.3420
9.60 0.0 1.0318 0.8096 0.2222

47.0
9.60 0.792 1.1352 0.8085 0.3267
9.625 0.0 1.0272 0.8079 0.2193

51.2
9.625 0.788 1.1363 0.8048 0.3315
9.86 0.024 1.0495 0.8087 0.2408

: 38.4

9.86 0.792 1.1368 0.8035 0.3333
9.88 0.024 1.0502 0.8075 0.2427

38.8
9.88 0.792 1.1372 0.8002 0.3369
* 8§ values listed correspond to the maximum AXA

values nearest 4=0.0 or K=0.
* % -
AA |A1| |A2|
!
AN~ =~ AN .
seeoay = K970 L g0
8§=0
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The eigenvalue magnitudes of the higher-order modes
interleave with and cross one another. The interleaving
is somewhat reqular for J < 0.6 , but no periodicity in

» or § can be readily discerned. Some modes

[

Neq,U Neq,L

appear to meander with no apparent periodicity for ¢ < 0.6 .
For ¢ > 0.6 , the periodicity is much more pronounced. The
"meandering modes" generally cease to exist, leavingonly a
diamond-shaped interleaving pattern. The pattern is roughly
periodic in Neq,U .

Crossings between |A2| and |A3| occur at all values
of 8§ . For & < 0.4 , the mode crossings are sporadic and
aperiodic. For 0.4 < § < 0.65 , the crossings are more
frequent. For ¢ > 0.65 , the crossings are quite regular
and approximately periodic in Neq,U .

In summary, the eigenvalues exhibit an overall and a
fine structure periodic in Neq,L and Neq,U ; respectively.

§(K) and 6(K”) correlate very well to the maximum and

minimum separation points of |All and |A The cusps

|-
at the §(K odd) values show a cyclic behavior in Neq .

The separation between the first two eigenvalues is apparently
influenced by the edge waves from the feedback mirror. The
maximum separation of these two eigenvalues occurs near

§ = 0.8 ; the peaks in the separation increase in magnitude

as § increases. Finally, the higher-order eigenvalues

display a periodic interleaving for.large & wvalues.
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Eftects of Decenters on Beam Quality

The far field integrated intensity of the first four
modes was examined for decentered resonators with equivalent

Fresnel numbers of 9.36, 9.625, and 9.86. § ranged from

0.0 to 0.9 in increments of 0.05. Specifically, the power
deposited within one, two, and three Airy disks (normalized

half angles) of the optic axis was calculated. The number

s
t
:

of Airy disks required to capture 90% of the'power was also
computed. Plots of the results for Neq = 8.36 are shown
in Figures 5-8 through 5-15. Each plot shows the results
for the geometric mode and either modes one and two or modes
three and four.

The plots were examined for five specific items. First,
general increasing or decreasing trends of the data with

§ were observed. Second, the modes were compared to determine

if any mode had consistently better beam quality than the %
others. The same comparisons were then made between the four
resonator modes and the geometric mode. Next, the percent
differences of the integrated intensity for & = 0.0 and
§ = 0.8 were calculated. Finally, the range of & values
for which the beam quality was the best (most power deposited
in a given spot size) was determined.
The integrated intensity of the geometric beam is dependent
on & . The power deposited in one Airy disk increases
monotonically as § 1s increased. This agrees with results

published in the literature (Ref 12). The power in two Airy
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disks decreases slightly with increasing & . For three
Airy disks, the power first increases until 6 = 0.6 and
then decreases. Finally, the number of Airy disks regquired
to capture 90% of the power increases until §&§ = 0.2 and
then levels off.

For spot sizes of one and two Airy disks, all the modes
show increases in integrated intensity as ¢ increases.
The increases are more pronounced for the third and fourth
modes. The increasing trend is not as obvious when the spot
size 1s increased to three Airy disks. Modes one and two
display decreasing integrated intensity for & < 0.5 , and
slightly increasing integrated intensity for § > 0.5 . The
third and fcurth modes have slightly increasing integrated
intensity for this spot size. The number of Airy disks required
to capture 90% of the power generally decreases as ¢ 1increases.
The first two modes have widely scattered values as § 1in-
creases, with only a slight downward trend. Modes three and
four display less scattering and have more pronounced decreas-
ing trends.

All modes have beam quality instabilities for 0.2 < § <
0.75 . At an instability, the beam quality deteriorates
rapidly. Generally, the beam gquality recovers from an instabil-
ity within § = *0.05 . 1In some instances, a series of
instabilities exists, giving the overall beam quality an
oscillatory nature. The fundamental mode always exhibited an
instability near §&§ = 0.7 . This instability has been noted

in the literature (Ref 6:1831-2).
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Individual instabilities can be traced through all
three spot sizes, and affect adversely the number of Airy
disks required to capture 90% of the total power. For
example, the instability at & = 0.7 for the fundamental
mode appears in Figures 5-8, 5-10, 5-12, and 5-14. The
effect of the instability on the 90% power point is rather
dramatic.

No mode appears to have better overall beam gquality
than the other modes. This can partially be attributed to
the instabilities that all the modes suffered. 1In general,
the fundamental mode has slightly worse beam cquality than
the other modes. For almost any specified 6 and Neq
values, no method of determining a priori which mode would
have the highest integrated intensity values could be developed.

All modes have comparable or better beam quality than
the geometric mode for spot sizes of one and two Airy disks
when § > 0.6 . (This is not true at a beam quality instabil-
ity.) For a spot size of three Airy disks, all modes have
somewhat worse beam quality than the geometric mode, regard-
less of & . All the modes require high § values to have
the same or fewer numbker of Airy disks to reach the 90%
power point when compared to the geometric mode. Overall,
at high & wvalues, the modes appear to have comparable or
better beam quality than the geometric mode.

The percent difference A% 1in integrated intensity for

§ = 0.0 and § = 0.8 1is defined as
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(Power in Spot) _ (Power 4N Spot)
_ with § = 0.8 with § = 0.0
a% = (Power in Spot, x 100 (5.1)

with § = 0.0

The percent differences were calculated for all cases examined
and are listed in Table III. A similar definition may be made
for the percent difference in the number of spots required to

capture 90% of the power:

(Number of Spots) _ (Number of Spots)
with § = 0.0 with § = 0.8
Number of Spots)
("with & = 0.0

A”% x 100 (5.2)

The A°% values are listed in Table III under the A% column.
Tabkle III reveals secveral interesting characteristics.
In all cases, more power is deposited in one and two Airy
disks when 6 = 0.8 than when 6§ = 0.0 . A% always monoton-
ically decreases as the spot size increases. In some instances,
particularly for the fundamental mode, A% 1s less than zero
when the spot size is three Airy disks. Modes two, three,
and four deposit 90% of their energy in smaller areas when
§ = 0.8 than when ¢ = 0.0 . These observations indicate that
the power densities near the beam centroids are higher when
§ = 0.8 than when ¢§ = 0.0 .
In general, the integrated intensity valuec atre the
highest for & > 0.7 . The only major beam quality instability

in this range occurs in the fundamental mode (% = 0.7). This
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TABLE III

Integrated Intensity Percent Differences

t
Mode N Case* A% Mode N Case* A%
eqg €q

3 1 9. 36 1 60.5 3 9.36 1 100.
1 9.36 2 4.2 3 9.36 2 22.6
1 9.36 3 - 7.7 3 9.36 3 9.5
1 9.36 90 -55.2 3 9.36 90 66.9
1 9.625 1 59.9 3 9.625 1 93.2
1 9.625 2 3.6 3 9.625 2 21.6
1 9.625 3 - 7.3 3 9.625 3 7.8
1 9.625 90 -15.0 3 9.625 90 69.4
1 9.86 1l 57.9 3 9.86 1 36.4
1l 9.86 2 6.4 3 9.86 2 19.7

3 1 9.86 3 - 4.6 3 9.86 3 5.9

‘ 1 9.86 90 6.3 3 9.86 90 53.1
2 9.36 - 1 41,2 4 9.36 1 95.7
2 9.36 2 19.9 4 9.36 2 23.3
2 9.36 3 9.3 4 9.36 3 6.6
2 9.36 90 51.7 4 9.36 90 33.3
2 9.625 1 36.1 4 9.625 1 42.7
2 9.625 2 13.7 4 9.625 2 28.8

B 2 9.625 3 4.7 4 9.625 3 7.4

e 2 9.625 90 44 .9 4 9.625 90 47.6

AN 2 9.86 1 81.8 4 9.86 1 40.5

R 2 9.86 2 6.6 4 9.86 2 17.5

E. ! 2 9.86 3 - 2.7 4 9.86 3 4.0

4 2 9.86 90 5.8 4 9.86 90 27.3
* Case refers to the number of Airy disks over which

. the intensity was integrated. Case of 90 refers
to A% values.




agrees with a conclusion from Chapter III: the beam quality

should be improved at high values of §

Effects of Decenters on Beam Steering

The far field beam steering of the first four modes was
examined for decentered resonators with Neq = 9.36, 9.625,
and 9.86. ¢§ ranged from 0.0 to 0.9 in increments of 0.05.
Additionally, the fundamental mode was analyzed at a much
higher resolution for Neq = 9.36 . For this case, § varied
between 0.0 and 0.9 in increments of 0.0l1. Plots of the
results for Neq = 9.36 are presented in Figures 5-16 through
5-18.

The beam steering data were examined in three different
areas. First, the data were analyzed to determine if the beam
steering angles had some linear dependence on § . Next,
the oscillatory nature of the data was checked to see if a
simple periodicity existed, and how the amplitude of the
oscillations varied with ¢§ . Finally, the means and
standard deviations of the beam steering angles were computed
and compared to one another.

The beam steering angles of the geometric mode are super-
imposed on Figures 5-16 through 5-18. The steering angle for
any 6 value is either -0.011 or -0.01 normalized half angles
(nha). Since the uncertainty in the location of the centroid
is approximately 0.025 nha, the optic axis lies within the
error bounds. This agrees with the conclusion reached in
Chapter III that the geometric mode should display no beam

steering, regardless of § .
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No linear dependence of the beam steering angles on §
can be discerned from the plots. A linear regression was
performed on the data; the results are listed in Table 1IV.
(yINT’ m, and r are the y axis intercept, slope, and correla-
tion coefficient, respectively.) The magnitudes of the
correlation coefficients are less than 0.25, except in two
instances. This implies that the data correlate poorly to
straight line fits. Thus, the beam steering angles display
no linear dependence on § .

All the modes have beam steering angles that oscillate
pseudorandomly about the optic axis. No period in § ,

, Or is readily discerned. The amplitudes of

Neq,U Nequ
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TABLE IV

Statistical Analyses Results - Beam Steering Angles

Neg Mode Y INT m r X o
(nha) (nha/unit §) (nha) (nha)
9.36 1 0.0146 -0.0186 -0.075 0.0062 0.0698
9.36 2 0.0787 ~-0.3244 -0.355 -0.0673 0.2565
9.36 3 0.0141 -0.1403 -0.205 -0.049 0.1924
9.36 4 -0.1935 0.2294 0.133 -0.0902 0.4865
9.625 1 -0.0017 -0.0uL61 -0.03 -0.0044 0.0576
9.625 2 0.0256 -0.225 -0.24 -0.0757 0.2632
9.625 3 0.0677 -0.1729 -0.271 -0.0101 0.1794
9.625 4 -0.0106 0.0943 0.095 0.0318 0.2781
9.86 1 -0.0162 0.0075 0.041 -0.0128 0.0516
9.86 2 -0.0261 -0.0507 -0.09 -0.0489 0.1583
9.86 3 -0.1311 0.0585 0.055 =-0.1048 0.3016
9.86 4 -0.0181 -0.0327 -0.033 -0.0328 0.28

the oscillations appear to be random. The oscillatory nature
is more apparent in the high resolution case (Figure 5-18).

Again, the period does not correlate to § , ;, Or

Neq,U

Neq L - It is interesting to note that the beam steering
’
instability at 6§ = 0.71 1is coincident with a major beam

quality instability (see Figure 5-8).
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The mean values X and the standard deviations o of
the beam steering angles were computed for all cases. The
results are listed in Table IV. The mean value is always
less than 0.105 nha; in two-thirds of the cases, it is less
than 0.05 nha. A rather simplistic error bound on the mean
values is 0.025 nha. Thus, the mean beam steering angles are
quite close to the optic axis. The standard deviations are
generally less than 0.3 nha. No standard deviation exceeds
0.5 nha. The fundamental mode quite clearly has the lowest
standard deviation. Its standard deviation is approximately
one-third (or less) of the standard deviations of the other

modes for any Neq value.

In summary, the beam steering angles oscillate somewhat
randomly about the optic axis. No linear dependence of the
beam steering angles on § 1is apparent. The average values
of the beam steering angles are guite close to zero, and the
standard deviations are generally less than 0.3 nha. Finally,
the fundamental mode has the lowest beam steering; its standard
' deviation is one-third of or less than the standard deviations

of the higher-order modes.
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VI. Unstable Resonator Design Criteria

This chapter presents several simplified design criteria,
based on the observations described in Chapter V. Design
criteria for decentered resonators are presented first, followed
by criteria for nondecentered resorators. It is important to
realize that the comments below are based on properties of

resonators with 9.3 < N 9.9 . The criteria may vary for

A

eq
resonators with Neq values removed from this range.

Decentered Resonator Design Criteria

From the observations of Chapter V, highly decentered
resonators offer certain advantages over nondecentered
resonators. The beam quality tends to be better and the mode
separation greater for highly decentered resonators. A
cavity can be designed to exploit these advantages. The
following guidelines are advanced for decentered resonator
designs.

(1) The resonator should be designed for operation in
the fundamental mode. This follows directly from
the beam steering results. The fundamental mode
has considerably lower beam steering angles than
the higher-order modes. The standard deviations
of the fundamental mode beam steering are approxi-
mately one-third ¢  or less than the standard

deviations of the higher-order modes. The mean
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beam steering angles for the fundamental mode

are extremely close to the optic axis. Operation
in the fundamental mcde will generally yield the
lowest beam steering angles.

(2) The resonator should be designed for very high

decenters (near &(K=0)). Tor the particular Ne
range studied, § should be approximately 0.8.
This value is based on the mode seéaration and the
separation stability, the integrated intensity, and
mechanical design considerations.

The greatest separation betwecen Ikll and the magnitudes
of the higher-order eigenvalues occurs for § = 0.8 . This
value of § will enhance the single mode operation of the
resonator. The separation is quite stable for § = 0.8 ; only
small changes in the separation will occur if & deviates
slightly from the operating point.

Highly decentered resonators tend to deposit more energy
in a given spot size than nondecentered resonators. The
percent difference values recorded in Table III illustrate
this point. The fundamental mode deposits more energy in spot
sizes of one and two Airy disks when § = 0.8 than when
§ = 0.0 . The overall results indicate that the power densities
near the beam centroid are greater when & = 0.8 than when
§ = 0.0 for the fundamental mode. The higher-order modes
also show F~am quality improvements at high decenters. Any

higher-order modes existing in the resonator would thus have
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improved beam quality when 6 = 0.8

) The mechanical construction is simplified if the reson-
ator is highly decentered. Nondecentered resonators typically

{ must be built with the feedback mirror mounted on a transmissive
; optical element or suspended by a spyder. Consequently, the
outcoupled beam is partially blocked by a mechanical element.
This can be particularly bothersome if the power densities are
very high. (Krupke and Sooy (Ref 17:580-1) have reported the
use of an annular scraper mirror to avoid these difficulties.)

In a highly decentered resonator, the spyder sizes can be

reduced and the clear aperture size increased. Notably, if

§ = 1.0 , no spyder or other interfering mechanical mounting
device need block any portion of the outcoupled beam. This

is illustrated in Figure 6-1.

Nondecentered Resonator Design Criteria

The results of the eigenvalue study suggest an optimum
equivalent Fresnel number for the resonator if fundamental

mode operation is desired. This value is

Neq,ozat = n+5/8 , n=0,1,2,... (6.1)

L, N results in the best mode separation stability. Small
: eq,opt

accidental misalignments of the resonator mirrors will have

little effect on the mode separation at this value of Neq .

Essentially, the edge waves from the feedback mirror tend to
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OUTPUT APERTURLES NEAR FIELD BIEAMS
L |
{a) (b)
]
{c) (d)
(e) (f)
Fig. 6-1. Resonator Output Apertures and the Corresponding

Near Field Beam Shapes. Note effects of the
spyders and feedback mirrors on the beam shapes.
(a) ,(b) £=0; (c),(d) 0 < & < 1; (e),(£) &=1.
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null each other out. The result is a relatively constant
mode separation for § < 0.15 . Perkins and Cason (Ref 18:

200) report a similar choice for , but do not justify

I\‘eq,opt

its choice through edge effects arguments.

Limitations

As noted in the introduction, the above design criteria
are based on studies of resonators with 9.3 < Neq < 9.9 .
The criteria may not be particularly applicakle for resonators
with very high or low equivalent Fresnel numbers. Any specific
design may deviate from these criteria because of effects

not analyzed or considerations not taken into account in the

above discussions.
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VII. Conclusions and Recommendations

The conclusions of this study are summarized in this

chapter. Areas that warrant additional research are

outlined.
Conclusions
{1) Two equivalent Fresnel numbers, Neq,U and Neq,L ’
1 3 \
can be defined for decentered resonators. heq,U and Neq,L

are functions of the feedback mirror fractional decenter ¢
The defining relationships for the two Fresnel numbers are
given in Eags (2.22) and (2.23).

(2) Drawing an analogy to the case of a nondecentered
resonator, two functions, S(K}) and &6(K”), can be derived
that yield ¢ values at which the separation between ]Al[
and |\ is minimal or maximal. [\

and |\ are the T

| | |
magnitudes of the two lowest-order eigenvalues. K and KX~
are integer variables used in the functions defining §&(K)

and §(K”), respectively (see Egs (2.27) and (2.30)).

(3) The eigenvalues are functions of Neq,U and Neq,L .
Two types of structure are exhibited in the [);]| and {Azl
curves: an overall structure periodic in Neq L and a
I
superimposced fine structure periodic in Neq U - §(K) and
14

§(K”) quite accurately predict the values of § at which the
separation between |Al] and !AZ] is maximal or minimal.

(4) Major cusps in the |\ and | curves occur

1! !

at the §(K odd) values. The cusps undergo a regqular
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evolutionary pattern with four phases as Neq is increased:

a very deep cusp, a doubly degenerate cusp, a mode crossing with
a single degenerate point, and a complete separation of the

5 modes. The cyclic behavior is apparently related to N

[4

eq.,U
i Neq,L , and constructive and destructive edge effects from
the feedback mirror.

E (5) The mode separation maxima between !Al] and ]kzl

at the §&(K even) values tend to increase in magnitude as

: 8§ is increased. The greatest separation invariably occurs when

; § = §(K=0) . At this ¢ wvalue, the mode separation is very

stable.

(6) The higher-order eigenvalues interleave somewhat ran-
domly at low & values. The interleaving becomes regular and

roughly periodic in for § > 0.65 . The crossings

Neq,U

between |A2{ and |2 behave similarly.

N
(7) The power deposited in one and two Airy disks gener-

ally increases as & 1increases for all modes. The trend is

somewhat nebulous when the spot size is increased to three

Airy disks. The number of Airy disks required to receive 90%

of the power generally decreases as § increases. This trend

is somewhat vague for the fundamental mode, but is quite pro-

nounced for the third and fourth modes.

(8) All modes display beam guality instabilities for
0.2 < 8§ < 0.75 .
(9) No mode consistently deposits more energy into a given

spot size than the other modes. On the average, the fundamental
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mode appears to have slightly lower beam quality than the
other modes.

(10) The beam steering angles have no linear dependence
on & . This is confirmed by the low correlation coefficients
from the linear regression analysis.

(11) The beam steering angles for all modes fluctuate

pseudorandomly about the optic axis. ©No periodicity in & ,

Neq,U ; OY Neq,L is readily apparent. The amplitudes of
the fluctuations display no general trends with ¢ , Neq U
or Neq,L

(12} The means and standard deviations of the beam steer-
ing angles are lowest for the fundamental mode. The standard
deviations of this mode are at least one-third as small as those
of the higher-order modes. The standard deviations of all modes
tend to be less than 0.3 normalized half angles, although in

one case, & = 0.5 norm:lized half angles.

Recommendations

(1) The analyses of this study were performed on a limited

class of resonators (9.3 < Neq < 9.9, cavity magnification = 2).

The same analyses should be performed on resonators of lower
and higher equivalent Fresnel numbers and various magnifications.
It should be determined if the observations and results of this
study apply to other classes of unstable resonators.

(2) The beam steering angles should be correlated to the
phase tilts on the output modes. The tilts might have to be

weighted to account for intensity fluctuations and the asymmetric
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shape of the output aperture.

(3) The beam quality instabilities might correlate
to large resonator mode aberrations. This possibility should
be examined, and a model developed tc predict at what §
values the instabilities will occur.

(4) As noted in Chapter V, a beam quality instability
and a large beam steering angle exist in the fundamental mode
for 6 = 0.71 , Neq = 9.36 . This observation should be
investigated further to determine if there is a general cor-

relation between beam quality instabilities and beam steering,

or if this is merely an isolated coincidence.
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APPENDIX A

Far Field Intensity of the Geometric Mode

The far field intensity pattern for the geometric mode
of a decentered resonator is derived in detail below. The
geometric mode has a uniform amplitude and phase on any plane
perpendicular to the optic axis inside the resonator (see
Chapter I). The mode amplitude is exactly zero beyond the
shadow boundaries. 1In this derivation, the amplitude is
arbitrarily set equal to unity and the phase to zero.

Referring to Figure A-1, the transmission function of

the output aperture of the resonator is

X - %(M+1)(1+6)1
M=-1) (1+9)

X + % (M+1) (1-96)
rect| ™M=-1) (1-3) ] (a.1)

t (x) rect|

+

where a, has been normalized to unity and

1 |x| <X
rect (x) = (A.2)
0 elsewhere
Assuming that
2
z >> ML @.3)

the Fraunhofer diffraction formula may be used. Here, 2z 1is

the distance to the far field observation plane and
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k = 2m7/\" is the propagation constant. Then (Ref 8:61),
ikxé
exp (ikz) exp (—3~)

U(xo) = NN FlLU(x)t (x)] (A.4)

where F 1s the Fourier transform operator, U(xo) is the !
far field distribution, and U(x) is the geometric mode.

Performing the indicated operations yields

2

ikx0
exp (ikz) exp 57 )
Ulx ) = —
o iA"z
i
. {(M—l)(1+5)exp[-infx(M+1)(1+6)] sinc vy
+ (M-1) (1-8)expl imf (M+1) (1-§)] sinc n} (A.5)
where
y = (M-l)(l+<§)fx (A.6a)
n = (M-l)(l-é)fx (A.6Db)

The far field intensity is of primary im-ortance; it is
given by the product of U(xo) and its complex conjugate
*
U (xo) . Denoting the intensity as I(xo) , after some

straightforward manipulations I(xo) reduces to

- g
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-1 _
"z)?

I(x,) { M-1)2% (1+8) 2 sinc?y

+ M-1)2(1-8)? sinc?n

+ 2M=-1)?(1-8%) sincy sinecn cos | Zﬂfx M+1)1}  (A.7)
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FPig. A~l. Output Aperture of the Resonator

Note a., has been normalized to unity.
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APPENDIX B

Program Listing - EIGEN

The computer code LIGEN calculates and plots the eigen-
values of a decentered, unstable resonator. Two modes of
operation are allowed: Neq can be held fixed and § varied,
or § can be held fixed and Neq varied. Tables of the
eigenvalues are generated and written to TAPE7. The program

is essentially a modified version of the eigenvalue routine of

BARC2 (Ref 3:61-74). The modifications include the provisions

for iterated calculations and the addition of a plotting
routine. :
The required inputs are listed below. All inputs are f
real variables, except as noted. i
IRES: flag - enter N if Mg is the variable |
and any other letter if ¢ is the variable
MGt cavity magnification
The following inputs are required if Ne is the
variable:
NEQMIN: minimum Neq value
NEQMAX: maximum Neq value
NUMNEQ: number of Neq values at which the
h: eigenvalues are to be calculated
DELMIN: § value (fixed parameter) j
The following inputs are required if § is the

variable:
84
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DELMIN: minimum § value

DELM2X: maximum & value
NUMDEL: number of & values at which the eigen-
values are to be calculated
NEQMIN: Neq value (fixed parameter)
The IMSL mathematics library and DISSPLA plotting
package are required for program execution. Since DISSPLA

is used, the code should be submitted as a batch job.
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PRIGRAY CICINCINPLUT o QUTPUToTAPL 321 PUT W TAPEL S)UTPUT yPLFILE=" o TAPET k
1)
c...............'.... (A X RN R R AL ARG 0008 0GP RRRPEARANSRRQRRSNRIRSANRNOAGSS
THLS PryG?AY CALCULAILYL M LIiuthVALLE: CF A D CENTELR 0. UL TABLE
STILP PECNATO/ OWE- A PECIFIED ~A*Gt F 1EQ ¢ DILYTA VALLES.
EITHER THE LEQ i3 AELD FINEU AW CeiTA 'S VAKI¢Os L~ OVLTA [ HELD
FIKLD AND AFQ To VA/IdJs  THIC o <CGPAM (5 CLSENTIALLY AN €% ENOLD
VEQLION OF THE ETGE NVALULE » . UTi € OF BACD (MS THt ] s
RICK He-DILE).

REQUIRED INPUTSS
IRt ToHOLE RED L. O o THE VARIABLES ANY OThER LETTE  IF
DELTA 1 T¢ BY The vASTABLL
HAG = CAVITY RAGNIFEICA(L:

THE FOLLIMING INPUTS ARL REQUIKED IF KEQ IS THE VARIABLE:

NEQHIN = mIAIMUYM NEQ VALUE

NEQMAX = MAXIMUM LLQ VALUL

NUMNED = MNUMBER (F MEQ VALLE. AT WAICH ThE ETGENVALUES ASE
TO BE CALCULATLY

OELMIN = DELTA VALUE (FIXED THrJUGHCUT THE CALCULATIOA)?

THE FULLCWING INFUTS ARE REQUIRED IF ODELTA IS THE VASIABLE:

DELMIN = MINIMLM DELTA VALW

DELMAX = KAXIMUM DELTA VALUL

NUMOEL = NUMBER CF DLLIA VALUES AT WHICH THE EIGENVALUEC ARE
TO BE CALCULATED

vEQMIN = NEQ VALUE (FIXED THrOUGHCUT THE CALCULATIINY

THIS PAJGRAM REQUIRES TnE DISSFLA GSAPHICT FACKAGT AND THP IMSL
HATH LIURAFYs SINCE DIJSPLA T3 REQUIRLDs THE PRCG~AM MLST BE RUM
BAT(H.

FINAL FIRM2 22 NCVEMBER 19:24 20T Se Me FINALDI.

GEPRBP SV 200000030088 20P0 00000t ana e

ACAOOAOAOAMANOANTAANANNOAARNANANONN

[ FE A R TR AN R R E R R R R R NN NEANTNER YY)
REAL NEGoNE QMINGNEQIFAXoMIUHI (31 ) o MOUPKEL 1D LECILC o YAG
" REAL MAGLUGMAG2C oMALGL1 e ~AGY 1 ¢ MASLID g YAG22 WMAGLANMCT)
CCMPLEN LYL 4COEFL(L1 ) 4LAYHDA(D]L)
CUMPLEX LAMBLloLAPH. 14l Cl
COMPLEX CLCS1)sCOUMoANY yART aX1aXl g1y ¥ 921422
P COMPLEX FALPHALTL) oFHRETALSL) yCALPHA(E LD GUHEYACSL)
- : DIMENSIGON LTITLEIC2) oL IITLE (2D oL TITLEICA) o XARSAY(T)
ODATA EYEGPIoINEC/CJanledodalali dendbtdcn ittt
DAT A MAGLAM/T(O.)/
| READCS9131L)IKE .
1010 FORMATCAL) ’
' TFCIRESONFeINEQIGO TO 1820

SET UP SYSTEM FOR NEQ VAHIAQLE

nAo

. READCSyo DAt GMINGNEIMAX ¢ UMIE SgUz LMUI Ny HAG
NEQINC(NEQPAX=LEQN NI/ CUMNEG-Le)
OELINC=].

NUMOEL=1

60 TU J03¢

rae

SET UP SYSItM™ FCP VARLABLE StLTA

[ Xa N2l

1020 READCT o) DE LMEL o DELFAN UMD Ly ot AWI% 4 A0 :
DEL INC=(ODELFAX=DELMI I/ CuUMDEL=14 )
| NFQINCz.

b 86




NnAn

1030

1052
1060

1040

1000

109¢
10790

[Nz N2l

2000

2016

[N NoNg)

996

[a XNl

NUMNE Q=]
NEQMAX:=NEQMIN

INITEALIZE OISSPLA FLOTTING ACUTIAE .

CALL C MPRS

CALL OGuPLI~-1)

CALL BAZALF(oHSTALOAFD)

CALL MIXALF(cHL/CL- Ex XK)

TFCIRE Lo NESINFQIGE "o 2t 4l

CALL TITLECIH o=1o3H% U e3ecHPAGLLL) Yy glCapte)
LTITLELCL Y= CHPAGLLLY ) ¥

LTLTLEIC2)=THSE. NES

ENC M0 LS LT iYL YD) e UM il gt GMAX

FOUMATOLIHLED »APGE SoaXoF TaealXolnT “glXgFTadelHs)
ENCIDEC20 910G LTI LEJIULLMI

FORMATCIHDLLTA Z4lnoFceadelrs)

60 Ty 101C

CALL TITLECLIH o=1emrUfL:iAg" soMMAGI(L) ) y-91Caeb4)
LTLTLELCL)=10HMAGICLY) V

LYTITLELC2)=5HS. DELTAS
EANCODECAO04ILNC oL TITLEIIONELM [ iglle LMAX
FORMATCL2HOELTA ~A Gt o XoF TaDolXoirtTCeineFlalelns)
ENCIDEC20 03 L9900 TITLES) £GQPLN

FOLMATIOMHLED Z9lXoeF sa%elHs)

CALL HEADINCLTILEL oLSled oY)

CALL HEADIWCLTISLEZ 91CC 02932

CALL HEADIMCLTIVLE 5413202432

CALL MARKE: (3)

IFCIRE W INEQICALL G AF (1t ¥ "9 ICALE 91t O%AX 4o 9 R CALE41.17)
IFCIRE;oNEINEQICALL G AF (O LM o oH CALL ¢ DELYAX go3e M CALL 11D

QUIPUT RUN DATA

[FOIRESEQaINEQRINAZTC (T 020 200t UMY L EUP AR GRE AT NC o UNMNE JoDEL T
IFCIRESMEQIMEQ MR, T8 (792017 )DL LM o JLLFAXODELL*.Co UMDF LG ¥ O]
FOXMATCIML ol Xoat IGE..VALUL TAHLL A> A FUNCTILNY F "£Qe//1Xes2A\GE

10F Q% aeFne@elXoe U ey XoF -0@/ihgo' b 3 _ACHURE' T VALUY = egFa.0/1N

29 ¢ NUMHER OF 8EQ VALYES = o9 i2/1ngeUtLTA CCCLITAMTY = ogF~af)
FOIMATCLHL1X 9of G VALLE TANLE » A A FUNCT!IN F DiLTA®//1%qe<ANG

LE JF DELTAS »oFretolXge UoglXolb oc/lapgeDELTA I4CUTMENT VALUL = oof

2546 /1XeaNUMBER OF DELTA VALULS = egl3Z1Xea%EQ LCONGTANTY = o gF < 44)

MSUPMNCLY = MAGea(l-1)
HSUBNEL) = 1 & 1/MAGe2 ¢ 40 ¢ 1/MAGee(20]~2)

MSUHNCL)=1.C

MSUPNIL)=Le?

DC 10 [=2451
MSUPNCTDI=MAGeMSUPACI-1)
MSUUBNCIDIZMSUBNCI=1) el o/ H0UP ilL D002
COWTINUE
RATIG=ALOGE(250, o NEQMAXI/ALLCGIMAG)
IFCANBIGaUE «SCadGL 113 777

NBIG= [NT(RABIG) s

MRT TECT 4336 RNH Gy« BIG
FOYMATCLX 9o CALCULATED NaIG = o 9Foea/1XgeSELECTED VHIG = 04212/7/7/)

FINISH INITIALIZATI CAS AND SET UP U3 L1739

NEQ =%NFIMIN
02 2020 IINEQ=1ohUMLEQ
T2 ol QePloMAGEMAS/ (FALMAL-14)
DELTA=OELMIM
DO 2030 IDELTA=] ¢NUMDEL
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20

21

22
23

COMPUTE COFFFICTFLT , OF THL rOLYNLYIAL
PCL) = COEF(1)aZea" 0tG + C.tFC 1aZeaqAOEG=1) & ous
* COEFUNDEGYIOZ o CULF(*DLGe1)

ALPHAz=14¢0ELTA
BETA=1.¢DELTA
COSFULISCMPLALLapue)d
N G22e.B1Ge]

NCIEF=1.0EGe]

LERTIFET2Y
D 15 I:=tev
AL SCOURT oY 0P aT /¥ UBN 1))
At2==TebYE/»SUY (1)
ANSzBETA® (L om1o/M:Urtio1))
ANSZALFHA® 1 a=1 /M UPN(Te1 D)

ARI=BE TA=ALFHA/ =502 LT »1)

Ato ZALPHA=UETA/PILA (o))
FUOETACII==CCEXP AL aAN ae ) /AN /AL
FALPHACI) S~ (CEXF (A an }/A' /ALY
GRETA(I)S(CEXPCAND e ALlbeal)/ALEY /AL
GALPHA(I ) =(CEXFCANZ cANG#oZ )/ ALG I /AN
CUVTINUE
FALPHACM) ZCEXPCAN2 e BETARC2) /HETAZ(=ANL)
FBE TACMI=FALPHA (V)
GHETA(MI=CEXP (A2 ALPHACR D) /AL HAZALL
GALPHACMY=GBRETA(®)
CCEFL2)=~(FUETAC(L )+ GALTHA(L ) #1 )
L1=%B[Ge2

LY
NB=1
DC 21 I=3eL1
X2:CMPLX(0ay0s)

22x2
DC 14 JA=SLle' A
KAz A=JAel
X1=FBETACUAD*GALPHA (KA)-FALFHA(JAD = GBE TACKA)
X2=x1*K2
CONTINUE

IFC1.€Q.3) GU TC 20
07 19 Jdu=let.8
K= .8=Jduel
YISFALPAACGIBY o GHETA(KBI=F AL | ACU) «GALPHA(KE)
¥22Y¥1eY2
COTINUE
Nifz el

Z13FBeTACI~C)=FHETALI=L) A
223GALPHACI=2)=-CALPHACI -1)
CLEFLII=Xlev2021e20

NAzNAel
CoeTINUE
L2=i.BIGe3

NAz. BIG-1
NB2:8[6-1
00 238 I=L2sMCCEF

JTCHMPLXCJs404)
Y2342

IFCIEQeNCLUEF) bu T 23
00 22 JA=let A
KASNdTveJA~rA
X12FHE TAAGM=JA) e GALP nA(KAD=FALPHA(P-JA) oGdL TA(KA)
23x1ex2
CuouTlINUE
IFC eE2el2) 67 T Qo
0C a6 Jt=l,ytd
KH:..BiGeJdH=-"'H
YIZSFALPHA(M-UH) «GHL "TACKHI=F It TA(M=Jr) ¢GALPHA(K 1Y




Y22¥1ley?
24 Cuhi TINUE
NH= J8-1
60 19 27
25 OC 20 JHzlelBl6
Kbz HlL-Sudel
YI=FALPHALUB) o GBETAIKE) ~FHE TACUHDIsGALFHA(KH)

¥2:¥1ey?
26 Conrgnue
27 Z1FHLTACY)a(GCALPHA ([ ~M=L )~ Giit TAL=PM=]))

22 GALPHACMIC (L ALFHAC="=1)~FUL i ALI=M=1))
CCERCTI=N20Y202) 22

NAZ WA=]

28 ConTIRUL

C

c COMPUTL «37TS LF FULYNCHIAL WITH IMIL rCUTINE 2CP2LY, T2

c OMTAIN THAL FIGL.VALUE s AND THEN (<OtF tIGERVALULES BY

[+ SI2€.

c
CALL 2CPILY(CGEF ¢hD G ol AMKDA 9t <)
MRITECT 40 #)ALQELT A

89 FURMATCLX s 1L0CHe D/ /L xgntit'Q T e gF e/l X0 DELTA = egFRAes// Xgel0,
12 Xo sLAMBOACHEAL) e g3 0o e LAMHOACIMALD @ 4O Xge EVFAGA 9l X geEVPHR/)
1=1

DO 13 [1=2,1.0E6
SIZES FEALCLAMBODACI 1) es o AIMAGCLAMBUAC ) )ee2
K=l
DO 75 J=114:.0€6
SIZEL=REALCLAMBDACU IV e e ¢ AI MAGC(LAFBDALY) 2
IFCSI2E 10T oSI2E) Gu TC 75
K=J
SI2E=S12€)

75 CONT1HUE
COUM=LAMBOACT)
LAMHOACTI ) SLAMBDAC(K)
LAMBODAL{K) =COUM
CLULd=LAMHDAC )
EVAHZATAL2CATMAGICL (L) ) okEALKCLCID I D123 ,/P]
SMAZREALCCLAL)) o024 ATMAGICL( )} ) e
SHAGSSQAT L MA)
MRITECT7 3330 JLARHOA(LI D 4SMAGIEVPH

333 FORMAT(IXNeITe1Xe8(G20791x))
1:=01

70 CoLTIAUE
EVPHZATAR2CATIPAGCLAYBOACNDEG Y )y "EALCLAMEDACI.DEG) ) )el3) /P
SMAZREALILAMHDACNDE L) I ool A I MALLLANIGDA(ADEG) Yo a?
SMAG=3AKRT € MA)
WRUTECT o333 INDEGILAVHDALNDLG ) 0. YALIEVPH

SEAACH FOR MAX AND *IN MUDE SEFA~ATIUCNI. AND MAX AND MIN
EIGENVALULES.

(2 X s XaXal

IFCTINCQeIDELTA=3). 40000504205,
2040 MAGLI2=CAUS(LAMBCACL))
MAG22=CAB . (LAMHOAC())
SEP2=MAGL2-VMAG2?
60 F0 2Cre
2050 LAYHI1zLANHDA(L) .
LAMH2L SLAABDACD)
LeClzCMPLX(LE Qe M)
MAGLL=CAd CLAMHDA L))
MAGOLZCAS L CLAMBOACS )Y
SEPIZMAGLI-MAG2]
62 T3 2070
2060 MAGLI=CAH(LAMHDACL D))
MAGZ2)=CAHSCLAMHDACD Y)

89

| PO




SEPUZMAGLI-¥AG2y
TFCMAGLLoGT aMAGI20A 0e™MAGIL aGToXAGILU DM JTHECT 422 ) ILAMHLIL ¢#AGLL,L"C
11

TFCEAAGYLIoLT oMAGI2A DaPAGLLaLToMAGLI N AFECTH20~3ILAMHLIT ¢NAGLL 4L C
1

TFCMAG2LaGT aMAGL2eA  De™AGTLaGT ¢ MAG - JTEUT ¢Z122)  AMBIY o MAG2L 4L €
11

TIFUMAG21aL? oMAG220h DeMAGII o LT oMAGO L IW JTECT 210 ILAMHZ] ¢MAG2L 4L "C
11

IFLLOEP 1 eGT aSEP2 oAD"t PlaGT e lEP. PP ITE(T792122):€P1,L C)
IFCSEPLaLTa EFZeAldattrlabllelir. PuriTECTe2120) EPL4L CY
LAMBLI=LAZBDA(L)

LAMJ21=LANMHDALCD)

MAGL2=~AGLL

MAG22:=HAG21L

MAGLL=vAGIC

MAG 21 =MAG2N

StP223EPY

SEPL12SHPD

LGCLCMPLXL(LEQeDELT A)

2080 FOLIMAT(/Z1X o MAXIMUM VALUC ULTECTELD FC®
1 %gFl2.1093%9pF12e10 /73X e MAGCLAFODACI) ) =
2873 4o DELTA = e 4F,0c/)

2090 FORMATL/LXqaMINIMUY VALLE DLTECTED FOF
1 ooF12.10e3%9F 1 al)/3XeemAGCLA» DALY =
24/75Xye 0L TA = soFrat /)

2100 FOIMAT(/1 Xy o MAXIHUM VALLE

LAKSDA(L)2a/3X e L AMBOA(L) =
egF1le/EXgorEQ = eoFde

LAMBDAC1)2e/3K, e LAMHDA(L) =
RIS CIPRYAR P EN ] T egbn,

DLTECTED FOR LAMBDAC(2)2e/3X o LAMBDALD) =

LT

1 o oFlial0e3XgF12410 /72Xy «MAG(LA»SDACC))
073Xy ¢ DLLTA = ayFea/)
2110 FURIMATC/LXesMIVIMUM VALLE DOTECTED FCA

woF1Cen/3XpeNLd =

LAMBDACD ) Sa/3Xge LAMBDAC?)Y =

1 opF12.1003X9Fleall/5XpaMAGLLAYHDALIDY ) = ogF 1Ca  /3XeetcQ = aqfd,
20/3A 90 DCLTA = egFran/)

2120 FCRMAT(/1X oo MCDE SECARA 10, PLAK DETLLYEDS /3% ooSSPARATICN = ofld
le=/ 3XoeNiQ T 2gF v/ VX g0t LTA = wyFouan/)

2130 FCUMAT(/IXyo MUOE StPARAT [Ch MIn[Mum JETLCTEDZI@/INge 5EPARATINN = o

1F1J eB8/3XeoMEQ S sebeed/5KesDELTA = *9F5eb6/)

PL3T THE FIARSY SEVE EJLENVALUY S

[x X Xal

KNUNPLOT =

TFCLDrGal T UMPLCT I LLMFLOT=LDEG

00 2145 I[PLLT=1hUNPLLOT

MAGLAMCIPLCTI=CABRSCLAMYDACIFLOG ™))

[FCIRE oL Qe INCIIRAC~AYLIPLLT )L Q

IFCIRE S« NECINEQIXARCAYLIPLL T )=0CLTA

CONTINGE -

CALL CURVEC(XAKPAY MAGLAM ot U HFL T g=1)

OEL TA=DELTA+DELINC

ConTINLE

NEQ=NEQeREQINC

ConNTINLE

GO TOo 2150

TTT MRITELT 2160)

2160 FORMATC/1X010C(Ined//1%eePruunAM WAS TE~MIMATED BECAUSE NYIG WA
IUTSLIDE GF TTS LIMIT:ee//0Xel00CLHe))

2150 CALL ENOPLUDD

CALL DUNEPL

STuLP

END

2070

2140

2030

2020

~




APPENDIX C

Program Listing - FOCAL

The code FOCAL performs all of the far field calcula-
tions. The resonator mode is propagated to the far field,
the centroid is located, the integrated intensity is computed,
and the beam steering angle is calculated. The output includes
intensity profile and integrated intensity data (TAPE8) and
plots (TAPE9).

The input data is read from TAPE7 and is entered

interactively. The data on TAPE7 in the order required is:

MAG: cavity magnification (real)
NEQ: equivalent Fresnel number (real)

DELTA: § (real)

MODE: mode number (integer)
ROOT:  mode eigenvalue (complex)
! XMIN: minimum x value at which the resonator mode

mode is calculated (real)
XMAX: maximum x value at which the resonator
is calculated (real)
INCX: number of points per unit x at which
| the mode is calculated (integer)
» NDATA: total number of points at which the i

mode is calculated (integer)
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FIELD: the complex field values (complex)

SLOPE: slope of the phase front in the plane of
the feedback mirror - required only for
mode one (real)

Data entered interactively includes:

AMIN: minimum normalized half angle value at
which the far field intensity is to be
calculated (real)

AMAX: maximum normalized half angle value at
which the far field intensity is to be
calculated (real)

NUMF : total number of points at which the far
field intensity is to be calculated

(integer)

IRES: response to a posed question - input Y
for "yes" and any other letter for "no"
CCPLOT56X or CCPLOT1038 is required to generate the

Calcomp plots.




i PRIGRAM FOCALCL . PUT yuUTPUT T APL 2T INPUT sTAPLESOUTPUT o TAPFToTAPE~TA
tPEI

‘ CACE R A SR AR ME 00 CtaNtR st tRalaaetneetentonitatineasttetndinsttadnssasts

THIS PHUGRANF TAKES THE HFAt FItLD DATA GENERATID BY
BAICL (FROM TAPET) AND PROPULGATFS Tre +.DE §2 THE
FAl FIELDe A SIMPLE INTEGHATI .. ~luTlhe DUEZ THE
FOURIER TRALSFOIM FUOR THE PROFPLGATILNG A FLZT CF fHE
FAD FItLD JINTENSITY PATTENN 1. LfWERATIDs  THE HEAM

9 CENMTROID 1w THE' LCOCATEDs AL THE (ATEGrATED IMTENSITY
IS CALCULATED F . .0R THL CENTROID. THE IATEGRATED
INTENSITY 13 ALLO PLOTTED.

REQUIRED INnFUTSL

AMIt, 3 LORIR LIMIT FCn PLUTZ

AMAX = LPPLN LIMIT FCF PL.TS

NUMF 3 TCTAL “UMHt? OF POINTS AT wnICH THE FIELD
IS CALCULATLD

IRES = REGFCONIE TO A PoLkD QUELTIuNe FMTEF ¥ FOK

YESe Al ANY OTHEA LETTER FUR NDe

THIS CJIOE ~LQUIZES CCPLITYIJS~ #.R CALCuMP PLCTSy @F
CCPLOTSuX FCR PrEVILWING PLITS AT A GRAPHICS
TERAMINAL.

FINAL FORM: 7 CCTUBLER 1982. 2LY Se Mo KIMALDIW

CRBAAG R0 A 00 RRECINRRVCNE BB R00QPRQAECaRNRRAlAanNQRtRealatanNttsnetnienens
CUMMIN FIELUCEUL ) oX “[lo XMAX 9 KI "Co CLATAs  DATAGF¥INGFMAKGF [1.Co hUMF oF
E- VFINTESU D oF LUCO VAL UR € 0D o ¢ 1TUACL 3L ) o VAL
& CUMPLEX EVE ok lELUe~ CUT
REAL MAGONEG
DIMENSIUN LAHELCLT)
DATA LABEL/1T(1un )/
EYD2(0asle)
P PI=3,141590¢535 SH
3 DATA [YiS/Zinv/
N ' READC 74 DMAG31.F QeDt LTAgRIDL 9nOUT g XM Tl g XMA Xy LANCX o SOATA
b READC74e) (FIELD(IDs.=141DATAD
. IFUAIDELEQa L )FEADCT 40 ) SLGPE

32 COVDITEDH FIELD = JET PCMER = 1o A%ND BLAKK FIELD JVER FEEDHACK
. ; MIRROK.
: KINCZLo/1iCX
L CALL Conoli

. QUTPUT RUN DATA TO CKRT AND CUTFLT FILE (TAPE®)
. WA TECL 9L QI MAGCAy I LTAGXMI Mg XKNAXK g X ILCoARDATA ¢ MO 4wl 0T
' i WRITECr o1 0D AG E Qo DNLTAoXM I g R¥AX o KILC oL DATAGMDI o O07

10 FUNMAT (/7L Xoonl'. PAXAME TH QS C(FRM UATA FiLtde//hhye1AG T egFon/l

by IXsehEQ = ogb- o0 /1 Np00tLTA = agF. oA/1RpoXP(% T aofdea/LlXgahYAY
L 22 FBN/1XeoKILE = gF4oq/1Xee ATA = #g[3/1Xya¥ OF # eyI2/1Xqe :
i SMOVE EIGEAVALUL. = e oF10eC 924 ¢Flia-7)

PRONT MAXIMUM ALLCWJABLE SPATIAL F-EQUL'CYF PFAD 07 (I®CD SPA [AL
FREQUENCY LImiT e

LIS4LER SN VARY MR LY ! R
' WRITECAe302=ALIMoAL LM !
J ] FORMATOLIX oo LIMIIS o THE AU=MAL . Z7tD HALF AMGLE A-t 2 oqF L4440 7. oy




20

500

'3
50

20

160
110
120

131

130

132

2 POINTSe/lXesT BE GENLRATELZeZ)
READCH s« JAM TN JAXAX Yy WUNF
FRINZANIAN/ (0> AG)
FMAXZAMAK/(; oo AL
FINCS(t MAX~FMINI/ CyuME=10)

CALL FFCALC
CIST INTENSITYe [ ULST EOD.

MRITE( 402}

FOIMAT (/L XeaM UL ¥ U LIKE A PrItiuul ALD C~T LISTING OF THE I%'ENM
1S(TY2e/)

FEADCS 4 3Iudint

FuRMAT (AL}

IFCIRE Santba Y 236U O Ut

WRI TECHne3C)

WHITE L 440D

FORMAT(/4Xyoh HALE AANGLE O oI X g0l TENLITYZY)
DU ol I=1ehtmi

MRITECG o TSIFVALUE (L )oFFINTC )

WRITECI o 7TOMFVALLECI D oFFINTCI)
FORMATCLUNeF1d e Xs E4e /)

ConTINUE

PLIT INTENLITY

CALL PLOTS(Ce ot ap9)

LASELC(L1)=1InFA~ FILL Y
LABELE2)=1 e mINTERSTTY
LABELC3)=1cn LELTA =

LABEL (1 5) =1 wfQ =
LAZELCLI9)=10H MLDE
LAdEL(D)=1uH vAG =

LABELC)=15H Lok Me HA
LABELC1DD) =1 UHLE ANGLE
LASEL(119=1CH . CALeD 1
LABELCLI 2 =2 unt TSI T Y
EACODEC10 o o LABELL ) )DELTA
ENCTDEC10ol Ul sLAHEL 14))0EQ
ENCUPECLI0 010 oL ABEL C1E)IMLUL
ENCUDECLIO 2l cOoLABEL {b)I®AG
FORIMAT(F,.9)

FORMAT(FR o)
FOIMATC(LIX o leaixyl2)
FOLMAT (Fr o0)

CALL HGRAPHCF VALUL ¢ FFINT oNUMFoLABLL 9l 9L s0)

INITEALIZE FCR THE INTEGRATLD iATENLIITY RCUTINE

WRAT TEC(n o1 513FL C

FORAMAT(/L1 XoePEAK FIELD S LUCATED AT A = »4F13a7/)
MRITEC6 91 3L IFLLC

FOIMATC/Z N goPtAK FZELD IS LUCATID AT A = «yFlveT/1Xeeft.TER MINTPUNM
1 AND MAXIMUM HALF A’ 6Lt VALUES PUR THE INTEGRATEDO/IXgeNTESSITY R
20UIINEe AND Tt hUL4Antr _F PUINT L 10 BEL GENESATIDSe/)
READCS oo dAMINgAMAX,y JUNH

WRUTECA o1 32 DAMI g AMAX o8 LMF

FOIMAT /1Ky e TR GuATLED (WTECTITY ® UTIN PAAMETER S0/ X geAM* = o
1oF3 57 Kp@APAX = agt o8/ 3ngn LYt = 0,137)

FMLNZAM] 4/ e sMAG)

FRAXZAYAX /(. .o*AG)

FINCZ(FMAX=F 1 3/ ¢ IUMF=1a)

CALL FFCALC
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CALL PLTHCIDIDGCENIKGIL)

[ 4
[ WRITE [NTEGHATED INTENSITY DATA TC [APE: AND QUIPUT
4

MR TE € 40 00)
150 FORMATC/ZLIXseDO YIU MAHT A Ca¥ LISTING F THE INTEGHATED IATENSITY?
1/)
READCS,4333) PES
IFCIRES b« IYESIGO T Llov
MRITE ) IV )
170 FUCMAT(/ZIX o1t GRATED NTEANLIIY VALUL.o/6Xeot H ANGLEool1XNenINTEG
IRAT LD/ LN ge b htM HEAMe o] JXge InTt  3ITY 0/ XgaCINTRO[De//)
00 180 [:1,41D1D
MRITECL 31 00 MEVALUL L D) ok I THACT)
190 FCIMAT(XsFLl0e79l0XoFlual)
180 CoOwTINUE
160 WHITCEC 14170
B0 200 [=1e:D1D
MRI TEC1 9195 JFVALUEC D) oF I THALL)
200 CONTINUE

MRITE INTLGRATED INTENSITY DATA TO THE PLOT FILE

onn

LASELCL)I=1LHINTEGHATLD
LAAELC2D)=1CH ThTIENSTITY
LAGFLOIID =1 uHINTRGRATED
LABELCL2)=1CH JLTENSTITY
CALL HGRAPHIFVALUE2PITBA2IDIDsLABEL o1 904C)

COMPUTLE DIFFRACTION AND GEUMLTS!C ot AM STEERING AKGLES

aan

THETASOLLTACQ ,aMAGe.EQa (MAL=14)/(MAGS],)
QMEGAZ2, 0Tk TAZ(MAG~14)
CENTROI=CEL VU] e2 a0 4AG
MRITECL o210 ITHETAWUMEGAZCE I R
WRITEC2922C)THETASUMEGASCENT HUL
230 FORMAT(/IXeaRESUNAT LR A°D OLFFRACTICN ANBLEC2e/ 3K e GEOMFTRIC TILY
LAMGLE = o gFlae7/3XeexbJONATUK ANRIS TILd = esEl8or/SXesDIFF~ACTION
2 AWGLE Z eyt 14 D)
IFCMODt a€QalIWRITEL 4422031 WPE
TFCMODE W EQeIIWHTITEC. 9220 5L PE
220 FUIMATUIIX oo LOPL = egE)0eD)
CALL PLITECLANND)

Stop

EnD
c .
G0 Mea 0000 000ceata0000intitaeeeraeseetisnasasedansstessscecnsoncttteontanss
C

SUHROUT IAE ConDIY
[«
c THIS SUHRGUTINE CONDITITANS THt FILLD CWtR THE PLAML OF THE
[ FEEDBACK MIcRUR. SPECIFICALLYs FIeLD VALUFS CN THE MI~QlReY
[ SURFACE AKE SET TC (Jee.ede  Trb INTERCITY 13 THESN NOFMALLZEOD
[ SO THAT [T. INTEGRATED vALUt I. lee
c

COMMUN FIELDCLIL) o XME o XMAK ¢ %] cCoCELT A \DATASFUINGF MAX T [NC o NUMH oF
IFINTUOS U oF LCCoF VALUE (o .0 P ITHALLS S ) o "AG
COMPLEX FILLDobYE

REAL ™AL

Plz3ala1n9¢e53ur e

EYEz(0aple)

A2UPPEFrz] qeLELTA

AL MEz=1eeLELTA

X=XMEN

3UnM:z=0.

DO 10 1:=14"0ATA
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TFUXobof eA2t  dlroAlDaX et o AL UFPEFIFIELDCL)=( a9l o)
FHAGF [ LDCI IO CUANJGLFIL D))
IP(I/2)e2
TRCIatQolet ~olet QutLATAIGE "0 24
LFCIPL Ul ) UMZLUNSP Y 0F AL
IFCIP Wt s LDEUNZ UM 2a0F AL
60 0 3u
20 SUM=SUMeF MAG
30 N=KeX1'C
10 Cuatlauuf
SEZ_ UMex!INC/S, |
SO CF =AM )
023 40 [=1ehDATA
FLOLDCIDI=FILLDCLI )/ S LrtsF
A0 ConTIhut
RETURN
ErD

c .
CeRantt et a0ttt 0ttt teneta it itatl toeaerattinsasnestodresstnccansonsnantng
c

SUBWOUT INE FFCALC
THIS SUBROUTINL PRIPAGAIES Tnt .UTPUT ¢+ tiD TC THe FAw FILLD.

THC PCAK ILTENSITY POIST IL METUNKED ALUNG WITH TH4(C FA~ FIELOD
PATTERN.

HAO0ON

CCMYNN FIELOCEOU ) o XMLl g XMAX o X2 CoDCLTAGIDATAWFMIYoFMAX oF [ NCy NIMF oF
TFIMT40s0 ) o FLOCOEVALUL (e C Yo L THACLSL )y MAG

Y CUMPLEX FLELDGEYE g5UMe i TAR LI P IF s ZUMY

- 1EAL MAG

3 F=F M

RRIGHI=C.

EYL 2tUasl e

PI=3.141390L53% %0

SET UP 00 LCOP ABUUT F VALUES

(2N e X2l

DO 10 LFu=1eNUNMF
XA MIN
122 [F==ZYCe2,0P1oF

SET UP DJ LOUP TG TAKE FCGURTER THRANSFCIMe
INTEGRATICNL TECHNIQUE = SIMPLUA'3S NULE.

(e X2 X2 X2]

SUM=(0a9le)
FYALUEC(FO)=Fe2.eMAG D
DO 20 [N=1¢NDATA
ITARG=FIELDCIX)eCE XPCLLPIF e X)
IXP=(IX/2)e2
R . IFCINGtQelelNalXat GaNDATAIGL T7 36
., IFCIXPaEQal X) SUMZSUMey o INTARG
¢ TFUIXP.NE I NDSUMSSUMe2, o[ 4TAKG
GO 10 49
30 SUASSUMeINI ARG
.4 20 XzxeXInC
A 20  CCuTInuE
i SUM1=SUMeXINhC/Y,
K FFISNTCIFO)=,UMLeCONJGEZUNT)
1 ) IFCFFINTOIFLI LT OBRIGATIGY T¢ M.
3 BRIGATFFINTCIFC)
FLOC=Fa2,¢MAG
50  F:zFeF[AC
10 CONTINLE
| RETURN
J £nD
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C.n..ton---.t-tn-..n--on--....ln-.-tntt--a;-nnaaon‘--nc-on----.oo-'-nl.ta
SUWROUTINE FITBUIDIUWCENTFUTD
THL S SUBROUTIAE COMPUTE . INTEG-ATED INTELIITY FOY THE AR FIELO

PATTER . BLAM CENT<uID IS TAKEN A5 THE PUINT AT WAlCHt AALF THi
TOTAL POMER LIES (4 E1TmER LIDE.

NnAMROO [a]

COMMIN FILLUCESC) o XMIN g xMAX 9 X1, CyGULT Ay UATARF P INgF YAXF INC s iiUMF oF
IFIN"CuIC oFLCCofF VAL UG (e LU daF ITHACLS Y erAL

CuMPLEXY FLELD

RLAL MaAG

DETERMI Nk TOTAL POMER IASIUE LIMITS FREVICUSLY ENTE«ED.

N

¥ SUM=3,
OC 10 I=1eNULMF
IP=1/2e;
IFCleEQalect aiat QatsUMFYGY T 20
i [FCIPGC Qo IDEUMLUMeFR LI TC[)ou,
IFCIP Gt o I D LUMSUMSRFINT (D2,
f 65 10 10
| 20 SUM=SUMetFiNTC(I)
10 [0 § SAITS
PUodbr=Unef INC/ Y.

LOCATE BeAM CENTROID WITH AID of A LINhctAk INTERPSLATIGH.

NN

POdt RAZPUWENSL LS
FIwC2=F(Cela
FINCa=F IiCea,
SuUM=C.
1=
40 ERESY
IP=L1/2)e?
IFCIeCdel U Y0 30
[FCIP.tQal)LUMZ UMeFFI T )efI".Co
IFC P e IISUMSSURCRFINTOID sF TRC2
60 10 &3
50 SUMZSUMSFFINT (1)eFII.C
3 60 TFCOUMLL T CHF HADGL U %0
IFCIPat e TN UUMPZSUM=tF]  T(Ll)eF["Cs
IFCIP b 1Y UMP=SUM-FFINT(I)eF " C
CENVIROIZFM P el «2,) b [ Co(F Jub ‘A= UmPYaf JAC/CSUY=5L P}
DIST(Fr™MAX~FEMILI/C,
FHRAX=CoeiTrf [eDI LY N
FMIN=CELTR T=DIT
FloCa(FMAX~tMINI/(UNEF=1,0)
t CP=CENTRYILaMAGS, o
. WRITC (el iadCP
! WRITEC o1uf)CP
1002 FOKMAT(/LXxyeBEAM CENTRL.D L CATID AT A = ayil18.T) !
POMERP =P W -e 10 L H
' WRITE(A 4100 1IPCULEP
WRITEC(Le1J0T1IP wipPP
B 1001 FOUAOMATU/IXyoPLFCERTAGE FOME~ L4 REGION USED FCR LOCATING CENTROID
1= e Fne4)
FRIURZ?2.eMAGeF 1O
WRITECoold . dbnrD-
WPLTEC o1l db¥rOs
1000 FUAMAT(/1 XpoMAX ERRUR Ji CLANIRU.D LUCATION CIN 933M, HALF ANGLE UN
. SIT3) = eyt A7)
CALL feCALC

[
t c INFEGPATE THE IATLNSITY
‘ r
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Vs

PITHACL) =D
IsvuUNF/2e]
FAZIIR:FINC/3.
Inotx=1[72
IDID=I%"DEXe]
09 73 [1=214INDEX
TAz2e]1-2
I8z Ael
IC=[del
PITBACIL 1) =FACTOASCFFL YUl olAdohanFFINTCielHISFF [ WT(IeICIeFFINT (]
1=IA)eQeFF ILTCI=(B)eFF{LT(I=-iC))eP{THALIL)
FVALUECTIL D)= (I1=1ad ek [nCetqaeMAG

70 CaonTInUE
FVALUECINUY Xe1 )] 006 XeF " CoaoaMAG
RETURN
END

c
Ce0aR 0 010 ete0 000 it0e et ¢t R0 A0000000e NP Raaeattcentosttminssacsseses

c
SUSMOUTIRE HGFAFHIX o YN [DgtiugtFetl)
DIMENSION XC1D oY1) oI 0€23) 8 IF (N7ebQe2) CALL PLCT(=1e'9921C90=-3)

IF (NO.EQ.2) 6% TO v 3 OIF (NdetTel) 60 T 12
CALL SCALE(XsTantisl? $ CALL CCALE(YsSesNsl)
10 CALL PLOTU(Lesllen2) 8 CALL PLlT(“aS9llesl)

CALL PLOT (1 e50Leel) $ CALL FLITCUesCasl)

CALL PLOT(123%91e3%9=3) $ CALL PLST(L a9 o309-2)
IFCIDCL)aQe957) G TU &%

CALL PLOT(algmely=351 $ CALL FLLT(Oe9~209~2)

CALL SYMBULCeZ50e39e079.001)yvi o
CALL SYMBCLCoAS 9039007y DE3Dsyis
CALL SYMBCLEESeadnen 79 DL 3), .
CALL SYMBOLCGa“SyelsaClo DDy

CALL 3SYMACLC1a0%00d0al/allldy -
CALL SYMBGL(lel%gaSeel7oiUCldyr..

CALL PLUT(CagCay3) 3 CALL PLLTC(Le2% 00 el
CALL PLOT (142592492 3 CALL PLCT(3as209=2)
CALL PLOTC(=alpely=3)

25 CALL PLITCSad0lae~2)

CALL PLIT( (S a9=:e309-2) $ CALL PLGY(-ZeczeCap=2)
CALL PLOT (9439075~ 1)

CALL AXIS(las0aglDC “dg=0sTepsiapX{tiel)oeX(he2))

IF(ND.tQ.3) GG TO 27

CALL AXISADaoloolDC11)eCoSaglraa¥llhieldaY(teD2))

66 10 33

27 CALL AXI1S(Ca00aoIDC1/) o0 02egl. (o sV (Neld Y (he2))
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